WO2022099562A1 - 指纹识别装置和电子设备 - Google Patents

指纹识别装置和电子设备 Download PDF

Info

Publication number
WO2022099562A1
WO2022099562A1 PCT/CN2020/128475 CN2020128475W WO2022099562A1 WO 2022099562 A1 WO2022099562 A1 WO 2022099562A1 CN 2020128475 W CN2020128475 W CN 2020128475W WO 2022099562 A1 WO2022099562 A1 WO 2022099562A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
array
microprism
light signal
fingerprint identification
Prior art date
Application number
PCT/CN2020/128475
Other languages
English (en)
French (fr)
Inventor
兰洋
沈健
姚国峰
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/128475 priority Critical patent/WO2022099562A1/zh
Publication of WO2022099562A1 publication Critical patent/WO2022099562A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition

Definitions

  • the embodiments of the present application relate to the technical field of biometric identification, and more particularly, to a fingerprint identification device and an electronic device.
  • biometric identification technology has been widely applied to various terminal devices, especially in consumer electronic products such as smartphones, and fingerprint identification has become a popular demand.
  • fingerprint identification has become a popular demand.
  • traditional capacitive fingerprints no longer meet the needs of full-screen displays, and under-screen fingerprint recognition technology came into being.
  • the off-screen optical fingerprint is a type of off-screen fingerprint, which is set below the display screen, and the fingerprint recognition is realized by collecting the optical fingerprint image.
  • the performance requirements for fingerprint identification technology are also getting higher and higher. Therefore, improving the performance of fingerprint recognition has become a common technical goal in the industry.
  • Embodiments of the present application provide a fingerprint identification device and an electronic device, which can improve fingerprint identification performance.
  • a fingerprint identification device configured to be disposed under a display screen of an electronic device, and includes: a first microprism array, an optical component and an optical fingerprint sensor; the first microprism array includes a plurality of A first microprism, the first microprism includes a first incident surface and a first exit surface, the first incident surface is a plane parallel to the display screen, and the first exit surface is a plane inclined relative to the display screen ; The first microprism is used to receive the first target light signal tilted relative to the display screen reflected by the finger through the first incident surface, and output the first target light signal through the first exit surface as relative to the display screen.
  • the first vertical light signal perpendicular to the display screen; the optical component is disposed under the first microprism array, and is used for receiving the first vertical light signal and guiding the first vertical light signal to the optical fingerprint sensor, the The optical fingerprint sensor is arranged below the optical component and is used for receiving the first vertical light signal for fingerprint identification.
  • a first target light signal inclined relative to the display screen is converted into a first vertical light signal perpendicular to the display screen by a plurality of first microprisms in the first microprism array.
  • the vertical optical signal is used to transmit to the optical fingerprint sensor through the optical components for fingerprint identification, which can reduce the light loss caused by the transmission of large-angle incident light in the optical path, thereby shortening the exposure time of the fingerprint identification device and accelerating the speed of fingerprint identification. And improve the user experience.
  • it can also be applied to the detection of various types of fingers, especially to the detection of dry fingers, so as to improve the fingerprint recognition performance of dry fingers.
  • the first microprism further includes a second exit surface, the second exit surface is another plane inclined relative to the display screen, and the area of the second exit surface is smaller than that of the first exit surface area.
  • the first refracted light signal after the first target light signal passes through the first incident surface is parallel to the second exit surface; the included angle between the first incident surface and the first exit surface is The first angle i, the angle between the first incident surface and the second exit surface is the second angle j, the angle between the first target light signal and the normal direction of the first incident surface is the target angle ⁇ ; the first angle i, the second angle j, the refractive index n 1 of the first microprism, and the target angle ⁇ satisfy the following formula:
  • n 1 sin(i+j-90°) n 0 sin i;
  • n 0 is the refractive index of air.
  • the first incident surface is further configured to receive a non-target optical signal reflected by the finger in a direction different from the first target optical signal; the first exit surface and the second exit surface are used to The non-target optical signal is converted into an oblique optical signal inclined relative to the display screen; the optical component is used to block the oblique optical signal, so as to prevent the oblique optical signal from entering the optical fingerprint sensor and interfere with fingerprint recognition.
  • the angle between the non-target optical signal and the normal direction of the first incident surface is the non-target angle ⁇ , the refractive index n 1 of the first microprism and the non-target angle ⁇
  • the following formulas are satisfied:
  • n 1 sin(jk) n 0 sin j;
  • n 0 is the refractive index of air
  • j is the angle between the first incident surface and the second exit surface
  • k is the second refracted light signal and the normal after the non-target light signal passes through the first incident surface angle of direction.
  • the refractive index n 1 of the first microprism is greater than a preset threshold to increase the value range of the non-target included angle ⁇ , and the first microprism is used to fall within the value range
  • the non-target optical signal is converted into an oblique optical signal.
  • the refractive index n 1 of the first microprism array is greater than 1.5.
  • the optical fingerprint sensor includes a first sensing array formed by a plurality of first optical sensing units; at least one of the first microprisms is correspondingly disposed under each first microprism of the first microprism array The optical sensing unit, or, at least one of the first microprisms is correspondingly disposed above each first optical sensing unit of the first sensing array.
  • a row of the first optical sensing units or a column of the first optical sensing units in the first sensing array is correspondingly disposed below each first microprism of the first microprism array.
  • the first microprism array further includes: a first substrate layer; the first substrate layer is formed above the first incident surfaces of the plurality of first microprisms and is parallel to the display screen .
  • the upper surface of the first substrate layer and the lower surface of the display screen are attached to each other.
  • the first substrate layer is an optical filter, which is used to pass the optical signal of the target wavelength band and block the optical signal of the non-target wavelength band.
  • the fingerprint identification device further includes: a filter; the filter is arranged in the optical path from the display screen to the optical fingerprint sensor, and is used to pass the optical signal of the target wavelength band and block the non-target wavelength of light.
  • the fingerprint identification device further includes: a second microprism array disposed between the display screen and the optical component; the first microprism array is used to receive the first fingerprint passing through the display screen Detecting the first target light signal reflected by the finger on the area, and converting the first target light signal into the first vertical light signal; the second microprism array is used to receive the second fingerprint detection area on the display screen.
  • the optical component is arranged on the first microprism array and the second microprism array
  • the bottom part is used to receive the first vertical light signal and the second vertical light signal, and guide the first vertical light signal to the first sensing array in the optical fingerprint sensor, and guide the second vertical light signal to the
  • the second sensing array in the optical fingerprint sensor, the first sensing array and the second sensing array are used to respectively receive the first vertical light signal and the second vertical light signal for fingerprint identification; wherein, the first fingerprint detection The area and the second fingerprint detection area do not overlap each other, and there is a space between them.
  • the second microprism array includes a plurality of second microprisms, the second microprisms include a second incident surface and a third exit surface, and the second incident surface is parallel to the display screen The third outgoing surface is a plane inclined relative to the display screen; the second microprism is used to receive the second target light signal through the second incident surface, and the second The target light signal is emitted as the second vertical light signal.
  • the second microprism further includes a fourth exit surface, the fourth exit surface is another plane inclined relative to the display screen, and the area of the fourth exit surface is smaller than that of the third exit surface area.
  • the optical fingerprint sensor in the optical fingerprint sensor, there is no space between the first sensing array and the second sensing array.
  • the areas of the first sensing array and the second sensing array are equal, and/or the areas of the first fingerprint detection area and the second fingerprint detection area are equal.
  • the first fingerprint detection area is located on one side of a boundary line between the first sensing array and the second sensing array
  • the second fingerprint detection area is located on the first sensing array and the second sensing array The other side of the dividing line of the array.
  • the direction of the first target optical signal is toward the boundary line, and the included angle between the first target optical signal and the normal direction of the first incident surface is ⁇ 1 , which is ⁇ 1 with the first microscopic
  • the included angle of the edges of the prism is 90°;
  • the direction of the second target light signal is toward the dividing line, and the angle between the second target light signal and the normal direction of the second incident surface is ⁇ 2 , and the angle between the second target light signal and the edge of the second microprism is 90° °; where the values of ⁇ 1 and ⁇ 2 are between 0 and 90°.
  • ⁇ 1 ⁇ 2
  • the second microprism array and the first microprism array are arranged in mirror images with respect to a plane perpendicular to the display screen.
  • At least one surface of the first microprism array is provided with an anti-reflection coating and/or a polarizing coating
  • at least one surface of the second microprism array is provided with an anti-reflection coating layer and/or polarizing coating; wherein the anti-reflection coating is used to reduce the reflectivity of the optical signal, and the polarizing coating is used to select the polarization direction of the optical signal.
  • the first microprism array and the second microprism array are disposed above the optical assembly and the optical fingerprint sensor through a support structure, and the support structure is disposed on the edge region of the upper surface of the optical fingerprint sensor .
  • the optical assembly includes: a microlens array, where a plurality of microlenses in the microlens array correspond one-to-one with a plurality of optical sensing units in the optical fingerprint sensor; at least one diaphragm layer, Disposed between the microlens array and the optical fingerprint sensor, each diaphragm layer in the at least one diaphragm layer is provided with a light-passing hole corresponding to each optical sensing unit in the optical fingerprint sensor; wherein, the The microlens array is used for receiving the first vertical light signal and the second vertical light signal, and the first vertical light signal and the second vertical light signal are used for transmitting to the light-transmitting aperture of the at least one diaphragm layer.
  • the optical fingerprint sensor is used for receiving the first vertical light signal and the second vertical light signal, and the first vertical light signal and the second vertical light signal are used for transmitting to the light-transmitting aperture of the at least one diaphragm layer.
  • At least part of the diaphragm layer in the at least one diaphragm layer is a metal wiring layer of the optical fingerprint sensor.
  • the optical component is a collimator
  • each optical sensing unit in the optical fingerprint sensor corresponds to at least one collimator in the collimator; wherein, the collimator
  • the straightener is used to receive the first vertical light signal converted by the first microprism array and the second vertical light signal converted by the second microprism array, and the first vertical light signal and the second vertical light signal pass through the straight line.
  • the collimating holes in the hole collimator transmit to the optical fingerprint sensor.
  • an electronic device comprising: a display screen and a fingerprint identification device as in the first aspect or any possible implementation manner of the first aspect, wherein the fingerprint identification device is disposed below the display screen , in order to realize the optical fingerprint recognition under the screen.
  • the display screen is an organic light emitting diode OLED display screen, and the display screen includes a plurality of OLED light sources, wherein the fingerprint identification device adopts at least part of the OLED light sources as the excitation light source for fingerprint identification.
  • a fingerprint identification device for being disposed under a display screen of an electronic device, comprising: a first optical device, a second optical device and an optical fingerprint sensor; the first optical device is used for guiding through the display screen The first target light signal reflected by the finger on the first fingerprint detection area in the optical fingerprint sensor is sent to the first sensing array in the optical fingerprint sensor; the second optical device is used to guide the first target light reflected by the finger on the second fingerprint detection area in the display screen.
  • Two target light signals are sent to the second sensing array in the optical fingerprint sensor; the first sensing array and the second sensing array are used for fingerprint identification according to the first target light signal and the second target light signal respectively; wherein , the first fingerprint detection area and the second fingerprint detection area do not overlap each other, and there is a space between them.
  • the optical fingerprint sensor for fingerprint recognition, compared with the optical fingerprint sensor that only receives fingerprint light in a single direction Signal, while improving the diversity of fingerprint identification signals, it can expand the field of view of the fingerprint identification device or reduce the area of the optical fingerprint sensor to reduce the cost while keeping the field of view unchanged, thereby improving fingerprint identification performance or reducing fingerprints. Identify the cost of the device.
  • the optical fingerprint sensor in the optical fingerprint sensor, there is no space between the first sensing array and the second sensing array.
  • the areas of the first sensing array and the second sensing array are equal, and/or the areas of the first fingerprint detection area and the second fingerprint detection area are equal.
  • the first fingerprint detection area is located on one side of a boundary line between the first sensing array and the second sensing array
  • the second fingerprint detection area is located on the first sensing array and the second sensing array The other side of the dividing line of the array.
  • the direction of the first target light signal is toward the dividing line, and the included angle between the first target light signal and the normal direction of the optical fingerprint sensor is ⁇ 1 ;
  • the direction of the second target light signal faces the dividing line, and the angle between the second target light signal and the normal direction of the optical fingerprint sensor is ⁇ 2 ; wherein, the values of ⁇ 1 and ⁇ 2 are 0 to 90 ° between.
  • ⁇ 1 ⁇ 2
  • the first optical device and the second optical device are arranged in mirror images with respect to a plane perpendicular to the plane of the display screen.
  • the optical fingerprint sensor in the optical fingerprint sensor, there is no space between the first sensing array and the second sensing array.
  • the first optical device includes a first oblique hole collimator
  • the second optical device includes a second oblique hole collimator; a plurality of first oblique hole collimators in the first oblique hole collimator
  • the direction of the hole is the same as the direction of the first target light signal
  • the direction of the plurality of second inclined holes in the second inclined hole collimator is the same as the direction of the second target light signal.
  • the first optical device includes a first microlens array and at least one first diaphragm layer
  • the second optical device includes a second microlens array and at least one second diaphragm layer
  • a plurality of first light guide channels are formed in the at least one layer of the first diaphragm layer, and the direction of the plurality of first light guide channels is the same as the direction of the first target light signal
  • the at least one layer of the second diaphragm layer A plurality of second light guide channels are formed in the device, and the direction of the plurality of second light guide channels is the same as the direction of the second target light signal.
  • At least part of the diaphragm layer in the at least one first diaphragm layer is a metal layer of the optical fingerprint sensor; and/or, at least part of the at least one second diaphragm layer The diaphragm layer is the metal layer of the optical fingerprint sensor.
  • the first optical device includes a first oblique hole collimator and a first microlens array, the first oblique hole collimator is disposed above the first microlens array;
  • the second optical device includes a second oblique hole collimator and a second microlens array, the second oblique hole collimator is arranged above the second microlens array.
  • the first optical device includes: a first microprism array and a first optical component; the first microprism array is configured to receive the first target light signal and convert the first target light signal Converted into a first vertical light signal perpendicular to the display screen; the first optical component is arranged under the first microprism array for receiving the first vertical light signal and guiding the first vertical light signal to the The first sensing array of the optical fingerprint sensor; the second optical device includes: a second microprism array and a second optical component; the second microprism array is used for receiving the second target light signal, and converting the second light The second target light signal in the signal is converted into a second vertical light signal perpendicular to the display screen; the second optical component is arranged under the second microprism array for receiving the second vertical light signal and converting The second vertical optical signal is directed to a second sensing array of the optical fingerprint sensor.
  • the first microprism array includes a plurality of first microprisms, the first microprisms include a first incident surface and a first exit surface, and the first incident surface is parallel to the display screen
  • the first exit surface is a plane inclined relative to the display screen; the first microprism is used to receive the first target light signal through the first entrance surface, and the first exit surface is used to receive the first target light signal through the first exit surface.
  • the target light signal is emitted as the first vertical light signal;
  • the second micro-prism array includes a plurality of second micro-prisms, the second micro-prisms include a second incident surface and a third emergent surface, the second incident surface is opposite to
  • the display screen is parallel to the plane, and the third exit surface is a plane inclined relative to the display screen;
  • the second microprism is used to receive the second target light signal through the second entrance surface, and pass through the third exit surface
  • the second target light signal is outputted as the second vertical light signal.
  • the first microprism further includes a second exit surface, the second exit surface is another plane inclined relative to the display screen, and the area of the second exit surface is smaller than that of the first exit surface
  • the second microprism also includes a fourth exit surface, the fourth exit surface is another plane inclined relative to the display screen, and the area of the fourth exit surface is smaller than the area of the third exit surface.
  • the direction of the first target light signal is perpendicular to the edge of the first microprism
  • the direction of the second target light signal is perpendicular to the edge of the second microprism
  • the first microprism array and the second microprism array have the same structure, and are arranged in mirror images with respect to a plane perpendicular to the display screen.
  • the first refracted light signal after the first target light signal passes through the first incident surface is parallel to the second exit surface, and the included angle between the first incident surface and the first exit surface is The first included angle i, the included angle between the first incident surface and the second exit surface is the second included angle j, the included angle between the first target optical signal and the incident surface is the target included angle ⁇ ; the first included angle The angle i, the second angle j, the refractive index n 1 of the first microprism, and the target angle ⁇ satisfy the following formula:
  • n 1 sin(i+j-90°) n 0 sin i;
  • n 0 is the refractive index of air.
  • the first incident surface is further configured to receive a non-target optical signal reflected by the finger in a direction different from that of the first target optical signal; the first exit surface and the second exit surface are used for The non-target optical signal is converted into an oblique optical signal inclined relative to the display screen; the optical component is used to block the oblique optical signal to prevent the oblique optical signal from entering the optical fingerprint sensor and interfere with fingerprint recognition.
  • the angle between the non-target optical signal and the normal direction of the first incident surface is the non-target angle ⁇ , the refractive index n 1 of the first microprism and the non-target angle ⁇
  • the following formulas are satisfied:
  • n 1 sin(jk) n 0 sin j;
  • n 0 is the refractive index of air
  • j is the angle between the first incident surface and the second exit surface
  • k is the second refracted light signal and the normal after the non-target light signal passes through the first incident surface angle of direction.
  • the refractive index n 1 of the first microprism is greater than a preset threshold to increase the value range of the non-target included angle ⁇ , and the first microprism is used to fall within the value range
  • the non-target optical signal is converted into an oblique optical signal.
  • the refractive index of the first microprism array and/or the second microprism array is greater than 1.5.
  • the first sensing array includes a plurality of first optical sensing units
  • the second sensing array includes a plurality of second optical sensing units; At least one of the first optical sensing units is correspondingly disposed below, and at least one of the second optical sensing units is correspondingly disposed below each second microprism of the second microprism array; or, each of the first sensing arrays At least one of the first microprisms is correspondingly disposed above the first optical sensing unit, and at least one of the second microprisms is correspondingly disposed above each second optical sensing unit of the second sensing array.
  • a row of first optical sensing units or a column of first optical sensing units in the first sensing array is correspondingly disposed below each first microprism of the first microprism array
  • the second A row of second optical sensing units or a column of second optical sensing units in the second sensing array is correspondingly disposed below each second microprism of the microprism array.
  • the first microprism array further includes a first substrate layer
  • the second microprism array further includes a second substrate layer
  • the first substrate layer is formed on the first substrate layer of the plurality of first microprisms Above an incident surface
  • the second substrate layer is formed above the second incident surfaces of the plurality of second microprisms, and the first substrate layer and the second substrate layer are parallel to the display screen.
  • the upper surface of the first substrate layer and the lower surface of the display screen are attached to each other, and/or the upper surface of the second substrate layer is attached to the lower surface of the display screen.
  • the first substrate layer and/or the second substrate layer is an optical filter, configured to pass the optical signal of the target wavelength band and block the optical signal of the non-target wavelength band.
  • At least one surface of the first microprism array is provided with an anti-reflection coating and/or a polarizing coating
  • at least one surface of the second microprism array is provided with an anti-reflection coating layer and/or polarizing coating; wherein the anti-reflection coating is used to reduce the reflectivity of the optical signal, and the polarizing coating is used to select the polarization direction of the optical signal.
  • the first microprism array and the second microlens array are disposed above the first optical component, the second optical component and the optical fingerprint sensor through a supporting structure, and the supporting structure is disposed above the optical fingerprint sensor.
  • the first optical assembly and the second optical assembly include: a microlens array, and a plurality of microlenses in the microlens array correspond one-to-one with a plurality of optical sensing units in the optical fingerprint sensor At least one layer of diaphragm layer is arranged between the microlens array and the optical fingerprint sensor, and each layer of diaphragm layer in the at least one layer of diaphragm layer is provided with the corresponding optical sensing unit in the optical fingerprint sensor.
  • a light-passing aperture wherein, the microlens array is used to receive the first vertical light signal and the second vertical light signal, and the first vertical light signal and the second vertical light signal are used to pass through the at least one layer of diaphragms
  • the light-passing apertures of the layer are transmitted to the optical fingerprint sensor.
  • At least part of the diaphragm layer in the at least one diaphragm layer is a metal wiring layer of the optical fingerprint sensor.
  • the first optical component and the second optical component are collimators, and each optical sensing unit in the optical fingerprint sensor corresponds to at least one of the collimators.
  • an electronic device comprising: a display screen and the fingerprint identification device in the third aspect or any possible implementation manner of the third aspect, wherein the fingerprint identification device is disposed below the display screen.
  • the display screen is an organic light emitting diode OLED display screen, and the display screen includes a plurality of OLED light sources, wherein the fingerprint identification device adopts at least part of the OLED light sources as the excitation light source for fingerprint identification.
  • FIG. 1 is a schematic diagram of an electronic device to which an embodiment of the present application may be applied.
  • Fig. 2 is a schematic cross-sectional view of the electronic device shown in Fig. 1 along the direction A-A'.
  • FIG. 3 and FIG. 4 are schematic diagrams of two optical path guiding structures provided by the embodiments of the present application.
  • FIG. 5 is a schematic diagram of a fingerprint identification device according to an embodiment of the present application.
  • FIG. 6 is a schematic perspective view of the first microprism array of the fingerprint identification device in FIG. 5 .
  • FIG. 7 is a top view of the fingerprint identification device in FIG. 5 .
  • FIG. 8 is a schematic structural diagram of any first microprism in the first microprism array provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the relationship between the refractive index of the first microprism and the angle of the non-target light signal according to the embodiment of the present application.
  • FIG. 10 is a schematic diagram of another fingerprint identification device provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another electronic device to which the embodiments of the present application may be applied.
  • Fig. 12 is a schematic cross-sectional view of the electronic device shown in Fig. 11 along the direction A-A'.
  • FIG. 13 and FIG. 14 are schematic diagrams of the field of view of the fingerprint identification device in the embodiment of the application receiving a single-direction light signal and a multi-direction light signal.
  • FIG. 15 to FIG. 18 are schematic diagrams of other fingerprint identification devices provided by embodiments of the present application.
  • FIG. 19 is a three-dimensional schematic diagram of a first microprism array and a second microprism array according to an embodiment of the present application.
  • FIG. 20 and FIG. 21 are schematic diagrams of two other fingerprint identification devices provided by the embodiments of the present application.
  • FIG. 22 is a top view of the fingerprint identification device in FIG. 18 .
  • FIG. 23 is a schematic diagram of another fingerprint identification device provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various electronic devices.
  • portable or mobile computing devices such as smartphones, laptops, tablets, gaming devices, and other electronic devices such as electronic databases, automobiles, and bank automated teller machines (ATMs).
  • ATMs bank automated teller machines
  • the embodiments of the present application are not limited thereto.
  • biometric identification technologies include but are not limited to identification technologies such as fingerprint identification, palmprint identification, iris identification, face identification, and living body identification.
  • identification technologies such as fingerprint identification, palmprint identification, iris identification, face identification, and living body identification.
  • fingerprint identification technology takes the fingerprint identification technology as an example.
  • FIG. 1 and 2 are schematic diagrams of an electronic device 10 to which the embodiments of the present application may be applied.
  • 2 is a schematic cross-sectional view of the electronic device 10 shown in FIG. 1 along the direction A-A'.
  • the electronic device 10 may include a display screen 100 and a fingerprint identification device 200 .
  • the display screen 100 may be a self-luminous display screen, which uses display units having self-luminescence as display pixels.
  • the display screen 100 may be an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen or a micro light-emitting diode (Micro-LED) display screen.
  • the display screen 100 may also be a liquid crystal display (Liquid Crystal Display, LCD) or other passive light-emitting display screens, which are not limited in this embodiment of the present application.
  • the display screen 100 can also be specifically a touch display screen, which can not only display a picture, but also detect a user's touch or pressing operation, thereby providing a human-computer interaction interface for the user.
  • the electronic device 10 may include a touch sensor, and the touch sensor may specifically be a touch panel (Touch Panel, TP), which may be disposed on the surface of the display screen 100, or may be partially integrated or integrally It is integrated into the display screen 100 to form the touch display screen.
  • touch panel Touch Panel, TP
  • the fingerprint identification device 200 includes an optical fingerprint sensor 220, and the optical fingerprint sensor 200 includes a sensing array 221 having a plurality of optical sensing units (also referred to as photosensitive pixels, pixel units, etc.) for realizing photoelectric conversion, as
  • the sensing array 221 is specifically a photodiode (Photo Diode, PD) array.
  • the area where the sensing array 221 is located or its sensing area is the fingerprint detection area 201 of the fingerprint identification device 200 (also referred to as a fingerprint collection area, a fingerprint identification area, etc.).
  • the optical fingerprint sensor 220 also includes a reading circuit and other auxiliary circuits electrically connected to the sensing array 221, which can be fabricated on a chip (Die) through a semiconductor process.
  • the fingerprint identification device 200 is arranged in a partial area below the display screen 100 .
  • the fingerprint detection area 201 may be located in the display area of the display screen 100 .
  • the fingerprint identification device 200 may further include optical components.
  • the optical component can be arranged above the optical fingerprint sensor 220, which can specifically include a filter layer (Filter), a light guide layer or an optical path guide structure 210, and other optical elements, and the filter layer can be used to filter out the penetrating finger.
  • the light guide layer or the light path guide structure 210 is mainly used to guide the reflected light reflected from the finger surface to the sensing array 221 for optical detection.
  • the optical component and the optical fingerprint sensor 220 may be packaged in the same optical fingerprint chip, or the optical component may be arranged outside the chip where the optical fingerprint sensor 220 is located, for example, the optical component may be attached to the chip above, or integrate some elements of the optical assembly into the chip.
  • the area or light sensing range of the sensing array 221 of the fingerprint identification device 200 corresponds to the fingerprint detection area 201 of the fingerprint identification device 200 .
  • the fingerprint detection area 201 of the fingerprint identification device 200 may or may not be equal to the area or light sensing range of the area where the sensing array 221 of the fingerprint identification device 200 is located, which is not specifically limited in this embodiment of the present application.
  • the light path is guided by light collimation, and the fingerprint detection area 201 of the fingerprint identification device 200 can be designed to be substantially the same as the area of the sensing array 221 of the fingerprint identification device 200 .
  • the area of the fingerprint detection region 201 of the fingerprint identification device 200 can be made larger than the area of the sensing array 221 of the fingerprint identification device 200 through optical path design such as lens imaging, reflective folding optical path design, or other optical path designs such as light convergence or reflection. .
  • the display screen 100 in FIG. 2 is a display screen having a self-luminous display unit, and the display screen 100 includes a display component 120 .
  • the display screen 100 is an OLED display screen, and the display component 120 is an OLED light source.
  • the fingerprint identification device 200 can use the OLED light source of the OLED display screen 100 located in the fingerprint detection area 201 as the excitation light source for optical fingerprint detection.
  • the display screen 100 emits a beam of light to the finger 140 above the fingerprint detection area 201, and the light is reflected on the surface of the finger 140 to form reflected light or scattered inside the finger 140 to form scattered light (Transmitted light).
  • the above-mentioned reflected light and scattered light are collectively referred to as reflected light. Since the ridges and valleys of the fingerprint have different reflection capabilities for light, the reflected light from the fingerprint ridge and the reflected light from the fingerprint valley have different light intensities. After the reflected light passes through the optical components, it is recognized by the fingerprint.
  • the sensing array 221 in the device 200 receives and converts it into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, thereby realizing an optical fingerprint in the electronic device 10. identification function.
  • the fingerprint identification device 200 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection and identification.
  • the fingerprint identification device 200 can be applied not only to a self-luminous display screen such as an OLED display screen, but also to a non-self-luminous display screen, such as a liquid crystal display screen or other passive light-emitting display screens.
  • the display screen 100 may further include a transparent protective cover plate 110 , and the cover plate 110 may be a glass cover plate or a sapphire cover plate, which covers the front surface of the electronic device 10 . Therefore, in the embodiments of the present application, the so-called finger pressing on the display screen 100 actually means pressing on the cover plate 110 or the surface of the protective layer covering the cover plate 110 .
  • the optical path guiding structure 210 in the optical assembly is used to guide the light signal of a specific angle in the reflected light passing through the finger 140 to the sensing array 221 , and the specific angle may be, as shown in FIG.
  • the optical signal of the array 221 may also be an optical signal incident vertically to the sensing array 221 .
  • the light path guiding structure 210 can guide the light incident obliquely at a preset angle and reflected by the finger to the sensing array 221 of the optical fingerprint sensor 220 . Because the optical path guiding structure 210 adopts an oblique optical path, and the reflection intensity of the obliquely incident light is higher than that of the vertically incident light, the imaging contrast of the optical fingerprint sensor 220 is improved, and the thickness of the fingerprint identification device 200 is greatly reduced. .
  • the optical path guiding structure 210 can adopt various structures to realize the inclined optical path.
  • the optical path guiding structure 210 will be exemplarily described below with reference to FIG. 3 and FIG. 4 .
  • the optical path guiding structure 210 is an optical collimator using a through hole array with a high aspect ratio
  • the optical collimator may be a collimator fabricated on a semiconductor silicon wafer.
  • a collimator layer which has a plurality of collimation units, and the collimator units may specifically be straight holes or inclined holes.
  • the collimator layer is an oblique hole collimator, and the axial direction of the collimating unit in the oblique hole collimator can be inclined relative to the sensing array 221 in the optical fingerprint sensor 220 . In the reflected light from the finger, the light incident on the collimating unit at a certain angle can pass through and be received by the sensor chip below it, while the light with other incident angles is attenuated after multiple reflections inside the collimating unit.
  • the angle between the direction of the oblique hole in the middle oblique hole collimator and the direction of the normal line of the sensing array 221 can be preset as ⁇ . Therefore, the sensing array 221 can only receive the incident light reflected from the finger.
  • the oblique hole collimator has a large attenuation of the optical signal, which not only blocks the oblique optical signal whose incident angle is not ⁇ , but also blocks some oblique optical signals whose incident angle is ⁇ or close to ⁇ . , and the manufacturing process of the oblique hole collimator 210 is relatively complex and difficult to manufacture, which is not suitable for mass production.
  • the optical path guiding structure 210 includes a microlens 211 , at least one diaphragm layer 212 disposed below the microlens 211 , and one or more optical sensing units in the sensing array 221 It is arranged below the diaphragm layer 212 of the lowermost layer.
  • the finger reflected light with an incident angle of ⁇ passes through the microlens 211 and is condensed into the light-passing holes in the diaphragm layer 212 , and is transmitted to the optical fingerprint sensor 220 through the light-passing holes in at least one layer of the diaphragm layer 212 .
  • Optical sensing unit The finger reflected light whose incident angle is not ⁇ is condensed by the microlens 211 to the non-transmissive material in the diaphragm layer 212, and is absorbed or reflected by the non-transmissive material, thereby preventing the finger reflected light whose incident angle is not ⁇ from entering.
  • the non-transparent material includes but is not limited to vinyl material.
  • one diaphragm layer 212 is a multi-layer diaphragm layer 212 , the center of the light-passing aperture in one or more diaphragm layers 212 deviates from the focus of the microlens Setting, in some embodiments, one optical sensing unit corresponds to one microlens, and is arranged directly below the microlens, then the center of the light-passing hole in the diaphragm layer 212 is deviated from the central axis of the optical sensing unit,
  • the central axis refers to a straight line passing through the center of the optical sensing unit and perpendicular to the optical sensing unit.
  • the aperture size of the light-transmitting holes in the diaphragm layer determines the angular range ⁇ of the incident light that can pass through, and only the finger reflected light whose incident angle is within the range of ⁇ - ⁇ to ⁇ + ⁇ can reach the optical sensing unit.
  • the angle of the incident light can be screened by the combination of the microlens 211 and at least one diaphragm layer 212, and the incident light at a non-target angle is blocked by the non-transparent material.
  • the incident angle ⁇ is greater than 30 degrees
  • part of the area of the microlens 211 (the area 2111 in FIG. 4 ) is due to the lens shading effect. ) cannot function as convergence. Therefore, when the fingerprint identification device 200 receives obliquely incident light at a larger angle, the light loss is relatively large. Therefore, it is necessary to obtain sufficient signal amount by prolonging the exposure time of the optical fingerprint sensor 220. long, affecting the user experience.
  • the large-angle light signal may also be blocked by the light absorbing material in at least one diaphragm layer 212 , which further causes the loss of light energy, which is detrimental to the performance and efficiency of fingerprint recognition.
  • an embodiment of the present application proposes a fingerprint identification device, which can solve the problem of light loss when the fingerprint identification device 200 receives incident light from a large angle, thereby shortening the exposure time of the fingerprint identification device and accelerating the fingerprint identification process. speed and improved user experience.
  • it can also be applied to the detection of various types of fingers, especially to the detection of dry fingers, so as to improve the fingerprint recognition performance of dry fingers.
  • FIG. 5 shows a schematic diagram of a fingerprint identification device 300 according to an embodiment of the present application.
  • the fingerprint identification device 300 can be applied to the electronic device 10 shown in FIG. 1 and FIG. 2 , that is, to be applied below the display screen 100 .
  • the fingerprint identification device 300 may include: a first microprism array 310, an optical component 320 and an optical fingerprint sensor 330;
  • the first micro-prism array 310 may include a plurality of first micro-prisms.
  • the first microprism is a triangular prism structure, including a first incident surface 301 and a first exit surface 302 , the first incident surface 301 is a plane parallel to the display screen 100 , and the first exit surface 302 is opposite to the display screen 100 . inclined plane;
  • the first microprism is used to receive the first target light signal 11 tilted relative to the display screen 100 reflected by the finger through the first incident surface 301 , and output the first target light signal 11 through the first exit surface 302 as a first vertical light signal 12 perpendicular to the display screen 100;
  • the optical component 320 is disposed below the above-mentioned first microprism array 310 for receiving the first vertical optical signal 12 and guiding the first vertical optical signal 12 to the optical fingerprint sensor 330 , which is disposed on the optical component 320
  • the bottom part is used to receive the first vertical light signal 12 for fingerprint identification.
  • a first target light signal inclined relative to the display screen is converted into a first vertical light signal perpendicular to the display screen by a plurality of first microprisms in the first microprism array.
  • the vertical optical signal is used to transmit to the optical fingerprint sensor through the optical components for fingerprint identification, which can reduce the light loss caused by the transmission of large-angle incident light in the optical path, thereby shortening the exposure time of the fingerprint identification device and accelerating the speed of fingerprint identification. And improve the user experience.
  • it can also be applied to the detection of various types of fingers, especially to the detection of dry fingers, so as to improve the fingerprint recognition performance of dry fingers.
  • the first microprisms in the first microprism array 310 further include a second exit surface 303 , and the second exit surface 303 is another plane inclined relative to the display screen 100 , which may be Optionally, the area of the second exit surface 303 is smaller than that of the first exit surface 302 .
  • the second exit surface is set to be a plane perpendicular to the display screen, or in other words, the second exit surface is perpendicular to the first incident surface
  • the second exit surface is set to be perpendicular to the display screen.
  • the other inclined plane of the screen, that is, the second outgoing surface is inclined to the first incident surface, which can facilitate the processing and manufacture of the first microprism, increase the tolerance in the manufacturing process, and thus improve the production efficiency of the first microprism.
  • the direction of the first target optical signal 11 can satisfy the following conditions.
  • the first A target light signal 11 needs to be perpendicular to the edge of the first microprism, secondly, the first target light signal 11 and the first incident surface 301 have a certain inclination angle, and thirdly, the first target light signal received by the first incident surface 301 11 is only emitted toward the first exit surface 302 , not toward the second exit surface 303 .
  • the first refracted light signal after the first target light signal 11 passes through the first incident surface 301 is parallel to the second exit surface 303 . In other words, after the first target light signal 11 passes through the first microprism, it will not exit from the second exit surface 303 .
  • FIG. 6 shows a schematic perspective view of the first microprism array 310 in FIG. 5 .
  • each first microprism in the first microprism array 310 has the same structure and is connected to each other, wherein the first incident surface 301 of each first microprism is on the same plane, The first emergent surfaces 302 of each first microprism are parallel to each other, and the second emergent surfaces 303 of each first microprism are parallel to each other.
  • the first microprism array 310 can be made of a transparent material with high refractive index, preferably, the refractive index of the material of the first microprism array 310 is higher than 1.5, which can be nanoimprinting or grayscale lithography, etc. Process manufacturing to form.
  • the optical fingerprint sensor 330 includes a sensing array 331 formed by a plurality of optical sensing units.
  • the sensing array 331 and the optical sensing units thereof please refer to the sensing array 221 and its optical sensing units above. The related description of the sensing unit will not be repeated here.
  • the optical component 320 is used to guide the first vertical optical signal 12 converted by the first microprism array 310 to the optical sensing unit in the sensing array 331 to perform fingerprint identification and block the passage of
  • the oblique optical signal behind the first microprism array 310 makes the oblique optical signal unable to reach the sensing array 331, so as to avoid interference with fingerprint recognition, so as to improve the fingerprint recognition effect.
  • the optical assembly 320 shown in FIG. 5 includes: a microlens array 321 and at least one diaphragm layer 322 (eg, two diaphragm layers 322 shown in FIG. 5 ) disposed thereunder.
  • the diaphragm layer 322 is formed of a non-light-transmitting material, wherein a plurality of light-transmitting small holes are provided, and the non-light-transmitting material includes, but is not limited to, black glue.
  • the microlens array 321 is disposed below the first microprism array 310 and includes a plurality of microlenses
  • At least one diaphragm layer 322 is disposed between the microlens array 321 and the sensing array 331, and each diaphragm layer 322 in the at least one diaphragm layer 322 is provided with a plurality of optical sensing units corresponding to a plurality of light passing small units. hole;
  • the sensing array 331 is used for receiving the light signal converged by the microlens array 321 and transmitted through the light-transmitting apertures of at least one diaphragm layer 322 .
  • the microlens array 321 is used for converging the first vertical optical signal 12 reflected by the finger and converted by the first microprism array 310 to the light-passing holes in the at least one diaphragm layer 322, and the first vertical light signal 12 After a vertical light signal 12 is converged by the microlens array 321 , it is transmitted to the sensing array 331 through the light-transmitting apertures in at least one diaphragm layer 322 .
  • the microlens array 321 is used for condensing the oblique light signal after passing through the first microprism array 310 to the non-light-transmitting pinhole area in the at least one diaphragm layer 322, that is, the non-light-transmitting material area.
  • the optical material absorbs or reflects the oblique optical signal to block the oblique optical signal from being transmitted to the sensing array 331 .
  • the plurality of microlenses in the microlens array 321 correspond to the plurality of optical sensing units in the sensing array 331 one-to-one, and in each diaphragm layer 322 , a plurality of light-passing holes and a plurality of The optical sensing units correspond to each other one by one, that is, the light-passing holes in each diaphragm layer 322 and the optical sensing units are correspondingly disposed directly below one microlens.
  • FIG. 7 shows a top view of the fingerprint identification device 300 in FIG. 5 .
  • a column of microlenses in the microlens array 321 is correspondingly disposed below each first microprism. It can be understood that a column of light sensing units is correspondingly disposed below the column of microlenses. . Of course, in another angle, a row of microlenses in the microlens array 321 may also be correspondingly disposed below each first microprism.
  • the first microprisms 310a in the first microprism array 310, the first microlenses 321a in the microlens array 321, and the first optical sensing units 331a in the sensing array 331 are correspondingly arranged,
  • the first microlens 321a is used for receiving the first vertical optical signal converted by the first microprism 310a, and condensing the first vertical optical signal to the first optical sensing unit 331a through the light-transmitting holes in the two diaphragm layers , and other oblique light signals are blocked by the light absorbing material regions in the two diaphragm layers.
  • the first target light signal reflected by the finger and tilted relative to the display screen is converted into a first vertical light signal perpendicular to the display screen through the first microprism array 310, and then passed through the microlens.
  • the diaphragm layer is used as an optical component to guide the converged first vertical light signal into the sensing array and block other oblique light signals, so that the microlenses in the microlens array do not have shadow areas, thereby improving the ability of the sensing array 331 to receive semaphore and fingerprint recognition effect.
  • the angle of the first target light signal incident on the target oblique direction of the first microprism array 310 is, it can be converted into a vertical light signal by the designed first microprism array 310 without causing the light signal to be damaged by The light absorbing material in the diaphragm layer blocks, ie does not cause loss of light energy.
  • the first microprism array 310 of the present application can be set to receive only the reflected light signal from the finger incident in the oblique direction of the target, that is, the first target light signal 11 .
  • the finger reflected light incident in the oblique direction of the target becomes a vertical light signal after passing through the first microprism array 310 , that is, the first vertical light signal 12 .
  • the vertical optical signal is absorbed by the corresponding optical sensing unit after passing through the optical component 320 and converted into a corresponding electrical signal quantity for output according to a certain ratio.
  • the electrical signal output from the acquisition unit corresponding to the valley is stronger and the image is brighter; the electrical signal output from the acquisition unit corresponding to the ridge is weaker and the image is darker , the final output is a clear fingerprint image with a certain contrast.
  • the reflected light incident in the non-target oblique direction is still an oblique light signal after passing through the first microprism array 310.
  • the oblique optical signal is collected by the microlens to the light absorbing material area in the diaphragm layer, and cannot reach the optical sensing unit for processing. Fingerprint imaging.
  • the structure of the first microprism in the embodiment of the present application will be described below with reference to FIG. 8 , and the principle of converting the first target light signal 11 reflected by the finger into the first vertical light signal 12 will be described.
  • FIG. 8 is a schematic diagram showing the structure of any first microprism in the first microprism array 310 according to the embodiment of the present application and the change of the direction of light.
  • the included angle between the first target optical signal 11 and the normal direction perpendicular to the first incident surface 301 (hereinafter referred to as the normal direction) is ⁇ , and the first target optical signal 11 enters from the first incident surface 301
  • a first refracted light signal 101 is formed inside it, and the first refracted light signal 101 forms an angle of 90°-j with the normal direction; if the angle between the first incident surface 301 and the first exit surface 302 is is the first angle i, the angle between the first incident surface 301 and the second exit surface 303 is the second angle j, so that the second exit surface 303 of the first microprism is parallel to the first refracted light signal 101, That is, it is impossible for the first refracted light signal 101 to be emitted from the second emission surface 303 .
  • the above-mentioned included angle ⁇ , the first included angle i, the second The included angle j needs to satisfy the following relation:
  • n 1 sin(i+j-90°) n 0 sin i;
  • n 0 is the refractive index of air
  • n 1 is the refractive index of the microprism.
  • the width of the first microprism is L
  • the height is h
  • the projection width of the first exit surface 302 on the first incident surface 301 is d
  • the width L, height h and projection width d of the first microprism satisfy the following relationship Mode:
  • the second clip can be calculated.
  • the angle j is about 75.6°
  • the first included angle i is about 33.2°
  • the width d ⁇ 0.86L is about 33.2°
  • the width h is a triangle with two included angles of 33.2° and 75.6°.
  • the width L of the first microprism may range from 1 um to 50 um.
  • the first outgoing surface 302 can convert the incident light of 25° into vertical outgoing light, so that the light signal reaching the fingerprint sensor becomes vertical. Optical signal; 2. Incident light at 25° cannot be emitted from the second emitting surface 303; 3. The second emitting surface 303 cannot emit vertical light signals either.
  • the second emitting surface 303 can emit the vertical light signal 102, and the vertical light signal 102 is derived from the second refracted light signal 103 inside the microlens, and the second refracted light signal 103 is related to the normal line.
  • the included angle of the direction is k, then the second included angle j and the included angle k satisfy the following relationship:
  • n 1 sin(jk) n 0 sin j;
  • n 0 is the refractive index of air
  • n 1 is the refractive index of the microprism.
  • the angle q of the refracted light signal at the maximum angle with the normal direction that can appear inside the microprism is:
  • the refractive index n 1 of the first microprism as 1.7 and the angle ⁇ of the first target light signal as 25° as an example
  • the light emitted from the first exit surface 302 and the second exit surface 303 of the first microprism is described above. signal condition.
  • n 1 sin(i+j-90°) n 0 sin i;
  • n 0 is the refractive index of air.
  • first incident surface 301 of the first microprism is also used to receive non-target light signals with a direction different from that of the first target light signal 11
  • first exit surface 302 and the second exit surface 303 are used to receive the non-target light signals.
  • the signal is converted into an oblique optical signal.
  • the incident angle of the non-target optical signal is related to the refractive index n 1 of the first microprism.
  • the second refracted optical signal 103 is an optical signal formed after the non-target optical signal 13 passes through the first incident surface 301 , and the included angle between the non-target optical signal 13 and the normal direction is The non-target angle ⁇ .
  • the angle ⁇ between the refractive index n 1 of the first microprism and the non-target optical signal should satisfy the following relationship:
  • n 1 sin(jk) n 0 sin j;
  • n 0 is the refractive index of air
  • j is the angle between the first incident surface 301 and the second exit surface 302
  • k is the angle between the second refracted light signal 103 and the normal direction.
  • the relationship between the refractive index n 1 of the first microprism and the angle ⁇ of the non-target optical signal is obtained as shown in Fig. 9 .
  • the region is the range region of n 1 and ⁇ that do not satisfy the conditions.
  • the refractive index n 1 of the first microprism is within a certain range, for example, the refractive index n 1 is between 1.5 and 1.9, if the refractive index n 1 is larger, the refractive index n 1 corresponds to The larger the value range of the angle ⁇ of the non-target optical signal is, at this time, more non-target optical signals can be converted into oblique optical signals, so that only the first target optical signal can pass through the first incident surface and the first The condition that the exit surface is converted into a vertical optical signal, thereby improving the quality of fingerprint imaging and the effect of fingerprint recognition.
  • the refractive index n 1 of the first microprism is designed to be larger than a preset threshold to increase the value range of the non-target included angle ⁇ , and the first microprism is used for this larger value range
  • the non-target light signal inside is converted into an oblique light signal, thereby improving the fingerprint imaging quality and fingerprint recognition effect.
  • the refractive index n 1 of the first microprism is greater than or equal to 1.9, then all non-target optical signals in the range of ⁇ from 0° to 90° can be converted into oblique optical signals, thereby further improving fingerprint imaging quality and fingerprint recognition effect. .
  • the vertical light signal can only be emitted from the first exit surface of the first microprism, And the vertical light signal only comes from the first target light signal, that is, only from the first refracted light signal, and the second exit surface is parallel to the first refracted light signal, so the direction of the reflected light signal reflected by the second exit surface is Different from the first refracted light signal, the reflected light signal cannot be emitted from the first exit surface as a vertical light signal.
  • the second outgoing surface is set to be a plane perpendicular to the display screen, or the second outgoing surface is set to be a plane perpendicular to the first incident surface, there may be some stray light in a direction different from that of the first target optical signal.
  • the signal enters the first microprism it is reflected by the vertical second exit surface to form a reflected light signal in the same direction as the first refracted light signal.
  • the reflected light signal is transmitted to the first exit surface and is refracted by the first exit surface to form The vertical light signal exits, which interferes with fingerprint recognition. Therefore, by using the first microprism of the embodiment of the present application, the interference of stray light on fingerprint recognition can be reduced, and the performance of fingerprint recognition can be improved.
  • FIG. 10 shows a schematic structural diagram of another fingerprint identification device 300 .
  • the fingerprint identification device 300 may further include a first substrate layer 340 formed above the first microprism array 310 and disposed parallel to the display screen.
  • the first microprism array 310 may be formed above the first substrate layer 340 , and the first substrate layer 340 is used to support the first microprism array 310 .
  • the first substrate layer 340 is a light-transmitting material, which can be the same material as the first microprism array 310 , or can also be a different material from the first microprism array 310 .
  • the first substrate layer 340 may be white glass or resin material.
  • the first substrate layer 340 may be an optical filter, which only transmits the optical signal of the target wavelength band and blocks the optical signal of the non-target wavelength band.
  • the first substrate layer 340 may be an IR cut filter.
  • the filter is used to reduce unwanted ambient light in fingerprint sensing to improve the optical sensing of the received light by the sensing array 331 .
  • the filter can specifically be used to filter out light of a specific wavelength, for example, near-infrared light and part of red light. For example, human fingers absorb most of the energy of light with wavelengths below 580nm, if one or more optical filters or layers of optical filtering are designed to filter light with wavelengths from 580nm to the infrared, ambient light can greatly reduce the effect of ambient light on fingerprints. Influence of optical detection in sensing.
  • the filter may include one or more optical filters, which may be configured as, for example, band-pass filters to allow transmission of light emitted by the OLED panel while blocking infrared light from sunlight, etc. other light components.
  • optical filters When the fingerprint identification device 300 of the embodiment of the present application is used outdoors, such optical filtering can effectively reduce the background light caused by sunlight.
  • the light entrance surface of the filter can be provided with an optical inorganic coating or an organic blackening coating, so that the reflectivity of the light entrance surface of the filter is lower than the first threshold, such as 1%, so as to ensure that the sensing array 331 It can receive enough light signals to improve the fingerprint recognition effect.
  • the filter in addition to being used as the first substrate layer 340 and disposed above the first microprism array 310, the filter can also be fabricated along the reflected light formed by finger reflection. Any position on the optical path to the sensing array 331 is not specifically limited in this embodiment of the present application.
  • the first substrate layer 340 may be a transparent layer, and in addition, the fingerprint identification device 300 further includes an optical filter.
  • the filter can be set at any of the following positions: above the first microprism array 310; between the first microprism array 310 and the optical assembly 320; inside the optical assembly 320; and between the optical assembly 320 and the sensing array 331 between.
  • a filter can be disposed between the first microprism array 310 and the optical component 320.
  • the filter is used to receive the first vertical light signal converted by the first microprism array 310, which effectively reduces the first vertical light signal.
  • the optical loss of the vertical optical signal in the filter improves the fingerprint recognition effect.
  • the filter can also be arranged on the surface (on chip) of the optical fingerprint sensor 330, so that no additional support structure for the filter is required, and the filter can be directly arranged on the surface of the optical fingerprint sensor 330, which can reduce the size of the fingerprint identification device. 300 overall thickness.
  • the optical fingerprint sensor 330 may further include at least one metal layer 332 and a first dielectric layer 333 between the metal layers.
  • the metal layer 332 may be a metal wiring layer of the optical fingerprint sensor, used for electrically interconnecting the optical sensing units in the sensing array 331 and electrically connecting the sensing array 331 to external devices to realize internal and external communication of the fingerprint identification device 300 .
  • the optical fingerprint sensor 330 may include three metal layers 332 , and a first medium may be provided between the three metal layers 332 and between the lowest metal layer 332 and the sensing array 331 Layer 333, the material of the first dielectric layer 333 may be a transparent material, as an example, it may be a material such as silicon oxide, silicon nitride, or the like.
  • the optical assembly 320 in addition to the microlens array 321 and at least one diaphragm layer 322, it also includes a second dielectric layer 323, the second dielectric layer 323 is used to connect the microlens array 321, at least one A stop layer 322 and an optical fingerprint sensor 330 are provided.
  • the material of the second dielectric layer 323 is also a transparent material, which is used for transmitting optical signals, and the specific transparent material type is not specifically limited in this embodiment of the present application.
  • At least one metal layer 332 in the optical fingerprint sensor 330 can be multiplexed into the diaphragm layer 322 in the optical component 320 , that is, a light-passing hole is formed in the metal layer 332 to serve as the aperture layer 322 .
  • the function of the diaphragm is to simplify the structure of the fingerprint identification device 300 and reduce its thickness.
  • the top metal layer 332 of the optical fingerprint sensor 330 is multiplexed into an aperture layer, and the optical component 320 includes two aperture layers.
  • the top aperture layer is used to block ambient light and stray light from interfering with fingerprint recognition.
  • the diaphragm layer is the top metal layer of the optical fingerprint sensor 330, which is used to further block stray light and guide the vertical light signal to be transmitted to the sensing array 331, so as to improve the imaging effect of the optical fingerprint sensor and improve the fingerprint recognition performance.
  • the apertures of the light-transmitting small holes in at least one diaphragm layer corresponding to the same microlens are sequentially reduced from top to bottom.
  • the apertures of the light-transmitting apertures provided in the top diaphragm layer are larger than the apertures of the light-transmission apertures provided in the bottom aperture layer.
  • the apertures of the light-transmitting apertures in at least one diaphragm layer corresponding to the same microlens may also be the same from top to bottom, which is not specifically limited in this application.
  • FIG. 10 only shows the technical solution in which the top metal layer 332 of the optical fingerprint sensor 330 is multiplexed as an aperture layer.
  • the metal layer 332 at any position in the optical fingerprint sensor 330 Can be reused as a diaphragm layer.
  • the metal layer 332 at the top position, the middle position or the bottom position in the optical fingerprint sensor 330 can be multiplexed as a diaphragm layer.
  • the diaphragm layer in the optical component 320 can also be provided with one or more layers.
  • the optical component 320 can be separately disposed above the optical fingerprint sensor 330, or can be integrated with the optical fingerprint sensor 330 on the same chip, so as to further reduce the thickness of the fingerprint identification device 40 and avoid occupying other modules (such as batteries) in the electronic device. space.
  • the optical assembly 320 includes a microlens array and at least one diaphragm layer for guiding vertical light signals to the sensing array 331 in the optical fingerprint sensor 330 .
  • the optical component 320 can also be a collimator with a collimator, and each optical sensing unit in the optical fingerprint sensor 331 corresponds to at least one collimator in the collimator; wherein the collimator is used for The first vertical light signal converted by the first microprism array is received, and transmitted to the optical fingerprint sensor 330 through the collimation hole in the collimator.
  • the width of the first microprisms in the first microprism array 310 is the same as the width of the optical sensing units in 331 in the photosensitive array
  • the width of the first microprisms in the first microprism array 310 may also be the same as or similar to the diameter of the circular microlenses in the microlens array 321 .
  • the width of the first microprism can also be smaller or larger than the width of the optical sensing unit 331 in the photosensitive array, in other words, one microlens in the microlens array 321
  • the multiple microlenses in the lens array 321 can receive the optical signal converted by the same microprism, and the embodiment of the present application does not specifically limit the width of the microprism.
  • each first microprism in the first microprism array 310 is disposed corresponding to at least one microlens in the microlens array 321 and at least one optical sensing unit in the sensing array 331 . That is, at least one microlens and at least one optical sensing unit are correspondingly disposed below a first microprism, the at least one microlens is used to receive the optical signal converted by the first microprism, and the at least one optical sensing unit is used to receive The at least one microlens converges the optical signal.
  • each microlens in the microlens array 321 and each optical sensing unit in the sensing array 331 are arranged corresponding to at least one first microprism in the first microprism array 310 . That is, at least one first microprism is correspondingly disposed above one microlens and one optical sensing unit, the one microlens is used to receive the optical signal converted by the at least one first microprism, and one optical sensing unit is used to receive the one The optical signal after the microlens converges.
  • the fingerprint identification device is used to receive light signals in a single target direction, and block stray light in other directions, so as to improve the effect of fingerprint identification.
  • only receiving the light signal in a single direction will limit the field of view of the fingerprint identification device. If the field of view of the fingerprint identification device is to be enlarged, the area of the fingerprint identification chip needs to be increased accordingly, which will lead to The cost of the fingerprint identification device increases.
  • 11 and 12 are schematic diagrams of an electronic device 20 to which the embodiments of the present application may be applied.
  • 12 is a schematic cross-sectional view of the electronic device 20 shown in FIG. 11 along the A-A' direction.
  • the electronic device 20 may include the above-mentioned display screen 100 and a fingerprint identification device 400 provided by the embodiment of the present application.
  • a fingerprint identification device 400 provided by the embodiment of the present application.
  • the display screen 100 in this embodiment of the present application reference may be made to the relevant solutions in the above embodiments, and details are not described herein again.
  • the fingerprint identification device 400 may include: a first optical device 410a, a second optical device 410b, and an optical fingerprint sensor 420;
  • the first optical device 410a is used to guide the first target light signal reflected by the finger on the first fingerprint detection area 401a in the display screen 100 to the first sensing array 421a in the optical fingerprint sensor 420;
  • the second optical device 410b is used to guide the second target light signal reflected by the finger on the second fingerprint detection area 401b in the display screen 100 to the second sensing array 421b in the optical fingerprint sensor 420;
  • the first sensing array 421a and the second sensing array 421b are used for fingerprint identification according to the first target light signal and the second target light signal respectively;
  • the first fingerprint detection area 401a and the second fingerprint detection area 401b do not overlap each other, and there is a spacer 401c between them, and the light signal reflected by the finger above the spacer 401c cannot enter the optical fingerprint sensor 420 for use. Fingerprint recognition.
  • the optical fingerprint sensor 420 for related technical features of the optical fingerprint sensor 420, the first sensing array 421a and the second sensing array 421b, reference may be made to the optical fingerprint sensor 220 or the optical fingerprint sensor 330, the sensing array 221 or The technical solution of the sensing array 331 will not be repeated here.
  • the display screen 100 is an OLED display screen, and the display screen 100 emits a beam of light to the finger 140 above the first fingerprint detection area 401a, and the light is reflected on the surface of the first area of the finger 140 to form the first
  • the first optical device 410a is used for guiding the first target light signal in the first reflected light to the first sensing array 421a, and the first sensing array 421a is used for photoelectric conversion according to the first target light signal A first fingerprint detection signal is obtained.
  • the display screen 100 emits a beam of light to the finger 140 above the second fingerprint detection area 401b, and the light is reflected on the surface of the second area of the finger 140 to form a second reflected light, that is, the second target light signal, the second optical signal
  • the device 410b is used for guiding the second target light signal in the second reflected light to the second sensing array 421b, and the second sensing array 421b is used for photoelectric conversion according to the second target light signal to obtain a second fingerprint detection signal, Based on the first fingerprint detection signal and the second fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, thereby realizing the optical fingerprint identification function in the electronic device 20 .
  • the directions of the first target optical signal and the second target optical signal are optical signals in any two different directions, and the first target optical signal and the second target optical signal are respectively perpendicular to The light signal of the display screen and the light signal inclined to the display screen, or the first target light signal and the second target light signal are both light signals inclined to the display screen.
  • the optical signals in different target directions enter the optical fingerprint sensor for fingerprint recognition, compared with the optical fingerprint sensor that only receives fingerprint light in a single direction Signal, while improving the diversity of fingerprint identification signals, it can expand the field of view of the fingerprint identification device or reduce the area of the optical fingerprint sensor to reduce the cost while keeping the field of view unchanged, thereby improving fingerprint identification performance or reducing fingerprints. Identify the cost of the device.
  • two non-separated sensing array areas in the same optical fingerprint sensor can be used to respectively receive optical signals from two fingerprint detection areas.
  • the optical signal of each fingerprint detection area is convenient for process realization, and can reduce the horizontal space occupied by the fingerprint identification device under the display screen.
  • the areas of the first sensing array 421a and the second sensing array 421b are equal, and/or the areas of the first fingerprint detection area 401a and the second fingerprint detection area 401b are equal.
  • the first fingerprint detection area 401a is located on one side of the boundary line between the first sensing array 421a and the second sensing array 421b, and the second fingerprint detection area 401b is located between the first sensing array 421a and the second sensing array 421b The other side of the demarcation line of the array 421b.
  • the areas of the first sensing array 421a and the second sensing array 421b are equal, and the boundary between the first sensing array 421a and the second sensing array 421b is an axis of symmetry of the optical fingerprint sensor.
  • the detection area 401a is located on one side of the symmetry axis, and the second fingerprint detection area 401b is located on the other side of the symmetry axis.
  • the first target light signal is inclined toward the boundary line between the first sensing array 421a and the second sensing array 421b, or the first target light signal is transmitted toward the boundary line, and the first target light
  • the angle between the signal and the normal direction of the optical fingerprint sensor is ⁇ 1 ;
  • the second target optical signal is inclined to the above-mentioned dividing line, or the second target optical signal is transmitted toward the dividing line, and the second target optical signal and the optical fingerprint sensor are connected.
  • the included angle of the normal direction is ⁇ 2 .
  • the angle between the second target light signal and the normal direction of the optical fingerprint sensor can also be written as - ⁇ 2 , where ⁇ 1 and ⁇ 2 The value is between 0 and 90°.
  • ⁇ 1 ⁇ 2
  • the first optical device 410a and the second optical device 410b are arranged in mirror images with respect to the plane passing through the above-mentioned dividing line and perpendicular to the display screen.
  • the first fingerprint detection area 401a and the second fingerprint detection area 401b may also be mirror images with respect to the plane passing through the above-mentioned dividing line and perpendicular to the display screen.
  • the width of the spacer 401c is about 0.93 mm, that is, the first fingerprint detection area 401a A width of 0.93 mm is spaced from the second fingerprint detection area 401b.
  • the fingerprint detection area of the fingerprint identification device is located in its field of view.
  • the fingerprint detection area is the same as the field of view of the fingerprint identification device on the plane where the display screen is located.
  • the field of view hereinafter refers to the field of view of the fingerprint identification device on the plane where the display screen is located.
  • FIG. 13 and FIG. 14 are schematic diagrams showing the field of view of the fingerprint identification device in the embodiment of the present application receiving a single-direction light signal and a multi-direction light signal.
  • the fingerprint identification device 200 is used to receive a single-direction optical signal for fingerprint identification, and the fingerprint identification device 200 may be as shown in FIG. 2 .
  • the fingerprint identification device 200, the field of view of the fingerprint identification device 200 is the first field of view.
  • the fingerprint identification device 400 is used to receive optical signals in two directions for fingerprint identification, and the fingerprint identification device 400 may be the one shown in FIG. 12 .
  • the fingerprint identification device 400 shown, the field of view of the fingerprint identification device 400 is the second field of view.
  • the second field of view can collect more fingerprint information in the edge area of the finger.
  • the overall field of view is larger, the field of view of the second field of view is enlarged by ⁇ 1 + ⁇ 2 compared with the field of view of the first field of view, and the field of view of the second field of view Compared with the width of the first field of view, the width of the spacer 401c is enlarged, and the fingerprint identification signal has more diversity.
  • the overall field of view of the fingerprint identification device 400 is set as the first field of view, the area of the optical fingerprint sensor in the fingerprint identification device 400 is correspondingly reduced, thereby reducing the cost of the fingerprint identification device.
  • the photosensitive area of the optical fingerprint sensor corresponds to the size of the first field of view 1:1 , the area is 6 ⁇ 6mm, if the optical fingerprint sensor receives the first target light signal with angle ⁇ 1 and the second target light signal with angle ⁇ 2, the area of its photosensitive area becomes (6-0.93) ⁇ 6mm, that is, 5.07 ⁇ 6mm, the photosensitive area of the optical fingerprint sensor is reduced by about 15%, and the total area of the corresponding optical fingerprint sensor is reduced by 10% to 15%, which can reduce the cost of the optical fingerprint sensor by 10% to 15%.
  • the fingerprint signal in the central area of the finger press is often blurred. This part of the fingerprint signal is equivalent to a useless signal.
  • the technician will use some technical means to eliminate the fingerprint blurring as much as possible.
  • the center area of the fingerprint recognition area is exactly or mostly in the interval area described in this embodiment, the center blurring phenomenon can be effectively avoided, and the fingerprint recognition area will not be affected at the same time. Effective area.
  • the field of view of the fingerprint identification device can be increased, the cost can be reduced, and the diversity of fingerprint identification signals can be improved to improve the fingerprint identification performance; It simplifies the process of fingerprint image processing to improve the efficiency of fingerprint recognition.
  • 15 to 17 show three schematic structural diagrams of the first optical device 410a and the second optical device 410b in the embodiments of the present application.
  • the first optical device 410a includes a first oblique hole collimator; the second optical device 410b includes a second oblique hole collimator.
  • the optical fingerprint sensor 420 is arranged parallel to the display screen, and the included angle between the direction of the first oblique hole in the first oblique hole collimator and the normal of the optical fingerprint sensor 420 is ⁇ 1 , that is, the direction of the first oblique hole and the direction of the first oblique hole are ⁇ 1 .
  • the first sensing array 421a in the optical fingerprint sensor 420 can only receive an oblique light signal with an incident angle of ⁇ 1 or close to ⁇ 1 .
  • the included angle between the direction of the second slanted hole in the second slanted hole collimator and the normal of the optical fingerprint sensor 420 is - ⁇ 2 , that is, the direction of the second slanted hole is the same as the direction of the second target optical signal or Similarly, the second sensing array 421b in the optical fingerprint sensor 420 can only receive oblique light signals whose incident angle is - ⁇ 2 or close to - ⁇ 2.
  • the first optical device 410a includes a first microlens array and at least one first diaphragm layer
  • the second optical device 410b includes a second microlens array and at least one second diaphragm layer.
  • the related technical solutions of the first optical device 410a and the second optical device 410b reference may be made to the related description of the optical assembly 210 shown in FIG. 4 above.
  • the first optical device 410a and the second optical device 410b have the same structure and composition, and the only difference is that the arrangement of the light-passing holes in at least one diaphragm layer is different, so as to realize the target light signal passing through different directions.
  • the second optical device 410b includes a second microlens array 410b and at least one second diaphragm layer 412b, and the at least one second diaphragm layer 412b is provided in the second optical device 410b.
  • the non-transmissive material in the second diaphragm layer 412b blocks.
  • the direction of the plurality of second light guide channels is the same as or similar to the direction of the second target light signal.
  • the plurality of microlenses in the second microlens array 410b are in one-to-one correspondence with the plurality of optical sensing units in the second sensing array 421b, that is, one optical sensing unit is correspondingly disposed below one microlens, and the optical sensing unit
  • the sensing unit is used for receiving the second target light signal after the microlens converges and passes through the light-transmitting small holes in at least one second aperture layer.
  • the center of the light-passing aperture is deviated from the optical axis of the microlens.
  • the optical sensing unit can be correspondingly disposed directly below a microlens, or can also correspond to an obliquely below a microlens, so that the second target light signal is focused on the center of the optical sensing unit to improve optical performance.
  • At least part of the diaphragm layer in the first optical device 410a and the second optical device 410b may be served by a metal layer in the optical fingerprint sensor 420 , in other words, one or more layers in the optical fingerprint sensor 420
  • the metal wiring layer can be multiplexed into one or more diaphragm layers to select the target light signal to pass through, which can simplify the structure of the fingerprint identification device 400 and reduce its thickness.
  • the fingerprint identification device 400 further includes other optical structures, for example, a transparent medium layer for connecting at least one aperture layer, a microlens array and an optical fingerprint sensor.
  • a filter layer may also be included, which is disposed in the optical path between the sensing array of the optical fingerprint sensor and the display screen, and is used to filter the wavelength band of the optical signal for non-fingerprint detection.
  • the filter layer, the transparent medium layer, and the metal wiring layer in the optical fingerprint sensor 420 reference may be made to the relevant description in FIG. 10 above, which will not be repeated here.
  • the first optical device 410a includes a first oblique hole collimator and a first microlens array, the first oblique hole collimator is disposed above the first microlens array;
  • the second optical device 410b includes A second oblique hole collimator and a second microlens array, the second oblique hole collimator is disposed above the second microlens array.
  • the oblique hole collimator can refer to the relevant description in FIG. 15 above, and the microlens array is used to condense the first target light signal and the second target light after passing through the oblique hole collimator.
  • the signals are sent to the first photosensitive array 421a and the second photosensitive array 421b.
  • the slant hole collimator is set above the optical fingerprint sensor to block the stray light in other directions except the target direction, it is not necessary to separately set the light below the microlens array.
  • the diaphragm layer it is only necessary to form a microlens array above the optical fingerprint sensor 420 .
  • the preparation process of the optical fingerprint sensor 420 can be simplified.
  • the first optical device 410a and the second optical device 410b can be designed according to requirements, that is, the angle ⁇ 1 of the first target optical signal and the angle ⁇ 2 of the second target optical signal Its specific optical path structure.
  • the slanted hole collimator not only blocks the non-target optical signal, but also blocks part of the target optical signal, and only the target optical signal passing through the slanted hole will be optically fingerprinted sensor receives. Therefore, the technical solution will cause a large amount of optical signal loss.
  • At least one diaphragm layer in order to pass the target light signal, at least one diaphragm layer needs to be offset by an appropriate distance relative to the optical axis of the microlens. Directly below the lens, which results in that part of the light condensed by the microlens may be blocked or absorbed by the non-transmissive material of at least one diaphragm layer, such as the metal wiring layer of an optical fingerprint sensor.
  • the non-transmissive material of at least one diaphragm layer such as the metal wiring layer of an optical fingerprint sensor.
  • some areas of the microlens cannot function to condense light due to the shadow effect, resulting in a large light loss when the optical fingerprint sensor receives incident light at a larger angle.
  • the above solution requires the light source to emit high-intensity light or to prolong the exposure time of the fingerprint sensor to complete the fingerprint signal collection, which has adverse effects on the power consumption of the device and the user experience.
  • a microprism array can also be set to convert the oblique optical signal into a vertical optical signal, and the vertical optical signal is then transmitted through the optical component.
  • the optical fingerprint sensor is used for fingerprint identification, which can reduce the light loss of the inclined optical path, thereby shortening the exposure time of the fingerprint identification device, increasing the field of view of the fingerprint identification device, reducing the cost, and improving the diversity of fingerprint identification signals. Speed up fingerprint recognition and improve user experience.
  • FIG. 18 shows a schematic structural diagram of another fingerprint identification device 400 .
  • the first optical device 410a includes: a first microprism array 413a and a first optical component;
  • the first microprism array 413a is used for receiving the first target light signal and converting the first target light signal into a first vertical light signal perpendicular to the display screen;
  • the first optical component is disposed under the first microprism array 413a for receiving the first vertical light signal and guiding the first vertical light signal to the first sensing array 421a of the optical fingerprint sensor;
  • the second optical device 410b includes: a second microprism array 413b and a second optical component;
  • the second microprism array 413b is used for receiving the second target light signal, and converting the second target light signal in the second light signal into a second vertical light signal perpendicular to the display screen;
  • the second optical component is disposed under the second microprism array 413b for receiving the second vertical light signal and guiding the second vertical light signal to the second sensing array 421b of the optical fingerprint sensor.
  • the first microprism array 413a and the first optical component in the first optical device 410a may have the same structures as the first microprism array 310 and the optical component 320 in the fingerprint identification device 300 above.
  • the first sensing array 421a of the optical fingerprint sensor 420 may be the same as the sensing array 311 in the fingerprint identification device 300 above.
  • the second microprism array 413b in the second optical device 410b may be symmetrically arranged with the first microprism array 413a, that is, the second microprism array 413b receives the second target light signal with an angle of - ⁇ 2.
  • the second microprism array 413b includes a plurality of second microprisms, the second microprisms include a second incident surface and a third exit surface, the second incident surface is a plane parallel to the display screen, and the third The exit surface is a plane inclined relative to the display screen; the second microprism is used to receive the above-mentioned second target light signal through the second incident surface, and to emit the second target light signal as the second vertical light through the third exit surface Signal.
  • the second microprism further includes a fourth exit surface, the fourth exit surface is another plane inclined relative to the display screen, and the area of the fourth exit surface is smaller than that of the third exit surface.
  • the included angle between the first target light signal received by each first microprism in the first microprism array 413a and the normal direction of the first incident surface of the first microprism is ⁇ 1
  • the included angle with the edge of the first microprism is 90°
  • the second target light signal received by each second microprism in the second microprism array 413b and the normal direction of the second incident surface of the second microprism is 90° with the edge of the second microprism; wherein, the values of ⁇ 1 and ⁇ 2 are between 0 and 90°.
  • the above-mentioned second microprism array 413b and first microprism array 413a are arranged in mirror images with respect to a plane perpendicular to the display screen.
  • FIG. 19 shows a schematic three-dimensional structure diagram of a first microprism array 413a and a second microprism array 413b.
  • any first microprism in the first microprism array 413a includes a first incident surface 301 , a first exit surface 302 and a second exit surface 303 , the first incident surface 301 and the second exit surface 302
  • Any second microprism in the second microprism array 413b includes a second incident surface 401, a third exit surface 402 and a fourth exit surface 403.
  • the second incident surface 401 may be located at the first incident surface 301 above. same plane.
  • the third exit surface 402 please refer to the related description of the first exit surface 302 above, and the related technical characteristics of the fourth exit surface 403 may refer to the related description of the second exit surface 303 above.
  • the first microprism array 413a and the second microprism array 413b have the same structure and are mirror-symmetrical with respect to a plane perpendicular to the display screen.
  • the structures of the first microprism array 413a and the second microprism array 413b may also be different, and are arranged in a mirror image asymmetric manner.
  • the structures of the first microprism array 413a and the second microprism array 413b are different and are not mirror images.
  • the first microprism array 413a further includes a first substrate layer 414a
  • the second microprism array 413b further includes a second substrate layer 414b;
  • the first substrate layer 414a is formed on the upper surfaces of the plurality of first microprisms
  • the second substrate layer 414b is formed on the upper surfaces of the plurality of second microprisms
  • the first substrate layer 414a and the second substrate layer 414b are parallel to the Display screen 110 .
  • the first substrate layer 414a and/or the second substrate layer 414b may be filters for passing optical signals in the target wavelength band and blocking optical signals in non-target wavelength bands.
  • first substrate layer 414a and the second substrate layer 414b For the related technical solutions of the first substrate layer 414a and the second substrate layer 414b, reference may be made to the relevant description of the first substrate layer 340 above, which will not be repeated here.
  • At least one surface of the first microprism array 413a is provided with an anti-reflection coating and/or a polarizing coating
  • at least one surface of the second microprism array 413b is provided with a Anti-reflection coating and/or polarizing coating; wherein, the anti-reflection coating is used to reduce the reflectivity of the optical signal, and the polarizing coating is used to select the polarization direction of the optical signal.
  • the incident surface of the first microprism array 413 is provided with an anti-reflection coating of optical coating, so that the reflectivity of the interface is lower than the first threshold, such as 2%, so as to reduce the loss of optical signals at the interface, thereby improving fingerprint recognition Effect.
  • both the first optical component and the second optical component include a microlens array 411 and at least one diaphragm layer 412 .
  • a microlens array 411 and at least one diaphragm layer 412 For the related technical solutions of the microlens array 411 and the at least one diaphragm layer 412, reference may be made to the related technical solutions of the microlens array 321 and the at least one diaphragm layer 322 in FIG. 10 above.
  • both the first optical component and the second optical component may also be collimators with a straight hole.
  • Each optical sensing unit in the optical fingerprint sensor corresponds to at least one collimating hole in the collimating hole collimator; wherein, the collimating hole collimator is used to receive the first vertical light signal and the second microprism converted by the first microprism array The array-converted second vertical optical signal, the first vertical optical signal and the second vertical optical signal are transmitted to the optical fingerprint sensor through the collimating hole in the collimating hole collimator.
  • first optical assembly and the second optical assembly are respectively disposed in the first optical device 410a and the second optical device 410b, in fact, the structures of the first optical assembly and the second optical assembly are completely the same. It can be set as a complete optical assembly, integrated or separated above the optical fingerprint sensor.
  • FIG. 22 shows a top view of the fingerprint identification device 400 in FIG. 18 .
  • a row of first optical sensors in the first sensor array is correspondingly disposed below each first microprism of the first microprism array 413a unit or a row of first optical sensing units, and/or,
  • a row of second optical sensing units or a column of second optical sensing units in the second sensing array is correspondingly disposed below each second microprism of the second microprism array 413b.
  • the width of the first microprism in the first microprism array 413a and the width of the second microprism in the second microprism array 413b are the same or similar to the width of the optical sensing unit, In addition, the widths of the first microprism and the second microprism may also be the same as or similar to the diameter of the circular microlenses in the microlens array 411 .
  • the widths of the first microprism and the second microprism can also be smaller or larger than the width of the optical sensing unit.
  • one microlens in the microlens array 411 can receive the optical signals converted by the plurality of first microprisms, or receive A plurality of second microprisms converted optical signals.
  • a plurality of microlenses in the microlens array 411 can receive the optical signal converted by the same first microprism, or receive the optical signal converted by the same second microprism.
  • the width dimension of the microprism is not specifically limited.
  • At least one first microprism is correspondingly disposed above each first optical sensing unit of the first sensing array 421a, and/or, the second sensing array 421b At least one second microprism is correspondingly disposed above each second optical sensing unit.
  • At least one first optical sensing unit is correspondingly disposed under each first microprism of the first microprism array, for example, at least one column of first optical sensing units or a row of first optical sensing units; and/or, the second microprism At least one second optical sensing unit is correspondingly disposed below each second microprism of the prism array, for example, at least one column of second optical sensing units or a row of second optical sensing units.
  • the above-mentioned first microprism array 413a and second microprism array 413b may be disposed above the first optical component, the second optical component and the optical fingerprint sensor through a support structure, and the support structure may Set on the edge area of the upper surface of the optical fingerprint sensor.
  • the supporting structure includes, but is not limited to, an adhesive layer or a bracket, which can be fabricated around the optical fingerprint sensor through a process such as screen printing.
  • the space between the first microprism array 413a and the first optical assembly may be vacuum or air
  • the space between the second microprism array 413b and the second optical assembly may be vacuum or air.
  • the upper surface of the first microprism array 413a that is, the first incident surfaces of the plurality of first microprisms in the first microprism array 413a
  • the first The upper surface of the two microprism arrays 413b that is, the second incident surfaces of the plurality of second microprisms in the second microprism array 413b, can be attached to the lower surface of the display screen. This can reduce the vertical space occupied by the fingerprint recognition device under the display screen.
  • first substrate layer 414a is formed above the first microprism array 413a, and a second substrate layer 414b is also formed above the second microprism array 413b
  • the upper surface of the first substrate layer 414a can be connected to the display.
  • the lower surfaces of the screen are attached to each other; and/or, the upper surface of the second substrate layer 414b may be attached to the lower surface of the display screen.
  • a certain gap may also be set between the upper surface of the first microprism array 413a and the display screen; and/or, there may also be a gap between the upper surface of the second microprism array 413b and the display screen. Set a certain gap.
  • An embodiment of the present application further provides an electronic device, which may include a display screen and the fingerprint identification device of the above-mentioned embodiments of the present application, wherein the fingerprint identification device is arranged below the display screen to realize an off-screen optical fingerprint identify.
  • the electronic device can be any electronic device with a display screen.
  • the display screen can be the display screen in the above description, such as an OLED display screen or other display screen, and the related description of the display screen can refer to the description about the display screen in the above description.
  • the display screen is an OLED display screen and includes a plurality of OLED light sources, wherein the fingerprint identification device adopts at least part of the OLED light sources as the excitation light source for fingerprint identification.
  • the fingerprint identification device may also use a built-in light source or an external light source to provide an optical signal for fingerprint identification.
  • the display screen of the electronic device may also be a Micro-LED (Micro-LED). ) display or LCD display with backlight module and LCD panel.
  • the disclosed systems and apparatuses may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application are essentially or part of contributions to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种指纹识别装置(200,300)和电子设备(10,20),该指纹识别装置(200,300)包括:第一微棱镜阵列(310)、光学组件(320)和光学指纹传感器(330);第一微棱镜阵列(310)包括多个第一微棱镜(310a),第一微棱镜(310a)包括第一入射面(301)和第一出射面(302),第一入射面(301)为相对于显示屏(100)平行的平面,第一出射面(302)为相对于显示屏(100)倾斜的平面;第一微棱镜(310a)用于通过第一入射面(301)接收经由手指(140)反射的相对于显示屏(100)倾斜的第一目标光信号(11),并通过第一出射面(302)将第一目标光信号(11)出射为相对于显示屏(100)垂直的第一垂直光信号(12);光学组件(320)设置于第一微棱镜阵列(310)下方,用于接收第一垂直光信号(12),并将第一垂直光信号(12)引导至光学指纹传感器(330),光学指纹传感器(330)设置于光学组件(320)下方,用于接收第一垂直光信号(12)以进行指纹识别,能够提升指纹识别性能。

Description

指纹识别装置和电子设备 技术领域
本申请实施例涉及生物识别技术领域,并且更具体地,涉及指纹识别装置和电子设备。
背景技术
现如今,生物识别技术已广泛地应用到各种终端设备上,特别是在智能手机等消费电子产品中,指纹识别已成为大众所需。近年来,随着全面屏手机的兴起,传统电容指纹不再满足全面屏需求,屏下指纹识别技术应运而生。
屏下光学指纹作为屏下指纹的一种,将其设置于显示屏下方,通过采集光学指纹图像,以实现指纹识别。随着终端设备的发展,对指纹识别技术的性能要求也越来越高。因此,提升指纹识别的性能,成为业内共同的技术目标。
发明内容
本申请实施例提供了一种指纹识别装置和电子设备,能够提升指纹识别性能。
第一方面,提供一种指纹识别装置,其特征在于,用于设置在电子设备的显示屏下方,包括:第一微棱镜阵列、光学组件和光学指纹传感器;该第一微棱镜阵列包括多个第一微棱镜,该第一微棱镜包括第一入射面和第一出射面,该第一入射面为相对于该显示屏平行的平面,该第一出射面为相对于该显示屏倾斜的平面;该第一微棱镜用于通过该第一入射面接收经由手指反射的相对于该显示屏倾斜的第一目标光信号,并通过该第一出射面将该第一目标光信号出射为相对于该显示屏垂直的第一垂直光信号;该光学组件设置于该第一微棱镜阵列下方,用于接收该第一垂直光信号,并将该第一垂直光信号引导至该光学指纹传感器,该光学指纹传感器设置于该光学组件下方,用于接收该第一垂直光信号以进行指纹识别。
在本申请实施例中,通过第一微棱镜阵列中的多个第一微棱镜将相对于显示屏倾斜的第一目标光信号转换为相对于显示屏垂直的第一垂直光信号,该第一垂直光信号用于通过光学组件传输至光学指纹传感器以进行指纹识 别,能够降低大角度入射光在光路中传输时造成的光损失,从而缩短了指纹识别装置的曝光时间,加快了指纹识别的速度并提升了用户体验。此外,还能应用于各类手指的检测,尤其能够适用于干手指的检测,提升对干手指的指纹识别性能。
在一些可能的实施方式中,该第一微棱镜还包括第二出射面,该第二出射面为相对于该显示屏倾斜的另一平面,该第二出射面的面积小于该第一出射面的面积。
在一些可能的实施方式中,该第一目标光信号经过该第一入射面后的第一折射光信号平行于该第二出射面;该第一入射面和该第一出射面的夹角为第一夹角i,该第一入射面和该第二出射面的夹角为第二夹角j,该第一目标光信号与该第一入射面的法线方向的夹角为目标夹角θ;该第一夹角i、该第二夹角j、该第一微棱镜的折射率n 1,以及该目标夹角θ满足以下公式:
n 0sinθ=n 1sin(90°-j);
n 1sin(i+j-90°)=n 0sin i;
其中,n 0为空气的折射率。
在一些可能的实施方式中,该第一入射面还用于接收经由手指反射的与该第一目标光信号方向不同的非目标光信号;该第一出射面和该第二出射面用于将该非目标光信号转换为相对于该显示屏倾斜的倾斜光信号;该光学组件用于阻挡该倾斜光信号,以防止该倾斜光信号进入该光学指纹传感器,对指纹识别造成干扰。
在一些可能的实施方式中,该非目标光信号与该第一入射面的法线方向的夹角为非目标夹角β,该第一微棱镜的折射率n 1和该非目标夹角β满足以下公式:
n 0sinβ=n 1sin k;
n 1sin(j-k)=n 0sin j;
Figure PCTCN2020128475-appb-000001
其中,n 0为空气的折射率,j为该第一入射面和该第二出射面的夹角,k为该非目标光信号经过该第一入射面后的第二折射光信号与法线方向的夹角。
在一些可能的实施方式中,该第一微棱镜的折射率n 1大于预设阈值,以 增大该非目标夹角β的取值范围,该第一微棱镜用于将该取值范围内的非目标光信号转换为倾斜光信号。
在一些可能的实施方式中,该第一微棱镜阵列的折射率n 1大于1.5。
在一些可能的实施方式中,该光学指纹传感器包括多个第一光学感应单元形成的第一感应阵列;该第一微棱镜阵列的每个第一微棱镜的下方对应设置有至少一个该第一光学感应单元,或者,该第一感应阵列的每个第一光学感应单元的上方对应设置有至少一个该第一微棱镜。
在一些可能的实施方式中,该第一微棱镜阵列的每个第一微棱镜的下方对应设置有该第一感应阵列中的一行该第一光学感应单元或者一列该第一光学感应单元。
在一些可能的实施方式中,该第一微棱镜阵列还包括:第一衬底层;该第一衬底层形成于该多个第一微棱镜的第一入射面的上方,并平行于该显示屏。
在一些可能的实施方式中,该第一衬底层的上表面与显示屏的下表面相互贴合。
在一些可能的实施方式中,该第一衬底层为滤光片,用于通过目标波段的光信号,而阻挡非目标波段的光信号。
在一些可能的实施方式中,该指纹识别装置还包括:滤光片;该滤光片设置于该显示屏至该光学指纹传感器的光路中,用于通过目标波段的光信号,而阻挡非目标波段的光信号。
在一些可能的实施方式中,该指纹识别装置还包括:第二微棱镜阵列,设置于该显示屏与该光学组件之间;该第一微棱镜阵列用于接收经过该显示屏中第一指纹检测区域上手指反射的该第一目标光信号,并将该第一目标光信号转换为该第一垂直光信号;该第二微棱镜阵列用于接收经过该显示屏中第二指纹检测区域上手指反射的第二目标光信号,并将该第二目标光信号转换为相对于该显示屏垂直的第二垂直光信号;该光学组件设置于该第一微棱镜阵列和该第二微棱镜阵列下方,用于接收该第一垂直光信号和该第二垂直光信号,并将该第一垂直光信号引导至该光学指纹传感器中的第一感应阵列,将该第二垂直光信号引导至该光学指纹传感器中的第二感应阵列,该第一感应阵列和该第二感应阵列用于分别接收该第一垂直光信号和该第二垂直光信号以进行指纹识别;其中,该第一指纹检测区域和该第二指纹检测区 域互不重叠,且二者之间存在间隔区。
在一些可能的实施方式中,该第二微棱镜阵列包括多个第二微棱镜,该第二微棱镜包括第二入射面和第三出射面,该第二入射面为相对于该显示屏平行的平面,该第三出射面为相对于该显示屏倾斜的平面;该第二微棱镜用于通过该第二入射面接收该第二目标光信号,并通过该第三出射面将该第二目标光信号出射为该第二垂直光信号。
在一些可能的实施方式中,该第二微棱镜还包括第四出射面,该第四出射面为相对于该显示屏倾斜的另一平面,该第四出射面的面积小于该第三出射面的面积。
在一些可能的实施方式中,在该光学指纹传感器中,该第一感应阵列和该第二感应阵列之间无间隔。
在一些可能的实施方式中,该第一感应阵列和该第二感应阵列的面积相等,和/或,该第一指纹检测区域和该第二指纹检测区域的面积相等。
在一些可能的实施方式中,该第一指纹检测区域位于该第一感应阵列和该第二感应阵列的分界线的一侧,该第二指纹检测区域位于该第一感应阵列和该第二感应阵列的分界线的另一侧。
在一些可能的实施方式中,该第一目标光信号的方向朝向该分界线,且该第一目标光信号与该第一入射面的法线方向的夹角为θ 1,与该第一微棱镜的棱的夹角为90°;
该第二目标光信号的方向朝向该分界线,且该第二目标光信号与该第二入射面的法线方向的夹角为θ 2,与该第二微棱镜的棱的夹角为90°;其中,θ 1和θ 2的值为0至90°之间。
在一些可能的实施方式中,θ 1=θ 2,该第二微棱镜阵列和该第一微棱镜阵列相对于垂直于该显示屏的平面,呈镜像设置。
在一些可能的实施方式中,该第一微棱镜阵列的至少一个表面设置有抗反射涂层和/或偏振涂层,和/或,该第二微棱镜阵列的至少一个表面设置有抗反射涂层和/或偏振涂层;其中,该抗反射涂层用于降低光信号的反射率,该偏振涂层用于选择光信号的偏振方向。
在一些可能的实施方式中,该第一微棱镜阵列和该第二微棱镜阵列通过支撑结构设置于该光学组件和该光学指纹传感器上方,该支撑结构设置于该光学指纹传感器的上表面边缘区域。
在一些可能的实施方式中,该光学组件包括:微透镜阵列,该微透镜阵列中的多个微透镜与该光学指纹传感器中的多个光学感应单元一一对应;至少一层光阑层,设置在该微透镜阵列和该光学指纹传感器之间,该至少一层光阑层中每层光阑层中设置有该光学指纹传感器中每个光学感应单元对应的通光小孔;其中,该微透镜阵列用于接收该第一垂直光信号和该第二垂直光信号,该第一垂直光信号和该第二垂直光信号用于通过该至少一层光阑层的通光小孔传输至该光学指纹传感器。
在一些可能的实施方式中,该至少一层光阑层中的至少部分光阑层为该光学指纹传感器的金属布线层。
在一些可能的实施方式中,该光学组件为直孔准直器,该光学指纹传感器中的每个光学感应单元对应该直孔准直器中的至少一个准直孔;其中,该直孔准直器用于接收该第一微棱镜阵列转换的该第一垂直光信号和该第二微棱镜阵列转换的该第二垂直光信号,该第一垂直光信号和该第二垂直光信号通过该直孔准直器中的准直孔传输至该光学指纹传感器。
第二方面,提供一种电子设备,包括:显示屏以及,如第一方面或者第一方面中任一种可能的实施方式中的指纹识别装置,其中该指纹识别装置设置于该显示屏的下方,以实现屏下光学指纹识别。
在一些可能的实施方式中,该显示屏为有机发光二极管OLED显示屏,该显示屏包括多个OLED光源,其中该指纹识别装置采用至少部分OLED光源作为指纹识别的激励光源。
第三方面,提供一种指纹识别装置,用于设置在电子设备的显示屏下方,包括:第一光学装置、第二光学装置和光学指纹传感器;该第一光学装置用于引导经过该显示屏中第一指纹检测区域上手指反射的第一目标光信号至该光学指纹传感器中的第一感应阵列;该第二光学装置用于引导经过该显示屏中第二指纹检测区域上手指反射的第二目标光信号至该光学指纹传感器中的第二感应阵列;该第一感应阵列和该第二感应阵列用于分别根据该第一目标光信号和该第二目标光信号以进行指纹识别;其中,该第一指纹检测区域和该第二指纹检测区域互不重叠,且二者之间存在间隔区。
在本申请实施例中,通过设置第一光学装置和第二光学装置,以通过不同目标方向的光信号进入至光学指纹传感器以进行指纹识别,相比于光学指纹传感器仅接收单个方向的指纹光信号,在提升指纹识别信号的多样性的同 时,能够扩大指纹识别装置的视场或者在保证视场不变的情况下减小光学指纹传感器的面积以降低成本,从而提高指纹识别性能或者降低指纹识别装置的成本。
在一些可能的实施方式中,在该光学指纹传感器中,该第一感应阵列和该第二感应阵列之间无间隔。
在一些可能的实施方式中,该第一感应阵列和该第二感应阵列的面积相等,和/或,该第一指纹检测区域和该第二指纹检测区域的面积相等。
在一些可能的实施方式中,该第一指纹检测区域位于该第一感应阵列和该第二感应阵列的分界线的一侧,该第二指纹检测区域位于该第一感应阵列和该第二感应阵列的分界线的另一侧。
在一些可能的实施方式中,该第一目标光信号的方向朝向该分界线,且该第一目标光信号与该光学指纹传感器的法线方向的夹角为θ 1
该第二目标光信号的方向朝向该分界线,且与该第二目标光信号与该光学指纹传感器的法线方向的夹角为θ 2;其中,θ 1和θ 2的值为0至90°之间。
在一些可能的实施方式中,θ 1=θ 2,该第一光学装置和该第二光学装置相对于垂直于该显示屏的平面所在平面,呈镜像设置。
在一些可能的实施方式中,在该光学指纹传感器中,该第一感应阵列和该第二感应阵列之间无间隔。
在一些可能的实施方式中,该第一光学装置包括第一斜孔准直器,该第二光学装置包括第二斜孔准直器;该第一斜孔准直器中多个第一斜孔的方向与该第一目标光信号的方向相同;该第二斜孔准直器中多个第二斜孔的方向与该第二目标光信号的方向相同。
在一些可能的实施方式中,该第一光学装置包括第一微透镜阵列以及至少一层第一光阑层,该第二光学装置包括第二微透镜阵列以及至少一层第二光阑层;该至少一层第一光阑层中形成有多个第一导光通道,该多个第一导光通道的方向与该第一目标光信号的方向相同;该至少一层第二光阑层中形成有多个第二导光通道,该多个第二导光通道的方向与该第二目标光信号的方向相同。
在一些可能的实施方式中,该至少一层第一光阑层中的至少部分光阑层为该光学指纹传感器的金属层;和/或,该至少一层第二光阑层中的至少部分 光阑层为该光学指纹传感器的金属层。
在一些可能的实施方式中,该第一光学装置包括第一斜孔准直器和第一微透镜阵列,该第一斜孔准直器设置于该第一微透镜阵列上方;该第二光学装置包括第二斜孔准直器和第二微透镜阵列,该第二斜孔准直器设置于该第二微透镜阵列上方。
在一些可能的实施方式中,该第一光学装置包括:第一微棱镜阵列和第一光学组件;该第一微棱镜阵列用于接收该第一目标光信号,并将该第一目标光信号转换为相对于该显示屏垂直的第一垂直光信号;该第一光学组件设置于该第一微棱镜阵列下方,用于接收该第一垂直光信号,并将该第一垂直光信号引导至该光学指纹传感器的第一感应阵列;该第二光学装置包括:第二微棱镜阵列和第二光学组件;该第二微棱镜阵列用于接收该第二目标光信号,并将该第二光信号中的第二目标光信号转换为相对于该显示屏垂直的第二垂直光信号;该第二光学组件设置于该第二微棱镜阵列下方,用于接收该第二垂直光信号,并将该第二垂直光信号引导至该光学指纹传感器的第二感应阵列。
在一些可能的实施方式中,该第一微棱镜阵列包括多个第一微棱镜,该第一微棱镜包括第一入射面和第一出射面,该第一入射面为相对于该显示屏平行的平面,该第一出射面为相对于该显示屏倾斜的平面;该第一微棱镜用于通过该第一入射面接收该第一目标光信号,并通过该第一出射面将该第一目标光信号出射为该第一垂直光信号;该第二微棱镜阵列包括多个第二微棱镜,该第二微棱镜包括第二入射面和第三出射面,该第二入射面为相对于该显示屏平行的平面,该第三出射面为相对于该显示屏倾斜的平面;该第二微棱镜用于通过该第二入射面接收该第二目标光信号,并通过该第三出射面将该第二目标光信号出射为该第二垂直光信号。
在一些可能的实施方式中,该第一微棱镜还包括第二出射面,该第二出射面为相对于该显示屏倾斜的另一平面,该第二出射面的面积小于该第一出射面的面积;该第二微棱镜还包括第四出射面,该第四出射面为相对于该显示屏倾斜的另一平面,该第四出射面的面积小于该第三出射面的面积。
在一些可能的实施方式中,该第一目标光信号的方向垂直于该第一微棱镜的棱,且该第二目标光信号的方向垂直于该第二微棱镜的棱。
在一些可能的实施方式中,该第一微棱镜阵列和该第二微棱镜阵列的结 构相同,且相对于垂直于该显示屏的平面呈镜像设置。
在一些可能的实施方式中,该第一目标光信号经过该第一入射面后的第一折射光信号平行于该第二出射面,该第一入射面和该第一出射面的夹角为第一夹角i,该第一入射面和该第二出射面的夹角为第二夹角j,该第一目标光信号与该入射面的夹角为目标夹角θ;该第一夹角i、该第二夹角j、该第一微棱镜的折射率n 1,以及该目标夹角θ满足以下公式:
n 0sinθ=n 1sin(90°-j);
n 1sin(i+j-90°)=n 0sin i;
其中,n 0为空气的折射率。
在一些可能的实施方式中,该第一入射面还用于接收经由手指反射的与该第一目标光信号的方向不同的非目标光信号;该第一出射面和该第二出射面用于将该非目标光信号转换为相对于该显示屏倾斜的倾斜光信号;该光学组件用于阻挡该倾斜光信号,以防止该倾斜光信号进入该光学指纹传感器,对指纹识别造成干扰。
在一些可能的实施方式中,该非目标光信号与该第一入射面的法线方向的夹角为非目标夹角β,该第一微棱镜的折射率n 1和该非目标夹角β满足以下公式:
n 0sinβ=n 1sin k;
n 1sin(j-k)=n 0sin j;
Figure PCTCN2020128475-appb-000002
其中,n 0为空气的折射率,j为该第一入射面和该第二出射面的夹角,k为该非目标光信号经过该第一入射面后的第二折射光信号与法线方向的夹角。
在一些可能的实施方式中,该第一微棱镜的折射率n 1大于预设阈值,以增大该非目标夹角β的取值范围,该第一微棱镜用于将该取值范围内的非目标光信号转换为倾斜光信号。
在一些可能的实施方式中,该第一微棱镜阵列和/或该第二微棱镜阵列的折射率大于1.5。
在一些可能的实施方式中,该第一感应阵列包括多个第一光学感应单元,该第二感应阵列包括多个第二光学感应单元;该第一微棱镜阵列的每个 第一微棱镜的下方对应设置有至少一个该第一光学感应单元,该第二微棱镜阵列的每个第二微棱镜的下方对应设置有至少一个该第二光学感应单元;或者,该第一感应阵列的每个第一光学感应单元的上方对应设置有至少一个该第一微棱镜,该第二感应阵列的每个第二光学感应单元的上方对应设置有至少一个该第二微棱镜。
在一些可能的实施方式中,该第一微棱镜阵列的每个第一微棱镜的下方对应设置有该第一感应阵列中的一行第一光学感应单元或者一列第一光学感应单元,该第二微棱镜阵列的每个第二微棱镜的下方对应设置有该第二感应阵列中的一行第二光学感应单元或者一列第二光学感应单元。
在一些可能的实施方式中,该第一微棱镜阵列还包括第一衬底层,该第二微棱镜阵列还包括第二衬底层;该第一衬底层形成于该多个第一微棱镜的第一入射面的上方,该第二衬底层形成于该多个第二微棱镜的第二入射面的上方,该第一衬底层和该第二衬底层平行于该显示屏。
在一些可能的实施方式中,该第一衬底层的上表面与显示屏的下表面相互贴合,和/或,该第二衬底层的上表面与显示屏的下表面相互贴合。
在一些可能的实施方式中,该第一衬底层和/或该第二衬底层为滤光片,用于通过目标波段的光信号,而阻挡非目标波段的光信号。
在一些可能的实施方式中,该第一微棱镜阵列的至少一个表面设置有抗反射涂层和/或偏振涂层,和/或,该第二微棱镜阵列的至少一个表面设置有抗反射涂层和/或偏振涂层;其中,该抗反射涂层用于降低光信号的反射率,该偏振涂层用于选择光信号的偏振方向。
在一些可能的实施方式中,该第一微棱镜阵列和该第二微透镜阵列通过支撑结构设置于该第一光学组件、第二光学组件和该光学指纹传感器上方,该支撑结构设置于该光学指纹传感器的上表面边缘区域。
在一些可能的实施方式中,该第一光学组件和该第二光学组件包括:微透镜阵列,该微透镜阵列中的多个微透镜与该光学指纹传感器中的多个光学感应单元一一对应;至少一层光阑层,设置在该微透镜阵列和该光学指纹传感器之间,该至少一层光阑层中每层光阑层中设置有该光学指纹传感器中每个光学感应单元对应的通光小孔;其中,该微透镜阵列用于接收该第一垂直光信号和该第二垂直光信号,该第一垂直光信号和该第二垂直光信号用于通过该至少一层光阑层的通光小孔传输至该光学指纹传感器。
在一些可能的实施方式中,该至少一层光阑层中的至少部分光阑层为该光学指纹传感器的金属布线层。
在一些可能的实施方式中,该第一光学组件和该第二光学组件为直孔准直器,该光学指纹传感器中的每个光学感应单元对应该直孔准直器中的至少一个准直孔;其中,该直孔准直器用于接收该第一微棱镜阵列转换的该第一垂直光信号和该第二微棱镜阵列转换的该第二垂直光信号,该第一垂直光信号和该第二垂直光信号通过该直孔准直器中的准直孔传输至该光学指纹传感器。
第四方面,提供一种电子设备,包括:显示屏以及,第三方面或者第三方面中任一种可能的实施方式中的指纹识别装置,其中该指纹识别装置设置于该显示屏的下方。
在一些可能的实施方式中,该显示屏为有机发光二极管OLED显示屏,该显示屏包括多个OLED光源,其中该指纹识别装置采用至少部分OLED光源作为指纹识别的激励光源。
附图说明
图1为本申请实施例可以适用的一种电子设备的示意图。
图2为图1所示的电子设备沿A-A’方向的剖面示意图。
图3和图4为本申请实施例提供的两种光路引导结构的示意图。
图5为本申请实施例提供的一种指纹识别装置的示意图。
图6为图5中指纹识别装置的第一微棱镜阵列的一种立体示意图。
图7为图5中指纹识别装置的一种俯视图。
图8为本申请实施例提供的第一微棱镜阵列中任一第一微棱镜的结构示意图。
图9为本申请实施例提供的第一微棱镜的折射率与非目标光信号的角度的关系示意图。
图10为本申请实施例提供的另一种指纹识别装置的示意图。
图11为本申请实施例可以适用的另一电子设备的示意图。
图12为图11所示的电子设备沿A-A’方向的剖面示意图。
图13和图14为本申请实施例中的指纹识别装置接收单一方向光信号和多个方向光信号的视场示意图。
图15至图18为本申请实施例提供的另几种指纹识别装置的示意图。
图19为本申请实施例提供的一种第一微棱镜阵列和第二微棱镜阵列的立体示意图。
图20和图21为本申请实施例提供的另两种指纹识别装置的示意图。
图22为图18中指纹识别装置的一种俯视图。
图23为本申请实施例提供的另一种指纹识别装置的示意图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种电子设备。例如,智能手机、笔记本电脑、平板电脑、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(Automated Teller Machine,ATM)等其他电子设备。但本申请实施例对此并不限定。
本申请实施例的技术方案可以用于生物特征识别技术。其中,生物特征识别技术包括但不限于指纹识别、掌纹识别、虹膜识别、人脸识别以及活体识别等识别技术。为了便于说明,下文以指纹识别技术为例进行说明。
需要说明的是,为便于说明,在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
图1和图2示出了本申请实施例可以适用的电子设备10的示意图。其中,图2为图1所示的电子设备10沿A-A’方向的剖面示意图。
如图1和图2所示,电子设备10可以包括显示屏100和指纹识别装置200。
显示屏100可以为自发光显示屏,其采用具有自发光的显示单元作为显示像素。比如显示屏100可以为有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。在其他可替代实施例中,显示屏100也可以为液晶显示屏(Liquid Crystal Display,LCD)或者其他被动发光显示屏,本申请实施例对此不做限制。进一步地,显示屏100还可以具体为触控显示屏,其不仅可以进行画面显示,还可以检 测用户的触摸或者按压操作,从而为用户提供一个人机交互界面。比如,在一种实施例中,电子设备10可以包括触摸传感器,该触摸传感器可以具体为触控面板(Touch Panel,TP),其可以设置在所述显示屏100表面,也可以部分集成或者整体集成到所述显示屏100内部,从而形成所述触控显示屏。
参见图2,指纹识别装置200包括光学指纹传感器220,该光学指纹传感器200包括具有多个光学感应单元(也可以称为感光像素、像素单元等)的感应阵列221,用于实现光电转换,作为示例,该感应阵列221具体为光电二极管(Photo Diode,PD)阵列。该感应阵列221所在区域或者其感应区域为指纹识别装置200的指纹检测区域201(也称为指纹采集区域、指纹识别区域等)。可以理解的是,光学指纹传感器220还包括与感应阵列221电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die)上。
其中,指纹识别装置200设置在显示屏100下方的局部区域。参见图1,指纹检测区域201可以位于所述显示屏100的显示区域之中。
参见图2,指纹识别装置200还可以包括光学组件。该光学组件可以设置在光学指纹传感器220的上方,其可以具体包括滤光层(Filter)、导光层或光路引导结构210、以及其他光学元件,滤光层可以用于滤除穿透手指的环境光,而导光层或光路引导结构210主要用于从手指表面反射回来的反射光导引至感应阵列221进行光学检测。
在本申请的一些实施例中,光学组件可以与光学指纹传感器220封装在同一个光学指纹芯片中,也可以将光学组件设置在光学指纹传感器220所在的芯片外部,例如将光学组件贴合在芯片上方,或者将光学组件的部分元件集成在芯片之中。
在本申请的一些实施例中,所述指纹识别装置200的感应阵列221的所在区域或者光感应范围对应所述指纹识别装置200的指纹检测区域201。其中,指纹识别装置200的指纹检测区域201可以等于或不等于所述指纹识别装置200的感应阵列221的所在区域的面积或者光感应范围,本申请实施例对此不做具体限定。
例如,通过光线准直方式进行光路引导,所述指纹识别装置200的指纹检测区域201可以设计成与所述指纹识别装置200的感应阵列221的面积基本一致。
又例如,通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线会聚或者反射等光路设计,可以使得指纹识别装置200的指纹检测区域201的面积大于指纹识别装置200的感应阵列221的面积。
下面,结合图2说明本申请实施例中指纹识别装置200的指纹识别过程。
作为示例,图2中的显示屏100为采用具有自发光显示单元的显示屏,该显示屏100包括显示组件120。例如,显示屏100为OLED显示屏,显示组件120为OLED光源。指纹识别装置200可以利用OLED显示屏100位于指纹检测区域201的OLED光源作为光学指纹检测的激励光源。当手指140按压在指纹检测区域201时,显示屏100向指纹检测区域201上方的手指140发出一束光,该光在手指140的表面发生反射形成反射光或者经过手指140内部散射而形成散射光(透射光)。在相关专利申请中,为便于描述,上述反射光和散射光统称为反射光。由于指纹的脊(ridge)与谷(valley)对于光的反射能力不同,因此,来自指纹脊的反射光和来自指纹谷的反射光具有不同的光强,反射光经过光学组件后,被指纹识别装置200中的感应阵列221所接收并转换为相应的电信号,即指纹检测信号;基于该指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在电子设备10实现光学指纹识别功能。
在其他替代方案中,指纹识别装置200也可以采用内置光源或者外置光源来提供用于进行指纹检测识别的光信号。在这种情况下,指纹识别装置200不仅可以适用于如OLED显示屏等自发光显示屏,还可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。
在具体实现上,显示屏100还可以包括透明保护盖板110,盖板110可以为玻璃盖板或者蓝宝石盖板,其覆盖电子设备10的正面。因此,本申请实施例中,所谓的手指按压在所述显示屏100实际上是指按压在盖板110或者覆盖盖板110的保护层表面。
如图2所示,光学组件中的光路引导结构210用于将经过手指140的反射光中特定角度的光信号引导至感应阵列221,该特定角度可以为如图2所示,倾斜入射至感应阵列221的光信号,也可以为垂直入射至感应阵列221的光信号。
需要说明的是,若光路引导结构210能够将以预设角度倾斜入射并经手指反射的光线,引导至光学指纹传感器220的感应阵列221。由于该光路引 导结构210采用了倾斜光路,而倾斜入射的光线的反射强度高于垂直入射的光线的反射强度,因此提高了光学指纹传感器220的成像对比度,并大大降低该指纹识别装置200的厚度。
具体的,光路引导结构210可以采用多种结构实现倾斜光路。下面结合图3和图4对光路引导结构210进行示例性说明。
在一些实施例中,如图3所示,光路引导结构210为采用具有高深宽比的通孔阵列的光学准直器,所述光学准直器可以具体为在半导体硅片制作而成的准直器(Collimator)层,其具有多个准直单元,准直单元可以具体为直孔或者斜孔。可选地,该准直器层为斜孔准直器,该斜孔准直器中准直单元的轴向可以相对光学指纹传感器220中的感应阵列221倾斜设置。从手指反射回来的反射光中,特定角度入射到准直单元的光线可以穿过并被其下方的传感器芯片接收,而其它入射角度的光线在准直单元内部经过多次反射被衰减掉。
在本申请实施例中,可以预先设置中斜孔准直器中的斜孔的方向与感应阵列221的法线的方向夹角为φ,因此,感应阵列221只能够接收到手指反射光中入射角度为φ或接近φ的倾斜光信号。
然而,图3所示的方案,斜孔准直器对光信号的衰减较大,不仅阻挡了入射角度不为φ的倾斜光信号,还阻挡了部分入射角度为φ或接近φ的倾斜光信号,且制作斜孔准直器210的工艺相对复杂,制造难度较大,不适合大规模生产。
在另一些实施例中,如图4所示,光路引导结构210包括微透镜211,设置在微透镜211的下方的至少一层光阑层212,感应阵列221中的一个或者多个光学感应单元设置在最下层的光阑层212下方。
入射角度为φ的手指反射光通过微透镜211并被会聚到光阑层212中的通光小孔,并通过至少一层光阑层212中的通光小孔传输至光学指纹传感器220中的光学感应单元。而入射角度不为φ的手指反射光则被微透镜211会聚至光阑层212中的非透光材料,被该非透光材料吸收或者反射,从而阻挡入射角度不为φ的手指反射光进入光学感应单元,该非透光材料包括但不限于是黑胶材料。
参见图4,为了实现上述功能,若至少一层光阑层212为多层光阑层212,则其中一层或者多层光阑层212中的通光小孔的中心偏离于微透镜的焦点设 置,在一些实施方式中,一个光学感应单元对应于一个微透镜,且设置于微透镜的正下方,则光阑层212中的通光小孔的中心偏离于光学感应单元的中轴线设置,该中轴线是指经过光学感应单元的中心,且垂直于该光学感应单元的直线。可以理解的是,若至少一层光阑层212为一层光阑层212,则该光阑层212的通光小孔的中心则偏离于微透镜的焦点设置。
光阑层中通光小孔的孔径大小决定了可通过的入射光的角度范围Δφ,只有入射角在φ-Δφ到φ+Δφ范围内的手指反射光可到达光学感应单元。通过微透镜211加至少一层光阑层212的组合可以实现入射光的角度筛选,非目标角度的入射光则被非透光材料阻挡。
然而,当涉及接收大角度光信号时(例如入射角φ大于30度),图4所示的方案中,微透镜211的部分区域(如图4中的区域2111)由于阴影效应(lens shading effect)无法发挥会聚作用。因此,将会导致指纹识别装置200在接收较大角度斜入射光的时候,光损失较大,因此必须依靠延长光学指纹传感器220的曝光时间获取足够的信号量,但是这样会使得指纹识别间较长,影响了用户体验。
另外,如图4所示,大角度光信号还可能被至少一层光阑层212中的光吸收材料阻挡,进一步造成光能量的损失,不利于指纹识别的性能和效率。
基于此,本申请实施例提出一种指纹识别装置,能够解决上述指纹识别装置200在接收大角度入射光的时候存在的光损失问题,从而缩短了指纹识别装置的曝光时间,加快了指纹识别的速度并提升了用户体验。此外,还能应用于各类手指的检测,尤其能够适用于干手指的检测,提升对干手指的指纹识别性能。
本申请实施例适用于显示屏下方以实现屏下光学指纹检测。图5示出了本申请实施例的指纹识别装置300的示意图。该指纹识别装置300可以适用于上述图1和图2所示的电子设备10中,即适用于上述显示屏100下方。
如图5所示,指纹识别装置300可以包括:第一微棱镜阵列310、光学组件320以及光学指纹传感器330;
该第一微棱镜阵列310可以包括多个第一微棱镜(micro-prism)。该第一微棱镜为三棱镜结构,包括第一入射面301和第一出射面302,该第一入射面301为相对于显示屏100平行的平面,该第一出射面302为相对于显示屏100倾斜的平面;
其中,第一微棱镜用于通过第一入射面301接收经由手指反射的相对于显示屏100倾斜的第一目标光信号11,并通过第一出射面302将该第一目标光信号11出射为相对于显示屏100垂直的第一垂直光信号12;
光学组件320设置于上述第一微棱镜阵列310下方,用于接收该第一垂直光信号12并将该第一垂直光信号12引导至光学指纹传感器330,该光学指纹传感器330设置于光学组件320下方,用于接收第一垂直光信号12以进行指纹识别。
在本申请实施例中,通过第一微棱镜阵列中的多个第一微棱镜将相对于显示屏倾斜的第一目标光信号转换为相对于显示屏垂直的第一垂直光信号,该第一垂直光信号用于通过光学组件传输至光学指纹传感器以进行指纹识别,能够降低大角度入射光在光路中传输时造成的光损失,从而缩短了指纹识别装置的曝光时间,加快了指纹识别的速度并提升了用户体验。此外,还能应用于各类手指的检测,尤其能够适用于干手指的检测,提升对干手指的指纹识别性能。
可选地,如图5所示,该第一微棱镜阵列310中的第一微棱镜还包括第二出射面303,该第二出射面303为相对于显示屏100倾斜的另一平面,可选地,该第二出射面303的面积小于第一出射面302的面积。
相对于将第二出射面设置为相对于显示屏垂直的平面,或者说相对于第二出射面垂直于第一入射面的情况,本申请实施例中,将第二出射面设置为相对于显示屏倾斜的另一平面,即第二出射面倾斜于第一入射面,能够方便第一微棱镜的加工制造,增大制造过程中的公差,从而提高第一微棱镜的生产效率。
具体地,为了满足第一目标光信号11通过第一微棱镜后,从第一出射面302出射为第一垂直光信号12,该第一目标光信号11的方向可满足如下条件,首先,第一目标光信号11需垂直于第一微棱镜的棱,其次,第一目标光信号11与第一入射面301呈一定的倾斜角度,第三,第一入射面301接收的第一目标光信号11仅朝向第一出射面302发射,而非朝向第二出射面303发射。
在一些实施方式中,第一目标光信号11经过第一入射面301后的第一折射光信号平行于该第二出射面303。换言之,第一目标光信号11经过第一微棱镜后,不会从第二出射面303出射。
作为示例,图6示出了图5中第一微棱镜阵列310的一种立体示意图。
如图6所示,第一微棱镜阵列310中的每个第一微棱镜的结构相同,且彼此之间相互连接,其中,每个第一微棱镜的第一入射面301在同一平面上,每个第一微棱镜的第一出射面302相互平行,每个第一微棱镜的第二出射面303相互平行。
可选地,第一微棱镜阵列310可以由高折射率的透明材料制备形成,优选地,第一微棱镜阵列310材料的折射率高于1.5,其可以采用纳米压印或灰度光刻等工艺制造形成。
具体地,在本申请实施例中,光学指纹传感器330中包括多个光学感应单元形成的感应阵列331,该感应阵列331及其光学感应单元的相关技术特征可以参见上文感应阵列221及其光学感应单元的相关描述,此处不再赘述。
具体地,在本申请实施例中,光学组件320用于引导上述第一微棱镜阵列310转换得到的第一垂直光信号12至感应阵列331中的光学感应单元,以进行指纹识别,并阻挡经过第一微棱镜阵列310后的倾斜光信号,使得倾斜光信号无法到达感应阵列331,避免干扰指纹识别,以提高指纹识别效果。
作为一种示例,图5中示出的光学组件320包括:微透镜阵列321以及设置于其下方的至少一层光阑层322(例如,图5所示的两层光阑层322)。该光阑层322由非透光材料形成,其中设置有多个通光小孔,该非透光材料包括但不限于是黑胶。
如图5所示,微透镜阵列321设置在第一微棱镜阵列310的下方,且包括多个微透镜;
至少一层光阑层322设置在微透镜阵列321和感应阵列331之间,至少一层光阑层322中的每层光阑层322中设置有多个光学感应单元对应的多个通光小孔;
感应阵列331用于接收经由微透镜阵列321会聚的,并通过至少一层光阑层322的通光小孔传输的光信号。或者说,微透镜阵列321用于将经过手指反射的,并经过上述第一微棱镜阵列310转换得到的第一垂直光信号12会聚至至少一层光阑层322中的通光小孔,第一垂直光信号12经过微透镜阵列321会聚后,通过至少一层光阑层322中的通光小孔传输至感应阵列331。并且,微透镜阵列321用于将经过上述第一微棱镜阵列310后的倾斜光信号会聚至至少一层光阑层322中的非通光小孔区域,即非透光材料区域, 该非透光材料吸收或者反射倾斜光信号,以阻挡倾斜光信号传输至感应阵列331。
作为示例,如图5所示,微透镜阵列321中的多个微透镜与感应阵列331中的多个光学感应单元一一对应,每层光阑层322中,多个通光小孔与多个光学感应单元一一对应,即每层光阑层322中的通光小孔以及光学感应单元对应的设置于一个微透镜的正下方。
作为示例,图7示出了图5中指纹识别装置300的一种俯视图。
如图7所示,第一微棱镜阵列310中,每个第一微棱镜的下方对应设置微透镜阵列321中的一列微透镜,可以理解的是,该一列微透镜下方对应设置一列光感应单元。当然,换个角度来说,每个第一微棱镜的下方也可以对应设置微透镜阵列321中的一行微透镜。
如图5和图7所示,第一微棱镜阵列310中的第一微棱镜310a、微透镜阵列321中的第一微透镜321a、以及感应阵列331中的第一光学感应单元331a对应设置,第一微透镜321a用于接收第一微棱镜310a转换后的第一垂直光信号,并通过两层光阑层中的通光小孔将该第一垂直光信号会聚至第一光学感应单元331a,且通过两层光阑层中的光吸收材料区域阻挡其它倾斜光信号。
与图4所示的方案相比,先通过第一微棱镜阵列310将经由手指反射的相对显示屏倾斜的第一目标光信号转换成相对显示屏垂直的第一垂直光信号,再通过微透镜加光阑层作为光学组件,引导会聚后的第一垂直光信号进入感应阵列,阻挡其它倾斜光信号,能够使得微透镜阵列中的微透镜不存在阴影区,进而提升了感应阵列331能够接收到的信号量以及指纹识别效果。另外,不论入射至第一微棱镜阵列310的目标倾斜方向的第一目标光信号为多大角度,其均能被设计好的第一微棱镜阵列310转换为垂直光信号,不会造成光信号被光阑层中的光吸收材料阻挡,即不会造成光能量的损失。
应理解,本申请的第一微棱镜阵列310可以设定为只接收以目标倾斜方向入射的来自于手指的反射光信号,即第一目标光信号11。以目标倾斜方向入射的手指反射光经过第一微棱镜阵列310后变为垂直光信号,即第一垂直光信号12。该垂直光信号经过光学组件320后被对应的光学感应单元所吸收并按照一定比例转化为相应的电信号量输出。由于来自指纹谷的反射光的光强大于来自指纹脊的反射光,故谷对应的采集单元输出的电信号更强、图像 更亮;脊对应的采集单元输出的电信号较弱、图像较暗,最终输出具有一定对比度的清晰指纹图像。以非目标倾斜方向入射的反射光,经过第一微棱镜阵列310后仍为倾斜光信号,该倾斜光信号被微透镜会聚至光阑层中的光吸收材料区域,无法到达光学感应单元以进行指纹成像。
下面结合图8对本申请实施例中的第一微棱镜的结构进行说明,并说明将经由手指反射的第一目标光信号11转换成第一垂直光信号12的原理。
图8示出了本申请实施例的第一微棱镜阵列310中任一第一微棱镜的结构以及光的方向变化的示意图。
如图8所示,第一目标光信号11与垂直于第一入射面301的法线方向(下文简称法线方向)的夹角为θ,第一目标光信号11从第一入射面301进入第一微棱镜后在其内部形成第一折射光信号101,该第一折射光信号101与法线方向形成夹角90°-j;若第一入射面301和第一出射面302的夹角为第一夹角i,第一入射面301和第二出射面303的夹角为第二夹角j,这样便使得第一微棱镜的第二出射面303平行于第一折射光信号101,即第一折射光信号101不可能从第二出射面303射出。
作为示例,图8中,若进一步使得第一目标光信号11从第一微棱镜的第一出射面302出射为第一垂直光信号12,则上述夹角θ,第一夹角i,第二夹角j需满足如下关系式:
n 0sinθ=n 1sin(90°-j);
n 1sin(i+j-90°)=n 0sin i;
其中,n 0为空气的折射率,n 1为微棱镜的折射率。
此外,第一微棱镜宽度为L,高度为h,第一出射面302在第一入射面上301的投影宽度为d,该第一微棱镜的宽度L、高度h和投影宽度d满足如下关系式:
h=d tan i;
L-d=h tan(90°-j);
作为示例,若夹角θ为25°,即第一目标光信号为25°的倾斜光,空气的折射率n 0为1,微棱镜的折射率n 1为1.7时,可计算得到第二夹角j约为75.6°,第一夹角i约为33.2°,宽度d≈0.86L,高度h≈0.56L。第一微棱镜的宽度为L此处不作限定,仅说明第一微棱镜的侧面形状为其中两夹角为33.2°与75.6°的三角形。可选地,第一微棱镜的宽度L的范围可以是 1um至50um。
以上述参数为例,这样设置第一微棱镜可以产生以下几个效果:一、第一出射面302可以使25°的入射光转换为垂直的出射光,使到达指纹传感器的光信号变为垂直光信号;二、25°的入射光不可能从第二出射面303射出;三、第二出射面303也不可能出射垂直光信号。
以下利用反证法证明以上第三点,假设第二出射面303能出射垂直光信号102,该垂直光信号102来源于微透镜内部的第二折射光信号103,该第二折射光信号103与法线方向的夹角为k,则第二夹角j以及夹角k满足如下关系式:
n 1sin(j-k)=n 0sin j;
其中,n 0为空气的折射率,n 1为微棱镜的折射率。
若第二夹角j为75.6°,n 0为1,n 1为1.7时,计算得到k约为40.9°,也就是说第二折射光信号103与法线方向的夹角为40.9°,而实际上微棱镜内部能出现的与法线方向呈最大夹角的折射光信号的角度q为:
Figure PCTCN2020128475-appb-000003
即q约为36°,而40.9°>36°,因此第二折射光信号103不存在,即垂直光信号102也不存在,则第二出射面303不可能出射任何垂直光信号,其仅能出射倾斜光信号。
上文以第一微棱镜的折射率n 1为1.7,第一目标光信号的角度θ为25°为例,说明了第一微棱镜的第一出射面302和第二出射面303出射的光信号情况。综合以上说明,为了使得第一出射面301将第一目标光信号出射为垂直方向的第一垂直光信号,且第一目标光信号不从第二出射面302出射,第一入射面301和第一出射面302的第一夹角i、第一入射面302和第二出射面303的第二夹角j、第一微棱镜的折射率n 1与第一目标光信号的角度θ应满足以下关系式:
n 0sinθ=n 1sin(90°-j);
n 1sin(i+j-90°)=n 0sin i;
其中,n 0为空气的折射率。
进一步地,第一微棱镜的第一入射面301还用于接收与第一目标光信号11方向不同的非目标光信号,第一出射面302和第二出射面303用于将该非 目标光信号转换为倾斜光信号。
为了使得第二出射面303将该非目标光信号出射为倾斜光信号,而不是垂直光信号,该非目标光信号的入射角度与第一微棱镜的折射率n 1相关。
在一些实施方式中,如图8所示,第二折射光信号103为非目标光信号13经过第一入射面301后形成的光信号,该非目标光信号13与法线方向的夹角为非目标夹角β。第一微棱镜的折射率n 1与该非目标光信号的角度β应满足以下关系式:
n 0sinβ=n 1sin k;
n 1sin(j-k)=n 0sin j;
Figure PCTCN2020128475-appb-000004
其中,n 0为空气的折射率,j为第一入射面301和第二出射面302的夹角,k为第二折射光信号103与法线方向的夹角。
根据上述关系式,得到第一微棱镜的折射率n 1与非目标光信号的角度β的关系如图9所示,其中,第一区域为满足条件的n 1与β的范围区域,第二区域为不满足条件的n 1与β的范围区域。
如图9所示,若第一微棱镜的折射率n 1在一定的范围内,例如,折射率n 1在1.5至1.9之间,若折射率n 1越大,则该折射率n 1对应的非目标光信号的角度β的取值范围越大,此时,可以将更多的非目标光信号转换为倾斜光信号,以满足只将第一目标光信号通过第一入射面以及第一出射面转换为垂直光信号的条件,从而提高指纹成像质量以及指纹识别效果。
换言之,在一些实施方式中,第一微棱镜的折射率n 1设计为大于预设阈值,以增大非目标夹角β的取值范围,第一微棱镜用于将该较大取值范围内的非目标光信号转换为倾斜光信号,从而提高指纹成像质量以及指纹识别效果。
优选地,第一微棱镜的折射率n 1大于等于1.9,则β为0°至90°范围内的全部非目标光信号均能够转换为倾斜光信号,从而进一步提高指纹成像质量以及指纹识别效果。
需要说明的是,图9中,对应于β=0°时,在第一区域内,第一微棱镜的折射率n 1的最小值在1.5左右,作为示例,该最小值的范围可以在1.5±0.1以内;类似的,对应于β=90°时,在第一区域内,第一微棱镜的折射率 n 1的最小值在1.9左右,作为示例,该最小值的范围可以在1.9±0.1以内。
通过上文对第一微棱镜的相关说明可知,本申请实施例中,通过设置第一微棱镜的结构以及折射率,可以使得垂直光信号仅能从第一微棱镜的第一出射面射出,且该垂直光信号仅来源于第一目标光信号,即仅来源于第一折射光信号,而第二出射面平行于第一折射光信号,因此,经过第二出射面反射的反射光信号方向与第一折射光信号不同,该反射光信号不可能从第一出射面出射为垂直光信号。
而若将第二出射面设置为相对于显示屏垂直的平面,或者说将第二出射面设置为垂直于第一入射面的平面,可能会存在与第一目标光信号方向不同的部分杂散光信号进入第一微棱镜后,被垂直的第二出射面反射,形成与第一折射光信号方向相同的反射光信号,该反射光信号传输至第一出射面,经过第一出射面折射后形成垂直光信号出射,对指纹识别造成干扰。因此,采用本申请实施例的第一微棱镜,能够减少杂散光对指纹识别的干扰,提高指纹识别的性能。
图10示出了另一种指纹识别装置300的结构示意图。
如图10所示,该指纹识别装置300还可以包括第一衬底层340,该第一衬底层340形成于第一微棱镜阵列310上方,并平行于显示屏设置。在制备形成第一微棱镜阵列310的过程中,该第一微棱镜阵列310可以形成于第一衬底层340的上方,该第一衬底层340用于支撑该第一微棱镜阵列310。
可选地,该第一衬底层340为透光材料,其可以为与第一微棱镜阵列310相同的材料,或者也可以为与第一微棱镜阵列310不同的材料。
在一些实施方式中,该第一衬底层340可以为白玻璃或者树脂材料。
在另一些实施方式中,该第一衬底层340可以为滤光片,其仅透过目标波段的光信号,而阻挡非目标波段的光信号。作为示例,该第一衬底层340可以为红外截止滤光片(IR cut filter)。
滤光片用于减少指纹感应中的不期望的环境光,以提高感应阵列331对接收到的光的光学感应。滤光片具体可以用于过滤掉特定波长的光,例如,近红外光和部分的红光等。例如,人类手指吸收波长低于580nm的光的能量中的大部分,如果一个或多个光学过滤器或光学过滤层被设计为过滤波长从580nm至红外的光,则可以大大减少环境光对指纹感应中的光学检测的影响。
例如,滤光片可以包括一个或多个光学过滤器,一个或多个光学过滤器可以配置为:例如带通过滤器,以允许OLED屏发射的光的传输,同时阻挡太阳光中的红外光等其他光组分。当在室外使用本申请实施例的指纹识别装置300时,这种光学过滤可以有效地减少由太阳光造成的背景光。此外,滤光片的进光面可以设置有光学无机镀膜或有机黑化涂层,以使得滤光片的进光面的反射率低于第一阈值,例如1%,从而能够保证感应阵列331能够接收到足够的光信号,进而提升指纹识别效果。
应理解,在本申请实施例中,滤光片除了可以作为第一衬底层340,设置在第一微棱镜阵列310上方以外,滤光片还可以制作在沿着到经由手指反射形成的反射光至感应阵列331的光学路径的任一位置上,本申请实施例对此不做具体限定。换言之,本申请实施例的指纹识别装置300中,第一衬底层340可以为透明层,除此之外,指纹识别装置300还包括滤光片。
作为示例,滤光片可以设置以下位置的任意位置:第一微棱镜阵列310上方;第一微棱镜阵列310和光学组件320之间;光学组件320的内部;以及光学组件320和感应阵列331之间。例如滤光片可以设置在第一微棱镜阵列310和光学组件320之间,此时滤光片用于接收经由第一微棱镜阵列310转换后的第一垂直光信号,这样有效降低了第一垂直光信号在滤光片中的光损失,进而提升了指纹识别效果。又例如,滤光片还可以设置在光学指纹传感器330的表面(on chip),这样不需要额外增加滤光片的支撑结构,而直接设置在光学指纹传感器330的表面,可以减小指纹识别装置300的整体厚度。
可选地,如图10所示,除了感应阵列331以外,光学指纹传感器330还可以包括至少一层金属层332以及金属层间的第一介质层333。其中金属层332可以是光学指纹传感器的金属布线层,用于电性互联感应阵列331中的光学感应单元,以及将感应阵列331电连接至外部器件,以实现指纹识别装置300的内外通信。
作为示例,如图10所示,光学指纹传感器330可以包括三层金属层332,该三层金属层332之间以及最下一层的金属层332和感应阵列331之间可以设置有第一介质层333,该第一介质层333的材料可以是透明材料,作为示例,其可以为氧化硅、氮化硅等材料。
可以理解的是,在光学组件320中,除了微透镜阵列321和至少一层光 阑层322外,还包括第二介质层323,该第二介质层323用于连接微透镜阵列321、至少一层光阑层322以及光学指纹传感器330。该第二介质层323的材料同样为透明材料,用于传导光信号,本申请实施例对具体的透明材料类型不做具体限定。
需要说明的是,在本申请实施例中,光学指纹传感器330中的至少一层金属层332可以复用为光学组件320中的光阑层322,即金属层332中形成通光小孔,充当光阑的作用,以简化指纹识别装置300的结构并减小其厚度。
可选地,光学指纹传感器330的顶层金属层332复用为光阑层,光学组件320包括两层光阑层,其顶层光阑层用于阻挡环境光以及杂散光对指纹识别的干扰,底层光阑层为光学指纹传感器330的顶层金属层,用于进一步阻挡杂散光,并引导垂直光信号传输至感应阵列331,以提高光学指纹传感器的成像效果,提高指纹识别性能。
可选地,与同一微透镜对应的至少一层光阑层中的通光小孔由上至下孔径依次减小。例如,如图10所示,顶层光阑层中设置的通光小孔的孔径大于底层光阑层中设置的通光小孔的孔径。
当然,与同一微透镜对应的至少一层光阑层中的通光小孔由上至下孔径也可以相同,本申请对此不做体限定。
需要说明的是,图10中仅示出了光学指纹传感器330的顶层金属层332复用为光阑层的技术方案,除此之外,光学指纹传感器330中的任一位置处的金属层332均可复用为光阑层。例如,可以将光学指纹传感器330中的位于顶层位置、中间位置或底层位置的金属层332复用为光阑层。
另外,除了可以将光学指纹传感器330的金属层332复用为光阑层,光学组件320中的光阑层也可以设置一层或者多层。光学组件320可以单独设置于光学指纹传感器330的上方,也可以与光学指纹传感器330集成在同一个芯片上,以进一步降低指纹识别装置40的厚度,避免挤占电子设备中其他模块(例如电池)的空间。
上文实施例中,光学组件320包括微透镜阵列以及至少一层光阑层,用于引导垂直光信号至光学指纹传感器330中的感应阵列331。除此之外,光学组件320还可以为直孔准直器,光学指纹传感器331中的每个光学感应单元对应直孔准直器中的至少一个准直孔;其中,直孔准直器用于接收第一微棱镜阵列转换的第一垂直光信号,并通过直孔准直器中的准直孔传输至光学 指纹传感器330。
在上文图5和图10所示的实施例中,第一微棱镜阵列310中第一微棱镜的宽度(参见图8中的参数L)与感光阵列中的331中的光学感应单元的宽度相同或者相近,此外,第一微棱镜阵列310中第一微棱镜的宽度也可以与微透镜阵列321中的圆形微透镜的直径相同或者相近。
当然,第一微棱镜的宽度也可以小于或者大于感光阵列中的331中的光学感应单元的宽度,换言之,微透镜阵列321中的一个微透镜可以接收多个微棱镜转换的光信号,或者微透镜阵列321中的多个微透镜可以接收同一个微棱镜转换的光信号,本申请实施例对微棱镜的宽度尺寸不做具体限定。
可选地,第一微棱镜阵列310中的每个第一微棱镜与微透镜阵列321中的至少一个微透镜以及感应阵列331中的至少一个光学感应单元对应设置。即至少一个微透镜和至少一个光学感应单元对应的设置于一个第一微棱镜的下方,该至少一个微透镜用于接收该第一微棱镜转换后的光信号,至少一个光学感应单元用于接收该至少一个微透镜会聚后的光信号。
或者,微透镜阵列321中的每个微透镜和感应阵列331中的每个光学感应单元与第一微棱镜阵列310中的至少一个第一微棱镜对应设置。即至少一个第一微棱镜对应的设置于一个微透镜和一个光学感应单元的上方,该一个微透镜用于接收至少一个第一微棱镜转换后的光信号,一个光学感应单元用于接收该一个微透镜会聚后的光信号。
如前文实施例所示,指纹识别装置用于接收某个单一目标方向的光信号,而阻挡其它方向的杂散光,以提高指纹识别的效果。然而,在该实施例中,仅接收单一方向的光信号,会导致指纹识别装置的视场受限,若要扩大指纹识别装置的视场,则相应需要增大指纹识别芯片面积,从而会导致指纹识别装置的成本增加。
因此,如何提升指纹识别装置的视场范围,或者在保持相同视场范围前提下减小指纹识别装置的面积,降低指纹识别装置的成本,成为一个亟待解决的技术问题。
图11和图12示出了本申请实施例可以适用的电子设备20的示意图。其中,图12为图11所示的电子设备20沿A-A’方向的剖面示意图。
如图11和图12所示,电子设备20可以包括上述显示屏100和本申请实施例提供的一种指纹识别装置400。具体地,本申请实施例中的显示屏100 可以参见上文实施例中的相关方案,此处不再赘述。
在本申请实施例中,指纹识别装置400可以包括:第一光学装置410a、第二光学装置410b和光学指纹传感器420;
其中,第一光学装置410a用于引导经过显示屏100中第一指纹检测区域401a上手指反射的第一目标光信号至光学指纹传感器420中的第一感应阵列421a;
第二光学装置410b用于引导经过显示屏100中第二指纹检测区域401b上手指反射的第二目标光信号至光学指纹传感器420中的第二感应阵列421b;
该第一感应阵列421a和第二感应阵列421b用于分别根据第一目标光信号和第二目标光信号以进行指纹识别;
其中,第一指纹检测区域401a和第二指纹检测区域401b互不重叠,且二者之间存在间隔区401c,经过该间隔区401c上方的手指反射的光信号无法进入至光学指纹传感器420用于指纹识别。
可选地,在本申请实施例中,该光学指纹传感器420、第一感应阵列421a和第二感应阵列421b的相关技术特征可以参见上文中光学指纹传感器220或者光学指纹传感器330、感应阵列221或者感应阵列331的技术方案,此处不再赘述。
作为示例,如图12所示,显示屏100为OLED显示屏,显示屏100向第一指纹检测区域401a上方的手指140发出一束光,该光在手指140的第一区域表面发生反射形成第一反射光,第一光学装置410a用于将该第一反射光中的第一目标光信号引导至第一感应阵列421a,该第一感应阵列421a用于根据该第一目标光信号进行光电转换得到第一指纹检测信号。类似地,显示屏100向第二指纹检测区域401b上方的手指140发出一束光,该光在手指140的第二区域表面发生反射形成第二反射光,即第二目标光信号,第二光学装置410b用于将该第二反射光中的第二目标光信号引导至第二感应阵列421b,该第二感应阵列421b用于根据该第二目标光信号进行光电转换得到第二指纹检测信号,基于该第一指纹检测信号和第二指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在电子设备20实现光学指纹识别功能。
可以理解的是,在本申请实施例中,第一目标光信号和第二目标光信号 的方向为任意两个不同方向的光信号,第一目标光信号和第二目标光信号分别为垂直于显示屏的光信号以及倾斜于显示屏的光信号,或者,第一目标光信号和第二目标光信号均为倾斜于显示屏的光信号。
在本申请实施例中,通过设置第一光学装置和第二光学装置,以通过不同目标方向的光信号进入至光学指纹传感器以进行指纹识别,相比于光学指纹传感器仅接收单个方向的指纹光信号,在提升指纹识别信号的多样性的同时,能够扩大指纹识别装置的视场或者在保证视场不变的情况下减小光学指纹传感器的面积以降低成本,从而提高指纹识别性能或者降低指纹识别装置的成本。
可选地,如图12所示,在光学指纹传感器420中,第一感应阵列421a和第二感应阵列421b之间无间隔。
相比于采用两个光学指纹传感器420分别接收来自两个指纹检测区域的光信号,采用本申请实施例的方式,能够利用同一个光学指纹传感器中无间隔的两个感应阵列区域分别接收来自两个指纹检测区域的光信号,便于工艺实现,且能够减少指纹识别装置在显示屏下方占用的横向空间。
可选地,在本申请实施例中,第一感应阵列421a和第二感应阵列421b的面积相等,和/或,第一指纹检测区域401a和第二指纹检测区域401b的面积相等。
优选地,在一些实施方式中,第一指纹检测区域401a位于第一感应阵列421a和第二感应阵列421b的分界线的一侧,第二指纹检测区域401b位于第一感应阵列421a和第二感应阵列421b的分界线的另一侧。
作为示例,如图12所示,第一感应阵列421a和第二感应阵列421b的面积相等,第一感应阵列421a和第二感应阵列421b的分界线为光学指纹传感器的一条对称轴,第一指纹检测区域401a位于该对称轴的一侧,第二指纹检测区域401b位于该对称轴的另一侧。
具体地,如图12所示,第一目标光信号向上述第一感应阵列421a和第二感应阵列421b的分界线倾斜,或者说第一目标光信号朝向该分界线传输,且第一目标光信号与光学指纹传感器的法线方向的夹角为θ 1;第二目标光信号向上述分界线倾斜,或者说第二目标光信号朝向该分界线传输,且第二目标光信号与光学指纹传感器的法线方向的夹角为θ 2。为了便于区分第一目标光信号和第二目标光信号的方向,也可以将上述第二目标光信号与光学 指纹传感器的法线方向的夹角写为-θ 2,其中,θ 1和θ 2的值为0至90°之间。
可选地,θ 1=θ 2,第一光学装置410a和第二光学装置410b相对于经过上述分界线且垂直于显示屏的所在平面,呈镜像设置。进一步地,第一指纹检测区域401a和第二指纹检测区域401b相对于该经过上述分界线且垂直于显示屏的所在平面,也可以呈镜像设置。
作为示例,若本申请实施例中,θ 1=θ 2=25°,光学指纹传感器表面至显示屏表面的距离为1mm时,间隔区401c的宽度约为0.93mm,即第一指纹检测区域401a与第二指纹检测区域401b之间间隔了0.93mm的宽度。
可以理解的是,指纹识别装置的指纹检测区域位于其视场中,在一些实施方式中,指纹检测区域与指纹识别装置在显示屏所在平面的视场区域相同。为了方向描述,下文中的视场,均是指指纹识别装置在显示屏所在平面的视场。
图13和图14示出了本申请实施例中的指纹识别装置接收单一方向光信号和多个方向光信号的视场示意图。
如图13中的(a)图和图14中的(a)图所示,指纹识别装置200用于接收单一方向的光信号以进行指纹识别,该指纹识别装置200可以为图2中所示的指纹识别装置200,该指纹识别装置200的视场为第一视场。如图13中的(b)图和图14中的(b)图所示,指纹识别装置400用于接收两个方向的光信号以进行指纹识别,该指纹识别装置400可以为图12中所示的指纹识别装置400,该指纹识别装置400的视场为第二视场。
对比图13和图14中的(a)、(b)两图,可以看出,第二视场相比于第一视场,其能够采集到更多手指边缘区域的指纹信息,相比于指纹识别装置200,指纹识别装置400的整体视场更大,第二视场的视场角相比与第一视场的视场角扩大了θ 12,第二视场的视场宽度相比与第一视场的视场宽度扩大了间隔区401c的宽度,且指纹识别信号具有更多的多样性。换个角度来说,若将指纹识别装置400的整体视场设置为第一视场,则指纹识别装置400中光学指纹传感器的面积则相应减小,从而降低指纹识别装置的成本。
例如,若θ 1=θ 2=25°,假设第一视场为6×6mm,若光学指纹传感器仅接收单一方向的光信号,光学指纹传感器的感光区域与第一视场1:1大小对应,面积为6×6mm,若光学指纹传感器接收上述角度为θ 1的第一目标光 信号和角度-θ 2的第二目标光信号,其感光区域面积变为(6-0.93)×6mm,即5.07×6mm,光学指纹传感器的感光区域面积减小了15%左右,对应光学指纹传感器的总面积减小了10%至15%之间,则可以降低光学指纹传感器成本10%至15%。
在实际产品应用中,手指按压的中心区域指纹信号常常会出现模糊,此部分指纹信号相当于是无用信号,技术人员会采用一些技术手段尽量消除指纹模糊;通常来说,指纹解锁时,手指大部分情况都会按压在指纹识别区域的中心区域,若手指按压的中心区域恰好落在或大部分落在本实施例所述的间隔区,则可以有效避免中心模糊现象,且同时不影响指纹识别区域的有效面积。
因此,采用本申请实施例的技术方案,一方面,可以增加指纹识别装置的视场或者降低成本、提升指纹识别信号的多样性以提高指纹识别性能,另一方面,不会采集手指中心区域无用的指纹光信号,简化指纹图像处理的过程以提高指纹识别的效率。
图15至图17示出了本申请实施例中第一光学装置410a和第二光学装置410b的三种结构示意图。
如图15所示,第一光学装置410a包括第一斜孔准直器;第二光学装置410b包括第二斜孔准直器。
其中,光学指纹传感器420与显示屏平行设置,第一斜孔准直器中的第一斜孔方向与光学指纹传感器420的法线的方向夹角为θ 1,即第一斜孔方向与第一目标光信号的方向相同或者相近,光学指纹传感器420中的第一感应阵列421a只能够接收到入射角度为θ 1或接近θ 1的倾斜光信号。类似地,第二斜孔准直器中的第二斜孔方向与光学指纹传感器420的法线的方向夹角为-θ 2,即第二斜孔方向与第二目标光信号的方向相同或者相近,光学指纹传感器420中的第二感应阵列421b只能够接收到入射角度为-θ 2或接近-θ 2的倾斜光信号。
如图16所示,第一光学装置410a包括第一微透镜阵列以及至少一层第一光阑层,第二光学装置410b包括第二微透镜阵列以及至少一层第二光阑层。可选地,该第一光学装置410a和第二光学装置410b的相关技术方案可以参见上文中图4所示的光学组件210的相关描述。
该第一光学装置410a与第二光学装置410b的结构组成相同,差别仅在 于其中至少一层光阑层中通光小孔的设置不同,从而实现通过不同方向的目标光信号。
以第二光学装置410b为例进行举例说明,在第二光学装置410b中,包括第二微透镜阵列410b以及至少一层第二光阑层412b,该至少一层第二光阑层412b中设置有多个通光小孔,以形成第二方向的多个第二导光通道,用于引导第二目标光信号传输至第二感应阵列421b,而非第二方向的入射光则被至少一层第二光阑层412b中的非透光材料阻挡。换言之,该多个第二导光通道的方向与第二目标光信号的方向相同或者相近。
可选地,第二微透镜阵列410b中的多个微透镜与第二感应阵列421b中的多个光学感应单元一一对应,即一个光学感应单元对应的设置于一个微透镜的下方,该光学感应单元用于接收该微透镜会聚、并经过至少一层第二光阑层中的通光小孔后的第二目标光信号。为了使得倾斜方向的第二目标光信号通过,一层或者多层第二光阑层412中,通光小孔的中心偏离于微透镜的光轴设置。
可选地,该光学感应单元可以对应的设置于一个微透镜的正下方,或者,也可以对应一个微透镜的斜下方,使得第二目标光信号聚焦在光学感应单元的中心位置,以改善光学感应单元上方的金属布线层的挡光问题。
在本申请实施例中,第一光学装置410a和第二光学装置410b中的至少部分光阑层可以由光学指纹传感器420中的金属层充当,换言之,光学指纹传感器420中的一层或多层金属布线层可以复用为一层或多层光阑层,以选择目标光信号通过,可以简化指纹识别装置400的结构并减小其厚度。
此外,可以理解的是,在本申请实施例中,指纹识别装置400还包括其它光学结构,例如可以包括透明介质层,用于连接至少一光阑层、微透镜阵列以及光学指纹传感器。又例如还可以包括滤光层,其设置在光学指纹传感器的感应阵列与显示屏之间的光路中,用于滤除非指纹检测的光信号波段。具体地,该滤光层、透明介质层、以及光学指纹传感器420中的金属布线层可以参见上文图10中的相关描述,此处不再赘述。
如图17所示,第一光学装置410a包括第一斜孔准直器和第一微透镜阵列,该第一斜孔准直器设置于该第一微透镜阵列上方;第二光学装置410b包括第二斜孔准直器和第二微透镜阵列,该第二斜孔准直器设置于该第二微透镜阵列上方。
具体地,在本申请实施例中,斜孔准直器可以参见上文图15中的相关描述,微透镜阵列用于会聚经过斜孔准直器后的第一目标光信号与第二目标光信号至第一感光阵列421a和第二感光阵列421b。
可以理解的是,在本申请实施例中,由于在光学指纹传感器上方设置了斜孔准直器,阻挡了除目标方向外其他方向的杂散光,因此在微透镜阵列下方并不需要单独设置光阑层,仅需要在光学指纹传感器420上方制备形成微透镜阵列即可,采用该实施方式,可以简化光学指纹传感器420的制备工艺。
可以理解的是,在上文申请实施例中,第一光学装置410a和第二光学装置410b可以根据需求,即第一目标光信号的角度θ 1以及第二目标光信号的角度θ 2来设计其具体的光路结构。
在图15和图17所示的实施例中,斜孔准直器不但阻挡了非目标光信号,同时也阻挡了部分目标光信号,只有从斜孔穿过的目标光信号才会被光学指纹传感器接收。因此该技术方案会造成大量光信号的丢失。
在图16所示的实施例中,至少一层光阑层为了满足通过目标光信号,其中的通光小孔需要相对于微透镜的光轴偏移适当的距离,若光学感应单元设置于微透镜的正下方,这就导致了经过微透镜会聚后的部分光线可能会被至少一层光阑层的非透光材料,例如光学指纹传感器的金属布线层所遮挡或吸收。另外,由于是倾斜光路,微透镜的部分区域,由于阴影效应不能起到会聚光线作用,导致光学指纹传感器在接收较大角度的入射光的时候,光损失较大。
因此,上述方案需要光源发射较高强度的光或者延长指纹传感器曝光时间才能完成指纹信号采集,对设备功耗和用户体验都造成不良影响。
基于此,参考上文中的指纹识别装置300,可以在本申请实施例的指纹识别装置400中,同样设置微棱镜阵列,以将倾斜光信号转换为垂直光信号,垂直光信号再通过光学组件传输至光学指纹传感器中以进行指纹识别,可以减少倾斜光路的光损失,从而缩短了指纹识别装置的曝光时间,在增加指纹识别装置的视场或者降低成本、提升指纹识别信号的多样性的同时,加快指纹识别的速度并提升了用户体验。
图18示出了另一种指纹识别装置400的结构示意图。
如图18所示,在该指纹识别装置400中,第一光学装置410a包括:第一微棱镜阵列413a和第一光学组件;
该第一微棱镜阵列413a用于接收第一目标光信号,并将该第一目标光信号转换为相对于该显示屏垂直的第一垂直光信号;
该第一光学组件设置于该第一微棱镜阵列413a下方,用于接收该第一垂直光信号,并将该第一垂直光信号引导至该光学指纹传感器的第一感应阵列421a;
第二光学装置410b包括:第二微棱镜阵列413b和第二光学组件;
该第二微棱镜阵列413b用于接收该第二目标光信号,并将该第二光信号中的第二目标光信号转换为相对于该显示屏垂直的第二垂直光信号;
该第二光学组件设置于该第二微棱镜阵列413b下方,用于接收该第二垂直光信号,并将该第二垂直光信号引导至该光学指纹传感器的第二感应阵列421b。
在本申请实施例中,第一光学装置410a中的第一微棱镜阵列413a和第一光学组件可以与上文指纹识别装置300中第一微棱镜阵列310以及光学组件320的结构相同。另外,光学指纹传感器420的第一感应阵列421a可以与上文指纹识别装置300中感应阵列311相同,具体技术方案可以参见上文中的相关描述,此处不再赘述。
而第二光学装置410b中的第二微棱镜阵列413b可以与该第一微棱镜阵列413a对称设置,即第二微棱镜阵列413b接收角度为-θ 2的第二目标光信号。作为示例,第二微棱镜阵列413b包括多个第二微棱镜,该第二微棱镜包括第二入射面和第三出射面,第二入射面为相对于所述显示屏平行的平面,第三出射面为相对于显示屏倾斜的平面;该第二微棱镜用于通过第二入射面接收上述第二目标光信号,并通过该第三出射面将第二目标光信号出射为第二垂直光信号。
可选地,该第二微棱镜还包括第四出射面,该第四出射面为相对于显示屏倾斜的另一平面,该第四出射面的面积小于所述第三出射面的面积。
具体地,在本申请实施例中,第一微棱镜阵列413a中每个第一微棱镜接收的第一目标光信号与第一微棱镜的第一入射面的法线方向的夹角为θ 1,与第一微棱镜的棱的夹角为90°;而第二微棱镜阵列413b中每个第二微棱镜接收的第二目标光信号与第二微棱镜的第二入射面的法线方向的夹角为θ 2,与该第二微棱镜的棱的夹角为90°;其中,θ 1和θ 2的值为0至90°之间。
可选地,若θ 1=θ 2,上述第二微棱镜阵列413b和第一微棱镜阵列413a相对于垂直于显示屏的平面,呈镜像设置。
图19示出了一种第一微棱镜阵列413a和第二微棱镜阵列413b的立体结构示意图。
如图19所示,第一微棱镜阵列413a中任一第一微棱镜包括第一入射面301,第一出射面302和第二出射面303,该第一入射面301、第二出射面302和第二出射面303的相关技术方案可以参见上文中的相关说明。
第二微棱镜阵列413b中任一第二微棱镜包括第二入射面401,第三出射面402和第四出射面403,具体地,该第二入射面401可以与上述第一入射面301位于同一平面。该第三出射面402的相关技术特征可以参见上文中第一出射面302的相关描述,第四出射面403的相关技术特征可以参见上文中第二出射面303的相关描述。
在一些实施方式中,如图18和图19所示,第一微棱镜阵列413a和第二微棱镜阵列413b的结构相同,且相对于垂直于所述显示屏的平面,呈镜像对称设置。
在另一些实施方式中,如图20所示,第一微棱镜阵列413a和第二微棱镜阵列413b的结构也可以不同,呈镜像非对称设置。
在另一些实施方式中,如图21所示,第一微棱镜阵列413a和第二微棱镜阵列413b的结构不同,且呈非镜像设置。
可选地,如图18、图20和图21所示,第一微棱镜阵列413a还包括第一衬底层414a,第二微棱镜阵列413b还包括第二衬底层414b;
该第一衬底层414a形成于多个第一微棱镜的上表面,该第二衬底层414b形成于多个第二微棱镜的上表面,该第一衬底层414a和第二衬底层414b平行于显示屏110。
可选地,第一衬底层414a和/或第二衬底层414b可以为滤光片,用于通过目标波段的光信号,而阻挡非目标波段的光信号。
该第一衬底层414a和第二衬底层414b的相关技术方案可以参见上文中第一衬底层340的相关描述,此处不再赘述。
可选地,在本申请实施例中,第一微棱镜阵列413a的至少一个表面设置有抗反射涂层和/或偏振涂层,和/或,第二微棱镜阵列413b的至少一个表面设置有抗反射涂层和/或偏振涂层;其中,抗反射涂层用于降低光信号的反 射率,偏振涂层用于选择光信号的偏振方向。例如,第一微棱镜阵列413的入射面设置有光学镀膜的抗反射涂层,以使得界面反射率低于第一阈值,例如2%,从而能够减少光信号在界面的损失,进而提升指纹识别效果。
可选地,在一些实施方式中,如图18、图20和图21所示,第一光学组件和第二光学组件均包括微透镜阵列411与至少一层光阑层412。该微透镜阵列411和至少一层光阑层412的相关技术方案可以参见上文图10中微透镜阵列321和至少一层光阑层322的相关技术方案。
可选地,在另一些实施方式中,第一光学组件和第二光学组件还可以均为直孔准直器。光学指纹传感器中的每个光学感应单元对应直孔准直器中的至少一个准直孔;其中,直孔准直器用于接收第一微棱镜阵列转换的第一垂直光信号和第二微棱镜阵列转换的第二垂直光信号,该第一垂直光信号和该第二垂直光信号通过直孔准直器中的准直孔传输至光学指纹传感器。
可以理解的是,虽然第一光学组件和第二光学组件分别设置于第一光学装置410a和第二光学装置410b中,但实际上,第一光学组件和第二光学组件的结构完全相同,二者可以设置为一个完整的光学组件,集成或者分离设置于光学指纹传感器的上方。
作为示例,图22示出了图18中指纹识别装置400的一种俯视图。
如图22所示,第一微棱镜阵列413a和第二微棱镜阵列413b中,第一微棱镜阵列413a的每个第一微棱镜的下方对应设置有第一感应阵列中的一行第一光学感应单元或者一列第一光学感应单元,和/或,
第二微棱镜阵列413b的每个第二微棱镜的下方对应设置有第二感应阵列中的一行第二光学感应单元或者一列第二光学感应单元。
在图18和图22所示的实施例中,第一微棱镜阵列413a中第一微棱镜的宽度和第二微棱镜阵列413b中第二微棱镜的宽度与光学感应单元的宽度相同或者相近,此外,第一微棱镜和第二微棱镜的宽度也可以与微透镜阵列411中的圆形微透镜的直径相同或者相近。
当然,第一微棱镜和第二微棱镜的宽度也可以小于或者大于光学感应单元的宽度,换言之,微透镜阵列411中的一个微透镜可以接收多个第一微棱镜转换的光信号,或者接收多个第二微棱镜转换的光信号。或者,微透镜阵列411中的多个微透镜可以接收同一个第一微棱镜转换的光信号,或者接收同一个第二微棱镜转换的光信号,本申请实施例对第一微棱镜和第二微棱镜 的宽度尺寸不做具体限定。
在此情况下,可选地,如图23所示,第一感应阵列421a的每个第一光学感应单元的上方对应设置有至少一个第一微棱镜,和/或,第二感应阵列421b的每个第二光学感应单元的上方对应设置有至少一个第二微棱镜。
或者,第一微棱镜阵列的每个第一微棱镜的下方对应设置有至少一个第一光学感应单元,例如至少一列第一光学感应单元或者一行第一光学感应单元;和/或,第二微棱镜阵列的每个第二微棱镜的下方对应设置有至少一个第二光学感应单元,例如至少一列第二光学感应单元或者一行第二光学感应单元。
可选地,在本申请实施例中,上述第一微棱镜阵列413a和第二微棱镜阵列413b可以通过支撑结构设置于第一光学组件、第二光学组件和光学指纹传感器上方,该支撑结构可设置于光学指纹传感器的上表面边缘区域。作为示例,该支撑结构包括但不限于是胶层或者支架,其可以通过丝网印刷等工艺制造于光学指纹传感器的四周。第一微棱镜阵列413a与第一光学组件之间可以为真空或者空气,第二微棱镜阵列413b与第二光学组件之间可以为真空或者空气。
可选地,第一微棱镜阵列413a的上表面,即第一微棱镜阵列413a中多个第一微棱镜的第一入射面,可以与显示屏的下表面相互贴合;和/或,第二微棱镜阵列413b的上表面,即第二微棱镜阵列413b中多个第二微棱镜的第二入射面,可以与显示屏的下表面相互贴合。这样可以减少指纹识别装置在显示屏下占用的纵向空间。
可以理解的是,若第一微棱镜阵列413a上方还形成有第一衬底层414a,第二微棱镜阵列413b上方还形成有第二衬底层414b,则第一衬底层414a的上表面可以与显示屏的下表面相互贴合;和/或,第二衬底层414b的上表面可以与显示屏的下表面相互贴合。
或者,在装配制造过程中,第一微棱镜阵列413a的上表面与显示屏之间也可设置有一定的间隙;和/或,第二微棱镜阵列413b的上表面与显示屏之间也可设置有一定的间隙。采用该实施方式,可以便于第一微棱镜阵列413a和第二微棱镜阵列413b在显示屏下方的装配。
本申请实施例还提供了一种电子设备,该电子设备可以包括显示屏以及上述本申请实施例的指纹识别装置,其中,该指纹识别装置设置于所述显示 屏下方,以实现屏下光学指纹识别。
该电子设备可以为任何具有显示屏的电子设备。
显示屏可以采用以上描述中的显示屏,例如OLED显示屏或其他显示屏,显示屏的相关说明可以参考以上描述中关于显示屏的描述。
在一些实施方式中,显示屏为OLED显示屏,包括多个OLED光源,其中指纹识别装置采用至少部分OLED光源作为指纹识别的激励光源。
在其他实施例中,指纹识别装置也可以采用内置光源或者外置光源来提供用于进行指纹识别的光信号,在这种情况下,电子设备的显示屏也可以是微型发光二极管(Micro-LED)显示屏或具有背光模组和液晶面板的液晶显示屏。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (60)

  1. 一种指纹识别装置,其特征在于,用于设置在电子设备的显示屏下方,包括:第一微棱镜阵列、光学组件和光学指纹传感器;
    所述第一微棱镜阵列包括多个第一微棱镜,所述第一微棱镜包括第一入射面和第一出射面,所述第一入射面为相对于所述显示屏平行的平面,所述第一出射面为相对于所述显示屏倾斜的平面;
    所述第一微棱镜用于通过所述第一入射面接收经由手指反射的相对于所述显示屏倾斜的第一目标光信号,并通过所述第一出射面将所述第一目标光信号出射为相对于所述显示屏垂直的第一垂直光信号;
    所述光学组件设置于所述第一微棱镜阵列下方,用于接收所述第一垂直光信号,并将所述第一垂直光信号引导至所述光学指纹传感器,所述光学指纹传感器设置于所述光学组件下方,用于接收所述第一垂直光信号以进行指纹识别。
  2. 根据权利要求1所述的指纹识别装置,其特征在于,所述第一微棱镜还包括第二出射面,所述第二出射面为相对于所述显示屏倾斜的另一平面,所述第二出射面的面积小于所述第一出射面的面积。
  3. 根据权利要求2所述的指纹识别装置,其特征在于,所述第一目标光信号经过所述第一入射面后的第一折射光信号平行于所述第二出射面;
    所述第一入射面和所述第一出射面的夹角为第一夹角i,所述第一入射面和所述第二出射面的夹角为第二夹角j,所述第一目标光信号与所述第一入射面的法线方向的夹角为目标夹角θ;
    所述第一夹角i、所述第二夹角j、所述第一微棱镜的折射率n 1,以及所述目标夹角θ满足以下公式:
    n 0sinθ=n 1sin(90°-j);
    n 1sin(i+j-90°)=n 0sin i;
    其中,n 0为空气的折射率。
  4. 根据权利要求2所述的指纹识别装置,其特征在于,所述第一入射面还用于接收经由手指反射的与所述第一目标光信号方向不同的非目标光信号;
    所述第一出射面和所述第二出射面用于将所述非目标光信号转换为相对于所述显示屏倾斜的倾斜光信号;
    所述光学组件用于阻挡所述倾斜光信号,以防止所述倾斜光信号进入所述光学指纹传感器,对指纹识别造成干扰。
  5. 根据权利要求4所述的指纹识别装置,其特征在于,所述非目标光信号与所述第一入射面的法线方向的夹角为非目标夹角β,所述第一微棱镜的折射率n 1和所述非目标夹角β满足以下公式:
    n 0sinβ=n 1sin k;
    n 1sin(j-k)=n 0sin j;
    Figure PCTCN2020128475-appb-100001
    其中,n 0为空气的折射率,j为所述第一入射面和所述第二出射面的夹角,k为所述非目标光信号经过所述第一入射面后的第二折射光信号与法线方向的夹角。
  6. 根据权利要求5所述的指纹识别装置,其特征在于,所述第一微棱镜的折射率n 1大于预设阈值,以增大所述非目标夹角β的取值范围,所述第一微棱镜用于将所述取值范围内的非目标光信号转换为倾斜光信号。
  7. 根据权利要求1至6中任一项所述的指纹识别装置,其特征在于,所述第一微棱镜阵列的折射率n 1大于1.5。
  8. 根据权利要求1至7中任一项所述的指纹识别装置,其特征在于,所述光学指纹传感器包括多个第一光学感应单元形成的第一感应阵列;
    所述第一微棱镜阵列的每个第一微棱镜的下方对应设置有至少一个所述第一光学感应单元,或者,
    所述第一感应阵列的每个第一光学感应单元的上方对应设置有至少一个所述第一微棱镜。
  9. 根据权利要求8所述的指纹识别装置,其特征在于,所述第一微棱镜阵列的每个第一微棱镜的下方对应设置有所述第一感应阵列中的一行所述第一光学感应单元或者一列所述第一光学感应单元。
  10. 根据权利要求1至9中任一项所述的指纹识别装置,其特征在于,所述第一微棱镜阵列还包括:第一衬底层;
    所述第一衬底层形成于所述多个第一微棱镜的第一入射面的上方,并平行于所述显示屏。
  11. 根据权利要求10所述的指纹识别装置,其特征在于,所述第一衬 底层的上表面与所述显示屏的下表面相互贴合。
  12. 根据权利要求10或11所述的指纹识别装置,其特征在于,所述第一衬底层为滤光片,用于通过目标波段的光信号,而阻挡非目标波段的光信号。
  13. 根据权利要求1至12中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:滤光片;
    所述滤光片设置于所述显示屏至所述光学指纹传感器的光路中,用于通过目标波段的光信号,而阻挡非目标波段的光信号。
  14. 根据权利要求1至13中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:第二微棱镜阵列,设置于所述显示屏与所述光学组件之间;
    所述第一微棱镜阵列用于接收经过所述显示屏中第一指纹检测区域上手指反射的所述第一目标光信号,并将所述第一目标光信号转换为所述第一垂直光信号;
    所述第二微棱镜阵列用于接收经过所述显示屏中第二指纹检测区域上手指反射的第二目标光信号,并将所述第二目标光信号转换为相对于所述显示屏垂直的第二垂直光信号;
    所述光学组件设置于所述第一微棱镜阵列和所述第二微棱镜阵列下方,用于接收所述第一垂直光信号和所述第二垂直光信号,并将所述第一垂直光信号引导至所述光学指纹传感器中的第一感应阵列,将所述第二垂直光信号引导至所述光学指纹传感器中的第二感应阵列,所述第一感应阵列和所述第二感应阵列用于分别接收所述第一垂直光信号和所述第二垂直光信号以进行指纹识别;
    其中,所述第一指纹检测区域和所述第二指纹检测区域互不重叠,且二者之间存在间隔区。
  15. 根据权利要求14所述的指纹识别装置,其特征在于,所述第二微棱镜阵列包括多个第二微棱镜,所述第二微棱镜包括第二入射面和第三出射面,所述第二入射面为相对于所述显示屏平行的平面,所述第三出射面为相对于所述显示屏倾斜的平面;
    所述第二微棱镜用于通过所述第二入射面接收所述第二目标光信号,并通过所述第三出射面将所述第二目标光信号出射为所述第二垂直光信号。
  16. 根据权利要求15所述的指纹识别装置,其特征在于,所述第二微棱镜还包括第四出射面,所述第四出射面为相对于所述显示屏倾斜的另一平面,所述第四出射面的面积小于所述第三出射面的面积。
  17. 根据权利要求15或16所述的指纹识别装置,其特征在于,在所述光学指纹传感器中,所述第一感应阵列和所述第二感应阵列之间无间隔。
  18. 根据权利要求17所述的指纹识别装置,其特征在于,所述第一感应阵列和所述第二感应阵列的面积相等,和/或,所述第一指纹检测区域和所述第二指纹检测区域的面积相等。
  19. 根据权利要求17或18所述的指纹识别装置,其特征在于,所述第一指纹检测区域位于所述第一感应阵列和所述第二感应阵列的分界线的一侧,所述第二指纹检测区域位于所述第一感应阵列和所述第二感应阵列的分界线的另一侧。
  20. 根据权利要求19所述的指纹识别装置,其特征在于,所述第一目标光信号的方向朝向所述分界线,且所述第一目标光信号与所述第一入射面的法线方向的夹角为θ 1,与所述第一微棱镜的棱的夹角为90°;
    所述第二目标光信号的方向朝向所述分界线,且所述第二目标光信号与所述第二入射面的法线方向的夹角为θ 2,与所述第二微棱镜的棱的夹角为90°,其中,θ 1和θ 2的值为0至90°之间。
  21. 根据权利要求20所述的指纹识别装置,其特征在于,θ 1=θ 2,所述第二微棱镜阵列和所述第一微棱镜阵列相对于垂直于所述显示屏的平面,呈镜像设置。
  22. 根据权利要求14至21中任一项所述的指纹识别装置,其特征在于,所述第一微棱镜阵列的至少一个表面设置有抗反射涂层和/或偏振涂层,和/或,所述第二微棱镜阵列的至少一个表面设置有抗反射涂层和/或偏振涂层;
    其中,所述抗反射涂层用于降低光信号的反射率,所述偏振涂层用于选择光信号的偏振方向。
  23. 根据权利要求14至22中任一项所述的指纹识别装置,其特征在于,所述第一微棱镜阵列和所述第二微棱镜阵列通过支撑结构设置于所述光学组件和所述光学指纹传感器上方,所述支撑结构设置于所述光学指纹传感器的上表面边缘区域。
  24. 根据权利要求14至23中任一项所述的指纹识别装置,其特征在于, 所述光学组件包括:
    微透镜阵列,所述微透镜阵列中的多个微透镜与所述光学指纹传感器中的多个光学感应单元一一对应;
    至少一层光阑层,设置在所述微透镜阵列和所述光学指纹传感器之间,所述至少一层光阑层中每层光阑层中设置有所述光学指纹传感器中每个光学感应单元对应的通光小孔;
    其中,所述微透镜阵列用于接收所述第一垂直光信号和所述第二垂直光信号,所述第一垂直光信号和所述第二垂直光信号用于通过所述至少一层光阑层的通光小孔传输至所述光学指纹传感器。
  25. 根据权利要求24所述的指纹识别装置,其特征在于,所述至少一层光阑层中的至少部分光阑层为所述光学指纹传感器的金属布线层。
  26. 根据权利要求14至23中任一项所述的指纹识别装置,其特征在于,所述光学组件为直孔准直器,所述光学指纹传感器中的每个光学感应单元对应所述直孔准直器中的至少一个准直孔;
    其中,所述直孔准直器用于接收所述第一微棱镜阵列转换的所述第一垂直光信号和所述第二微棱镜阵列转换的所述第二垂直光信号,所述第一垂直光信号和所述第二垂直光信号通过所述直孔准直器中的准直孔传输至所述光学指纹传感器。
  27. 一种电子设备,其特征在于,包括:显示屏以及,
    如权利要求1至26中任一项所述的指纹识别装置,其中所述指纹识别装置设置于所述显示屏的下方,以实现屏下光学指纹识别。
  28. 根据权利要求27所述的电子设备,其特征在于,所述显示屏为有机发光二极管OLED显示屏,所述显示屏包括多个OLED光源,其中所述指纹识别装置采用至少部分OLED光源作为指纹识别的激励光源。
  29. 一种指纹识别装置,其特征在于,用于设置在电子设备的显示屏下方,包括:第一光学装置、第二光学装置和光学指纹传感器;
    所述第一光学装置用于引导经过所述显示屏中第一指纹检测区域上手指反射的第一目标光信号至所述光学指纹传感器中的第一感应阵列;
    所述第二光学装置用于引导经过所述显示屏中第二指纹检测区域上手指反射的第二目标光信号至所述光学指纹传感器中的第二感应阵列;
    所述第一感应阵列和所述第二感应阵列用于分别根据所述第一目标光 信号和所述第二目标光信号以进行指纹识别;
    其中,所述第一指纹检测区域和所述第二指纹检测区域互不重叠,且二者之间存在间隔区。
  30. 根据权利要求29所述的指纹识别装置,其特征在于,在所述光学指纹传感器中,所述第一感应阵列和所述第二感应阵列之间无间隔。
  31. 根据权利要求29或30所述的指纹识别装置,其特征在于,所述第一感应阵列和所述第二感应阵列的面积相等,和/或,所述第一指纹检测区域和所述第二指纹检测区域的面积相等。
  32. 根据权利要求29至31中任一项所述的指纹识别装置,其特征在于,所述第一指纹检测区域位于所述第一感应阵列和所述第二感应阵列的分界线的一侧,所述第二指纹检测区域位于所述第一感应阵列和所述第二感应阵列的分界线的另一侧。
  33. 根据权利要求32所述的指纹识别装置,其特征在于,所述第一目标光信号的方向朝向所述分界线,且所述第一目标光信号与所述光学指纹传感器的法线方向的夹角为θ 1
    所述第二目标光信号的方向朝向所述分界线,且与所述第二目标光信号与所述光学指纹传感器的法线方向的夹角为θ 2;其中,θ 1和θ 2的值为0至90°之间。
  34. 根据权利要求33所述的指纹识别装置,其特征在于,θ 1=θ 2,所述第一光学装置和所述第二光学装置相对于垂直于所述显示屏的平面,呈镜像设置。
  35. 根据权利要求29至34中任一项所述的指纹识别装置,其特征在于,所述第一光学装置包括第一斜孔准直器,所述第二光学装置包括第二斜孔准直器;
    所述第一斜孔准直器中多个第一斜孔的方向与所述第一目标光信号的方向相同;所述第二斜孔准直器中多个第二斜孔的方向与所述第二目标光信号的方向相同。
  36. 根据权利要求29至34中任一项所述的指纹识别装置,其特征在于,所述第一光学装置包括第一微透镜阵列以及至少一层第一光阑层,所述第二光学装置包括第二微透镜阵列以及至少一层第二光阑层;
    所述至少一层第一光阑层中形成有多个第一导光通道,所述多个第一导 光通道的方向与所述第一目标光信号的方向相同;
    所述至少一层第二光阑层中形成有多个第二导光通道,所述多个第二导光通道的方向与所述第二目标光信号的方向相同。
  37. 根据权利要求36所述的指纹识别装置,其特征在于,所述至少一层第一光阑层中的至少部分光阑层为所述光学指纹传感器的金属层;和/或,
    所述至少一层第二光阑层中的至少部分光阑层为所述光学指纹传感器的金属层。
  38. 根据权利要求29至34中任一项所述的指纹识别装置,其特征在于,所述第一光学装置包括第一斜孔准直器和第一微透镜阵列,所述第一斜孔准直器设置于所述第一微透镜阵列上方;
    所述第二光学装置包括第二斜孔准直器和第二微透镜阵列,所述第二斜孔准直器设置于所述第二微透镜阵列上方。
  39. 根据权利要求29至34中任一项所述的指纹识别装置,其特征在于,所述第一光学装置包括:第一微棱镜阵列和第一光学组件;
    所述第一微棱镜阵列用于接收所述第一目标光信号,并将所述第一目标光信号转换为相对于所述显示屏垂直的第一垂直光信号;
    所述第一光学组件设置于所述第一微棱镜阵列下方,用于接收所述第一垂直光信号,并将所述第一垂直光信号引导至所述光学指纹传感器的第一感应阵列;
    所述第二光学装置包括:第二微棱镜阵列和第二光学组件;
    所述第二微棱镜阵列用于接收所述第二目标光信号,并将所述第二光信号中的第二目标光信号转换为相对于所述显示屏垂直的第二垂直光信号;
    所述第二光学组件设置于所述第二微棱镜阵列下方,用于接收所述第二垂直光信号,并将所述第二垂直光信号引导至所述光学指纹传感器的第二感应阵列。
  40. 根据权利要求39所述的指纹识别装置,其特征在于,所述第一微棱镜阵列包括多个第一微棱镜,所述第一微棱镜包括第一入射面和第一出射面,所述第一入射面为相对于所述显示屏平行的平面,所述第一出射面为相对于所述显示屏倾斜的平面;
    所述第一微棱镜用于通过所述第一入射面接收所述第一目标光信号,并通过所述第一出射面将所述第一目标光信号出射为所述第一垂直光信号;
    所述第二微棱镜阵列包括多个第二微棱镜,所述第二微棱镜包括第二入射面和第三出射面,所述第二入射面为相对于所述显示屏平行的平面,所述第三出射面为相对于所述显示屏倾斜的平面;
    所述第二微棱镜用于通过所述第二入射面接收所述第二目标光信号,并通过所述第三出射面将所述第二目标光信号出射为所述第二垂直光信号。
  41. 根据权利要求40所述的指纹识别装置,其特征在于,所述第一微棱镜还包括第二出射面,所述第二出射面为相对于所述显示屏倾斜的另一平面,所述第二出射面的面积小于所述第一出射面的面积;
    所述第二微棱镜还包括第四出射面,所述第四出射面为相对于所述显示屏倾斜的另一平面,所述第四出射面的面积小于所述第三出射面的面积。
  42. 根据权利要求40或41所述的指纹识别装置,其特征在于,所述第一目标光信号的方向垂直于所述第一微棱镜的棱,且所述第二目标光信号的方向垂直于所述第二微棱镜的棱。
  43. 根据权利要求40至42中任一项所述的指纹识别装置,其特征在于,所述第一微棱镜阵列和所述第二微棱镜阵列的结构相同,且相对于垂直于所述显示屏的平面呈镜像设置。
  44. 根据权利要求41至43中任一项所述的指纹识别装置,其特征在于,所述第一目标光信号经过所述第一入射面后的第一折射光信号平行于所述第二出射面,所述第一入射面和所述第一出射面的夹角为第一夹角i,所述第一入射面和所述第二出射面的夹角为第二夹角j,所述第一目标光信号与所述入射面的夹角为目标夹角θ;
    所述第一夹角i、所述第二夹角j、所述第一微棱镜的折射率n 1,以及所述目标夹角θ满足以下公式:
    n 0sinθ=n 1sin(90°-j);
    n 1sin(i+j-90°)=n 0sin i;
    其中,n 0为空气的折射率。
  45. 根据权利要求41至44中任一项所述的指纹识别装置,其特征在于,所述第一入射面还用于接收经由手指反射的与所述第一目标光信号的方向不同的非目标光信号;
    所述第一出射面和所述第二出射面用于将所述非目标光信号转换为相对于所述显示屏倾斜的倾斜光信号;
    所述光学组件用于阻挡所述倾斜光信号,以防止所述倾斜光信号进入所述光学指纹传感器,对指纹识别造成干扰。
  46. 根据权利要求45所述的指纹识别装置,其特征在于,所述非目标光信号与所述第一入射面的法线方向的夹角为非目标夹角β,所述第一微棱镜的折射率n 1和所述非目标夹角β满足以下公式:
    n 0sinβ=n 1sin k;
    n 1sin(j-k)=n 0sin j;
    Figure PCTCN2020128475-appb-100002
    其中,n 0为空气的折射率,j为所述第一入射面和所述第二出射面的夹角,k为所述非目标光信号经过所述第一入射面后的第二折射光信号与法线方向的夹角。
  47. 根据权利要求46所述的指纹识别装置,其特征在于,所述第一微棱镜的折射率n 1大于预设阈值,以增大所述非目标夹角β的取值范围,所述第一微棱镜用于将所述取值范围内的非目标光信号转换为倾斜光信号。
  48. 根据权利要求39至47中任一项所述的指纹识别装置,其特征在于,所述第一微棱镜阵列和/或所述第二微棱镜阵列的折射率大于1.5。
  49. 根据权利要求39至48中任一项所述的指纹识别装置,其特征在于,所述第一感应阵列包括多个第一光学感应单元,所述第二感应阵列包括多个第二光学感应单元;
    所述第一微棱镜阵列的每个第一微棱镜的下方对应设置有至少一个所述第一光学感应单元,所述第二微棱镜阵列的每个第二微棱镜的下方对应设置有至少一个所述第二光学感应单元;或者,
    所述第一感应阵列的每个第一光学感应单元的上方对应设置有至少一个所述第一微棱镜,所述第二感应阵列的每个第二光学感应单元的上方对应设置有至少一个所述第二微棱镜。
  50. 根据权利要求49所述的指纹识别装置,其特征在于,所述第一微棱镜阵列的每个第一微棱镜的下方对应设置有所述第一感应阵列中的一行第一光学感应单元或者一列第一光学感应单元,
    所述第二微棱镜阵列的每个第二微棱镜的下方对应设置有所述第二感应阵列中的一行第二光学感应单元或者一列第二光学感应单元。
  51. 根据权利要求40至50中任一项所述的指纹识别装置,其特征在于,所述第一微棱镜阵列还包括第一衬底层,所述第二微棱镜阵列还包括第二衬底层;
    所述第一衬底层形成于所述多个第一微棱镜的第一入射面的上方,所述第二衬底层形成于所述多个第二微棱镜的第二入射面的上方,所述第一衬底层和所述第二衬底层平行于所述显示屏。
  52. 根据权利要求51所述的指纹识别装置,其特征在于,所述第一衬底层的上表面与所述显示屏的下表面相互贴合,和/或,所述第二衬底层的上表面与所述显示屏的下表面相互贴合。
  53. 根据权利要求51或52所述的指纹识别装置,其特征在于,所述第一衬底层和/或所述第二衬底层为滤光片,用于通过目标波段的光信号,而阻挡非目标波段的光信号。
  54. 根据权利要求39至53中任一项所述的指纹识别装置,其特征在于,所述第一微棱镜阵列的至少一个表面设置有抗反射涂层和/或偏振涂层,和/或,所述第二微棱镜阵列的至少一个表面设置有抗反射涂层和/或偏振涂层;
    其中,所述抗反射涂层用于降低光信号的反射率,所述偏振涂层用于选择光信号的偏振方向。
  55. 根据权利要求39至54中任一项所述的指纹识别装置,其特征在于,所述第一微棱镜阵列和所述第二微透镜阵列通过支撑结构设置于所述第一光学组件、第二光学组件和所述光学指纹传感器上方,所述支撑结构设置于所述光学指纹传感器的上表面边缘区域。
  56. 根据权利要求39至55中任一项所述的指纹识别装置,其特征在于,所述第一光学组件和所述第二光学组件包括:
    微透镜阵列,所述微透镜阵列中的多个微透镜与所述光学指纹传感器中的多个光学感应单元一一对应;
    至少一层光阑层,设置在所述微透镜阵列和所述光学指纹传感器之间,所述至少一层光阑层中每层光阑层中设置有所述光学指纹传感器中每个光学感应单元对应的通光小孔;
    其中,所述微透镜阵列用于接收所述第一垂直光信号和所述第二垂直光信号,所述第一垂直光信号和所述第二垂直光信号用于通过所述至少一层光阑层的通光小孔传输至所述光学指纹传感器。
  57. 根据权利要求56所述的指纹识别装置,其特征在于,所述至少一层光阑层中的至少部分光阑层为所述光学指纹传感器的金属布线层。
  58. 根据权利要求39至55中任一项所述的指纹识别装置,其特征在于,所述第一光学组件和所述第二光学组件为直孔准直器,所述光学指纹传感器中的每个光学感应单元对应所述直孔准直器中的至少一个准直孔;
    其中,所述直孔准直器用于接收所述第一微棱镜阵列转换的所述第一垂直光信号和所述第二微棱镜阵列转换的所述第二垂直光信号,所述第一垂直光信号和所述第二垂直光信号通过所述直孔准直器中的准直孔传输至所述光学指纹传感器。
  59. 一种电子设备,其特征在于,包括:显示屏以及,
    如权利要求29至58中任一项所述的指纹识别装置,其中所述指纹识别装置设置于所述显示屏的下方。
  60. 根据权利要求59所述的电子设备,其特征在于,所述显示屏为有机发光二极管OLED显示屏,所述显示屏包括多个OLED光源,其中所述指纹识别装置采用至少部分OLED光源作为指纹识别的激励光源。
PCT/CN2020/128475 2020-11-12 2020-11-12 指纹识别装置和电子设备 WO2022099562A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/128475 WO2022099562A1 (zh) 2020-11-12 2020-11-12 指纹识别装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/128475 WO2022099562A1 (zh) 2020-11-12 2020-11-12 指纹识别装置和电子设备

Publications (1)

Publication Number Publication Date
WO2022099562A1 true WO2022099562A1 (zh) 2022-05-19

Family

ID=81601959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128475 WO2022099562A1 (zh) 2020-11-12 2020-11-12 指纹识别装置和电子设备

Country Status (1)

Country Link
WO (1) WO2022099562A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070041005A1 (en) * 2005-07-13 2007-02-22 Electronics And Telecommunications Research Institute Fingerprint sensor using microlens
CN105759330A (zh) * 2016-03-16 2016-07-13 上海交通大学 基于光栅结构与微棱镜阵列的指纹识别***
CN109416732A (zh) * 2016-06-28 2019-03-01 比杨德艾斯公司 能够检测指纹的显示器
CN109496313A (zh) * 2018-10-26 2019-03-19 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN109716352A (zh) * 2018-12-17 2019-05-03 深圳市汇顶科技股份有限公司 液晶显示指纹模组、屏下指纹识别***及电子设备
CN109784307A (zh) * 2019-01-31 2019-05-21 维沃移动通信有限公司 终端设备
CN110062931A (zh) * 2019-03-12 2019-07-26 深圳市汇顶科技股份有限公司 指纹识别装置、指纹识别方法和电子设备
CN209803492U (zh) * 2019-03-19 2019-12-17 深圳市隆利科技股份有限公司 屏下指纹识别液晶显示装置及终端设备
CN210155697U (zh) * 2019-09-04 2020-03-17 深圳市汇顶科技股份有限公司 棱镜膜组件及屏下光学指纹识别装置
CN110945527A (zh) * 2019-10-25 2020-03-31 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN210295125U (zh) * 2019-08-08 2020-04-10 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN111448652A (zh) * 2017-12-04 2020-07-24 虹软科技股份有限公司 具有指纹识别功能的显示器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070041005A1 (en) * 2005-07-13 2007-02-22 Electronics And Telecommunications Research Institute Fingerprint sensor using microlens
CN105759330A (zh) * 2016-03-16 2016-07-13 上海交通大学 基于光栅结构与微棱镜阵列的指纹识别***
CN109416732A (zh) * 2016-06-28 2019-03-01 比杨德艾斯公司 能够检测指纹的显示器
CN111448652A (zh) * 2017-12-04 2020-07-24 虹软科技股份有限公司 具有指纹识别功能的显示器
CN109496313A (zh) * 2018-10-26 2019-03-19 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN109716352A (zh) * 2018-12-17 2019-05-03 深圳市汇顶科技股份有限公司 液晶显示指纹模组、屏下指纹识别***及电子设备
CN109784307A (zh) * 2019-01-31 2019-05-21 维沃移动通信有限公司 终端设备
CN110062931A (zh) * 2019-03-12 2019-07-26 深圳市汇顶科技股份有限公司 指纹识别装置、指纹识别方法和电子设备
CN209803492U (zh) * 2019-03-19 2019-12-17 深圳市隆利科技股份有限公司 屏下指纹识别液晶显示装置及终端设备
CN210295125U (zh) * 2019-08-08 2020-04-10 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN210155697U (zh) * 2019-09-04 2020-03-17 深圳市汇顶科技股份有限公司 棱镜膜组件及屏下光学指纹识别装置
CN110945527A (zh) * 2019-10-25 2020-03-31 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备

Similar Documents

Publication Publication Date Title
WO2020151159A1 (zh) 指纹识别的装置和电子设备
CN110088768B (zh) 屏下指纹识别装置和电子设备
WO2020206894A1 (zh) 光学指纹识别装置和电子设备
WO2021072753A1 (zh) 指纹检测装置和电子设备
WO2020220305A1 (zh) 屏下指纹识别装置和电子设备
CN210052176U (zh) 指纹检测装置和电子设备
WO2020133378A1 (zh) 指纹识别装置和电子设备
CN110720106B (zh) 指纹识别的装置和电子设备
WO2021077259A1 (zh) 识别指纹的方法、指纹识别装置和电子设备
CN111095279B (zh) 指纹检测装置和电子设备
WO2021035622A1 (zh) 指纹识别装置和电子设备
CN211349375U (zh) 光学指纹装置和电子设备
CN210295125U (zh) 指纹检测装置和电子设备
CN111095281B (zh) 指纹检测的装置和电子设备
WO2021051737A1 (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
CN210109828U (zh) 指纹识别的装置和电子设备
EP3800579B1 (en) Optical fingerprint apparatus and electronic device
CN210605741U (zh) 指纹检测的装置和电子设备
WO2021077406A1 (zh) 指纹识别装置和电子设备
WO2021007964A1 (zh) 指纹检测装置和电子设备
CN213659463U (zh) 指纹识别装置和电子设备
WO2021007953A1 (zh) 指纹检测装置和电子设备
WO2020243934A1 (zh) 光学图像采集装置和电子设备
WO2022027257A1 (zh) 指纹识别装置和电子设备
WO2022099562A1 (zh) 指纹识别装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961119

Country of ref document: EP

Kind code of ref document: A1