WO2022095093A1 - 一种66kV风机输电用耐扭电缆及其制备方法和用途 - Google Patents

一种66kV风机输电用耐扭电缆及其制备方法和用途 Download PDF

Info

Publication number
WO2022095093A1
WO2022095093A1 PCT/CN2020/128240 CN2020128240W WO2022095093A1 WO 2022095093 A1 WO2022095093 A1 WO 2022095093A1 CN 2020128240 W CN2020128240 W CN 2020128240W WO 2022095093 A1 WO2022095093 A1 WO 2022095093A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
parts
cable
torsion
conductor
Prior art date
Application number
PCT/CN2020/128240
Other languages
English (en)
French (fr)
Inventor
曹西伟
张中云
刘亚欣
钱江伟
马振清
Original Assignee
江苏亨通电力电缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通电力电缆有限公司 filed Critical 江苏亨通电力电缆有限公司
Publication of WO2022095093A1 publication Critical patent/WO2022095093A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/1875Multi-layer sheaths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/24Sheathing; Armouring; Screening; Applying other protective layers by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/2813Protection against damage caused by electrical, chemical or water tree deterioration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/22Halogen free composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the invention relates to the technical field of cable preparation, in particular to the technical field of high-voltage cables, and in particular to a torsion-resistant cable for 66kV fan power transmission and a preparation method and application thereof.
  • Wind power has become one of the important ways of generating electricity from renewable resources in the world, and wind power generation accounts for 16% of the electricity generated from renewable resources in the world.
  • offshore wind resources have the characteristics of stability and large power generation.
  • offshore wind power is developing rapidly around the world.
  • Offshore wind power has developed from the initial 3-4MW era to the 6-7MW era, and then rapidly to the 9-10MW era, and the single-machine capacity will be further improved in the future.
  • the on-site voltage of offshore wind power applications in foreign countries has been increased to 66kV.
  • the number of fan circuits can be reduced, thereby reducing the wiring complexity of offshore booster stations, and even reducing the number of offshore booster stations, reducing investment and operation and maintenance costs.
  • the 66kV voltage level belongs to the high voltage category, especially for rubber sheathed cables for mobile applications, it is restricted by many factors such as raw materials, equipment manufacturing capabilities, processing conditions, and application environments.
  • the present invention provides a torsion-resistant cable for 66kV wind turbine power transmission.
  • the 66kV wind energy torsion-resistant flexible cable used for the unit is halogen-free, low-smoke, aging-resistant, resistant to special oil types and large torsional angles; and by using double-layer co-extrusion technology to control process parameters, it can meet the large-angle yaw of large offshore wind turbines. requirements, has good practical value and promotion value.
  • the present invention provides a torsion-resistant cable for power transmission of a 66kV fan, the cable including a cable core layer, a wrapping tape, a first sheath layer and a second sheath layer in sequence from the inside to the outside;
  • the cable core layer includes a main wire core and a ground wire core
  • the main wire core includes a first central conductor, a first semi-conductive nylon tape layer, a conductor shielding layer, an ethylene propylene rubber insulating layer and an insulating shielding layer in sequence from the inside to the outside;
  • the ground core includes a second center conductor, a second semi-conductive nylon tape layer and a semi-conductive cover layer in sequence from the inside to the outside;
  • the material of the second sheath layer is polyolefin rubber
  • the polyolefin rubber includes in parts by mass:
  • the torsion-resistant cable for 66kV wind turbine power transmission provided by the invention, the torsion-resistant cable for 66kV wind turbine power transmission adopts polyolefin rubber sheath material, and the cable structure is reasonably designed, which solves the problem of halogen-free 66kV wind energy torsion-resistant flexible cable for high-power wind turbines. , low smoke, aging resistance, special oil resistance and large torsion angle; and by using double-layer co-extrusion technology to control process parameters, it can meet the large-angle yaw requirements of large offshore wind turbines, which has good practical value and promotion. value.
  • the polyolefin rubber of the present invention is a halogen-free and low-smoke polyolefin rubber sheath material.
  • the base material is composed of ethylene-vinyl acetate copolymer, and various auxiliary agents such as anti-aging agent, filler material, cross-linking agent and vulcanization accelerator are mixed at the same time. , Combining the properties of a variety of raw materials, learning from each other's strengths and weaknesses, it has excellent aging resistance, high and low temperature resistance, high strength, salt spray corrosion resistance, hydrolysis resistance, oil resistance and other properties.
  • the polyolefin rubber includes 92-105 parts of ethylene-vinyl acetate copolymer, such as 92 parts, 94 parts, 95 parts, 97 parts, 98 parts, 100 parts, 101 parts, 103 parts, 104 parts or 105 parts etc., but not limited to the recited values, other unrecited values within the range are equally applicable.
  • the polyolefin rubber includes 3.2 to 4.8 parts of microcrystalline wax, for example, it can be 3.2 parts, 3.4 parts, 3.6 parts, 3.8 parts, 4 parts, 4.1 parts, 4.3 parts, 4.5 parts, 4.7 parts or 4.8 parts, etc., but Without being limited to the recited values, other non-recited values within the range are equally applicable.
  • the polyolefin rubber includes 3.5 to 4.5 parts of plasticizer, such as 3.5 parts, 3.7 parts, 3.8 parts, 3.9 parts, 4 parts, 4.1 parts, 4.2 parts, 4.3 parts, 4.4 parts or 4.5 parts, etc., but Without being limited to the recited values, other non-recited values within the range are equally applicable.
  • the polyolefin rubber includes 13 to 26 parts of white carbon black, such as 13 parts, 15 parts, 16 parts, 18 parts, 19 parts, 21 parts, 22 parts, 24 parts, 25 parts or 26 parts, etc., but Without being limited to the recited values, other non-recited values within the range are equally applicable.
  • the polyolefin rubber includes 80-120 parts of magnesium hydroxide, such as 80 parts, 85 parts, 89 parts, 94 parts, 98 parts, 103 parts, 107 parts, 112 parts, 116 parts or 120 parts, etc., but Without being limited to the recited values, other non-recited values within the range are equally applicable.
  • the polyolefin rubber includes 8.5 to 11 parts of elastomer, such as 8.5 parts, 8.8 parts, 9.1 parts, 9.4 parts, 9.7 parts, 9.9 parts, 10.2 parts, 10.5 parts, 10.8 parts or 11 parts, etc., but not Limitation to the recited values applies equally to other non-recited values within the range.
  • the polyolefin rubber includes 2.5 to 3.5 parts of anti-aging agent, such as 2.5 parts, 2.7 parts, 2.8 parts, 2.9 parts, 3 parts, 3.1 parts, 3.2 parts, 3.3 parts, 3.4 parts or 3.5 parts, etc., but not Limitation to the recited values applies equally to other non-recited values within the range.
  • the polyolefin rubber includes 3.5 to 4.5 parts of a vulcanizing agent, for example, 3.5 parts, 3.7 parts, 3.8 parts, 3.9 parts, 4 parts, 4.1 parts, 4.2 parts, 4.3 parts, 4.4 parts or 4.5 parts, etc., but not Limitation to the recited values applies equally to other non-recited values within the range.
  • the polyolefin rubber includes 1.5 to 2.5 parts of vulcanization assistant, for example, 1.5 parts, 1.7 parts, 1.8 parts, 1.9 parts, 2 parts, 2.1 parts, 2.2 parts, 2.3 parts, 2.4 parts or 2.5 parts, etc., but Without being limited to the recited values, other non-recited values within the range are equally applicable.
  • the polyolefin rubber includes 0.9 to 1.2 parts of a silane coupling agent, such as 0.9 parts, 1 part, 1.1 parts, or 1.2 parts, etc., but is not limited to the listed values, and other unlisted values within this range are also applicable .
  • a silane coupling agent such as 0.9 parts, 1 part, 1.1 parts, or 1.2 parts, etc.
  • the polyolefin rubber includes 1.8 to 2.8 parts of stearic acid, such as 1.8 parts, 2 parts, 2.1 parts, 2.2 parts, 2.3 parts, 2.4 parts, 2.5 parts, 2.6 parts, 2.7 parts or 2.8 parts, etc., but Without being limited to the recited values, other non-recited values within the range are equally applicable.
  • the polyolefin rubber includes 2.8 to 3.3 parts of wear-resistant carbon black, such as 2.8 parts, 2.9 parts, 3 parts, 3.1 parts, 3.2 parts or 3.3 parts, etc., but not limited to the listed values, other The same applies to non-recited values.
  • the stearic acid can improve the processing performance, increase the demoulding effect, and the magnesium hydroxide can increase the flame retardant performance of the material.
  • the polyolefin rubber comprises in parts by mass:
  • the polyolefin rubber comprises in parts by mass:
  • the number of main wire cores and ground wire cores in the cable core layer is the same.
  • the first central conductor is a soft copper conductor.
  • the second central conductor is a soft copper conductor.
  • the stranded wire layer of the soft copper conductor adopts forward and reverse twisting between the stranded wire layers.
  • the overall flexibility and torsion resistance of the cable must be improved.
  • the ropes between them are also twisted in the forward and reverse directions, and at the same time ensure that each layer has a small lay pitch (the lay pitch of the outermost layer is not more than 10 times, the second outer layer is not more than 12 times, and so on), flexibility and The better the torsion resistance.
  • the ratio of the lay length of the outermost layer of the soft copper conductor to the outer diameter of the lay is ⁇ 10, for example, it may be 10, 9.5, 9, 8.5, 8, 7.5, 7 or 6.5, etc.
  • each layer has a smaller lay pitch
  • the lay pitch of the outermost layer is not greater than 10 times
  • the second outer layer is no greater than 12 times, and so on.
  • the diameter of the single wire of the soft copper conductor is 0.3-0.5mm, for example, it can be 0.3mm, 0.32mm, 0.34mm, 0.35mm, 0.36mm, 0.38mm, 0.4mm, 0.401mm, 0.45mm, 0.5mm etc., preferably 0.401mm.
  • the gap between the main wire core and the ground wire core in the cable core layer is filled with semi-conductive filler.
  • the semi-conductive filler is an HBD semi-conductive center-fill structure.
  • the ethylene-propylene rubber insulating layer is a EPDM insulating layer.
  • the first sheath layer is a polyolefin rubber sheath layer.
  • the material of the first sheath layer is the same as the material of the second sheath layer.
  • the plasticizer is dioctyl sebacate.
  • the elastomer is a polyolefin-based elastomer.
  • the polyolefin-based elastomer comprises a combination of at least two of any one of ethylene-octene copolymer, ethylene-butene copolymer or ethylene-hexene copolymer, wherein typical but non-limiting Combinations are: Combination of ethylene-octene copolymer and ethylene-butene copolymer, Combination of ethylene-hexene copolymer and ethylene-butene copolymer, Combination of ethylene-hexene copolymer and ethylene-octene copolymer .
  • the antioxidant is antioxidant XH-3.
  • the vulcanizing agent is dicumyl peroxide.
  • the vulcanization aid is triallyl isocyanurate.
  • the silane coupling agent is A-172.
  • the wear-resistant carbon black is carbon black N-330.
  • the present invention provides the method for preparing a torsion-resistant cable for power transmission of a 66kV wind turbine according to the first aspect, the method comprising the following steps:
  • the stranded soft copper conductors are made of the first center conductor and the second center conductor respectively;
  • the first electrical nylon tape layer, the conductor shielding layer, the ethylene-propylene rubber insulating layer and the insulating shielding layer are sequentially wrapped outside the first semiconductor, and the main wire core is obtained by co-extrusion of three layers;
  • a second electrical nylon tape layer and a semi-conductive cover layer are sequentially wrapped outside the second semiconductor to obtain a ground wire core;
  • the preparation method of the cable provided by the invention can prepare the cable which is flexible at the same time and meets the requirements of halogen-free, low smoke and oil resistance, greatly improves the service life of the cable, and can be applied to the torsion-resistant cable for the power transmission of the 66kV wind turbine of the offshore high-power wind power .
  • the twisting of the soft copper conductor in step (1) adopts forward and reverse twisting.
  • the soft copper conductor adopts the fifth kind of circular stranded soft copper conductor specified in the GB/T3956 standard.
  • the fifth kind of round stranded soft copper conductor specified in GB/T3956 standard is used, and the conductor surface is smooth and clean, without damage to insulated burrs, sharp edges and raised or broken single wires.
  • the conductor shielding layer adopts a 66kV semiconducting inner shielding material whose performance meets the requirements of the IEC60840 standard.
  • the ethylene propylene rubber insulating layer adopts ethylene propylene rubber insulating material whose performance meets the requirements of the IEC60840 standard.
  • the insulating shielding layer adopts a non-peelable semiconducting outer shielding material.
  • the performance of the insulating shielding layer meets the requirements of the IEC60840 standard.
  • the semi-conductive cover layer is an HBD semi-conductive cover layer.
  • the HBD semi-conductive covering layer is used, which is extruded and wrapped on the outer surface of the semi-conductive nylon tape, which acts as an electrical connection between the main core conductor and the ground core conductor.
  • the temperature of the three-layer co-extrusion in step (1) is 102-108°C, such as 102°C, 102.7°C, 103.4°C, 104°C, 104.7°C, 105.4°C, 106°C, 106.7°C, 107.4°C °C or 108 °C, etc., but not limited to the listed values, and other unlisted values within this range are also applicable.
  • Extrusion temperature control the ethylene content of the EPDM rubber in the high-pressure ethylene-propylene rubber insulating material is relatively high, so the extrusion temperature is higher than that of ordinary ethylene-propylene rubber, and should be controlled at 105 ⁇ 5°C. If the temperature is too low, the The surface is not smooth and delicate or the inner shield is degummed. If the temperature is too high, the outer shield will be degummed or the insulating compound will be scorched. Therefore, the extrusion temperature temperature control system requires precise and constant.
  • the steam pressure of the three-layer co-extrusion is 1.0-1.5MPa, for example, it can be 0.5MPa, 0.52MPa, 0.55MPa, 0.6MPa, 0.67MPa, 0.7MPa, 0.72MPa, 0.75MPa, 0.78MPa or 0.8MPa etc., but not limited to the recited values, other unrecited values within the range are equally applicable.
  • the linear speed of the three-layer co-extrusion is 2.3-2.6m/min, such as 2.3m/min, 2.34m/min, 2.37m/min, 2.4m/min, 2.44m/min, 2.47m /min, 2.5m/min, 2.54m/min, 2.57m/min or 2.6m/min, etc., but not limited to the listed values, and other unlisted values within the range are also applicable.
  • the water level of the three-layer co-extrusion is controlled at 25-38%, such as 25%, 26.45%, 27.89%, 29.34%, 30.78%, 32.23%, 33.67%, 35.12%, 36.56% or 38% etc., but not limited to the recited values, other unrecited values within the range are equally applicable.
  • Ethylene-propylene rubber insulation material has high ethylene content and insufficient vulcanization, which is easy to cause secondary vulcanization deformation.
  • the steam should be determined according to the performance test results such as extrusion speed and cross-linking degree of the insulating material. Pressure, after repeated debugging, it is determined that the steam pressure is 1.0 ⁇ 1.5MPa, the line speed is 2.3 ⁇ 2.6m/min, and the water level control is 25 ⁇ 38%. , the mechanical properties meet the product requirements and the insulation deformation is significantly improved during secondary vulcanization.
  • a thousand-grade purification room is used in the process of filling the second jacket layer material.
  • the feeding system adopts a thousand-level purification room, and the blanking system adopts a gravity automatic blanking system.
  • the production line produces high-pressure Before the cable, all parts of the extruder, especially the extruder head, must be cleaned to avoid impurities mixed into the high-pressure ethylene-propylene rubber insulation.
  • the material needs to be strictly controlled to avoid the entry of impurities during the unpacking, pouring or suction and conveying process of materials.
  • the semiconductive filler in step (2) is an HBD semiconductive center filling structure.
  • the second sheath layer in step (3) is polyolefin rubber.
  • the preparation method of the polyolefin rubber comprises the following steps:
  • step (1') adding microcrystalline paraffin, plasticizer, white carbon black, magnesium hydroxide, anti-aging agent, silane coupling agent, stearic acid and wear-resistant carbon black to the primary mixing material described in step (1') Secondary mixing to obtain secondary mixing material;
  • step (2 ') add vulcanizing agent and auxiliary vulcanizing agent triallyl isocyanurate in the described secondary mixing material of step (2 '), obtain mixing rubber material after three times mixing;
  • step (3') After thinning and swinging the rubber compound described in step (3') on an open mill, it is successively opened on a three-roll calender and cooled by a cooling roll, and then passed through a talc powder box to obtain a polyolefin rubber.
  • the machine for primary mixing in step (1') is an internal mixer.
  • the temperature of the primary mixing is 40 to 50°C, for example, it can be 40°C, 42°C, 43°C, 44°C, 45°C, 46°C, 47°C, 48°C, 49°C or 50°C, etc., But not limited to the recited values, other non-recited values within the range are equally applicable.
  • the mixing time for one time is 5 to 6 minutes, for example, 5 minutes, 5.2 minutes, 5.3 minutes, 5.4 minutes, 5.5 minutes, 5.6 minutes, 5.7 minutes, 5.8 minutes, 5.9 minutes, 6 minutes, etc., but not limited to Recited values apply equally well to other non-recited values within the range.
  • the temperature of the secondary mixing in step (2') is 40 to 50°C, for example, 40°C, 42°C, 43°C, 44°C, 45°C, 46°C, 47°C, 48°C, 49°C or 50°C, etc., but not limited to the listed values, and other unlisted values within this range are also applicable.
  • the time for the secondary mixing is 2 to 3 min, for example, 2 min, 2.2 min, 2.3 min, 2.4 min, 2.5 min, 2.6 min, 2.7 min, 2.8 min, 2.9 min or 3 min, etc., but not Limitation to the recited values applies equally to other non-recited values within the range.
  • the temperature of the three-time mixing in step (3') is 40 to 50°C, such as 40°C, 42°C, 43°C, 44°C, 45°C, 46°C, 47°C, 48°C, 49°C °C or 50 °C, etc., but not limited to the listed values, and other unlisted values within this range are also applicable.
  • the three-time mixing time is 0.5-1.5min, for example, it can be 0.5min, 0.7min, 0.8min, 0.9min, 1min, 1.1min, 1.2min, 1.3min, 1.4min or 1.5min, etc., but Without being limited to the recited values, other non-recited values within the range are equally applicable.
  • the number of times of the thin pass in step (4') is 1 to 2 times, for example, it can be 1 or 2 times.
  • the number of times of swinging the glue is 2 to 3 times, for example, it may be 2 times or 3 times.
  • the present invention provides the use of the torsion-resistant cable for power transmission of a 66kV wind turbine according to the first aspect in a 66kV circuit for a wind turbine.
  • the working temperature of the cable is -40°C to 60°C, such as -40°C, -30°C, -20°C, -10°C, 0°C, 10°C, 20°C, 30°C, 40°C, 50°C or 60°C, etc.
  • the oil-resistant halogen-free low-smoke polyolefin rubber sheath material developed by the invention is used as the sheath of the 66kV wind energy torsion-resistant flexible cable for high-power wind turbines.
  • the cable structure is reasonably designed and the appropriate processing technology is formulated, which meets the requirements of the cable in normal operation. Power transmission and performance in working environment (working temperature: -40°C ⁇ +60°C), it solves the problem of 66kV wind energy torsion-resistant flexible cables for high-power wind turbines, with halogen-free, low-smoke, aging resistance, and special oil resistance , large torsion angle and other issues, has good practical value and promotion value.
  • the present invention at least has the following beneficial effects:
  • the torsion-resistant cable for 66kV fan power transmission provided by the present invention is resistant to torsion and soft, and has the advantages of halogen-free, low smoke, aging resistance, special oil resistance and large torsion angle, and the tensile strength after aging is ⁇ 9.7N/ mm 2 , elongation at break ⁇ 110%, change rate of tensile strength after oil immersion ⁇ -18%, change rate of elongation at break ⁇ -20%, excellent performance and broad application prospect;
  • the torsion-resistant cable for 66kV wind turbine power transmission provided by the present invention can be applied to the 66kV wind energy circuit for offshore high-power wind turbines, and solves the problem that existing cables cannot meet the large-angle yaw requirements of large offshore wind turbines;
  • the preparation method of the torsion-resistant cable for 66kV fan power transmission provided by the present invention comprehensively selects a specific polyolefin rubber material, adopts three-layer co-extrusion and double-layer co-extrusion process, and further combines a soft copper conductor stranding process to obtain Cables with excellent torsion resistance and softness.
  • FIG. 1 is a schematic structural diagram of a torsion-resistant cable for power transmission of a 66kV wind turbine provided in Embodiment 1 of the present invention.
  • This embodiment provides a torsion-resistant cable for 66kV fan power transmission.
  • the cable includes a cable core layer, a wrapping tape 7 , a first sheath layer 8 and a second sheath layer in sequence from the inside to the outside. 9;
  • the cable core layer includes a main wire core and a ground wire core;
  • the main wire core includes a first central conductor 1, a first semiconducting nylon tape layer 2, a conductor shielding layer 3, an ethylene propylene rubber insulating layer 4 and Insulation shielding layer 5;
  • the ground core includes a second center conductor 10, a second semi-conductive nylon tape layer 11 and a semi-conductive cover layer 12 in sequence from the inside to the outside;
  • the material of the second sheath layer 9 is polyolefin rubber;
  • the number of main cores and ground cores in the cable core layer is the same;
  • the first central conductor 1 is a soft copper conductor;
  • the second central conductor 10 is a soft copper conductor;
  • the forward and reverse twisting is adopted between the layer and the stranded layer; the ratio of the twisting distance between each stranded layer of the soft copper conductor to the outer diameter of the twisting is not more than 10 times the twist
  • the polyolefin rubber includes in parts by mass:
  • the preparation method of the torsion-resistant cable for power transmission of the 66kV wind turbine comprises the following steps:
  • the first center conductor and the second center conductor are respectively made by twisting the soft copper conductors in a forward and reverse twisting manner; the soft copper conductor adopts the fifth kind of circular stranded soft copper conductor specified in the GB/T3956 standard;
  • the first electrical nylon tape layer, the conductor shielding layer, the ethylene-propylene rubber insulating layer and the insulating shielding layer are sequentially wrapped outside the first semiconductor, and the main wire core is obtained by co-extrusion of three layers;
  • a second electrical nylon tape layer and a semi-conductive cover layer are sequentially wrapped outside the second semiconductor to obtain a ground wire core;
  • the conductor shielding layer adopts 66kV semi-conductive inner screen material whose performance meets the requirements of IEC60840 standard; the ethylene-propylene rubber insulating layer adopts ethylene-propylene rubber insulating material whose performance meets the requirements of IEC60840 standard; the insulating shielding layer adopts non-peelable semiconducting material.
  • the temperature of the three-layer co-extrusion is 105°C
  • the steam pressure is 1.2MPa
  • the line speed is 2.5m/min
  • the water level is controlled at 33%
  • the preparation method of the polyolefin rubber described in the step (3) and the first sheath layer and the second sheath layer includes the following steps:
  • the present embodiment provides a torsion-resistant cable for power transmission of a 66kV wind turbine, and the cable sequentially includes a cable core layer, a wrapping tape, a first sheath layer and a second sheath layer from the inside to the outside;
  • the cable core layer includes a main wire core and a ground wire core; the main wire core sequentially includes a first central conductor, a first semiconductive nylon tape layer, a conductor shielding layer, an ethylene propylene rubber insulating layer and an insulating shielding layer from inside to outside;
  • the ground wire core includes a second central conductor, a second semi-conductive nylon tape layer and a semi-conductive cover layer in sequence from inside to outside; the second sheath layer is made of polyolefin rubber; the inner main wire of the cable core layer
  • the number of cores and ground cores are the same; the first central conductor is a soft copper conductor; the second central conductor is a soft copper conductor; the stranded wire layer and the stranded wire layer of the soft copper conductor are in forward and reverse directions Stranding; the ratio of the twisting pitch between each stranded layer of the soft copper conductor to the outer diameter of the strand is not more than 10 times the laying distance of the outermost layer, and not more than
  • the polyolefin rubber includes in parts by mass:
  • the preparation method of the torsion-resistant cable for power transmission of the 66kV wind turbine comprises the following steps:
  • the first center conductor and the second center conductor are respectively made by twisting the soft copper conductors in a forward and reverse twisting manner; the soft copper conductor adopts the fifth kind of circular stranded soft copper conductor specified in the GB/T3956 standard;
  • the first electrical nylon tape layer, the conductor shielding layer, the ethylene-propylene rubber insulating layer and the insulating shielding layer are sequentially wrapped outside the first semiconductor, and the main wire core is obtained by co-extrusion of three layers;
  • the temperature of the three-layer co-extrusion is 102°C
  • the steam pressure is 1.0MPa
  • the line speed is 2.3m/min
  • the water level is controlled at 25%;
  • a second electrical nylon tape layer and a semi-conductive cover layer are sequentially wrapped outside the second semiconductor to obtain a ground wire core;
  • the conductor shielding layer adopts 66kV semi-conductive inner screen material whose performance meets the requirements of the IEC60840 standard;
  • the ethylene-propylene rubber insulating layer adopts the ethylene-propylene rubber insulating material whose performance meets the requirements of the IEC60840 standard;
  • the semi-conductive cover layer is HBD semi-conductive cover layer;
  • the preparation method of the polyolefin rubber described in the step (3) and the first sheath layer and the second sheath layer includes the following steps:
  • the present embodiment provides a torsion-resistant cable for power transmission of a 66kV wind turbine, and the cable sequentially includes a cable core layer, a wrapping tape, a first sheath layer and a second sheath layer from the inside to the outside;
  • the cable core layer includes a main wire core and a ground wire core; the main wire core sequentially includes a first central conductor, a first semiconductive nylon tape layer, a conductor shielding layer, an ethylene propylene rubber insulating layer and an insulating shielding layer from inside to outside;
  • the ground wire core includes a second center conductor, a second semi-conductive nylon tape layer and a semi-conductive cover layer in sequence from inside to outside; the second sheath layer is made of polyolefin rubber; the inner main wire of the cable core layer
  • the number of cores and ground cores are the same;
  • the first central conductor is a soft copper conductor;
  • the second central conductor is a soft copper conductor;
  • the stranded wire layer and the stranded wire layer of the soft copper conductor are in forward and reverse directions Stranding;
  • the ratio of the twisting pitch between each stranded layer of the soft copper conductor to the outer diameter of the twist is that the laying pitch of the outermost layer is not
  • the polyolefin rubber includes in parts by mass:
  • the preparation method of the torsion-resistant cable for power transmission of the 66kV wind turbine comprises the following steps:
  • the first center conductor and the second center conductor are respectively made by twisting the soft copper conductors in a forward and reverse twisting manner; the soft copper conductor adopts the fifth kind of circular stranded soft copper conductor specified in the GB/T3956 standard;
  • the first electrical nylon tape layer, the conductor shielding layer, the ethylene-propylene rubber insulating layer and the insulating shielding layer are sequentially wrapped outside the first semiconductor, and the main wire core is obtained by co-extrusion of three layers;
  • the temperature of the three-layer co-extrusion is 108°C
  • the steam pressure is 1.0MPa
  • the line speed is 2.6m/min
  • the water level is controlled at 38%;
  • a second electrical nylon tape layer and a semi-conductive cover layer are sequentially wrapped outside the second semiconductor to obtain a ground wire core;
  • the conductor shielding layer adopts 66kV semi-conductive inner screen material whose performance meets the requirements of the IEC60840 standard;
  • the ethylene-propylene rubber insulating layer adopts the ethylene-propylene rubber insulating material whose performance meets the requirements of the IEC60840 standard;
  • the semi-conductive cover layer is HBD semi-conductive cover layer;
  • the preparation method of the polyolefin rubber described in the step (3) and the first sheath layer and the second sheath layer includes the following steps:
  • This embodiment provides a torsion-resistant cable for power transmission of a 66kV fan, which is the same as that of Embodiment 1 except that the temperature of the three-layer co-extrusion in step (1) is 95°C.
  • This embodiment provides a torsion-resistant cable for power transmission of a 66kV fan, which is the same as that of Embodiment 1 except that the temperature of the three-layer co-extrusion in step (1) is 115°C.
  • This embodiment provides a torsion-resistant cable for power transmission of a 66kV fan.
  • the temperature of the cable is the same as that of Embodiment 1 except that the temperature of the three-layer co-extrusion in step (1) is 108°C.
  • This embodiment provides a torsion-resistant cable for power transmission of a 66kV fan, which is the same as that of Embodiment 1 except that the temperature of the three-layer co-extrusion in step (1) is 102°C.
  • the co-extrusion temperatures of Examples 6-7 are 108°C and 102°C, respectively.
  • the cables obtained by co-extrusion in Examples 6 and 7 The surface is smooth and delicate, and there is no degumming phenomenon of the conductor shielding layer, the ethylene-propylene rubber insulating layer or the insulating shielding layer, but the surface is rough in Example 4 and the ethylene-propylene rubber insulating layer has degumming phenomenon, and in Example 5, the insulating shielding layer appears The degumming phenomenon is eliminated, which shows that the present invention can effectively prevent the degumming phenomenon by adopting the three-layer co-extrusion temperature of 102-108°C.
  • This embodiment provides a torsion-resistant cable for power transmission of a 66kV fan, which is the same as that of Embodiment 1 except that the steam pressure of the three-layer co-extrusion in step (1) is 1.0 MPa.
  • This embodiment provides a torsion-resistant cable for power transmission of a 66kV fan, which is the same as that of Embodiment 1 except that the steam pressure of the three-layer co-extrusion in step (1) is 1.5 MPa.
  • This embodiment provides a torsion-resistant cable for power transmission of a 66kV fan, which is the same as that of Embodiment 1 except that the steam pressure of the three-layer co-extrusion in step (1) is 0.5 MPa.
  • This embodiment provides a torsion-resistant cable for power transmission of a 66kV fan, which is the same as that of Embodiment 1 except that the steam pressure of the three-layer co-extrusion in step (1) is 2.0 MPa.
  • the co-extrusion steam pressures of Examples 8-9 are 1.0 MPa and 1.5 MPa, respectively. Compared with the co-extrusion steam pressures of Examples 10 and 11, which are 0.5 MPa and 2.0 MPa, respectively, Examples 8 and 9
  • the ethylene-propylene rubber insulating material in the cable obtained by co-extrusion is fully vulcanized, which is suitable for the co-extrusion temperature, the mechanical properties meet the product requirements, and the insulation deformation phenomenon is significantly improved during secondary vulcanization.
  • the three-layer co-extrusion steam pressure of MPa matches the direction of 102-108 °C, which improves the performance of the cable.
  • This embodiment provides a torsion-resistant cable for power transmission of a 66kV fan, which is the same as that of Embodiment 1 except that the linear speed of the three-layer co-extrusion in step (1) is 1.8 m/min.
  • This embodiment provides a torsion-resistant cable for power transmission of a 66kV fan, which is the same as that of Embodiment 1 except that the linear speed of the three-layer co-extrusion in step (1) is 3.5 m/min.
  • Example 1 Compared with Example 12 and Example 13, Example 1 has better mechanical properties, better vulcanization effect, and no vulcanization deformation phenomenon, while Example 12 and Example 13 have vulcanization deformation phenomenon, so It is shown that the present invention improves the performance of the cable by controlling a specific line speed.
  • This embodiment provides a torsion-resistant cable for power transmission of a 66kV fan, except that "triallyl isocyanurate" in the polyolefin rubber is replaced with “trimethylolpropane trimethacrylate”. The rest are the same as in Example 1. 2. Comparative ratio
  • This comparative example provides a torsion-resistant cable for power transmission of a 66kV fan.
  • the cable is the same as in Example 1 except that the amount of magnesium hydroxide in the polyolefin rubber is 60 parts.
  • This comparative example provides a torsion-resistant cable for power transmission of a 66kV fan.
  • the cable is the same as Example 1 except that the polyolefin rubber contains 130 parts of magnesium hydroxide.
  • This comparative example provides a torsion-resistant cable for power transmission of a 66kV fan, which is the same as that of Example 1 except that the stearic acid in the polyolefin rubber is 1.2 parts.
  • This comparative example provides a torsion-resistant cable for power transmission of a 66kV fan, which is the same as that of Example 1 except that the stearic acid in the polyolefin rubber is 3.5 parts.
  • This comparative example provides a torsion-resistant cable for power transmission of a 66kV fan.
  • the cable is the same as that in Example 1 except that the content of triallyl isocyanurate in the polyolefin rubber is 1.0 parts.
  • This comparative example provides a torsion-resistant cable for power transmission of a 66kV fan.
  • the cable is the same as in Example 1 except that the content of triallyl isocyanurate in the polyolefin rubber is 3.2 parts.
  • Example 1 the polyolefin obtained by the test equipment such as electronic universal testing machine, Shore hardness tester, thermal conductivity tester, low temperature impact tester, volume resistivity tester, and AC medium strength tester was tested.
  • the rubber has been tested in various aspects, and the specific test methods are GB/T528-2009, GB/T2941-2006, GB/T2951-2008; the same method was used to test the ethylene-propylene rubber insulating layer in Comparative Example 1, and its test Conditions are shown in Table 1.
  • the torsion-resistant cable for 66kV fan power transmission provided by the present invention adopts a specific polyolefin rubber sheath material, and its aging tensile strength is ⁇ 9.7N/mm 2 , elongation at break The rate of change is ⁇ 110%, the change rate of tensile strength after oil immersion is ⁇ -18%, and the change rate of elongation at break is ⁇ -20%, which has the advantages of good aging resistance and special oil resistance;
  • Example 1 magnesium hydroxide is 100 parts, compared with 60 parts and 130 parts of magnesium hydroxide in Comparative Example 1 and Comparative Example 2, respectively, and In other words, in Example 1, the properties did not decrease significantly after aging, while in Comparative Example 1 and Comparative Example 2, the tensile strength decreased from 12.3N/mm 2 to 5.8N/mm 2 and from 14.1N/mm 2 respectively after aging.
  • Example 14 (3) Comprehensive Example 1 and Example 14 can be seen, adding triallyl isocyanurate in Example 1, compared with adding trimethylolpropane trimethacrylate in Example 14 , the anti-aging performance has decreased, which shows that the anti-aging performance of the polyolefin rubber sheath is improved by adding triallyl isocyanurate as a vulcanization aid in the present invention.
  • the torsion-resistant cable for 66kV wind turbine power transmission adopts polyolefin rubber sheath material and reasonably designs the cable structure, so as to solve the problem that the 66kV wind energy torsion-resistant flexible cable for high-power wind turbines is halogen-free, low-smoke, and durable. Aging, resistance to special oil types and large torsion angles; and can meet the large-angle yaw requirements of large offshore wind turbines, which has good practical value and promotion value.
  • the present invention illustrates the detailed structural features of the present invention through the above embodiments, but the present invention is not limited to the above detailed structural features, that is, it does not mean that the present invention must rely on the above detailed structural features to be implemented.
  • Those skilled in the art should understand that any improvement to the present invention, the equivalent replacement of the selected components of the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the protection scope and disclosure scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)

Abstract

一种66kV风机输电用耐扭电缆以及制备方法,该66kV风机输电用耐扭电缆通过采用聚烯烃橡胶护套材料,合理设计电缆结构,解决了大功率风电机组用66kV风能耐扭软电缆无卤、低烟、耐老化、耐特殊油种和大扭转角度的问题,具有很好的实用价值和推广价值;该制备方法采用双层共挤技术,第一护套层(8)和第二护套层(9)紧密粘连在一起,防护效果佳。

Description

一种66kV风机输电用耐扭电缆及其制备方法和用途
本申请要求2020年11月5日向中国国家知识产权局的申请号为202011223673.5的专利申请的优先权。
技术领域
本发明涉及电缆制备技术领域,尤其涉及高压电缆技术领域,特别涉及一种66kV风机输电用耐扭电缆及其制备方法和用途。
背景技术
风力发电已经成为全球可再生资源发电的重要方式之一,风能发电占到全球可再生资源发电量的16%。其中海风资源具有稳定性和大发电功率的特点,近年来海上风电正在世界各地飞速发展。
海上风电从最初的3~4MW时代发展到6~7MW时代,然后迅速地提升到9~10MW时代,未来单机容量还将进一步地提高。目前国外海上风电应用的场内电压已经提升到66kV,相较于33kV可以减少风机回路数,从而降低海上升压站接线复杂度,甚至减少海上升压站的数量,降低投资和运维成本。
目前国、内外大多数电缆制造商生产的风能抗扭电缆尚处于35kV及以下电压等级的水平。66kV电压等级属于高电压范畴,特别对于移动应用的橡套电缆而言,受原材料、设备制造能力、加工条件、应用环境等众多因素的制约。
但现有的电缆中存在以下问题:
(1)常规的中、高压风能耐扭软电缆一般采用乙丙橡皮绝缘和氯丁橡皮护套,电缆无法满足无卤和低烟的性能要求,但随着海上风电行业进一步的发展,人们对无卤低烟型的电缆的需求越来越高。
(2)常规的中、高压风能耐扭软电缆对耐油性能要求不高,只需要满足902#矿物油,但海上风机长期使用期间,在机舱内经常泄漏大量的液压油(牌号:Mobildte13M)、齿轮油(牌号:Tribol1710/320)和变压器油(牌号:Midel7131),致使绝缘和护套材料性能下降较快,使用寿命缩短。
(3)常规的高压风能耐扭软电缆对抗扭要求不高,只需满足扭转角度±70°/m,但随着海上风电的进一步发展,现有的抗扭动力电缆无法满足海上大型风机大角度偏航要求。
因此,需要针对上述问题开发一种66kV风机输电用耐扭电缆,提高现有电缆的性能。
发明内容
鉴于现有技术中存在的问题,本发明提供一种66kV风机输电用耐扭电缆,所述66kV风机输电用耐扭电缆通过采用聚烯烃橡胶护套材料,合理设计电缆结构,解决了大功率风电机组用66kV风能耐扭软电缆无卤、低烟、耐老化、耐特殊油种和大扭转角度的问题;并通过采用双层共挤技术,控制工艺参数,能够满足海上大型风机大角度偏航要求,具有很好的实用价值和推广价值。
为达此目的,本发明采用以下技术方案:
第一方面,本发明提供一种66kV风机输电用耐扭电缆,所述电缆从内至外依次包括电缆芯层、绕包带、第一护套层和第二护套层;
所述电缆芯层包括主线芯和地线芯;
所述主线芯从内至外依次包括第一中心导体、第一半导电尼龙带层、导体屏蔽层、乙丙橡胶绝缘层和绝缘屏蔽层;
所述地线芯从内至外依次包括第二中心导体、第二半导电尼龙带层和半导电覆盖层;
所述第二护套层的材质为聚烯烃橡胶;
所述聚烯烃橡胶按质量份数包括:
Figure PCTCN2020128240-appb-000001
Figure PCTCN2020128240-appb-000002
本发明提供的66kV风机输电用耐扭电缆,所述66kV风机输电用耐扭电缆通过采用聚烯烃橡胶护套材料,合理设计电缆结构,解决了大功率风电机组用66kV风能耐扭软电缆无卤、低烟、耐老化、耐特殊油种和大扭转角度的问题;并通过采用双层共挤技术,控制工艺参数,能够满足海上大型风机大角度偏航要求,具有很好的实用价值和推广价值。
本发明所述聚烯烃橡胶为无卤低烟聚烯烃橡胶护套材料,以乙烯-醋酸乙烯共聚物构成基料,同时配合防老剂、填充材料、交联剂、硫化促进剂等各种助剂,综合多种原料的性能,取长补短,具有优异的耐老化、耐高低温、高强度、耐盐雾腐蚀、耐水解、耐油等性能。
所述聚烯烃橡胶中包括乙烯-醋酸乙烯共聚物92~105份,例如可以是92份、94份、95份、97份、98份、100份、101份、103份、104份或105份等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
所述聚烯烃橡胶中包括微晶石蜡3.2~4.8份,例如可以是3.2份、3.4份、3.6份、3.8份、4份、4.1份、4.3份、4.5份、4.7份或4.8份等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
所述聚烯烃橡胶中包括增塑剂3.5~4.5份,例如可以是3.5份、3.7份、3.8份、3.9份、4份、4.1份、4.2份、4.3份、4.4份或4.5份等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
所述聚烯烃橡胶中包括白炭黑13~26份,例如可以是13份、15份、16份、18份、19份、21份、22份、24份、25份或26份等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
所述聚烯烃橡胶中包括氢氧化镁80~120份,例如可以是80份、85份、89份、94份、98份、103份、107份、112份、116份或120份等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
所述聚烯烃橡胶中包括弹性体8.5~11份,例如可以是8.5份、8.8份、9.1份、9.4份、9.7份、9.9份、10.2份、10.5份、10.8份或11份等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
所述聚烯烃橡胶中包括防老剂2.5~3.5份,例如可以是2.5份、2.7份、2.8份、2.9份、3份、3.1份、3.2份、3.3份、3.4份或3.5份等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
所述聚烯烃橡胶中包括硫化剂3.5~4.5份,例如可以是3.5份、3.7份、3.8份、3.9份、4份、4.1份、4.2份、4.3份、4.4份或4.5份等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
所述聚烯烃橡胶中包括硫化助剂1.5~2.5份,例如可以是1.5份、1.7份、1.8份、1.9份、2份、2.1份、2.2份、2.3份、2.4份或2.5份等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
所述聚烯烃橡胶中包括硅烷偶联剂0.9~1.2份,例如可以是0.9份、1份、1.1份或1.2份等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
所述聚烯烃橡胶中包括硬脂酸1.8~2.8份,例如可以是1.8份、2份、2.1份、2.2份、2.3份、2.4份、2.5份、2.6份、2.7份或2.8份等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
所述聚烯烃橡胶中包括耐磨炭黑2.8~3.3份,例如可以是2.8份、2.9份、3份、3.1份、3.2份或3.3份等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中通过采用加入硬脂酸和氢氧化镁,其中硬脂酸能够改善加工性能,增加脱模效果,氢氧化镁能够增加材料阻燃性能。
优选地,所述聚烯烃橡胶按质量份数包括:
Figure PCTCN2020128240-appb-000003
进一步优选地,所述聚烯烃橡胶按质量份数包括:
Figure PCTCN2020128240-appb-000004
优选地,所述电缆芯层内主线芯和地线芯的数量相同。
优选地,所述第一中心导体为软铜导体。
优选地,所述第二中心导体为软铜导体。
优选地,所述软铜导体的绞线层与绞线层之间采用正反向绞合。
为了确保电缆的使用寿命,必须提高电缆整体柔软性和耐扭转能力,其中导体单丝直径越细,柔软性越好;导体的绞线层与层之间采用正反向绞合,且每层之间的绳绞也采用正反向绞合,同时保证每层均有较小的绞距(最外层绞距不大于10倍,次外层不大于12倍,以此类推)柔软性和耐扭转性能越好。
优选地,所述软铜导体的最外层的绞线绞距与绞外径之比≤10,例如可以是10、9.5、9、8.5、8、7.5、7或6.5等。
本发明所述所述保证每层均有较小的绞距,最外层绞距不大于10倍,次外层不大于12倍,以此类推。
优选地,所述软铜导体的单丝直径为0.3~0.5mm,例如可以是0.3mm、0.32mm、0.34mm、0.35mm、0.36mm、0.38mm、0.4mm、0.401mm、0.45mm、0.5mm等,优选为0.401mm。
优选地,所述电缆芯层内主线芯和地线芯的间隙间填充有半导电填充物。
优选地,所述半导电填充物为HBD半导电中心填充结构。
优选地,所述乙丙橡胶绝缘层为三元乙丙橡胶绝缘层。
优选地,所述第一护套层为聚烯烃橡胶护套层。
优选地,所述第一护套层的材质与所述第二护套层的材质相同。
优选地,所述增塑剂为癸二酸二辛酯。
优选地,所述弹性体为聚烯烃类弹性体。
优选地,所述聚烯烃类弹性体包括乙烯-辛烯共聚物、乙烯-丁烯共聚物或乙烯-己烯共聚物中的任意一种后至少两种的组合,其中典型但非限制性的组合为:乙烯-辛烯共聚物和乙烯-丁烯共聚物的组合,乙烯-己烯共聚物和乙烯-丁烯共聚物的组合,乙烯-己烯共聚物和乙烯-辛烯共聚物的组合。
优选地,所述防老剂为防老剂XH-3。
优选地,所述硫化剂为过氧化二异丙苯。
优选地,所述硫化助剂为三烯丙基异氰脲酸酯。
优选地,所述硅烷偶联剂为A-172。
优选地,所述耐磨炭黑为炭黑N-330。
第二方面,本发明提供第一方面所述的66kV风机输电用耐扭电缆的制备方法,所述方法包括如下步骤:
(1)绞合软铜导体分别制第一中心导体和第二中心导体;
在所述第一半导外依次包裹第一电尼龙带层、导体屏蔽层、乙丙橡胶绝缘层和绝缘屏蔽层,经三层共挤,得到主线芯;
在所述第二半导外依次包裹第二电尼龙带层和半导电覆盖层,得到地线芯;
(2)采用半导电填充物填充主线芯中心的空隙,并利用绕包带将成缆的主线芯和地线芯包裹;
(3)依次在所述包裹后的绕包带外侧填充第一护套层材料和第二护套层材料,双层共挤,得到所述66kV风机输电用耐扭电缆。
本发明提供的电缆的制备方法能够制得同时具有柔性,满足无卤、低烟以及耐油性能要求的电缆,大大提高了电缆的使用寿命,能够适用于海上大功率风电66kV风机输电用耐扭电缆。
优选地,步骤(1)中所述软铜导体的绞合采用正反绞合。
优选地,所述软铜导体采用GB/T3956标准规定的第5种圆形绞合软铜导体。
采用GB/T3956标准规定的第5种圆形绞合软铜导体,导体表面光洁、无损伤绝缘的毛刺、锐边以及凸起或断裂的单线。
优选地,所述导体屏蔽层采用性能符合IEC60840标准的规定的66kV半导电内屏料。
优选地,所述乙丙橡胶绝缘层采用性能符合IEC60840标准的规定的乙丙橡胶绝缘料。
优选地,所述绝缘屏蔽层采用不可剥离半导电外屏料。
优选地,所述绝缘屏蔽层性能符合IEC60840标准的规定。
优选地,所述半导电覆盖层为HBD半导电覆盖层。
采用HBD半导电覆盖层,挤包在半导电尼龙带的外表面,起到主线芯导体和地线芯导体的电气连接的作用。
优选地,步骤(1)中所述三层共挤的温度为102~108℃,例如可以是102℃、102.7℃、 103.4℃、104℃、104.7℃、105.4℃、106℃、106.7℃、107.4℃或108℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
挤出温度的控制,高压乙丙橡胶绝缘料中的三元乙丙橡胶的乙烯含量较高,因此挤出温度比普通乙丙橡胶较高,应控制在105±5℃,温度过低则会出现表面不光滑细腻或者内屏蔽脱胶,温度过高会导致外屏蔽脱胶或者绝缘胶料焦烧。因此挤出温度温控***要求精准恒定。
优选地,所述三层共挤的蒸汽压力为1.0~1.5MPa,例如可以是0.5MPa、0.52MPa、0.55MPa、0.6MPa、0.67MPa、0.7MPa、0.72MPa、0.75MPa、0.78MPa或0.8MPa等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述三层共挤的线速度为2.3~2.6m/min,例如可以是2.3m/min、2.34m/min、2.37m/min、2.4m/min、2.44m/min、2.47m/min、2.5m/min、2.54m/min、2.57m/min或2.6m/min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述三层共挤的水位控制在25~38%,例如可以是25%、26.45%、27.89%、29.34%、30.78%、32.23%、33.67%、35.12%、36.56%或38%等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
乙丙橡胶绝缘料乙烯含量较高,硫化不充分,容易导致二次硫化变形,采用高压蒸汽在连硫管中硫化时需根据挤出速度和绝缘料的交联度等性能测试结果来确定蒸汽压力,经反复调试确定蒸汽压力为1.0~1.5MPa、线速度为2.3~2.6m/min、水位控制25~38%,优选蒸汽压力为1.2MPa、线速度为2.5m/min以及水位控制33%,机械性能符合产品要求且二次硫化时绝缘变形得到明显改善。
优选地,填充所述第二护套层材料过程中采用千级净化级别净化房。
高压乙丙橡胶绝缘料在使用过程中的杂质控制,首先生产设备和生产现场的清洁至关重要,加料***采用千级净化级别净化房,落料***采用重力自动落料***,生产流水线生产高压电缆之前必须将挤出机各个部位,特别是挤出机头清理干净避免杂质混入高压乙丙橡胶绝缘内。材料在使用时拆包、倒料或吸料输送工序中避免杂质的进入均需要严格控制。
优选地,步骤(2)中所述半导电填充物为HBD半导电中心填充结构。
优选地,步骤(3)中所述第二护套层为聚烯烃橡胶。
优选地,所述聚烯烃橡胶的制备方法包括如下步骤:
(1’)将所述乙烯-醋酸乙烯共聚物和弹性体经一次混炼,得到一次混炼料;
(2’)在步骤(1’)所述一次混炼料中加入微晶石蜡、增塑剂、白炭黑、氢氧化镁、防老剂、硅烷偶联剂、硬脂酸和耐磨炭黑二次混炼,得到二次混炼料;
(3’)在步骤(2’)所述二次混炼料中加入硫化剂和助硫化剂三烯丙基异氰脲酸酯,三次混炼后得到混炼胶料;
(4’)将步骤(3’)所述混炼胶料在开炼机上薄通、摆胶后,依次经三辊压延机上开条和冷却辊冷却,然后过滑石粉箱,制得聚烯烃橡胶。
优选地,步骤(1’)中所述一次混炼的机器为密炼机。
优选地,所述一次混炼的温度为40~50℃,例如可以是40℃、42℃、43℃、44℃、45℃、46℃、47℃、48℃、49℃或50℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述一次混炼的时间为5~6min,例如可以是5min、5.2min、5.3min、5.4min、5.5min、5.6min、5.7min、5.8min、5.9min或6min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,步骤(2’)中所述二次混炼的温度为40~50℃,例如可以是40℃、42℃、43℃、44℃、45℃、46℃、47℃、48℃、49℃或50℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述二次混炼的时间为2~3min,例如可以是2min、2.2min、2.3min、2.4min、 2.5min、2.6min、2.7min、2.8min、2.9min或3min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,步骤(3’)中所述三次混炼的温度为40~50℃,例如可以是40℃、42℃、43℃、44℃、45℃、46℃、47℃、48℃、49℃或50℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述三次混炼的时间为0.5~1.5min,例如可以是0.5min、0.7min、0.8min、0.9min、1min、1.1min、1.2min、1.3min、1.4min或1.5min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,步骤(4’)中所述薄通的次数为1~2次,例如可以是1次或2次。
优选地,所述摆胶的次数为2~3次,例如可以是2次或3次。
第三方面,本发明提供第一方面所述的66kV风机输电用耐扭电缆在风电机组用66kV电路中的用途。
优选地,所述电缆的工作温度为-40~60℃,例如可以是-40℃、-30℃、-20℃、-10℃、0℃、10℃、20℃、30℃、40℃、50℃或60℃等。
本发明开发的一种耐油型无卤低烟聚烯烃橡胶护套材料作为大功率风电机组用66kV风能耐扭软电缆的护套,合理设计电缆结构及制定合适的加工工艺,满足了电缆在正常工作环境下的电力传输和使用性能(工作温度:-40℃~+60℃),解决了大功率风电机组用66kV风能耐扭软电缆,具有无卤、低烟、耐老化、耐特殊油种、大扭转角度等问题,具有很好的实用价值和推广价值。
与现有技术相比,本发明至少具有以下有益效果:
(1)本发明提供的66kV风机输电用耐扭电缆能够耐扭软,且具有无卤、低烟、耐老化、耐特殊油种和大扭转角度等优点,老化后抗张强度≥9.7N/mm 2,断裂伸长率≥110%,浸油后抗张强度变化率≥-18%,断裂伸长率变化率≥-20%,性能优良,应用前景广阔;
(2)本发明提供的66kV风机输电用耐扭电缆能够适用于海上大功率风电机组用66kV风能电路中,解决了现有电缆无法满足海上大型风机大角度偏航要求的难题;
(3)本发明提供的66kV风机输电用耐扭电缆的制备方法综合选用特定的聚烯烃橡胶材料,采用三层共挤和双层共挤工艺,并进一步组合软铜导体绞合工艺,制得耐扭软性能优良的电缆。
附图说明
图1是本发明实施例1提供的66kV风机输电用耐扭电缆的结构示意图。
图中:1-第一中心导体;2-第一半导电尼龙带层;3-导体屏蔽层;4-乙丙橡胶绝缘层;5-绝缘屏蔽层;6-半导电填充物;7-绕包带;8-第一护套层;9-第二护套层;10-第二中心导体;11-第二半导电尼龙带层;12-半导电覆盖层。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
下面对本发明进一步详细说明。但下述的实例仅仅是本发明的简易例子,并不代表或限制本发明的权利保护范围,本发明的保护范围以权利要求书为准。
一、实施例
实施例1
本实施例提供一种66kV风机输电用耐扭电缆,如图1所示,所述电缆从内至外依次包括电缆芯层、绕包带7、第一护套层8和第二护套层9;
所述电缆芯层包括主线芯和地线芯;所述主线芯从内至外依次包括第一中心导体1、第一半导电尼龙带层2、导体屏蔽层3、乙丙橡胶绝缘层4和绝缘屏蔽层5;所述地线芯从内至外依次包括第二中心导体10、第二半导电尼龙带层11和半导电覆盖层12;所述第二护套层9的材质为聚烯烃橡胶;所述电缆芯层内主线芯和地线芯的数量相同;所述第一中心导体1 为软铜导体;所述第二中心导体10为软铜导体;所述软铜导体的绞线层与绞线层之间采用正反向绞合;所述软铜导体的每层绞线层之间绞线绞距与绞外径之比为最外层绞距不大于10倍,次外层不大于12倍,以此类推;所述软铜导体的单丝直径为0.401mm;所述电缆芯层内主线芯和地线芯的间隙间填充有半导电填充物6;所述半导电填充物6为HBD半导电中心填充结构;所述乙丙橡胶绝缘层4为三元乙丙橡胶绝缘层4;所述第一护套层8为聚烯烃橡胶护套层;所述第一护套层8的材质与所述第二护套层9的材质相同。
所述聚烯烃橡胶按质量份数包括:
Figure PCTCN2020128240-appb-000005
所述66kV风机输电用耐扭电缆的制备方法包括如下步骤:
(1)采用正反绞合的方式绞合软铜导体分别制第一中心导体和第二中心导体;所述软铜导体采用GB/T3956标准规定的第5种圆形绞合软铜导体;
在所述第一半导外依次包裹第一电尼龙带层、导体屏蔽层、乙丙橡胶绝缘层和绝缘屏蔽层,经三层共挤,得到主线芯;
在所述第二半导外依次包裹第二电尼龙带层和半导电覆盖层,得到地线芯;
所述导体屏蔽层采用性能符合IEC60840标准的规定的66kV半导电内屏料;所述乙丙橡胶绝缘层采用性能符合IEC60840标准的规定的乙丙橡胶绝缘料;所述绝缘屏蔽层采用不可剥离半导电外屏料;所述绝缘屏蔽层性能符合IEC60840标准的规定;所述半导电覆盖层为HBD半导电覆盖层;
其中,所述三层共挤的温度为105℃,蒸汽压力为1.2MPa,线速度为2.5m/min,水位控制在33%;
(2)采用HBD半导电中心填充结构填充主线芯中心的空隙,并利用绕包带将成缆的主线芯和地线芯包裹;
(3)在千级净化级别净化房中依次在所述包裹后的绕包带外侧填充第一护套层材料和第二护套层材料,双层共挤,得到所述66kV风机输电用耐扭电缆。
步骤(3)中所述和第一护套层和第二护套层的聚烯烃橡胶的制备方法包括如下步骤:
(1’)将所述EVM500HV100份、弹性体POE9份在45℃密炼机中混炼5min,混炼均匀;
(2’)在所述密炼机中再加入所述微晶蜡3.5份、癸二酸二辛酯4.0份、白炭黑15份、氢氧化镁100份、防老剂XH-33.0份、A-1721.0份、硬脂酸2.0份、耐磨炭黑N-3303.0份混炼2min;
(3’)在所述密炼机中最后加入所述硫化剂过氧化二异丙苯(DCP)4.2份,助硫化剂三烯丙基异氰脲酸酯(TMPTMA)1.8份,混炼1min,然后排出混炼胶料;
(4’)将所述混炼胶料在开炼机上薄通2次,同时摆胶3次,接着在三辊压延机上开条出片,输出的橡页经过冷却辊冷却,过滑石粉箱后,制得聚烯烃橡胶。
实施例2
本实施例提供一种66kV风机输电用耐扭电缆,所述电缆从内至外依次包括电缆芯层、绕包带、第一护套层和第二护套层;
所述电缆芯层包括主线芯和地线芯;所述主线芯从内至外依次包括第一中心导体、第一半导电尼龙带层、导体屏蔽层、乙丙橡胶绝缘层和绝缘屏蔽层;所述地线芯从内至外依次包括第二中心导体、第二半导电尼龙带层和半导电覆盖层;所述第二护套层的材质为聚烯烃橡胶;所述电缆芯层内主线芯和地线芯的数量相同;所述第一中心导体为软铜导体;所述第二中心导体为软铜导体;所述软铜导体的绞线层与绞线层之间采用正反向绞合;所述软铜导体的每层绞线层之间绞线绞距与绞外径之比为最外层绞距不大于10倍,次外层不大于12倍,以此类推;所述软铜导体的单丝直径为0.401mm;所述电缆芯层内主线芯和地线芯的间隙间填充有半导电填充物;所述半导电填充物为HBD半导电中心填充结构;所述乙丙橡胶绝缘层为三元乙丙橡胶绝缘层;所述第一护套层为聚烯烃橡胶护套层;所述第一护套层的材质与所述第二护套层的材质相同。
所述聚烯烃橡胶按质量份数包括:
Figure PCTCN2020128240-appb-000006
所述66kV风机输电用耐扭电缆的制备方法包括如下步骤:
(1)采用正反绞合的方式绞合软铜导体分别制第一中心导体和第二中心导体;所述软铜导体采用GB/T3956标准规定的第5种圆形绞合软铜导体;
在所述第一半导外依次包裹第一电尼龙带层、导体屏蔽层、乙丙橡胶绝缘层和绝缘屏蔽层,经三层共挤,得到主线芯;
其中,所述三层共挤的温度为102℃,蒸汽压力为1.0MPa,线速度为2.3m/min,水位控制在25%;
在所述第二半导外依次包裹第二电尼龙带层和半导电覆盖层,得到地线芯;
所述导体屏蔽层采用性能符合IEC60840标准的规定的66kV半导电内屏料;所述乙丙橡胶绝缘层采用性能符合IEC60840标准的规定的乙丙橡胶绝缘料;所述绝缘屏蔽层采用不可剥离半导电外屏料;所述绝缘屏蔽层性能符合IEC60840标准的规定;所述半导电覆盖层为HBD半导电覆盖层;
(2)采用HBD半导电中心填充结构填充主线芯中心的空隙,并利用绕包带将成缆的主线芯和地线芯包裹;
(3)在千级净化级别净化房中依次在所述包裹后的绕包带外侧填充第一护套层材料和第二护套层材料,双层共挤,得到所述66kV风机输电用耐扭电缆;
步骤(3)中所述和第一护套层和第二护套层的聚烯烃橡胶的制备方法包括如下步骤:
(1’)将所述EVM500HV92份、弹性体POE11份在50℃密炼机中混炼6min,混炼均匀;
(2’)在所述密炼机中再加入所述微晶蜡4.8份、癸二酸二辛酯4.5份、白炭黑26份、氢氧化镁80份、防老剂XH-33.5份、A-1720.9份、硬脂酸2.8份、耐磨炭黑N-3302.8份混炼 3min;
(3’)在所述密炼机中最后加入所述硫化剂过氧化二异丙苯(DCP)3.5份,助硫化剂三烯丙基异氰脲酸酯(TMPTMA)2.5份,混炼2min,然后排出混炼胶料;
(4’)将所述混炼胶料在开炼机上薄通1次,同时摆胶2次,接着在三辊压延机上开条出片,输出的橡页经过冷却辊冷却,过滑石粉箱后,制得聚烯烃橡胶。
实施例3
本实施例提供一种66kV风机输电用耐扭电缆,所述电缆从内至外依次包括电缆芯层、绕包带、第一护套层和第二护套层;
所述电缆芯层包括主线芯和地线芯;所述主线芯从内至外依次包括第一中心导体、第一半导电尼龙带层、导体屏蔽层、乙丙橡胶绝缘层和绝缘屏蔽层;所述地线芯从内至外依次包括第二中心导体、第二半导电尼龙带层和半导电覆盖层;所述第二护套层的材质为聚烯烃橡胶;所述电缆芯层内主线芯和地线芯的数量相同;所述第一中心导体为软铜导体;所述第二中心导体为软铜导体;所述软铜导体的绞线层与绞线层之间采用正反向绞合;所述软铜导体的每层绞线层之间绞线绞距与绞外径之比为最外层绞距不大于10倍,次外层不大于12倍,以此类推;所述软铜导体的单丝直径为0.401mm;所述电缆芯层内主线芯和地线芯的间隙间填充有半导电填充物;所述半导电填充物为HBD半导电中心填充结构;所述乙丙橡胶绝缘层为三元乙丙橡胶绝缘层;所述第一护套层为聚烯烃橡胶护套层;所述第一护套层的材质与所述第二护套层的材质相同。
所述聚烯烃橡胶按质量份数包括:
Figure PCTCN2020128240-appb-000007
所述66kV风机输电用耐扭电缆的制备方法包括如下步骤:
(1)采用正反绞合的方式绞合软铜导体分别制第一中心导体和第二中心导体;所述软铜导体采用GB/T3956标准规定的第5种圆形绞合软铜导体;
在所述第一半导外依次包裹第一电尼龙带层、导体屏蔽层、乙丙橡胶绝缘层和绝缘屏蔽层,经三层共挤,得到主线芯;
其中,所述三层共挤的温度为108℃,蒸汽压力为1.0MPa,线速度为2.6m/min,水位控制在38%;
在所述第二半导外依次包裹第二电尼龙带层和半导电覆盖层,得到地线芯;
所述导体屏蔽层采用性能符合IEC60840标准的规定的66kV半导电内屏料;所述乙丙橡胶绝缘层采用性能符合IEC60840标准的规定的乙丙橡胶绝缘料;所述绝缘屏蔽层采用不可剥离半导电外屏料;所述绝缘屏蔽层性能符合IEC60840标准的规定;所述半导电覆盖层为HBD半导电覆盖层;
(2)采用HBD半导电中心填充结构填充主线芯中心的空隙,并利用绕包带将成缆的主线芯和地线芯包裹;
(3)在千级净化级别净化房中依次在所述包裹后的绕包带外侧填充第一护套层材料和第二护套层材料,双层共挤,得到所述66kV风机输电用耐扭电缆。
步骤(3)中所述和第一护套层和第二护套层的聚烯烃橡胶的制备方法包括如下步骤:
(1’)将所述EVM500HV105份、弹性体POE8.5份在40℃密炼机中混炼5.5min,混炼均匀;
(2’)在所述密炼机中再加入所述微晶蜡3.2份、癸二酸二辛酯3.5份、白炭黑13份、氢氧化镁120份、防老剂XH-32.5份、A-1720.9份、硬脂酸2.8份、耐磨炭黑N-3303.3份混炼1.5min;
(3’)在所述密炼机中最后加入所述硫化剂过氧化二异丙苯(DCP)4.5份,助硫化剂三烯丙基异氰脲酸酯(TMPTMA)1.5份,混炼1min,然后排出混炼胶料;
(4’)将所述混炼胶料在开炼机上薄通2次,同时摆胶2次,接着在三辊压延机上开条出片,输出的橡页经过冷却辊冷却,过滑石粉箱后,制得聚烯烃橡胶。
实施例4
本实施例提供一种66kV风机输电用耐扭电缆,所述电缆除步骤(1)中三层共挤的温度为95℃外,其余均与实施例1相同。
实施例5
本实施例提供一种66kV风机输电用耐扭电缆,所述电缆除步骤(1)中三层共挤的温度为115℃外,其余均与实施例1相同。
实施例6
本实施例提供一种66kV风机输电用耐扭电缆,所述电缆除步骤(1)中三层共挤的温度为108℃外,其余均与实施例1相同。
实施例7
本实施例提供一种66kV风机输电用耐扭电缆,所述电缆除步骤(1)中三层共挤的温度为102℃外,其余均与实施例1相同。
实施例6-7中共挤温度分别为108℃和102℃,相较于实施例4和实施例5中共挤温度为95℃和115℃而言,实施例6和实施例7中共挤得到的电缆表面光滑细腻,不会出现导体屏蔽层、乙丙橡胶绝缘层或绝缘屏蔽层脱胶现象,而是实施例4中表面粗糙且乙丙橡胶绝缘层出现了脱胶现象,实施例5中绝缘屏蔽层出现了脱胶现象,由此表明,本发明通过采用102~108℃的三层共挤温度,有效防止了脱胶现象。
实施例8
本实施例提供一种66kV风机输电用耐扭电缆,所述电缆除步骤(1)中三层共挤的蒸汽压力为1.0MPa外,其余均与实施例1相同。
实施例9
本实施例提供一种66kV风机输电用耐扭电缆,所述电缆除步骤(1)中三层共挤的蒸汽压力为1.5MPa外,其余均与实施例1相同。
实施例10
本实施例提供一种66kV风机输电用耐扭电缆,所述电缆除步骤(1)中三层共挤的蒸汽压力为0.5MPa外,其余均与实施例1相同。
实施例11
本实施例提供一种66kV风机输电用耐扭电缆,所述电缆除步骤(1)中三层共挤的蒸汽压力为2.0MPa外,其余均与实施例1相同。
实施例8-9中共挤的蒸汽压力分别为1.0MPa和1.5MPa,相较于实施例10和实施例11中共挤的蒸汽压力分别为0.5MPa和2.0MPa而言,实施例8和实施例9中共挤得到的电缆中乙丙橡胶绝缘料得到充分硫化,与共挤温度相适配,机械性能符合产品要求且二次硫化时绝缘变形现象得到明显改善,由此表明,本发明通过采用1.0~1.5MPa的三层共挤蒸汽压力,与 102~108℃向匹配,提高了电缆的性能。实施例12
本实施例提供一种66kV风机输电用耐扭电缆,所述电缆除步骤(1)中三层共挤的线速度为1.8m/min外,其余均与实施例1相同。
实施例13
本实施例提供一种66kV风机输电用耐扭电缆,所述电缆除步骤(1)中三层共挤的线速度为3.5m/min外,其余均与实施例1相同。
实施例1相较于实施例12和实施例13而言,机械性能更佳,硫化效果更好,不会出现硫化变形现象,而实施例12和实施例13中出现了硫化变形现象,由此表明,本发明通过控制特定的线速度,提高了电缆的性能。
实施例14
本实施例提供一种66kV风机输电用耐扭电缆,所述电缆除除聚烯烃橡胶中“三烯丙基异氰脲酸酯”替换为“三羟甲基丙烷三甲基丙烯酸酯”外,其余均与实施例1相同。二、对比例
对比例1
本对比例提供一种66kV风机输电用耐扭电缆,所述电缆除聚烯烃橡胶中氢氧化镁为60份外,其余均与实施例1相同。
对比例2
本对比例提供一种66kV风机输电用耐扭电缆,所述电缆除聚烯烃橡胶中氢氧化镁为130份外,其余均与实施例1相同。
对比例3
本对比例提供一种66kV风机输电用耐扭电缆,所述电缆除聚烯烃橡胶中硬脂酸为1.2份外,其余均与实施例1相同。
对比例4
本对比例提供一种66kV风机输电用耐扭电缆,所述电缆除聚烯烃橡胶中硬脂酸为3.5份外,其余均与实施例1相同。
对比例5
本对比例提供一种66kV风机输电用耐扭电缆,所述电缆除聚烯烃橡胶中三烯丙基异氰脲酸酯为1.0份外,其余均与实施例1相同。
对比例6
本对比例提供一种66kV风机输电用耐扭电缆,所述电缆除聚烯烃橡胶中三烯丙基异氰脲酸酯为3.2份外,其余均与实施例1相同。
三、测试及结果
以实施例1为例,通过电子万能试验机、邵氏硬度计、导热系数测试仪、低温冲击试验机、体积电阻率测试仪、交流介质强度测试仪等测试设备,对其制得的聚烯烃橡胶进行了各方面的性能测试,具体测试方法采用GB/T528-2009,GB/T2941-2006,GB/T2951-2008;采用相同的方法对对比例1中乙丙橡胶绝缘层进行测试,其测试条件如表1所示。
表1
Figure PCTCN2020128240-appb-000008
Figure PCTCN2020128240-appb-000009
Figure PCTCN2020128240-appb-000010
采用表1中对实施例1进行的测试方法和条件对其他实施例和对比例中的聚烯烃橡胶的性能进行了测试,其测试结果如表2所示。
表2
Figure PCTCN2020128240-appb-000011
Figure PCTCN2020128240-appb-000012
从表1~2可以看出以下几点:
(1)综合实施例1~4可以看出,本发明提供的66kV风机输电用耐扭电缆通过采用特定聚烯烃橡胶护套材料,其老化后抗张强度≥9.7N/mm 2,断裂伸长率≥110%,浸油后抗张强度变化率≥-18%,断裂伸长率变化率≥-20%,具有良好地耐老化、耐特殊油种优势;
(2)综合实施例1和对比例1~2可以看出,实施例1中氢氧化镁为100份,相较于对比例1和对比例2中氢氧化镁分别为60份和130份而言,实施例1中老化后性能没有明显下降,而对比例1和对比例2中在老化后抗张强度分别由12.3N/mm 2下降至5.8N/mm 2和由14.1N/mm 2下降至4.3N/mm 2,由此表明,本发明通过将氢氧化镁的添加量设置在特定范围内,提高了聚烯烃橡胶护套的抗老化性能;综合实施例1和对比例3~4可以看出,本发明通过将硬脂酸的添加量设置在特定范围内,提高了聚烯烃橡胶护套的抗老化性能;综合实施例1和对比例5~6可以看出,本发明通过将聚烯烃橡胶中三烯丙基异氰脲酸酯的添加量设置在特定范围内,提高了聚烯烃橡胶护套的抗老化性能;由此可以看出,本发 明通过综合使用氢氧化镁、三烯丙基异氰脲酸酯以及硬脂酸的添加,三者之间相互协同增效,相互促进,提高了聚烯烃橡胶护套的抗老化性能;
(3)综合实施例1和实施例14可以看出,实施例1中添加三烯丙基异氰脲酸酯,相较于实施例14中添加三羟甲基丙烷三甲基丙烯酸酯而言,抗老化性能有所下降,由此表明,本发明中通过添加三烯丙基异氰脲酸酯作硫化助剂,提高了聚烯烃橡胶护套的抗老化性能。
综上所述,本发明提供的66kV风机输电用耐扭电缆通过采用聚烯烃橡胶护套材料,合理设计电缆结构,解决了大功率风电机组用66kV风能耐扭软电缆无卤、低烟、耐老化、耐特殊油种和大扭转角度的问题;并能够满足海上大型风机大角度偏航要求,具有很好的实用价值和推广价值。
申请人声明,本发明通过上述实施例来说明本发明的详细结构特征,但本发明并不局限于上述详细结构特征,即不意味着本发明必须依赖上述详细结构特征才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用部件的等效替换以及辅助部件的增加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种66kV风机输电用耐扭电缆,其特征在于,所述电缆从内至外依次包括电缆芯层、绕包带、第一护套层和第二护套层;
    所述电缆芯层包括主线芯和地线芯;
    所述主线芯从内至外依次包括第一中心导体、第一半导电尼龙带层、导体屏蔽层、乙丙橡胶绝缘层和绝缘屏蔽层;
    所述地线芯从内至外依次包括第二中心导体、第二半导电尼龙带层和半导电覆盖层;
    所述第二护套层的材质为聚烯烃橡胶;
    所述聚烯烃橡胶按质量份数包括:
    Figure PCTCN2020128240-appb-100001
  2. 根据权利要求1所述的66kV风机输电用耐扭电缆,其特征在于,所述电缆芯层内主线芯和地线芯的数量相同;
    优选地,所述第一中心导体为软铜导体;
    优选地,所述第二中心导体为软铜导体;
    优选地,所述软铜导体的绞线层与绞线层之间采用正反向绞合;
    优选地,所述软铜导体的最外层的绞线绞距与绞外径之比≤10;
    优选地,所述电缆芯层内主线芯和地线芯的间隙间填充有半导电填充物;
    优选地,所述半导电填充物为HBD半导电中心填充结构;
    优选地,所述乙丙橡胶绝缘层为三元乙丙橡胶绝缘层;
    优选地,所述第一护套层为聚烯烃橡胶护套层;
    优选地,所述第一护套层的材质与所述第二护套层的材质相同。
  3. 根据权利要求1或2所述的66kV风机输电用耐扭电缆,其特征在于,所述增塑剂为癸二酸二辛酯;
    优选地,所述弹性体为聚烯烃类弹性体;
    优选地,所述聚烯烃类弹性体包括乙烯-辛烯共聚物、乙烯-丁烯共聚物或乙烯-己烯共聚物中的任意一种后至少两种的组合;
    优选地,所述防老剂为防老剂XH-3;
    优选地,所述硫化剂为过氧化二异丙苯;
    优选地,所述硫化助剂为三烯丙基异氰脲酸酯;
    优选地,所述硅烷偶联剂为A-172;
    优选地,所述耐磨炭黑为炭黑N-330。
  4. 根据权利要求1~3任一项所述的66kV风机输电用耐扭电缆的制备方法,其特征在于,所述方法包括如下步骤:
    (1)绞合软铜导体分别制第一中心导体和第二中心导体;
    在所述第一半导外依次包裹第一电尼龙带层、导体屏蔽层、乙丙橡胶绝缘层和绝缘屏蔽 层,经三层共挤,得到主线芯;
    在所述第二半导外依次包裹第二电尼龙带层和半导电覆盖层,得到地线芯;
    (2)采用半导电填充物填充主线芯中心的空隙,并利用绕包带将成缆的主线芯和地线芯包裹;
    (3)依次在所述包裹后的绕包带外侧填充第一护套层材料和第二护套层材料,双层共挤,得到所述66kV风机输电用耐扭电缆。
  5. 根据权利要求4所述的制备方法,其特征在于,步骤(1)中所述软铜导体的绞合采用正反绞合;
    优选地,所述软铜导体采用GB/T3956标准规定的第5种圆形绞合软铜导体;
    优选地,所述导体屏蔽层采用性能符合IEC60840标准的规定的66kV半导电内屏料;
    优选地,所述乙丙橡胶绝缘层采用性能符合IEC60840标准的规定的乙丙橡胶绝缘料;
    优选地,所述绝缘屏蔽层采用不可剥离半导电外屏料;
    优选地,所述绝缘屏蔽层性能符合IEC60840标准的规定;
    优选地,所述半导电覆盖层为HBD半导电覆盖层。
  6. 根据权利要求4或5所述的制备方法,其特征在于,步骤(1)中所述三层共挤的温度为102~108℃;
    优选地,所述三层共挤的蒸汽压力为1.0~1.5MPa;
    优选地,所述三层共挤的线速度为2.3~2.6m/min;
    优选地,所述三层共挤的水位控制在25~38%;
    优选地,填充所述第二护套层材料过程中采用千级净化级别净化房。
  7. 根据权利要求4~6任一项所述的制备方法,其特征在于,步骤(2)中所述半导电填充物为HBD半导电中心填充结构。
  8. 根据权利要求4~7任一项所述的制备方法,其特征在于,步骤(3)中所述第二护套层为聚烯烃橡胶;
    优选地,所述聚烯烃橡胶的制备方法包括如下步骤:
    (1’)将所述乙烯-醋酸乙烯共聚物和弹性体经一次混炼,得到一次混炼料;
    (2’)在步骤(1’)所述一次混炼料中加入微晶石蜡、增塑剂、白炭黑、氢氧化镁、防老剂、硅烷偶联剂、硬脂酸和耐磨炭黑二次混炼,得到二次混炼料;
    (3’)在步骤(2’)所述二次混炼料中加入硫化剂和助硫化剂三烯丙基异氰脲酸酯,三次混炼后得到混炼胶料;
    (4’)将步骤(3’)所述混炼胶料在开炼机上薄通、摆胶后,依次经三辊压延机上开条和冷却辊冷却,然后过滑石粉箱,制得聚烯烃橡胶。
  9. 根据权利要求4~7任一项所述的制备方法,其特征在于,步骤(1’)中所述一次混炼的机器为密炼机;
    优选地,所述一次混炼的温度为40~50℃;
    优选地,所述一次混炼的时间为5~6min;
    优选地,步骤(2’)中所述二次混炼的温度为40~50℃;
    优选地,所述二次混炼的时间为2~3min;
    优选地,步骤(3’)中所述三次混炼的温度为40~50℃;
    优选地,所述三次混炼的时间为0.5~1.5min;
    优选地,步骤(4’)中所述薄通的次数为1~2次;
    优选地,所述摆胶的次数为2~3次。
  10. 根据权利要求1~3任一项所述的66kV风机输电用耐扭电缆在风电机组用66kV电路中的用途;
    优选地,所述电缆的工作温度为-40~60℃。
PCT/CN2020/128240 2020-11-05 2020-11-12 一种66kV风机输电用耐扭电缆及其制备方法和用途 WO2022095093A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011223673.5A CN112435787A (zh) 2020-11-05 2020-11-05 一种66kV风机输电用耐扭电缆及其制备方法和用途
CN202011223673.5 2020-11-05

Publications (1)

Publication Number Publication Date
WO2022095093A1 true WO2022095093A1 (zh) 2022-05-12

Family

ID=74696582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128240 WO2022095093A1 (zh) 2020-11-05 2020-11-12 一种66kV风机输电用耐扭电缆及其制备方法和用途

Country Status (2)

Country Link
CN (1) CN112435787A (zh)
WO (1) WO2022095093A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116987347A (zh) * 2023-07-31 2023-11-03 特变电工山东鲁能泰山电缆有限公司 海上风力发电用电缆绝缘料及其制备方法、海上风力发电用电缆

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113903531B (zh) * 2021-09-16 2023-08-22 江苏上上电缆集团有限公司 乙丙绝缘低烟无卤耐扭中压风能电缆制造方法及电缆
CN116120658A (zh) * 2022-12-29 2023-05-16 江苏亨通电力电缆有限公司 一种耐霉菌型无卤橡胶护套材料及包含其的电缆桥电缆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206163180U (zh) * 2016-11-14 2017-05-10 江苏中煤电缆有限公司 低烟无卤矿用屏蔽橡套软电缆
KR20170107827A (ko) * 2016-03-16 2017-09-26 삼성전자주식회사 차폐 피복을 포함하는 케이블
CN208861716U (zh) * 2018-10-16 2019-05-14 江苏亨通电力电缆有限公司 6mw海上风电机组用中压薄壁型耐扭曲动力电缆
CN110607022A (zh) * 2019-10-10 2019-12-24 凯布斯工业电气线缆(苏州)有限公司 用于机车电缆外护套的复合材料及其制备方法、电缆外护套和机车电缆
CN110718335A (zh) * 2019-10-08 2020-01-21 江苏上上电缆集团有限公司 一种铁路车辆用较薄橡皮绝缘电缆制造方法及电缆
CN211604717U (zh) * 2020-03-28 2020-09-29 远东电缆有限公司 一种燃烧性能b1级安全环保综合电缆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4036476A1 (de) * 1990-02-13 1991-08-14 Siemens Ag Flexibles elektrisches kabel mit zwei verseilten adern
CN104327366B (zh) * 2014-10-16 2017-06-27 马弗橡塑(镇江)有限公司 一种耐候型机车用无卤阻燃电缆护套材料配方及制备方法
CN109265813B (zh) * 2018-09-14 2021-04-30 成都营门电缆有限责任公司 一种防盐雾的阻燃船用电缆护套料及其制备方法
CN110690003A (zh) * 2019-11-05 2020-01-14 远东电缆有限公司 66kV风电高压扭转电缆及其生产工艺
CN111834041A (zh) * 2020-08-18 2020-10-27 江苏亨通电力电缆有限公司 一种城市轨道交通牵引供电***用B1级35kV环网电缆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170107827A (ko) * 2016-03-16 2017-09-26 삼성전자주식회사 차폐 피복을 포함하는 케이블
CN206163180U (zh) * 2016-11-14 2017-05-10 江苏中煤电缆有限公司 低烟无卤矿用屏蔽橡套软电缆
CN208861716U (zh) * 2018-10-16 2019-05-14 江苏亨通电力电缆有限公司 6mw海上风电机组用中压薄壁型耐扭曲动力电缆
CN110718335A (zh) * 2019-10-08 2020-01-21 江苏上上电缆集团有限公司 一种铁路车辆用较薄橡皮绝缘电缆制造方法及电缆
CN110607022A (zh) * 2019-10-10 2019-12-24 凯布斯工业电气线缆(苏州)有限公司 用于机车电缆外护套的复合材料及其制备方法、电缆外护套和机车电缆
CN211604717U (zh) * 2020-03-28 2020-09-29 远东电缆有限公司 一种燃烧性能b1级安全环保综合电缆

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116987347A (zh) * 2023-07-31 2023-11-03 特变电工山东鲁能泰山电缆有限公司 海上风力发电用电缆绝缘料及其制备方法、海上风力发电用电缆

Also Published As

Publication number Publication date
CN112435787A (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
WO2022095093A1 (zh) 一种66kV风机输电用耐扭电缆及其制备方法和用途
CN100392769C (zh) 纵向水密封电缆/电线
CN1929042B (zh) 耐高温防腐蚀高压软电缆
CN101430946B (zh) 8.7/10kV及以下矿用监视橡套软电缆的生产方法
WO2020119308A1 (zh) 一种用于新能源汽车充电的空心电缆制造方法及电缆
CN113871064B (zh) 一种105℃耐扭风能电缆的制造方法及电缆
CN104835565A (zh) 一种新能源汽车充电装置用电缆及其制备方法
CN110718322B (zh) 风机桥架电缆
CN102403067B (zh) 海洋工程用乙丙橡胶绝缘耐火中压电力电缆及制造方法
CN111785420A (zh) 一种高压硅橡胶软电缆及其加工工艺
CN105590660A (zh) 一种中高压耐油橡胶半导电屏蔽电缆
CN108878007A (zh) 一种风力发电用屏蔽软电缆及其制造方法
CN204270715U (zh) 一种无卤阻燃耐低温中压风能电缆
CN102347107A (zh) 船舶及海洋用硬质乙丙橡胶绝缘电力电缆及其制造方法
CN105427922A (zh) 一种高压直流电缆及其制造方法和绝缘料
CN201117335Y (zh) 8.7/10kV及以下矿用监视橡套软电缆
CN203311889U (zh) 拖链电缆
CN103227011B (zh) 海洋风电用耐盐腐耐扭转整体屏蔽通信电缆及其制造方法
CN116705400B (zh) 一种用于额定电压132kV风电机组的高压耐扭软电缆及其制备方法和应用
CN215183139U (zh) 软电缆
CN113903531B (zh) 乙丙绝缘低烟无卤耐扭中压风能电缆制造方法及电缆
CN110628138A (zh) 风力发电机组用中压抗扭动力电缆及其绝缘材料
CN217485133U (zh) 一种高压耐寒耐扭阻燃软电缆
CN220651675U (zh) 海底电缆
CN214336393U (zh) 电动工具用橡套电缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960550

Country of ref document: EP

Kind code of ref document: A1