WO2022099644A1 - 一种数据传输方法、装置及电子设备 - Google Patents

一种数据传输方法、装置及电子设备 Download PDF

Info

Publication number
WO2022099644A1
WO2022099644A1 PCT/CN2020/128803 CN2020128803W WO2022099644A1 WO 2022099644 A1 WO2022099644 A1 WO 2022099644A1 CN 2020128803 W CN2020128803 W CN 2020128803W WO 2022099644 A1 WO2022099644 A1 WO 2022099644A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
data transmission
occupied
response
mcot
Prior art date
Application number
PCT/CN2020/128803
Other languages
English (en)
French (fr)
Inventor
付婷
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/128803 priority Critical patent/WO2022099644A1/zh
Priority to CN202080003297.0A priority patent/CN114846894A/zh
Publication of WO2022099644A1 publication Critical patent/WO2022099644A1/zh
Priority to US18/196,976 priority patent/US20230284270A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present disclosure relates to the field of wireless communication, and in particular, to a data transmission method, an apparatus, and an electronic device.
  • the channel access (Channel Access) mechanism of LBT (Listen Before Talk) on the unlicensed frequency band is usually used.
  • LBT Listen Before Talk
  • the no-LBT channel access mechanism is often used for data transmission. In this case, it is very easy for the transmitting end to occupy the channel almost continuously. In this way, it is bound to cause a single node to occupy the channel almost continuously, thereby causing continuous interference to other adjacent nodes.
  • the embodiment of the first aspect of the present disclosure proposes a data transmission method, which is suitable for a channel access scenario without listen-before-talk on an unlicensed frequency band, including: reaching the first channel in response to the occupancy duration of the currently occupied first channel The maximum occupation duration MCOT of the channel, release the first channel; in response to the data transmission instruction, obtain the first time interval between the data transmission start time and the release time of the first channel; in response to the first time When the interval reaches the first preset duration, the second channel is occupied for data transmission.
  • the first preset duration is positively correlated with the MCOT of the first channel; or, the first preset duration is a fixed value.
  • it also includes: for the occupied first signal or the second channel, starting from the occupied moment of the occupied channel, timing the current occupied duration of the occupied channel; in response to the current occupied time The occupancy duration does not reach the MCOT of the occupied channel, and obtain the second time interval between the current data transmission and the previous data transmission in the MCOT of the occupied channel; in response to the second time interval being less than or equal to For the second preset time period, the occupied channel continues to transmit data within the MCOT of the occupied channel.
  • the method further includes: in response to the second time interval being greater than the second preset duration, re-occupying a channel for data transmission.
  • the second preset duration is a fixed value greater than the default value; or the second preset duration is greater than the default value and is positively correlated with the MCOT of the occupied channel
  • a release module configured to release the first channel in response to the occupied duration of the currently occupied first channel reaching the maximum occupied duration MCOT of the first channel;
  • a first acquisition module configured to acquire the first time interval between the start moment of data transmission and the release moment of the first channel in response to the data transmission instruction
  • the first transmission module is configured to occupy the second channel for data transmission in response to the first time interval reaching a first preset duration.
  • the release module is further configured to not initiate data transmission in response to the first time interval not reaching the first preset duration.
  • the first preset duration is positively correlated with the MCOT of the first channel; or, the first preset duration is a fixed value.
  • a timing module configured to, for the occupied first signal or the second channel, time the current occupied duration of the occupied channel from the occupied moment of the occupied channel.
  • the second acquisition module is configured to obtain the second data transmission between the current data transmission and the previous data transmission in the MCOT of the occupied channel in response to the current occupied duration not reaching the MCOT of the occupied channel.
  • a time interval the second transmission module is configured to continue to use the occupied channel to transmit data within the MCOT of the occupied channel in response to the second time interval being less than or equal to a second preset duration.
  • the second transmission module is further configured to: in response to the second time interval being greater than the second preset duration, re-occupy a channel for data transmission.
  • the second preset duration is a fixed value greater than a default value; or the second preset duration is greater than the default value and is positively correlated with the MCOT of the occupied channel.
  • An embodiment of a third aspect of the present disclosure provides an electronic device, including:
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to execute the data described in the embodiments of the first aspect of the present disclosure transfer method.
  • the embodiment of the fourth aspect of the present disclosure provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the storage medium provided by the embodiment of the first aspect. data transfer method.
  • a data transmission method, device, and electronic device provided by the embodiments of the present disclosure can reach the first channel by responding to the occupancy duration of the currently occupied first channel for a channel access scenario in which there is no listen-before-talk on an unlicensed frequency band
  • the maximum occupation time MCOT of the first channel is released, and in response to the data transmission instruction, the first time interval between the data transmission start time and the release time of the first channel is obtained, and then the first time interval is reached in response to the first time interval.
  • the preset duration, occupying the second channel for data transmission avoids the problem that the transmitting end almost continuously occupies the channel, ensures that other adjacent nodes will not cause continuous interference and other effects, and improves the quality of data transmission and the reliability of the data transmission process. and effectiveness.
  • FIG. 1 is a schematic flowchart of a data transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of another data transmission method provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of another data transmission method provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a data transmission device proposed by the present disclosure.
  • FIG. 5 is a schematic structural diagram of another data transmission device proposed by the present disclosure.
  • FIG. 6 is a schematic structural diagram of an electronic device proposed by the present disclosure.
  • FIG. 1 is a schematic flowchart of a data transmission method provided by an embodiment of the present disclosure, which is applicable to a channel access scenario in which there is no listen-before-talk on an unlicensed frequency band. As shown in Figure 1, the data transmission method includes the following steps:
  • Step 101 in response to the occupied duration of the currently occupied first channel reaching the maximum occupied duration MCOT of the first channel, release the first channel.
  • the transmitter usually needs to monitor the channel before occupying the channel to send data, that is, CCA (Clear Channel Assessment, idle channel assessment).
  • CCA Carrier Channel Assessment, idle channel assessment
  • the transmitting end After the transmitting end performs CCA, if it is identified that the channel is idle, it can occupy the channel to send data.
  • the MCOT Maximum Channel Occupy Time, maximum duration
  • the foregoing process is generally referred to as a channel access (Channel Access) mechanism of LBT (Listen Before Talk, listen before talk) on an unlicensed frequency band.
  • the gap (interval) between two data transmissions by the transmitting end is less than the preset duration, it can be considered that The aforementioned two data transmissions belong to the same transmission, and thus can share the same COT (occupancy time).
  • the preset duration may be 16us, 25us, or the like.
  • the transmitting end occupies the channel MCOT for the duration, it needs to end the transmission.
  • the MCOT set by the transmitter is 6ms. After the transmitter starts to occupy the channel, it continuously sends data for 4ms, and then suspends the transmission, and the paused Gap duration is T. Further, the transmitter can start the next transmission. In this case, if T is less than or equal to 16us, it can be considered that this transmission and the transmission before the suspension belong to the same transmission, the transmitter does not need to perform LBT, and can directly start the transmission, and the transmission duration can last up to 2ms-T. , that is, the channel occupation duration of the two transmissions is shared. If T is greater than 16us, it can be considered that this transmission does not belong to the same transmission as the transmission before the suspension, but is a new transmission, and further LBT needs to be performed again.
  • the channel access mechanism of no-LBT no listen before talk
  • the transmitting end may not need to perform LBT before sending the data, and directly send the data.
  • the no-LBT channel access mechanism is adopted for the channel access scenario where there is no listen-before-talk on the unlicensed frequency band. In this case, it is very easy for the transmitter to occupy the channel almost continuously. In this way, it is bound to cause a single node to occupy the channel almost continuously, thereby causing continuous interference to other adjacent nodes. In addition, when the transmitting end occupies the channel MCOT for the duration, it needs to end the transmission. However, due to the use of the no-LBT mechanism, the transmitter can immediately start the next transmission, which also causes the transmitter to continuously occupy the channel.
  • the transmitter only needs to interrupt the transmission for more than 16us, that is, the duration of the 120kHz subcarrier is about 2 symbols, that is, the channel can be reoccupied for the duration of the MCOT.
  • the present disclosure can release the first channel after the MCOT ends, in response to the occupancy duration of the currently occupied first channel reaching the maximum occupancy duration MCOT of the first channel.
  • Step 102 in response to the data transmission instruction, obtain a first time interval between the start time of data transmission and the release time of the first channel.
  • the first time interval refers to the gap between two adjacent transmissions.
  • the first time interval between the data transmission start time and the release time of the first channel is obtained, and marked as ⁇ t 1 .
  • Step 103 in response to the first time interval reaching the first preset duration, occupy the second channel for data transmission.
  • the second channel may be occupied for data transmission.
  • the first preset duration may be set according to actual conditions.
  • the first preset duration T 1 may be set as a value bound to the MCOT of the first channel, or the first preset duration T 1 may be set as a fixed value.
  • the data transmission method proposed in the present disclosure for a channel access scenario where there is no listen-before-talk on an unlicensed frequency band, can release the first channel in response to the currently occupied first channel occupancy duration reaching the maximum occupancy duration MCOT of the first channel.
  • channel and in response to the data transmission instruction, obtain the first time interval between the start time of data transmission and the release time of the first channel, and then occupy the second channel in response to the first time interval reaching the first preset duration.
  • Data transmission avoids the problem that the transmitting end almost continuously occupies the channel, ensures that other adjacent nodes will not cause continuous interference and other effects, and improves the quality of data transmission and the reliability and effectiveness of the data transmission process.
  • the first preset duration may be a value bound to the MCOT of the first channel.
  • the first preset duration T1 may be set to be a value bound to the MCOT of the first channel.
  • MCOT is a value that is positively correlated.
  • the larger the MCOT the larger the value of the first preset duration T1; optionally, the first preset duration T1 can be set to a fixed value, such as 6ms, 8ms Wait.
  • the first preset duration can be set as a value that is positively correlated with the MCOT of the first channel.
  • the second channel in response to the first time interval reaching the first preset duration, for example, ⁇ t 1 ⁇ T 1 , the second channel may be occupied for data transmission; in response to the first time interval not reaching the first preset duration, for example, ⁇ t 1 ⁇ T 1 , data transmission may not be initiated.
  • the first preset duration can be set to 6ms.
  • the second preset duration in response to the first time interval reaching the first preset duration, for example, ⁇ t 1 is 8ms, the second preset duration can be occupied.
  • the channel performs data transmission; in response to the first time interval not reaching the first preset duration, for example, ⁇ t 1 is 4ms, data transmission may not be initiated.
  • the data transmission method proposed by the present disclosure can be achieved by, in response to the data transmission instruction, obtaining the first time interval between the data transmission start time and the release time of the first channel, in response to the first time interval not reaching the first predetermined time interval. If the duration is set, data transmission will not be initiated, which avoids the situation that the transmitting end continuously occupies the channel caused by the use of the no-LBT mechanism, and the transmitting end can immediately start the next transmission, which further improves the quality of data transmission and the reliability of the data transmission process. sex and effectiveness.
  • the transmitter can immediately start the next transmission, thereby causing the transmitter to continuously occupy the channel.
  • the second time interval between the current data transmission and the previous data transmission in the MCOT, and according to the second time interval, a matching channel occupation policy is determined.
  • Step 201 starting from the occupied moment of each occupied channel, time the current occupied duration of the occupied channel.
  • the current occupied duration of the occupied channel is timed and marked as t.
  • Step 202 in response to the current occupancy duration not reaching the MCOT of the occupied channel, obtain a second time interval between the current data transmission and the previous data transmission in the MCOT of the occupied channel.
  • the second time between the current data transmission and the previous data transmission in the MCOT of the occupied channel can be obtained interval.
  • the second time interval between the current data transmission and the previous data transmission within the MCOT of the occupied channel is obtained, and marked as ⁇ t 2 .
  • Step 203 in response to the second time interval being less than or equal to the second preset duration, continue to use the occupied channel to transmit data within the MCOT of the occupied channel.
  • Step 204 in response to the second time interval being greater than the second preset duration, re-occupy the channel for data transmission.
  • the second preset duration may be a value greater than the default value and bound to the MCOT of the occupied channel.
  • the first preset duration may be set to 2.
  • the preset duration T 2 is a value greater than 16us and is positively correlated with the MCOT of the occupied channel. In this case, the larger the MCOT, the greater the value of the second preset duration T 2 ;
  • the second preset duration T 2 is set as a fixed value, such as 1 ms.
  • the second preset duration may be set to a value greater than the default value and positively correlated with the MCOT of the occupied channel.
  • the duration for example, ⁇ t 2 ⁇ T 2
  • the second time interval being greater than the second preset duration, for example, ⁇ t 2 > T 2
  • the channel can be re-occupied for data transmission.
  • the second preset duration may be set to 0.5ms.
  • the second time interval being less than or equal to the second preset duration, for example, ⁇ t 2 is 8us, then Continue to use the occupied channel to transmit data within the MCOT of the occupied channel; in response to the second time interval being greater than the second preset duration, for example ⁇ t 2 is 0.7ms, the channel can be re-occupied for data transmission.
  • FIG. 3 is a data transmission method proposed by another embodiment of the application, as shown in FIG. 3 , which specifically includes the following steps:
  • Step 301 for the occupied first channel or the second channel, starting from the occupied time of the occupied channel, time the current occupied duration of the occupied channel.
  • Step 302 in response to the current occupancy duration not reaching the MCOT of the occupied channel, obtain a second time interval between the current data transmission and the previous data transmission in the MCOT of the occupied channel.
  • the second time between the current data transmission and the previous data transmission in the MCOT of the occupied channel can be obtained interval.
  • the second time interval between the current data transmission and the previous data transmission within the MCOT of the occupied channel is obtained, and marked as ⁇ t 2 .
  • Step 303 in response to the second time interval being less than or equal to the second preset duration, continue to use the occupied channel to transmit data within the MCOT of the occupied channel.
  • the second preset duration may be a value greater than the default value and bound to the MCOT of the occupied channel.
  • the first preset duration may be set to 2.
  • the preset duration T 2 is a value greater than 16us and is positively correlated with the MCOT of the occupied channel. In this case, the larger the MCOT, the greater the value of the second preset duration T 2 ;
  • the second preset duration T 2 is set as a fixed value, such as 1 ms.
  • the second preset duration may be set to a value greater than the default value and positively correlated with the MCOT of the occupied channel.
  • the duration for example, ⁇ t 2 ⁇ T 2
  • the second time interval being greater than the second preset duration, for example, ⁇ t 2 > T 2
  • the channel can be re-occupied for data transmission.
  • the second preset duration may be set to 0.5ms.
  • the second time interval being less than or equal to the second preset duration, for example, ⁇ t 2 is 8us, then Continue to use the occupied channel to transmit data within the MCOT of the occupied channel; in response to the second time interval being greater than the second preset duration, for example ⁇ t 2 is 0.7ms, the channel can be re-occupied for data transmission.
  • Step 305 in response to the occupied duration of the currently occupied first channel reaching the maximum occupied duration MCOT of the first channel, release the first channel.
  • Step 306 in response to the data transmission instruction, obtain the first time interval between the start time of data transmission and the release time of the first channel.
  • the first time interval refers to the gap between two adjacent transmissions.
  • the first time interval between the data transmission start time and the release time of the first channel is obtained, and marked as ⁇ t 1 .
  • Step 307 in response to the first time interval reaching the first preset duration, occupy the second channel for data transmission.
  • the first preset duration may be set according to actual conditions.
  • the first preset duration T 1 may be set as a value bound to the MCOT of the first channel, or the first preset duration T 1 may be set as a fixed value.
  • the data transmission method proposed in the present disclosure is aimed at the channel access scenario in which there is no listen-before-talk on the unlicensed frequency band.
  • the second time interval between a data transmission, and the matching channel occupation strategy is determined according to the second time interval, which can avoid the use of the no-LBT mechanism, so that the transmitter can immediately start the next transmission, which leads to the continuous occupation of the transmitter.
  • the present disclosure also provides a data transmission apparatus. Since the data transmission apparatus provided by the embodiments of the present disclosure corresponds to the data transmission methods provided by the above-mentioned embodiments, The implementation manner of the data transmission method is also applicable to the data transmission apparatus provided in this embodiment, which will not be described in detail in this embodiment. 4 to 5 are schematic structural diagrams of a data transmission apparatus proposed according to the present disclosure.
  • the data transmission apparatus 3000 is suitable for a channel access scenario without listen-before-talk on an unlicensed frequency band, and includes a release module 310 , a first acquisition module 320 and a first transmission module 330 . in:
  • the release module 310 is configured to release the first channel in response to the occupied duration of the currently occupied first channel reaching the maximum occupied duration MCOT of the first channel;
  • the first acquisition module 320 is configured to, in response to the data transmission instruction, acquire the first time interval between the start moment of data transmission and the release moment of the first channel;
  • the first transmission module 330 is configured to occupy the second channel for data transmission in response to the first time interval reaching the first preset duration.
  • the release module 310 is further configured to:
  • the first preset duration is positively correlated with the MCOT of the first channel; or, the first preset duration is a fixed value.
  • the data transmission apparatus 3000 further includes:
  • the timing module 340 is configured to, for the occupied first channel or the second channel, time the current occupied duration of the occupied channel from the occupied moment of the occupied channel;
  • the second obtaining module 350 is configured to obtain the second data transmission between the current data transmission and the previous data transmission in the MCOT of the occupied channel in response to the current occupied time period not reaching the MCOT of the occupied channel time interval;
  • the second transmission module 360 is configured to continue to transmit data using the occupied channel within the MCOT of the occupied channel in response to the second time interval being less than or equal to the second preset duration.
  • the second transmission module 360 is further configured to:
  • the second preset duration is a fixed value greater than a default value; or the second preset duration is greater than the default value and is positively correlated with the MCOT of the occupied channel.
  • the data transmission method proposed in the present disclosure is aimed at the channel access scenario in which there is no listen-before-talk on the unlicensed frequency band.
  • the second time interval between a data transmission, and the matching channel occupation strategy is determined according to the second time interval, which can avoid the use of the no-LBT mechanism, so that the transmitter can immediately start the next transmission, which leads to the continuous occupation of the transmitter.
  • the situation of the channel optionally, after the MCOT ends, by obtaining the first time interval between the data transmission start time and the release time of the first channel, and according to the first time interval, determine the matching channel occupation strategy, It avoids the problem that the transmitting end occupies the channel almost continuously, ensures that other adjacent nodes will not cause continuous interference and other influences, and improves the quality of data transmission and the reliability and effectiveness of the data transmission process.
  • the present disclosure also provides an electronic device and a readable storage medium.
  • FIG. 6 it is a block diagram of an electronic device for data transmission according to an embodiment of the present disclosure.
  • Electronic devices are intended to represent various forms of digital computers, such as laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers.
  • Electronic devices may also represent various forms of mobile devices, such as personal digital processors, cellular phones, smart phones, wearable devices, and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions are by way of example only, and are not intended to limit implementations of the disclosure described and/or claimed herein.
  • the electronic device includes: one or more processors 510, a memory 520, and interfaces for connecting various components, including a high-speed interface and a low-speed interface.
  • the various components are interconnected using different buses and may be mounted on a common motherboard or otherwise as desired.
  • the processor may process instructions executed within the electronic device, including instructions stored in or on memory to display graphical information of the GUI on an external input/output device, such as a display device coupled to the interface.
  • multiple processors and/or multiple buses may be used with multiple memories and multiple memories, if desired.
  • multiple electronic devices may be connected, each providing some of the necessary operations (eg, as a server array, a group of blade servers, or a multiprocessor system).
  • a processor 510 is taken as an example in FIG. 6 .
  • the memory 520 is the non-transitory computer-readable storage medium provided by the present disclosure.
  • the memory stores instructions executable by at least one processor, so that the at least one processor executes the data transmission method provided by the present disclosure.
  • the non-transitory computer-readable storage medium of the present disclosure stores computer instructions for causing a computer to perform the data transmission method provided by the present disclosure.
  • the memory 520 can be used to store non-transitory software programs, non-transitory computer-executable programs, and modules, such as program instructions/modules corresponding to the data transmission methods in the embodiments of the present disclosure (for example, appendix).
  • the processor 510 executes various functional applications and data processing of the server by running the non-transitory software programs, instructions and modules stored in the memory 520, ie, implements the data transmission method in the above method embodiments.
  • the memory 520 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the positioning electronic device, and the like. Additionally, memory 520 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device. Optionally, memory 520 may optionally include memory located remotely from processor 510, and these remote memories may be connected to the positioning electronics via a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the electronic device for data transmission may further include: an input device 530 and an output device 540 .
  • the processor 510, the memory 520, the input device 530, and the output device 540 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 6 .
  • the input device 530 may receive input numerical or character information and generate key signal input related to user settings and functional control of the positioning electronic device, such as a touch screen, keypad, mouse, trackpad, touchpad, pointing stick, one or more Input devices such as mouse buttons, trackballs, joysticks, etc.
  • the output device 540 may include a display device, auxiliary lighting devices (eg, LEDs), and haptic feedback devices (eg, vibration motors), and the like.
  • the display device may include, but is not limited to, a liquid crystal display (LCD), a light emitting diode (LED) display, and a plasma display. In some implementations, the display device may be a touch screen.
  • Various implementations of the systems and techniques described herein can be implemented in digital electronic circuitry, integrated circuit systems, application specific ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpretable on a programmable system including at least one programmable processor that The processor, which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • the processor which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or apparatus for providing machine instructions and/or data to a programmable processor ( For example, magnetic disks, optical disks, memories, programmable logic devices (PLDs), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein may be implemented on a computer having a display device (eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user ); and a keyboard and pointing device (eg, a mouse or trackball) through which a user can provide input to the computer.
  • a display device eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor
  • a keyboard and pointing device eg, a mouse or trackball
  • Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (eg, visual feedback, auditory feedback, or tactile feedback); and can be in any form (including acoustic input, voice input, or tactile input) to receive input from the user.
  • the systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user's computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Wide Area Networks (WANs), and the Internet.
  • a computer system can include clients and servers.
  • Clients and servers are generally remote from each other and usually interact through a communication network.
  • the relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.
  • the data transmission method proposed in the present disclosure is aimed at the channel access scenario in which there is no listen-before-talk on the unlicensed frequency band.
  • the second time interval between a data transmission, and the matching channel occupation strategy is determined according to the second time interval, which can avoid the use of the no-LBT mechanism, so that the transmitter can immediately start the next transmission, which leads to the continuous occupation of the transmitter.
  • the situation of the channel optionally, after the MCOT ends, by obtaining the first time interval between the data transmission start time and the release time of the first channel, and according to the first time interval, determine the matching channel occupation strategy, It avoids the problem that the transmitting end occupies the channel almost continuously, ensures that other adjacent nodes will not cause continuous interference and other influences, and improves the quality of data transmission and the reliability and effectiveness of the data transmission process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出了一种物数据传输方法、装置及电子设备,涉及无线通信技术领域。该方案适用于非授权频段上无先听后说的信道接入场景,包括:响应于当前占用的第一信道的占用时长到达所述第一信道的占用最大时长MCOT,释放所述第一信道;响应于数据传输指令,获取数据传输起始时刻与所述第一信道的释放时刻之间的第一时间间隔;响应于所述第一时间间隔到达第一预设时长,占用第二信道进行数据传输,避免了发射端几乎连续占用信道的问题,确保了对其他临近节点不会造成持续干扰等影响,提高了数据传输质量以及数据传输过程中的可靠性和有效性。

Description

一种数据传输方法、装置及电子设备 技术领域
本公开涉及无线通信领域,特别是指一种数据传输方法、装置及电子设备。
背景技术
在进行非授权频谱上的数据传输时,通常采用非授权频段上的LBT(Listen Before Talk,先听后说)的信道接入(Channel Access)机制。然而在高频频率范围内,由于高频信道衰减较大,往往采用no-LBT的信道接入机制进行数据传输。此种情况下,则极易发生发射端几乎连续占用信道的情况。这样一来,势必导致单一节点几乎连续占用信道,从而对其他临近节点造成持续干扰等影响。
发明内容
本公开第一方面实施例提出了一种数据传输方法,适用于非授权频段上无先听后说的信道接入场景,包括:响应于当前占用的第一信道的占用时长到达所述第一信道的占用最大时长MCOT,释放所述第一信道;响应于数据传输指令,获取数据传输起始时刻与所述第一信道的释放时刻之间的第一时间间隔;响应于所述第一时间间隔到达第一预设时长,占用第二信道进行数据传输。
可选地,还包括:响应于所述第一时间间隔未到达所述第一预设时长,则不发起数据传输。
可选地,所述第一预设时长与所述第一信道的MCOT正相关;或者,所述第一预设时长为固定值。
可选地,还包括:针对所占用的所述第一信号或所述第二信道,从所占用信道的占用时刻开始,对所述所占用信道的当前占用时长进行计时;响应于所述当前占用时长未到达所述所占用信道的MCOT,获取在所述所占用信道的MCOT内当次数据传输与前一次数据传输之间的第二时间间隔;响应于所述第二时间间隔小于或者等于第二预设时长,则继续在所述所占用信道的MCOT内使用所述所占用信道传输数据。
可选地,还包括:响应于所述第二时间间隔大于所述第二预设时长,则重新占用信道进行数据传输。
可选地,所述第二预设时长为大于默认值的固定值;或者所述第二预设时长大于默认值,且与所述所占用信道的MCOT正相关
本公开第二方面实施例提出了一种数据传输装置,适用于非授权频段上无先听后说的信 道接入场景,所述装置包括:
释放模块,被配置为响应于当前占用的第一信道的占用时长到达所述第一信道的占用最大时长MCOT,释放所述第一信道;
第一获取模块,被配置为响应于数据传输指令,获取数据传输起始时刻与所述第一信道的释放时刻之间的第一时间间隔;
第一传输模块,被配置为响应于所述第一时间间隔到达第一预设时长,占用第二信道进行数据传输。
可选地,所述释放模块,还被配置为:响应于所述第一时间间隔未到达所述第一预设时长,则不发起数据传输。
可选地,所述第一预设时长与所述第一信道的MCOT正相关;或者,所述第一预设时长为固定值。
可选地,还包括:计时模块,被配置为针对所占用的所述第一信号或所述第二信道,从所占用信道的占用时刻开始,对所述所占用信道的当前占用时长进行计时;第二获取模块,被配置为响应于所述当前占用时长未到达所述所占用信道的MCOT,获取在所述所占用信道的MCOT内当次数据传输与前一次数据传输之间的第二时间间隔;第二传输模块,被配置为响应于所述第二时间间隔小于或者等于第二预设时长,则继续在所述所占用信道的MCOT内使用所述所占用信道传输数据。
可选地,所述第二传输模块,还被配置为:响应于所述第二时间间隔大于所述第二预设时长,则重新占用信道进行数据传输。
可选地,所述第二预设时长为大于默认值的固定值;或者所述第二预设时长大于默认值,且与所述所占用信道的MCOT正相关。
本公开第三方面实施例提出了一种电子设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行本公开第一方面实施例所述的数据传输方法。
本公开第四方面实施例提出了一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行第一方面实施例提出的数据传输方法。
本公开实施例提供的一种数据传输方法、装置及电子设备,针对非授权频段上无先听后说的信道接入场景,可以通过响应于当前占用的第一信道的占用时长到达第一信道的占用最大时长MCOT,释放第一信道,并响应于数据传输指令,获取数据传输起始时刻与第一信道 的释放时刻之间的第一时间间隔,进而在响应于第一时间间隔到达第一预设时长,占用第二信道进行数据传输,避免了发射端几乎连续占用信道的问题,确保了对其他临近节点不会造成持续干扰等影响,提高了数据传输质量以及数据传输过程中的可靠性和有效性。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例提供的一种数据传输方法的流程示意图;
图2为本公开实施例提供的另一种数据传输方法的流程示意图;
图3为本公开实施例提供的另一种数据传输方法的流程示意图;
图4为本公开提出的一种数据传输装置的结构示意图;
图5为本公开提出的另一种数据传输装置的结构示意图;
图6为本公开提出的一种电子设备的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
图1为本公开实施例提供的一种数据传输方法的流程示意图,适用于非授权频段上无先听后说的信道接入场景。如图1所示,该数据传输方法包括以下步骤:
步骤101,响应于当前占用的第一信道的占用时长到达第一信道的占用最大时长MCOT,释放第一信道。
需要说明的是,在非授权频谱上,发送端在占用信道发送数据之前,通常需要对信道进行监听,即进行CCA(Clear Channel Assessment,空闲信道评估)。在发送端进行CCA后,若识别信道空闲,则可以占用信道发送数据。其中,其占用信道的MCOT(Maximum Channel Occupy Time,最大时长)由协议约定或者基站配置/指示;若识别信道非空闲,则不能占用信道。前述过程通常被称为非授权频段上的LBT(Listen Before Talk,先听后说)的信道接入(Channel Access)机制。
现有技术中,针对非授权频段上先听后说的信道接入场景,即在使用LBT的情况下,若发射端的两次数据发送之间的Gap(间隔)小于预设时长,则可以认为前述两次数据发送 属于同一次传输,进而可以共享同一个COT(占用时长)。其中,预设时长可以为16us、25us等。此外,当发射端占用信道MCOT的时长后,需要结束发送。
举例而言,发射端设置的MCOT为6ms,发射端在开始占用信道后,连续发送数据并持续了4ms,然后暂停发送,且暂停的Gap时长为T。进一步地,发射端可以开始进行下一次发送。此种情况下,若T小于或者等于16us,则可以认为这一次传输跟暂停之前的传输是属于同一次传输,发射端不需要进行LBT,可以直接开始传输,传输的时长最大可持续2ms-T,即两次传输的信道占用时长是共享的。若T大于16us,则可以认为这一次传输与暂停之前的传输不属于同一次传输,而是一次新的传输,进而也需要重新进行LBT。
在高频频率范围内,由于高频信道衰减较大,即使发送端点之间距离较近,其相互之间的干扰也可能比较小。此种情况下,通常采用no-LBT(无先听后说)的信道接入机制。也就是说,在高频频率范围内进行数据传输时,发射端在发送数据之前可以不需要进行LBT,直接发送数据。
然而针对非授权频段上无先听后说的信道接入场景,即采用no-LBT信道接入机制,此种情况下,则极易发生发射端几乎连续占用信道的情况。这样一来,势必导致单一节点几乎连续占用信道,从而对其他临近节点造成持续干扰等影响。此外,当发射端占用信道MCOT的时长后,需要结束发送。而由于采用no-LBT机制,发射端可以立即开始下一次发送,也导致了发送端连续占用信道的情况。
举例而言,若采用16us的传输间隔,在MCOT尚未结束时,发射端只需要中断发送超过16us,即在120kHz子载波约为2个符号的时长,即可以再一次重新占用信道MCOT的时长。
由此,针对前述问题,本公开可以在MCOT结束后,响应于当前占用的第一信道的占用时长到述第一信道的占用最大时长MCOT,释放第一信道。
步骤102,响应于数据传输指令,获取数据传输起始时刻与第一信道的释放时刻之间的第一时间间隔。
其中,第一时间间隔,指的是两次相邻的发送之间的Gap。
举例而言,响应于数据传输指令,获取数据传输起始时刻与第一信道的释放时刻之间的第一时间间隔,并标记为△t 1
步骤103,响应于第一时间间隔到达第一预设时长,占用第二信道进行数据传输。
本公开实施例中,可以在确保两次相邻的发送之间的第一时间间隔达到第一预设时长后,占用第二信道进行数据传输。
其中,第一预设时长可以根据实际情况进行设定。例如,可以设定第一预设时长T 1为与第一信道的MCOT绑定的值,也可以设定第一预设时长T 1为固定的值。
本公开提出的数据传输方法,针对非授权频段上无先听后说的信道接入场景,可以通过响应于当前占用的第一信道的占用时长到达第一信道的占用最大时长MCOT,释放第一信道,并响应于数据传输指令,获取数据传输起始时刻与第一信道的释放时刻之间的第一时间间隔,进而在响应于第一时间间隔到达第一预设时长,占用第二信道进行数据传输,避免了发射端几乎连续占用信道的问题,确保了对其他临近节点不会造成持续干扰等影响,提高了数据传输质量以及数据传输过程中的可靠性和有效性。
进一步地,本公开实施例中,在响应于数据传输指令,获取数据传输起始时刻与第一信道的释放时刻之间的第一时间间隔之后,响应于第一时间间隔未到达第一预设时长,则不发起数据传输。
需要说明的是,本公开实施例中,可选地,第一预设时长可以为与第一信道的MCOT绑定的值,例如可以设定第一预设时长T 1为与第一信道的MCOT呈正相关的值,此种情况下,MCOT越大,第一预设时长T 1的值亦越大;可选地,可以设定第一预设时长T 1为固定值,例如6ms、8ms等。
作为一种可能的实现方式,可以设定第一预设时长为与第一信道的MCOT呈正相关的值,此种情况下,响应于第一时间间隔到达第一预设时长,例如△t 1≥T 1,则可以占用第二信道进行数据传输;响应于第一时间间隔未到达第一预设时长,例如△t 1<T 1,则可以不发起数据传输。
作为另一种可能的实现方式,可以设定第一预设时长为6ms,此种情况下,响应于第一时间间隔到达第一预设时长,例如△t 1为8ms,则可以占用第二信道进行数据传输;响应于第一时间间隔未到达第一预设时长,例如△t 1为4ms,则可以不发起数据传输。
本公开提出的数据传输方法,可以通过在响应于数据传输指令,获取数据传输起始时刻与第一信道的释放时刻之间的第一时间间隔之后,响应于第一时间间隔未到达第一预设时长,则不发起数据传输,避免了由于采用no-LBT机制,发射端可以立即开始下一次发送所导致的发送端连续占用信道的情况,进一步提高了数据传输质量以及数据传输过程中的可靠性和有效性。
需要说明的是,前述过程未占满MCOT之后,试图再一次占用信道的情况,下面,针对尚未占满MCOT之前的数据传输过程进行解释说明。
需要说明的是,在MCOT尚未结束时,为了避免因采用no-LBT机制,使得发射端可以立即开始下一次发送,进而导致发送端连续占用信道的情况,本公开中,可以获取在所占用信道的MCOT内当次数据传输与前一次数据传输之间的第二时间间隔,并根据第二时间间隔,确定匹配的信道占用策略。
作为一种可能的实现方式,如图2所示,具体包括以下步骤:
步骤201,从每次所占用信道的占用时刻开始,对所占用信道的当前占用时长进行计时。
举例而言,从每次所占用信道的占用时刻开始,对所占用信道的当前占用时长进行计时,并标记为t。
步骤202,响应于当前占用时长未到达所占用信道的MCOT,获取在所占用信道的MCOT内当次数据传输与前一次数据传输之间的第二时间间隔。
本公开实施例中,响应于当前占用时长未到达所占用信道的MCOT,即言MCOT尚未结束,则可以获取在所占用信道的MCOT内当次数据传输与前一次数据传输之间的第二时间间隔。
举例而言,响应于当前占用时长未到达所占用信道的MCOT,获取在所占用信道的MCOT内当次数据传输与前一次数据传输之间的第二时间间隔,并标记为△t 2
步骤203,响应于第二时间间隔小于或者等于第二预设时长,则继续在所占用信道的MCOT内使用所占用信道传输数据。
步骤204,响应于第二时间间隔大于第二预设时长,则重新占用信道进行数据传输。
需要说明的是,本公开实施例中,可选地,第二预设时长可以为大于默认值,且与所占用信道的MCOT绑定的值,例如若默认值为16us,则可以设定第二预设时长T 2为大于16us,且与所占用信道的MCOT呈正相关的值,此种情况下,MCOT越大,第二预设时长T 2的值亦越大;可选地,可以设定第二预设时长T 2为固定值,例如1ms等。
作为一种可能的实现方式,可以设定第二预设时长为大于默认值,且与所占用信道的MCOT呈正相关的值,此种情况下,响应于第二时间间隔小于或者等于第二预设时长,例如△t 2≤T 2,则可以继续在所述所占用信道的MCOT内使用所述所占用信道传输数据;响应于第二时间间隔大于第二预设时长,例如△t 2>T 2,则可以重新占用信道进行数据传输。
作为另一种可能的实现方式,可以设定第二预设时长为0.5ms,此种情况下,响应于第二时间间隔小于或者等于第二预设时长,例如△t 2为8us,则可以继续在所述所占用信道的MCOT内使用所述所占用信道传输数据;响应于第二时间间隔大于第二预设时长,例如△t 2为0.7ms,则可以重新占用信道进行数据传输。
本公开提出的数据传输方法,针对非授权频段上无先听后说的信道接入场景,可选地,可以在MCOT尚未结束时,通过获取在所占用信道的MCOT内当次数据传输与前一次数据传输之间的第二时间间隔,并根据第二时间间隔,确定匹配的信道占用策略,能够避免因采用no-LBT机制,使得发射端可以立即开始下一次发送,进而导致发送端连续占用信道的情况。
图3为本申请另一个实施例提出的数据传输方法,如图3所示,具体包括以下步骤:
步骤301,针对所占用的第一信道或第二信道,从所占用信道的占用时刻开始,对所占 用信道的当前占用时长进行计时。
例如,针对所占用的第一信道,从第一信道的占用时刻开始,对第一信道的当前占用时长进行计时,并标记为t 1;又例如,针对所占用的第二信道,从第二信道的占用时刻开始,对第二信道的当前占用时长进行计时,并标记为t 2
步骤302,响应于当前占用时长未到达所占用信道的MCOT,获取在所占用信道的MCOT内当次数据传输与前一次数据传输之间的第二时间间隔。
本公开实施例中,响应于当前占用时长未到达所占用信道的MCOT,即言MCOT尚未结束,则可以获取在所占用信道的MCOT内当次数据传输与前一次数据传输之间的第二时间间隔。
举例而言,响应于当前占用时长未到达所占用信道的MCOT,获取在所占用信道的MCOT内当次数据传输与前一次数据传输之间的第二时间间隔,并标记为△t 2
步骤303,响应于第二时间间隔小于或者等于第二预设时长,则继续在所占用信道的MCOT内使用所占用信道传输数据。
步骤304,响应于第二时间间隔大于第二预设时长,则重新占用信道进行数据传输。
需要说明的是,本公开实施例中,可选地,第二预设时长可以为大于默认值,且与所占用信道的MCOT绑定的值,例如若默认值为16us,则可以设定第二预设时长T 2为大于16us,且与所占用信道的MCOT呈正相关的值,此种情况下,MCOT越大,第二预设时长T 2的值亦越大;可选地,可以设定第二预设时长T 2为固定值,例如1ms等。
作为一种可能的实现方式,可以设定第二预设时长为大于默认值,且与所占用信道的MCOT呈正相关的值,此种情况下,响应于第二时间间隔小于或者等于第二预设时长,例如△t 2≤T 2,则可以继续在所述所占用信道的MCOT内使用所述所占用信道传输数据;响应于第二时间间隔大于第二预设时长,例如△t 2>T 2,则可以重新占用信道进行数据传输。
作为另一种可能的实现方式,可以设定第二预设时长为0.5ms,此种情况下,响应于第二时间间隔小于或者等于第二预设时长,例如△t 2为8us,则可以继续在所述所占用信道的MCOT内使用所述所占用信道传输数据;响应于第二时间间隔大于第二预设时长,例如△t 2为0.7ms,则可以重新占用信道进行数据传输。
进一步地,在占满MCOT后,可以执行如下步骤S305~S307。
步骤305,响应于当前占用的第一信道的占用时长到达第一信道的占用最大时长MCOT,释放第一信道。
本公开实施例中,可以在MCOT结束后,响应于当前占用的第一信道的占用时长到述第一信道的占用最大时长MCOT,释放第一信道。
步骤306,响应于数据传输指令,获取数据传输起始时刻与第一信道的释放时刻之间的 第一时间间隔。
其中,第一时间间隔,指的是两次相邻的发送之间的Gap。
举例而言,响应于数据传输指令,获取数据传输起始时刻与第一信道的释放时刻之间的第一时间间隔,并标记为△t 1
步骤307,响应于第一时间间隔到达第一预设时长,占用第二信道进行数据传输。
本公开实施例中,在MCOT结束后,可以确保两次相邻的发送之间的第一时间间隔(Gap)达到第一预设时长,进而占用第二信道进行数据传输。
其中,第一预设时长可以根据实际情况进行设定。例如,可以设定第一预设时长T 1为与第一信道的MCOT绑定的值,也可以设定第一预设时长T 1为固定的值。
本公开提出的数据传输方法,针对非授权频段上无先听后说的信道接入场景,可选地,可以在MCOT尚未结束时,通过获取在所占用信道的MCOT内当次数据传输与前一次数据传输之间的第二时间间隔,并根据第二时间间隔,确定匹配的信道占用策略,能够避免因采用no-LBT机制,使得发射端可以立即开始下一次发送,进而导致发送端连续占用信道的情况;可选地,可以在MCOT结束后,通过获取数据传输起始时刻与第一信道的释放时刻之间的第一时间间隔,并根据第一时间间隔,确定匹配的信道占用策略,避免了发射端几乎连续占用信道的问题,确保了对其他临近节点不会造成持续干扰等影响,提高了数据传输质量以及数据传输过程中的可靠性和有效性。
与上述几种实施例提供的数据传输方法相对应,本公开还提供一种数据传输装置,由于本公开实施例提供的数据传输装置与上述几种实施例提供的数据传输方法相对应,因此在数据传输方法的实施方式也适用于本实施例提供的数据传输装置,在本实施例中不再详细描述。图4~图5是根据本公开提出的数据传输装置的结构示意图。
如图4所示,该数据传输装置3000,适用于非授权频段上无先听后说的信道接入场景,包括:释放模块310、第一获取模块320和第一传输模块330。其中:
释放模块310,被配置为响应于当前占用的第一信道的占用时长到达所述第一信道的占用最大时长MCOT,释放所述第一信道;
第一获取模块320,被配置为响应于数据传输指令,获取数据传输起始时刻与所述第一信道的释放时刻之间的第一时间间隔;
第一传输模块330,被配置为响应于所述第一时间间隔到达第一预设时长,占用第二信道进行数据传输。
在本公开的实施例中,释放模块310,还被配置为:
响应于所述第一时间间隔未到达所述第一预设时长,则不发起数据传输。
在本公开的实施例中,第一预设时长与所述第一信道的MCOT正相关;或者,所述第 一预设时长为固定值。
在本公开的实施例中,如图5所示,数据传输装置3000,还包括:
计时模块340,被配置为针对所占用的所述第一信道或所述第二信道,从所占用信道的占用时刻开始,对所述所占用信道的当前占用时长进行计时;
第二获取模块350,被配置为响应于所述当前占用时长未到达所述所占用信道的MCOT,获取在所述所占用信道的MCOT内当次数据传输与前一次数据传输之间的第二时间间隔;
第二传输模块360,被配置为响应于所述第二时间间隔小于或者等于第二预设时长,则继续在所述所占用信道的MCOT内使用所述所占用信道传输数据。
在本公开的实施例中,第二传输模块360,还被配置为:
响应于所述第二时间间隔大于所述第二预设时长,则重新占用信道进行数据传输。
在本公开的实施例中,第二预设时长为大于默认值的固定值;或者所述第二预设时长大于默认值,且与所述所占用信道的MCOT正相关。
本公开提出的数据传输方法,针对非授权频段上无先听后说的信道接入场景,可选地,可以在MCOT尚未结束时,通过获取在所占用信道的MCOT内当次数据传输与前一次数据传输之间的第二时间间隔,并根据第二时间间隔,确定匹配的信道占用策略,能够避免因采用no-LBT机制,使得发射端可以立即开始下一次发送,进而导致发送端连续占用信道的情况;可选地,可以在MCOT结束后,通过获取数据传输起始时刻与第一信道的释放时刻之间的第一时间间隔,并根据第一时间间隔,确定匹配的信道占用策略,避免了发射端几乎连续占用信道的问题,确保了对其他临近节点不会造成持续干扰等影响,提高了数据传输质量以及数据传输过程中的可靠性和有效性。
根据本公开的实施例,本公开还提供了一种电子设备和一种可读存储介质。
如图6所示,是根据本公开实施例的数据传输的电子设备的框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。
如图6所示,该电子设备包括:一个或多个处理器510、存储器520,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在电子设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器 和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个电子设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器***)。图6中以一个处理器510为例。
存储器520即为本公开所提供的非瞬时计算机可读存储介质。其中,所述存储器存储有可由至少一个处理器执行的指令,以使所述至少一个处理器执行本公开所提供的数据传输方法。本公开的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本公开所提供的数据传输方法。
存储器520作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本公开实施例中的数据传输方法对应的程序指令/模块(例如,附图4所示的释放模块310、第一获取模块320和第一传输模块330)。处理器510通过运行存储在存储器520中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的数据传输方法。
存储器520可以包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需要的应用程序;存储数据区可存储根据定位电子设备的使用所创建的数据等。此外,存储器520可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。可选地,存储器520可选包括相对于处理器510远程设置的存储器,这些远程存储器可以通过网络连接至定位电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
数据传输的电子设备还可以包括:输入装置530和输出装置540。处理器510、存储器520、输入装置530和输出装置540可以通过总线或者其他方式连接,图6中以通过总线连接为例。
输入装置530可接收输入的数字或字符信息,以及产生与定位电子设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置540可以包括显示设备、辅助照明装置(例如,LED)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显示器(LCD)、发光二极管(LED)显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。
此处描述的***和技术的各种实施方式可以在数字电子电路***、集成电路***、专用ASIC(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程***上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储***、至少一个输入装置、和至少一个输出装置接收数据和指令, 并且将数据和指令传输至该存储***、该至少一个输入装置、和该至少一个输出装置。
这些计算程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
为了提供与用户的交互,可以在计算机上实施此处描述的***和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的***和技术实施在包括后台部件的计算***(例如,作为数据服务器)、或者包括中间件部件的计算***(例如,应用服务器)、或者包括前端部件的计算***(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的***和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算***中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将***的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机***可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
本公开提出的数据传输方法,针对非授权频段上无先听后说的信道接入场景,可选地,可以在MCOT尚未结束时,通过获取在所占用信道的MCOT内当次数据传输与前一次数据传输之间的第二时间间隔,并根据第二时间间隔,确定匹配的信道占用策略,能够避免因采用no-LBT机制,使得发射端可以立即开始下一次发送,进而导致发送端连续占用信道的情况;可选地,可以在MCOT结束后,通过获取数据传输起始时刻与第一信道的释放时刻之间的第一时间间隔,并根据第一时间间隔,确定匹配的信道占用策略,避免了发射端几乎连续占用信道的问题,确保了对其他临近节点不会造成持续干扰等影响,提高了数据传输质量以及数据传输过程中的可靠性和有效性。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开所公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的精神和原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。

Claims (14)

  1. 一种数据传输方法,其特征在于,适用于非授权频段上无先听后说的信道接入场景,所述方法包括:
    响应于当前占用的第一信道的占用时长到达所述第一信道的占用最大时长MCOT,释放所述第一信道;
    响应于数据传输指令,获取数据传输起始时刻与所述第一信道的释放时刻之间的第一时间间隔;
    响应于所述第一时间间隔到达第一预设时长,占用第二信道进行数据传输。
  2. 根据权利要求1所述的数据传输方法,其特征在于,还包括:
    响应于所述第一时间间隔未到达所述第一预设时长,则不发起数据传输。
  3. 根据权利要求1所述的数据传输方法,其特征在于,所述第一预设时长与所述第一信道的MCOT正相关;或者,所述第一预设时长为固定值。
  4. 根据权利要求1-3任一项所述的数据传输方法,其特征在于,还包括:
    针对所占用的所述第一信道或所述第二信道,从所占用信道的占用时刻开始,对所述所占用信道的当前占用时长进行计时;
    响应于所述当前占用时长未到达所述所占用信道的MCOT,获取在所述所占用信道的MCOT内当次数据传输与前一次数据传输之间的第二时间间隔;
    响应于所述第二时间间隔小于或者等于第二预设时长,则继续在所述所占用信道的MCOT内使用所述所占用信道传输数据。
  5. 根据权利要求4所述的数据传输方法,其特征在于,还包括:
    响应于所述第二时间间隔大于所述第二预设时长,则重新占用信道进行数据传输。
  6. 根据权利要求4所述的数据传输方法,其特征在于,所述第二预设时长为大于默认值的固定值;或者所述第二预设时长大于默认值,且与所述所占用信道的MCOT正相关。
  7. 一种数据传输装置,其特征在于,适用于非授权频段上无先听后说的信道接入场景,所述装置包括:
    释放模块,被配置为响应于当前占用的第一信道的占用时长到达所述第一信道的占用最 大时长MCOT,释放所述第一信道;
    第一获取模块,被配置为响应于数据传输指令,获取数据传输起始时刻与所述第一信道的释放时刻之间的第一时间间隔;
    第一传输模块,被配置为响应于所述第一时间间隔到达第一预设时长,占用第二信道进行数据传输。
  8. 根据权利要求7所述的数据传输装置,其特征在于,所述释放模块,还被配置为:
    响应于所述第一时间间隔未到达所述第一预设时长,则不发起数据传输。
  9. 根据权利要求7所述的数据传输装置,其特征在于,所述第一预设时长与所述第一信道的MCOT正相关;或者,所述第一预设时长为固定值。
  10. 根据权利要求7-9任一项所述的数据传输装置,其特征在于,还包括:
    计时模块,被配置为针对所占用的所述第一信道或所述第二信道,从所占用信道的占用时刻开始,对所述所占用信道的当前占用时长进行计时;
    第二获取模块,被配置为响应于所述当前占用时长未到达所述所占用信道的MCOT,获取在所述所占用信道的MCOT内当次数据传输与前一次数据传输之间的第二时间间隔;
    第二传输模块,被配置为响应于所述第二时间间隔小于或者等于第二预设时长,则继续在所述所占用信道的MCOT内使用所述所占用信道传输数据。
  11. 根据权利要求10所述的数据传输装置,其特征在于,所述第二传输模块,还被配置为:
    响应于所述第二时间间隔大于所述第二预设时长,则重新占用信道进行数据传输。
  12. 根据权利要求10所述的数据传输装置,其特征在于,所述第二预设时长为大于默认值的固定值;或者所述第二预设时长大于默认值,且与所述所占用信道的MCOT正相关。
  13. 一种电子设备,其特征在于,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-6中任一项所述的数据传输方法。
  14. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1-6任一项所述的数据传输方法。
PCT/CN2020/128803 2020-11-13 2020-11-13 一种数据传输方法、装置及电子设备 WO2022099644A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/128803 WO2022099644A1 (zh) 2020-11-13 2020-11-13 一种数据传输方法、装置及电子设备
CN202080003297.0A CN114846894A (zh) 2020-11-13 2020-11-13 一种数据传输方法、装置及电子设备
US18/196,976 US20230284270A1 (en) 2020-11-13 2023-05-12 Data transmission method and apparatus, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/128803 WO2022099644A1 (zh) 2020-11-13 2020-11-13 一种数据传输方法、装置及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/196,976 Continuation US20230284270A1 (en) 2020-11-13 2023-05-12 Data transmission method and apparatus, and electronic device

Publications (1)

Publication Number Publication Date
WO2022099644A1 true WO2022099644A1 (zh) 2022-05-19

Family

ID=81601999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128803 WO2022099644A1 (zh) 2020-11-13 2020-11-13 一种数据传输方法、装置及电子设备

Country Status (3)

Country Link
US (1) US20230284270A1 (zh)
CN (1) CN114846894A (zh)
WO (1) WO2022099644A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574953A (zh) * 2017-03-09 2018-09-25 华为技术有限公司 一种信道接入方法及装置
CN109156031A (zh) * 2016-05-12 2019-01-04 株式会社Ntt都科摩 用户终端以及无线通信方法
CN110831225A (zh) * 2018-08-08 2020-02-21 华为技术有限公司 一种传输信号的方法和装置
US20200245356A1 (en) * 2017-08-08 2020-07-30 Sharp Kabushiki Kaisha Communication apparatus and communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109156031A (zh) * 2016-05-12 2019-01-04 株式会社Ntt都科摩 用户终端以及无线通信方法
CN108574953A (zh) * 2017-03-09 2018-09-25 华为技术有限公司 一种信道接入方法及装置
US20200245356A1 (en) * 2017-08-08 2020-07-30 Sharp Kabushiki Kaisha Communication apparatus and communication method
CN110831225A (zh) * 2018-08-08 2020-02-21 华为技术有限公司 一种传输信号的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "FL summary for channel access mechanism for 52.6GHz-71GHz band", 3GPP DRAFT; R1-2009408, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-meeting ;20201026 - 20201113, 30 October 2020 (2020-10-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051948672 *

Also Published As

Publication number Publication date
CN114846894A (zh) 2022-08-02
US20230284270A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
US20170310593A1 (en) Data Transmission Method and System, Network Server, and User Terminal
WO2022170446A1 (zh) 一种卫星链路信息确定方法及装置
CN105874773B (zh) 任务处理装置、智能设备、任务处理方法及基带处理器
WO2022104797A1 (zh) 一种传输方法及装置
CN111212126B (zh) 一种区块链网络的数据传输方法、装置、设备和介质
WO2020073852A1 (zh) 显示控制方法及相关产品
WO2022005732A1 (en) Virtual elastic queue
WO2022126318A1 (zh) 直连通信方法、装置、通信设备和存储介质
WO2019042421A1 (zh) Usb数据传输的速率调整方法、装置、设备和存储介质
WO2017075970A1 (zh) 手机上WiHD传输的控制方法、装置及手机
WO2022099644A1 (zh) 一种数据传输方法、装置及电子设备
CN111435318A (zh) 应用程序的dex优化方法及终端
WO2022147675A1 (zh) 上行天线面板的确定方法、装置及通信设备
US20220286532A1 (en) Method and apparatus for obtaining shared maximum segment size mss
WO2022151406A1 (zh) 一种跳频的控制方法及装置
WO2022214059A1 (zh) 监听pdcch的方法、装置及终端
CN111479319B (zh) 一种通信方法以及装置
US11553506B2 (en) Multi-radio coexistence aware intelligent WiFi data aggregation
WO2022126343A1 (zh) 一种邻小区测量方法及装置
WO2022188171A1 (zh) 非连续接收处理方法、装置、终端设备和存储介质
WO2022099480A1 (zh) 数据传输方法、装置、基站、用户终端和电子设备
WO2022147733A1 (zh) 非连续接收方法及装置
WO2022133924A1 (zh) 一种数据重传确定方法及设备
WO2022165761A1 (zh) 提前终止方法、装置、设备及存储介质
WO2022160304A1 (zh) 多用户识别卡特性信息的交互方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961200

Country of ref document: EP

Kind code of ref document: A1