WO2022104929A1 - 一种复合硫化物固态电解质、电池其制备方法 - Google Patents

一种复合硫化物固态电解质、电池其制备方法 Download PDF

Info

Publication number
WO2022104929A1
WO2022104929A1 PCT/CN2020/133738 CN2020133738W WO2022104929A1 WO 2022104929 A1 WO2022104929 A1 WO 2022104929A1 CN 2020133738 W CN2020133738 W CN 2020133738W WO 2022104929 A1 WO2022104929 A1 WO 2022104929A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfide solid
electrolyte layer
state electrolyte
electrode material
lithium
Prior art date
Application number
PCT/CN2020/133738
Other languages
English (en)
French (fr)
Inventor
郭少华
张敏
余涛
张健
周豪慎
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声精密制造科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声精密制造科技(常州)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022104929A1 publication Critical patent/WO2022104929A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of lithium ion batteries, in particular to a composite sulfide solid-state electrolyte, a battery and a preparation method thereof.
  • Solid-state lithium batteries have the characteristics of high safety and high specific energy, and are widely regarded as the next-generation lithium-ion batteries with very broad application prospects. How to develop high-performance and low-cost solid-state electrolyte materials is a key link to promote the commercialization of solid-state batteries. Sulfide solid-state electrolytes are widely used due to their relatively high ionic conductivity, abundance of sulfur on Earth, low cost, and low pollution. However, there are some problems in the sulfide solid electrolyte at this stage, such as being easy to react with the metal lithium negative electrode to generate products with low ionic conductivity and high electronic conductivity, resulting in the decline of battery performance, and may cause short circuit and cause safety problems. How to solve the interface problem between the sulfide solid-state electrolyte and the lithium metal anode is the most important issue in the field of sulfide solid-state lithium batteries.
  • the purpose of the present invention is to provide a composite sulfide solid-state electrolyte and a method for preparing the battery.
  • the present invention provides a composite sulfide solid state electrolyte, comprising an inorganic sulfide solid state electrolyte layer, and an organic solid state electrolyte layer is polymerized and connected on opposite sides of the inorganic sulfide solid state electrolyte layer. .
  • the organic solid-state electrolyte layer is connected to the inorganic sulfide solid-state electrolyte layer by means of in-situ polymerization, and the raw materials of the in-situ polymerization include organic solvent, lithium salt and ethyl ⁇ -cyanoacrylate.
  • the organic solvent is at least one of acetone, acetonitrile, ethylene glycol dimethyl ether and toluene.
  • the lithium salt is at least one of lithium bistrifluoromethanesulfonimide, lithium nitrate, lithium phosphate, lithium dihydrogen phosphate, lithium chloride and lithium sulfate.
  • the inorganic sulfide solid-state electrolyte layer is at least one of Li10GeP2S12, Li3PS4, Li6PS5Cl, and Li7P3OxS11-x, wherein the value of x is 0 ⁇ x ⁇ 11.
  • the present invention also provides a battery using the above-mentioned composite sulfide solid-state electrolyte, the battery includes the composite sulfide solid-state electrolyte, and opposite sides of the composite sulfide solid-state electrolyte are respectively connected with positive electrodes materials and anode materials.
  • the positive electrode material and the negative electrode material are lithium sheets.
  • the present invention also provides a method for preparing the above-mentioned battery, comprising the following steps:
  • the second mixture is added dropwise between the positive electrode material and the inorganic sulfide solid state electrolyte layer and between the negative electrode material and the inorganic sulfide solid state electrolyte layer, respectively.
  • the method further includes:
  • the positive electrode material and the negative electrode material are polished.
  • the method further includes:
  • the inorganic electrolyte powder is put into a mold for tableting to obtain the inorganic sulfide solid-state electrolyte layer.
  • the present invention provides a composite sulfide solid-state electrolyte with a double-layer structure, the organic solid-state electrolyte layer is formed by in-situ polymerization, the thickness is easy to control, and the metal lithium negative electrode and the organic solid-state electrolyte layer can be reduced in size. interface impedance between.
  • the composite sulfide solid electrolyte can effectively inhibit the occurrence of side reactions between the metal lithium anode and the inorganic sulfide solid electrolyte layer, which is conducive to the uniform deintercalation of lithium ions, thereby improving the cycle performance of the battery.
  • the impedance of the composite electrolyte is better controlled, so the polarization voltage is lower.
  • Fig. 1 is the structural representation of composite sulfide solid state electrolyte of the present invention
  • FIG. 2 is a schematic structural diagram of a composite sulfide solid-state electrolyte battery of the present invention
  • FIG. 3 is a voltage-time curve of a long cycle of a battery according to Embodiment 1 of the present invention.
  • FIG. 4 is a flow chart 1 of preparing a composite sulfide solid-state electrolyte battery according to the present invention
  • FIG. 5 is a flow chart 2 of preparing a composite sulfide solid-state electrolyte battery according to the present invention
  • FIG. 6 is a flow chart 3 of preparing a composite sulfide solid-state electrolyte battery according to the present invention.
  • 1-inorganic sulfide solid-state electrolyte layer 2-organic solid-state electrolyte layer, 3-negative electrode material, 4-positive electrode material.
  • lithium sulfide Li2S
  • lithium phosphide Li3P
  • Li15Ge4 lithium-germanium alloys
  • the present invention provides a composite sulfide solid state electrolyte, please refer to FIG. 1 to FIG. 3 .
  • the composite sulfide solid electrolyte includes an inorganic sulfide solid electrolyte layer 1 and an organic solid electrolyte layer 2, which avoids the direct contact between the inorganic sulfide solid electrolyte layer 1 and the negative electrode material 3, and improves the cycle performance of the battery.
  • both the negative electrode material 3 and the positive electrode material 4 are lithium sheets.
  • the organic solid state electrolyte layer 2 is polymerized on the inorganic sulfide solid state electrolyte layer 1 from a liquid mixture in situ to prepare an organic-inorganic composite sulfide solid state electrolyte. Therefore, the organic solid state electrolyte layer The thickness of 2 is easy to adjust and can effectively control the interface impedance.
  • the organic solid electrolyte layer 2 can avoid the direct contact between the inorganic sulfide solid electrolyte layer 1 and the negative electrode material 3, thereby suppressing side reactions between the negative electrode material 3 and the inorganic sulfide solid state electrolyte layer 1, which is beneficial to the uniform deintercalation of lithium ions, Greatly improve the cycle performance of the battery.
  • the organic solid electrolyte layer 2 is in-situ polymerized on the inorganic sulfide solid electrolyte layer 1 by mixing organic solvent, lithium salt and ethyl ⁇ -cyanoacrylate.
  • Ethyl ⁇ -cyanoacrylate is a commonly used 502 glue in daily life. Using 502 glue as a polymerization monomer has low cost and is easy to popularize and use.
  • the organic solvent in the organic solid electrolyte layer 2 is at least one of acetone, acetonitrile, ethylene glycol dimethyl ether and toluene.
  • Organic solvents are common chemical reagents, with wide sources, low cost, and perfect transportation and storage technology.
  • the lithium salt is at least one of lithium bistrifluoromethanesulfonimide, lithium nitrate, lithium phosphate, lithium dihydrogen phosphate, lithium chloride and lithium sulfate.
  • the inorganic sulfide solid-state electrolyte layer is at least one of Li10GeP2S12 (LGPS), Li3PS4 (LPS), Li6PS5Cl (LPSCl), and Li7P3OxS11-x (LPOS), wherein the value of x is 0 ⁇ x ⁇ 11.
  • the organic solid electrolyte layer 2 is polymerized on the inorganic sulfide solid state electrolyte layer 1 from a liquid mixture in situ to prepare an organic-inorganic composite sulfide solid state electrolyte.
  • the positive electrode material and the negative electrode material are respectively arranged at the opposite ends of the composite sulfide solid electrolyte, a new type of positive electrode material-organic solid electrolyte layer-inorganic sulfide solid electrolyte layer-organic solid electrolyte layer-negative electrode material can be formed. .
  • the occurrence of side reactions between the negative electrode material and the inorganic sulfide solid electrolyte layer can be effectively suppressed, which is beneficial to the uniform de-intercalation of lithium ions, thereby improving the cycle performance of the battery.
  • the impedance of the composite electrolyte is better controlled, so the polarization voltage is lower.
  • the present invention also provides a method for preparing the above-mentioned composite sulfide solid-state electrolyte battery, comprising the following steps, please refer to FIG. 4 :
  • the organic solvent is at least one of acetone, acetonitrile, ethylene glycol dimethyl ether and toluene.
  • the lithium salt is at least one of lithium bistrifluoromethanesulfonimide, lithium nitrate, lithium phosphate, lithium dihydrogen phosphate, lithium chloride and lithium sulfate.
  • the inorganic sulfide solid-state electrolyte layer is at least one of Li10GeP2S12 (LGPS), Li3PS4 (LPS), Li6PS5Cl (LPSCl), and Li7P3OxS11-x (LPOS), wherein the value of x is 0 ⁇ x ⁇ 11.
  • the above-mentioned materials are all common chemical materials, and the transportation and storage technology is perfect, so the technology is mature in the actual application process, the cost is low, and it is easy to popularize and use.
  • the positive electrode material, the inorganic sulfide solid electrolyte layer and the negative electrode material need to be placed at a predetermined distance. between the positive electrode material 4 and the inorganic sulfide solid state electrolyte layer 1 and between the negative electrode material 3 and the inorganic sulfide solid state electrolyte layer 1 .
  • the organic solid electrolyte layer 2 is formed after the in-situ polymerization of the second mixture, the thickness of which is determined by the distance between the positive electrode material 4 , the inorganic sulfide solid state electrolyte layer 1 and the negative electrode material 3 .
  • the second mixture When the second mixture is added dropwise, it can be added dropwise between the positive electrode material 4 and the inorganic sulfide solid electrolyte layer 1 first, and then added dropwise between the negative electrode material 3 and the inorganic sulfide solid state electrolyte layer 1 in the next process.
  • the technical effect of the present invention is not affected.
  • the positive electrode material 4 and the organic solid electrolyte layer 2 are polymerized and connected, in this embodiment, the positive electrode material, the inorganic sulfide solid state electrolyte layer and the negative electrode material are set according to the preset The following steps are also included before the distance setting, see Figure 5:
  • the inorganic sulfide solid state electrolyte layer 1 is prepared according to actual needs, and the following steps are further included before setting the positive electrode material, the inorganic sulfide solid state electrolyte layer and the negative electrode material according to a preset distance. 6:
  • the raw materials for preparing the inorganic sulfide solid electrolyte are uniformly mixed by the ball milling method, the ball milling speed is 100-300r/min, and the ball milling time is 0.5-50h. Put the ball-milled inorganic sulfide solid electrolyte powder into a mold for tableting, and the pressure is 1-50MPa.
  • the inorganic sulfide solid electrolyte layer in the present invention can adjust the size of the mold as required, and is further suitable for different batteries.
  • the inorganic sulfide solid state electrolyte is prepared as required, and the following steps are further included before the inorganic sulfide solid state electrolyte is uniformly mixed by a ball milling method:
  • the calcination process belongs to the pre-synthesis stage of sulfide raw materials, and various inorganic sulfide solid electrolyte materials with high ionic conductivity can be synthesized.
  • LGPS Li10GeP2S12
  • LPS Li3PS4
  • LPSCl Li6PS5Cl
  • LPOS Li7P3OxS11-x
  • the organic solid electrolyte layer is formed by in-situ polymerization, the thickness is easy to control, and the interface impedance between the metal lithium negative electrode and the organic solid electrolyte layer can be reduced.
  • the composite sulfide solid electrolyte can effectively inhibit the occurrence of side reactions between the metal lithium anode and the inorganic sulfide solid electrolyte layer, which is conducive to the uniform deintercalation of lithium ions, thereby improving the cycle performance of the battery.
  • the impedance of the composite electrolyte is better controlled, so the polarization voltage is lower.
  • Step 1 Measure 2ml of acetone, add 0.5ml of 502 glue to it, and add 0.5g of LiTFSI after magnetic stirring to accelerate the dissolution of LiTFSI.
  • Step 2 uniformly adding about 150 mg of LGPS powder to a solid-state battery mold, and pressing at a pressure of 4 MPa to obtain an LGPS inorganic sulfide solid-state electrolyte layer.
  • Step 3 polishing pretreatment on the lithium sheet, removing the oxide layer on the surface of the lithium sheet, and dropping 50 ⁇ L of the organic mixture obtained in step 1 between the treated lithium sheet and the LGPS inorganic sulfide solid electrolyte layer.
  • Step 4 Perform a 100h galvanostatic polarization test on the battery obtained in Step 3, and the current density is 0.5mAh/cm2.
  • Step 5 The galvanostatic polarization test was performed on the lithium metal
  • Step 1 Measure 3ml of acetone, add 0.5ml of 502 glue to it, and add 0.5g of LiTFSI after magnetic stirring to accelerate the dissolution of LiTFSI.
  • Step 2 uniformly adding about 150 mg of LGPS powder to a solid-state battery mold, and pressing at a pressure of 4 MPa to obtain an LGPS inorganic sulfide solid-state electrolyte layer.
  • Step 3 polishing pretreatment on the lithium sheet, removing the oxide layer on the surface of the lithium sheet, and dropping 50 ⁇ L of the organic mixture obtained in step 1 between the treated lithium sheet and the LGPS inorganic sulfide solid electrolyte layer.
  • Step 1 Measure 2ml of acetone, add 0.5ml of 502 glue to it, and add 0.2g of LiTFSI after magnetic stirring to accelerate the dissolution of LiTFSI.
  • Step 2 uniformly adding about 150 mg of LGPS powder to a solid-state battery mold, and pressing at a pressure of 4 MPa to obtain an LGPS inorganic sulfide solid-state electrolyte layer.
  • Step 3 polishing pretreatment on the lithium sheet, removing the oxide layer on the surface of the lithium sheet, and dropping 50 ⁇ L of the organic mixture obtained in step 1 between the treated lithium sheet and the LGPS inorganic sulfide solid electrolyte layer.
  • Step 1 Measure 2ml of ethylene glycol dimethyl ether, add 0.5ml of 502 glue to it, stir evenly with magnetic force, add 0.5g of LiTFSI, and magnetically stir to accelerate the dissolution of LiTFSI.
  • Step 2 uniformly adding about 150 mg of LGPS powder to a solid-state battery mold, and pressing at a pressure of 4 MPa to obtain an LGPS inorganic sulfide solid-state electrolyte layer.
  • Step 3 polishing pretreatment on the lithium sheet, removing the oxide layer on the surface of the lithium sheet, and dropping 50 ⁇ L of the organic mixture obtained in step 1 between the treated lithium sheet and the LGPS inorganic sulfide solid electrolyte layer.
  • Step 1 Measure 2ml of acetonitrile, add 0.5ml of 502 glue to it, and add 0.5g of LiTFSI after magnetic stirring to accelerate the dissolution of LiTFSI.
  • Step 2 uniformly adding about 150 mg of LGPS powder to a solid-state battery mold, and pressing at a pressure of 4 MPa to obtain an LGPS inorganic sulfide solid-state electrolyte layer.
  • Step 3 polishing pretreatment on the lithium sheet, removing the oxide layer on the surface of the lithium sheet, and dropping 50 ⁇ L of the organic mixture obtained in step 1 between the treated lithium sheet and the LGPS inorganic sulfide solid electrolyte layer.
  • Step 1 Measure 2ml of toluene, add 0.5ml of 502 glue to it, and add 0.5g of LiTFSI after magnetic stirring to accelerate the dissolution of LiTFSI.
  • Step 2 uniformly adding about 150 mg of LGPS powder to a solid-state battery mold, and pressing at a pressure of 4 MPa to obtain an LGPS inorganic sulfide solid-state electrolyte layer.
  • Step 3 polishing pretreatment on the lithium sheet, removing the oxide layer on the surface of the lithium sheet, and dropping 50 ⁇ L of the organic mixture obtained in step 1 between the treated lithium sheet and the LGPS inorganic sulfide solid electrolyte layer.
  • Step 1 Measure 2ml of acetone, add 0.5ml of 502 glue to it, add 0.5g LiNO3 after magnetic stirring, and accelerate the dissolution of LiNO3 by magnetic stirring.
  • Step 2 uniformly adding about 150 mg of LGPS powder to a solid-state battery mold, and pressing at a pressure of 4 MPa to obtain an LGPS inorganic sulfide solid-state electrolyte layer.
  • Step 3 polishing pretreatment on the lithium sheet, removing the oxide layer on the surface of the lithium sheet, and dropping 50 ⁇ L of the organic mixture obtained in step 1 between the treated lithium sheet and the LGPS inorganic sulfide solid electrolyte layer.
  • Step 1 Measure 2ml of acetone, add 0.5ml of 502 glue to it, add 0.5g LiCl after magnetic stirring, and accelerate the dissolution of LiCl by magnetic stirring.
  • Step 2 uniformly adding about 150 mg of LGPS powder to a solid-state battery mold, and pressing at a pressure of 4 MPa to obtain an LGPS inorganic sulfide solid-state electrolyte layer.
  • Step 3 polishing pretreatment on the lithium sheet, removing the oxide layer on the surface of the lithium sheet, and dropping 50 ⁇ L of the organic mixture obtained in step 1 between the treated lithium sheet and the LGPS inorganic sulfide solid electrolyte layer.
  • Step 1 Measure 2ml of acetone, add 0.5ml of 502 glue to it, add 0.5g Li3PO4 after magnetic stirring, and accelerate the dissolution of Li3PO4 by magnetic stirring.
  • Step 2 uniformly adding about 150 mg of LGPS powder to a solid-state battery mold, and pressing at a pressure of 4 MPa to obtain an LGPS inorganic sulfide solid-state electrolyte layer.
  • Step 3 polishing pretreatment on the lithium sheet, removing the oxide layer on the surface of the lithium sheet, and dropping 50 ⁇ L of the organic mixture obtained in step 1 between the treated lithium sheet and the LGPS inorganic sulfide solid electrolyte layer.
  • Step 1 Measure 2ml of acetone, add 0.5ml of 502 glue to it, add 0.5g LiH2PO4 after magnetic stirring, and accelerate the dissolution of LiH2PO4 by magnetic stirring.
  • Step 2 uniformly adding about 150 mg of LGPS powder to a solid-state battery mold, and pressing at a pressure of 4 MPa to obtain an LGPS inorganic sulfide solid-state electrolyte layer.
  • Step 3 polishing pretreatment on the lithium sheet, removing the oxide layer on the surface of the lithium sheet, and dropping 50 ⁇ L of the organic mixture obtained in step 1 between the treated lithium sheet and the LGPS inorganic sulfide solid electrolyte layer.
  • Step 1 Measure 2ml of acetone, add 0.5ml of 502 glue to it, add 0.5g Li2SO4 after magnetic stirring, and accelerate the dissolution of Li2SO4 by magnetic stirring.
  • Step 2 uniformly adding about 150 mg of LGPS powder to a solid-state battery mold, and pressing at a pressure of 4 MPa to obtain an LGPS inorganic sulfide solid-state electrolyte layer.
  • Step 3 polishing pretreatment on the lithium sheet, removing the oxide layer on the surface of the lithium sheet, and dropping 50 ⁇ L of the organic mixture obtained in step 1 between the treated lithium sheet and the LGPS inorganic sulfide solid electrolyte layer.
  • Step 1 Measure 2ml of acetone, add 0.5ml of 502 glue to it, and add 0.5g of LiTFSI after magnetic stirring to accelerate the dissolution of LiTFSI.
  • Step 2 uniformly adding about 150 mg of LPS powder to a solid-state battery mold, and pressing at a pressure of 4 MPa to obtain an LPS inorganic sulfide solid-state electrolyte layer.
  • Step 3 Perform polishing pretreatment on the lithium sheet, remove the oxide layer on the surface of the lithium sheet, and drop 50 ⁇ L of the organic mixture obtained in step 1 between the treated lithium sheet and the LPS inorganic sulfide solid electrolyte layer.
  • Step 1 Measure 2ml of acetone, add 0.5ml of 502 glue to it, and add 0.5g of LiTFSI after magnetic stirring to accelerate the dissolution of LiTFSI.
  • Step 2 uniformly adding about 150 mg of LPSCl powder to a solid-state battery mold, and pressing at a pressure of 4 MPa to obtain an LPSCl inorganic sulfide solid-state electrolyte layer.
  • Step 3 polishing pretreatment on the lithium sheet, removing the oxide layer on the surface of the lithium sheet, and dropping 50 ⁇ L of the organic mixture obtained in step 1 between the treated lithium sheet and the LPSCl inorganic sulfide solid electrolyte layer.
  • Step 1 Measure 2ml of acetone, add 0.5ml of 502 glue to it, and add 0.5g of LiTFSI after magnetic stirring to accelerate the dissolution of LiTFSI.
  • Step 2 uniformly adding about 150 mg of LPOS powder to a solid-state battery mold, and pressing at a pressure of 4 MPa to obtain an LPOS inorganic sulfide solid-state electrolyte layer.
  • Step 3 Perform polishing pretreatment on the lithium sheet, remove the oxide layer on the surface of the lithium sheet, and drop 50 ⁇ L of the organic mixture obtained in step 1 between the treated lithium sheet and the LPOS inorganic sulfide solid electrolyte layer.

Abstract

一种复合硫化物固态电解质、电池其制备方法。复合硫化物固态电解质包括无机硫化物固态电解质层(1),所述无机硫化物固态电解质层(1)的相对两侧分别聚合连接有一有机固态电解质层(2)。有机固态电解质层(2)采用原位聚合的方式形成,厚度容易控制,可以减小金属锂负极与有机固态电解质层(2)之间的界面阻抗。复合硫化物固态电解质能够有效地抑制金属锂负极与无机硫化物固态电解质层(1)之间副反应的发生,有利于锂离子的均匀脱嵌,从而提升电池的循环性能。复合型电解质的阻抗控制得较好,因此极化电压较低。

Description

一种复合硫化物固态电解质、电池其制备方法 技术领域
本发明涉及锂离子电池技术领域,具体涉及一种复合硫化物固态电解质、电池其制备方法。
背景技术
固态锂电池具有高安全性、高比能的特点,被广泛认为是下一代锂离子电池,具有十分广阔的应用前景。如何发展高性能、低成本的固态电解质材料是推进固态电池商业化的关键环节。硫化物固态电解质的离子电导率相对较高,而且硫元素在地球的含量丰富、成本较低、污染较小,因此得到了广泛的应用。但硫化物固态电解质现阶段存在一些问题,如易与金属锂负极反应,生成离子电导率较低和电子电导率较高的产物,造成电池性能的下降,而且可能会造成短路,引发安全问题,如何解决硫化物固态电解质与金属锂负极之间的界面问题是硫化物固态锂电池领域中最重要的课题。
现有技术中通过在硫化物固态电解质和金属锂负极之间添加一个有机固态电解质层,可以从根本上解决金属锂负极与硫化物固态电解质发生副反应的问题,还能解决电极在充放电过程中的体积变化问题。但这种技术方案不可避免地会造成界面阻抗增大,因此如何调控该有机层的厚度与成分是研究的关键。
因此,有必要提供一种复合硫化物固态电解质、电池及其制备方法。
技术问题
本发明的目的在于提供一种复合硫化物固态电解质、电池其制备方法。
技术解决方案
本发明的技术方案如下:第一方面,本发明提供一种复合硫化物固态电解质,包括无机硫化物固态电解质层,所述无机硫化物固态电解质层的相对两侧分别聚合连接有一有机固态电解质层。
进一步地,所述有机固态电解质层通过原位聚合的方式连接于所述无机硫化物固态电解质层,所述原位聚合的原料包括有机溶剂、锂盐和α-氰基丙烯酸乙酯。
进一步地,所述有机溶剂为丙酮、乙腈、乙二醇二甲醚和甲苯中的至少一种。
进一步地,所述锂盐为双三氟甲基磺酰亚胺锂、硝酸锂、磷酸锂、磷酸二氢锂、氯化锂和硫酸锂中的至少一种。
进一步地,所述无机硫化物固态电解质层为Li10GeP2S12、Li3PS4、Li6PS5Cl、Li7P3OxS11-x中的至少一种,其中x的取值为0<x≤11。
第二方面,本发明还提供了一种利用上述所述复合硫化物固态电解质的电池,所述电池包括所述复合硫化物固态电解质,所述复合硫化物固态电解质的相对两侧分别连接有正极材料和负极材料。
进一步地,所述正极材料和负极材料为锂片。
第三方面,本发明还提供了一种制备上述所述电池的方法,包括以下步骤:
将α-氰基丙烯酸乙酯溶解至有机溶剂中形成第一混合物,在所述第一混合物中加入锂盐,搅拌均匀后形成第二混合物;
将正极材料、无机硫化物固态电解质层和负极材料按照预设的距离设置;
分别在所述正极材料和所述无机硫化物固态电解质层之间以及所述负极材料和所述无机硫化物固态电解质层之间滴加所述第二混合物。
进一步地,所述将正极材料、无机硫化物固态电解质层和负极材料按照预设的距离设置之前还包括:
将所述正极材料和所述负极材料进行抛光处理。
进一步地,所述将正极材料、无机硫化物固态电解质层和负极材料按照预设的距离设置之前还包括:
将无机电解质粉末放入模具进行压片得到所述无机硫化物固态电解质层。
有益效果
本发明的有益效果在于:本发明提供了一种双层结构的复合硫化物固态电解质,有机固态电解质层采用原位聚合的方式形成,厚度容易控制,可以减小金属锂负极与有机固态电解质层之间的界面阻抗。复合硫化物固态电解质能够有效地抑制金属锂负极与无机硫化物固态电解质层之间副反应的发生,有利于锂离子的均匀脱嵌,从而提升电池的循环性能。复合型电解质的阻抗控制得较好,因此极化电压较低。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图:
图1为本发明复合硫化物固态电解质的结构示意图;
图2为本发明复合硫化物固态电解质电池的结构示意图;
图3为本发明实施例一电池长循环的电压-时间曲线;
图4为本发明制备复合硫化物固态电解质电池的流程图一;
图5为本发明制备复合硫化物固态电解质电池的流程图二;
图6为本发明制备复合硫化物固态电解质电池的流程图三。
图中:1-无机硫化物固态电解质层,2-有机固态电解质层,3-负极材料,4-正极材料。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在锂电池的循环过程中,电极材料与硫化物固态电解质层会发生副反应,生成具有较低锂离子电导率的硫化锂(Li2S)和磷化锂(Li3P),同时也会生成具有较高电子电导率的锂锗合金(Li15Ge4),这些副产物的存在会极大地影响电池的循环性能。
本发明提供了一种复合硫化物固态电解质,请参阅图1至图3。复合硫化物固态电解质包括无机硫化物固态电解质层1以及有机固态电解质层2,避免了无机硫化物固态电解质层1与负极材料3之间的直接接触,提高了电池的循环性能,作为一项优选,本发明中负极材料3和正极材料4均为锂片。
与此同时,现有技术中电极在充放电过程中存在体积变化问题,会造成界面阻抗增大,因此如何调控该有机层的厚度与成分是研究的关键。本发明提供的复合硫化物固态电解质中,有机固态电解质层2是从液态的混合物原位聚合在无机硫化物固态电解质层1上,制备出有机-无机复合硫化物固态电解质,因此有机固态电解质层2的厚度容易调整,可以有效控制界面阻抗。
有机固态电解质层2可以避免无机硫化物固态电解质层1与负极材料3的直接接触,从而抑制负极材料3与无机硫化物固态电解质层1之间的副反应,有利于锂离子的均匀脱嵌,极大地提升了电池的循环性能。本实施例中,有机固态电解质层2通过有机溶剂、锂盐和α-氰基丙烯酸乙酯混合后原位聚合在无机硫化物固态电解质层1上。α-氰基丙烯酸乙酯是生活中常用的502胶水,使用502胶水作为聚合单体,成本较低,便于推广使用。
作为一项优选,本发明中,有机固态电解质层2中的有机溶剂为丙酮、乙腈、乙二醇二甲醚和甲苯中的至少一种。有机溶剂均为常见的化学试剂,来源广泛,成本较低,运输以及保存的技术完善。
锂盐为双三氟甲基磺酰亚胺锂、硝酸锂、磷酸锂、磷酸二氢锂、氯化锂和硫酸锂中的至少一种。
无机硫化物固态电解质层为Li10GeP2S12(LGPS)、Li3PS4(LPS)、Li6PS5Cl(LPSCl)、Li7P3OxS11-x(LPOS)中的至少一种,其中x的取值为0<x≤11。
本发明提供的技术方案中,有机固态电解质层2是从液态的混合物原位聚合在无机硫化物固态电解质层1上,制备出有机-无机复合硫化物固态电解质。当在复合硫化物固态电解质的相对两端分别设置正极材料和负极材料时,可以构成一种新型的正极材料-有机固态电解质层-无机硫化物固态电解质层-有机固态电解质层-负极材料的电池。该电池在循环过程中,能够有效地抑制负极材料与无机硫化物固态电解质层之间副反应的发生,有利于锂离子的均匀脱嵌,从而提升电池的循环性能。复合型电解质的阻抗控制得较好,因此极化电压较低。
与此同时,本发明还提供了一种制备上述复合硫化物固态电解质电池的方法,包括以下步骤,请参阅图4:
S10:将α-氰基丙烯酸乙酯溶解至有机溶剂中形成第一混合物,在所述第一混合物中加入锂盐,搅拌均匀后形成第二混合物。
可以理解的是,有机溶剂为丙酮、乙腈、乙二醇二甲醚和甲苯中的至少一种。锂盐为双三氟甲基磺酰亚胺锂、硝酸锂、磷酸锂、磷酸二氢锂、氯化锂和硫酸锂中的至少一种。无机硫化物固态电解质层为Li10GeP2S12(LGPS)、Li3PS4(LPS)、Li6PS5Cl(LPSCl)、Li7P3OxS11-x(LPOS)中的至少一种,其中x的取值为0<x≤11。
上述材料均为常见的化学材料,运输以及保存的技术完善,因此在实际应用过程中技术成熟,成本较低,便于推广使用。
S20:将正极材料、无机硫化物固态电解质层和负极材料按照预设的距离设置。
S30:分别在所述正极材料和所述无机硫化物固态电解质层之间以及所述负极材料和所述无机硫化物固态电解质层之间滴加所述第二混合物。
可以理解的是,在滴加第二混合物材料时,需要先将正极材料、无机硫化物固态电解质层和负极材料按照预定的距离放置,当滴加第二混合物后,第二混合物原位聚合在正极材料4和无机硫化物固态电解质层1之间以及负极材料3和无机硫化物固态电解质层1之间。第二混合物原位聚合后形成有机固态电解质层2,其厚度由正极材料4、无机硫化物固态电解质层1和负极材料3之间的距离决定。在滴加第二混合物时,可以先滴加正极材料4和无机硫化物固态电解质层1之间,下一工序再滴加在负极材料3和无机硫化物固态电解质层1之间,先后滴加不影响本发明的技术效果。
作为一项优选,为了保证负极材料3、正极材料4与有机固态电解质层2聚合连接时具有良好导电性,本实施例中在将正极材料、无机硫化物固态电解质层和负极材料按照预设的距离设置之前还包括以下步骤,请参阅图5:
S21:将所述正极材料和所述负极材料进行抛光处理。
可以理解的是,锂作为电极材料时,具有非常高的活性,当放置在空气中时容易发生氧化还原反应,导致锂片的表面出现氧化物进而影响电极的导电性能。因此在将电极材料和无机硫化物固态电解质层1按照预定的距离放置前需要将电极材料表面的氧化物除去,有利于增加电极材料和有机固态电解质层2之间的导电性能,有利于锂离子的均匀脱嵌,极大地提升了电池的循环性能。
在另一种实施例中,无机硫化物固态电解质层1根据实际需要进行制备,在将正极材料、无机硫化物固态电解质层和负极材料按照预设的距离设置之前还包括以下步骤,请参阅图6:
S22:将无机电解质粉末放入模具进行压片得到所述无机硫化物固态电解质层。
可以理解的是,制备无机硫化物固态电解质的原料通过球磨法混合均匀,球磨速度100-300r/min,球磨时间为0.5-50h。将球磨完成的无机硫化物固态电解质粉末放入模具中进行压片,压力为1-50MPa。由上述可知,本发明中无机硫化物固态电解质层可以根据需要调整模具的尺寸,进而适用于不同的电池。
在另一种实施例中,无机硫化物固态电解质根据需要进行制备,在将无机硫化物固态电解质通过球磨法混合均匀之前还包括以下步骤:
S23:将无机硫化物固态电解质进行煅烧。
可以理解的是,煅烧工艺属于硫化物原材料前期合成阶段,可以合成各类高离子电导率的无机硫化物固态电解质材料。将Li10GeP2S12(LGPS)、Li3PS4(LPS)、Li6PS5Cl(LPSCl)或Li7P3OxS11-x(LPOS)材料进行煅烧,其中x的取值为0<x≤11,煅烧时的气氛为真空或者氩气,煅烧时间为1-36h,升温速度为1-2℃/min。
综上可知,本发明提供的复合硫化物固态电解质,有机固态电解质层采用原位聚合的方式形成,厚度容易控制,可以减小金属锂负极与有机固态电解质层之间的界面阻抗。复合硫化物固态电解质能够有效地抑制金属锂负极与无机硫化物固态电解质层之间副反应的发生,有利于锂离子的均匀脱嵌,从而提升电池的循环性能。复合型电解质的阻抗控制得较好,因此极化电压较低。
实施例1
步骤1:量取2ml的丙酮,向其中加入0.5ml的502胶水,磁力搅拌均匀后加入0.5gLiTFSI,磁力搅拌加速LiTFSI的溶解。
步骤2:将150mg左右的LGPS粉末均匀地添加固态电池模具,以4MPa的压力进行压片,制得LGPS无机硫化物固态电解质层。
步骤3:对锂片进行抛光预处理,将锂片表面的氧化层除去,将步骤1得到的50μL有机混合物滴在处理后的锂片和LGPS无机硫化物固态电解质层之间。
步骤4:对步骤3得到的电池进行100h恒电流极化测试,电流密度为0.5mAh/cm2。将循环后的电池拆开,锂片表面的照片分别如图2所示,图3是现有技术未增加有机固态电解质层的对照图。
步骤5:对金属锂|有机层|LGPS|有机层|金属锂电池在0.1mAh/cm2的电流密度下进行恒电流极化测试,测试结果如图4所示,极化电压几乎保持不变。由图4可知表明该有机层较为稳定,在经历500h的恒电流极化测试下结构几乎保持不变。
实施例2
步骤1:量取3ml的丙酮,向其中加入0.5ml的502胶水,磁力搅拌均匀后加入0.5gLiTFSI,磁力搅拌加速LiTFSI的溶解。
步骤2:将150mg左右的LGPS粉末均匀地添加固态电池模具,以4MPa的压力进行压片,制得LGPS无机硫化物固态电解质层。
步骤3:对锂片进行抛光预处理,将锂片表面的氧化层除去,将步骤1得到的50μL有机混合物滴在处理后的锂片和LGPS无机硫化物固态电解质层之间。
实施例3
步骤1:量取2ml的丙酮,向其中加入0.5ml的502胶水,磁力搅拌均匀后加入0.2gLiTFSI,磁力搅拌加速LiTFSI的溶解。
步骤2:将150mg左右的LGPS粉末均匀地添加固态电池模具,以4MPa的压力进行压片,制得LGPS无机硫化物固态电解质层。
步骤3:对锂片进行抛光预处理,将锂片表面的氧化层除去,将步骤1得到的50μL有机混合物滴在处理后的锂片和LGPS无机硫化物固态电解质层之间。
实施例4
步骤1:量取2ml的乙二醇二甲醚,向其中加入0.5ml的502胶水,磁力搅拌均匀后加入0.5gLiTFSI,磁力搅拌加速LiTFSI的溶解。
步骤2:将150mg左右的LGPS粉末均匀地添加固态电池模具,以4MPa的压力进行压片,制得LGPS无机硫化物固态电解质层。
步骤3:对锂片进行抛光预处理,将锂片表面的氧化层除去,将步骤1得到的50μL有机混合物滴在处理后的锂片和LGPS无机硫化物固态电解质层之间。
实施例5
步骤1:量取2ml的乙腈,向其中加入0.5ml的502胶水,磁力搅拌均匀后加入0.5gLiTFSI,磁力搅拌加速LiTFSI的溶解。
步骤2:将150mg左右的LGPS粉末均匀地添加固态电池模具,以4MPa的压力进行压片,制得LGPS无机硫化物固态电解质层。
步骤3:对锂片进行抛光预处理,将锂片表面的氧化层除去,将步骤1得到的50μL有机混合物滴在处理后的锂片和LGPS无机硫化物固态电解质层之间。
实施例6
步骤1:量取2ml的甲苯,向其中加入0.5ml的502胶水,磁力搅拌均匀后加入0.5gLiTFSI,磁力搅拌加速LiTFSI的溶解。
步骤2:将150mg左右的LGPS粉末均匀地添加固态电池模具,以4MPa的压力进行压片,制得LGPS无机硫化物固态电解质层。
步骤3:对锂片进行抛光预处理,将锂片表面的氧化层除去,将步骤1得到的50μL有机混合物滴在处理后的锂片和LGPS无机硫化物固态电解质层之间。
实施例7
步骤1:量取2ml的丙酮,向其中加入0.5ml的502胶水,磁力搅拌均匀后加入0.5gLiNO3,磁力搅拌加速LiNO3的溶解。
步骤2:将150mg左右的LGPS粉末均匀地添加固态电池模具,以4MPa的压力进行压片,制得LGPS无机硫化物固态电解质层。
步骤3:对锂片进行抛光预处理,将锂片表面的氧化层除去,将步骤1得到的50μL有机混合物滴在处理后的锂片和LGPS无机硫化物固态电解质层之间。
实施例8
步骤1:量取2ml的丙酮,向其中加入0.5ml的502胶水,磁力搅拌均匀后加入0.5gLiCl,磁力搅拌加速LiCl的溶解。
步骤2:将150mg左右的LGPS粉末均匀地添加固态电池模具,以4MPa的压力进行压片,制得LGPS无机硫化物固态电解质层。
步骤3:对锂片进行抛光预处理,将锂片表面的氧化层除去,将步骤1得到的50μL有机混合物滴在处理后的锂片和LGPS无机硫化物固态电解质层之间。
实施例9
步骤1:量取2ml的丙酮,向其中加入0.5ml的502胶水,磁力搅拌均匀后加入0.5gLi3PO4,磁力搅拌加速Li3PO4的溶解。
步骤2:将150mg左右的LGPS粉末均匀地添加固态电池模具,以4MPa的压力进行压片,制得LGPS无机硫化物固态电解质层。
步骤3:对锂片进行抛光预处理,将锂片表面的氧化层除去,将步骤1得到的50μL有机混合物滴在处理后的锂片和LGPS无机硫化物固态电解质层之间。
实施例10
步骤1:量取2ml的丙酮,向其中加入0.5ml的502胶水,磁力搅拌均匀后加入0.5gLiH2PO4,磁力搅拌加速LiH2PO4的溶解。
步骤2:将150mg左右的LGPS粉末均匀地添加固态电池模具,以4MPa的压力进行压片,制得LGPS无机硫化物固态电解质层。
步骤3:对锂片进行抛光预处理,将锂片表面的氧化层除去,将步骤1得到的50μL有机混合物滴在处理后的锂片和LGPS无机硫化物固态电解质层之间。
实施例11
步骤1:量取2ml的丙酮,向其中加入0.5ml的502胶水,磁力搅拌均匀后加入0.5gLi2SO4,磁力搅拌加速Li2SO4的溶解。
步骤2:将150mg左右的LGPS粉末均匀地添加固态电池模具,以4MPa的压力进行压片,制得LGPS无机硫化物固态电解质层。
步骤3:对锂片进行抛光预处理,将锂片表面的氧化层除去,将步骤1得到的50μL有机混合物滴在处理后的锂片和LGPS无机硫化物固态电解质层之间。
实施例12
步骤1:量取2ml的丙酮,向其中加入0.5ml的502胶水,磁力搅拌均匀后加入0.5gLiTFSI,磁力搅拌加速LiTFSI的溶解。
步骤2:将150mg左右的LPS粉末均匀地添加固态电池模具,以4MPa的压力进行压片,制得LPS无机硫化物固态电解质层。
步骤3:对锂片进行抛光预处理,将锂片表面的氧化层除去,将步骤1得到的50μL有机混合物滴在处理后的锂片和LPS无机硫化物固态电解质层之间。
实施例13
步骤1:量取2ml的丙酮,向其中加入0.5ml的502胶水,磁力搅拌均匀后加入0.5gLiTFSI,磁力搅拌加速LiTFSI的溶解。
步骤2:将150mg左右的LPSCl粉末均匀地添加固态电池模具,以4MPa的压力进行压片,制得LPSCl无机硫化物固态电解质层。
步骤3:对锂片进行抛光预处理,将锂片表面的氧化层除去,将步骤1得到的50μL有机混合物滴在处理后的锂片和LPSCl无机硫化物固态电解质层之间。
实施例14
步骤1:量取2ml的丙酮,向其中加入0.5ml的502胶水,磁力搅拌均匀后加入0.5gLiTFSI,磁力搅拌加速LiTFSI的溶解。
步骤2:将150mg左右的LPOS粉末均匀地添加固态电池模具,以4MPa的压力进行压片,制得LPOS无机硫化物固态电解质层。
步骤3:对锂片进行抛光预处理,将锂片表面的氧化层除去,将步骤1得到的50μL有机混合物滴在处理后的锂片和LPOS无机硫化物固态电解质层之间。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种复合硫化物固态电解质,包括无机硫化物固态电解质层,其特征在于:所述无机硫化物固态电解质层的相对两侧分别聚合连接有一有机固态电解质层。
  2. 根据权利要求1所述的复合硫化物固态电解质,其特征在于:所述有机固态电解质层通过原位聚合的方式连接于所述无机硫化物固态电解质层,所述原位聚合的原料包括有机溶剂、锂盐和α-氰基丙烯酸乙酯。
  3. 根据权利要求2所述的复合硫化物固态电解质,其特征在于:所述有机溶剂为丙酮、乙腈、乙二醇二甲醚和甲苯中的至少一种。
  4. 根据权利要求2所述的复合硫化物固态电解质,其特征在于:所述锂盐为双三氟甲基磺酰亚胺锂、硝酸锂、磷酸锂、磷酸二氢锂、氯化锂和硫酸锂中的至少一种。
  5. 根据权利要求1所述的复合硫化物固态电解质,其特征在于:所述无机硫化物固态电解质层为Li10GeP2S12、Li3PS4、Li6PS5Cl、Li7P3OxS11-x中的至少一种,其中x的取值为0<x≤11。
  6. 一种利用权利要求1-5任一所述复合硫化物固态电解质的电池,其特征在于:所述电池包括所述复合硫化物固态电解质,所述复合硫化物固态电解质的相对两侧分别连接有正极材料和负极材料。
  7. 根据权利要求6所述的电池,其特征在于:所述正极材料和负极材料为锂片。
  8. 一种制备如权利要求6或7所述电池的方法,其特征在于,包括以下步骤:
    将α-氰基丙烯酸乙酯溶解至有机溶剂中形成第一混合物,在所述第一混合物中加入锂盐,搅拌均匀后形成第二混合物;
    将正极材料、无机硫化物固态电解质层和负极材料按照预设的距离设置;
    分别在所述正极材料和所述无机硫化物固态电解质层之间以及所述负极材料和所述无机硫化物固态电解质层之间滴加所述第二混合物。
  9. 根据权利要求8所述的电池制备方法,其特征在于,所述将正极材料、无机硫化物固态电解质层和负极材料按照预设的距离设置之前还包括:
    将所述正极材料和所述负极材料进行抛光处理。
  10. 根据权利要求8所述的电池制备方法,其特征在于,所述将正极材料、无机硫化物固态电解质层和负极材料按照预设的距离设置之前还包括:
    将无机电解质粉末放入模具进行压片得到所述无机硫化物固态电解质层。
PCT/CN2020/133738 2020-11-23 2020-12-04 一种复合硫化物固态电解质、电池其制备方法 WO2022104929A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011320015.8 2020-11-23
CN202011320015.8A CN112448026A (zh) 2020-11-23 2020-11-23 一种复合硫化物固态电解质、电池其制备方法

Publications (1)

Publication Number Publication Date
WO2022104929A1 true WO2022104929A1 (zh) 2022-05-27

Family

ID=74738841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133738 WO2022104929A1 (zh) 2020-11-23 2020-12-04 一种复合硫化物固态电解质、电池其制备方法

Country Status (2)

Country Link
CN (1) CN112448026A (zh)
WO (1) WO2022104929A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115377481A (zh) * 2022-08-23 2022-11-22 合肥国轩高科动力能源有限公司 一种有机-无机复合固态电解质及其制备方法、锂离子固态电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546212A (zh) * 2018-11-26 2019-03-29 中南大学 固态聚合物电解质制备方法及其固态二次电池
CN110034275A (zh) * 2019-04-25 2019-07-19 上海空间电源研究所 一种硫化物固态电池用缓冲层及其制备方法和固态电池
CN110247112A (zh) * 2019-06-25 2019-09-17 哈尔滨工业大学 一种“三明治”结构的高润湿性硫化物基复合电解质及其制备方法与应用
CN110336072A (zh) * 2019-06-04 2019-10-15 天津力神电池股份有限公司 双聚合物复合固态电解质、电解质膜及其原位制备方法
CN110556586A (zh) * 2019-08-14 2019-12-10 华中科技大学 一种聚合有机无机复合固体电解质及原位组装全固态电池
WO2020036444A1 (ko) * 2018-08-16 2020-02-20 주식회사 엘지화학 리튬 이차 전지용 음극의 제조방법 및 이를 이용하여 제조한 리튬 이차 전지용 음극
CN111082150A (zh) * 2019-12-20 2020-04-28 中国电子科技集团公司第十八研究所 固态二次锂电池中电解质层-锂负极间的界面修饰方法
CN111934001A (zh) * 2020-07-31 2020-11-13 北京化工大学 一种聚合物原位修饰无机固态电解质陶瓷片及制备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229464B (zh) * 2016-07-27 2020-07-03 河南师范大学 一种导电聚合物膜及采用该导电聚合物膜修饰的正极极片
CN109256582A (zh) * 2017-07-14 2019-01-22 上汽通用汽车有限公司 用于全固态锂离子电池的复合固态电解质及其制备方法
CN108550907B (zh) * 2018-06-05 2020-08-21 北京卫蓝新能源科技有限公司 原位复合固态电解质及其应用、全固态电池及其制备方法
CN109994783A (zh) * 2019-04-28 2019-07-09 北京卫蓝新能源科技有限公司 一种原位固态化制备全固态电池的方法
CN110336085B (zh) * 2019-05-28 2022-02-22 浙江锋锂新能源科技有限公司 一种弱化硫化物电解质固态电池内阻的方法
CN110380111B (zh) * 2019-06-04 2022-10-04 天津力神电池股份有限公司 包含固态电解质的固态电池的双原位聚合反应制备方法
CN210692701U (zh) * 2019-09-06 2020-06-05 青岛九环新越新能源科技股份有限公司 固态电池及其生产设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036444A1 (ko) * 2018-08-16 2020-02-20 주식회사 엘지화학 리튬 이차 전지용 음극의 제조방법 및 이를 이용하여 제조한 리튬 이차 전지용 음극
CN109546212A (zh) * 2018-11-26 2019-03-29 中南大学 固态聚合物电解质制备方法及其固态二次电池
CN110034275A (zh) * 2019-04-25 2019-07-19 上海空间电源研究所 一种硫化物固态电池用缓冲层及其制备方法和固态电池
CN110336072A (zh) * 2019-06-04 2019-10-15 天津力神电池股份有限公司 双聚合物复合固态电解质、电解质膜及其原位制备方法
CN110247112A (zh) * 2019-06-25 2019-09-17 哈尔滨工业大学 一种“三明治”结构的高润湿性硫化物基复合电解质及其制备方法与应用
CN110556586A (zh) * 2019-08-14 2019-12-10 华中科技大学 一种聚合有机无机复合固体电解质及原位组装全固态电池
CN111082150A (zh) * 2019-12-20 2020-04-28 中国电子科技集团公司第十八研究所 固态二次锂电池中电解质层-锂负极间的界面修饰方法
CN111934001A (zh) * 2020-07-31 2020-11-13 北京化工大学 一种聚合物原位修饰无机固态电解质陶瓷片及制备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115377481A (zh) * 2022-08-23 2022-11-22 合肥国轩高科动力能源有限公司 一种有机-无机复合固态电解质及其制备方法、锂离子固态电池

Also Published As

Publication number Publication date
CN112448026A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
WO2020098427A1 (zh) 锂离子电池负极材料及非水电解质电池
CN111952663A (zh) 一种界面修饰的固态石榴石型电池及其制备方法
CN111009682B (zh) 一种全固态电池及其制备方法
CN108365258A (zh) 具有室温电导率的聚合物基质的固体电解质及其制备方法
EP3699996B1 (en) Production method for all-solid-state battery
CN112968165A (zh) 一种改性钠离子正极材料、改性钠离子电极及制备方法
EP4207360A1 (en) Negative electrode, preparation method therefor, and application thereof
CN103500813A (zh) 一种二次锂硫电池单质硫正极及其制备方法
CN111725559A (zh) 固态电解质及其制备方法和锂二次固态电池
CN107611407A (zh) 一种锂锰电池正极配方及制备方法
CN111370791A (zh) 一种锂硫电池化成方法及该化成方法制备的锂硫电池
CN114583176B (zh) 一种多功能导电剂及其在预锂化复合正极中的应用
CN109599550A (zh) 一种全固态锂离子电池的制作工艺
CN102299367B (zh) 一种钛酸锂与镍钴锰酸锂体系锂离子电池及其制备方法
WO2022104929A1 (zh) 一种复合硫化物固态电解质、电池其制备方法
CN109244531A (zh) 一种高纯铜基体石墨烯复合锂离子电池及其制备方法
CN115911529A (zh) 一种复合型石榴石型固态电解质、二次电池以及制备方法
CN112713276B (zh) 一种用于新能源车辆的储能电池
CN114512710A (zh) 一种包覆型硫化物固态电解质材料及其制备方法和应用
CN111040061B (zh) 一种固态钠离子电解质及其制备方法以及一种全固态钠电池
CN114122406A (zh) 石墨烯改性磷酸铁锂的制备方法及磷酸铁锂电池
CN114094084A (zh) 一种金属草酸盐-石墨复合电极材料的制备方法和应用
CN113964378B (zh) 一种复合固态电解质及其制造方法
CN113793936B (zh) 一种用于固态锂电池的复合粘结剂及其制备方法和应用
CN114361391B (zh) 一种聚合物修饰纳米硅负极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962220

Country of ref document: EP

Kind code of ref document: A1