WO2022105438A1 - 基于TiH2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法 - Google Patents

基于TiH2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法 Download PDF

Info

Publication number
WO2022105438A1
WO2022105438A1 PCT/CN2021/121175 CN2021121175W WO2022105438A1 WO 2022105438 A1 WO2022105438 A1 WO 2022105438A1 CN 2021121175 W CN2021121175 W CN 2021121175W WO 2022105438 A1 WO2022105438 A1 WO 2022105438A1
Authority
WO
WIPO (PCT)
Prior art keywords
tih
powder
bone repair
powder metallurgy
mesh
Prior art date
Application number
PCT/CN2021/121175
Other languages
English (en)
French (fr)
Inventor
颉芳霞
杨豪
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2022105438A1 publication Critical patent/WO2022105438A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Definitions

  • the invention belongs to the technical field of biomedical titanium alloy preparation, and provides a powder metallurgy preparation method of a Ti-Nb-Sn bone repair alloy based on TiH2.
  • Biomedical materials mainly include ceramics, polymers and metals. Compared with the other two, metal materials have better mechanical compatibility, that is, sufficient strength and toughness, good wear resistance and suitable Elastic modulus, more suitable for bone repair materials.
  • Metal materials are mainly divided into three categories: stainless steel, cobalt-chromium alloys, and titanium and titanium alloys. These materials have their own advantages and disadvantages.
  • stainless steel is mainly used for the repair of hard tissues such as bones and teeth. It has low cost and simple processing, but has poor corrosion resistance, especially in high stress areas, where corrosion is prone to occur.
  • Cobalt-chromium alloy has good wear resistance and corrosion resistance, and high fatigue strength, but the Co and Cr elements contained in it will cause harm to the human body, which greatly limits its application.
  • titanium and titanium alloys have gradually become the first choice for bone repair materials due to their high specific strength, good wear resistance, good corrosion resistance and good biocompatibility.
  • Pure Ti and Ti-6Al-4V are the most widely used titanium alloys for bone repair at present, but Al and V have been proved to be toxic to the human body, and their elastic modulus still does not match the human bone. "stress shielding" phenomenon, which leads to the loosening of the implant, which in turn affects its repair. Therefore, it is necessary to develop new low-modulus non-toxic titanium alloys to solve the current problems.
  • new biomedical titanium alloys are mainly developed by adding Nb, Ta, Zr, Sn, Mo and other non-toxic elements to pure Ti, which can effectively reduce the elastic modulus without losing the strength and toughness of the alloy.
  • researchers at home and abroad have developed a series of new biomedical titanium alloys such as Ti-13Nb-13Zr, Ti-5Mo-3Sn, etc., which not only have better mechanical properties, lower elastic modulus, but also can avoid poisoning to the human body. , with good biocompatibility.
  • As a bone repair material hardness is a very important indicator.
  • Ti-Nb alloy has a low elastic modulus and is non-toxic, and can meet the hardness requirements as a bone repair material. It is one of the promising bone repair materials.
  • brittle powder TiH 2 is used to replace Ti powder.
  • the brittle TiH 2 powder particles are easier to grind during the ball milling process, the powder is mixed more uniformly, and it is not easy to stick to the pot, which can better control the alloy composition.
  • the H element in the powder will be removed during the sintering process and will not affect the final alloy composition.
  • Different phases in Ti alloys have different elastic moduli, among which the ⁇ phase has the lowest elastic modulus and the ⁇ phase has the highest. Relevant studies have shown that the addition of Sn can effectively suppress the generation of ⁇ phase. Therefore, the preparation of Ti-Nb-Sn alloy is a good choice.
  • the compressive properties of Ti-Nb-Sn alloy are important indicators to measure the mechanical properties of the alloy.
  • the compressive properties of the Ti-Nb-Sn alloy obtained by the existing powder metallurgy preparation method are not ideal, so the preparation method needs to be further improved to obtain the Ti-Nb-Sn alloy with better compressive properties.
  • the present invention provides a powder metallurgy preparation method of a Ti-Nb-Sn bone repair alloy based on TiH 2 .
  • the compressive properties of the alloy obtained by the method have been significantly improved.
  • the powder metallurgy preparation method of Ti-Nb-Sn bone repair alloy based on TiH 2 is characterized by:
  • the method mainly includes the following steps:
  • the sample is put into a tube furnace for sintering and forming;
  • the mechanically uniform mixing of the TiH 2 , Nb and Sn powders is specifically as follows: the TiH 2 , Nb and Sn powders are mechanically mixed by a ball milling process, and the process parameters are: Time 10h, speed 300r/min.
  • the compression of the uniformly mixed TiH 2 , Nb and Sn powders is specifically as follows: using a manual tablet press to press the uniformly mixed TiH 2 , Nb and Sn powders, and the process parameters are: the pressure is 600MPa, the holding time is 5min.
  • putting the sample into a tube furnace for sintering under a high-purity argon protective atmosphere is specifically: placing the sample in an inert argon protective atmosphere with a purity of 99.99%.
  • the process parameters are: the heating rate is 4 °C/min, and the temperature is kept at 800 °C and 1300 °C for 2h respectively.
  • the described weighing of TiH 2 , Nb and Sn powder according to the proportion of components is specifically: the particle sizes of the raw material TiH 2 powder, gas atomized Nb powder and gas atomized Sn powder powder are: 300 mesh, 400 mesh, 0 ⁇ 1067 meshes.
  • the particle size of the gas atomized Sn powder is: 0 mesh.
  • the particle size of the gas atomized Sn powder is: 400 meshes.
  • the particle size of the aerosolized Sn powder is: 667 meshes.
  • the particle size of the gas atomized Sn powder is: 1067 meshes.
  • the present invention has the following beneficial effects:
  • Ti-Nb-Sn alloy By improving the process and process parameters in the powder metallurgy preparation method of Ti-Nb-Sn alloy, the yield strength and compressive strength of Ti-Nb-Sn alloy are significantly improved under the condition that other properties remain unchanged. Ti-Nb-Sn alloy with better compressibility.
  • TiH 2 powder is used for mixing, which is not only not easy to oxidize, but also not easy to stick to the pot during ball milling, which effectively improves the accuracy of controlling the composition of the alloy; the addition of Nb can promote the formation of ⁇ phase, and the addition of Sn can effectively reduce the elastic modulus of the alloy, A Ti-10Nb-xSn alloy with low modulus and high strength is obtained; no additives are required in the preparation process, and the influence of impurities on the composition and properties of the Ti-10Nb-xSn alloy is effectively reduced.
  • An electronic balance was used to weigh 42.5 g of 300-mesh TiH 2 powder, 5 g of 400-mesh Nb powder, and 2.5 g of 667-mesh Sn powder, and the rest of the steps adopted the same process and process parameters as in Example 1 to finally obtain a Ti-10Nb-5Sn alloy, Its yield strength is 893.26 ⁇ 39.62MPa, and its compressive strength is 1172.79 ⁇ 43.10MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种基于TiH2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法,通过其方法得到的合金的压缩性能取得了明显的提高,该方法主要包含如下步骤:按成分配比称取TiH2、Nb、Sn粉末,将TiH2、Nb、Sn粉末进行机械均匀混合;采用压片机,对混合均匀的TiH2、Nb、Sn粉末进行压制,得到样品;在高纯氩气保护气氛下,将所述样品放入管式炉中进行烧结成形;烧结完成后,随炉冷却,得到Ti-Nb-Sn合金。

Description

基于TiH 2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法 技术领域
本发明属于生物医用钛合金制备技术领域,提供了基于TiH2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法。
背景技术
生物医用材料主要包括陶瓷、高分子聚合物和金属三大类,相较于另外两种,金属材料具有更好的机械相容性、即足够的强度和韧性、良好的耐磨性以及合适的弹性模量,更加适用于骨修复材料。金属材料主要分为不锈钢、钴铬合金和钛及钛合金三大类,这些材料各有优势与不足。不锈钢材料作为植入体,主要用于骨骼和牙等硬组织的修复,成本低且加工简单,但是耐腐蚀性差,尤其是在高应力区域,容易发生腐蚀。钴铬合金具有良好的耐磨性和耐腐蚀性,且疲劳强度高,但其中包含的Co和Cr元素会对人体产生危害,大大限制了其应用。相比之下,钛及钛合金由于具有比强度高、耐磨性好、耐腐蚀性好以及生物相容性好等特点,逐渐成为了骨修复材料的首选。纯Ti及Ti-6Al-4V是目前应用最广泛的骨修复钛合金,但Al和V被证实会对人体产生毒害,且其弹性模量依旧与人体骨骼不匹配,植入人体后会产生“应力屏蔽”现象,导致植入体产生松动,进而影响到其修复作用。因此,需要研制新型低模量的无毒钛合金来解决当下的问题。
目前,主要通过在纯Ti中添加Nb、Ta、Zr、Sn、Mo等无毒元素来研制新型的生物医用钛合金,可以在不损失合金强度、韧性的情况下,有效降低弹性模量。国内外研究人员已经研制出了Ti-13Nb-13Zr、Ti-5Mo-3Sn等一系列新型生物医用钛合金,不仅具有更优秀的力学性能、更低的弹性模量,而且可以避免对人体产生毒害,具有良好的生物相容性。而作为骨修复材料,硬度是一个很重要的指标。Ti-Nb合金的弹性模量较低且无毒害,且可以满足作为骨修复材料的硬度要求,是很有发展前景的骨修复材料之一。为了预防球磨过程中粉末粘罐,造成粉末成分不可控的情况,采用脆性粉末TiH 2来代替Ti粉。脆性的TiH 2粉末颗粒球磨过程中更容易磨细,粉末混合的更均匀,且不容易粘罐,可以更好的控制合金成分。粉末中的H元素会在烧结过程中脱除,不会影响最终的合金成分。Ti合金中不同的相有不同的弹性模量,其中β相弹性模量最低,ω相最高。相关研究表明,Sn元素的加入可以有效地抑制ω相的产生。因此,制备Ti-Nb-Sn合金是一种好的选择。
然而,为了获得综合性能更加优秀的钛合金,加入了Mo、Nb、Zr等难熔元素,传统的熔铸方法容易产生成分偏析,导致制备的钛合金性能不均匀,影响实际使用。为了能将Ti-Nb-Sn合金真正的运用于骨修复材料,现在可以采用粉末冶金法来制备。不仅可以获得性能均匀的钛合金,还可以制备多孔钛合金或复合材料,可以更好的满足人体的使用需求。
技术问题
Ti-Nb-Sn合金的压缩性能包括屈服强度和抗压强度,是衡量合金力学性能的重要指标。但是现有的粉末冶金制备方法得到的Ti-Nb-Sn合金的压缩性能不理想,因此需要进一步改进制备方法来得到压缩性能较好的Ti-Nb-Sn合金。
技术解决方案
为了解决现有的Ti-Nb-Sn合金粉末冶金制备方法得到的合金压缩性能不理想的问题,本发明提供了一种基于TiH 2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法,通过其方法得到的合金的压缩性能取得了明显的提高。
其具体技术方案如下:
基于TiH 2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法,其特征在于:
该方法主要包含如下步骤:
(1)按成分配比称取TiH 2、Nb、Sn粉末,将TiH 2、Nb、Sn粉末进行机械均匀混合;
(2)采用压片机,对混合均匀的TiH 2、Nb、Sn粉末进行压制,得到样品;
(3)在高纯氩气保护气氛下,将所述样品放入管式炉中进行烧结成形;
(4)烧结完成后,随炉冷却,得到Ti-Nb-Sn合金。
进一步的,所述的将TiH 2、Nb、Sn粉末进行机械均匀混合具体为:采用球磨工艺对TiH 2、Nb、Sn粉末进行机械混合,其工艺参数为:球料比为3:1,球磨时间10h,转速300r/min。
进一步的,所述的对混合均匀的TiH 2、Nb、Sn粉末进行压制具体为:采用手动式压片机,对混合均匀的TiH 2、Nb、Sn粉末进行压制,其工艺参数为:压力为600MPa,保压时间为5min。
进一步的,所述的在高纯氩气保护气氛下,将所述样品放入管式炉中进行烧结成形具体为:在纯度为99.99%的惰性氩气保护气氛下,将所述样品放入管式炉中烧结,其工艺参数为:升温速率为4℃/min,在800℃、1300℃分别保温2h。
进一步的,所述的按成分配比称取TiH 2、Nb、Sn粉末具体为:原料TiH 2粉、气雾化Nb粉和气雾化Sn粉粉末的粒径分别为:300目、400目、0~1067目。
进一步的,所述气雾化Sn粉粉末的粒径为:0目。
进一步的,所述气雾化Sn粉粉末的粒径为:400目。
进一步的,所述气雾化Sn粉粉末的粒径为:667目。
进一步的,所述气雾化Sn粉粉末的粒径为:1067目。
有益效果
本发明与现有技术相比,其有益效果为:
1通过改进Ti-Nb-Sn合金的粉末冶金制备方法中的工艺过程和工艺参数,使得Ti-Nb-Sn合金在其他性能保持不变的情况下其屈服强度和抗压强度显著提高,最终得到压缩性能较好的Ti-Nb-Sn合金。
2采用TiH 2粉末进行混粉,球磨过程中不仅不易氧化,且不易粘罐,有效提高控制合金成分的精度;Nb的加入可以促进β相生成,Sn的加入可以有效降低合金的弹性模量,得到低模量高强度的Ti-10Nb-xSn合金;制备过程中无需添加剂,有效减少杂质对Ti-10Nb-xSn合金成分和性能的影响。
本发明的实施方式
实施例1:
采用电子天平称取300目TiH 2粉45g、400目Nb粉5g,将上述粉末装入球磨罐,使用球磨机进行机械均匀混合,球料比为3:1,球磨时间为10h,转速为300r/min;对混合均匀的粉末进行压制,压力为600MPa,保压时间5min,得到样品;在纯度为99.99%的氩气气氛保护下,将压制样品放入管式炉进行烧结,升温速率为4℃/min,在800℃、1300℃保温2h,然后随炉冷却,得到Ti-10Nb合金,其屈服强度为907.85±29.17MPa、抗压强度为1309.99±45.09MPa。
实施例2:
采用电子天平称取300目TiH 2粉43.5g、400目Nb粉5g、400目Sn粉1.5g,其余步骤采用与实施例1相同的工艺过程和工艺参数,最终得到Ti-10Nb-3Sn合金,其屈服强度为 844.48±40.99MPa、抗压强度为1213.33±32.31MPa。
实施例3:
采用电子天平称取300目TiH 2粉42.5g、400目Nb粉5g、667目Sn粉2.5g,其余步骤采用与实施例1相同的工艺过程和工艺参数,最终得到Ti-10Nb-5Sn合金,其屈服强度为893.26±39.62MPa、抗压强度为1172.79±43.10MPa。
实施例4:
采用电子天平称取300目TiH 2粉41g、400目Nb粉5g、1067目Sn粉4g,其余步骤采用与实施例1相同的工艺过程和工艺参数,最终得到Ti-10Nb-8Sn合金,其屈服强度为991.87±18.06MPa、抗压强度为1236.17±33.70MPa。
通过本发明所制备的合金与现有技术中常见的合金的力学性能对比如表1所示,可以看出通过本发明所制备的合金相对于现有技术中常见的合金,其屈服强度和抗压强度有了明显的提高。
表1 Ti-10Nb-xSn合金与Ti-32Nb-2Sn合金的力学性能对比
Figure PCTCN2021121175-appb-000001

Claims (9)

  1. 基于TiH 2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法,其特征在于:
    该方法主要包含如下步骤:
    (1)按成分配比称取TiH 2、Nb、Sn粉末,将TiH 2、Nb、Sn粉末进行机械均匀混合;
    (2)采用压片机,对混合均匀的TiH 2、Nb、Sn粉末进行压制,得到样品;
    (3)在高纯氩气保护气氛下,将所述样品放入管式炉中进行烧结成形;
    (4)烧结完成后,随炉冷却,得到Ti-Nb-Sn合金。
  2. 根据权利要求1所述的基于TiH 2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法,其特征在于:所述的将TiH 2、Nb、Sn粉末进行机械均匀混合具体为:采用球磨工艺对TiH 2、Nb、Sn粉末进行机械混合,其工艺参数为:球料比为3:1,球磨时间10h,转速300r/min。
  3. 根据权利要求1所述的基于TiH 2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法,其特征在于:所述的对混合均匀的TiH 2、Nb、Sn粉末进行压制具体为:采用手动式压片机,对混合均匀的TiH 2、Nb、Sn粉末进行压制,其工艺参数为:压力为600MPa,保压时间为5min。
  4. 根据权利要求1所述的基于TiH 2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法,其特征在于:所述的在高纯氩气保护气氛下,将所述样品放入管式炉中进行烧结成形具体为:在纯度为99.99%的惰性氩 气保护气氛下,将所述样品放入管式炉中烧结,其工艺参数为:升温速率为4℃/min,在800℃、1300℃分别保温2h。
  5. 根据权利要求1所述的基于TiH 2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法,其特征在于:所述的按成分配比称取TiH 2、Nb、Sn粉末具体为:原料TiH 2粉、气雾化Nb粉和气雾化Sn粉粉末的粒径分别为:300目、400目、0~1067目。
  6. 根据权利要求5所述的基于TiH 2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法,其特征在于:所述气雾化Sn粉粉末的粒径为:0目。
  7. 根据权利要求5所述的基于TiH 2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法,其特征在于:所述气雾化Sn粉粉末的粒径为:400目。
  8. 根据权利要求5所述的基于TiH 2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法,其特征在于:所述气雾化Sn粉粉末的粒径为:667目。
  9. 根据权利要求5所述的基于TiH 2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法,其特征在于:所述气雾化Sn粉粉末的粒径为:1067目。
PCT/CN2021/121175 2020-11-23 2021-09-28 基于TiH2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法 WO2022105438A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011324667.9A CN112475303B (zh) 2020-11-23 2020-11-23 基于TiH2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法
CN202011324667.9 2020-11-23

Publications (1)

Publication Number Publication Date
WO2022105438A1 true WO2022105438A1 (zh) 2022-05-27

Family

ID=74933352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121175 WO2022105438A1 (zh) 2020-11-23 2021-09-28 基于TiH2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法

Country Status (2)

Country Link
CN (1) CN112475303B (zh)
WO (1) WO2022105438A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112475303B (zh) * 2020-11-23 2022-03-08 江南大学 基于TiH2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法
CN114480900A (zh) * 2021-12-22 2022-05-13 西安理工大学 粉末冶金制备近β型Ti-Nb合金的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120373A (ja) * 1994-08-22 1996-05-14 Sumitomo Metal Ind Ltd 高クリープ強度チタン合金とその製造方法
CN102230100A (zh) * 2011-07-01 2011-11-02 湖南科技大学 一种粉末冶金法制备Ti-Nb-Zr-Sn合金的方法
CN102392150A (zh) * 2011-11-04 2012-03-28 湖南科技大学 一种快速烧结制备Ti-24Nb-4Zr-7.9Sn合金的方法
CN102732747A (zh) * 2012-02-14 2012-10-17 湘潭正和矫形器技术发展有限公司 以TiH2粉为原料粉末冶金法制备Ti-24Nb-8Sn合金的方法
CN106756238A (zh) * 2017-01-11 2017-05-31 东南大学 一种生物医用多孔钛合金及制备方法
CN111230128A (zh) * 2020-03-11 2020-06-05 昆明理工大学 一种基于TiH2添加CaO制备多孔钛及钛合金的方法
CN112475303A (zh) * 2020-11-23 2021-03-12 江南大学 基于TiH2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231636B1 (en) * 1998-02-06 2001-05-15 Idaho Research Foundation, Inc. Mechanochemical processing for metals and metal alloys
CN106312060B (zh) * 2015-06-29 2019-02-26 中国科学院金属研究所 一种高性能低模量医用钛合金三维金属零件的制备方法
FR3047489B1 (fr) * 2016-02-08 2022-09-23 Abdelmadjid Djemai Procede de fabrication d'un beta-alliage titane niobium zirconium (tnz) a tres bas module d'elasticite pour applications biomedicales et son mode de realisation par fabrication additive
CN106191493B (zh) * 2016-07-15 2018-01-12 湖南大学 一种粉末冶金钛合金的制备方法
CN106756239B (zh) * 2017-01-11 2019-03-19 东南大学 一种医用植入多孔钛合金及制备方法
CN107142388B (zh) * 2017-04-11 2018-11-27 昆明理工大学 一种Ti-13Nb-13Zr合金的制备方法
CN111118325B (zh) * 2020-01-13 2021-11-16 西安理工大学 一种细晶铌钛合金的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120373A (ja) * 1994-08-22 1996-05-14 Sumitomo Metal Ind Ltd 高クリープ強度チタン合金とその製造方法
CN102230100A (zh) * 2011-07-01 2011-11-02 湖南科技大学 一种粉末冶金法制备Ti-Nb-Zr-Sn合金的方法
CN102392150A (zh) * 2011-11-04 2012-03-28 湖南科技大学 一种快速烧结制备Ti-24Nb-4Zr-7.9Sn合金的方法
CN102732747A (zh) * 2012-02-14 2012-10-17 湘潭正和矫形器技术发展有限公司 以TiH2粉为原料粉末冶金法制备Ti-24Nb-8Sn合金的方法
CN106756238A (zh) * 2017-01-11 2017-05-31 东南大学 一种生物医用多孔钛合金及制备方法
CN111230128A (zh) * 2020-03-11 2020-06-05 昆明理工大学 一种基于TiH2添加CaO制备多孔钛及钛合金的方法
CN112475303A (zh) * 2020-11-23 2021-03-12 江南大学 基于TiH2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法

Also Published As

Publication number Publication date
CN112475303B (zh) 2022-03-08
CN112475303A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
CN108220742B (zh) 一种微合金化Ti-Zr-Hf-V-Nb-Ta难熔高熵合金及其制备方法
CN105463222B (zh) 一种原位自生TiC‑Ti5Si3颗粒增强钛基复合材料的制备方法
WO2022105438A1 (zh) 基于TiH2的Ti-Nb-Sn骨修复合金的粉末冶金制备方法
CN106148760B (zh) 用于3D打印的医用β钛合金粉体材料及其制备方法
CN102312128B (zh) 一种利用放电等离子烧结制备钛铌钽锆生物医用钛合金的方法
CN107829007B (zh) 一种高熵合金和粉末冶金法制备高熵合金块体的方法
CN110423930A (zh) 一种超细晶高熵金属陶瓷复合材料及其制备方法
CN104263996B (zh) 一种超高塑性、高强低模医用超细晶钛合金及其制备方法
WO2021031231A1 (zh) 一种Ti 2AlNb合金粉末的热等静压工艺
CN109371307A (zh) 一种以高熵合金粉末为粘结剂的wc基硬质合金的制备方法
CN1695877A (zh) 钛基合金钎料粉末制备方法
CN107142388B (zh) 一种Ti-13Nb-13Zr合金的制备方法
CN102312129B (zh) 一种利用放电等离子烧结制备钛铌锆锡生物医用钛合金的方法
CN106756238B (zh) 一种生物医用多孔钛合金及制备方法
CN106756239B (zh) 一种医用植入多孔钛合金及制备方法
Lai et al. Remarkable superelasticity of sintered Ti–Nb alloys by Ms adjustment via oxygen regulation
CN101003868A (zh) 一种具有梯度孔隙率镍钛形状记忆合金的制备方法
CN112063869B (zh) 一种氢辅粉末冶金钛基复合材料的制备方法
CN108796305B (zh) Ti基Ti-Fe-Zr-Sn-Y生物医用合金及其制备方法
CN108546863A (zh) 一种多主元高温合金及其制备方法
CN108396199B (zh) 一种钴铬镍合金材料及其粉末冶金制备方法
CN115011840B (zh) 一种股骨柄人体植入用β型钛合金棒材的生产方法
CN111118379B (zh) 一种Co粘结的TiZrNbMoTa难熔高熵合金及其制备方法
CN105349831A (zh) 一种医用人造关节材料的制备方法
CN105369062A (zh) 一种制造医用人造关节的材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893589

Country of ref document: EP

Kind code of ref document: A1