WO2022105254A1 - 电源稳压输出调节装置、方法及*** - Google Patents

电源稳压输出调节装置、方法及*** Download PDF

Info

Publication number
WO2022105254A1
WO2022105254A1 PCT/CN2021/105194 CN2021105194W WO2022105254A1 WO 2022105254 A1 WO2022105254 A1 WO 2022105254A1 CN 2021105194 W CN2021105194 W CN 2021105194W WO 2022105254 A1 WO2022105254 A1 WO 2022105254A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
output
adjustment
control
Prior art date
Application number
PCT/CN2021/105194
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
长春捷翼汽车零部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春捷翼汽车零部件有限公司 filed Critical 长春捷翼汽车零部件有限公司
Priority to KR1020237013371A priority Critical patent/KR20230067689A/ko
Priority to US18/035,691 priority patent/US20230409059A1/en
Priority to MX2023005787A priority patent/MX2023005787A/es
Priority to CA3199116A priority patent/CA3199116A1/en
Priority to EP21893406.5A priority patent/EP4250053A1/en
Priority to JP2023528415A priority patent/JP2023549216A/ja
Publication of WO2022105254A1 publication Critical patent/WO2022105254A1/zh
Priority to ZA2023/05218A priority patent/ZA202305218B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/04Voltage dividers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • G01R19/2509Details concerning sampling, digitizing or waveform capturing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters

Definitions

  • the present invention relates to the technical field of power electronic equipment, and in particular, to a device, method and system for regulating output of power supply voltage.
  • the power supply In power and electronic equipment, the power supply is used as an energy supply device, and its use safety and reliability are particularly important. In order to ensure the power safety of the power supply, a stable power supply is required to achieve a stable output of the power supply. The output of the power supply is unstable, and it is easy to cause short-circuits and other situations, forming a safety hazard, which may lead to damage to the power supply and other equipment, resulting in huge economic losses and casualties.
  • An object of the present invention is to provide a power supply voltage regulator output adjustment device, which can realize the voltage regulator output of the power supply. Another object of the present invention is to provide a power supply voltage regulation output regulation system. Another object of the present invention is to provide a method for regulating the output of a power supply voltage regulator. Still another object of the present invention is to provide a computer device. Still another object of the present invention is to provide a readable medium.
  • one aspect of the present invention discloses a power supply voltage stabilization output adjustment device, the power supply forms an output voltage according to the supply current, and the device includes a sampling module, a PID adjustment module and a control module;
  • the sampling module is used for sampling the output voltage of the power supply to obtain the sampling voltage
  • the PID adjustment module is configured to obtain a switching frequency signal through PID control adjustment based on the sampled voltage and preset control parameters, and the PID control adjustment includes voltage loop control adjustment and voltage difference change rate loop control adjustment;
  • the control module is configured to form a supply current according to the switching frequency signal.
  • the present invention also discloses a power supply voltage stabilization output adjustment system, comprising the power supply and the above-mentioned power supply voltage stabilization output adjustment device.
  • the invention also discloses a method for regulating output of power supply voltage, comprising:
  • the switching frequency signal is obtained through PID control adjustment, the PID control adjustment includes voltage loop control adjustment and voltage difference change rate loop control adjustment;
  • the supply current is formed according to the switching frequency signal.
  • the invention also discloses a charging control system, comprising a memory, a processor and a computer program stored in the memory and running on the processor,
  • the invention also discloses a computer device, comprising a memory, a processor and a computer program stored in the memory and running on the processor,
  • the present invention also discloses a computer-readable medium on which a computer program is stored,
  • the program implements the method described above when executed by the processor.
  • the present invention obtains the sampling voltage by sampling the output voltage of the power supply through the sampling module, and performs PID control and adjustment on the sampling voltage based on preset control parameters through the PID adjustment module to obtain the switching frequency signal. Therefore, the power supply current can be formed according to the regenerated switching frequency signal after PID control adjustment, and the power supply can further form the output voltage according to the power supply current.
  • the invention samples the output voltage of the power supply and adjusts the power supply current of the power supply output voltage through the PID control of the voltage loop control adjustment and the voltage difference change rate loop control adjustment, so as to realize the real-time output voltage of the power supply. To ensure the purpose of power supply voltage regulation output. To sum up, the present invention precisely controls the size of the power supply current through the closed-loop PID control adjustment, realizes the precise control of the output voltage of the power supply, and improves the stability of the power supply.
  • Fig. 1 shows the structure diagram of a specific embodiment of the power supply voltage stabilization output adjustment device of the present invention
  • Fig. 2 shows the structure diagram of the sampling module of a specific embodiment of the power supply voltage stabilization output adjustment device of the present invention
  • Fig. 3 shows the structure diagram of the control module of a specific embodiment of the power supply voltage stabilization output adjustment device of the present invention
  • Fig. 4 shows the flow chart of a specific embodiment of the power supply voltage regulation output adjustment method of the present invention
  • FIG. 5 shows a flowchart of a specific embodiment S100 of the power supply voltage stabilization output adjustment method of the present invention
  • FIG. 6 shows a flowchart of a specific embodiment S200 of the power supply voltage stabilization output adjustment method of the present invention
  • FIG. 7 shows a flowchart of a specific embodiment S300 of the power supply voltage stabilization output adjustment method of the present invention.
  • FIG. 8 shows a schematic structural diagram of a computer device suitable for implementing an embodiment of the present invention.
  • the present invention provides a power supply voltage regulation output adjustment method, which can precisely control the size of the power supply current of the power supply 10 through closed-loop PID (proportional, integral and differential) control, so as to realize the precise control of the output voltage of the power supply 10 and improve the power supply. 10
  • PID proportional, integral and differential
  • the present embodiment discloses a power supply voltage stabilization output adjustment device.
  • the power supply 10 forms an output voltage according to the supply current.
  • the device includes a sampling module 11 , a PID adjustment module 12 and a control module 13 .
  • the sampling module 11 is used for sampling the output voltage of the power supply 10 to obtain the sampling voltage.
  • the PID adjustment module 12 is configured to obtain a switching frequency signal through PID control adjustment based on the sampled voltage and preset control parameters, and the PID control adjustment includes voltage loop control adjustment and voltage difference change rate loop control adjustment.
  • the control module 13 is configured to form a supply current according to the switching frequency signal.
  • the sampling module 11 samples the output voltage of the power supply 10 to obtain the sampling voltage
  • the PID adjusting module 12 performs PID control and adjustment on the sampling voltage based on preset control parameters to obtain the switching frequency signal. Therefore, the power supply current can be formed according to the regenerated switching frequency signal adjusted by the PID control, and the power supply 10 can further form the output voltage according to the power supply current.
  • the present invention samples the output voltage of the power supply 10 and adjusts the supply current of the output voltage of the power supply 10 through the PID control of the voltage loop control adjustment and the voltage difference change rate loop control adjustment, so as to realize the real-time output voltage of the power supply 10.
  • the regulation control is to ensure the purpose of regulated output of the power supply 10 . To sum up, the present invention precisely controls the magnitude of the power supply current of the power supply 10 through the closed-loop PID control adjustment, realizes the precise control of the output voltage of the power supply 10, and improves the stability of the power supply of the power supply.
  • the sampling module is configured to collect the output voltage of the power supply to obtain the sampling voltage.
  • the collection method includes at least one of collecting through voltage divider, collecting through Hall effect and collecting through voltage divider chip.
  • the output voltage can also be collected in other ways to obtain the sampled voltage, which is not limited in the present invention.
  • the sampling module 11 is used to divide the output voltage of the power supply 10 to obtain a sampling voltage. Specifically, the output voltage of the power supply 10 is proportionally collected by means of voltage division, so that the collected sampling voltage can represent the magnitude of the output voltage of the power supply 10.
  • the sampling voltage is A part of the output voltage collected in a certain proportion converts the large voltage of the output voltage into a small voltage, so that the signal amount of the post-processing is small, and the voltage regulation of the output voltage of the power supply 10 can be realized by a simple circuit, and the requirements for circuit devices are also not tall.
  • the sampling module 11 includes a first resistor group, a second resistor group, a capacitor C1 and an analog-to-digital converter ADC, and the first resistor group and the second resistor group include at least A resistor, if there are multiple resistors, at least two resistors are connected in series in sequence or at least two resistors are connected in series with other resistors after being connected in parallel.
  • the first end of the first resistor group is connected to the signal output end OUT1 of the power supply 10, the signal output end is used to output the output voltage, and the second end is connected to the first end of the second resistor group. terminal, the first terminal of the capacitor C1 and the analog-to-digital converter ADC are respectively connected.
  • the analog-to-digital converter ADC is used for outputting the sampling voltage.
  • the second end of the second resistor group and the second end of the capacitor C1 are respectively grounded to GND.
  • the output voltage of the power supply 10 is divided by the first resistor group and the second resistor group, and the sampled voltage of the analog quantity is obtained after the voltage drop of the first resistor group and transmitted to the analog-to-digital converter ADC.
  • the analog-to-digital converter ADC converts the sampled voltage of the analog quantity into the sampled voltage of the digital quantity, and then transmits it to the PID adjustment module 12 for PID control adjustment.
  • the voltage value of the sampled voltage obtained by dividing the voltage can be obtained according to the resistance values of the first resistor group and the second resistor group and the output voltage, and the resistance values of the first resistor group and the second resistor group are skilled in the art. Personnel can flexibly set according to actual needs to achieve the purpose of adjusting the sampling voltage, which is not limited in the present invention.
  • the sampling module 11 includes a first resistor group, a second resistor group, a capacitor C1 and an analog-to-digital converter ADC.
  • the first resistor group includes a sixth resistor R6, a seventh resistor R7 and an eighth resistor R8.
  • the second resistor group includes a ninth resistor R9.
  • the sixth resistor R6, the seventh resistor R7 and the eighth resistor R8 are connected in series to the sampling module 11 in sequence. That is, the first end of the sixth resistor R6 is connected to the signal output end OUT1 of the power supply 10, and the second end is connected to the first end of the seventh resistor R7.
  • the second end of the seventh resistor R7 is connected to the first end of the eighth resistor R8, and the second end of the eighth resistor R8 is connected to the first end of the ninth resistor R9 and the capacitor C1.
  • the first end and the analog-to-digital converter ADC are respectively connected.
  • the second end of the ninth resistor R9 is grounded to GND.
  • the first resistor group adopts the form of multiple resistors connected in series.
  • the resistance value of the first resistor group can be increased, and the size of the sampling voltage can be reduced to facilitate processing.
  • the method also avoids the bulky problem caused by using a large resistor.
  • the preset control parameters include a target voltage
  • the PID adjustment module 12 includes a voltage loop controller for voltage loop control adjustment and a voltage difference rate of change for The loop control regulates the voltage difference rate of change loop controller.
  • the PID adjustment module 12 can be implemented by a microcontroller (MCU).
  • the voltage loop controller is configured to obtain an actual voltage difference according to the target voltage and the sampled voltage, and obtain a voltage change rate control amplitude according to the actual voltage difference.
  • the voltage difference change rate loop controller is used to obtain the target voltage change rate according to the voltage change rate control range, obtain the actual voltage change rate according to the actual voltage difference, and obtain the switching frequency signal according to the target voltage change rate and the actual voltage change rate.
  • a corresponding target voltage may be set for the sampled voltage, and the actual voltage difference is the difference between the target voltage and the sampled voltage collected in real time.
  • a corresponding target voltage may also be set for the output voltage of the power supply 10 corresponding to the sampled voltage, and the actual voltage difference is the difference between the target voltage and the output voltage obtained by converting the sampled voltage.
  • the sampling voltage can be converted according to the relationship between the sampling voltage in the sampling circuit and the resistance values of the first resistor group and the second resistor group and the output voltage.
  • the voltage difference obtained by the above two methods needs to be set with the PID control adjustment algorithm of the corresponding PID adjustment module 12 to adjust the input voltage difference to obtain the switching frequency signal.
  • the digital sampling voltage output by the analog-to-digital converter ADC is further subjected to voltage conversion to obtain the actual output voltage.
  • the PID adjustment module 12 further obtains the switching frequency signal through PID control adjustment according to the obtained output voltage and preset control parameters.
  • the voltage loop controller is used to obtain the actual voltage difference according to the target voltage and the sampled voltage, and obtain the voltage change rate control amplitude according to the actual voltage difference, that is, the voltage loop controller can realize the voltage loop control adjustment.
  • the voltage loop controller can calculate the voltage change rate control amplitude through the following PID control adjustment algorithm.
  • Q(t) is the voltage change rate control amplitude at time t
  • k p is the proportional term correction coefficient of the voltage loop controller
  • ki is the integral term correction coefficient of the voltage loop controller
  • k d is the differential term of the voltage loop controller Item correction coefficient
  • Pd(t) is the target voltage change rate at time t
  • Q(t) is the control amplitude of the voltage change rate at time t
  • Q(t-1) is the control amplitude of the voltage change rate at time t-1
  • dt is the PID adjustment period .
  • the voltage difference change rate loop controller is used to obtain the target voltage change rate according to the voltage change rate control range, obtain the actual voltage change rate according to the actual voltage difference, and obtain the switching frequency signal according to the target voltage change rate and the actual voltage change rate, That is, the voltage difference change rate loop controller can realize the voltage difference change rate loop control adjustment.
  • the difference between the target voltage change rate and the actual voltage change rate is input into the voltage difference change rate loop controller, and the voltage difference change rate loop controller can calculate the switching frequency signal through the following PID control adjustment algorithm.
  • P(t) is the switching frequency signal
  • k ip is the proportional term correction coefficient of the voltage difference change rate loop controller
  • k ii is the integral term correction coefficient of the voltage difference change rate loop controller
  • k id is the voltage difference change rate
  • ep (t) is the difference between the given target voltage change rate and the actual voltage change rate.
  • Actual voltage change rate ec ( t )/dt.
  • control module 13 includes a switching element Q.
  • the control module 13 is configured to control the switching element Q to turn on and off the path between the power supply terminal VDD and the supply current output terminal OUT2 to form a supply current according to the switching frequency signal. It can be understood that the switching element Q can be controlled to be turned on or off according to the switching frequency signal, and whether the current of the power supply terminal VDD is outputted or not, so as to form a supply current and adjust the output voltage of the power supply 10 .
  • control module 13 may be implemented by a specific circuit structure. Specifically, as shown in FIG. 3 , the control module 13 includes a third resistor R3 , a fourth resistor R4 and a switching element Q, and the third resistor R3 and the fourth resistor R4 can implement a current limiting function.
  • the first end of the third resistor R3 is used for receiving the switching frequency signal, and the second end is connected to the control end G of the switching element Q.
  • the first terminal D of the switching element Q is connected to the power supply terminal VDD, and the second terminal S is connected to the first terminal of the fourth resistor R4 and the power supply current output terminal OUT2, respectively.
  • the second end of the fourth resistor R4 is grounded to GND.
  • the working principle of the specific example will be described by taking the first level as a high level, the second level as a low level, and the switching element Q as an NMOS as an example.
  • the first level is a high level
  • the second level is a low level
  • the switching element Q is an NMOS as an example for description.
  • the first level can also be a low level
  • the second level is a high level
  • the switching element Q can also use PMOS or other devices that can achieve the same function
  • the switching element Q is not limited in the present invention. Therefore, other technical solutions having the same inventive concept as the present invention should also fall within the protection scope of the present invention.
  • the switching element Q When the switching frequency signal is at a high level, the switching element Q is turned on in response to the high level, and the power supply terminal VDD and the power supply current output terminal OUT2 are connected. Under the action of the power supply terminal VDD, the power supply current output terminal OUT2 outputs the supply current. to the power supply 10 so that the power supply 10 outputs the corresponding output voltage.
  • the switching frequency signal is at a low level, the switching element Q is in an off state in response to the low level, the power supply terminal VDD is disconnected from the power supply current output terminal OUT2, and the power supply current output terminal OUT2 has no output.
  • the present invention obtains the switching frequency signal according to the output voltage of the power supply 10 through PID control adjustment, and controls the input of the power supply current through the switching frequency signal, thereby realizing the purpose of adjusting the output voltage of the power supply 10 and ensuring the stable output of the power supply.
  • control module 13 further includes a fifth resistor R5.
  • the first end of the fifth resistor R5 is connected to the second end of the third resistor R3 and the control end of the switching element Q, respectively, and the second end of the fifth resistor R5 is grounded to GND .
  • control module 13 further includes a fifth resistor R5, and the fifth resistor R5 is an anti-interference pull-down resistor. That is, when there is interference in the switching frequency signal and the voltage floats, the fifth resistor R5 can reduce the voltage value of the switching frequency signal with interference in a certain procedure, and pull the voltage value of the switching frequency signal as low as possible to below the threshold voltage of the switching element Q. , to prevent the switching element Q from being misconnected, and to enhance the anti-interference strength of the control module 13 .
  • the switching element Q in this embodiment can use transistors, including N-type transistors and P-type transistors, and the high and low levels of various signals can only be realized by matching with the type of transistor. Function.
  • the P-type transistor needs to be turned on with a low-level signal
  • the N-type transistor needs to be turned on with a high-level signal
  • an N-type transistor or a P-type transistor is used and the transistor gate (control terminal) is set. level to achieve the corresponding on or off function, so as to achieve the purpose of data reading of the present invention.
  • the first end of the transistor provided by the embodiment of the present invention may be the source electrode, and the second end may be the drain electrode, or vice versa, which is not limited in the present invention, and can be reasonably selected according to the type of the transistor.
  • the transistor provided in the embodiment of the present invention may be a field effect transistor, which may be an enhancement type field effect transistor or a depletion type field effect transistor, which is not limited in the present invention.
  • this embodiment also discloses a power supply voltage stabilization output adjustment system.
  • the system includes the power supply 10 and the device for adjusting the voltage and output of the power supply 10 as described in this embodiment.
  • this embodiment also discloses a method for regulating the output of a power supply voltage regulator. As shown in Figure 4, in this embodiment, the method includes:
  • S200 Obtain a switching frequency signal through PID control adjustment based on the sampled voltage and preset control parameters, where the PID control adjustment includes voltage loop control adjustment and voltage difference change rate loop control adjustment.
  • the S100 sampling the output voltage of the power supply 10 to obtain the sampled voltage specifically includes:
  • S110 Collect the output voltage of the power supply 10 to obtain a sampling voltage.
  • the collection method includes at least one of collecting through voltage divider, collecting through Hall effect and collecting through voltage divider chip.
  • the preset control parameter includes a target voltage
  • a switching frequency signal is obtained through PID control adjustment based on the sampled voltage and the preset control parameter
  • the PID control includes the voltage loop control adjustment and the voltage difference change rate loop control adjustment. Specifically, the adjustment includes:
  • S210 Obtain an actual voltage difference according to the target voltage and the sampled voltage, and obtain a voltage change rate control amplitude according to the actual voltage difference.
  • S220 Obtain the target voltage change rate according to the voltage change rate control range, obtain the actual voltage change rate according to the actual voltage difference, and obtain the switching frequency signal according to the target voltage change rate and the actual voltage change rate.
  • the step S300 forming the power supply current according to the switching frequency signal specifically includes:
  • S310 Control the switching element Q to turn on and off the path between the power supply terminal VDD and the supply current output terminal OUT2 according to the switching frequency signal to form a supply current.
  • the systems, devices, modules or units described in the above embodiments may be specifically implemented by computer chips or entities, or by products with certain functions.
  • the present invention also discloses a charging control system, which includes a memory, a processor, and a computer program stored in the memory and running on the processor. When the processor executes the program, the program is implemented as in this embodiment the method.
  • a typical implementation device is a computer device, specifically, the computer device can be, for example, a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, Game consoles, tablets, wearables, or a combination of any of these devices.
  • a computer device specifically includes a memory, a processor, and a computer program stored in the memory and executable on the processor, and the processor implements the method described above when the processor executes the program.
  • FIG. 8 shows a schematic structural diagram of a computer device 600 suitable for implementing the embodiments of the present application.
  • a computer device 600 includes a central processing unit (CPU) 601, which can be loaded into a random access memory (RAM) 603 according to a program stored in a read only memory (ROM) 602 or from a storage section 608 program to perform various appropriate tasks and processes.
  • RAM random access memory
  • ROM read only memory
  • various programs and data necessary for the operation of the system 600 are also stored.
  • the CPU 601 , the ROM 602 , and the RAM 603 are connected to each other through a bus 604 .
  • An input/output (I/O) interface 605 is also connected to bus 604 .
  • the following components are connected to the I/O interface 605: an input section 606 including a keyboard, a mouse, etc.; an output section 607 including a cathode ray tube (CRT), a liquid crystal feedback device (LCD), etc., and a speaker, etc.; a storage section including a hard disk, etc. 608; and a communication section 609 including network interface cards such as LAN cards, modems, and the like.
  • the communication section 609 performs communication processing via a network such as the Internet.
  • a drive 610 is also connected to the I/O interface 605 as needed.
  • a removable medium 611 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc., is mounted on the drive 610 as needed so that a computer program read therefrom is installed as the storage section 608 as needed.
  • embodiments of the present invention include a computer program product comprising a computer program tangibly embodied on a machine-readable medium, the computer program comprising program code for performing the method illustrated in the flowchart.
  • the computer program may be downloaded and installed from the network via the communication portion 609 and/or installed from the removable medium 611 .
  • Computer-readable media includes both persistent and non-permanent, removable and non-removable media, and storage of information may be implemented by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
  • the embodiments of the present application may be provided as a method, a system or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • the application may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer.
  • program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • the application may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules may be located in both local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种电源(10)稳压输出调节装置、方法及***,电源(10)根据供电电流形成输出电压,装置包括采样模块(11)、PID调节模块(12)以及控制模块(13);采样模块(11)用于对电源(10)的输出电压进行采样得到采样电压(S100);PID调节模块(12)用于基于采样电压和预设控制参数通过PID控制调节得到开关频率信号,PID控制调节包括电压环控制调节和电压差变化率环控制调节(S200);控制模块(13)用于根据开关频率信号形成供电电流(S300),可实现电源(10)的稳压输出。

Description

电源稳压输出调节装置、方法及***
本申请要求享有2020年11月17日递交、申请号为202011286849.1、发明名称为“电源稳压输出调节装置、方法及***”的中国专利的优先权,该专利的所有内容在此全部引入。
技术领域
本发明涉及电力电子设备技术领域,尤其涉及一种电源稳压输出调节装置、方法及***。
背景技术
在电力及电子设备中,电源作为能量提供装置,其使用安全性和可靠性尤为重要。为了保证电源的用电安全,需要一个稳定的电源供给,从而实现电源的稳定输出。电源的输出不稳定,容易造成短路等情况,形成安全隐患,进而可能导致电源等设备的损坏,造成巨大的经济损失和人员伤亡。
发明内容
本发明的一个目的在于提供一种电源稳压输出调节装置,可实现电源的稳压输出。本发明的另一个目的在于提供一种电源稳压输出调节***。本发明的再一个目的在于提供一种电源稳压输出调节方法。本发明的还一个目的在于提供一种计算机设备。本发明的还一个目的在于提供一种可读介质。
为了达到以上目的,本发明一方面公开了一种电源稳压输出调节装置,所述电源根据供电电流形成输出电压,所述装置包括采样模块、PID调节模块以及控制模块;
所述采样模块用于对电源的输出电压进行采样得到采样电压;
所述PID调节模块用于基于所述采样电压和预设控制参数通过PID控制调节得到开关频率信号,所述PID控制调节包括电压环控制调节和电压差变化率环控制调节;
所述控制模块用于根据所述开关频率信号形成供电电流。
本发明还公开了一种电源稳压输出调节***,包括所述电源和如上所述的电源稳压输出调节装置。
本发明还公开了一种电源稳压输出调节方法,包括:
对电源的输出电压进行采样得到采样电压;
基于所述采样电压和预设控制参数通过PID控制调节得到开关频率信号,所述PID控制调节包括电压环控制调节和电压差变化率环控制调节;
根据所述开关频率信号形成供电电流。
本发明还公开了一种充电控制***,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,
所述处理器执行所述程序时实现如上所述方法。
本发明还公开了一种计算机设备,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,
所述处理器执行所述程序时实现如上所述方法。
本发明还公开了一种计算机可读介质,其上存储有计算机程序,
该程序被处理器执行时实现如上所述方法。
本发明通过采样模块对电源的输出电压进行采样得到采样电压,通过PID调节模块基于预设控制参数对采样电压进行PID控制调节,得到开关频率信号。从而,可根据PID控制调节后重新生成的开关频率信号形成供电电流,进一步使电源根据该供电电流形成输出电压。本发明通过对电源的输出电压进行采样并通过电压环控制调节和电压差变化率环控制调节的PID控制调节调节电源输出电压的供电电流,从而实现对电源的实时输出电压进行采集和调节控制以保证电源稳压输出的目的。综上,本发明通过闭环PID控制调节精准控制电源供电电流的大小,实现电源输出电压的精准控制,提高了电源供电的稳定性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出本发明电源稳压输出调节装置一个具体实施例的结构图;
图2示出本发明电源稳压输出调节装置一个具体实施例采样模块的结构图;
图3示出本发明电源稳压输出调节装置一个具体实施例控制模块的结构图;
图4示出本发明电源稳压输出调节方法一个具体实施例的流程图;
图5示出本发明电源稳压输出调节方法一个具体实施例S100的流程图;
图6示出本发明电源稳压输出调节方法一个具体实施例S200的流程图;
图7示出本发明电源稳压输出调节方法一个具体实施例S300的流程图;
图8示出适于用来实现本发明实施例的计算机设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
现有技术中,电力及电子设备中的各种电源需要保证其供电能力的安全性和性能可靠性,例如,随着新能源汽车的普及,新能源汽车充电时的用电安全成为日益关注的问题。汽车充电装置需要一个稳定的电源10供给。若电源10不稳定,尤其当电源10出现短路等情况,则充电时有可能烧毁汽车的重要部件,造成巨大的经济损失,严重时还可能造成人员伤亡,因此电源10电压的稳压控制是急待解决的问题。由此,本发明提供了一种电源稳压输出调节方式,通过闭环PID(比例、积分和微分)控制调节精准控制电源10供电电流的大小,从而实现电源10输出电压的精准控制,可提高电源10输出电压的稳定性,保证充电装置等供电设备的安全性和可靠性。
根据本发明的一个方面,本实施例公开了一种电源稳压输出调节装置。如图1所示,本实施例中,所述电源10根据供电电流形成输出电压。所述装置包括采样模块11、PID调节模块12以及控制模块13。
其中,所述采样模块11用于对电源10的输出电压进行采样得到采样电压。所述PID调节模块12用于基于所述采样电压和预设控制参数通过PID控制调节得到开关频率信号,所述PID控制调节包括电压环控制调节和电压差变化率环控制调节。所述控制模块13用于根据所述开关频率信号形成供电电流。
本发明通过采样模块11对电源10的输出电压进行采样得到采样电压,通过PID调节模块12基于预设控制参数对采样电压进行PID控制调节,得到开关频率信号。从而,可根据PID控制调节后重新生成的开关频率信号形成供电电流,进一步使电源10根据该供电电流形成输出电压。本发明通过对电源10的输出电压进行采样并通过电压环控制调节和电压差变化率环控制调节的PID控制调节调节电源10输出电压的供电电流,从而实现对电源10的实时输出电压进行采集和调节控制以保证电源10稳压输出的 目的。综上,本发明通过闭环PID控制调节精准控制电源10供电电流的大小,实现电源10输出电压的精准控制,提高了电源供电的稳定性。
在优选的实施方式中,所述采样模块用于对电源的输出电压进行采集得到采样电压。其中,采集的方式包括通过分压采集、通过霍尔效应采集和通过分压芯片采集中的至少一种。在实际应用中,还可通过其他方式对输出电压进行采集得到采样电压,本发明对此并不作限定。为了实时采集电源10的输出电压并降低信号处理的复杂度,在一个优选的实施方式中,所述采样模块11用于对电源10的输出电压进行分压得到采样电压。具体的,通过分压方式,对电源10的输出电压进行按比例采集,从而采集得到的采样电压既可以表征电源10输出电压的大小,在后续电压或电流信号处理过程中,由于采样电压为按一定比例采集的输出电压的一部分,将输出电压的大电压转换为小电压,从而后期处理的信号量较小,通过简单电路即可实现电源10输出电压的稳压调节,对于电路器件的要求也不高。
作为一种优选的实施方式,所述采样模块11包括第一电阻器组、第二电阻器组、电容器C1和模数转换器ADC,所述第一电阻器组和第二电阻器组包括至少一个电阻器,若所述电阻器为多个,其中至少两个电阻器依次串联连接或者至少两个电阻器并联后与其他电阻器串联连接。
其中,所述第一电阻器组的第一端与电源10的信号输出端OUT1连接,所述信号输出端用于输出所述输出电压,第二端与所述第二电阻器组的第一端、电容器C1的第一端和所述模数转换器ADC分别连接。所述模数转换器ADC用于输出采样电压。第二电阻器组的第二端和电容器C1的第二端分别接地GND。
可以理解的是,第一电阻器组和第二电阻器组对电源10的输出电压进行分压,经过第一电阻器组的压降后得到模拟量的采样电压并传输至模数转换器ADC。模数转换器ADC将模拟量的采样电压转换为数字量的采样电压后传输至PID调节模块12进行PID控制调节。其中,分压得到的采样电压的电压值可根据第一电阻器组、第二电阻器组的电阻值和输出电压得到,且第一电阻器组和第二电阻器组的电阻值本领域技术人员可根据实际需求灵活设置,以实现调节采样电压的目的,本发明对此并不作限定。
在一个具体例子中,如图2所示,所述采样模块11包括第一电阻器组、第二电阻器组、电容器C1和模数转换器ADC。其中,第一电阻器组包括第六电阻器R6、第七电阻器R7和第八电阻器R8。第二电阻器组包括第九电阻器R9。其中,第六电阻器R6、第七电阻器R7和第八电阻器R8依次串联后接入采样模块11中。即第六电阻器R6的第一 端与电源10的信号输出端OUT1连接,第二端与所述第七电阻器R7的第一端连接。第七电阻器R7的第二端与所述第八电阻器R8的第一端连接,所述第八电阻器R8的第二端与所述第九电阻器R9的第一端、电容器C1的第一端和所述模数转换器ADC分别连接。所述第九电阻器R9的第二端接地GND。其中,第一电阻器组采用多个电阻器串联的形式,一方面可增大第一电阻器组的电阻值,降低采样电压的大小以便于处理,另一方面,采用多个电阻器串联的方式也避免了采用一个大电阻器带来的体积大的问题。
在优选的实施方式中,为了实现精确的PID控制调节,所述预设控制参数包括目标电压,所述PID调节模块12包括用于电压环控制调节的电压环控制器和用于电压差变化率环控制调节的电压差变化率环控制器。优选的,PID调节模块12可通过微控制器(MCU)实现。
其中,所述电压环控制器用于根据所述目标电压和采样电压得到实际电压差,并根据所述实际电压差得到电压变化率控制幅度。
所述电压差变化率环控制器用于根据电压变化率控制幅度得到目标电压变化率,根据实际电压差得到实际电压变化率,并根据所述目标电压变化率和实际电压变化率得到开关频率信号。
在一个可选的实施方式中,可针对采样电压设置对应的目标电压,实际电压差为目标电压和实时采集的采样电压之差。在其他实施方式中,也可以针对采样电压对应的电源10输出电压设置对应的目标电压,则实际电压差为目标电压和对采样电压进行换算后得到的输出电压之差。其中,可根据采样电路中采样电压与第一电阻器组和第二电阻器组的电阻值以及输出电压之间的关系对采样电压进行换算。并且以上两种方式得到的电压差需设置对应的PID调节模块12的PID控制调节算法对输入的电压差进行调节得到开关频率信号,本领域技术人员可根据实际需求进行相关的设定,本发明在此不再赘述。
为了提高PID控制调节的精度,本实施例中,对模数转换器ADC输出的数字量的采样电压进一步进行电压转换得到实际的输出电压。PID调节模块12进一步根据得到的输出电压和预设控制参数通过PID控制调节得到开关频率信号。
所述电压环控制器用于根据所述目标电压和采样电压得到实际电压差,并根据所述实际电压差得到电压变化率控制幅度,即电压环控制器可实现电压环控制调节。在一个具体例子中,电压环控制器可通过以下PID控制调节算法计算得到电压变化率控制幅度。
Figure PCTCN2021105194-appb-000001
其中,Q(t)为t时刻电压变化率控制幅度,k p为电压环控制器的比例项修正系数,k i为电压环控制器的积分项修正系数,k d为电压环控制器的微分项修正系数,e c(t)为给定的目标电压Vdt与实际检测的输出电压Vt之差,即e c(t)=(Vt-Vdt)
Pd(t)=(Q(t)-Q(t-1))/dt
其中,Pd(t)为t时刻的目标电压变化率,Q(t)为t时刻电压变化率控制幅度,Q(t-1)为t-1时刻电压变化率控制幅度,dt为PID调节周期。
所述电压差变化率环控制器用于根据电压变化率控制幅度得到目标电压变化率,根据实际电压差得到实际电压变化率,并根据所述目标电压变化率和实际电压变化率得到开关频率信号,即电压差变化率环控制器可实现电压差变化率环控制调节。在一个具体例子中,将所目标电压变化率与所述实际电压变化率之差输入电压差变化率环控制器,电压差变化率环控制器可通过以下PID控制调节算法计算得到开关频率信号。
Figure PCTCN2021105194-appb-000002
其中,P(t)为开关频率信号,k i-p为电压差变化率环控制器的比例项修正系数,k i-i为电压差变化率环控制器的积分项修正系数,k i-d为电压差变化率环控制器的微分项修正系数,e p(t)为给定的目标电压变化率与所述实际电压变化率之差。实际电压变化率=e c(t)/dt。需要说明的是,对于本实施例中的各系数,本领域技术人员可根据经验选取,本发明对此并不作限定。
在优选的实施方式中,所述控制模块13包括开关元件Q。所述控制模块13用于根据所述开关频率信号控制所述开关元件Q导通和断开电源端VDD和供电电流输出端OUT2间的通路形成供电电流。可以理解的是,可根据开关频率信号控制开关元件Q的导通或断开,控制电源端VDD的电流是否输出,以形成供电电流,调节电源10的输出电压。
在一个具体例子中,控制模块13可通过具体的电路结构实现。具体的,如图3所示,所述控制模块13包括第三电阻器R3、第四电阻器R4和开关元件Q,该第三电阻器R3和第四电阻器R4可实现限流功能。
其中,所述第三电阻器R3的第一端用于接收所述开关频率信号,第二端与所述开关元件Q的控制端G连接。所述开关元件Q的第一端D与电源端VDD连接,第二端S与所述第四电阻器R4的第一端和所述供电电流输出端OUT2分别连接。所述第四电阻器R4的第二端接地GND。
可以理解的是,以第一电平为高电平,第二电平为低电平,开关元件Q为NMOS为例对该具体例子的工作原理进行说明。其中,需要说明的是,本实施例中以第一电平为高电平,第二电平为低电平,开关元件Q为NMOS为例进行说明。在实际应用中,通过对各模块进行电路结构的灵活设置,第一电平也可以是低电平,从而第二电平是高电平,开关元件Q也可以选用PMOS或其他可实现相同功能的开关元件Q,本发明对此并不作限定。由此,其他与本发明具有相同的发明构思的技术方案也理应在本发明的保护范围内。
当开关频率信号为高电平时,开关元件Q响应于高电平而导通,则电源端VDD与供电电流输出端OUT2导通,在电源端VDD的作用下,供电电流输出端OUT2输出供电电流至电源10以使电源10输出对应的输出电压。当开关频率信号为低电平时,开关元件Q响应于低电平处于断开状态,则电源端VDD与供电电流输出端OUT2断开,供电电流输出端OUT2无输出。从而,本发明通过PID控制调节根据电源10的输出电压得到开关频率信号,通过开关频率信号控制供电电流的输入,进而实现调节电源10输出电压的目的,保证电源的稳压输出。
在优选的实施方式中,所述控制模块13进一步包括第五电阻器R5。其中,所述第五电阻器R5的第一端与所述第三电阻器R3的第二端和所述开关元件Q的控制端分别连接,所述第五电阻器R5的第二端接地GND。
可以理解的是,控制模块13进一步包括第五电阻器R5,该第五电阻器R5为抗干扰的下拉电阻。即当开关频率信号存在干扰出现电压浮动时,第五电阻器R5可以一定程序上降低存在干扰的开关频率信号的电压值,将开关频率信号的电压值尽量拉低至开关元件Q的阈值电压以下,防止开关元件Q误导通,增强控制模块13的抗干扰强度。
需要说明的是,本领域技术人员能够明了,本实施例中的开关元件Q可采用晶体管,包括N型晶体管和P型晶体管,各种信号的高低电平是与晶体管的型号配合才能实现对应的功能。本领域技术人员能够知晓使得P型晶体管导通需要配合低电平信号,使得N型晶体管导通需要配合高电平信号,从而采用N型晶体管或P型晶体管并设置晶体管栅极(控制端)的电平以实现相应的导通或断开功能,从而实现本发明的数据读取目 的。本发明实施例提供的晶体管的第一端可以为源极,则第二端为漏极,或者反之亦然,本发明对此不作限定,可根据晶体管的类型合理选择即可。
此外,本发明实施例提供的晶体管可以为场效应晶体管,其中可以为增强型场效应晶体管,也可以为耗尽型场效应晶体管,本发明对此并不作限定。
基于相同原理,本实施例还公开了一种电源稳压输出调节***。本实施例中,所述***包括所述电源10和如本实施例所述的电源10稳压输出调节装置。
由于该***解决问题的原理与以上装置类似,因此本***的实施可以参见装置的实施,在此不再赘述。
基于相同原理,本实施例还公开了一种电源稳压输出调节方法。如图4所示,本实施例中,所述方法包括:
S100:对电源10的输出电压进行采样得到采样电压。
S200:基于所述采样电压和预设控制参数通过PID控制调节得到开关频率信号,所述PID控制调节包括电压环控制调节和电压差变化率环控制调节。
S300:根据所述开关频率信号形成供电电流。
在优选的实施方式中,如图5所示,所述S100对电源10的输出电压进行采样得到采样电压具体包括:
S110:对电源10的输出电压进行采集得到采样电压。其中,采集的方式包括通过分压采集、通过霍尔效应采集和通过分压芯片采集中的至少一种。
在优选的实施方式中,如图6所示,所述预设控制参数包括目标电压,所述S200中基于所述采样电压和预设控制参数通过PID控制调节得到开关频率信号,所述PID控制调节包括电压环控制调节和电压差变化率环控制调节具体包括:
S210:根据所述目标电压和采样电压得到实际电压差,并根据所述实际电压差得到电压变化率控制幅度。
S220:根据电压变化率控制幅度得到目标电压变化率,根据实际电压差得到实际电压变化率,并根据所述目标电压变化率和实际电压变化率得到开关频率信号。
在优选的实施方式中,如图7所示,所述S300根据所述开关频率信号形成供电电流具体包括:
S310:根据所述开关频率信号控制所述开关元件Q导通和断开电源端VDD和供电电流输出端OUT2间的通路形成供电电流。
由于该方法解决问题的原理与以上装置类似,因此本方法的实施可以参见装置的实施,在此不再赘述。
上述实施例阐明的***、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。本发明还公开了一种充电控制***,该充电控制***包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如本实施例所述方法。一种典型的实现设备为计算机设备,具体的,计算机设备例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
在一个典型的实例中计算机设备具体包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上所述方法。
下面参考图8,其示出了适于用来实现本申请实施例的计算机设备600的结构示意图。
如图8所示,计算机设备600包括中央处理单元(CPU)601,其可以根据存储在只读存储器(ROM)602中的程序或者从存储部分608加载到随机访问存储器(RAM))603中的程序而执行各种适当的工作和处理。在RAM603中,还存储有***600操作所需的各种程序和数据。CPU601、ROM602、以及RAM603通过总线604彼此相连。输入/输出(I/O)接口605也连接至总线604。
以下部件连接至I/O接口605:包括键盘、鼠标等的输入部分606;包括诸如阴极射线管(CRT)、液晶反馈器(LCD)等以及扬声器等的输出部分607;包括硬盘等的存储部分608;以及包括诸如LAN卡,调制解调器等的网络接口卡的通信部分609。通信部分609经由诸如因特网的网络执行通信处理。驱动器610也根据需要连接至I/O接口605。可拆卸介质611,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器610上,以便于从其上读出的计算机程序根据需要被安装如存储部分608。
特别地,根据本发明的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本发明的实施例包括一种计算机程序产品,其包括有形地包含在机器可读介质上的计算机程序,所述计算机程序包括用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分609从网络上被下载和安装,和/或从可拆卸介质611被安装。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有 的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、***或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于***实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (17)

  1. 一种电源稳压输出调节装置,其特征在于,所述电源根据供电电流形成输出电压,所述装置包括采样模块、PID调节模块以及控制模块;
    所述采样模块用于对电源的输出电压进行采样得到采样电压;
    所述PID调节模块用于基于所述采样电压和预设控制参数通过PID控制调节得到开关频率信号,所述PID控制调节包括电压环控制调节和电压差变化率环控制调节;
    所述控制模块用于根据所述开关频率信号形成供电电流。
  2. 根据权利要求1所述的电源稳压输出调节装置,其特征在于,所述采样模块用于对电源的输出电压进行采集得到采样电压。
  3. 根据权利要求2所述的电源稳压输出调节装置,其特征在于,所述采集的方式包括通过分压采集、通过霍尔效应采集和通过分压芯片采集中的至少一种。
  4. 根据权利要求2所述的电源稳压输出调节装置,其特征在于,所述采样模块包括第一电阻器组、第二电阻器组、电容器和模数转换器,所述第一电阻器组和第二电阻器组包括至少一个电阻器,若所述电阻器为多个,其中至少两个电阻器依次串联连接或者至少两个电阻器并联后与其他电阻器串联连接;
    所述第一电阻器组的第一端与电源的信号输出端连接,所述信号输出端用于输出所述输出电压,第二端与所述第二电阻器组的第一端、电容器的第一端和所述模数转换器分别连接;
    所述模数转换器用于输出采样电压;
    第二电阻器组的第二端和电容器的第二端分别接地。
  5. 根据权利要求1所述的电源稳压输出调节装置,其特征在于,所述预设控制参数包括目标电压,所述PID调节模块包括用于电压环控制调节的电压环控制器和用于电压差变化率环控制调节的电压差变化率环控制器;
    所述电压环控制器用于根据所述目标电压和采样电压得到实际电压差,并根据所述实际电压差得到电压变化率控制幅度;
    所述电压差变化率环控制器用于根据电压变化率控制幅度得到目标电压变化率,根据实际电压差得到实际电压变化率,并根据所述目标电压变化率和实际电压变化率得到开关频率信号。
  6. 根据权利要求1所述的电源稳压输出调节装置,其特征在于,所述控制模块包括开关元件;
    所述控制模块用于根据所述开关频率信号控制所述开关元件导通和断开电源端和供电电流输出端间的通路形成供电电流。
  7. 根据权利要求6所述的电源稳压输出调节装置,其特征在于,所述控制模块包括第三电阻器、第四电阻器和开关元件;
    所述第三电阻器的第一端用于接收所述开关频率信号,第二端与所述开关元件的控制端连接;
    所述开关元件的第一端与电源端连接,第二端与所述第四电阻器的第一端和所述供电电流输出端分别连接;
    所述第四电阻器的第二端接地。
  8. 根据权利要求7所述的电源稳压输出调节装置,其特征在于,所述控制模块进一步包括第五电阻器;
    所述第五电阻器的第一端与所述第三电阻器的第二端和所述开关元件的控制端分别连接,所述第五电阻器的第二端接地。
  9. 一种电源稳压输出调节***,其特征在于,包括所述电源和如权利要求1-8任一项所述的电源稳压输出调节装置。
  10. 一种电源稳压输出调节方法,其特征在于,包括:
    对电源的输出电压进行采样得到采样电压;
    基于所述采样电压和预设控制参数通过PID控制调节得到开关频率信号,所述PID控制调节包括电压环控制调节和电压差变化率环控制调节;
    根据所述开关频率信号形成供电电流。
  11. 根据权利要求10所述的电源稳压输出调节方法,其特征在于,所述对电源的输出电压进行采样得到采样电压具体包括:
    对电源的输出电压进行采集得到采样电压。
  12. 根据权利要求11所述的电源稳压输出调节方法,其特征在于,所述采集的方式包括通过分压采集、通过霍尔效应采集和通过分压芯片采集中的至少一种。
  13. 根据权利要求10所述的电源稳压输出调节方法,其特征在于,所述预设控制参数包括目标电压,基于所述采样电压和预设控制参数通过PID控制调节得到开关频率信号,所述PID控制调节包括电压环控制调节和电压差变化率环控制调节具体包括:
    根据所述目标电压和采样电压得到实际电压差,并根据所述实际电压差得到电压变化率控制幅度;
    根据电压变化率控制幅度得到目标电压变化率,根据实际电压差得到实际电压变化率,并根据所述目标电压变化率和实际电压变化率得到开关频率信号。
  14. 根据权利要求10所述的电源稳压输出调节方法,其特征在于,所述根据所述开关频率信号形成供电电流具体包括:
    根据所述开关频率信号控制所述开关元件导通和断开电源端和供电电流输出端间的通路形成供电电流。
  15. 一种充电控制***,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,
    所述处理器执行所述程序时实现如权利要求10-14任一项所述方法。
  16. 一种计算机设备,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,
    所述处理器执行所述程序时实现如权利要求10-14任一项所述方法。
  17. 一种计算机可读介质,其上存储有计算机程序,其特征在于,
    该程序被处理器执行时实现如权利要求10-14任一项所述方法。
PCT/CN2021/105194 2020-11-17 2021-07-08 电源稳压输出调节装置、方法及*** WO2022105254A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020237013371A KR20230067689A (ko) 2020-11-17 2021-07-08 전원의 안정화 출력 조절 장치, 방법 및 시스템
US18/035,691 US20230409059A1 (en) 2020-11-17 2021-07-08 Apparatus, method and system for adjusting voltage stabilization output of power source
MX2023005787A MX2023005787A (es) 2020-11-17 2021-07-08 Aparato, metodo y sistema para ajustar la salida de la estabilizacion del voltaje del suministro de potencia.
CA3199116A CA3199116A1 (en) 2020-11-17 2021-07-08 Apparatus, method and system for adjusting voltage stabilization output of power source
EP21893406.5A EP4250053A1 (en) 2020-11-17 2021-07-08 Apparatus, method and system for adjusting voltage stabilization output of power source
JP2023528415A JP2023549216A (ja) 2020-11-17 2021-07-08 電源の定電圧出力調節装置、方法及びシステム
ZA2023/05218A ZA202305218B (en) 2020-11-17 2023-05-11 Apparatus, method and system for adjusting voltage stabilization output of power source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011286849.1A CN112445259B (zh) 2020-11-17 2020-11-17 电源稳压输出调节装置、方法及***
CN202011286849.1 2020-11-17

Publications (1)

Publication Number Publication Date
WO2022105254A1 true WO2022105254A1 (zh) 2022-05-27

Family

ID=74738598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105194 WO2022105254A1 (zh) 2020-11-17 2021-07-08 电源稳压输出调节装置、方法及***

Country Status (9)

Country Link
US (1) US20230409059A1 (zh)
EP (1) EP4250053A1 (zh)
JP (1) JP2023549216A (zh)
KR (1) KR20230067689A (zh)
CN (1) CN112445259B (zh)
CA (1) CA3199116A1 (zh)
MX (1) MX2023005787A (zh)
WO (1) WO2022105254A1 (zh)
ZA (1) ZA202305218B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116360540A (zh) * 2023-05-19 2023-06-30 四川奥库科技有限公司 用于芯片测试的电压调节***及电压调节方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112445259B (zh) * 2020-11-17 2022-10-11 长春捷翼汽车零部件有限公司 电源稳压输出调节装置、方法及***
CN113489310B (zh) * 2021-06-11 2022-06-03 深圳英飞源技术有限公司 一种dc-dc变换器的变频控制方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000152616A (ja) * 1998-11-09 2000-05-30 Omron Corp 電源装置
US20040207377A1 (en) * 2003-04-10 2004-10-21 Honda Motor Co., Ltd. Solenoid driving device
CN101917119A (zh) * 2010-08-23 2010-12-15 东南大学 开关式电源的高瞬态响应数字控制***与方法
CN105610302A (zh) * 2014-11-24 2016-05-25 中兴通讯股份有限公司 功率控制方法及装置
CN107104593A (zh) * 2017-05-16 2017-08-29 湖南拓天节能控制技术股份有限公司 Pwm数字电源的共用积分项pid双闭环控制器
CN111193402A (zh) * 2019-12-23 2020-05-22 深圳市核达中远通电源技术股份有限公司 一种dc-dc电源的数字控制***及方法
CN112445259A (zh) * 2020-11-17 2021-03-05 长春捷翼汽车零部件有限公司 电源稳压输出调节装置、方法及***

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010136506A (ja) * 2008-12-03 2010-06-17 Toyota Industries Corp Dc/dcコンバータ
KR101438041B1 (ko) * 2013-03-13 2014-09-04 엘에스산전 주식회사 전력회로 개폐기용 제어 회로
KR20160001070A (ko) * 2014-06-26 2016-01-06 인하대학교 산학협력단 Dc-dc 컨버터용 고해상도 저전력 매쉬 1-1-1 델타-시그마 디지털 펄스 폭 변조 컨트롤러 및 그 제어 방법
CN104467470B (zh) * 2014-12-18 2017-01-11 东南大学 一种开关电源的数字pfm控制模式实现方法
CN205377652U (zh) * 2015-12-28 2016-07-06 华北电力大学 一种智能控制数字电源
CN207069907U (zh) * 2017-06-22 2018-03-02 苏州贝艾尔净化科技有限公司 新风净化机的高压控制电路
CN109856961B (zh) * 2019-03-11 2022-02-11 深圳市安健科技股份有限公司 一种球管电压控制方法、装置及计算机可读存储介质
CN110758052B (zh) * 2019-10-31 2021-07-13 广东美的制冷设备有限公司 驱动控制方法和装置、空调设备、车辆及存储介质
CN110687955B (zh) * 2019-11-22 2024-03-15 浙江嘉科电子有限公司 一种恒压恒流控制输出电源电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000152616A (ja) * 1998-11-09 2000-05-30 Omron Corp 電源装置
US20040207377A1 (en) * 2003-04-10 2004-10-21 Honda Motor Co., Ltd. Solenoid driving device
CN101917119A (zh) * 2010-08-23 2010-12-15 东南大学 开关式电源的高瞬态响应数字控制***与方法
CN105610302A (zh) * 2014-11-24 2016-05-25 中兴通讯股份有限公司 功率控制方法及装置
CN107104593A (zh) * 2017-05-16 2017-08-29 湖南拓天节能控制技术股份有限公司 Pwm数字电源的共用积分项pid双闭环控制器
CN111193402A (zh) * 2019-12-23 2020-05-22 深圳市核达中远通电源技术股份有限公司 一种dc-dc电源的数字控制***及方法
CN112445259A (zh) * 2020-11-17 2021-03-05 长春捷翼汽车零部件有限公司 电源稳压输出调节装置、方法及***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116360540A (zh) * 2023-05-19 2023-06-30 四川奥库科技有限公司 用于芯片测试的电压调节***及电压调节方法
CN116360540B (zh) * 2023-05-19 2023-09-29 四川奥库科技有限公司 用于芯片测试的电压调节***及电压调节方法

Also Published As

Publication number Publication date
US20230409059A1 (en) 2023-12-21
EP4250053A1 (en) 2023-09-27
CN112445259B (zh) 2022-10-11
JP2023549216A (ja) 2023-11-22
ZA202305218B (en) 2024-01-31
KR20230067689A (ko) 2023-05-16
MX2023005787A (es) 2023-07-13
CA3199116A1 (en) 2022-05-27
CN112445259A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
WO2022105254A1 (zh) 电源稳压输出调节装置、方法及***
CN105700601B (zh) 一种ldo线性稳压器
KR102040692B1 (ko) 공급 전압을 안정화시키기 위한 디바이스 및 방법
TW201418929A (zh) 最大功率點追蹤控制器及其相關之系統與方法
CN204595077U (zh) 一种带相位补偿的过零检测电路
CN104679086B (zh) 一种快速瞬态响应cmos低压差线性稳压器
CN107562111B (zh) 直流稳压电源和电压调节方法
CN105720851B (zh) 一种提高逆变器暂态稳定性的增强型下垂控制方法
US8896289B2 (en) Circuit and method of signal detection
CN103076831B (zh) 具有辅助电路的低压差稳压器电路
CN111030259B (zh) 一种基于温度的锂电池充电方法和装置
CN110471482B (zh) 一种电压校准方法和校准电路
KR101904326B1 (ko) 분산전원의 주파수 유지 및 유효전력 분담을 위한 전류제어형 인버터 제어 장치 및 방법
CN102723658A (zh) 一种激光器的恒流源供电电路
CN116055268B (zh) 连续时间线性均衡电路、芯片互连物理接口电路和接收端
CN112187203A (zh) 一种自动增益控制电路及其增益调节方法
CN204425284U (zh) 一种自动增益控制电路
CN107608443B (zh) 一种交流信号幅度精确控制电路及方法
US9523723B2 (en) Fractional order power point tracking
WO2022110817A1 (zh) 用电设备充电连接安全检测装置、***及方法
CN103762985A (zh) 采样保持电路
WO2020151540A1 (zh) 一种电荷泵电路以及控制电荷泵电路的纹波电压的方法
Liu et al. An HDMI cable equalizer with self-generated energy ratio adaptation scheme
US9638720B2 (en) Low power current sensor
CN207427122U (zh) 一种锁相环及其压控振荡器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237013371

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18035691

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023528415

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3199116

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023009242

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202327040635

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 112023009242

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230515

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021893406

Country of ref document: EP

Effective date: 20230619