WO2022100405A1 - 一种可穿戴式显示设备 - Google Patents

一种可穿戴式显示设备 Download PDF

Info

Publication number
WO2022100405A1
WO2022100405A1 PCT/CN2021/125487 CN2021125487W WO2022100405A1 WO 2022100405 A1 WO2022100405 A1 WO 2022100405A1 CN 2021125487 W CN2021125487 W CN 2021125487W WO 2022100405 A1 WO2022100405 A1 WO 2022100405A1
Authority
WO
WIPO (PCT)
Prior art keywords
wearable display
microscope
image processor
display device
wearable
Prior art date
Application number
PCT/CN2021/125487
Other languages
English (en)
French (fr)
Inventor
张宇燕
王颖
李健
杨祖国
章婧怡
Original Assignee
上海珩之科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海珩之科技有限公司 filed Critical 上海珩之科技有限公司
Publication of WO2022100405A1 publication Critical patent/WO2022100405A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/362Mechanical details, e.g. mountings for the camera or image sensor, housings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/368Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements details of associated display arrangements, e.g. mounting of LCD monitor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted

Definitions

  • the invention relates to a wearable display device, in particular to the technical field of microscopic imaging.
  • optical microscopes include monocular microscopes and binocular microscopes. Ordinary optical microscopes can be used to observe biological samples, etc., and binocular microscopes can be designed as stereo microscopes to make images have a three-dimensional effect during observation. Stereo microscopes can be used, for example, as surgical microscopes. Operating microscopes are similar in principle to other microscopes. They are magnified and imaged by objective lenses and eyepieces, and usually include a beam splitter for light splitting, allowing multiple people to observe at the same time through two or more sets of eyepieces.
  • the traditional optical microscope cannot read more surgical parameters when only viewing through the eyepiece. 3.
  • the surgeon needs to take into account the operating environment while watching and operating, which has a certain impact on attention.
  • the method of removing the eyepiece is not a good method, because it destroys the overall design of the original microscope, and the replacement imaging system usually does not have the original complete microscope system. Image quality is good. Therefore, there is a need for new methods for observing microscopes instead of the human eye without making any changes to the large number of microscope systems currently in use on the market.
  • the embodiments of the present invention provide a wearable display device for microscope observation, which solves the problem of fatigue caused by users who observe from the eyepiece in a fixed posture for a long time and cannot take into account the operating environment, as well as the problem of spectroscopic problems of assistant mirrors .
  • the wearable display device provided by the present invention can be used in any microscope system with eyepieces without modifying the microscope system.
  • the advantages brought by the present invention also include: 1.
  • the wearable display device provided by the present invention can simultaneously provide the observer with required data information, such as patient information or auxiliary treatment information, through digital input in the observation of a traditional microscope parameter.
  • Wearable display devices can simplify the construction of microscopes, because the elimination of assistant mirrors or the spectroscopic system of digital imaging can increase observation brightness, reduce microscope costs, and reduce illumination intensity.
  • a wearable display device for microscope observation comprising a wearable display, at least one video sensing head and an image processor, wherein the wearable display has at least one display screen for observation by a wearer,
  • the video sensor head has an installation bayonet, which can be directly installed on the eyepiece of the microscope to obtain image information, and the obtained image information is sent to the image processor for processing, and the video signal output by the image processor is It can be displayed through the display screen; through the wearable display device, the observer can remotely observe the image in the microscope eyepiece without any modification of the microscope;
  • the image processor has a digital input port, a network system , System operation management software, microprocessor and storage functions.
  • the image processor processes images and performs data storage, sharing, editing, transmission and management functions.
  • the mounting bayonet of the video sensor head is adapted to the eyepiece, which is convenient for self-installation and removal as required without any change to the original structure of the microscope and the eyepiece.
  • the video signal output by the image processor can be displayed on the display screen, and the communication method between the image processor, the video sensing head and the wearable display can be wired through a cable, or can be Wireless transmission without cables.
  • the image processor has data input, output and storage functions, can be operated through an operation interface, and can support remote observation and assistance.
  • the wearable display is head-mounted glasses, and is displayed through a transparent display screen.
  • One or more wearable displays can be used in conjunction with the image processor at the same time.
  • the wearable display has an operation panel, and the user can perform various observation operations on the operation panel, including selecting display content, data input and output, image brightness, color, etc. and contrast, etc.
  • the invention solves the limitation brought by the observation of the microscope eyepiece, and allows the observer to obtain a more free operation mode.
  • the unrestricted head posture of the observer can reduce the fatigue caused by long-term observation.
  • the present invention completely eliminates the image difference between the primary mirror and the auxiliary observation mirror.
  • the relevant staff can use the wearable display device to supervise the operation in real time through the screen according to the needs, provide information, and cooperate with the corresponding surgical work or realize remote viewing and remote collaboration;
  • Various parameter information is imported into the wearable display in real time, and the present invention can provide all traditional microscopes with functions that cannot be realized through traditional eyepiece observation, and upgrade information.
  • Figure 1 shows a wearable display device for monocular microscope observation.
  • Figure 2 shows another wearable display device for monocular microscope observation.
  • Figure 3 shows a third example of a wearable display device for monocular microscopy.
  • Figure 4 shows the fourth wirelessly connected wearable display device for monocular microscope observation.
  • Figure 5 shows a fifth example of a wearable display device for monocular microscope observation.
  • Figure 6 shows a sixth example of a wearable display device used for monocular microscope observation.
  • Figure 7 shows a wearable display device for binocular microscope observation.
  • Figure 8 shows yet another wearable display device for binocular microscope observation.
  • Figure 9 shows a third example of a wireless wearable display device for binocular microscope observation.
  • Figure 10 shows a fourth example of a wearable display device for binocular microscope observation.
  • Figure 11 shows a fifth example of a wearable display device for binocular microscope observation.
  • Figure 12 shows a sixth example of a wearable display device for binocular microscope observation.
  • An embodiment of the present invention provides a wearable display device for microscope observation, comprising a wearable display, at least one video sensing head and an image processor, wherein the wearable display has at least one display screen, which is used for For the wearer's observation, the video sensor head has an installation bayonet, which can be directly installed on the eyepiece of the microscope to obtain image information, and the obtained image information is sent to the image processor for processing.
  • the video signal output by the device can be displayed on the display screen; through the wearable display device, the observer can remotely observe the images in various microscope eyepieces without any modification of the microscope.
  • the wearable display and the connection to the external host can have the functions of video display, recording, return visit, editing, storage and marking through the image processor on the operation interface, and can also be connected to the remote server through the Internet for data interactive processing.
  • the wearable display When the wearable display has two display screens, it can also include a set of display screen adjustment mechanisms, through which the postures of the two display screens can be adjusted to suit the requirements of the observer's interpupillary distance and visual acuity, etc. and assist observation The user can fuse the images from the two displays, which is especially needed when using the wearable display device for stereo microscope observation.
  • Figure 1 shows an implementation method of a wearable display device for monocular microscope observation.
  • the video sensor head is connected to the image processor and the wearable display in the external host through a cable: the specific implementation is to install a video sensor head 1 on the eyepiece 3 of the monocular microscope through its mounting bayonet 10 , the image obtained by the video sensor head is transmitted to the external host 4 through the cable 2, and the image data is processed by the image processor, and then transmitted to the display screen 6 of the wearable display 5 through the cable for display, or can be transmitted Display to other external displays 7 .
  • the wearable display may have only one display screen.
  • the wearable display 5 may further include a set of display screen adjustment mechanisms (61, 62), through which the postures of the two display screens (6) can be adjusted to suit the The observer's interpupillary distance and visual acuity requirements, etc., and assist the observer to fuse the images on the two display screens.
  • This adjustment mechanism is especially suitable for the observation of stereoscopic images.
  • FIG. 2 shows another implementation method of a wearable display device for monocular microscope observation.
  • the video sensor head is connected to the image processor in the external host through a cable, and the wearable display has a wireless function and can be connected to the external host with the image processor through a wireless method.
  • the specific implementation is as follows: a video sensor head 1 is installed on the eyepiece 3 of the monocular microscope through its mounting bayonet 10, and the image obtained by the video sensor head is transmitted to the external host 4 through the cable 2, and the image After the processor processes the image data, it is then transmitted to the display screen 6 of the wearable display 51 through a wireless connection for display, and can also be transmitted to other external displays 7 for display.
  • the wearable display 51 may also include a set of display screen adjustment mechanisms (61, 62), through which the postures of the two display screens 6 can be adjusted to suit the observer. It also helps the observer to fuse the images on the two display screens. This adjustment mechanism is especially suitable for the observation of stereoscopic images.
  • Figure 3 shows a third implementation method of a wearable display device for monocular microscope observation.
  • the video sensor head with wireless transmission function is connected to the image processor of the external host through a wireless method, and the wearable display is connected to the image processor through a cable: the specific implementation method is to connect a video with wireless transmission function.
  • the sensor head 11 is installed on the eyepiece 3 of the monocular microscope through its mounting bayonet 10, and the image obtained by the video sensor head is transmitted to the external host 4 through a wireless connection, and the image data is processed by the image processor. Then, it is transmitted to the display screen 6 of the wearable display 5 through the cable connection 2 for display, and can also be transmitted to other external displays 7 for display.
  • the wearable display 5 may also include a set of display screen adjustment mechanisms (61, 62), through which the postures of the two display screens 6 can be adjusted to suit the observer It also helps the observer to fuse the images on the two display screens.
  • This adjustment mechanism is especially suitable for the observation of stereoscopic images.
  • Figure 4 shows a fourth implementation of a wirelessly connected wearable display device for monocular microscope observation.
  • the video sensor head with wireless transmission function is connected to the image processor in the external host and the wearable display with wireless connection function by wireless method: the specific implementation method is to connect a video sensor head 11 with wireless transmission function through its
  • the installed bayonet 10 is installed on the eyepiece 3 of the monocular microscope, and the image obtained by the video sensor head is transmitted to the external host 4 through a wireless connection, and the image data is processed by the image processor and then transmitted to the wireless connection.
  • the display screen 6 of the wearable display 51 with wireless connection function is displayed, and can also be transmitted to other external displays 7 for display.
  • the wearable display 51 may also include a set of display screen adjustment mechanisms (61, 62), through which the postures of the two display screens 6 can be adjusted to suit the observer It also helps the observer to fuse the images on the two display screens.
  • This adjustment mechanism is especially suitable for the observation of stereoscopic images.
  • Figure 5 shows a fifth implementation method of a wearable display device for monocular microscope observation.
  • the image processor is installed in the video sensing head, and the video sensing head with the built-in image processor is connected to the wearable display through a cable.
  • the specific embodiment is to install a video sensor head 12 with a built-in image processor on the eyepiece 3 of the monocular microscope through its mounting bayonet 10, and the image obtained by the video sensor head 12 is processed by the image processor. After processing, it is transmitted to the display screen 6 of the wearable display 5 through the cable connection 2 for display, and can also be transmitted to other external displays for display.
  • the wearable display 5 may also include a set of display screen adjustment mechanisms (61, 62), through which the postures of the two display screens 6 can be adjusted to suit the observer It also helps the observer to fuse the images on the two display screens.
  • This adjustment mechanism is especially suitable for the observation of stereoscopic images.
  • FIG. 6 shows the sixth implementation method for observing the wearable display device with a monocular microscope.
  • the image processor is installed in the video sensing head, and the video sensing head has an image processor and is connected with the wearable display by a wireless method.
  • the specific embodiment is to install a video sensor head 13 with built-in image processor and wireless transmission function on the eyepiece 3 of the monocular microscope through its mounting bayonet 10, and the image obtained by the video sensor head 13 After being processed by the image processor, it is wirelessly transmitted to the display screen 6 of the wearable display 51 with a wireless connection function for display, and can also be transmitted to other external displays for display.
  • the wearable display 51 may also include a set of display screen adjustment mechanisms (61, 62), through which the postures of the two display screens 6 can be adjusted to suit the observer It also helps the observer to fuse the images on the two display screens.
  • This adjustment mechanism is especially suitable for the observation of stereoscopic images.
  • FIG. 7 illustrates a specific implementation method of a wearable display device for binocular microscope observation
  • FIG. 7 illustrates a specific implementation method of a wearable display device for binocular microscope observation, wherein the video sensing head is connected through a cable Connect the image processor in the external host, which is then connected to the wearable display through a cable to work.
  • the specific implementation method is to install the two video heads 1 on the two eyepieces ( 31 , 32 ) of the binocular microscope respectively through the mounting bayonet 10 provided thereon, and the images obtained by the two video sensor heads pass through the cables 2 respectively.
  • the wearable display 5 may have only one display screen or two display screens.
  • the input video signals collected by the two video sensor heads 1 are respectively displayed on the two display screens 6 of the wearable display 5 after an image processor.
  • the observer can observe the stereoscopic image through the wearable display device.
  • the external host, the image processor and the wearable display may include an operation panel or interface for the user to control the display, storage, observation mode, image brightness and contrast, parameter input and output, etc. of the image.
  • the wearable display 5 While observing the microscope through the wearable display device, the observer can simultaneously read the information, data or operating parameters input through the external host, image processor or other peripheral devices on the display screen.
  • the wearable display 5 may also include a set of display screen adjustment mechanisms (61, 62), through which the postures of the two display screens 6 can be adjusted to suit the observer It also helps the observer to fuse the images on the two display screens. This adjustment mechanism is especially suitable for the observation of stereoscopic images.
  • Figure 8 illustrates another specific implementation method of a wearable display device for binocular microscope observation, wherein the video sensing head is connected to the image processor in the external host through a cable, and the latter is connected to the wearable display wirelessly working.
  • the specific implementation method is to install the two video heads 1 on the eyepieces ( 31 , 32 ) of the binocular microscope respectively through the mounting bayonet 10 provided thereon, and the images obtained by the two video sensor heads are respectively transmitted through cables 2 to
  • the external host 4 is processed by the image processor and then transmitted to the display screen 6 of the wearable display 51 with wireless connection function for display, and can also be transmitted to other external displays 7 for display; for non-stereoscopic microscopes application, the wearable display 51 may have only one display screen or two display screens.
  • the input video signals collected by the two video sensor heads 1 are respectively displayed on the two display screens 6 of the wearable display 51 after being processed by the image processor.
  • the observer can observe the stereoscopic image through the wearable display device.
  • the external host, the image processor and the wearable display may include an operation panel or interface for the user to control the display, storage, observation mode, image brightness and contrast, parameter input and output, etc. of the image. While observing the microscope through the wearable display device, the observer can simultaneously read the information, data or operating parameters input through the external host, image processor or other peripheral devices on the display screen.
  • the wearable display 51 with wireless connection function may further include a set of display screen adjustment mechanisms (61, 62), through which the postures of the two display screens 6 can be adjusted to suit the It can meet the requirements of the observer's interpupillary distance and visual acuity, etc. and assist the observer to fuse the images on the two display screens.
  • This adjustment mechanism is especially suitable for the observation of stereoscopic images.
  • Figure 9 illustrates the third specific implementation method of the wireless wearable display device for binocular microscope observation, wherein the video sensor head with wireless transmission function is wirelessly connected to the image processor in the external host, and the latter is then connected through The cable is connected to the wearable display to work.
  • the specific implementation method is to install two video sensor heads 11 with wireless transmission function on the eyepieces ( 31 , 32 ) of the binocular microscope respectively through their mounting bayonet 10 , and the two video sensor heads 11
  • the obtained images are respectively transmitted to the external host 4 through a wireless connection, and the image data is processed by the image processor and then transmitted to the display screen 6 of the wearable display 5 through a cable for display, and can also be transmitted to other external displays 7 for display.
  • the image data collected by the two video sensor heads 11 with wireless transmission function are respectively displayed on the display screen 6 of the wearable display 5 after being processed by the image processor.
  • the wearable display 5 may have only one display screen or may have two display screens.
  • the video signals respectively collected by the two video sensor heads 11 with wireless transmission function are processed by the image processor and then processed by the two display screens 6 of the wearable display 5. displayed separately.
  • the observer can observe the stereoscopic image through the wearable display device.
  • the external host, the image processor and the wearable display may include an operation panel or interface for the user to control the display, storage, observation mode, image brightness and contrast, parameter input and output, etc. of the image.
  • the wearable display 5 While observing the microscope through the wearable display device, the observer can simultaneously read the information, data or operating parameters input through the external host, image processor or other peripheral devices on the display screen.
  • the wearable display 5 may also include a set of display screen adjustment mechanisms (61, 62), through which the postures of the two display screens 6 can be adjusted to suit the pupils of the observers This adjustment mechanism is especially suitable for the observation of stereoscopic images.
  • FIG 10 shows the specific implementation method of the fourth wearable display device for binocular microscope observation, in which the video sensor head with wireless transmission function is wirelessly connected to the image processor in the external host, and the latter is connected through Work wirelessly with wearable displays with wireless connectivity.
  • the specific implementation method is to install two video sensor heads 11 with wireless transmission function respectively on the eyepieces (31, 32) of the binocular microscope through their mounting bayonet 10, and the two video sensor heads with wireless transmission function
  • the images obtained by the head are respectively transmitted to the external host 4 through the wireless connection, processed by the image processor, and then transmitted to the display screen 6 of the wearable display 51 with the wireless connection function through the wireless method for display, and can also be transmitted to other external devices.
  • the display 7 displays; the image data respectively collected by the two video sensor heads 11 with wireless transmission function are processed by the image processor and displayed on the display screen 6 of the wearable display 51 with wireless connection function.
  • the wearable display 51 may have only one display screen or may also have two display screens.
  • the video signals respectively collected by the two video sensing heads 11 with wireless transmission function are processed by the image processor and then processed by the wearable display 51 with wireless connection function.
  • the two display screens 6 are displayed respectively. The observer can observe the stereoscopic image through the wearable display device.
  • the external host, the image processor and the wearable display may include an operation panel or interface for the user to control the display, storage, observation mode, image brightness and contrast, parameter input and output, etc. of the image. While observing the microscope through the wearable display device, the observer can simultaneously read the information, data or operating parameters input through an external computer, image processor or other peripheral devices on the display screen.
  • the wearable display 51 with wireless connection function has two display screens, it may further include a set of display screen adjustment mechanisms (61, 62), through which the postures of the two display screens 6 can be adjusted to suit the It can meet the requirements of the observer's interpupillary distance and visual acuity, etc. and assist the observer to fuse the images on the two display screens. This adjustment mechanism is especially suitable for the observation of stereoscopic images.
  • Figure 11 shows a fifth specific implementation method of a wearable display device for binocular microscope observation, wherein the video sensing head has a built-in image processor and is connected to the wearable display through a cable to work.
  • the specific method is to install two video sensor heads 12 with built-in image processors on the eyepieces (31, 32) of the binocular microscope respectively through the mounting bayonet 10 they have, and the images obtained by the two video sensor heads After being processed by the built-in image processor, it is then transmitted to the display screen 6 of the wearable display 5 for display through a cable, and can also be transmitted to other external displays for display; two of them have video sensor heads with built-in image processors.
  • the respectively collected image data are respectively displayed on the two display screens 6 of the wearable display 5 after being processed by the image processor.
  • the wearable display 5 may have only one display screen or may also have two display screens.
  • the video signals respectively collected by the two video sensing heads 12 with built-in image processors are processed by the image processor and then processed by the two display screens of the wearable display 5 6 are displayed separately. The observer can observe the stereoscopic image through the wearable display device.
  • the wearable display 5 may include an operation panel or an interface, and the image processor and the like included therein can be wirelessly connected to external devices for the user to control the display, storage, observation mode, image brightness and contrast, parameter input and output, etc. of the image. . While observing the microscope through the wearable display device, the observer can simultaneously read the information, data or operating parameters input through external devices, servers or other peripheral devices on the display screen.
  • the wearable display 5 may also include a set of display screen adjustment mechanisms (61, 62), through which the postures of the two display screens 6 can be adjusted to suit the pupils of the observers This adjustment mechanism is especially suitable for the observation of stereoscopic images.
  • Figure 12 shows the sixth specific implementation method of the wearable display device for binocular microscope observation, in which the video sensor head with wireless transmission function has a built-in image processor, and is connected with the wireless connection function through a wireless method.
  • Wearable display connection to work.
  • the specific method is to install two video heads 13 with built-in image processors and wireless functions respectively on the eyepieces (31, 32) of the binocular microscope through their mounting bayonet 10, and the two video sensors
  • the image obtained by the head is processed by the built-in image processor, it is transmitted to the display screen 6 of the wearable display 51 with wireless connection function for display by wireless method, and can also be transmitted to other external displays for display;
  • the image data respectively collected by the video sensor head 13 with built-in image processor and wireless transmission function are respectively displayed on the two display screens 6 of the wearable display 51 with wireless connection function after being processed by the image processor.
  • the wearable display 51 with wireless connection function may have only one display screen or may also have two display screens.
  • the video signals collected by the two video sensor heads 13 with built-in image processors and wireless transmission functions are processed by the image processor and then processed by the two video sensor heads 13 with a wireless connection function.
  • the two display screens 6 of the wearable display 51 are displayed respectively.
  • the observer can observe the stereoscopic image through the wearable display device.
  • the wearable display may include an operation panel or interface, and the image processor included therein can be wirelessly connected to external devices for users to control the display, storage, observation mode, image brightness and contrast, parameter input and output, etc. of the image.
  • the wearable display 5 While observing the microscope through the wearable display device, the observer can simultaneously read the information, data or operating parameters input through external devices, servers or other peripheral devices on the display screen.
  • the wearable display 5 may also include a set of display screen adjustment mechanisms (61, 62), through which the postures of the two display screens 6 can be adjusted to suit the pupils of the observers This adjustment mechanism is especially suitable for the observation of stereoscopic images.
  • the above embodiments only partially illustrate the implementation method of the present invention.
  • many combinations can be introduced to form wearable devices for observation through microscope eyepieces.
  • the image processor may be built into the wearable display; or the wearable display and the video sensing head may have an image processor at the same time to play a strengthening or synergistic role.
  • the two video sensor heads can be connected together first, and then connected to the image sensor or wearable display through a single cable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

一种用于显微镜观察的可穿戴式显示设备,包括一个可穿戴显示器(5),至少一个视频传感头(1)和一个图像处理器,其中可穿戴显示器(5)具有显示屏(6),视频传感头(1)具有安装卡口(10)可直接安装在显微镜的目镜(3)上获取图像信息,并将通过目镜(3)所获取的图像信息送入外置主机(4)中的图像处理器进行处理,图像处理器输出的视频信号即可通过可穿戴式显示设备中的显示屏(6)进行显示,观察者可以无需对显微镜进行任何改造的条件下对目镜(3)里的图像进行远程观察。

Description

一种可穿戴式显示设备 技术领域
本发明涉及一种可穿戴式显示设备,具体涉及显微影像技术领域。
背景技术
常用的光学显微镜包括单筒显微镜以及双筒显微镜,普通的光学显微镜可以用于观察生物样本等,双筒显微镜则可以设计成为体视显微镜使得观察时图像具有立体感。体视显微镜可用于如手术显微镜等。手术显微镜和其他显微镜基本原理类似,由物镜与目镜放大成像,并且通常包含分光器进行分光,通过二套或多套目镜让多人同时进行观察。
随着数字影像的兴起,提出了新的方案,即在目镜之前进行分光转换成数字影像后可以在目镜观察的同时在显示屏等相关设备上进行观看和文件录制。也有很多显微镜产品完全去除了直接目镜观察的功能,利用成像装置替代目镜进行观察。
在显微镜的使用中,由于观察者的瞳孔需要和目镜的出瞳重合以达到最佳观察效果,观察者通常需要以固定的姿势保持与目镜之间的关系,长时间工作就容易带来疲劳。这个问题在手术显微镜的使用时尤为严重,长时间的肌肉疲劳甚至可以引发职业病。传统手术显微镜的其他问题还包括:1.无论使用同轴助手镜还是数字成像,加入分光器后目镜观察的亮度会相应减少,手术医生在使用主镜观察时会受到一定的影响,为了提高亮度而增加显微镜的照明则对病人,尤其是眼科病人,产生不利的影响。2.传统光学的显微镜仅通过目镜观察时无法读取更多的手术参数。3.手术医生在观看以及操作同时需要兼顾手术环境,在注意力上有一定的影响。目前已经有将显微镜目镜去除换为数字成像结构的技术,但去除目镜的方法并不是个好的办法,因为这样破坏了原来显微镜的整体设计,而且置换上的成像***通常没有原来完整显微镜***的成像质量好。因此需要新的方法代替人眼对显微镜进行观察而不对目前市场上已投入使用的大量的显微镜***做任何改动。
发明内容
有鉴于此,本发明实施例提供了一种用于显微镜观察的可穿戴式显示设备,解决 了使用者长期固定姿势从目镜进行观察产生疲劳而且不能兼顾手术环境的问题,以及助手镜的分光问题。本发明所提供的可穿戴式显示设备可用于任何具有目镜的显微镜***而无需对该显微镜***进行改造。
本发明带来的优点还包括:1.利用本发明提供的可穿戴式显示设备在传统显微镜的观察中可以通过数字输入为观察者同时提供所需要的数据信息,如病人信息或辅助治疗的信息参数。2.可穿戴式显示设备可以简化显微镜的构造,由于取消助手镜或数字成像的分光***可以增加观察亮度,降低显微镜成本以及降低照明强度。3.科手术显微镜中降低照明强度对病人的手术眼是非常有利的。
因此本发明提供了以下方案:
一种用于显微镜观察的可穿戴式显示设备,包括一个可穿戴显示器,至少一个视频传感头和一个图像处理器,其中所述可穿戴显示器至少具有一个显示屏,用于穿戴者的观察,所述视频传感头具有安装卡口,可直接安装在显微镜的目镜上获取图像信息,并将所获取的图像信息送入所述图像处理器进行处理,所述图像处理器输出的视频信号即可通过所述显示屏进行显示;通过所述可穿戴式显示设备,观察者可以无需对显微镜进行任何改造的条件下对显微镜目镜里的图像进行远程观察;图像处理器具有数字输入口、网络***、***运行管理软件、微处理器和存储功能。
优选地,在应用于双筒显微镜的所述视频传感头为两个,可直接安装在双目镜的显微镜目镜上获取图像信息。
优选地,所述图像处理器,对图像进行处理,并进行数据存储、分享、编辑、传输与管理功能。
优选地,所述视频传感头具有的安装卡口适配目镜,方便按需求自行安装与拆除而无需对显微镜以及目镜的原有结构进行任何改变。
优选地,所述图像处理器输出的视频信号即可通过所述显示屏进行显示,其中图像处理器与视频传感头以及可穿戴显示器之间的通讯方式可通过线缆进行有线传输,也可以不通过线缆而进行无线传输。所述图像处理器具有数据输入输出及储存功能,可通过操作界面进行操作,并可支持远程观察和协助。
优选地,所述可穿戴式显示器为头戴式眼镜,通过透明显示屏进行显示。一个或多个可穿戴式显示器可以同时与图像处理器连接使用。
优选地,所述可穿戴显示器具有操作面板,使用人员可通过如连接的脚踏、遥控器、语音声控等对操作面板进行各种观察操作,包括选择显示内容、数据输入输出、 图像亮度、色彩和对比度等。
本发明解决了显微镜目镜观察所带来的限制,可以让观察者获得更自由的操作方式。观察者头部姿态不受限制可以减少长时间观察所产生的疲劳。在多人观察时,本发明完全消除了主镜和辅助观察镜之间的图像差别。在用于手术显微镜时,除手术医生外,相关工作人员可根据需求利用可穿戴式显示设备实时通过画面监管手术,提供信息,和进行相应手术工作的配合或实现远程观看与远程协作;由于可以在可穿戴显示器中实时导入各种参数信息,本发明可以为所有传统显微镜提供通过传统目镜观察无法实现的功能,进行信息升级。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1所示为一个用于单筒显微镜观察的可穿戴显示设备。
图2所示为另一个用于单筒显微镜观察的可穿戴显示设备。
图3所示为第三个用于单筒显微镜观察的可穿戴显示设备的例子。
图4所示为第四个用于单筒显微镜观察通过无线连接的可穿戴显示设备。
图5所示为第五个用于单筒显微镜观察的可穿戴显示设备例子。
图6所示为第六个用于单筒显微镜观察可穿戴显示设备的例子。
图7所示为一个用于双筒显微镜观察的可穿戴显示设备。
图8所示为又一个用于双筒显微镜观察的可穿戴显示设备。
图9所示为第三个用于双筒显微镜观察无线的可穿戴显示设备的例子。
图10所示为第四个用于双筒显微镜观察的可穿戴显示设备的例子。
图11所示为第五个用于双筒显微镜观察的可穿戴显示设备的例子。
图12所示为第六个用于双筒显微镜观察的可穿戴显示设备的例子。
具体实施方式
本发明实施例提供了一种用于显微镜观察的可穿戴式显示设备,包括一个可穿戴 显示器,至少一个视频传感头和一个图像处理器,其中所述可穿戴显示器至少具有一个显示屏,用于穿戴者的观察,所述视频传感头具有安装卡口,可直接安装在显微镜的目镜上获取图像信息,并将所获取的图像信息送入所述图像处理器进行处理,所述图像处理器输出的视频信号即可通过所述显示屏进行显示;通过所述可穿戴式显示设备,观察者可以无需对显微镜进行任何改造的条件下对各种显微镜目镜里的图像进行远程观察。可穿戴显示器和连接外置主机可具有操作界面通过图像处理器等进行视频显示、记录、回访、编辑、存储以及标记等功能,也可通过互联网连接远程服务器,进行数据交互处理。
其中可穿戴显示器在具有二个显示屏时还可包括一组显示屏调整机构,通过此机构可以对两个显示屏的姿态进行调节以适应于观察者的瞳距和视力等要求等并协助观察者融合两个显示屏中图像,这对于把可穿戴显示设备用于立体显微镜观察时尤为需要。
以下就具体实施方式进行说明:
图1所示为一个用于单筒显微镜观察的可穿戴显示设备的实施方法。其中视频传感头通过线缆连接外置主机内的图像处理器以及可穿戴显示器:具体实施方式是将一个视频传感头1通过其具有的安装卡口10安装在单筒显微镜的目镜3上,视频传感头获得的图像通过线缆2传送到外置主机4,经图像处理器对图像数据进行处理后,再通过线缆传送给可穿戴显示器5的显示屏6进行显示,也可传输给其他外部显示器7进行显示。对于单筒显微镜的应用,所述可穿戴显示器可以只具有一个显示屏。当所述可穿戴显示器5具有二个显示屏时,还可包括一组显示屏调整机构(61、62),通过所述调整机构可以对两个显示屏(6)的姿态进行调节以适应于观察者的瞳距和视力等要求等并协助观察者融合两个显示屏上的图像,这种调整机构尤其适用于立体图像的观察。
图2所示另一个用于单筒显微镜观察的可穿戴显示设备的实施方法。其中视频传感头通过线缆连接外置主机内的图像处理器,可穿戴显示器则具有无线功能,可通过无线方法与具有图像处理器的外置主机连接。具体实施方式是:将一个视频传感头1通过其具有的安装卡口10安装在单筒显微镜的目镜3上,视频传感头获得的图像通过线缆2传送到外置主机4,经图像处理器对图像数据进行处理后,再通过无线连接传送给可穿戴显示器51的显示屏6进行显示,也可传输给其他外部显示器7进行显示。当所述可穿戴显示器51具有二个显示屏时,还可包括一组显示屏调整机构(61、 62),通过所述调整机构可以对两个显示屏6的姿态进行调节以适应于观察者的瞳距和视力等要求等并协助观察者融合两个显示屏上的图像,这种调整机构尤其适用于立体图像的观察。
图3所示为第三个用于单筒显微镜观察的可穿戴显示设备的实施方法。其中具有无线传输功能的视频传感头通过无线方法连接外置主机的图像处理器,而可穿戴显示器则通过线缆与所述图像处理器连接:具体实施方法是将一个具有无线传输功能的视频传感头11通过其具有的安装卡口10安装在单筒显微镜的目镜3上,所述视频传感头获得的图像通过无线连接传送到外置主机4,经图像处理器对图像数据进行处理后再通过线缆连接2传送给可穿戴显示器5的显示屏6进行显示,也可传输给其他外部显示器7进行显示。当所述可穿戴显示器5具有二个显示屏时,还可包括一组显示屏调整机构(61、62),通过所述调整机构可以对两个显示屏6的姿态进行调节以适应于观察者的瞳距和视力等要求等并协助观察者融合两个显示屏上的图像,这种调整机构尤其适用于立体图像的观察。
图4所示为第四个用于单筒显微镜观察通过无线连接的可穿戴显示设备的实施方法。其中具有无线传输功能的视频传感头通过无线方法连接外置主机内的图像处理器以及具无线连接功能的可穿戴显示器:具体实施方法是将一个具有无线传输功能的视频传感头11通过其具有的安装卡口10安装在单筒显微镜的目镜3上,所述视频传感头获得的图像通过无线连接传送到外置主机4内经图像处理器对图像数据进行处理后再通过无线连接传送给所述具无线连接功能的可穿戴显示器51的显示屏6进行显示,也可传输给其他外部显示器7进行显示。当所述可穿戴显示器51具有二个显示屏时,还可包括一组显示屏调整机构(61、62),通过所述调整机构可以对两个显示屏6的姿态进行调节以适应于观察者的瞳距和视力等要求等并协助观察者融合两个显示屏上的图像,这种调整机构尤其适用于立体图像的观察。
图5所示为第五个用于单筒显微镜观察的可穿戴显示设备的实施方法。其中图像处理器被安装在视频传感头内,所述具有内置图像处理器的视频传感头通过线缆连接可穿戴显示器。具体实施方式是将一个所述具有内置图像处理器的视频传感头12通过其具有的安装卡口10安装在单筒显微镜的目镜3上,视频传感头12获得的图像经图像处理器进行处理后再通过线缆连接2传送给可穿戴显示器5的显示屏6进行显示,也可传输给其他外部显示器进行显示。当所述可穿戴显示器5具有二个显示屏时,还可包括一组显示屏调整机构(61、62),通过所述调整机构可以对两个显示屏6的姿 态进行调节以适应于观察者的瞳距和视力等要求等并协助观察者融合两个显示屏上的图像,这种调整机构尤其适用于立体图像的观察。
图6所示为第六个用于单筒显微镜观察可穿戴显示设备的实施方法。其中图像处理器被安装在视频传感头内,所述视频传感头具有图像处理器,通过无线方法与可穿戴显示器连接。具体实施方式是将一个所述具有内置图像处理器与无线传输功能的的视频传感头13通过其具有的安装卡口10安装在单筒显微镜的目镜3上,视频传感头13获得的图像经图像处理器处理后再通过无线的方法传送给具有无线连接功能的可穿戴显示器51的显示屏6进行显示,也可传输给其他外部显示器进行显示。当所述可穿戴显示器51具有二个显示屏时,还可包括一组显示屏调整机构(61、62),通过所述调整机构可以对两个显示屏6的姿态进行调节以适应于观察者的瞳距和视力等要求等并协助观察者融合两个显示屏上的图像,这种调整机构尤其适用于立体图像的观察。
上述的用于单筒显微镜的可穿戴显示设备也可以扩展到双筒显微镜。图7说明了一个用于双筒显微镜观察的可穿戴显示设备的具体实施方法,图7说明了一个用于双筒显微镜观察的可穿戴显示设备的具体实施方法,其中视频传感头通过线缆连接外置主机中的图像处理器,后者再通过线缆与可穿戴显示器连接进行工作。具体实施方法是将两个视频头1通过其具有的安装卡口10分别对应安装在双筒显微镜的两个目镜(31、32)上,两个视频传感头获得的图像分别通过线缆2传送到外置主机4,经图像处理器对图像数据进行处理后再通过线缆传送给可穿戴显示器5的显示屏6进行显示,也可传输给其他外部显示器7进行显示;对于非体视显微镜的应用,所述可穿戴显示器5可以只具有一个显示屏也可以具有二个显示屏。当所述可穿戴显示设备用于双筒体视显微镜时,二个视频传感头1分别采集输入的视频信号经图像处理器后由可穿戴显示器5的二个显示屏6分别进行显示。观察者即可通过所述可穿戴显示设备观察到立体的图像。外置主机,图像处理器和可穿戴显示器上均可包括操作面板或界面,供使用者对图像的显示、储存、观察模式、图像亮度及对比度、参数输入输出等进行控制。观察者通过这套可穿戴显示设备进行显微镜观察的同时,可以在显示屏上同时读取通过外置主机、图像处理器或其他***设备输入的信息,数据或操作参数。当所述可穿戴显示器5具有二个显示屏时,还可包括一组显示屏调整机构(61、62),通过所述调整机构可以对两个显示屏6的姿态进行调节以适应于观察者的瞳距和视力等要求等并协助观察者融合两个显示屏上的图像,这种调整机构尤其适用于立体图像的 观察。
图8说明了又一个用于双筒显微镜观察的可穿戴显示设备的具体实施方法,其中视频传感头通过线缆连接外置主机中的图像处理器,后者再通过无线与可穿戴显示器连接进行工作。具体实施方法是将两个视频头1通过其具有的安装卡口10分别对应安装在双筒显微镜的目镜(31、32)上,两个视频传感头获得的图像分别通过线缆2传送到外置主机4,经图像处理器进行处理后再通过无线连接传送给具无线连接功能的可穿戴显示器51的显示屏6进行显示,也可传输给其他外部显示器7进行显示;对于非体视显微镜的应用,所述可穿戴显示器51可以只具有一个显示屏也可以具有二个显示屏。当所述可穿戴显示设备用于双筒体视显微镜时,二个视频传感头1分别采集输入的视频信号经图像处理器后由可穿戴显示器51的二个显示屏6分别进行显示。观察者即可通过所述可穿戴显示设备观察到立体的图像。外置主机,图像处理器和可穿戴显示器上均可包括操作面板或界面,供使用者对图像的显示、储存、观察模式、图像亮度及对比度、参数输入输出等进行控制。观察者通过这套可穿戴显示设备进行显微镜观察的同时,可以在显示屏上同时读取通过外置主机、图像处理器或其他***设备输入的信息,数据或操作参数。当具无线连接功能的可穿戴显示器51具有二个显示屏时,还可包括一组显示屏调整机构(61、62),通过所述调整机构可以对两个显示屏6的姿态进行调节以适应于观察者的瞳距和视力等要求等并协助观察者融合两个显示屏上的图像,这种调整机构尤其适用于立体图像的观察。
图9说明了第三个用于双筒显微镜观察无线的可穿戴显示设备的具体实施方法,其中具无线传输功能的视频传感头通过无线连接外置主机中的图像处理器,后者再通过线缆与可穿戴显示器连接进行工作。具体实施方法是将两个具无线传输功能的视频传感头11通过其具有的安装卡口10分别对应安装在双筒显微镜的目镜(31、32)上,两个所述视频传感头11获得的图像分别通过无线连接传送到外置主机4,经图像处理器对图像数据进行处理后再通过线缆传送给可穿戴显示器5的显示屏6进行显示,也可传输给其他外部显示器7进行显示;其中二个具无线传输功能的视频传感头11分别采集的图像数据经图像处理器处理后由可穿戴显示器5的显示屏6分别进行显示。对于非体视显微镜的应用,所述可穿戴显示器5可以只具有一个显示屏或可以具有二个显示屏。当所述可穿戴显示设备用于双筒体视显微镜时,二个具无线传输功能的视频传感头11分别采集的视频信号经图像处理器处理后由可穿戴显示器5的二个显示屏6分别进行显示。观察者即可通过所述可穿戴显示设备观察到立体的图像。外置主 机,图像处理器和可穿戴显示器上均可包括操作面板或界面,供使用者对图像的显示、储存、观察模式、图像亮度及对比度、参数输入输出等进行控制。观察者通过这套可穿戴显示设备进行显微镜观察的同时,可以在显示屏上同时读取通过外置主机,图像处理器或其他***设备输入的信息,数据或操作参数。当可穿戴显示器5具有二个显示屏时,还可包括一组显示屏调整机构(61、62),通过所述调整机构可以对两个显示屏6的姿态进行调节以适应于观察者的瞳距和视力等要求等并协助观察者融合两个显示屏上的图像,这种调整机构尤其适用于立体图像的观察。
图10所示为第四个用于双筒显微镜观察的可穿戴显示设备的具体实施方法,其中具无线传输功能的视频传感头通过无线连接外置主机中的图像处理器,后者再通过无线与具无线连接功能的可穿戴显示器连接进行工作。具体实施方法是将两个具有无线传输功能的视频传感头11通过其具有的安装卡口10分别安装在双筒显微镜的目镜(31、32)上,两个具有无线传输功能的视频传感头获得的图像分别通过无线连接传送到外置主机4中经图像处理器进行处理后再通过无线方法传送给具有无线连接功能的可穿戴显示器51的显示屏6进行显示,也可传输给其他外部显示器7进行显示;其中二个具无线传输功能的视频传感头11分别采集的图像数据经图像处理器处理后由具有无线连接功能可穿戴显示器51的显示屏6分别进行显示。对于非体视显微镜的应用,所述可穿戴显示器51可以只具有一个显示屏或也可以具有二个显示屏。当所述可穿戴显示设备用于双筒体视显微镜时,二个具无线传输功能的视频传感头11分别采集的视频信号经图像处理器处理后由具有无线连接功能的可穿戴显示器51的二个显示屏6分别进行显示。观察者即可通过所述可穿戴显示设备观察到立体的图像。外置主机,图像处理器和可穿戴显示器上均可包括操作面板或界面,供使用者对图像的显示、储存、观察模式、图像亮度及对比度、参数输入输出等进行控制。观察者通过这套可穿戴显示设备进行显微镜观察的同时,可以在显示屏上同时读取通过外置计算机,图像处理器或其他***设备输入的信息,数据或操作参数。当具无线连接功能的可穿戴显示器51具有二个显示屏时,还可包括一组显示屏调整机构(61、62),通过所述调整机构可以对两个显示屏6的姿态进行调节以适应于观察者的瞳距和视力等要求等并协助观察者融合两个显示屏上的图像,这种调整机构尤其适用于立体图像的观察。
图11所示为第五个用于双筒显微镜观察的可穿戴显示设备的具体实施方法,其中视频传感头具有内置的图像处理器,通过线缆与可穿戴显示器连接进行工作。具体 方法是将两个具有内置图像处理器的视频传感头12通过其具有的安装卡口10分别对应安装在双筒显微镜的目镜(31、32)上,两个视频传感头获得的图像由所述内置图像处理器处理后,再通过线缆传送给可穿戴显示器5的显示屏6进行显示,也可传输给其他外部显示器进行显示;其中二个具有内置图像处理器的视频传感头12分别采集的图像数据经图像处理器处理后由可穿戴显示器5的二个显示屏6分别进行显示。对于非体视显微镜的应用,所述可穿戴显示器5可以只具有一个显示屏或也可以具有二个显示屏。当所述可穿戴显示设备用于双筒体视显微镜时,二个有内置图像处理器的视频传感头12分别采集的视频信号经图像处理器处理后由可穿戴显示器5的二个显示屏6分别进行显示。观察者即可通过所述可穿戴显示设备观察到立体的图像。可穿戴显示器5上可包括操作面板或界面,其中所包含的图像处理器等可无线与外部设备对接供使用者对图像的显示、储存、观察模式、图像亮度及对比度、参数输入输出等进行控制。观察者通过这套可穿戴显示设备进行显微镜观察的同时,可以在显示屏上同时读取通过外置设备,服务器或其他***设备输入的信息,数据或操作参数。当可穿戴显示器5具有二个显示屏时,还可包括一组显示屏调整机构(61、62),通过所述调整机构可以对两个显示屏6的姿态进行调节以适应于观察者的瞳距和视力等要求等并协助观察者融合两个显示屏上的图像,这种调整机构尤其适用于立体图像的观察。
图12所示为第六个用于双筒显微镜观察的可穿戴显示设备的具体实施方法,其中具有无线传输功能的视频传感头具有内置的图像处理器,通过无线方法与具无线连接功能的可穿戴显示器连接进行工作。具体方法是将两个具有内置图像处理器的且具无线功能的视频头13通过其具有的安装卡口10分别安装在双筒显微镜的目镜(31、32)上,两个所述视频传感头获得的图像由所述内置图像处理器处理后,再通过无线方法传送给具无线连接功能的可穿戴显示器51的显示屏6上进行显示,也可传输给其他外部显示器进行显示;其中二个具有内置图像处理器以及无线传输功能的视频传感头13分别采集的图像数据经图像处理器处理后由具无线连接功能的可穿戴显示器51的二个显示屏6分别进行显示。对于非体视显微镜的应用,所述具无线连接功能的可穿戴显示器51可以只具有一个显示屏或也可以具有二个显示屏。当所述可穿戴显示设备用于双筒体视显微镜时,二个有内置图像处理器及有无线传输功能的视频传感头13分别采集的视频信号经图像处理器处理后由具有无线连接功能的可穿戴显示器51的二个显示屏6分别进行显示。观察者即可通过所述可穿戴显示设备观察到立体的 图像。可穿戴显示器上可包括操作面板或界面,其中所包含的图像处理器等可无线与外部设备对接供使用者对图像的显示、储存、观察模式、图像亮度及对比度、参数输入输出等进行控制。观察者通过这套可穿戴显示设备进行显微镜观察的同时,可以在显示屏上同时读取通过外置设备,服务器或其他***设备输入的信息,数据或操作参数。当可穿戴显示器5具有二个显示屏时,还可包括一组显示屏调整机构(61、62),通过所述调整机构可以对两个显示屏6的姿态进行调节以适应于观察者的瞳距和视力等要求等并协助观察者融合两个显示屏上的图像,这种调整机构尤其适用于立体图像的观察。
以上的实施例只是部分说明了本发明的实施方法。在这个基础上还可推出许多组合来组成用于通过显微镜目镜观察的可穿戴设备。比如所述图像处理器可以内置于可穿戴显示器内;或者可穿戴显示器和视频传感头可以同时具有图像处理器,起到加强或协同的作用。另外为了简化结构,在用于双筒显微镜上进行观察时,两个视频传感头可以先连接在一起,然后通过单根线缆与图像传感器或可穿戴显示器连接。
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (8)

  1. 一种用于显微镜观察的可穿戴式显示设备,其特征是:包括一个可穿戴显示器,至少一个视频传感头和一个图像处理器,其中所述可穿戴显示器至少具有一个显示屏,用于穿戴者的观察,所述视频传感头具有安装卡口,可直接安装在显微镜的目镜上获取图像信息,并将所获取的图像信息送入所述图像处理器进行处理,所述图像处理器输出的视频信号即可通过所述显示屏进行显示;通过所述可穿戴式显示设备,观察者可以无需对显微镜进行任何改造的条件下对显微镜目镜里的图像进行远程观察。
  2. 一种用于双筒显微镜观察的可穿戴式显示设备,其特征是:包括一个可穿戴显示器,两个视频传感头和一个图像处理器,其中所述可穿戴显示器具有两个显示屏,分别用于左眼和右眼的观察,所述视频传感头具有安装卡口可分别直接安装在双筒显微镜的目镜上获取图像信息,并将通过两个目镜所获取的图像信息分别送入所述图像处理器进行处理,所述图像处理器输出的视频信号即可分别通过所述显示屏进行显示;通过所述可穿戴式显示设备,观察者可以无需对该显微镜进行任何改造的条件下对目镜里的图像进行远程观察。
  3. 根据权利要求2所述的可穿戴式显示设备,其中所述双筒显微镜是立体显微镜。
  4. 根据权利要求2所述的可穿戴式显示设备,其中可穿戴显示器包括一组显示屏调整机械结构,通过此机械结构可以对两个显示屏的姿态进行调节以适应于观察者的瞳距和视力等要求并协助观察者融合两个显示屏中图像。
  5. 根据权利要求2所述的可穿戴式显示设备,其中所述图像处理器具有多个输出接口可同时提供多个观察者利用可穿戴显示器同时观察。
  6. 根据权利要求2所述的可穿戴式显示设备,其中所述图像处理器配置有数字输入口,网络***,微处理器和储存功能,并在需要时将所储存的信息和数据投放到所述可穿戴显示器的至少一个显示屏上供观察者参考使用。
  7. 根据权利要求2所述的可穿戴式显示设备,另外包括至少一个与图像处理器连接的屏幕,同步显示可穿戴显示器中所显示的信息。
  8. 根据权利要求2所述的可穿戴式显示设备,其中所述图像处理器与视频传感头和或可穿戴显示器之间的连接为无线连接。
PCT/CN2021/125487 2020-11-12 2021-10-22 一种可穿戴式显示设备 WO2022100405A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011263505.9 2020-11-12
CN202011263505.9A CN114488507A (zh) 2020-11-12 2020-11-12 一种可穿戴式显示设备

Publications (1)

Publication Number Publication Date
WO2022100405A1 true WO2022100405A1 (zh) 2022-05-19

Family

ID=81490349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125487 WO2022100405A1 (zh) 2020-11-12 2021-10-22 一种可穿戴式显示设备

Country Status (2)

Country Link
CN (1) CN114488507A (zh)
WO (1) WO2022100405A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002426A (en) * 1997-07-02 1999-12-14 Cerprobe Corporation Inverted alignment station and method for calibrating needles of probe card for probe testing of integrated circuits
CN206790637U (zh) * 2017-06-09 2017-12-22 中国科学院心理研究所 一种基于头动控制的远程摄像***
CN111405866A (zh) * 2017-11-30 2020-07-10 医学技术有限责任公司 用于眼部治疗的沉浸式显示***
CN214623181U (zh) * 2020-11-12 2021-11-05 上海珩之科技有限公司 一种可穿戴式显示设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2860384Y (zh) * 2005-11-24 2007-01-24 苏州六六视觉科技股份有限公司 视频立体成像手术显微装置
CN105100712A (zh) * 2015-07-12 2015-11-25 顾雍舟 头戴式立体显示显微外科手术***
CN107913107A (zh) * 2016-10-08 2018-04-17 上海安信光学仪器制造有限公司 3d头盔式手术显微镜***
CN206865633U (zh) * 2017-01-23 2018-01-09 北京山桐科技有限公司 视觉增强穿戴设备
CN209611347U (zh) * 2018-12-29 2019-11-12 西诺医疗器械集团有限公司 基于双目视觉的口腔3d显微***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002426A (en) * 1997-07-02 1999-12-14 Cerprobe Corporation Inverted alignment station and method for calibrating needles of probe card for probe testing of integrated circuits
CN206790637U (zh) * 2017-06-09 2017-12-22 中国科学院心理研究所 一种基于头动控制的远程摄像***
CN111405866A (zh) * 2017-11-30 2020-07-10 医学技术有限责任公司 用于眼部治疗的沉浸式显示***
CN214623181U (zh) * 2020-11-12 2021-11-05 上海珩之科技有限公司 一种可穿戴式显示设备

Also Published As

Publication number Publication date
CN114488507A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
US20210022599A1 (en) Augmented and extended reality glasses for use in surgery visualization and telesurgery
US9766441B2 (en) Surgical stereo vision systems and methods for microsurgery
JP6264087B2 (ja) 表示制御装置、表示装置および表示制御システム
US11628038B2 (en) Multi-option all-digital 3D surgery visualization system and control
EP2903551B1 (en) Digital system for surgical video capturing and display
US20170160549A1 (en) Augmented reality glasses for medical applications and corresponding augmented reality system
US20210335483A1 (en) Surgery visualization theatre
WO2015156442A1 (ko) 3d 비디오 현미경 장치
CN201375505Y (zh) 医用立体显像***
CN109644266B (zh) 能够实现手术区域的深度感知的立体可视化***
WO2023040637A1 (zh) 一种显示3d图像的手术显微镜***
WO2021062375A1 (en) Augmented and extended reality glasses for use in surgery visualization and telesurgery
CN214623181U (zh) 一种可穿戴式显示设备
WO2021226134A1 (en) Surgery visualization theatre
US20230355346A1 (en) Surgical microscope having assistant's device
CN102809808A (zh) 医用3d影像手术显微镜***
CN2860384Y (zh) 视频立体成像手术显微装置
CN111405866A (zh) 用于眼部治疗的沉浸式显示***
WO2016086438A1 (zh) 针对视觉障碍患者的头戴式多媒体终端辅助观看***
WO2022127824A1 (zh) 一种显微镜显示设备
Kim et al. See-through type 3D head-mounted display–based surgical microscope system for microsurgery: a feasibility study
WO2022100405A1 (zh) 一种可穿戴式显示设备
JP7453403B2 (ja) ヘッドマウント可視化システム
WO2022062383A1 (zh) 一种显微手术辅助装置
CN209750986U (zh) 一种虚拟现实全景医用内窥镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890932

Country of ref document: EP

Kind code of ref document: A1