JP2008152971A - Ag-oxide based electric contact material and its manufacturing method - Google Patents

Ag-oxide based electric contact material and its manufacturing method Download PDF

Info

Publication number
JP2008152971A
JP2008152971A JP2006337400A JP2006337400A JP2008152971A JP 2008152971 A JP2008152971 A JP 2008152971A JP 2006337400 A JP2006337400 A JP 2006337400A JP 2006337400 A JP2006337400 A JP 2006337400A JP 2008152971 A JP2008152971 A JP 2008152971A
Authority
JP
Japan
Prior art keywords
oxide
contact
internal oxidation
contact material
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006337400A
Other languages
Japanese (ja)
Other versions
JP4932465B2 (en
Inventor
Masaki Kurita
昌樹 栗田
Hideo Kumita
英生 汲田
Kiyoshi Sekiguchi
潔 関口
Nobuo Asahi
信夫 朝日
Shinjiro Kato
信次郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuriki Honten Co Ltd
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Tokuriki Honten Co Ltd
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuriki Honten Co Ltd, Fuji Electric FA Components and Systems Co Ltd filed Critical Tokuriki Honten Co Ltd
Priority to JP2006337400A priority Critical patent/JP4932465B2/en
Publication of JP2008152971A publication Critical patent/JP2008152971A/en
Application granted granted Critical
Publication of JP4932465B2 publication Critical patent/JP4932465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems such as remarkable deterioration in contact characteristics caused by agglomeration or accumulation of oxide such as SnO<SB>2</SB>and In<SB>2</SB>O<SB>3</SB>having a low vapor pressure on the contact surface in an electric contact material not containing Cd such as an Ag-(Sn-In)Ox based material, and as a result, by inviting temperature rise of a contact piece due to high contact resistance. <P>SOLUTION: An Ag-oxide based electric contact material is constituted by laminating a plurality of oxide layers different in a form of oxide. In the internal oxidation mechanism of the Ag-oxide based contact material, at high temperature (nearly 500°C or more), Ag generally stores oxygen of nearly 22 times its volume and by utilizing the fact that Ag can not exist stably as an oxide in advance, metal is alloyed which has a stable state by being connected to oxygen by a melting method, thereby precipitating Ag as the oxide in an Ag matrix when Ag stores oxygen. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ブレーカ、マグネットスイッチ等の比較的小型で小負荷領域用に適用することのできる電気接点材料およびその製造方法に関する。   The present invention relates to an electrical contact material that can be applied to a relatively small and small load region, such as a breaker and a magnet switch, and a manufacturing method thereof.

従来、この種電気接点材料は、環境への影響を考慮してAg−CdO系電気接点材料に替わり、Ag−(Sn−In)Ox系等のCdを含まない電気接点材料が代替材料として利用され、様々な改良が加えられ、応用分野も多岐にわたっている(例えば、特許文献1参照)。
また、内部酸化の工程において、酸化物粒子の分布を均一化するために、酸化温度と酸素圧の両方又は何れか一方のみを、1回目の温度、酸素圧より高めて1回以上の内部酸化処理をおこなうことにより、酸化物粒子の形状及び大きさを調整することにより伝導率を高め、硬度分布を均一化させる技術がある(例えば、特許文献2参照)。
特開2003−288831号公報 特開昭58−16039号公報
Conventionally, this kind of electrical contact material is replaced with an Ag-CdO-based electrical contact material in consideration of the influence on the environment, and an electrical contact material not containing Cd, such as an Ag- (Sn-In) Ox-based material, is used as an alternative material. Various improvements have been made and the fields of application are diverse (see, for example, Patent Document 1).
Further, in the internal oxidation process, in order to make the distribution of oxide particles uniform, at least one of the oxidation temperature and the oxygen pressure is increased by raising the temperature and the oxygen pressure at the first time to at least one internal oxidation. There is a technique for increasing the conductivity and making the hardness distribution uniform by adjusting the shape and size of the oxide particles by performing the treatment (see, for example, Patent Document 2).
JP 2003-288831 A JP 58-16039 A

しかしながら、上述した従来の技術においては、内部酸化法によって製造される接点は、一定の酸素分圧(通常は0.5Mpa前後)と一定の温度(通常は700°C前後)を選択し、その条件下で内部酸化することでAgマトリックス中に所定の酸化物を析出させて電気接点としているが、Ag−(Sn−In)Ox系電気接点材料は、Ag−CdO系電気接点材料と比較すると、Ag−CdO系電気接点材料は、接点開閉は広い温度域で高い蒸気圧を有するCdOによって接点表面が清浄化されて安定した接触抵抗が得られていたものの、例えば、Ag−(Sn−In)Ox系電気接点材料は、負荷電流の開閉を繰り返すと、蒸気圧の低いSnOやIn等の酸化物がその接点表面に凝集・堆積してしまい、その結果、接触抵抗が高くなって、接点片の温度上昇を招来し、接点特性を著しく劣化させることとなる。 However, in the above-described conventional technique, the contact manufactured by the internal oxidation method selects a constant oxygen partial pressure (usually around 0.5 Mpa) and a constant temperature (usually around 700 ° C.). A predetermined oxide is precipitated in the Ag matrix by internal oxidation under the conditions to form an electrical contact, but the Ag- (Sn-In) Ox-based electrical contact material is compared with the Ag-CdO-based electrical contact material. In the Ag-CdO-based electrical contact material, the contact surface was cleaned by CdO having a high vapor pressure in a wide temperature range, and a stable contact resistance was obtained. For example, Ag- (Sn-In ) Ox-based electric contact material, repeated opening and closing of the load current, an oxide such as low vapor pressure as SnO 2 or in 2 O 3 ends up aggregation and deposition on the contact surfaces, as a result, contact resistance It is higher, and lead to temperature increase of the contact pieces, and significantly degrade the contact characteristics.

そこで、本発明は、このような問題を解決することを課題とするもので、従来の内部酸化法と異なり、内部酸化時の酸化温度および/もしくは酸素分圧を変化させながら内部酸化を施すことにより、Ag−酸化物電気接点材料の最大の特長であるAgマトリックス中における析出酸化物について、その形態が異なる酸化物を析出させた層を複数層積み上げて積層構造とし、その積層構造によってAgマトリックス中の酸化物の移動を抑制して接点表面への酸化物の凝集を防ぎ、接触抵抗の増加による温度上昇を防ぐものである。   Therefore, the present invention has an object to solve such problems. Unlike the conventional internal oxidation method, the present invention performs internal oxidation while changing the oxidation temperature and / or oxygen partial pressure during internal oxidation. Accordingly, the deposited oxide in the Ag matrix, which is the greatest feature of the Ag-oxide electrical contact material, is formed by stacking a plurality of layers in which oxides having different forms are stacked to form a laminated structure. It suppresses the movement of the oxide inside to prevent the oxide from aggregating on the contact surface and prevents the temperature from rising due to an increase in contact resistance.

さらに、酸化物の移動を抑制することにより、負荷電流の開閉時に発生するアークによる接点組織の破壊と消耗が抑えられ、その結果、耐消耗性能、耐溶着性能が向上し、特に、ブレーカにおける定格電流100A以上の大電流域での使用において、耐溶着性能はもちろんのこと温度特性においても十分に性能を満足させる接点となる。   In addition, by suppressing the movement of oxides, the destruction and wear of the contact structure due to the arc generated when switching the load current is suppressed, resulting in improved wear resistance and welding resistance. When used in a large current range of 100 A or more, the contact sufficiently satisfies the performance in terms of temperature characteristics as well as resistance to welding.

一般に、Ag−酸化物系接点材料の内部酸化機構は、一般にAgが高温(約500°C以上)において、その体積の約22倍の酸素を吸蔵し、かつ、酸化物としては安定に存在できないことを利用して、予め溶解法で酸素と結びついて安定な状態となる金属を合金化しておくことで、Agが酸素を吸蔵したときに、Agマトリックス中に酸化物として析出させておくものである。   In general, the internal oxidation mechanism of Ag-oxide-based contact materials generally has an oxygen storage capacity of about 22 times its volume at high temperatures (about 500 ° C. or higher) and cannot stably exist as an oxide. In this way, a metal that is combined with oxygen by a melting method to form a stable state is alloyed in advance so that when Ag occludes oxygen, it is precipitated as an oxide in the Ag matrix. is there.

この内部酸化は、Ag合金表面から酸素が拡散していくと同時に内部酸化能を有する溶質金属、例えば、Sn、In等の卑金属元素と酸素が結びつき、Agマトリックス中に酸化物として析出するという現象である。このとき、酸素と溶質金属が反応し、酸化物として析出している層、すなわち内部酸化前線では、Agマトリックス中に酸化物が析出しているその直下の未酸化のAg合金中における溶質金属との間で大きな濃度の差が生じる。   This internal oxidation is a phenomenon in which oxygen diffuses from the surface of the Ag alloy and, at the same time, a solute metal having internal oxidation ability, for example, a base metal element such as Sn or In, is combined with oxygen and is precipitated as an oxide in the Ag matrix. It is. At this time, in the layer where oxygen and solute metal react and precipitate as oxide, that is, in the internal oxidation front, the solute metal in the unoxidized Ag alloy immediately below the oxide in the Ag matrix There is a large concentration difference between the two.

この濃度勾配を埋めるために、酸素が拡散していくと同時に酸化物となる。例えば、Sn、In等の溶質金属が内部から表面に向かって拡散していくのであるが、このとき、表面から内部に向かう酸素の浸入速度[Oυ]と溶質原子の表面への拡散速度[Mυ]との関係[Oυ>Mυ]の条件で内部酸化が進行するのであり、その内部酸化速度[Xυ=kT]であらわされる(kは内部酸化速度常数であり、内部酸化温度と酸素分圧によって変化する。)。   To fill this concentration gradient, oxygen diffuses and becomes an oxide. For example, a solute metal such as Sn or In diffuses from the inside toward the surface. At this time, the oxygen intrusion rate [Oυ] from the surface to the inside and the diffusion rate [Mυ] of the solute atoms to the surface. ], The internal oxidation proceeds under the condition [Oυ> Mυ], and is expressed by the internal oxidation rate [Xυ = kT] (k is an internal oxidation rate constant, which depends on the internal oxidation temperature and the oxygen partial pressure. Change.).

本発明は、この速度常数[k]の値をコントロールすることによって得るものであり、内部酸化温度および/もしくは酸素分圧を調整することによって酸化物量と酸化物粒子径の異なる層を複数層積層形成し、酸化物の自由な移動を抑制するものである。
具体的には、本発明は、その内部酸化温度を途中で300°C〜850°Cの範囲で複数回変化させ、さらに/もしくは内部酸化の途中で酸素分圧を0.1Mpa〜5Mpaの範囲で複数回変化させることによって、酸化物形態の異なる酸化層を複数層形成して積層構造とするものである。
The present invention is obtained by controlling the value of the rate constant [k]. By adjusting the internal oxidation temperature and / or the oxygen partial pressure, a plurality of layers having different oxide amounts and oxide particle diameters are laminated. It is formed and the free movement of the oxide is suppressed.
Specifically, in the present invention, the internal oxidation temperature is changed several times in the range of 300 ° C. to 850 ° C. and / or the oxygen partial pressure is in the range of 0.1 Mpa to 5 Mpa during the internal oxidation. In this case, a plurality of oxide layers having different oxide forms are formed to form a laminated structure.

なお、内部酸化において、内部酸化温度を300°C〜850°Cとしたのは、内部酸化温度が300°C以下ではAg合金中を酸素が拡散していくことができず、表面において酸化物の皮膜が生成されるのみで、Agマトリックス中に酸化物を析出することができないためであり、850°C以上では、析出される酸化物が粗大になってしまい耐溶着性能等の接点性能がそこなわれてしまうためである。   In the internal oxidation, the internal oxidation temperature was set to 300 ° C. to 850 ° C. When the internal oxidation temperature was 300 ° C. or less, oxygen could not diffuse in the Ag alloy, and the surface was oxidized. This is because an oxide cannot be deposited in the Ag matrix, and the deposited oxide becomes coarse at 850 ° C. or higher, and the contact performance such as the welding resistance is not good. This is because it will be missed.

また、内部酸化時の酸素分圧を0.1Mpa〜5Mpaとした理由は、0.1Mpa以下では、酸素がAgマトリックス中を拡散していく速度よりも、SnやIn等の金属が拡散する速度が速くなってしまう場合があり、その結果、酸化物が凝集してしまい、狙った形態の酸化物を析出することができないためであり、5Mpa以下としたのは、それ以上酸素分圧を上げても大きな接点性能の向上が確認できないためである。   The reason why the oxygen partial pressure during internal oxidation is 0.1 to 5 Mpa is that when 0.1 Mpa or less, the rate at which a metal such as Sn or In diffuses than the rate at which oxygen diffuses through the Ag matrix. As a result, the oxide aggregates, and the target form of oxide cannot be deposited. The reason why the pressure is set to 5 Mpa or less is that the oxygen partial pressure is further increased. This is because no significant improvement in contact performance can be confirmed.

本発明における接点の内部酸化の積層状態を光学顕微鏡写真によりモデル図として図1に示し、図2、図3に酸化物量と酸化物粒子径の異なる層をそれぞれ拡大図として示す。図2は酸化物が大きな帯状と小さな針状の層、図3は酸化物が小さな帯状の層である。
この内部酸化モデルは、先に述べた内部酸化機構において、酸化温度、酸素分圧を周期的に変化させながら内部酸化を施すことで、異なる形状の酸化物が析出した層を積み上げて積層構造とし、その積層によって、Agマトリックス中の酸化物の移動を抑制して接点表面への酸化物の凝集を防ぐことになる。
The laminated state of the internal oxidation of the contact in the present invention is shown in FIG. 1 as a model diagram by an optical micrograph, and FIGS. 2 and 3 are enlarged views of layers having different oxide amounts and oxide particle diameters, respectively. FIG. 2 shows a band and a small needle-like layer of oxide, and FIG. 3 shows a band-like layer of small oxide.
This internal oxidation model uses the internal oxidation mechanism described above to perform internal oxidation while periodically changing the oxidation temperature and oxygen partial pressure, thereby stacking layers with oxides of different shapes to form a laminated structure. By the lamination, the movement of the oxide in the Ag matrix is suppressed and the aggregation of the oxide on the contact surface is prevented.

図1の例では、2種類の酸化温度を採用して積層構造としている。図2に650°Cで内部酸化を施した状態を示し、酸化物形状が大きな帯状のものと小さな針状のもので形成されている層と、図3に示す540°Cで内部酸化を施した状態は酸化物が小さな帯状のものを主として形成した層が交互に積層状態で配置されている。このように著しく形態の異なる酸化物が析出した層の間では、その酸化物の形態の違いが障壁となって層間での酸化物の移動が妨げられることになる。   In the example of FIG. 1, two types of oxidation temperatures are adopted to form a laminated structure. FIG. 2 shows a state in which internal oxidation is performed at 650 ° C., and a layer formed of a band shape having a large oxide shape and a small needle shape, and internal oxidation at 540 ° C. shown in FIG. In this state, layers mainly formed of strips of small oxides are alternately stacked. Thus, between the layers in which oxides having significantly different forms are deposited, the difference in the form of the oxides serves as a barrier to prevent the movement of the oxide between the layers.

これは、Agと酸化物と酸素のそれぞれが、高温にさらされた時の挙動がどのような状態であるかに着目して開発されたもので、一般には、接点が負荷電流の開閉において、瞬間的に高温にさらされ、Agの溶融とそれに伴う酸化物の移動という現象が引き起こされ、接点表面への酸化物の凝集が起こるが、このとき、本発明はAgマトリックス中における酸化物を、著しく異なる形状のものを積み重ねることで、Agマトリックス中での酸化物の移動をできる限り抑制し、接点表面への凝集を防ぎ、温度特性を改善するものである。   This was developed by paying attention to the state of behavior of Ag, oxide and oxygen when exposed to high temperatures. Instantaneous exposure to high temperatures causes the phenomenon of Ag melting and the accompanying oxide migration, which causes the oxide to agglomerate to the contact surface. By stacking materials with significantly different shapes, the oxide migration in the Ag matrix is suppressed as much as possible, aggregation on the contact surface is prevented, and temperature characteristics are improved.

なお、積み上げる層の厚みは、1つの層の厚みが0.1μm〜1000μmの厚みの間で負荷電流の条件に合った厚みを選択する。その理由は、0.1μm以下の薄い層あるいは1000μm以上の厚い層では、各層間での酸化物の移動を抑制する効果が現われにくいためであり、層の数を複数層としたのは、酸化物の移動を抑制することができないためである。   In addition, the thickness of the layer piled up selects the thickness suitable for the conditions of load current between the thicknesses of 0.1 micrometer-1000 micrometers of the thickness of one layer. The reason is that in the case of a thin layer of 0.1 μm or less or a thick layer of 1000 μm or more, the effect of suppressing the movement of oxides between each layer is hardly exhibited. This is because the movement of objects cannot be suppressed.

図4に従来例の光学顕微鏡写真を示す。   FIG. 4 shows an optical micrograph of a conventional example.

このようにした本発明は、電気接点として使用を繰り返しても接点表面への酸化物の凝集を防ぐことができ、温度特性に優れ、かつ耐溶着性能、耐消耗性能を向上させるという効果が得られる。   The present invention as described above can prevent the aggregation of oxides on the contact surface even when it is repeatedly used as an electrical contact, has excellent temperature characteristics, and has the effect of improving the welding resistance and wear resistance. It is done.

以下に本発明の実施例を説明する。
99.5重量%以上の純度を有するAg、Sn0.1重量%〜10重量%、In0.1〜10重量%さらに、Ni、Sb、Bi、Co、Cu、Fe、Znの中から1種類以上を0.05重量%〜4重量%を原料として、表1に示す組成の合金を以下の工程で作製した。
Examples of the present invention will be described below.
Ag having a purity of 99.5 wt% or more, Sn 0.1 wt% to 10 wt%, In 0.1 to 10 wt%, and one or more of Ni, Sb, Bi, Co, Cu, Fe, Zn An alloy having the composition shown in Table 1 was prepared in the following steps using 0.05 wt% to 4 wt% as a raw material.

なお、上記において、Snの添加量を0.1重量%〜10重量%にした設定した理由は、Snは主に接点の耐溶着性能を向上させるために添加しているものであるが、0.1重量%以下では、その改善の効果が確認できず、また、10重量%以上では、Sn酸化物がAgマトリックス中で凝集してしまい内部酸化が正常に行われないことや接点の温度特性を損なうためである。   In addition, in the above, the reason for setting the addition amount of Sn to 0.1 wt% to 10 wt% is that Sn is added mainly to improve the welding resistance performance of the contact, but 0 When the content is less than 1% by weight, the effect of the improvement cannot be confirmed, and when the content is more than 10% by weight, Sn oxide aggregates in the Ag matrix and internal oxidation does not occur normally. This is because of damage.

Inの添加量を0.1重量%〜10重量%に設定した理由は、Inの添加は主に温度特性の改善に寄与するもので、0.1重量%以下では、その効果が確認できず、また、10重量%以上では、接点の加工性が著しく低下するためである。
Ni、Sb、Bi、Co、Cu、Fe、Znの中から1以上の元素の添加については、求める接点特性によって元素を選択して添加するものであるが、0.05重量%〜4重量%に設定した理由は、0.05重量%以下では、その効果が期待できないためであり、また、4重量%以上では、接点の加工性が低下するためである。
The reason for setting the addition amount of In to 0.1 wt% to 10 wt% is that the addition of In mainly contributes to the improvement of temperature characteristics, and the effect cannot be confirmed at 0.1 wt% or less. In addition, when the content is 10% by weight or more, the workability of the contact is remarkably lowered.
Regarding the addition of one or more elements from Ni, Sb, Bi, Co, Cu, Fe, and Zn, the elements are selected and added depending on the desired contact characteristics, but 0.05 wt% to 4 wt% The reason is set to 0.05% by weight or less because the effect cannot be expected, and if it is 4% by weight or more, the workability of the contact is lowered.

そこで、ガス溶解炉にて溶解、鋳造したインゴットを熱間圧延する。その板の片面にAg板を熱間複合し、ろう付け用のAg層を形成する。
つぎに、当該素材を、各々の加工率で冷間圧延して厚さ2mmの板とした後、直径6mmの円盤状に打ち抜いて試料とし、それぞれ実施例として表1に示す。
Therefore, the ingot melted and cast in the gas melting furnace is hot-rolled. An Ag plate is hot-composited on one side of the plate to form an Ag layer for brazing.
Next, the raw material was cold-rolled at each processing rate to obtain a plate having a thickness of 2 mm, and then punched into a disk shape having a diameter of 6 mm to obtain a sample, which is shown in Table 1 as examples.

実施例1は、酸素分圧5MPaの酸化雰囲気中において、500°C〜750°Cの温度範囲で任意の2つの温度を選択し、その2つの温度を周期的に変化させて内部酸化を行い、異なる形態の酸化物を析出させて積層した内部酸化層を積み上げ、複数の積層構造とした接点を作製した。 In Example 1, in an oxidizing atmosphere having an oxygen partial pressure of 5 MPa, arbitrary two temperatures are selected within a temperature range of 500 ° C. to 750 ° C., and internal oxidation is performed by periodically changing the two temperatures. Then, the internal oxide layers deposited by depositing different forms of oxides were stacked to produce a contact having a plurality of laminated structures.

積層構造の形成過程について説明する。
内部酸化開始時の条件を、(イ)酸化温度650°C、酸素分圧5MPaとし、試料を入炉して約20時間保持し、(ロ)その後、約30分かけて酸化温度を540°Cに降温させ、(ハ)540°Cで約2時間保持し、(二)その後、約30分かけて650°Cに昇温させ、再び(イ)に戻る。以上の工程を1サイクルとし、これを10サイクル繰り返して積層構造とする。
The formation process of the laminated structure will be described.
The conditions at the start of internal oxidation were (a) an oxidation temperature of 650 ° C. and an oxygen partial pressure of 5 MPa, and the sample was placed in the furnace and held for about 20 hours. The temperature is lowered to C, (c) held at 540 ° C. for about 2 hours, and (2) the temperature is raised to 650 ° C. over about 30 minutes, and the flow returns to (a) again. The above process is made into 1 cycle, and this is repeated 10 cycles, and it is set as a laminated structure.

これにより、650°Cで内部酸化した層が10層、540°Cで内部酸化した層が10層、それぞれ形成され、合計で20層が積層されている。各々の層の厚みは、650°Cでの酸化による層が5〜250μm、540°Cでの酸化による層が1〜30μmの厚さになっている。
実施例2は、酸素分圧4MPaの酸化雰囲気中において、500°C〜750°Cの温度範囲で任意の2つの温度を選択し、その2つの温度を周期的に変化させて内部酸化を行い、異なる形態の酸化物を析出させて積層した内部酸化層を積み上げ、複数の積層構造とした接点を作製した。
Thus, 10 layers internally oxidized at 650 ° C. and 10 layers internally oxidized at 540 ° C. were formed, respectively, and a total of 20 layers were laminated. As for the thickness of each layer, the layer formed by oxidation at 650 ° C. has a thickness of 5 to 250 μm, and the layer formed by oxidation at 540 ° C. has a thickness of 1 to 30 μm.
In Example 2, in an oxidizing atmosphere having an oxygen partial pressure of 4 MPa, two arbitrary temperatures are selected within a temperature range of 500 ° C. to 750 ° C., and internal oxidation is performed by periodically changing the two temperatures. Then, the internal oxide layers deposited by depositing different forms of oxides were stacked to produce a contact having a plurality of laminated structures.

積層構造の形成過程について説明する。
内部酸化開始時の条件を、(イ)酸化温度600°C、酸素分圧4MPaとし、試料を入炉して約30時間保持し、(ロ)その後、約30分かけて酸化温度を500°Cに降温させ、(ハ)500°Cで約3時間保持し、(二)その後、約30分かけて600°Cに昇温させ、再び(イ)に戻る。以上の工程を1サイクルとし、これを12サイクル繰り返して積層構造とする。
The formation process of the laminated structure will be described.
The conditions at the start of internal oxidation were (a) an oxidation temperature of 600 ° C. and an oxygen partial pressure of 4 MPa, the sample was placed in the furnace and held for about 30 hours. The temperature is lowered to C, (c) held at 500 ° C. for about 3 hours, and (2) the temperature is raised to 600 ° C. over about 30 minutes, and the flow returns to (a) again. The above process is made into 1 cycle, and this is repeated 12 cycles, and it is set as a laminated structure.

これにより、600°Cで内部酸化した層が12層、500°Cで内部酸化した層が12層、それぞれ形成され、合計で24層が積層されている。各々の層の厚みは、600°Cでの酸化による層が2〜200μm、500°Cでの酸化による層が0.5〜20μmの厚さになっている。
実施例3は、酸素分圧3MPaの酸化雰囲気中において、500°C〜750°Cの温度範囲で任意の2つの温度を選択し、その2つの温度を周期的に変化させて内部酸化を行い、異なる形態の酸化物を析出させて積層した内部酸化層を積み上げ、複数の積層構造とした接点を作製した。
Thereby, 12 layers internally oxidized at 600 ° C. and 12 layers internally oxidized at 500 ° C. are formed, and a total of 24 layers are laminated. As for the thickness of each layer, the layer formed by oxidation at 600 ° C. has a thickness of 2 to 200 μm, and the layer formed by oxidation at 500 ° C. has a thickness of 0.5 to 20 μm.
In Example 3, in an oxidizing atmosphere with an oxygen partial pressure of 3 MPa, arbitrary two temperatures are selected in a temperature range of 500 ° C. to 750 ° C., and internal oxidation is performed by periodically changing the two temperatures. Then, the internal oxide layers deposited by depositing different forms of oxides were stacked to produce a contact having a plurality of laminated structures.

積層構造の形成過程について説明する。
内部酸化開始時の条件を、(イ)酸化温度650°C、酸素分圧3MPaとし、試料を入炉して約20時間保持し、(ロ)その後、約30分かけて酸化温度を540°Cに降温させ、(ハ)540°Cで約2時間保持し、(二)その後、約30分かけて650°Cに昇温させ、再び(イ)に戻る。以上の工程を1サイクルとし、これを14サイクル繰り返して積層構造とする。
The formation process of the laminated structure will be described.
The conditions at the start of internal oxidation were (a) an oxidation temperature of 650 ° C. and an oxygen partial pressure of 3 MPa, and the sample was placed in the furnace and held for about 20 hours. The temperature is lowered to C, (c) held at 540 ° C. for about 2 hours, and (2) the temperature is raised to 650 ° C. over about 30 minutes, and the flow returns to (a) again. The above process is defined as one cycle, and this is repeated 14 cycles to obtain a laminated structure.

これにより、650°Cで内部酸化した層が14層、540°Cで内部酸化した層が14層、それぞれ形成され、合計で28層が積層されている。各々の層の厚みは、650°Cでの酸化による層が2〜250μm、540°Cでの酸化による層が1〜20μmの厚さになっている。
実施例4は、酸素分圧2MPaの酸化雰囲気中において、500°C〜750°Cの温度範囲で任意の2つの温度を選択し、その2つの温度を周期的に変化させて内部酸化を行い、異なる形態の酸化物を析出させて積層した内部酸化層を積み上げ、複数の積層構造とした接点を作製した。
As a result, 14 layers internally oxidized at 650 ° C. and 14 layers internally oxidized at 540 ° C. were formed, respectively, for a total of 28 layers. As for the thickness of each layer, the layer formed by oxidation at 650 ° C. has a thickness of 2 to 250 μm, and the layer formed by oxidation at 540 ° C. has a thickness of 1 to 20 μm.
In Example 4, two arbitrary temperatures are selected in the temperature range of 500 ° C. to 750 ° C. in an oxidizing atmosphere having an oxygen partial pressure of 2 MPa, and internal oxidation is performed by periodically changing the two temperatures. Then, the internal oxide layers deposited by depositing different forms of oxides were stacked to produce a contact having a plurality of laminated structures.

積層構造の形成過程について説明する。
内部酸化開始時の条件を、(イ)酸化温度600°C、酸素分圧2MPaとし、試料を入炉して約30時間保持し、(ロ)その後、約30分かけて酸化温度を500°Cに降温させ、(ハ)500°Cで約3時間保持し、(二)その後、約30分かけて600°Cに昇温させ、再び(イ)に戻る。以上の工程を1サイクルとし、これを16サイクル繰り返して積層構造とする。
The formation process of the laminated structure will be described.
The conditions at the start of internal oxidation were (a) an oxidation temperature of 600 ° C. and an oxygen partial pressure of 2 MPa, the sample was placed in the furnace and held for about 30 hours, and (b) the oxidation temperature was increased to 500 ° over about 30 minutes. The temperature is lowered to C, (c) held at 500 ° C. for about 3 hours, and (2) the temperature is raised to 600 ° C. over about 30 minutes, and the flow returns to (a) again. The above process is made into 1 cycle, and this is repeated 16 cycles, and it is set as a laminated structure.

これにより、600°Cで内部酸化した層が16層、500°Cで内部酸化した層が16層、それぞれ形成され、合計で32層が積層されている。各々の層の厚みは、600°Cでの酸化による層が1〜150μm、500°Cでの酸化による層が0.5〜10μmの厚さになっている。
実施例5は、酸素分圧1MPaの酸化雰囲気中において、500°C〜750°Cの温度範囲で任意の2つの温度を選択し、その2つの温度を周期的に変化させて内部酸化を行い、異なる形態の酸化物を析出させて積層した内部酸化層を積み上げ、複数の積層構造とした接点を作製した。
Thus, 16 layers internally oxidized at 600 ° C. and 16 layers internally oxidized at 500 ° C. are formed, and a total of 32 layers are laminated. As for the thickness of each layer, the layer formed by oxidation at 600 ° C. has a thickness of 1 to 150 μm, and the layer formed by oxidation at 500 ° C. has a thickness of 0.5 to 10 μm.
In Example 5, two arbitrary temperatures are selected in the temperature range of 500 ° C. to 750 ° C. in an oxidizing atmosphere having an oxygen partial pressure of 1 MPa, and internal oxidation is performed by periodically changing the two temperatures. Then, the internal oxide layers deposited by depositing different forms of oxides were stacked to produce a contact having a plurality of laminated structures.

積層構造の形成過程について説明する。
内部酸化開始時の条件を、(イ)酸化温度620°C、酸素分圧1MPaとし、試料を入炉して約10時間保持し、(ロ)その後、約30分かけて酸化温度を530°Cに降温させ、(ハ)530°Cで約2時間保持し、(二)その後、約30分かけて620°Cに昇温させ、再び(イ)に戻る。以上の工程を1サイクルとし、これを20サイクル繰り返して積層構造とする。
The formation process of the laminated structure will be described.
The conditions at the start of internal oxidation were (a) an oxidation temperature of 620 ° C. and an oxygen partial pressure of 1 MPa, and the sample was placed in the furnace and held for about 10 hours. The temperature is lowered to C, (c) held at 530 ° C. for about 2 hours, and (2) the temperature is raised to 620 ° C. over about 30 minutes, and the flow returns to (a) again. The above process is defined as one cycle, and this is repeated 20 cycles to obtain a laminated structure.

これにより、620°Cで内部酸化した層が20層、530°Cで内部酸化した層が20層、それぞれ形成され、合計で40層が積層されている。各々の層の厚みは、620°Cでの酸化による層が1〜200μm、530°Cでの酸化による層が0.1〜20μmの厚さになっている。
実施例6は、酸素分圧0.5MPaの酸化雰囲気中において、500°C〜750°Cの温度範囲で任意の2つの温度を選択し、その2つの温度を周期的に変化させて内部酸化を行い、異なる形態の酸化物を析出させて積層した内部酸化層を積み上げ、複数の積層構造とした接点を作製した。
As a result, 20 layers internally oxidized at 620 ° C. and 20 layers internally oxidized at 530 ° C. were formed, for a total of 40 layers. As for the thickness of each layer, the layer formed by oxidation at 620 ° C. has a thickness of 1 to 200 μm, and the layer formed by oxidation at 530 ° C. has a thickness of 0.1 to 20 μm.
In Example 6, in an oxidizing atmosphere having an oxygen partial pressure of 0.5 MPa, arbitrary two temperatures are selected in a temperature range of 500 ° C. to 750 ° C., and the two temperatures are periodically changed to perform internal oxidation. The inner oxide layers were deposited by depositing different types of oxides, and a contact having a plurality of laminated structures was produced.

積層構造の形成過程について説明する。
内部酸化開始時の条件を、(イ)酸化温度600°C、酸素分圧0.5MPaとし、試料を入炉して約10時間保持し、(ロ)その後、約30分かけて酸化温度を500°Cに降温させ、(ハ)500°Cで約1時間保持し、(二)その後、約30分かけて600°Cに昇温させ、再び(イ)に戻る。以上の工程を1サイクルとし、これを25サイクル繰り返して積層構造とする。
The formation process of the laminated structure will be described.
The conditions at the start of internal oxidation were (a) an oxidation temperature of 600 ° C. and an oxygen partial pressure of 0.5 MPa, and the sample was placed in the furnace and held for about 10 hours. The temperature is lowered to 500 ° C., (c) held at 500 ° C. for about 1 hour, and (2) thereafter, the temperature is raised to 600 ° C. over about 30 minutes, and the process returns to (a) again. The above process is defined as one cycle, and this is repeated 25 cycles to obtain a laminated structure.

これにより、600°Cで内部酸化した層が25層、500°Cで内部酸化した層が25層、それぞれ形成され、合計で50層が積層されている。各々の層の厚みは、600°Cでの酸化による層が0.5〜200μm、500°Cでの酸化による層が0.1〜10μmの厚さになっている。
なお、上記各実施例は本発明の一例であるが、積層構造の形成過程とその構造については、下記に示すような例がある。
Thus, 25 layers internally oxidized at 600 ° C. and 25 layers internally oxidized at 500 ° C. are formed, and a total of 50 layers are laminated. As for the thickness of each layer, the layer formed by oxidation at 600 ° C. has a thickness of 0.5 to 200 μm, and the layer formed by oxidation at 500 ° C. has a thickness of 0.1 to 10 μm.
In addition, although each said Example is an example of this invention, there exists an example as shown below about the formation process of a laminated structure, and its structure.

すなわち、異なる内部酸化条件を用いて各酸化条件で形成される酸化組織を積み重ねて積層構造を形成する過程において、析出酸化物が小さい層をA層、析出酸化物が大きい層をB層とすると、A層における析出酸化物の大きさは10nm〜10μm、B層における析出酸化物の大きさは50nm〜50μmに設定し、その中で接点に求められる性能に合わせて酸化物の大きさを選択するものである。   That is, in the process of stacking oxidized structures formed under different oxidation conditions using different internal oxidation conditions to form a laminated structure, a layer with a small precipitate oxide is a layer A, and a layer with a large precipitate oxide is a layer B The size of the deposited oxide in the A layer is set to 10 nm to 10 μm, and the size of the deposited oxide in the B layer is set to 50 nm to 50 μm, and the size of the oxide is selected according to the performance required for the contact among them. To do.

また、酸化物が小さいA層と酸化物が大きいB層の各々が1つの接点の中で占める厚みの比率については、A層:B層の厚みの比率が、50:1〜1:50の中で接点に求められる性能に合わせて選択するものである。
つぎに、比較のために従来例を示す。従来例1として、Ag−12重量%CdO、従来例2としてAg−4重量%Sn−2重量%In、従来例3としてAg−8重量%Sn−4重量%Inの合金を作り、それぞれ50%の加工率で同様の形状とした後、酸素分圧0.5MPaの酸化雰囲気中で750°Cに固定した温度で内部酸化したものである。
In addition, regarding the ratio of the thickness occupied by each of the layer A having a small oxide and the layer B having a large oxide in one contact, the ratio of the thickness of the layer A to the layer B is 50: 1 to 1:50. It is selected according to the performance required for the contact.
Next, a conventional example is shown for comparison. As Conventional Example 1, alloys of Ag-12 wt% CdO, Ag-4 wt% Sn-2 wt% In as Conventional Example 2, and Ag-8 wt% Sn-4 wt% In as Conventional Example 3 were prepared. After forming the same shape at a processing rate of%, it was internally oxidized at a temperature fixed at 750 ° C. in an oxidizing atmosphere having an oxygen partial pressure of 0.5 MPa.

上記実施例および従来例について、その酸化物形態の観察・分析と接点試験を行った。酸化物形態およびAgの結晶構造解析と形態観察については、接点試験前後の接点断面組織において、WDX型EPMAとAES(オージェ電子分析)分析、放射光マイクロビームX線回折測定を実施し、比較、検討を行った。
実機試験については、接触抵抗試験と溶着試験ならびに市販機ブレーカによる実機テストを行ってその電気的特性を評価した。なお、本発明では、実機試験において接点性能の改善を評価するのは勿論のこと接点の酸化組織の状態において、酸化物が表層に凝集していないか否かの確認と、酸化物、Agの結晶構造の変化を分析することで、接点性能が電気的試験後においても低下しないかどうかを確認することも評価の手法として用いた。
About the said Example and the prior art example, observation and analysis of the oxide form, and the contact test were done. For oxide structure and Ag crystal structure analysis and morphology observation, WDX-type EPMA and AES (Auger electron analysis) analysis, synchrotron radiation microbeam X-ray diffraction measurement were carried out in the cross-sectional structure of the contact before and after the contact test. Study was carried out.
For the actual machine test, contact resistance test, welding test, and actual machine test with a commercial machine breaker were performed to evaluate the electrical characteristics. In the present invention, in addition to evaluating the improvement of the contact performance in the actual machine test, in the state of the oxidized structure of the contact, it is confirmed whether the oxide is not aggregated on the surface layer, and the oxide and Ag. It was also used as an evaluation method to analyze whether the contact performance did not deteriorate even after the electrical test by analyzing the change of the crystal structure.

以上によると、表1に示す如く、過負荷開閉試験後の温度試験において、従来例と比較して温度上昇が抑制されていることが確認される。また、表2に示す如く、短絡遮断試験における耐溶着性能、耐消耗特性の改善が確認された。   According to the above, as shown in Table 1, in the temperature test after the overload switching test, it is confirmed that the temperature rise is suppressed as compared with the conventional example. Further, as shown in Table 2, it was confirmed that the welding performance and the wear resistance were improved in the short circuit interruption test.

図5、図6に示す、光学顕微鏡により撮影した接点断面の酸化組織の状態においても、短絡遮断試験後の接点表層部において、Agの溶融が見られるケースでは、積層の境界でAgの溶融が抑制されていることがわかる。 In the case where the melting of Ag is observed in the contact surface layer portion after the short circuit interruption test even in the state of the oxidized structure of the contact cross section photographed by the optical microscope shown in FIG. 5 and FIG. It turns out that it is suppressed.

図7、図8に示すEPMAによるSnO、Inのマッピングにおいて、過負荷試験後の接点表面において、酸化物が凝集してしまうケースでは、従来例と比較して実施例では、接点表面へのSnO、Inの等の酸化物凝集が軽減されていることが確認された。
図9〜図16に示すAESによる、Ag、Sn、In、Oの各々のマッピングについても、従来例と比較し、実施例では接点表層における、Sn、In、Oの凝集が抑制されており、また、酸化組織の中に形成されるAgリッチ層の粗大化が抑制されていることもわかる。このことは、接点が消耗しにくいことにつながり、耐消耗性能の向上にも寄与している。
In the mapping of SnO 2 and In 2 O 3 by EPMA shown in FIG. 7 and FIG. 8, in the case where oxides aggregate on the contact surface after the overload test, in the embodiment, the contact is compared with the conventional example. It was confirmed that aggregation of oxides such as SnO 2 and In 2 O 3 on the surface was reduced.
The mapping of Ag, Sn, In, and O by AES shown in FIGS. 9 to 16 is also compared with the conventional example, and in the examples, aggregation of Sn, In, and O in the contact surface layer is suppressed, Moreover, it turns out that the coarsening of the Ag rich layer formed in an oxidation structure | tissue is suppressed. This leads to the fact that the contacts are not easily consumed, and contributes to the improvement of the wear resistance performance.

実施例の内部酸化の積層状態を示す光学顕微鏡写真Optical micrograph showing the internal oxidation lamination state of the example 実施例の内部酸化の状態を示す光学顕微鏡写真Optical micrograph showing the internal oxidation state of the example 実施例の内部酸化の状態を示す光学顕微鏡写真Optical micrograph showing the internal oxidation state of the example 従来例の内部酸化の状態を示す光学顕微鏡写真Optical micrograph showing the internal oxidation state of the conventional example 本発明の評価後断面組織の状態を示す光学顕微鏡写真Optical micrograph showing state of cross-sectional structure after evaluation of the present invention 従来例の評価後断面組織の状態を示す光学顕微鏡写真Optical micrograph showing state of cross-sectional structure after evaluation of conventional example 本発明の評価後断面組織におけるSnO、Inの濃度を示す電子顕微鏡写真Electron micrograph showing the concentration of SnO 2, In 2 O 3 in the evaluation after the cross-sectional structure of the present invention 従来例の評価後断面組織におけるSnO、Inの濃度を示す電子顕微鏡写真Electron micrograph showing the concentration of SnO 2 and In 2 O 3 in the cross-sectional structure after evaluation of the conventional example 本発明のAgのマッピングを示す電子顕微鏡写真Electron micrograph showing mapping of Ag of the present invention 本発明のSnのマッピングを示す電子顕微鏡写真Electron micrograph showing Sn mapping of the present invention 本発明のInのマッピングを示す電子顕微鏡写真Electron micrograph showing mapping of In of the present invention 本発明のOのマッピングを示す電子顕微鏡写真Electron micrograph showing mapping of O of the present invention 従来例のAgのマッピングを示す電子顕微鏡写真Electron micrograph showing conventional Ag mapping 従来例のSnのマッピングを示す電子顕微鏡写真Electron micrograph showing conventional Sn mapping 従来例のInのマッピングを示す電子顕微鏡写真Electron micrograph showing mapping of In in the conventional example 従来例のOのマッピングを示す電子顕微鏡写真Electron micrograph showing mapping of O in conventional example

Claims (5)

Cd酸化物を含まないAg−酸化物系電気接点材料において、
酸化物形態の異なる酸化層を複数層積層させたことを特徴とするAg−酸化物系電気接点材料。
In an Ag-oxide based electrical contact material that does not contain Cd oxide,
An Ag-oxide-based electrical contact material, wherein a plurality of oxide layers having different oxide forms are laminated.
請求項1において、Sn0.1重量%〜10重量%、In0.1重量%〜10重量%さらに、Ni、Sb、Bi、Co、Cu、Fe、Znの中から1種類以上を0.05重量%〜4重量%、残部Agからなることを特徴とするAg−酸化物系電気接点材料。 In Claim 1, Sn 0.1 weight%-10 weight%, In0.1 weight%-10 weight% Furthermore, 0.05 weight of 1 or more types is chosen from Ni, Sb, Bi, Co, Cu, Fe, and Zn. An Ag-oxide-based electrical contact material, characterized by comprising 4% to 4% by weight and the balance Ag. 内部酸化時に内部酸化条件を複数回変化させることによって、酸化物形態の異なる酸化層を複数層形成して積層構造とすることを特徴とする請求項1記載のAg−酸化物系電気接点材料の製造方法。 2. The Ag-oxide-based electrical contact material according to claim 1, wherein a plurality of oxide layers having different oxide forms are formed into a laminated structure by changing the internal oxidation conditions a plurality of times during internal oxidation. Production method. 請求項3において、内部酸化条件の1つである内部酸化温度を、内部酸化の途中で300°C〜850°Cの範囲で複数回変化させることによって、酸化物形態の異なる酸化層を複数層形成して積層構造とすることを特徴とするAg−酸化物系電気接点材料の製造方法。 In Claim 3, the internal oxidation temperature which is one of internal oxidation conditions is changed in the range of 300 degreeC-850 degreeC in the middle of internal oxidation in multiple times, The oxidation layer from which an oxide form differs is formed in multiple layers A method for producing an Ag-oxide-based electrical contact material, characterized by forming a laminated structure. 請求項3において、内部酸化条件の1つである酸素分圧を、内部酸化の途中で0.1Mpa〜5Mpaの範囲で複数回変化させることによって、酸化物形態の異なる酸化層を複数層形成して積層構造とすることを特徴とするAg−酸化物系電気接点材料の製造方法。 In Claim 3, the oxygen partial pressure which is one of the internal oxidation conditions is changed a plurality of times in the range of 0.1 Mpa to 5 Mpa during the internal oxidation, thereby forming a plurality of oxide layers having different oxide forms. A method for producing an Ag-oxide-based electrical contact material, characterized by having a laminated structure.
JP2006337400A 2006-12-14 2006-12-14 Ag-oxide-based electrical contact material and method for producing the same Active JP4932465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006337400A JP4932465B2 (en) 2006-12-14 2006-12-14 Ag-oxide-based electrical contact material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006337400A JP4932465B2 (en) 2006-12-14 2006-12-14 Ag-oxide-based electrical contact material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008152971A true JP2008152971A (en) 2008-07-03
JP4932465B2 JP4932465B2 (en) 2012-05-16

Family

ID=39654946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337400A Active JP4932465B2 (en) 2006-12-14 2006-12-14 Ag-oxide-based electrical contact material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4932465B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394184A (en) * 2011-08-15 2012-03-28 宁波福特继电器有限公司 Contact of relay
JP2013134889A (en) * 2011-12-26 2013-07-08 Tokuriki Honten Co Ltd Electrical contact material and manufacturing method of the same
JP2013235674A (en) * 2012-05-07 2013-11-21 Tanaka Kikinzoku Kogyo Kk Electrode material for temperature fuse movable electrode
CN105349818A (en) * 2015-11-20 2016-02-24 温州宏丰电工合金股份有限公司 Oxide local graded distribution type electric contact material and preparation method thereof
WO2022099854A1 (en) * 2020-11-11 2022-05-19 浙江福达合金材料科技有限公司 Preparation method for silver metal oxide sheet-like electrical contact

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177945A (en) * 1981-04-24 1982-11-01 Matsushita Electric Works Ltd Manufacture of contact material
JPS5816039A (en) * 1981-07-21 1983-01-29 Sumitomo Electric Ind Ltd Manufacture of electrical contact material
JP2002363665A (en) * 2001-06-01 2002-12-18 Tokuriki Honten Co Ltd METHOD FOR MANUFACTURING Ag-OXIDE ELECTRIC CONTACTOR MATERIAL, AND PRODUCT THEREOF

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177945A (en) * 1981-04-24 1982-11-01 Matsushita Electric Works Ltd Manufacture of contact material
JPS5816039A (en) * 1981-07-21 1983-01-29 Sumitomo Electric Ind Ltd Manufacture of electrical contact material
JP2002363665A (en) * 2001-06-01 2002-12-18 Tokuriki Honten Co Ltd METHOD FOR MANUFACTURING Ag-OXIDE ELECTRIC CONTACTOR MATERIAL, AND PRODUCT THEREOF

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394184A (en) * 2011-08-15 2012-03-28 宁波福特继电器有限公司 Contact of relay
JP2013134889A (en) * 2011-12-26 2013-07-08 Tokuriki Honten Co Ltd Electrical contact material and manufacturing method of the same
JP2013235674A (en) * 2012-05-07 2013-11-21 Tanaka Kikinzoku Kogyo Kk Electrode material for temperature fuse movable electrode
CN105349818A (en) * 2015-11-20 2016-02-24 温州宏丰电工合金股份有限公司 Oxide local graded distribution type electric contact material and preparation method thereof
WO2022099854A1 (en) * 2020-11-11 2022-05-19 浙江福达合金材料科技有限公司 Preparation method for silver metal oxide sheet-like electrical contact

Also Published As

Publication number Publication date
JP4932465B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
WO2013150690A1 (en) Plated member, plated terminal for connectors, method for producing plated member, and method for producing plated terminal for connectors
JP4932465B2 (en) Ag-oxide-based electrical contact material and method for producing the same
JPWO2013005801A1 (en) ELECTRODE MATERIAL FOR THERMAL FUSE, METHOD FOR MANUFACTURING THE SAME, AND THERMAL FUSE USING THE ELECTRODE MATERIAL
JP5684809B2 (en) Electrical contact material
US11168382B2 (en) Sliding contact material and method for producing same
JP5567395B2 (en) Silver-oxide based electrical contact materials
JP2010100912A (en) Silver-oxide-based electric contact material
JP4947850B2 (en) Method for producing Ag-oxide based electrical contact material
JP4994144B2 (en) Silver-oxide based electrical contact materials
JP2005036264A (en) Electrical contact and contact breaker using it
JP4994143B2 (en) Silver-oxide based electrical contact materials
JP6753022B2 (en) Electrical contacts and contacts
JPH0480100B2 (en)
JPH10177821A (en) Electric contact and its manufacture
JP2003155530A (en) Electric contact material
JP6099672B2 (en) Electrode material for thermal fuse and method for manufacturing the same
JP6753023B2 (en) Manufacturing method of electrical contacts
JP4244528B2 (en) Wear resistant copper alloy
JP2005166341A (en) Electric contact made of internal silver oxide/oxide system material for downsized electromagnetic relay with high conductivity
JP4389562B2 (en) Electrical contacts made of internal silver oxide-oxide material for miniaturized electromagnetic relays with high conductivity
JPS6036636A (en) Electrical contact point material consisting of silver-tin oxide alloy
JP2005060751A (en) Electric contact made of internally oxidized silver-oxide-based material having high conductivity for miniaturized electromagnetic relay
JP4389563B2 (en) Electrical contacts made of internal silver oxide-oxide material for miniaturized electromagnetic relays with high conductivity
JP4389561B2 (en) Electrical contacts made of internal silver oxide-oxide material for miniaturized electromagnetic relays with high conductivity
TW200427848A (en) Ag-oxide based electric contact material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110815

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110813

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R150 Certificate of patent or registration of utility model

Ref document number: 4932465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250