WO2022102238A1 - Contact material containing ag alloy as main component, contact using said contact material, and electrical equipment - Google Patents

Contact material containing ag alloy as main component, contact using said contact material, and electrical equipment Download PDF

Info

Publication number
WO2022102238A1
WO2022102238A1 PCT/JP2021/033736 JP2021033736W WO2022102238A1 WO 2022102238 A1 WO2022102238 A1 WO 2022102238A1 JP 2021033736 W JP2021033736 W JP 2021033736W WO 2022102238 A1 WO2022102238 A1 WO 2022102238A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
weight
less
metal
oxide
Prior art date
Application number
PCT/JP2021/033736
Other languages
French (fr)
Japanese (ja)
Inventor
純一 田中
修一 三角
哲也 森
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2022102238A1 publication Critical patent/WO2022102238A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver

Definitions

  • the present invention relates to a contact material containing an Ag alloy as a main component and a contact using the contact material.
  • contact materials comprising Ag alloys and at least one main additive selected from the group consisting of tin oxide, nickel, nickel oxide, iron, iron oxide, tungsten, tungsten carbide, tungsten oxide, zinc oxide, carbon. And contacts using the contact material.
  • the contacts used in power relays and switches are made of a material containing Ag as the main component.
  • Ag quote has risen higher than it was 20 years ago.
  • compounding with inexpensive copper has been carried out so far. Further, in order to save silver, it is necessary to make the contacts smaller.
  • an object of the present invention is to provide a contact material that reduces the movement of oxides even if an arc is generated when the contacts are opened and closed, and is less likely to damage the contacts.
  • the contact material containing the Ag alloy as the main component according to the present invention is an Ag alloy.
  • the Ag alloy has a lower vacancy than the metal atom constituting the main additive or, when the main additive is carbon, the vacancy bond energy which is the bond energy between carbon and the vacancy at the grain boundary in the Ag metal. It contains 0.01% by weight or more and 2% by weight or less of solid-dissolving elements having pore-bonding energy.
  • the binding energy of the constituent elements of the main additive in the Ag alloy is lower than the binding energy of the pores at the grain boundary in the Ag metal. Contains solid dissolving elements. Therefore, even when the contact material is used for the contact, the movement of the main additive such as tin oxide due to the arc or the like generated at the time of opening and closing the contact can be suppressed. As a result, it is possible to reduce the movement of the main additive from the inside of the Ag alloy and aggregation, and it is possible to reduce the contact damage due to the arc generated when the contacts are opened and closed.
  • FIG. 3B it is a schematic schematic diagram showing how pores are formed at the grain boundaries in Ag and Sn atoms move to the pores at the grain boundaries.
  • FIG. 3C it is a schematic schematic diagram showing how Sn atoms move by repeating the formation of pores at the grain boundaries in Ag and the movement of Sn atoms to the pores at the grain boundaries.
  • FIG. 4A is an image obtained by an electron backscatter diffraction method (EBSD) in an enlarged field of view.
  • EBSD electron backscatter diffraction method
  • FIG. 3A is a schematic schematic diagram showing the states of the Sn atom 22, the oxygen atom 23, and the pores 26 of the tin oxide dispersed in the Ag24 of the matrix in the contact 2.
  • FIG. 3B is a schematic schematic diagram showing how the Sn atom 22 constituting tin oxide moves to the pores 26 at the grain boundaries in the Ag 24 due to the thermal disturbance caused by the arc when the contacts are opened and closed.
  • FIG. 3C is a schematic schematic diagram showing how a hole 26 is formed in Ag24 and the Sn atom 22 moves to the hole in the grain boundary, following FIG. 3B.
  • the Sn atom 22 has a high temperature by repeating the formation of a hole 26 at the grain boundary in Ag24 and the movement of the Sn atom 22 to the hole 26 at the grain boundary.
  • It is a schematic schematic diagram which shows the state of moving to the side by thermal migration.
  • the present inventor considers that the Sn atom constituting tin oxide moves near the surface of the contact point through the grain boundary in Ag by the action of vacancy diffusion.
  • the vacancy binding energy is an energy change when the additive element substitution and the vacancy formation occur simultaneously or adjacently, and when the additive element substitution and the vacancy formation occur independently.
  • the pore binding energy is low, the pores are difficult to move due to the effect of the additive.
  • the present inventors have made a main additive such as tin oxide by dissolving a solid solution element having a pore binding energy lower than the pore binding energy of the main additive in an Ag alloy at the grain boundary.
  • the present invention was made on the assumption that the movement of constituent elements in the grain boundaries can be suppressed.
  • the present inventors can suppress the movement of silver, which is a base material, by dissolving a solid-dissolving element having a pore-bonding energy lower than that of the main additive in an Ag alloy.
  • We came up with the present invention because it is possible to prevent the coarsening of silver crystals and suppress contact damage.
  • the calculation method of the pore binding energy is, for example, Chun Yu, et al., "First principles calculation of the effects of solute atom on electromigration resistance of Al interconnects", J. Physics D: Appl. Phys. 42 ( 2009) It is described in 125501 (6pp).
  • the pore binding energy EB can be calculated from the following equation (1).
  • E Al number of atoms, number of vacancies, number of additive atoms
  • FCC face-centered cubic lattice
  • the number of additives and vacancies is used to remove the energy of Ag and the additive element itself. It can be changed and calculated.
  • first-principles calculation it is possible to output the total energy in the state where the energy of the target system is minimized by inputting the spatial coordinates of the atoms and the atomic number of each atom in the target system.
  • first-principles calculation it is possible to output the total energy in the state where the energy of the target system is minimized by inputting the spatial coordinates of the atoms and the atomic number of each atom in the target system.
  • first-principles calculation for structural optimization in first-principles calculation, for example, the following steps are performed in order.
  • A) The crystal structure of the target base material atom is set as the model shape.
  • the total energy of the model shape is calculated by changing the atomic position and the electron density in the model shape.
  • the step (b) is repeated until the model shape becomes stable.
  • the model shape the crystal structure of silver, which is the base material, is unified with a face-centered cubic lattice.
  • the ⁇ 5 (310) / [001] grain boundary model was used.
  • the atomic arrangement of the ⁇ 5 (310) / [001] grain boundary model is, for example, “Numerical analysis of solute segregation at ⁇ 5 (310) / [001] symmetric tilt grain boundaries in Y 2 O 3 -doped ZrO 2 ”, Takashi Oyama. See et al, PHYSICAL, REVIEW B 71,224105, 2-11, (2005).
  • the magnification of the lattice constant was 1.
  • E (32,0,0) the initial crystal structure was a face-centered cubic lattice.
  • the k point in the first-principles calculation corresponds to the wave number of the wave function.
  • the k-point mesh corresponds to the range of wave numbers to be reflected in the calculation, and is set for each axis of the basic translation vectors a, b, and c.
  • the calculation required for the calculation becomes long.
  • the k-point mesh is set as the k-point in the reciprocal lattice space. Here, it was set to 1 ⁇ 4 ⁇ 12.
  • the Monkhorst Pack method was used as the method for selecting the k point. This Monkhorst Pack method is a general-purpose mesh generation method in first-principles calculation software.
  • the matter of calculation will be described.
  • (1) atomic position, (2) lattice shape, and (3) lattice constant were targeted for optimization.
  • the Blocked-Davidson method was used to calculate the electronic state (orbit).
  • the quasi-Newton method was used as an algorithm for relaxing the atomic position and ion structure. All of these are general-purpose methods in first-principles calculation software.
  • the convergence conditions for the structural optimization calculation are that the energy difference before and after the iterative calculation satisfies 10 -4 eV / cell or less, and the magnitude of the force generated per atom is 10-6 eV / ⁇ or less. Is to be.
  • the cell corresponds to the model shape.
  • the contact material containing the Ag alloy as the main component according to the first aspect is an Ag alloy.
  • the main additive is tin oxide, which contains 5% by weight or more and 20% by weight or less in terms of metal.
  • the Ag alloy contains a solid dissolving element having a pore bond energy lower than the pore bond energy, which is the bond energy between the Sn atom constituting the main additive and the pores at the grain boundaries in the Ag metal.
  • the solid-dissolving elements are Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt, W, Al, Mg, Ni, Pd, V, Au, Tl, Hg, Sr, and Pb. It is at least one selected from the group and may contain 0.01% by weight or more and 2% by weight or less.
  • the contact material containing the Ag alloy as the main component according to the second aspect is With Ag alloy,
  • the main additive is zinc oxide, which contains 5% by weight or more and 20% by weight or less in terms of metal.
  • the Ag alloy contains a solid dissolving element having a pore bond energy lower than the pore bond energy, which is the bond energy between the Zn atom constituting the main additive and the pores at the grain boundaries in the Ag metal.
  • the solid solution element is at least one selected from the group of Fr, Cs, Rb, Ba, Be, Os, K, and Ir, and may contain 0.01% by weight or more and 2% by weight or less.
  • the contact material containing the Ag alloy as the main component according to the third aspect is the Ag alloy.
  • the main additive is iron or iron oxide, and contains 5% by weight or more and 20% by weight or less in terms of metal.
  • the Ag alloy contains a solid dissolving element having a pore bond energy lower than the pore bond energy, which is the bond energy between the Fe atom constituting the main additive and the pores at the grain boundaries in the Ag metal.
  • the solid-dissolving elements include Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt, W, Mg, Al, Ni, V, Pd, Au, Tl, Hg, Sr, Pb. It is at least one selected from the group of Sn, Cd, and Na, and contains 0.01% by weight or more and 2% by weight or less.
  • the contact material containing the Ag alloy as the main component according to the fourth aspect is the Ag alloy.
  • the main additive is at least one selected from the group of tungsten, tungsten carbide, and tungsten oxide, and contains 5% by weight or more and 20% by weight or less in terms of metal.
  • the Ag alloy contains a solid dissolving element having a pore bond energy lower than the pore bond energy, which is the bond energy between the W atom constituting the main additive and the pores at the grain boundaries in the Ag metal.
  • the solid solution element is at least one selected from the group of Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, and Pt, and contains 0.01% by weight or more and 2% by weight or less.
  • the contact material containing the Ag alloy as the main component according to the fifth aspect is the Ag alloy.
  • the main additive existing as a phase different from the Ag alloy and Including The main additive is carbon and contains 0.01% by weight or more and 2% by weight or less in terms of metal.
  • the Ag alloy contains a solid dissolving element having a pore binding energy lower than the pore binding energy, which is the binding energy between the C atom constituting the main additive and the pores at the grain boundaries in the Ag metal.
  • the solid-dissolving elements include Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt, W, Mg, Al, Ni, V, Pd, Au, Tl, Hg, Sr, Pb.
  • a contact material containing 0.01% by weight or more and 2% by weight or less as a main component of Ag alloy.
  • the contact material containing the Ag alloy as the main component according to the sixth aspect is the Ag alloy.
  • the main additive is nickel or nickel oxide, and contains 5% by weight or more and 20% by weight or less in terms of metal.
  • the Ag alloy contains a solid dissolving element having a pore bond energy lower than the pore bond energy, which is the bond energy between the Ni atom constituting the main additive and the pores at the grain boundaries in the Ag metal.
  • the solid-dissolving element is at least one selected from the group of Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt, W, Mg and Al, and is 0.01% by weight. Includes 2% by weight or less.
  • the contact material containing the Ag alloy as the main component according to the seventh aspect exists as a phase different from the Ag alloy in any one of the first to third and fifth to sixth aspects.
  • it is at least one selected from the group consisting of tungsten, tungsten carbide, tungsten oxide, and zirconia, and may contain 0.1% by weight or more and 5% by weight or less in terms of metal.
  • the contact material containing an Ag alloy as a main component according to the eighth aspect exists in any of the first to sixth aspects as a phase different from that of the Ag alloy, and is composed of molybdenum oxide and tellurium dioxide. It is at least one kind, and may contain 0.1% by weight or more and 5% by weight or less in terms of metal.
  • the contact material containing an Ag alloy as a main component according to the ninth aspect exists in any of the first to sixth aspects as a phase different from that of the Ag alloy, and lithium oxide, lithium carbonate, and the like. It is at least one kind of lithium cobalt oxide, and may contain 0.01% by weight or more and 1% by weight or less in terms of metal.
  • the contact material containing an Ag alloy as a main component according to the tenth aspect exists in any one of the first to sixth aspects as a phase different from that of the Ag alloy, and is at least copper oxide and copper. It is a kind and may contain 0.1% by weight or more and 2% by weight or less in terms of metal.
  • the contact material containing an Ag alloy as a main component according to the eleventh aspect exists in any one of the first to fifth aspects as a phase different from that of the Ag alloy, and is at least nickel oxide and nickel. It is a kind and may contain 0.1% by weight or more and 2% by weight or less in terms of metal.
  • the contact material containing an Ag alloy as a main component according to the twelfth aspect exists as a phase different from that of the Ag alloy in any one of the first to sixth aspects, and indium oxide is converted into a metal. It may contain 0.1% by weight or more and 5% by weight or less.
  • the contact material containing an Ag alloy as a main component according to the thirteenth aspect exists in any one of the first to sixth aspects as a phase different from that of the Ag alloy, and bismuth oxide is converted into a metal. It may contain 0.1% by weight or more and 5% by weight or less.
  • the contact material containing an Ag alloy as a main component according to the fourteenth aspect exists in any of the second to sixth aspects as a phase different from that of the Ag alloy, and tin oxide is converted into a metal. It may contain 0.1% by weight or more and 5% by weight or less.
  • the contact material containing an Ag alloy as a main component according to the fifteenth aspect is further present as a phase different from the Ag alloy in any one of the first and third to sixth aspects, and is oxidized. It is at least one kind of zinc, and may contain 0.1% by weight or more and 5% by weight or less in terms of metal.
  • the contact material containing an Ag alloy as a main component according to the sixteenth aspect is further present as a phase different from the Ag alloy in any one of the first to fourth and sixth aspects, and is carbon. May be contained in an elemental equivalent of 0.01% by weight or more and 2% by weight or less.
  • the contact material containing an Ag alloy as a main component according to the seventeenth aspect may not contain Au, Pt, Pd, Ir in any of the first to sixteenth embodiments. ..
  • the contact according to the eighteenth aspect uses a contact material containing the Ag alloy according to any one of the first to the seventeenth aspects as a main component.
  • the electrical equipment according to the nineteenth aspect is selected from a group of relays, electromagnetic contactors, electromagnetic switches, relays, switches, and switches using the contacts according to the eighteenth aspect.
  • the contact material containing an Ag alloy as a main component according to the first embodiment contains an Ag alloy and a main additive existing as a phase different from that of the Ag alloy.
  • the main additive is at least one selected from the group consisting of tin oxide, nickel, nickel oxide, iron, iron oxide, tungsten, tungsten carbide, tungsten oxide, zinc oxide, and carbon.
  • the Ag alloy contains a solid solution element in an amount of 0.01% by weight or more.
  • the vacancy is lower than the vacancy bond energy which is the bond energy between carbon and the vacancy at the grain boundary in the Ag metal. Has pore bond energy.
  • the contact material containing this Ag alloy as a main component a solid-dissolved element lower than the pore binding energy, which is the binding energy with the pores in the grain boundary of the constituent element of the main additive in the Ag metal. including. Therefore, even when the contact material is used for the contact, it is possible to suppress the movement of the main additive such as tin oxide to the contact surface due to the arc or the like generated when the contact is opened or closed. As a result, it is possible to suppress the movement of the main additive from the inside of the Ag alloy and aggregation on the contact surface, and it is possible to suppress contact damage due to the arc generated when the contact is opened and closed.
  • the contact material containing the Ag alloy as a main component may contain an Ag alloy of the main phase and a main additive existing as a phase different from the main phase, and the form thereof is a molding having a constant shape. It may be any of a body, an amorphous sintered body, a mixed powder having an amorphous shape and not forming a constant shape, and the like.
  • the Ag alloy constitutes the main component of the contact material.
  • the solid solution element dissolved in the Ag alloy is contained in Ag in an amount of 0.01% by weight or more.
  • the Ag alloy has a pore bond energy lower than the pore bond energy, which is the bond energy between carbon and the pores at the grain boundaries in the Ag metal when the metal atom constituting the main additive or the main additive is carbon.
  • the solid solution element is more likely to bond with the pores at the grain boundaries in the Ag alloy than the elements constituting the main additive, and therefore the pores around the solid solution element. Will be attracted. Thereby, the movement and aggregation of the main additive can be suppressed.
  • the solid solution element may be preferably contained in an amount of 1.5 times or less of the solid solution limit of the Ag single phase.
  • Table 1 shows the elements that may be used as solid solution elements and the pore-binding energies of the elements at the grain boundaries in Ag.
  • the main additive exists as a phase different from that of the Ag alloy.
  • the main additive is at least one selected from the group consisting of tin oxide, nickel, nickel oxide, iron, iron oxide, tungsten, tungsten carbide, tungsten oxide, zinc oxide, and carbon.
  • tin oxide, nickel oxide, iron oxide, and tungsten oxide non-stoichiometric oxides thereof may be selected as the main additive.
  • TiO 2 ⁇ Tin oxide SnO 2 >
  • the main additive is tin oxide, it contains 5% by weight or more and 20% by weight or less in terms of metal.
  • the pore binding energy at the grain boundaries of the metal element Sn constituting tin oxide is -3.44 eV.
  • the solid-dissolving element has a pore-binding energy at the grain boundary lower than the pore-binding energy (-3.44 eV) at the grain boundary in Sn Ag, Fr, Cs, Rb, Ba, Be, Os, K, At least one selected from the group of Ir, Zn, Mn, Pt, W, Al, Mg, Ni, Au, Fe, Tl, Hg, Sr and Pb, including 0.01% by weight or more and 2% by weight or less. ..
  • the solid solution element may not contain Au, Pt, Pd, and Ir.
  • the main additive is zinc oxide, it contains 5% by weight or more and 20% by weight or less in terms of metal.
  • the pore binding energy at the grain boundary of the metal element Zn constituting zinc oxide in Ag is -3.69 eV. Therefore, the solid-dissolving element was selected from the group of Fr, Cs, Rb, Ba, Be, Os, K, and Ir, which have a pore binding energy lower than the pore binding energy at the grain boundary in Zn Ag. It is at least one kind and contains 0.01% by weight or more and 2% by weight or less. The solid solution element does not have to contain Ir.
  • the main additive is iron or iron oxide, it contains 5% by weight or more and 20% by weight or less in terms of metal.
  • the pore binding energy at the grain boundary in Ag of the metal element Fe constituting iron or iron oxide is -3.34 eV. Therefore, the solid-dissolving element has a pore-bonding energy lower than the pore-bonding energy at the grain boundary in Ag of Fe, Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt.
  • the solid solution element may not contain Au, Pt, Pd, and Ir.
  • the main additive is at least one selected from the group of tungsten, tungsten carbide, and tungsten oxide, it contains 5% by weight or more and 20% by weight or less in terms of metal.
  • the pore-bonding energy at the grain boundary of the metal element W constituting tungsten, tungsten carbide, and tungsten oxide is ⁇ 3.55 eV.
  • the solid-dissolving element has a pore-binding energy lower than the pore-binding energy at the grain boundary in Ag of W, Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt. It is at least one selected from the group of, and contains 0.01% by weight or more and 2% by weight or less.
  • the solid solution element may not contain Au, Pt, Pd, and Ir.
  • the main additive is carbon, it contains 0.01% by weight or more and 2% by weight or less in terms of elements. It may be carbon, and may be an allotrope such as graphite, graphene, fullerene, and carbon nanotube. In this case, the pore binding energy at the grain boundaries of carbon in Ag is ⁇ 3.09 eV. Therefore, the solid-dissolving element has a pore-bonding energy lower than the pore-bonding energy at the grain boundary in Ag of carbon, Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt.
  • the solid solution element may not contain Au, Pt, Pd, and Ir.
  • the main additive is nickel or nickel oxide, it contains 5% by weight or more and 20% by weight or less in terms of metal.
  • the pore binding energy at the grain boundary of the metal element Ni constituting nickel or nickel oxide is ⁇ 3.52 eV. Therefore, the solid-dissolving element has a pore-binding energy lower than the pore-binding energy at the grain boundary in Ni Ag, Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt. , W, Mg, Al, at least one selected from the group, including 0.01% by weight or more and 2% by weight or less.
  • the solid solution element may not contain Au, Pt, Pd, and Ir.
  • the sub-additive like the main additive, exists as a phase different from that of the Ag alloy.
  • the sub-additives are listed below.
  • the by-additive may be at least one of tungsten, tungsten carbide, tungsten oxide, and zirconia. In this case, it may contain 0.1% by weight or more and 5% by weight or less in terms of metal.
  • the sub-additives tungsten, tungsten carbide, and tungsten oxide are added when the main additive is not tungsten, tungsten carbide, or tungsten oxide. Tungsten, tungsten carbide, tungsten oxide, and zirconia have a high melting point, and by adding them, the effect of making the main additive difficult to move can be obtained.
  • the auxiliary additive may be at least one of molybdenum oxide and tellurium dioxide. In this case, it may contain 0.1% by weight or more and 5% by weight or less in terms of metal. Since molybdenum oxide and tellurium dioxide have a sublimation point or a boiling point lower than that of Ag, the formation of irregularities can be suppressed by the ablation effect and the welding resistance can be improved.
  • the auxiliary additive may be at least one of lithium oxide, lithium carbonate and lithium cobalt oxide. In this case, it may contain 0.01% by weight or more and 1% by weight or less in terms of metal. By containing lithium oxide, lithium carbonate, and lithium cobalt oxide, wear resistance can be improved.
  • the auxiliary additive may be copper oxide or at least one of copper. In this case, it may contain 0.1% by weight or more and 2% by weight or less in terms of metal. By containing copper oxide and copper, workability can be improved.
  • the auxiliary additive may be nickel oxide or at least one of nickel. In this case, it may contain 0.1% by weight or more and 2% by weight or less in terms of metal.
  • the sub-additives nickel oxide and nickel are added when the main additive is not nickel oxide and nickel. By containing nickel oxide and nickel, processability can be improved.
  • the by-additive may be indium oxide. In this case, it may contain 0.1% by weight or more and 5% by weight or less in terms of metal. By adding indium oxide, wear resistance can be improved and low contact resistance can be achieved.
  • the by-additive may be bismuth oxide. In this case, it may contain 0.1% by weight or more and 5% by weight or less in terms of metal. By adding bismuth oxide, welding resistance can be improved and low contact resistance can be achieved.
  • the by-additive may be tin oxide. In this case, it may contain 0.1% by weight or more and 5% by weight or less in terms of metal.
  • the sub-additive tin oxide is added when the main additive is not tin oxide. By adding tin oxide, welding resistance can be improved.
  • the by-additive may be zinc oxide. In this case, it may contain 0.1% by weight or more and 5% by weight or less in terms of metal.
  • the sub-additive zinc oxide is added when the main additive is not zinc oxide. By adding zinc oxide, welding resistance can be improved and low contact resistance can be achieved.
  • the sub-additive may be carbon. In this case, it may contain 0.01% by weight or more and 2% by weight or less in terms of elements. It may be carbon, and may be an allotrope such as graphite, graphene, fullerene, and carbon nanotube. Further, the carbon of the sub-additive is added when the main additive is not carbon. By adding carbon, welding resistance can be improved and low contact resistance can be achieved.
  • the method for producing a contact using a contact material containing an Ag alloy as a main component according to the first embodiment includes a matrix Ag alloy particle powder, a main additive particle powder, and a sub-additive particle powder.
  • the particle manufacturing process to manufacture A mixing step of mixing Ag alloy particle powder, main additive particle powder, and sub-additive particle powder to obtain a mixed powder.
  • each step that does not include the molding step as a contact is also a step that constitutes a method for manufacturing a contact material containing an Ag alloy as a main component. Further, the above steps are merely examples and are not limited thereto. Any commonly used powder metallurgy method can be used.
  • the particle manufacturing step may be performed, for example, by weighing the raw materials Ag and the solid solution element, dissolving the particles, and then refining the particles. In addition, classification may be performed if necessary.
  • the particle manufacturing step may be performed by a gas atomizing method, a water atomizing method, a PVD method, a CVD method, or the like. Further, the miniaturization may be performed by plasma processing or pulverization from an alloy. Further, it is not essential that the solid solution element is dissolved in Ag in this particle manufacturing process. For example, Ag particle powder and solid solution element particle powder may be prepared separately. In this case, the solid solution element is not solid solution in Ag.
  • the particles may be mixed and the solid solution element may be solid-solved in Ag in the mixing step or the sintering step to alloy them.
  • Ag particle powder and oxide particle powder may be mixed and reduced in the middle of the process to alloy them.
  • the Ag alloy particle powder, the particle powder of the main additive, and the particle powder of the sub-additive are mixed to obtain a mixed powder.
  • a mixed powder for example, it may be mixed in a mortar. Alternatively, it may be mixed in a ball mill.
  • a mixed powder in which the main additive particles and the sub-additive particles are dispersed in the matrix phase of the Ag alloy particle powder is obtained.
  • the method is not limited to the above method. For example, after producing an alloy of Ag and an element constituting the main additive in advance, the alloy is treated by an atomizing method to selectively select only the element constituting the main additive, for example, Sn.
  • a mixed powder in which SnO 2 particles are dispersed in Ag can be obtained.
  • an internal oxidation treatment by high temperature treatment may be performed in an oxygen atmosphere. Then, the Ag alloy according to Form 1 may be mixed with the particles obtained by this method to obtain the alloy of the present invention.
  • the mixed powder may be press-molded at room temperature to form a powder molded body, and then the powder molded body may be sintered in a vacuum sintering furnace.
  • evacuation is performed, the temperature is raised to 800 ° C., and the temperature is maintained for about 30 minutes for sintering.
  • compression molding may be performed and high temperature treatment at 750 ° C. to 900 ° C. may be performed in the atmosphere.
  • the above steps of the production method may be carried out in an inert atmosphere such as nitrogen or argon. This makes it possible to suppress the oxidation of the elements constituting the contacts. Further, it may be carried out in a reducing atmosphere such as hydrogen. Further, the sintering process is not limited to one time. For example, sintering and compression molding may be repeated, or after sintering, crushing, pressing, and sintering may be repeated.
  • ⁇ Molding process> In the molding process, it is molded into a predetermined shape as a contact point. For example, it can be made into a rod shape by hot extrusion, and can be made into a contact shape by rolling, punching, wire drawing, or header processing. Further, during rolling and header processing, it may be compounded with copper, or after forming the contact shape, barrel polishing and cleaning may be performed.
  • the shape of the contact is a rivet contact intended to be crimped to the contact piece, a wire impressed contact that is cut to the desired size and crimped while being drawn, or a vertical welded contact that is attached to the contact piece by welding.
  • Tape impress contacts that are processed into square tape and cut to the desired dimensions and crimped, tape contacts that have a projection on one side of the contact and are attached by resistance welding to the contact piece, and back row contacts that have a brazing agent on the underside of the projection. , Wire drawing, square tape, or a contact made by cutting or punching a plate into a round or square shape, processing it into individual pieces, and then attaching it to the contact piece with silver brazing, etc. not.
  • FIG. 4A shows a contact in which tin oxide SnO 2 is added as a main additive to Ag which does not substantially contain a solid-dissolving element other than tin, which is a main additive, and the contact is repeatedly opened and closed to be heated in the vicinity of the contact surface.
  • 3 is an FE-SEM photograph of a cross section of a contact showing a state in which an agglomerate is formed.
  • FIG. 4B is an EBSD photograph with a field of view similar to that of FIG. 4A. As shown in FIG.
  • the Ag alloy contains a solid solution element lower than the pore binding energy at the grain boundaries of the constituent elements of the main additive. Therefore, even when the contact material is used for the contact, it is possible to suppress the movement of the main additive such as tin oxide to the contact surface due to an arc or the like generated when the contact is opened and closed, which is useful as a material for an electric contact.

Abstract

Provided is a contact material that is less likely to cause contact damage due to an arc occurring when a contact is opened and closed. The contact material containing a Ag alloy as a main component includes: a Ag alloy; and at least one main additive which is present in a phase different from that of the Ag alloy, and is selected from the group consisting of tin oxide, nickel, nickel oxide, iron, iron oxide, tungsten, tungsten carbide, tungsten oxide, zinc oxide, and carbon, wherein the Ag alloy contains, in an amount of 0.01 wt% to 2 wt%, a metal atom constituting the main additive or a solid-solution element having a pore binding energy lower than the pore binding energy of pores at grain boundaries between carbon and Ag metals when the main additive is carbon.

Description

Ag合金を主成分とする接点用材料、該接点用材料を用いた接点、及び電気機器Contact materials containing Ag alloy as the main component, contacts using the contact materials, and electrical equipment
 本発明は、Ag合金を主成分とする接点用材料及び該接点用材料を用いた接点に関する。特に、Ag合金と、酸化錫、ニッケル、酸化ニッケル、鉄、酸化鉄、タングステン、炭化タングステン、酸化タングステン、酸化亜鉛、炭素、からなる群から選択される少なくとも一種の主添加物を含む接点用材料及び該接点用材料を用いた接点に関する。 The present invention relates to a contact material containing an Ag alloy as a main component and a contact using the contact material. In particular, contact materials comprising Ag alloys and at least one main additive selected from the group consisting of tin oxide, nickel, nickel oxide, iron, iron oxide, tungsten, tungsten carbide, tungsten oxide, zinc oxide, carbon. And contacts using the contact material.
 パワー用リレーやスイッチに使用される接点は、Agを主成分とした材料から構成されている。近年Ag建値は20年前より高騰している。Agの使用量を少なくする省銀化のために、これまで安価な銅との複合化等が行われてきた。さらに省銀化するには接点を小さくする必要がある。 The contacts used in power relays and switches are made of a material containing Ag as the main component. In recent years, the Ag quote has risen higher than it was 20 years ago. In order to save silver by reducing the amount of Ag used, compounding with inexpensive copper has been carried out so far. Further, in order to save silver, it is necessary to make the contacts smaller.
特開昭53-149667号公報Japanese Unexamined Patent Publication No. 53-149667
 しかし、現状の接点をそのまま小さくすると、接点開閉時に発生するアーク4によって接点2a、2bが溶着するまでの開閉回数が短くなり、寿命が短くなる(図1A、図1B)。 However, if the current contacts are made smaller as they are, the number of times of opening and closing until the contacts 2a and 2b are welded by the arc 4 generated when the contacts are opened and closed is shortened, and the life is shortened (FIGS. 1A and 1B).
 一方、Agを用いた電気接点の耐溶着性等の改善のために、Agの母相に酸化錫等の酸化物を分散させた電気接点用材料が知られている(例えば、特許文献1参照。)。 On the other hand, in order to improve the welding resistance of electric contacts using Ag, a material for electric contacts in which an oxide such as tin oxide is dispersed in the matrix phase of Ag is known (see, for example, Patent Document 1). .).
 しかし、接点開閉の回数が多くなるにつれて、図2A乃至図2Cに示すように、Ag合金の母相14内で分散していた酸化錫12が接点開閉時のアークによって接点2の表面に移動し、凝集物16を形成し、接点損傷が加速するという問題がある。なお、図面中の矢印は、酸化錫の移動方向を示している。 However, as the number of times of contact opening and closing increases, as shown in FIGS. 2A to 2C, the tin oxide 12 dispersed in the matrix 14 of the Ag alloy moves to the surface of the contact 2 by the arc at the time of contact opening and closing. , There is a problem that agglomerates 16 are formed and contact damage is accelerated. The arrows in the drawings indicate the direction of movement of tin oxide.
 そこで、本発明の目的は、接点開閉時にアークが発生しても酸化物の移動を低減し、接点損傷しにくい接点用材料を提供することである。 Therefore, an object of the present invention is to provide a contact material that reduces the movement of oxides even if an arc is generated when the contacts are opened and closed, and is less likely to damage the contacts.
 本発明に係るAg合金を主成分とする接点用材料は、Ag合金と、
 前記Ag合金とは異なる相として存在し、酸化錫、ニッケル、酸化ニッケル、鉄、酸化鉄、タングステン、炭化タングステン、酸化タングステン、酸化亜鉛、炭素、からなる群から選択される少なくとも一種の主添加物と、
を含み、
 前記Ag合金は、前記主添加物を構成する金属原子又は前記主添加物が炭素である場合には炭素とAg金属内の粒界における空孔との結合エネルギーである空孔結合エネルギーより低い空孔結合エネルギーを有する固溶元素を0.01重量%以上2重量%以下含む。
The contact material containing the Ag alloy as the main component according to the present invention is an Ag alloy.
At least one main additive selected from the group consisting of tin oxide, nickel, nickel oxide, iron, iron oxide, tungsten, tungsten carbide, tungsten oxide, zinc oxide, and carbon, which exists as a phase different from that of the Ag alloy. When,
Including
The Ag alloy has a lower vacancy than the metal atom constituting the main additive or, when the main additive is carbon, the vacancy bond energy which is the bond energy between carbon and the vacancy at the grain boundary in the Ag metal. It contains 0.01% by weight or more and 2% by weight or less of solid-dissolving elements having pore-bonding energy.
 本発明に係るAg合金を主成分とする接点用材料によれば、Ag合金内に主添加物の構成元素のAg金属内の粒界における空孔との結合エネルギーである空孔結合エネルギーより低い固溶元素を含む。そこで、該接点用材料を接点に用いた場合にも、接点開閉時に発生するアーク等による酸化錫等の主添加物の移動を抑制できる。これによって、主添加物がAg合金内から移動して凝集することを低減でき、接点開閉時に発生するアークによる接点損傷を低減できる。 According to the contact material containing the Ag alloy as the main component according to the present invention, the binding energy of the constituent elements of the main additive in the Ag alloy is lower than the binding energy of the pores at the grain boundary in the Ag metal. Contains solid dissolving elements. Therefore, even when the contact material is used for the contact, the movement of the main additive such as tin oxide due to the arc or the like generated at the time of opening and closing the contact can be suppressed. As a result, it is possible to reduce the movement of the main additive from the inside of the Ag alloy and aggregation, and it is possible to reduce the contact damage due to the arc generated when the contacts are opened and closed.
接点開閉時に接点間にアークが発生する様子を示す概略図である。It is a schematic diagram which shows the state that an arc is generated between contacts at the time of contact opening and closing. 接点間が溶着した状態を示す概略図である。It is a schematic diagram which shows the state which welded between contacts. 接点内で母相の銀の中に酸化錫が分散している様子を示す概略断面図である。It is a schematic cross-sectional view which shows the appearance that tin oxide is dispersed in the silver of a parent phase in a contact point. 接点開閉を繰り返すことで酸化錫が接点表面側に移動し、凝集物を形成する様子を示す概略断面図である。It is a schematic cross-sectional view which shows how the tin oxide moves to the contact surface side by repeating opening and closing of a contact, and forms an agglomerate. 接点開閉をさらに繰り返すことで酸化錫が接点表面側に移動し、より大きな凝集物を形成する様子を示す概略断面図である。It is a schematic cross-sectional view which shows how tin oxide moves to the contact surface side by repeating opening and closing of a contact, and forms a larger agglomerate. 接点内の母相のAg内に分散している酸化錫及び粒界における空孔の状態を示す概略模式図である。It is a schematic schematic diagram which shows the state of the tin oxide dispersed in the Ag of the parent phase in a contact, and the state of the pores at a grain boundary. 接点開閉時のアークによって酸化錫を構成するSn原子がAg内の粒界における空孔に移動する様子を示す概略模式図である。It is a schematic schematic diagram which shows how the Sn atom constituting tin oxide moves to a hole in a grain boundary in Ag by an arc at the time of contact opening and closing. 図3Bに続いて、Ag中の粒界に空孔ができ、Sn原子が粒界の空孔に移動する様子を示す概略模式図である。Following FIG. 3B, it is a schematic schematic diagram showing how pores are formed at the grain boundaries in Ag and Sn atoms move to the pores at the grain boundaries. 図3Cに続いて、Ag中の粒界に空孔ができること、及び、Sn原子が粒界の空孔に移動すること、を繰り返してSn原子が移動する様子を示す概略模式図である。Following FIG. 3C, it is a schematic schematic diagram showing how Sn atoms move by repeating the formation of pores at the grain boundaries in Ag and the movement of Sn atoms to the pores at the grain boundaries. 主添加物である錫以外の固溶元素を実質的に含まないAgに、主添加物として酸化錫SnOを添加した接点において、接点開閉を繰り返して加熱され、接点表面近傍に凝集物を形成した状態を示す接点の断面の電界放出型走査電子顕微鏡(FE-SEM)による画像である。At the contact where tin oxide SnO 2 is added as the main additive to Ag, which does not substantially contain solid-dissolving elements other than tin, which is the main additive, the contacts are repeatedly opened and closed and heated to form aggregates near the contact surface. It is an image by a field emission scanning electron microscope (FE-SEM) of the cross section of a contact point which shows the state which was made. 図4Aを拡大した視野の電子線後方散乱解析法(Electron BackScatter Diffraction:EBSD)による画像である。FIG. 4A is an image obtained by an electron backscatter diffraction method (EBSD) in an enlarged field of view.
<本発明に至る経過>
 上記の通り、耐溶着性改善のためにAgの母相に酸化錫等の酸化物を分散させた電気接点用材料においても、接点開閉を繰り返すことで酸化錫が接点の表面に移動し、微凝集物を形成するという問題点がある。
 本発明者は、母相のAg内の粒界における酸化錫の移動について、空孔が関与する移動メカニズムの仮説について検討した。検討した粒界は、Σ5(310)/[001]モデルである。図3Aは、接点2内の母相のAg24内に分散している酸化錫のSn原子22、酸素原子23及び粒界における空孔26の状態を示す概略模式図である。図3Bは、接点開閉時のアーク起因の熱的な擾乱により、酸化錫を構成するSn原子22がAg24内の粒界における空孔26に移動する様子を示す概略模式図である。図3Cは、図3Bに続いて、Ag24中に空孔26ができ、Sn原子22が粒界における空孔に移動する様子を示す概略模式図である。図3Dは、図3Cに続いて、Ag24中の粒界に空孔26ができること、及び、Sn原子22が粒界の空孔26に移動すること、を繰り返してSn原子22が、温度が高い側へ熱マイグレーションにより移動する様子を示す概略模式図である。
<Progress leading to the present invention>
As described above, even in a material for electrical contacts in which an oxide such as tin oxide is dispersed in the matrix phase of Ag in order to improve welding resistance, tin oxide moves to the surface of the contacts by repeating contact opening and closing, resulting in fine particles. There is a problem of forming aggregates.
The present inventor investigated the hypothesis of the migration mechanism in which vacancies are involved in the migration of tin oxide at the grain boundaries in the Ag of the matrix. The grain boundaries examined are the Σ5 (310) / [001] models. FIG. 3A is a schematic schematic diagram showing the states of the Sn atom 22, the oxygen atom 23, and the pores 26 of the tin oxide dispersed in the Ag24 of the matrix in the contact 2. FIG. 3B is a schematic schematic diagram showing how the Sn atom 22 constituting tin oxide moves to the pores 26 at the grain boundaries in the Ag 24 due to the thermal disturbance caused by the arc when the contacts are opened and closed. FIG. 3C is a schematic schematic diagram showing how a hole 26 is formed in Ag24 and the Sn atom 22 moves to the hole in the grain boundary, following FIG. 3B. In FIG. 3D, following FIG. 3C, the Sn atom 22 has a high temperature by repeating the formation of a hole 26 at the grain boundary in Ag24 and the movement of the Sn atom 22 to the hole 26 at the grain boundary. It is a schematic schematic diagram which shows the state of moving to the side by thermal migration.
 本発明者は、酸化錫を構成するSn原子は、空孔拡散の作用によりAg内の結晶粒界を経路として、接点の表面近くに移動するものと考えている。 The present inventor considers that the Sn atom constituting tin oxide moves near the surface of the contact point through the grain boundary in Ag by the action of vacancy diffusion.
 空孔に関するエネルギーとして、粒界における空孔結合エネルギーEがある。空孔結合エネルギーは、添加元素置換と空孔形成が同時・隣接して発生した場合の、添加元素置換と空孔形成が独立して発生した場合に対するエネルギー変化である。空孔結合エネルギーが低い場合、添加物の効果により、空孔が移動し難い。 As the energy related to the pores, there is the pore binding energy EB at the grain boundary. The vacancy binding energy is an energy change when the additive element substitution and the vacancy formation occur simultaneously or adjacently, and when the additive element substitution and the vacancy formation occur independently. When the pore binding energy is low, the pores are difficult to move due to the effect of the additive.
 そこで、本発明者らは、粒界における、主添加物の空孔結合エネルギーよりも低い空孔結合エネルギーを有する固溶元素をAg合金に固溶させることによって、酸化錫等の主添加物の構成元素の粒界における移動を抑制できるものと考えて、本発明に至った。更に、本発明者らは、主添加物の空孔結合エネルギーよりも低い空孔結合エネルギーを有する固溶元素をAg合金に固溶させることによって、母材である銀の移動も抑制できるので、銀の結晶の粗大化を防ぐことができ、接点損傷を抑制できると考えて、本発明に至った。 Therefore, the present inventors have made a main additive such as tin oxide by dissolving a solid solution element having a pore binding energy lower than the pore binding energy of the main additive in an Ag alloy at the grain boundary. The present invention was made on the assumption that the movement of constituent elements in the grain boundaries can be suppressed. Furthermore, the present inventors can suppress the movement of silver, which is a base material, by dissolving a solid-dissolving element having a pore-bonding energy lower than that of the main additive in an Ag alloy. We came up with the present invention because it is possible to prevent the coarsening of silver crystals and suppress contact damage.
 なお、上記空孔結合エネルギーの計算方法は、例えば、Chun Yu, et al., "First principles calculation of the effects of solute atom on electromigration resistance of Al interconnects", J. Physics D:Appl. Phys. 42(2009) 125501(6pp)に記載されている。
 具体的には、空孔結合エネルギーEを、下記式(1)から計算できる。E(Ag原子数、空孔数、添加物原子数)は、Agの面心立方格子(FCC)を元に、Agや添加物元素自体のエネルギーを取り除くため、添加物や空孔の数を変えて計算できる。計算ツールとしては、例えば、WIEN2K、CASTEP、VASP(https://www.vasp.at/)等の商用ソフトウェア、Abinit、Quantaum espresso等のフリーソフトなどの第一原理計算ソフトウェアを用いることができる。第一原理計算によって、対象とする系における、原子の空間座標と各原子の原子番号などを入力として、対象とする系のエネルギーが最小になる状態の全エネルギーなどを出力することができる。
 第一原理計算における構造最適化は、例えば、以下の工程を順に行う。
(a)対象とする母材原子の結晶構造を、モデル形状として設定する。
(b)モデル形状における、原子位置と電子密度を変更して、モデル形状の全エネルギーを計算する。
(c)モデル形状が安定するまで、(b)の工程を繰り返す。
 なお、ここではモデル形状としては、母材である銀の結晶構造として、全て面心立方格子で統一した。
The calculation method of the pore binding energy is, for example, Chun Yu, et al., "First principles calculation of the effects of solute atom on electromigration resistance of Al interconnects", J. Physics D: Appl. Phys. 42 ( 2009) It is described in 125501 (6pp).
Specifically, the pore binding energy EB can be calculated from the following equation (1). E (Ag number of atoms, number of vacancies, number of additive atoms) is based on the face-centered cubic lattice (FCC) of Ag, and the number of additives and vacancies is used to remove the energy of Ag and the additive element itself. It can be changed and calculated. As the calculation tool, for example, commercial software such as WIEN2K, CASTEP, VASP (https://www.vasp.at/), and first-principles calculation software such as free software such as Abinit and Quantaum espresso can be used. By the first-principles calculation, it is possible to output the total energy in the state where the energy of the target system is minimized by inputting the spatial coordinates of the atoms and the atomic number of each atom in the target system.
For structural optimization in first-principles calculation, for example, the following steps are performed in order.
(A) The crystal structure of the target base material atom is set as the model shape.
(B) The total energy of the model shape is calculated by changing the atomic position and the electron density in the model shape.
(C) The step (b) is repeated until the model shape becomes stable.
Here, as the model shape, the crystal structure of silver, which is the base material, is unified with a face-centered cubic lattice.
=E(32,0,0)÷32×88-E(87,0,1)-E(87,1,0)+E(86,1,1) ・・・・式(1)
E(86,1,1):Ag86原子、空孔1個、添加物1原子が有するエネルギー
E(87,1,0):Ag87原子、空孔1個が有するエネルギー
E(87,0,1):Ag87原子、添加物1原子が有するエネルギー
E(32,0,0):Ag32原子が有するエネルギー
EB = E (32,0,0) ÷ 32 × 88-E (87,0,1) -E (87,1,0) + E (86,1,1) ... Equation (1)
E (86,1,1): Energy of Ag86 atom, 1 hole, 1 additive E (87,1,0): Energy of Ag87 atom, 1 hole E (87,0,1) ): Energy possessed by Ag87 atom and 1 atom of additive E (32,0,0): Energy possessed by Ag32 atom
 E(86,1,1)、E(87,1,0)、E(87,0,1)に対しては、Σ5(310)/[001]粒界モデルを利用した。Σ5(310)/[001]粒界モデルの原子配置は、例えば、“Numerical analysis of solute segregation at Σ5(310)/[001] symmetric tilt grain boundaries in Y2O3-doped ZrO2”、Takashi Oyama et al、PHYSICAL、REVIEW B 71,224105、2-11,(2005) を参照できる。基本並進ベクトルはa=(28.772218524078429Å,0,0)、b=(0、12.8755433866468927Å,0)、c=(0,0, 4.0105656389541027Å)に統一した。格子定数の倍率は1とした。空孔の初期位置は、基本並進ベクトル(a,b,c)に対する相対座標で(0.20497、0.70240、0.00000)、添加元素の初期位置は、基本並進ベクトル(a,b,c)に対する相対座標で(a=0.250000,b=0.84170, 0.0000)と設定した。E(32,0,0)に対しては、初期の結晶構造を、面心立方格子とした。格子定数の倍率は1、基本並進ベクトルはa=(8.1706Å,0,0)、b=(0,8.1706Å,0)、c=(0,0,8.1706Å)とした。 For E (86,1,1), E (87,1,0), E (87,0,1), the Σ5 (310) / [001] grain boundary model was used. The atomic arrangement of the Σ5 (310) / [001] grain boundary model is, for example, “Numerical analysis of solute segregation at Σ5 (310) / [001] symmetric tilt grain boundaries in Y 2 O 3 -doped ZrO 2 ”, Takashi Oyama. See et al, PHYSICAL, REVIEW B 71,224105, 2-11, (2005). The basic translation vectors are unified to a = (28.772218524078429 Å, 0,0), b = (0, 12.8755433866468927 Å, 0), c = (0,0, 4.0105656389541027 Å). The magnification of the lattice constant was 1. The initial position of the hole is relative to the basic translation vector (a, b, c) (0.20497, 0.70240, 0.00000), and the initial position of the additive element is relative to the basic translation vector (a, b, c). It was set as (a = 0.250000, b = 0.84170, 0.0000). For E (32,0,0), the initial crystal structure was a face-centered cubic lattice. The magnification of the lattice constant was 1, and the basic translation vectors were a = (8.1706Å,0,0), b = (0,8.1706Å,0), and c = (0,0,8.1706Å).
 次に、k点メッシュについて述べる。第一原理計算におけるk点とは、波動関数の波数に相当する。k点メッシュとは、計算に反映すべき波数の範囲に相当し、基本並進ベクトルa,b,c各軸に対して設定する。k点メッシュが大きいほど、波数が大きい波動関数も考慮されるため、電子密度の計算精度は高い。その一方で、計算に要する計算は長くなる。k点メッシュは、逆格子空間におけるk点として設定される。ここでは、1×4×12と設定した。またk点の選択手法は、Monkhorst Pack法を用いた。このMonkhorst Pack法は、第一原理計算ソフトウェアにおいて、汎用的なメッシュ生成手法である。 Next, the k-point mesh will be described. The k point in the first-principles calculation corresponds to the wave number of the wave function. The k-point mesh corresponds to the range of wave numbers to be reflected in the calculation, and is set for each axis of the basic translation vectors a, b, and c. The larger the k-point mesh is, the higher the wave function with a large wave number is taken into consideration, so that the calculation accuracy of the electron density is high. On the other hand, the calculation required for the calculation becomes long. The k-point mesh is set as the k-point in the reciprocal lattice space. Here, it was set to 1 × 4 × 12. The Monkhorst Pack method was used as the method for selecting the k point. This Monkhorst Pack method is a general-purpose mesh generation method in first-principles calculation software.
 更に、計算の件について述べる。構造最適化計算においては、(1)原子位置、(2)格子の形状、(3)格子定数を、最適化の対象とした。電子状態(軌道)を計算する手法は、Blocked-Davidson法を用いた。また、原子位置、イオンの構造緩和アルゴリズムとして、quasi-Newton法を利用した。これらはいずれも第一原理計算ソフトウェアにおいて、汎用的な手法である。構造最適化計算の収束条件としては、繰り返し計算前後のエネルギー差が、10-4eV/cell以下を満足すること、及び、1原子あたりに生じる力の大きさが10-6eV/Å以下となることである。ここで、セル(cell)はモデル形状に相当する。 Further, the matter of calculation will be described. In the structure optimization calculation, (1) atomic position, (2) lattice shape, and (3) lattice constant were targeted for optimization. The Blocked-Davidson method was used to calculate the electronic state (orbit). In addition, the quasi-Newton method was used as an algorithm for relaxing the atomic position and ion structure. All of these are general-purpose methods in first-principles calculation software. The convergence conditions for the structural optimization calculation are that the energy difference before and after the iterative calculation satisfies 10 -4 eV / cell or less, and the magnitude of the force generated per atom is 10-6 eV / Å or less. Is to be. Here, the cell corresponds to the model shape.
 第1の態様に係るAg合金を主成分とする接点用材料は、Ag合金と、
 前記Ag合金とは異なる相として存在する主添加物と、
を含み、
 前記主添加物は、酸化錫であって、金属換算で5重量%以上20重量%以下含み、
 前記Ag合金は、前記主添加物を構成するSn原子とAg金属内の粒界における空孔との結合エネルギーである空孔結合エネルギーより低い空孔結合エネルギーを有する固溶元素を含み、
 前記固溶元素は、Fr、Cs、Rb、Ba、Be、Os,K、Ir、Zn、Mn、Pt、W、Al、Mg,Ni、Pd、V,Au、Tl、Hg、Sr、Pbの群から選択された少なくとも一種であって、0.01重量%以上2重量%以下含んでもよい。
The contact material containing the Ag alloy as the main component according to the first aspect is an Ag alloy.
The main additive existing as a phase different from that of the Ag alloy,
Including
The main additive is tin oxide, which contains 5% by weight or more and 20% by weight or less in terms of metal.
The Ag alloy contains a solid dissolving element having a pore bond energy lower than the pore bond energy, which is the bond energy between the Sn atom constituting the main additive and the pores at the grain boundaries in the Ag metal.
The solid-dissolving elements are Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt, W, Al, Mg, Ni, Pd, V, Au, Tl, Hg, Sr, and Pb. It is at least one selected from the group and may contain 0.01% by weight or more and 2% by weight or less.
 第2の態様に係るAg合金を主成分とする接点用材料は、
Ag合金と、
 前記Ag合金とは異なる相として存在する主添加物と、
を含み、
 前記主添加物は、酸化亜鉛であって、金属換算で5重量%以上20重量%以下含み、
 前記Ag合金は、前記主添加物を構成するZn原子とAg金属内の粒界における空孔との結合エネルギーである空孔結合エネルギーより低い空孔結合エネルギーを有する固溶元素を含み、
 前記固溶元素は、Fr、Cs、Rb、Ba、Be、Os,K、Irの群から選択された少なくとも一種であって、0.01重量%以上2重量%以下含んでもよい。
The contact material containing the Ag alloy as the main component according to the second aspect is
With Ag alloy,
The main additive existing as a phase different from that of the Ag alloy,
Including
The main additive is zinc oxide, which contains 5% by weight or more and 20% by weight or less in terms of metal.
The Ag alloy contains a solid dissolving element having a pore bond energy lower than the pore bond energy, which is the bond energy between the Zn atom constituting the main additive and the pores at the grain boundaries in the Ag metal.
The solid solution element is at least one selected from the group of Fr, Cs, Rb, Ba, Be, Os, K, and Ir, and may contain 0.01% by weight or more and 2% by weight or less.
 第3の態様に係るAg合金を主成分とする接点用材料は、Ag合金と、
 前記Ag合金とは異なる相として存在する主添加物と、
を含み、
 前記主添加物は、鉄又は酸化鉄であって、金属換算で5重量%以上20重量%以下含み、
 前記Ag合金は、前記主添加物を構成するFe原子とAg金属内の粒界における空孔との結合エネルギーである空孔結合エネルギーより低い空孔結合エネルギーを有する固溶元素を含み、
 前記固溶元素は、Fr、Cs、Rb、Ba、Be、Os、K、Ir、Zn、Mn、Pt、W、Mg、Al、Ni、V、Pd、Au、Tl、Hg、Sr、Pb、Sn、Cd、Naの群から選択された少なくとも一種であって、0.01重量%以上2重量%以下含む。
The contact material containing the Ag alloy as the main component according to the third aspect is the Ag alloy.
The main additive existing as a phase different from that of the Ag alloy,
Including
The main additive is iron or iron oxide, and contains 5% by weight or more and 20% by weight or less in terms of metal.
The Ag alloy contains a solid dissolving element having a pore bond energy lower than the pore bond energy, which is the bond energy between the Fe atom constituting the main additive and the pores at the grain boundaries in the Ag metal.
The solid-dissolving elements include Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt, W, Mg, Al, Ni, V, Pd, Au, Tl, Hg, Sr, Pb. It is at least one selected from the group of Sn, Cd, and Na, and contains 0.01% by weight or more and 2% by weight or less.
 第4の態様に係るAg合金を主成分とする接点用材料は、Ag合金と、
 前記Ag合金とは異なる相として存在する主添加物と、
を含み、
 前記主添加物は、タングステン、炭化タングステン、酸化タングステンの群から選択された少なくとも一種であって、金属換算で5重量%以上20重量%以下含み、
 前記Ag合金は、前記主添加物を構成するW原子とAg金属内の粒界における空孔との結合エネルギーである空孔結合エネルギーより低い空孔結合エネルギーを有する固溶元素を含み、
 前記固溶元素は、Fr、Cs、Rb、Ba、Be、Os、K、Ir、Zn、Mn、Ptの群から選択された少なくとも一種であって、0.01重量%以上2重量%以下含む、Ag合金を主成分とする接点用材料。
The contact material containing the Ag alloy as the main component according to the fourth aspect is the Ag alloy.
The main additive existing as a phase different from that of the Ag alloy,
Including
The main additive is at least one selected from the group of tungsten, tungsten carbide, and tungsten oxide, and contains 5% by weight or more and 20% by weight or less in terms of metal.
The Ag alloy contains a solid dissolving element having a pore bond energy lower than the pore bond energy, which is the bond energy between the W atom constituting the main additive and the pores at the grain boundaries in the Ag metal.
The solid solution element is at least one selected from the group of Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, and Pt, and contains 0.01% by weight or more and 2% by weight or less. , A contact material whose main component is Ag alloy.
 第5の態様に係るAg合金を主成分とする接点用材料は、Ag合金と、
 前記Ag合金とは異なる相として存在する主添加物と、
を含み、
 前記主添加物は、炭素であって、金属換算で0.01重量%以上2重量%以下含み、
 前記Ag合金は、前記主添加物を構成するC原子とAg金属内の粒界における空孔との結合エネルギーである空孔結合エネルギーより低い空孔結合エネルギーを有する固溶元素を含み、
 前記固溶元素は、Fr、Cs、Rb、Ba、Be、Os、K、Ir、Zn、Mn、Pt、W、Mg、Al、Ni、V、Pd、Au、Tl、Hg、Sr、Pb、Sn、Cd、Na、Fe、Ti、La、Ca、Eu、Nb、Li、Yb、Hf、Sc、Pr、Zr、Pm、Gd、Tb、Ho、Y、Dy、Ndの群から選択された少なくとも一種であって、0.01重量%以上2重量%以下含む、Ag合金を主成分とする接点用材料。
The contact material containing the Ag alloy as the main component according to the fifth aspect is the Ag alloy.
The main additive existing as a phase different from the Ag alloy and
Including
The main additive is carbon and contains 0.01% by weight or more and 2% by weight or less in terms of metal.
The Ag alloy contains a solid dissolving element having a pore binding energy lower than the pore binding energy, which is the binding energy between the C atom constituting the main additive and the pores at the grain boundaries in the Ag metal.
The solid-dissolving elements include Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt, W, Mg, Al, Ni, V, Pd, Au, Tl, Hg, Sr, Pb. At least selected from the group Sn, Cd, Na, Fe, Ti, La, Ca, Eu, Nb, Li, Yb, Hf, Sc, Pr, Zr, Pm, Gd, Tb, Ho, Y, Dy, Nd. A contact material containing 0.01% by weight or more and 2% by weight or less as a main component of Ag alloy.
 第6の態様に係るAg合金を主成分とする接点用材料は、Ag合金と、
 前記Ag合金とは異なる相として存在する主添加物と、
を含み、
 前記主添加物は、ニッケル又は酸化ニッケルであって、金属換算で5重量%以上20重量%以下含み、
 前記Ag合金は、前記主添加物を構成するNi原子とAg金属内の粒界における空孔との結合エネルギーである空孔結合エネルギーより低い空孔結合エネルギーを有する固溶元素を含み、
 前記固溶元素は、Fr、Cs、Rb、Ba、Be、Os、K、Ir、Zn、Mn、Pt、W、Mg、Alの群から選択された少なくとも一種であって、0.01重量%以上2重量%以下含む。
The contact material containing the Ag alloy as the main component according to the sixth aspect is the Ag alloy.
The main additive existing as a phase different from that of the Ag alloy,
Including
The main additive is nickel or nickel oxide, and contains 5% by weight or more and 20% by weight or less in terms of metal.
The Ag alloy contains a solid dissolving element having a pore bond energy lower than the pore bond energy, which is the bond energy between the Ni atom constituting the main additive and the pores at the grain boundaries in the Ag metal.
The solid-dissolving element is at least one selected from the group of Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt, W, Mg and Al, and is 0.01% by weight. Includes 2% by weight or less.
 第7の態様に係るAg合金を主成分とする接点用材料は、上記第1から第3、及び、第5から第6のいずれかの態様において、さらに、前記Ag合金とは異なる相として存在し、タングステン、炭化タングステン、酸化タングステン、及びジルコニアからなる群から選択され選ばれる少なくとも一種であって、金属換算で0.1重量%以上5重量%以下含んでもよい。 The contact material containing the Ag alloy as the main component according to the seventh aspect exists as a phase different from the Ag alloy in any one of the first to third and fifth to sixth aspects. However, it is at least one selected from the group consisting of tungsten, tungsten carbide, tungsten oxide, and zirconia, and may contain 0.1% by weight or more and 5% by weight or less in terms of metal.
 第8の態様に係るAg合金を主成分とする接点用材料は、上記第1から第6のいずれかの態様において、さらに、前記Ag合金とは異なる相として存在し、酸化モリブデン、二酸化テルルの少なくとも一種であって、金属換算で0.1重量%以上5重量%以下含んでもよい。 The contact material containing an Ag alloy as a main component according to the eighth aspect exists in any of the first to sixth aspects as a phase different from that of the Ag alloy, and is composed of molybdenum oxide and tellurium dioxide. It is at least one kind, and may contain 0.1% by weight or more and 5% by weight or less in terms of metal.
 第9の態様に係るAg合金を主成分とする接点用材料は、上記第1から第6のいずれかの態様において、さらに、前記Ag合金とは異なる相として存在し、酸化リチウム、炭酸リチウム、コバルト酸リチウムの少なくとも一種であって、金属換算で0.01重量%以上1重量%以下含んでもよい。 The contact material containing an Ag alloy as a main component according to the ninth aspect exists in any of the first to sixth aspects as a phase different from that of the Ag alloy, and lithium oxide, lithium carbonate, and the like. It is at least one kind of lithium cobalt oxide, and may contain 0.01% by weight or more and 1% by weight or less in terms of metal.
 第10の態様に係るAg合金を主成分とする接点用材料は、上記第1から第6のいずれかの態様において、さらに、前記Ag合金とは異なる相として存在し、酸化銅、銅の少なくとも一種であって、金属換算で0.1重量%以上2重量%以下含んでもよい。 The contact material containing an Ag alloy as a main component according to the tenth aspect exists in any one of the first to sixth aspects as a phase different from that of the Ag alloy, and is at least copper oxide and copper. It is a kind and may contain 0.1% by weight or more and 2% by weight or less in terms of metal.
 第11の態様に係るAg合金を主成分とする接点用材料は、上記第1から第5のいずれかの態様において、さらに、前記Ag合金とは異なる相として存在し、酸化ニッケル、ニッケルの少なくとも一種であって、金属換算で0.1重量%以上2重量%以下含んでもよい。 The contact material containing an Ag alloy as a main component according to the eleventh aspect exists in any one of the first to fifth aspects as a phase different from that of the Ag alloy, and is at least nickel oxide and nickel. It is a kind and may contain 0.1% by weight or more and 2% by weight or less in terms of metal.
 第12の態様に係るAg合金を主成分とする接点用材料は、上記第1から第6のいずれかの態様において、さらに、前記Ag合金とは異なる相として存在し、酸化インジウムを金属換算で0.1重量%以上5重量%以下含んでもよい。 The contact material containing an Ag alloy as a main component according to the twelfth aspect exists as a phase different from that of the Ag alloy in any one of the first to sixth aspects, and indium oxide is converted into a metal. It may contain 0.1% by weight or more and 5% by weight or less.
 第13の態様に係るAg合金を主成分とする接点用材料は、上記第1から第6のいずれかの態様において、さらに、前記Ag合金とは異なる相として存在し、酸化ビスマスを金属換算で0.1重量%以上5重量%以下含んでもよい。 The contact material containing an Ag alloy as a main component according to the thirteenth aspect exists in any one of the first to sixth aspects as a phase different from that of the Ag alloy, and bismuth oxide is converted into a metal. It may contain 0.1% by weight or more and 5% by weight or less.
 第14の態様に係るAg合金を主成分とする接点用材料は、上記第2から第6のいずれかの態様において、さらに、前記Ag合金とは異なる相として存在し、酸化錫を金属換算で0.1重量%以上5重量%以下含んでもよい。 The contact material containing an Ag alloy as a main component according to the fourteenth aspect exists in any of the second to sixth aspects as a phase different from that of the Ag alloy, and tin oxide is converted into a metal. It may contain 0.1% by weight or more and 5% by weight or less.
 第15の態様に係るAg合金を主成分とする接点用材料は、上記第1、及び、第3から第6のいずれかの態様において、さらに、前記Ag合金とは異なる相として存在し、酸化亜鉛の少なくとも一種であって、金属換算で0.1重量%以上5重量%以下含んでもよい。 The contact material containing an Ag alloy as a main component according to the fifteenth aspect is further present as a phase different from the Ag alloy in any one of the first and third to sixth aspects, and is oxidized. It is at least one kind of zinc, and may contain 0.1% by weight or more and 5% by weight or less in terms of metal.
 第16の態様に係るAg合金を主成分とする接点用材料は、上記第1から第4、及び、第6のいずれかの態様において、さらに、前記Ag合金とは異なる相として存在し、炭素を元素換算で0.01重量%以上2重量%以下含んでもよい。 The contact material containing an Ag alloy as a main component according to the sixteenth aspect is further present as a phase different from the Ag alloy in any one of the first to fourth and sixth aspects, and is carbon. May be contained in an elemental equivalent of 0.01% by weight or more and 2% by weight or less.
 第17の態様に係るAg合金を主成分とする接点用材料は、上記第1から第16のいずれかの態様において、前記固溶元素は、Au、Pt、Pd、Irを含まなくてもよい。 The contact material containing an Ag alloy as a main component according to the seventeenth aspect may not contain Au, Pt, Pd, Ir in any of the first to sixteenth embodiments. ..
 第18の態様に係る接点は、上記第1から第17のいずれかの態様に係るAg合金を主成分とする接点用材料を用いている。 The contact according to the eighteenth aspect uses a contact material containing the Ag alloy according to any one of the first to the seventeenth aspects as a main component.
 第19の態様に係る電気機器は、上記第18の態様に係る接点を用いた、リレー、電磁接触器、電磁開閉器、継電器、開閉器、スイッチの群から選択される。 The electrical equipment according to the nineteenth aspect is selected from a group of relays, electromagnetic contactors, electromagnetic switches, relays, switches, and switches using the contacts according to the eighteenth aspect.
 以下、実施の形態に係るAg合金を主成分とする接点用材料及び該接点用材料を用いた接点について、添付図面を参照しながら説明する。なお、図面において実質的に同一の部材については同一の符号を付している。 Hereinafter, the contact material containing the Ag alloy as the main component and the contact using the contact material according to the embodiment will be described with reference to the attached drawings. In the drawings, substantially the same members are designated by the same reference numerals.
(実施の形態1)
<Ag合金を主成分とする接点用材料>
 実施の形態1に係るAg合金を主成分とする接点用材料は、Ag合金と、Ag合金とは異なる相として存在する主添加物と、を含む。主添加物としては、酸化錫、ニッケル、酸化ニッケル、鉄、酸化鉄、タングステン、炭化タングステン、酸化タングステン、酸化亜鉛、炭素、からなる群から選択される少なくとも一種である。また、Ag合金は、固溶元素を0.01重量%以上で含む。この固溶元素としては、主添加物を構成する金属原子又は主添加物が炭素である場合には炭素とAg金属内の粒界における空孔との結合エネルギーである空孔結合エネルギーより低い空孔結合エネルギーを有する。
(Embodiment 1)
<Material for contacts whose main component is Ag alloy>
The contact material containing an Ag alloy as a main component according to the first embodiment contains an Ag alloy and a main additive existing as a phase different from that of the Ag alloy. The main additive is at least one selected from the group consisting of tin oxide, nickel, nickel oxide, iron, iron oxide, tungsten, tungsten carbide, tungsten oxide, zinc oxide, and carbon. Further, the Ag alloy contains a solid solution element in an amount of 0.01% by weight or more. As this solid-dissolving element, when the metal atom constituting the main additive or the main additive is carbon, the vacancy is lower than the vacancy bond energy which is the bond energy between carbon and the vacancy at the grain boundary in the Ag metal. Has pore bond energy.
 このAg合金を主成分とする接点用材料によれば、Ag合金内に主添加物の構成元素のAg金属内の粒界における空孔との結合エネルギーである空孔結合エネルギーより低い固溶元素を含む。そこで、該接点用材料を接点に用いた場合にも、接点開閉時に発生するアーク等による酸化錫等の主添加物の接点表面への移動を抑制できる。これによって、主添加物がAg合金内から移動して接点表面で凝集することを抑制でき、接点開閉時に発生するアークによる接点損傷を抑制できる。 According to the contact material containing this Ag alloy as a main component, a solid-dissolved element lower than the pore binding energy, which is the binding energy with the pores in the grain boundary of the constituent element of the main additive in the Ag metal. including. Therefore, even when the contact material is used for the contact, it is possible to suppress the movement of the main additive such as tin oxide to the contact surface due to the arc or the like generated when the contact is opened or closed. As a result, it is possible to suppress the movement of the main additive from the inside of the Ag alloy and aggregation on the contact surface, and it is possible to suppress contact damage due to the arc generated when the contact is opened and closed.
 なお、このAg合金を主成分とする接点用材料は、主相のAg合金と、これと異なる相として存在する主添加物と、を含んでいればよく、その形態は、一定形状を有する成型体、不定形の焼結体、不定形であって一定形状をなさない混合粉体、等のいずれであってもよい。 The contact material containing the Ag alloy as a main component may contain an Ag alloy of the main phase and a main additive existing as a phase different from the main phase, and the form thereof is a molding having a constant shape. It may be any of a body, an amorphous sintered body, a mixed powder having an amorphous shape and not forming a constant shape, and the like.
 以下に、このAg合金を主成分とする接点用材料を構成する各部材について説明する。 Below, each member constituting the contact material containing this Ag alloy as a main component will be described.
 <Ag合金>
 Ag合金は、接点用材料の主成分を構成する。Ag合金に固溶されている固溶元素は、Agに0.01重量%以上で含まれる。Ag合金は、主添加物を構成する金属原子又は主添加物が炭素である場合には炭素とAg金属内の粒界における空孔との結合エネルギーである空孔結合エネルギーより低い空孔結合エネルギーを有する固溶元素を0.01重量%以上で含む。固溶元素を少なくとも0.01重量%含むことによって、固溶元素がAg合金内の粒界における空孔と主添加物を構成する元素よりも結合しやすいので、固溶元素の周囲に空孔を引きつけることとなる。これによって、主添加物の移動及び凝集を抑制できる。また、固溶元素は、好ましくはAg単相の固溶限界の1.5倍以下で含んでもよい。
<Ag alloy>
The Ag alloy constitutes the main component of the contact material. The solid solution element dissolved in the Ag alloy is contained in Ag in an amount of 0.01% by weight or more. The Ag alloy has a pore bond energy lower than the pore bond energy, which is the bond energy between carbon and the pores at the grain boundaries in the Ag metal when the metal atom constituting the main additive or the main additive is carbon. Contains 0.01% by weight or more of solid-dissolving elements. By containing at least 0.01% by weight of the solid solution element, the solid solution element is more likely to bond with the pores at the grain boundaries in the Ag alloy than the elements constituting the main additive, and therefore the pores around the solid solution element. Will be attracted. Thereby, the movement and aggregation of the main additive can be suppressed. Further, the solid solution element may be preferably contained in an amount of 1.5 times or less of the solid solution limit of the Ag single phase.
 固溶元素として用いられる可能性のある元素と該元素のAg中の粒界における空孔結合エネルギーとを表1に示す。 Table 1 shows the elements that may be used as solid solution elements and the pore-binding energies of the elements at the grain boundaries in Ag.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、主添加物と固溶元素との関係については後述する。 The relationship between the main additive and the solid solution element will be described later.
 <主添加物>
 主添加物は、Ag合金とは異なる相として存在する。主添加物としては、酸化錫、ニッケル、酸化ニッケル、鉄、酸化鉄、タングステン、炭化タングステン、酸化タングステン、酸化亜鉛、炭素、からなる群から選択される少なくとも一種である。なお、酸化錫、酸化ニッケル、酸化鉄、酸化タングステンについては、それらの不定比性酸化物を、主添加物として選択しても良い。
<Main additive>
The main additive exists as a phase different from that of the Ag alloy. The main additive is at least one selected from the group consisting of tin oxide, nickel, nickel oxide, iron, iron oxide, tungsten, tungsten carbide, tungsten oxide, zinc oxide, and carbon. For tin oxide, nickel oxide, iron oxide, and tungsten oxide, non-stoichiometric oxides thereof may be selected as the main additive.
  <酸化錫SnO
 主添加物が、酸化錫の場合、金属換算で5重量%以上20重量%以下含む。この場合には、酸化錫を構成する金属元素SnのAg中での粒界における空孔結合エネルギーは、-3.44eVである。
<Tin oxide SnO 2 >
When the main additive is tin oxide, it contains 5% by weight or more and 20% by weight or less in terms of metal. In this case, the pore binding energy at the grain boundaries of the metal element Sn constituting tin oxide is -3.44 eV.
 固溶元素は、SnのAg中での粒界における空孔結合エネルギー(-3.44eV)より低い粒界における空孔結合エネルギーを有する、Fr、Cs、Rb、Ba、Be、Os,K、Ir、Zn、Mn、Pt、W、Al、Mg,Ni、Au、Fe、Tl、Hg、Sr、Pbの群から選択された少なくとも一種であって、0.01重量%以上2重量%以下含む。
 なお、固溶元素はAu、Pt、Pd、Irを含まなくてもよい。
The solid-dissolving element has a pore-binding energy at the grain boundary lower than the pore-binding energy (-3.44 eV) at the grain boundary in Sn Ag, Fr, Cs, Rb, Ba, Be, Os, K, At least one selected from the group of Ir, Zn, Mn, Pt, W, Al, Mg, Ni, Au, Fe, Tl, Hg, Sr and Pb, including 0.01% by weight or more and 2% by weight or less. ..
The solid solution element may not contain Au, Pt, Pd, and Ir.
  <酸化亜鉛ZnO>
 主添加物が、酸化亜鉛である場合、金属換算で5重量%以上20重量%以下含む。この場合には、酸化亜鉛を構成する金属元素ZnのAg中での粒界における空孔結合エネルギーは、-3.69eVである。そこで、固溶元素は、ZnのAg中での粒界における空孔結合エネルギーより低い空孔結合エネルギーを有する、Fr、Cs、Rb、Ba、Be、Os,K、Irの群から選択された少なくとも一種であって、0.01重量%以上2重量%以下含む。
 なお、固溶元素はIrを含まなくてもよい。
<Zinc oxide ZnO>
When the main additive is zinc oxide, it contains 5% by weight or more and 20% by weight or less in terms of metal. In this case, the pore binding energy at the grain boundary of the metal element Zn constituting zinc oxide in Ag is -3.69 eV. Therefore, the solid-dissolving element was selected from the group of Fr, Cs, Rb, Ba, Be, Os, K, and Ir, which have a pore binding energy lower than the pore binding energy at the grain boundary in Zn Ag. It is at least one kind and contains 0.01% by weight or more and 2% by weight or less.
The solid solution element does not have to contain Ir.
  <鉄Fe又は酸化鉄α-Fe、γ-Fe、Fe
 主添加物が、鉄又は酸化鉄の場合、金属換算で5重量%以上20重量%以下含む。この場合には、鉄又は酸化鉄を構成する金属元素FeのAg中での粒界における空孔結合エネルギーは、-3.34eVである。そこで、固溶元素は、FeのAg中での粒界における空孔結合エネルギーより低い空孔結合エネルギーを有する、Fr、Cs、Rb、Ba、Be、Os、K、Ir、Zn、Mn、Pt、W、Mg、Al、Ni、V、Pd、Au、Tl、Hg、Sr、Pb、Sn、Cd、Naの群から選択された少なくとも一種であって、0.01重量%以上2重量%以下含む。
 なお、固溶元素はAu、Pt、Pd、Irを含まなくてもよい。
<Iron Fe or iron oxide α-Fe 2 O 3 , γ-Fe 2 O 3 , Fe 3 O 4 >
When the main additive is iron or iron oxide, it contains 5% by weight or more and 20% by weight or less in terms of metal. In this case, the pore binding energy at the grain boundary in Ag of the metal element Fe constituting iron or iron oxide is -3.34 eV. Therefore, the solid-dissolving element has a pore-bonding energy lower than the pore-bonding energy at the grain boundary in Ag of Fe, Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt. , W, Mg, Al, Ni, V, Pd, Au, Tl, Hg, Sr, Pb, Sn, Cd, Na, at least one selected from the group of 0.01% by weight or more and 2% by weight or less. include.
The solid solution element may not contain Au, Pt, Pd, and Ir.
  <タングステンW、炭化タングステンWC、酸化タングステンW、WO、WO
 主添加物が、タングステン、炭化タングステン、酸化タングステンの群から選択された少なくとも一種の場合、金属換算で5重量%以上20重量%以下含む。この場合には、タングステン、炭化タングステン、酸化タングステンを構成する金属元素WのAg中での粒界における空孔結合エネルギーは、-3.55eVである。そこで、固溶元素は、WのAg中での粒界における空孔結合エネルギーより低い空孔結合エネルギーを有する、Fr、Cs、Rb、Ba、Be、Os、K、Ir、Zn、Mn、Ptの群から選択された少なくとも一種であって、0.01重量%以上2重量%以下含む。
 なお、固溶元素はAu、Pt、Pd、Irを含まなくてもよい。
<Tungsten W, Tungsten Carbide WC, Tungsten Tungsten W 2 O 3 , WO 2 , WO 3 >
When the main additive is at least one selected from the group of tungsten, tungsten carbide, and tungsten oxide, it contains 5% by weight or more and 20% by weight or less in terms of metal. In this case, the pore-bonding energy at the grain boundary of the metal element W constituting tungsten, tungsten carbide, and tungsten oxide is −3.55 eV. Therefore, the solid-dissolving element has a pore-binding energy lower than the pore-binding energy at the grain boundary in Ag of W, Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt. It is at least one selected from the group of, and contains 0.01% by weight or more and 2% by weight or less.
The solid solution element may not contain Au, Pt, Pd, and Ir.
  <炭素C>
 主添加物が、炭素である場合、元素換算で0.01重量%以上2重量%以下含む。なお、炭素であればよく、グラファイト、グラフェン、フラーレン、カーボンナノチューブ等の同素体であってもよい。この場合には、炭素のAg中での粒界における空孔結合エネルギーは、-3.09eVである。そこで、固溶元素は、炭素のAg中での粒界における空孔結合エネルギーより低い空孔結合エネルギーを有する、Fr、Cs、Rb、Ba、Be、Os、K、Ir、Zn、Mn、Pt、W、Mg、Al、Ni、V、Pd、Au、Tl、Hg、Sr、Pb、Sn、Cd、Na、Fe、Ti、La、Ca、Eu、Nb、Li、Yb、Hf、Sc、Pr、Zr、Pm、Gd、Tb、Ho、Y、Dy、Ndの群から選択され、0.01重量%以上2重量%以下含む。
 なお、固溶元素はAu、Pt、Pd、Irを含まなくてもよい。
<Carbon C>
When the main additive is carbon, it contains 0.01% by weight or more and 2% by weight or less in terms of elements. It may be carbon, and may be an allotrope such as graphite, graphene, fullerene, and carbon nanotube. In this case, the pore binding energy at the grain boundaries of carbon in Ag is −3.09 eV. Therefore, the solid-dissolving element has a pore-bonding energy lower than the pore-bonding energy at the grain boundary in Ag of carbon, Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt. , W, Mg, Al, Ni, V, Pd, Au, Tl, Hg, Sr, Pb, Sn, Cd, Na, Fe, Ti, La, Ca, Eu, Nb, Li, Yb, Hf, Sc, Pr , Zr, Pm, Gd, Tb, Ho, Y, Dy, Nd, and contains 0.01% by weight or more and 2% by weight or less.
The solid solution element may not contain Au, Pt, Pd, and Ir.
  <ニッケルNi又は酸化ニッケルNiO>
 主添加物が、ニッケル又は酸化ニッケルの場合、金属換算で5重量%以上20重量%以下含む。この場合には、ニッケル又は酸化ニッケルを構成する金属元素NiのAg中での粒界における空孔結合エネルギーは、-3.52eVである。そこで、固溶元素は、NiのAg中での粒界における空孔結合エネルギーより低い空孔結合エネルギーを有する、Fr、Cs、Rb、Ba、Be、Os、K、Ir、Zn、Mn、Pt、W、Mg、Alの群から選択された少なくとも一種であって、0.01重量%以上2重量%以下含む。
 なお、固溶元素はAu、Pt、Pd、Irを含まなくてもよい。
<Nickel Ni or Nickel Oxide NiO>
When the main additive is nickel or nickel oxide, it contains 5% by weight or more and 20% by weight or less in terms of metal. In this case, the pore binding energy at the grain boundary of the metal element Ni constituting nickel or nickel oxide is −3.52 eV. Therefore, the solid-dissolving element has a pore-binding energy lower than the pore-binding energy at the grain boundary in Ni Ag, Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt. , W, Mg, Al, at least one selected from the group, including 0.01% by weight or more and 2% by weight or less.
The solid solution element may not contain Au, Pt, Pd, and Ir.
 <副添加物>
 副添加物は、主添加物と同様に、Ag合金とは異なる相として存在する。以下に、副添加物を挙げる。
<Additives>
The sub-additive, like the main additive, exists as a phase different from that of the Ag alloy. The sub-additives are listed below.
  <タングステンW、炭化タングステンWC、酸化タングステンW、WO、WO、及びジルコニアZrO
 副添加物は、タングステン、炭化タングステン、酸化タングステン、及びジルコニアの少なくとも一種であってもよい。この場合、金属換算で0.1重量%以上5重量%以下含んでもよい。なお、副添加物のタングステン、炭化タングステン、酸化タングステンは、主添加物がタングステン、炭化タングステン、酸化タングステンではない場合に添加される。このタングステン、炭化タングステン、酸化タングステン、及びジルコニアは、高融点であり、添加することによって主添加物を移動しにくくする効果が得られる。
<Tungsten W, Tungsten Carbide WC, Tungsten Tungsten W 2 O 3 , WO 2 , WO 3 , and Zirconia ZrO 2 >
The by-additive may be at least one of tungsten, tungsten carbide, tungsten oxide, and zirconia. In this case, it may contain 0.1% by weight or more and 5% by weight or less in terms of metal. The sub-additives tungsten, tungsten carbide, and tungsten oxide are added when the main additive is not tungsten, tungsten carbide, or tungsten oxide. Tungsten, tungsten carbide, tungsten oxide, and zirconia have a high melting point, and by adding them, the effect of making the main additive difficult to move can be obtained.
  <酸化モリブデンMoO、二酸化テルルTeO
 副添加物は、酸化モリブデン、二酸化テルルの少なくとも一種であってもよい。この場合、金属換算で0.1重量%以上5重量%以下含んでもよい。酸化モリブデン、二酸化テルルは、昇華点若しくは沸点がAgよりも低いため、アブレーション効果により凹凸形成を抑制し、耐溶着性を向上させることができる。
<Molybdenum oxide MoO 3 , tellurium dioxide TeO 2 >
The auxiliary additive may be at least one of molybdenum oxide and tellurium dioxide. In this case, it may contain 0.1% by weight or more and 5% by weight or less in terms of metal. Since molybdenum oxide and tellurium dioxide have a sublimation point or a boiling point lower than that of Ag, the formation of irregularities can be suppressed by the ablation effect and the welding resistance can be improved.
  <酸化リチウムLiO、炭酸リチウムLiCO、コバルト酸リチウムLiCoO
 副添加物は、酸化リチウム、炭酸リチウム、コバルト酸リチウムの少なくとも一種であってもよい。この場合、金属換算で0.01重量%以上1重量%以下含んでもよい。酸化リチウム、炭酸リチウム、コバルト酸リチウムを含むことによって、耐消耗性を向上させることができる。
<Lithium Oxide Li 2 O, Lithium Carbonate Li 2 CO 3 , Lithium Cobalt LiCoO 2 >
The auxiliary additive may be at least one of lithium oxide, lithium carbonate and lithium cobalt oxide. In this case, it may contain 0.01% by weight or more and 1% by weight or less in terms of metal. By containing lithium oxide, lithium carbonate, and lithium cobalt oxide, wear resistance can be improved.
  <酸化銅CuO、銅Cu>
 副添加物は、酸化銅、銅の少なくとも一種であってもよい。この場合、金属換算で0.1重量%以上2重量%以下含んでもよい。酸化銅、銅を含むことによって、加工性を向上させることができる。
<Copper oxide CuO, copper Cu>
The auxiliary additive may be copper oxide or at least one of copper. In this case, it may contain 0.1% by weight or more and 2% by weight or less in terms of metal. By containing copper oxide and copper, workability can be improved.
  <酸化ニッケルNiO、ニッケルNi>
 副添加物は、酸化ニッケル、ニッケルの少なくとも一種であってもよい。この場合、金属換算で0.1重量%以上2重量%以下含んでもよい。なお、副添加物の酸化ニッケル、ニッケルは、主添加物が酸化ニッケル、ニッケルではない場合に添加される。酸化ニッケル、ニッケルを含むことによって、加工性を向上させることができる。
<Nickel NiO Oxide, Nickel Ni>
The auxiliary additive may be nickel oxide or at least one of nickel. In this case, it may contain 0.1% by weight or more and 2% by weight or less in terms of metal. The sub-additives nickel oxide and nickel are added when the main additive is not nickel oxide and nickel. By containing nickel oxide and nickel, processability can be improved.
  <酸化インジウムIn
 副添加物は、酸化インジウムであってもよい。この場合、金属換算で0.1重量%以上5重量%以下含んでもよい。酸化インジウムを添加することによって、耐消耗性向上及び低接触抵抗性を奏することができる。
<Indium oxide In 2 O 3 >
The by-additive may be indium oxide. In this case, it may contain 0.1% by weight or more and 5% by weight or less in terms of metal. By adding indium oxide, wear resistance can be improved and low contact resistance can be achieved.
  <酸化ビスマスBi
 副添加物は、酸化ビスマスであってもよい。この場合、金属換算で0.1重量%以上5重量%以下含んでもよい。酸化ビスマスを添加することによって、耐溶着性向上及び低接触抵抗性を奏することができる。
<Bismuth Oxide Bi 2 O 3 >
The by-additive may be bismuth oxide. In this case, it may contain 0.1% by weight or more and 5% by weight or less in terms of metal. By adding bismuth oxide, welding resistance can be improved and low contact resistance can be achieved.
  <酸化錫SnO
 副添加物は、酸化錫であってもよい。この場合、金属換算で0.1重量%以上5重量%以下含んでもよい。なお、副添加物の酸化錫は、主添加物が酸化錫でない場合に添加される。酸化錫を添加することによって、耐溶着性を向上させることができる。
<Tin oxide SnO 2 >
The by-additive may be tin oxide. In this case, it may contain 0.1% by weight or more and 5% by weight or less in terms of metal. The sub-additive tin oxide is added when the main additive is not tin oxide. By adding tin oxide, welding resistance can be improved.
  <酸化亜鉛ZnO>
 副添加物は、酸化亜鉛であってもよい。この場合、金属換算で0.1重量%以上5重量%以下含んでもよい。なお、副添加物の酸化亜鉛は、主添加物が酸化亜鉛でない場合に添加される。酸化亜鉛を添加することによって、耐溶着性向上及び低接触抵抗性を奏することができる。
<Zinc oxide ZnO>
The by-additive may be zinc oxide. In this case, it may contain 0.1% by weight or more and 5% by weight or less in terms of metal. The sub-additive zinc oxide is added when the main additive is not zinc oxide. By adding zinc oxide, welding resistance can be improved and low contact resistance can be achieved.
  <炭素C>
 副添加物は、炭素であってもよい。この場合、元素換算で0.01重量%以上2重量%以下含んでもよい。なお、炭素であればよく、グラファイト、グラフェン、フラーレン、カーボンナノチューブ等の同素体であってもよい。また、副添加物の炭素は、主添加物が炭素でない場合に添加される。炭素を添加することによって、耐溶着性向上及び低接触抵抗性を奏することができる。
<Carbon C>
The sub-additive may be carbon. In this case, it may contain 0.01% by weight or more and 2% by weight or less in terms of elements. It may be carbon, and may be an allotrope such as graphite, graphene, fullerene, and carbon nanotube. Further, the carbon of the sub-additive is added when the main additive is not carbon. By adding carbon, welding resistance can be improved and low contact resistance can be achieved.
 なお、上記副添加物も複数選択して用いてもよい。 In addition, a plurality of the above-mentioned sub-additives may be selected and used.
<Ag合金を主成分とする接点用材料を用いた接点の製造方法>
 実施の形態1に係るAg合金を主成分とする接点用材料を用いた接点の製造方法は、母相のAg合金粒子粉末と、主添加物の粒子粉末と、副添加物の粒子粉末と、を製造する粒子製造工程と、
 Ag合金粒子粉末と、主添加物の粒子粉末と、副添加物の粒子粉末と、を混合して混合粉体を得る混合工程と、
 混合粉体を焼結する焼結工程と、
を含む。
 なお、上記焼結工程の後に、例えば、接点としての所定の形状に成型する成型工程等を含んでもよい。つまり、接点としての成型工程を含まない各工程は、Ag合金を主成分とする接点用材料の製造方法を構成する工程でもある。また、上記工程は、一例であってこれらに限定されない。通常用いられる粉末冶金的手法であれば用いることができる。
<Manufacturing method of contacts using contact materials containing Ag alloy as the main component>
The method for producing a contact using a contact material containing an Ag alloy as a main component according to the first embodiment includes a matrix Ag alloy particle powder, a main additive particle powder, and a sub-additive particle powder. And the particle manufacturing process to manufacture
A mixing step of mixing Ag alloy particle powder, main additive particle powder, and sub-additive particle powder to obtain a mixed powder.
Sintering process for sintering mixed powder and
including.
After the sintering step, for example, a molding step of molding into a predetermined shape as a contact may be included. That is, each step that does not include the molding step as a contact is also a step that constitutes a method for manufacturing a contact material containing an Ag alloy as a main component. Further, the above steps are merely examples and are not limited thereto. Any commonly used powder metallurgy method can be used.
 <粒子製造工程>
 粒子製造工程は、例えば、原料のAg及び固溶元素を秤量後、溶解後、微細化することで行ってもよい。また、必要により分級をおこなってもよい。粒子製造工程は、ガスアトマイズ法、水アトマイズ法、PVD法、CVD法等によって行ってもよい。さらに、微細化は、プラズマ加工、合金からの粉砕によって行ってもよい。また、固溶元素のAg中への固溶は、この粒子製造工程で行うことは必須ではない。例えば、Ag粒子粉末と、固溶元素粒子粉末とを別々に用意しておいてもよい。この場合、固溶元素は、Agに固溶していない。そして、次の混合工程において、各粒子を混合して、混合工程又は焼結工程で固溶元素をAgに固溶させて合金化してもよい。もしくはAg粒子粉末と酸化物粒子粉末とを混合し、途中工程で還元して合金化してもよい。
<Particle manufacturing process>
The particle manufacturing step may be performed, for example, by weighing the raw materials Ag and the solid solution element, dissolving the particles, and then refining the particles. In addition, classification may be performed if necessary. The particle manufacturing step may be performed by a gas atomizing method, a water atomizing method, a PVD method, a CVD method, or the like. Further, the miniaturization may be performed by plasma processing or pulverization from an alloy. Further, it is not essential that the solid solution element is dissolved in Ag in this particle manufacturing process. For example, Ag particle powder and solid solution element particle powder may be prepared separately. In this case, the solid solution element is not solid solution in Ag. Then, in the next mixing step, the particles may be mixed and the solid solution element may be solid-solved in Ag in the mixing step or the sintering step to alloy them. Alternatively, Ag particle powder and oxide particle powder may be mixed and reduced in the middle of the process to alloy them.
 <混合工程>
 混合工程では、Ag合金粒子粉末と、主添加物の粒子粉末と、副添加物の粒子粉末と、を混合して混合粉体を得る。例えば、乳鉢中で混合してもよい。あるいは、ボールミル中で混合してもよい。
 この混合工程によって、Ag合金粒子粉末の母相中に主添加物粒子と副添加物粒子とが分散した混合粉体が得られる。
 また、上記方法に限られず、例えば、あらかじめAgと主添加物を構成する元素との合金を製造した後、アトマイズ法で処理して、主添加物を構成する元素、例えばSnのみを選択的に内部酸化させることで、Ag中にSnO粒子が分散した混合粉体を得ることができる。あるいは、あらかじめAgと主添加物を構成する元素との合金を製造した後、酸素雰囲気中で高温処理による内部酸化処理を行ってもよい。そして、この方法で得た粒子に、形態1に係るAg合金を混合して、本発明の合金を得ても良い。
<Mixing process>
In the mixing step, the Ag alloy particle powder, the particle powder of the main additive, and the particle powder of the sub-additive are mixed to obtain a mixed powder. For example, it may be mixed in a mortar. Alternatively, it may be mixed in a ball mill.
By this mixing step, a mixed powder in which the main additive particles and the sub-additive particles are dispersed in the matrix phase of the Ag alloy particle powder is obtained.
Further, the method is not limited to the above method. For example, after producing an alloy of Ag and an element constituting the main additive in advance, the alloy is treated by an atomizing method to selectively select only the element constituting the main additive, for example, Sn. By internal oxidation, a mixed powder in which SnO 2 particles are dispersed in Ag can be obtained. Alternatively, after producing an alloy of Ag and an element constituting the main additive in advance, an internal oxidation treatment by high temperature treatment may be performed in an oxygen atmosphere. Then, the Ag alloy according to Form 1 may be mixed with the particles obtained by this method to obtain the alloy of the present invention.
 <焼結工程>
 焼結工程では、例えば、混合粉体を室温でプレス成型して粉末成型体とした後、この粉末成型体を真空焼結炉で焼結してもよい。真空焼結炉では、真空引きし、例えば、800℃まで昇温し、およそ30分間保持して焼結する。
 あるいは、上記内部酸化処理後に圧縮成型して大気中で750℃~900℃の高温処理を行ってもよい。
 この焼結工程によって、Ag合金粒子粉末の母相中に主添加物粒子と副添加物粒子とが分散した混合粉体が得られる。
 なお、製造方法の上記各工程は、例えば、窒素、アルゴン等の不活性雰囲気で行ってもよい。これによって、接点を構成する元素の酸化を抑制できる。さらに、水素等の還元雰囲気で行ってもよい。
 また、焼結工程は1回に限られない。例えば、焼結と、圧縮成型とを繰り返す、あるいは、焼結後、粉砕し、プレス、焼結とを繰り返しておこなってもよい。
<Sintering process>
In the sintering step, for example, the mixed powder may be press-molded at room temperature to form a powder molded body, and then the powder molded body may be sintered in a vacuum sintering furnace. In a vacuum sintering furnace, evacuation is performed, the temperature is raised to 800 ° C., and the temperature is maintained for about 30 minutes for sintering.
Alternatively, after the internal oxidation treatment, compression molding may be performed and high temperature treatment at 750 ° C. to 900 ° C. may be performed in the atmosphere.
By this sintering step, a mixed powder in which the main additive particles and the sub-additive particles are dispersed in the matrix phase of the Ag alloy particle powder is obtained.
The above steps of the production method may be carried out in an inert atmosphere such as nitrogen or argon. This makes it possible to suppress the oxidation of the elements constituting the contacts. Further, it may be carried out in a reducing atmosphere such as hydrogen.
Further, the sintering process is not limited to one time. For example, sintering and compression molding may be repeated, or after sintering, crushing, pressing, and sintering may be repeated.
 <成型工程>
 成型工程では、接点としての所定の形状に成型する。例えば、熱間押出によって棒状にし、圧延、打ち抜き、あるいは伸線、ヘッダー加工によって接点の形状にすることができる。また圧延、ヘッダー加工の際に、銅との複合化をしてもよく、接点の形状にした後に、バレル研磨、洗浄を行ってもよい。また、接点の形状としては、接触片とかしめることを目的としたリベット接点、伸線状態のまま所望の寸法にカットしてかしめるワイヤインプレス接点、または溶接にて接触片に取り付けるバーティカル溶接接点、角テープに加工し、所望の寸法にカットしてかしめるテープインプレス接点、プロジェクションを接触片側に設け接触片と抵抗溶接で取り付けたテープ接点、更にプロジェクションの下側に更にロウ剤を設けたバックロウ接点、伸線、角テープ、あるいは板を丸型、あるいは角型に、カットあるいは打ち抜いて個片に加工した後、銀ロウにて接触片に取り付ける接点などが考えられるが、これに限定したものではない。
<Molding process>
In the molding process, it is molded into a predetermined shape as a contact point. For example, it can be made into a rod shape by hot extrusion, and can be made into a contact shape by rolling, punching, wire drawing, or header processing. Further, during rolling and header processing, it may be compounded with copper, or after forming the contact shape, barrel polishing and cleaning may be performed. The shape of the contact is a rivet contact intended to be crimped to the contact piece, a wire impressed contact that is cut to the desired size and crimped while being drawn, or a vertical welded contact that is attached to the contact piece by welding. Tape impress contacts that are processed into square tape and cut to the desired dimensions and crimped, tape contacts that have a projection on one side of the contact and are attached by resistance welding to the contact piece, and back row contacts that have a brazing agent on the underside of the projection. , Wire drawing, square tape, or a contact made by cutting or punching a plate into a round or square shape, processing it into individual pieces, and then attaching it to the contact piece with silver brazing, etc. not.
 図4Aは、主添加物である錫以外の固溶元素を実質的に含まないAgに、主添加物として酸化錫SnOを添加した接点において、接点開閉を繰り返して加熱され、接点表面近傍に凝集物を形成した状態を示す接点の断面のFE-SEM写真である。図4Bは、図4Aと同様の視野のEBSD写真である。
 図4Aに示すように、固溶元素を含まないAg及び酸化錫SnOを主添加物として含む接点では、Snが接点表面に移動した後に表面近傍に数μm以上の凝集物が多数形成されていることがわかる。
FIG. 4A shows a contact in which tin oxide SnO 2 is added as a main additive to Ag which does not substantially contain a solid-dissolving element other than tin, which is a main additive, and the contact is repeatedly opened and closed to be heated in the vicinity of the contact surface. 3 is an FE-SEM photograph of a cross section of a contact showing a state in which an agglomerate is formed. FIG. 4B is an EBSD photograph with a field of view similar to that of FIG. 4A.
As shown in FIG. 4A, in the contact containing Ag containing no solid solution element and tin oxide SnO 2 as the main additives, a large number of agglomerates of several μm or more are formed in the vicinity of the surface after Sn moves to the contact surface. You can see that there is.
 本発明に係るAg合金を主成分とする接点用材料によれば、Ag合金内に主添加物の構成元素の粒界における空孔結合エネルギーより低い固溶元素を含む。そこで、該接点用材料を接点に用いた場合にも、接点開閉時に発生するアーク等による酸化錫等の主添加物の接点表面への移動を抑制でき、電気接点用材料として有用である。 According to the contact material containing the Ag alloy as the main component according to the present invention, the Ag alloy contains a solid solution element lower than the pore binding energy at the grain boundaries of the constituent elements of the main additive. Therefore, even when the contact material is used for the contact, it is possible to suppress the movement of the main additive such as tin oxide to the contact surface due to an arc or the like generated when the contact is opened and closed, which is useful as a material for an electric contact.
2、2a、2b 接点
4 アーク
12 酸化錫(主添加物)
14 Ag
16 凝集物
22 Sn原子
23 酸素原子
24 Ag原子
26 空孔
2, 2a, 2b Contact 4 Arc 12 Tin oxide (main additive)
14 Ag
16 Aggregate 22 Sn atom 23 Oxygen atom 24 Ag atom 26 Vacancy

Claims (19)

  1.  Ag合金と、
     前記Ag合金とは異なる相として存在する主添加物と、
    を含み、
     前記主添加物は、酸化錫であって、金属換算で5重量%以上20重量%以下含み、
     前記Ag合金は、前記主添加物を構成するSn原子とAg金属内の粒界における空孔との結合エネルギーである空孔結合エネルギーより低い空孔結合エネルギーを有する固溶元素を含み、
     前記固溶元素は、Fr、Cs、Rb、Ba、Be、Os,K、Ir、Zn、Mn、Pt、W、Al、Mg,Ni、Pd、V,Au、Fe、Tl、Hg、Sr、Pbの群から選択された少なくとも一種であって、0.01重量%以上2重量%以下含む、Ag合金を主成分とする接点用材料。
    With Ag alloy,
    The main additive existing as a phase different from that of the Ag alloy,
    Including
    The main additive is tin oxide, which contains 5% by weight or more and 20% by weight or less in terms of metal.
    The Ag alloy contains a solid dissolving element having a pore bond energy lower than the pore bond energy, which is the bond energy between the Sn atom constituting the main additive and the pores at the grain boundaries in the Ag metal.
    The solid-dissolving elements include Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt, W, Al, Mg, Ni, Pd, V, Au, Fe, Tl, Hg, Sr. A contact material containing an Ag alloy as a main component, which is at least one selected from the group of Pb and contains 0.01% by weight or more and 2% by weight or less.
  2.  Ag合金と、
     前記Ag合金とは異なる相として存在する主添加物と、
    を含み、
     前記主添加物は、酸化亜鉛であって、金属換算で5重量%以上20重量%以下含み、
     前記Ag合金は、前記主添加物を構成するZn原子とAg金属内の粒界における空孔との結合エネルギーである空孔結合エネルギーより低い空孔結合エネルギーを有する固溶元素を含み、
     前記固溶元素は、Fr、Cs、Rb、Ba、Be、Os,K、Irの群から選択された少なくとも一種であって、0.01重量%以上2重量%以下含む、Ag合金を主成分とする接点用材料。
    With Ag alloy,
    The main additive existing as a phase different from that of the Ag alloy,
    Including
    The main additive is zinc oxide, which contains 5% by weight or more and 20% by weight or less in terms of metal.
    The Ag alloy contains a solid dissolving element having a pore bond energy lower than the pore bond energy, which is the bond energy between the Zn atom constituting the main additive and the pores at the grain boundaries in the Ag metal.
    The solid solution element is at least one selected from the group of Fr, Cs, Rb, Ba, Be, Os, K, and Ir, and is mainly composed of an Ag alloy containing 0.01% by weight or more and 2% by weight or less. Material for contacts.
  3.  Ag合金と、
     前記Ag合金とは異なる相として存在する主添加物と、
    を含み、
     前記主添加物は、鉄又は酸化鉄であって、金属換算で5重量%以上20重量%以下含み、
     前記Ag合金は、前記主添加物を構成するFe原子とAg金属内の粒界における空孔との結合エネルギーである空孔結合エネルギーより低い空孔結合エネルギーを有する固溶元素を含み、
     前記固溶元素は、Fr、Cs、Rb、Ba、Be、Os、K、Ir、Zn、Mn、Pt、W、Mg、Al、Ni、V、Pd、Au、Tl、Hg、Sr、Pb、Sn、Cd、Naの群から選択された少なくとも一種であって、0.01重量%以上2重量%以下含む、Ag合金を主成分とする接点用材料。
    With Ag alloy,
    The main additive existing as a phase different from that of the Ag alloy,
    Including
    The main additive is iron or iron oxide, and contains 5% by weight or more and 20% by weight or less in terms of metal.
    The Ag alloy contains a solid dissolving element having a pore bond energy lower than the pore bond energy, which is the bond energy between the Fe atom constituting the main additive and the pores at the grain boundaries in the Ag metal.
    The solid-dissolving elements include Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt, W, Mg, Al, Ni, V, Pd, Au, Tl, Hg, Sr, Pb. A contact material containing an Ag alloy as a main component, which is at least one selected from the group of Sn, Cd, and Na and contains 0.01% by weight or more and 2% by weight or less.
  4.  Ag合金と、
     前記Ag合金とは異なる相として存在する主添加物と、
    を含み、
     前記主添加物は、タングステン、炭化タングステン、酸化タングステンの群から選択された少なくとも一種であって、金属換算で5重量%以上20重量%以下含み、
     前記Ag合金は、前記主添加物を構成するW原子とAg金属内の粒界における空孔との結合エネルギーである空孔結合エネルギーより低い空孔結合エネルギーを有する固溶元素を含み、
     前記固溶元素は、Fr、Cs、Rb、Ba、Be、Os、K、Ir、Zn、Mn、Ptの群から選択された少なくとも一種であって、0.01重量%以上2重量%以下含む、Ag合金を主成分とする接点用材料。
    With Ag alloy,
    The main additive existing as a phase different from that of the Ag alloy,
    Including
    The main additive is at least one selected from the group of tungsten, tungsten carbide, and tungsten oxide, and contains 5% by weight or more and 20% by weight or less in terms of metal.
    The Ag alloy contains a solid dissolving element having a pore bond energy lower than the pore bond energy, which is the bond energy between the W atom constituting the main additive and the pores at the grain boundaries in the Ag metal.
    The solid solution element is at least one selected from the group of Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, and Pt, and contains 0.01% by weight or more and 2% by weight or less. , A contact material whose main component is Ag alloy.
  5.  Ag合金と、
     前記Ag合金とは異なる相として存在する主添加物と、
    を含み、
     前記主添加物は、炭素であって、金属換算で0.01重量%以上2重量%以下含み、
     前記Ag合金は、前記主添加物を構成するC原子とAg金属内の粒界における空孔との結合エネルギーである空孔結合エネルギーより低い空孔結合エネルギーを有する固溶元素を含み、
     前記固溶元素は、Fr、Cs、Rb、Ba、Be、Os、K、Ir、Zn、Mn、Pt、W、Mg、Al、Ni、V、Pd、Au、Tl、Hg、Sr、Pb、Sn、Cd、Na、Fe、Ti、La、Ca、Eu、Nb、Li、Yb、Hf、Sc、Pr、Zr、Pm、Gd、Tb、Ho、Y、Dy、Ndの群から選択された少なくとも一種であって、0.01重量%以上2重量%以下含む、Ag合金を主成分とする接点用材料。
    With Ag alloy,
    The main additive existing as a phase different from that of the Ag alloy,
    Including
    The main additive is carbon and contains 0.01% by weight or more and 2% by weight or less in terms of metal.
    The Ag alloy contains a solid dissolving element having a pore binding energy lower than the pore binding energy, which is the binding energy between the C atom constituting the main additive and the pores at the grain boundaries in the Ag metal.
    The solid-dissolving elements include Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt, W, Mg, Al, Ni, V, Pd, Au, Tl, Hg, Sr, Pb. At least selected from the group Sn, Cd, Na, Fe, Ti, La, Ca, Eu, Nb, Li, Yb, Hf, Sc, Pr, Zr, Pm, Gd, Tb, Ho, Y, Dy, Nd. A contact material containing 0.01% by weight or more and 2% by weight or less as a main component of Ag alloy.
  6.  Ag合金と、
     前記Ag合金とは異なる相として存在する主添加物と、
    を含み、
     前記主添加物は、ニッケル又は酸化ニッケルであって、金属換算で5重量%以上20重量%以下含み、
     前記Ag合金は、前記主添加物を構成するNi原子とAg金属内の粒界における空孔との結合エネルギーである空孔結合エネルギーより低い空孔結合エネルギーを有する固溶元素を含み、
     前記固溶元素は、Fr、Cs、Rb、Ba、Be、Os、K、Ir、Zn、Mn、Pt、W、Mg、Alの群から選択された少なくとも一種であって、0.01重量%以上2重量%以下含む、Ag合金を主成分とする接点用材料。
    With Ag alloy,
    The main additive existing as a phase different from that of the Ag alloy,
    Including
    The main additive is nickel or nickel oxide, and contains 5% by weight or more and 20% by weight or less in terms of metal.
    The Ag alloy contains a solid dissolving element having a pore bond energy lower than the pore bond energy, which is the bond energy between the Ni atom constituting the main additive and the pores at the grain boundaries in the Ag metal.
    The solid-dissolving element is at least one selected from the group of Fr, Cs, Rb, Ba, Be, Os, K, Ir, Zn, Mn, Pt, W, Mg and Al, and is 0.01% by weight. A contact material containing Ag alloy as a main component, which contains 2% by weight or less.
  7.  さらに、前記Ag合金とは異なる相として存在し、タングステン、炭化タングステン、酸化タングステン、及びジルコニアからなる群から選択される少なくとも一種であって、金属換算で0.1重量%以上5重量%以下含む、請求項1から3、及び、請求項5から6のいずれか一項に記載のAg合金を主成分とする接点用材料。 Further, it exists as a phase different from the Ag alloy, and is at least one selected from the group consisting of tungsten, tungsten carbide, tungsten oxide, and zirconia, and contains 0.1% by weight or more and 5% by weight or less in terms of metal. , A contact material containing the Ag alloy as the main component according to any one of claims 1 to 3 and 5 to 6.
  8.  さらに、前記Ag合金とは異なる相として存在し、酸化モリブデン、二酸化テルルの少なくとも一種であって、金属換算で0.1重量%以上5重量%以下含む、請求項1から6のいずれか一項に記載のAg合金を主成分とする接点用材料。 Further, any one of claims 1 to 6, which exists as a phase different from the Ag alloy, is at least one of molybdenum oxide and tellurium dioxide, and contains 0.1% by weight or more and 5% by weight or less in terms of metal. A contact material containing the Ag alloy as the main component as described in 1.
  9.  さらに、前記Ag合金とは異なる相として存在し、酸化リチウム、炭酸リチウム、コバルト酸リチウムの少なくとも一種であって、金属換算で0.01重量%以上1重量%以下含む、請求項1から6のいずれか一項に記載のAg合金を成分とする接点用材料。 Further, claims 1 to 6, which exist as a phase different from the Ag alloy, are at least one of lithium oxide, lithium carbonate, and lithium cobalt oxide, and contain 0.01% by weight or more and 1% by weight or less in terms of metal. A contact material containing the Ag alloy according to any one of the components.
  10.  さらに、前記Ag合金とは異なる相として存在し、酸化銅、銅の少なくとも一種であって、金属換算で0.1重量%以上2重量%以下含む、請求項1から6のいずれか一項に記載のAg合金を主成分とする接点用材料。 Further, according to any one of claims 1 to 6, which exists as a phase different from the Ag alloy, is at least one of copper oxide and copper, and contains 0.1% by weight or more and 2% by weight or less in terms of metal. A contact material containing the above-mentioned Ag alloy as a main component.
  11.  さらに、前記Ag合金とは異なる相として存在し、酸化ニッケル、ニッケルの少なくとも一種であって、金属換算で0.1重量%以上2重量%以下含む、請求項1から5のいずれか一項に記載のAg合金を主成分とする接点用材料。 Further, according to any one of claims 1 to 5, the phase exists as a phase different from that of the Ag alloy, and is at least one of nickel oxide and nickel, and contains 0.1% by weight or more and 2% by weight or less in terms of metal. A contact material containing the above-mentioned Ag alloy as a main component.
  12.  さらに、前記Ag合金とは異なる相として存在し、酸化インジウムを金属換算で0.1重量%以上5重量%以下含む、請求項1から6のいずれか一項に記載のAg合金を主成分とする接点用材料。 Further, the Ag alloy according to any one of claims 1 to 6, which exists as a phase different from the Ag alloy and contains indium oxide in an amount of 0.1% by weight or more and 5% by weight or less in terms of metal, is used as a main component. Material for contacts.
  13.  さらに、前記Ag合金とは異なる相として存在し、酸化ビスマスを金属換算で0.1重量%以上5重量%以下含む、請求項1から6のいずれか一項に記載のAg合金を主成分とする接点用材料。 Further, the Ag alloy according to any one of claims 1 to 6, which exists as a phase different from the Ag alloy and contains bismuth oxide in an amount of 0.1% by weight or more and 5% by weight or less in terms of metal, is used as a main component. Material for contacts.
  14.  さらに、前記Ag合金とは異なる相として存在し、酸化錫を金属換算で0.1重量%以上5重量%以下含む、請求項2から6のいずれか一項に記載のAg合金を主成分とする接点用材料。 Further, the Ag alloy according to any one of claims 2 to 6, which exists as a phase different from the Ag alloy and contains tin oxide in an amount of 0.1% by weight or more and 5% by weight or less in terms of metal, is used as a main component. Material for contacts.
  15.  さらに、前記Ag合金とは異なる相として存在し、酸化亜鉛の少なくとも一種であって、金属換算で0.1重量%以上5重量%以下含む、請求項1、及び、請求項3から6のいずれか一項に記載のAg合金を主成分とする接点用材料。 Further, any of claims 1 and 3 to 6, which exists as a phase different from the Ag alloy and is at least one kind of zinc oxide and contains 0.1% by weight or more and 5% by weight or less in terms of metal. A contact material containing the Ag alloy described in item 1 as the main component.
  16.  さらに、前記Ag合金とは異なる相として存在し、炭素を元素換算で0.01重量%以上2重量%以下含む、請求項1から4、及び、請求項6のいずれか一項に記載のAg合金を主成分とする接点用材料。 Further, the Ag according to any one of claims 1 to 4 and claim 6, which exists as a phase different from the Ag alloy and contains carbon in an elemental equivalent of 0.01% by weight or more and 2% by weight or less. Contact material whose main component is alloy.
  17.  前記固溶元素は、Au、Pt、Pd、Irを含まない、請求項1から16のいずれか一項に記載のAg合金を主成分とする接点用材料。 The contact material containing the Ag alloy as the main component according to any one of claims 1 to 16, wherein the solid solution element does not contain Au, Pt, Pd, and Ir.
  18.  請求項1から17のいずれか一項に記載のAg合金を主成分とする接点用材料を用いた接点。 A contact using a contact material containing the Ag alloy as the main component according to any one of claims 1 to 17.
  19.  請求項18に記載の接点を用いた、リレー、電磁接触器、電磁開閉器、継電器、開閉器、スイッチの群から選択される電気機器。 An electrical device selected from a group of relays, magnetic contactors, electromagnetic switches, relays, switches, and switches using the contacts according to claim 18.
PCT/JP2021/033736 2020-11-12 2021-09-14 Contact material containing ag alloy as main component, contact using said contact material, and electrical equipment WO2022102238A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020188569A JP2022077654A (en) 2020-11-12 2020-11-12 MATERIAL FOR CONTACT HAVING Ag ALLOY AS MAIN COMPONENT, CONTACT USING THE MATERIAL FOR CONTACT, AND ELECTRIC APPLIANCE
JP2020-188569 2020-11-12

Publications (1)

Publication Number Publication Date
WO2022102238A1 true WO2022102238A1 (en) 2022-05-19

Family

ID=81601889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033736 WO2022102238A1 (en) 2020-11-12 2021-09-14 Contact material containing ag alloy as main component, contact using said contact material, and electrical equipment

Country Status (2)

Country Link
JP (1) JP2022077654A (en)
WO (1) WO2022102238A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110639A (en) * 1981-12-23 1983-07-01 Tanaka Kikinzoku Kogyo Kk Sliding contact material
JPS6030548A (en) * 1983-07-31 1985-02-16 Matsushita Electric Works Ltd Production of electric contact point material
JPS6455345A (en) * 1987-08-25 1989-03-02 Chugai Electric Ind Co Ltd Silver-iron oxide sintered electrical contact material
JPH06136472A (en) * 1992-10-21 1994-05-17 Chugai Electric Ind Co Ltd Internally oxidized electrical contact material of ag-sn-in alloy
WO2012066826A1 (en) * 2010-11-17 2012-05-24 株式会社徳力本店 METHOD FOR PRODUCING Ag-OXIDE-BASED ELECTRICAL CONTACT MATERIAL AND ELECTRICAL CONTACT MATERIAL PRODUCED BY THE METHOD
JP2015125936A (en) * 2013-12-26 2015-07-06 株式会社徳力本店 Electric contact
JP2015165041A (en) * 2014-02-04 2015-09-17 株式会社アライドマテリアル electrical contact material
WO2020241854A1 (en) * 2019-05-31 2020-12-03 オムロン株式会社 Material for contact and containing ag alloy as main component, contact using said material for contact, and electrical device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110639A (en) * 1981-12-23 1983-07-01 Tanaka Kikinzoku Kogyo Kk Sliding contact material
JPS6030548A (en) * 1983-07-31 1985-02-16 Matsushita Electric Works Ltd Production of electric contact point material
JPS6455345A (en) * 1987-08-25 1989-03-02 Chugai Electric Ind Co Ltd Silver-iron oxide sintered electrical contact material
JPH06136472A (en) * 1992-10-21 1994-05-17 Chugai Electric Ind Co Ltd Internally oxidized electrical contact material of ag-sn-in alloy
WO2012066826A1 (en) * 2010-11-17 2012-05-24 株式会社徳力本店 METHOD FOR PRODUCING Ag-OXIDE-BASED ELECTRICAL CONTACT MATERIAL AND ELECTRICAL CONTACT MATERIAL PRODUCED BY THE METHOD
JP2015125936A (en) * 2013-12-26 2015-07-06 株式会社徳力本店 Electric contact
JP2015165041A (en) * 2014-02-04 2015-09-17 株式会社アライドマテリアル electrical contact material
WO2020241854A1 (en) * 2019-05-31 2020-12-03 オムロン株式会社 Material for contact and containing ag alloy as main component, contact using said material for contact, and electrical device

Also Published As

Publication number Publication date
JP2022077654A (en) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2020241854A1 (en) Material for contact and containing ag alloy as main component, contact using said material for contact, and electrical device
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
JPS6318027A (en) Contact material of silver-metal oxide series and its production
JP2016510479A (en) Metal hydride alloy
WO2014136617A1 (en) Electrical contact and breaker
WO2022102238A1 (en) Contact material containing ag alloy as main component, contact using said contact material, and electrical equipment
JP5655201B2 (en) Heusler-type iron-based thermoelectric material powder and method for producing Heusler-type iron-based thermoelectric material
JP6536615B2 (en) Thermoelectric conversion material and method for manufacturing the same
JP2008152971A (en) Ag-oxide based electric contact material and its manufacturing method
JP5851991B2 (en) Hydrogen storage alloy, negative electrode and nickel metal hydride secondary battery
WO2021131408A1 (en) Thermoelectric conversion element, thermoelectric conversion module, joining material, and method for manufacturing thermoelectric conversion element
KR101483319B1 (en) Method for forming rare earth metal hydride and method for forming rare earth metal-transition metal alloy powder using the same
JP5567395B2 (en) Silver-oxide based electrical contact materials
US5338333A (en) Production of powdery intermetallic compound having very fine particle size
Smardz et al. Electronic properties of nanocrystalline and polycrystalline TiFe0. 25Ni0. 75 alloys
JP2021136347A (en) Manufacturing method of rare earth magnet
CN112779436A (en) AgNi electrical contact material and preparation method thereof
JP5505844B2 (en) Alloy sputtering target based on CoCrPt with cobalt oxide and non-magnetic oxide and method for producing the same
US20140127070A1 (en) Material comprising a semi-heusler alloy and process for producing such a material
WO2023231267A1 (en) Alloy and preparation method therefor
JP2020059908A (en) Alloy fine particle group and manufacturing method thereof
WO2019178706A1 (en) Method for producing silver-zinc oxide (ag-zno) alloy powders and sintered monolithic structure for manufacturing electrical components
KR102311541B1 (en) Silver-carbon nano composite particles, method for preparation thereof, and electric contact material comprising the same
KR102311533B1 (en) Ag-CARBON-METAL-BASED NANO COMPOSITE PARTICLE AND MANUFACTURING METHOD THEREOF AND ELECTRIC CONTACT MATERIAL COMPRISING THE SAME
JP2000319734A (en) Composite material produced by powder metallurgy, and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891486

Country of ref document: EP

Kind code of ref document: A1