WO2022092114A1 - 巻鉄心 - Google Patents

巻鉄心 Download PDF

Info

Publication number
WO2022092114A1
WO2022092114A1 PCT/JP2021/039551 JP2021039551W WO2022092114A1 WO 2022092114 A1 WO2022092114 A1 WO 2022092114A1 JP 2021039551 W JP2021039551 W JP 2021039551W WO 2022092114 A1 WO2022092114 A1 WO 2022092114A1
Authority
WO
WIPO (PCT)
Prior art keywords
bent portion
flat surface
oriented electrical
steel sheet
surface side
Prior art date
Application number
PCT/JP2021/039551
Other languages
English (en)
French (fr)
Inventor
悠祐 川村
崇人 水村
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to KR1020237013150A priority Critical patent/KR20230070021A/ko
Priority to JP2022559175A priority patent/JP7538440B2/ja
Priority to CA3195782A priority patent/CA3195782A1/en
Priority to US18/032,519 priority patent/US20240096540A1/en
Priority to CN202180072622.3A priority patent/CN116419979A/zh
Priority to EP21886232.4A priority patent/EP4234728A4/en
Priority to AU2021369232A priority patent/AU2021369232B2/en
Publication of WO2022092114A1 publication Critical patent/WO2022092114A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • H01F27/2455Magnetic cores made from sheets, e.g. grain-oriented using bent laminations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon

Definitions

  • the present invention relates to a wound iron core.
  • the grain-oriented electrical steel sheet is a steel sheet containing 7% by mass or less of Si and having a secondary recrystallization texture in which secondary recrystallized grains are accumulated in the ⁇ 110 ⁇ ⁇ 001> orientation (Goss orientation).
  • the magnetic properties of grain-oriented electrical steel sheets are greatly affected by the degree of integration in the ⁇ 110 ⁇ ⁇ 001> orientation.
  • grain-oriented electrical steel sheets that have been put into practical use are controlled so that the angle between the ⁇ 001> direction of the crystal and the rolling direction is within a range of about 5 °.
  • Patent Documents 4 to 7 and the like are disclosed as a technique for improving the characteristics by controlling the crystal grain size.
  • the steel plate portion that becomes the corner portion of the wound iron core is bent in advance so that a relatively small bent region having a radius of curvature of 3 mm or less is formed, and the bent steel plate is formed.
  • the large-scale pressing process as in the conventional case is not required, the steel sheet is precisely bent to maintain the iron core shape, and the processing strain is concentrated only on the bent portion (corner portion). It is also possible to omit distortion removal, and the industrial merit is greatly being applied.
  • the present invention relates to a wound steel core manufactured by a method in which a steel plate is bent in advance so that a relatively small bent region having a radius of curvature of 5 mm or less is formed, and the bent steel plates are laminated to form a wound core. It is an object of the present invention to provide an improved winding core so as to suppress the generation of inadvertent noise.
  • the present inventors have bent a steel plate in advance so as to form a relatively small bending region having a radius of curvature of 5 mm or less, and laminated the bent steel plates to form a wound iron core.
  • the noise of the iron core was examined in detail. As a result, it was recognized that the noise of the iron core may differ even when the material is a steel plate whose crystal orientation control is almost the same and the magnitude of magnetostriction measured by the veneer is also almost the same. bottom.
  • the problematic noise difference was influenced by the crystal grain size of the material. Furthermore, it was found that the degree of the phenomenon (that is, the difference in the noise of the iron core) also differs depending on the size and shape of the iron core. From this point of view, various steel sheet manufacturing conditions and core shapes were examined and the effects on noise were classified. As a result, by using a steel sheet manufactured under specific manufacturing conditions as an iron core material with a specific size and shape, the noise of the iron core can be suppressed so as to be the optimum noise commensurate with the magnetostrictive characteristics of the steel plate material. I got the result.
  • the winding core according to an embodiment of the present invention is a winding core including a winding core body in which a plurality of polygonal annular directional electromagnetic steel sheets are laminated in the plate thickness direction in a side view.
  • a winding core body in which a plurality of polygonal annular directional electromagnetic steel sheets are laminated in the plate thickness direction in a side view.
  • flat surfaces and bent portions are alternately continuous in the longitudinal direction.
  • the radius of curvature r on the inner surface side in the side view of the bent portion is 1 mm or more and 5 mm or less.
  • the grain-oriented electrical steel sheet is by mass%, Si: 2.0-7.0%, Has a chemical composition in which the balance consists of Fe and impurities.
  • Dpx (mm) is an average value of Dp obtained by the following formula (1).
  • Dc (mm) is the direction in which the boundary line at the boundary between the bent portion and the two plane portions arranged so as to sandwich the bent portion extends (hereinafter, referred to as “boundary direction”). Is the average crystal grain size of Dl (mm) is the average crystal grain size in the direction perpendicular to the boundary direction at the boundary.
  • FL (mm) is the average length of the flat surface portion having the shorter length of the two flat surface portions adjacent to each other with the bent portion interposed therebetween. If the lengths of two adjacent flat surfaces across the bent portion are the same, the length of either flat surface portion is adopted.
  • the wound core according to another embodiment of the present invention is a wound core including a wound core body in which a plurality of polygonal annular directional electromagnetic steel sheets are laminated in the plate thickness direction in a side view.
  • a wound core body in which a plurality of polygonal annular directional electromagnetic steel sheets are laminated in the plate thickness direction in a side view.
  • flat surfaces and bent portions are alternately continuous in the longitudinal direction.
  • the radius of curvature r on the inner surface side in the side view of the bent portion is 1 mm or more and 5 mm or less.
  • the grain-oriented electrical steel sheet is by mass%, Si: 2.0-7.0%, Has a chemical composition in which the balance consists of Fe and impurities.
  • Dpy (mm) is an average value of Dl (mm).
  • Dl (mm) is the average crystal grain size in the direction perpendicular to the boundary direction at the boundary between the bent portion and the two planar portions arranged so as to sandwich the bent portion.
  • FL (mm) is the average length of the flat surface portion having the shorter length of the two flat surface portions adjacent to each other with the bent portion interposed therebetween.
  • the average value of the Dl is Dl on the inner surface side and Dl on the outer surface side of one of the two flat surface portions, and Dl on the inner surface side and Dl on the outer surface side of the other flat surface portion. Is the average value of.
  • another embodiment of the present invention is a wound steel core including a wound steel core main body in which a plurality of polygonal annular directional electromagnetic steel sheets are laminated in the plate thickness direction in a side view.
  • the flat surface and the bent portion are alternately continuous in the longitudinal direction.
  • the radius of curvature r on the inner surface side in the side view of the bent portion is 1 mm or more and 5 mm or less.
  • the grain-oriented electrical steel sheet is by mass%, Si: 2.0-7.0%, Has a chemical composition in which the balance consists of Fe and impurities.
  • Dpz (mm) is an average value of Dc (mm).
  • Dc (mm) is the average crystal grain size in the boundary direction at the boundary between the bent portion and the two plane portions arranged so as to sandwich the bent portion.
  • FL (mm) is the average length of the flat surface portion having the shorter length of the two flat surface portions adjacent to each other with the bent portion interposed therebetween.
  • the average value of the Dc is the Dc on the inner surface side and the Dc on the outer surface side of one of the two flat surface portions, and the Dc on the inner surface side and the Dp on the outer surface side of the other flat surface portion. Is the average value of.
  • FIG. 1 It is a perspective view which shows typically one Embodiment of the winding iron core which concerns on this invention. It is a side view of the winding iron core shown in the embodiment of FIG. It is a side view schematically showing another embodiment of the winding iron core which concerns on this invention. It is a side view schematically showing an example of the one-layer grain-oriented electrical steel sheet constituting the winding iron core which concerns on this invention. It is a side view schematically showing another example of the one-layer grain-oriented electrical steel sheet constituting the winding iron core which concerns on this invention. It is a side view schematically showing an example of the bent part of the grain-oriented electrical steel sheet constituting the winding iron core which concerns on this invention.
  • the wound core according to the embodiment of the present invention will be described in detail in order.
  • the numerical limit range described below includes the lower limit value and the upper limit value. Numerical values that indicate “greater than” or “less than” do not fall within the numerical range.
  • “%” regarding the chemical composition means “mass%” unless otherwise specified.
  • terms such as “parallel”, “vertical”, “identical”, “right angle”, and values of length and angle, etc., which specify the shape and geometric conditions and their degrees, are used.
  • the “oriented electrical steel sheet” may be simply referred to as “steel sheet” or “electrical steel sheet”, and the “rolled iron core” may be simply referred to as “iron core”.
  • the winding core according to the present embodiment is a winding core including a winding core main body in which a plurality of polygonal annular directional electromagnetic steel sheets are laminated in the plate thickness direction in a side view.
  • a winding core main body in which a plurality of polygonal annular directional electromagnetic steel sheets are laminated in the plate thickness direction in a side view.
  • flat surfaces and bent portions are alternately continuous in the longitudinal direction.
  • the radius of curvature r on the inner surface side in the side view of the bent portion is 1 mm or more and 5 mm or less.
  • the grain-oriented electrical steel sheet is by mass%, Si: 2.0-7.0%, Has a chemical composition in which the balance consists of Fe and impurities.
  • Dpx (mm) is an average value of Dp obtained by the following formula (1).
  • Dc (mm) is the average crystal grain size in the boundary direction at the boundary between the bent portion and the two plane portions arranged so as to sandwich the bent portion.
  • Dl (mm) is the average crystal grain size in the direction perpendicular to the boundary direction.
  • FL (mm) is the average length of the flat surface portion.
  • the average value of Dp is the Dp on the inner surface side and the Dp on the outer surface side of one of the two flat surface portions, and the Dp on the inner surface side and the Dp on the outer surface side of the other flat surface portion. It is an average value.
  • Dp ⁇ (Dc ⁇ Dl / ⁇ ) ⁇ ⁇ ⁇ (1)
  • FIG. 1 is a perspective view schematically showing an embodiment of a wound iron core.
  • FIG. 2 is a side view of the wound iron core shown in the embodiment of FIG.
  • FIG. 3 is a side view schematically showing another embodiment of the wound iron core.
  • the side view means to view in the width direction (Y-axis direction in FIG. 1) of the long-shaped grain-oriented electrical steel sheet constituting the wound steel core.
  • the side view is a view showing a shape visually recognized by side view (a view in the Y-axis direction in FIG. 1).
  • the rolled iron core includes a rolled iron core main body 10 in which a plurality of polygonal annular (rectangular or polygonal) directional electromagnetic steel sheets 1 are laminated in the plate thickness direction in a side view.
  • the rolled iron core main body 10 has a grained structure 2 having a polygonal shape in a side view, in which grain-oriented electrical steel sheets 1 are stacked in the plate thickness direction.
  • the wound steel core main body 10 may be used as it is as a wound steel core, or if necessary, a known tightening such as a binding band or the like is used to integrally fix a plurality of stacked grain-oriented electrical steel sheets 1. It may be equipped with tools and the like.
  • the length of the core of the wound core body 10 there is no particular limitation on the length of the core of the wound core body 10. Even if the length of the iron core changes in the iron core, the volume of the bent portion 5 is constant, so that the iron loss generated in the bent portion 5 is constant. The longer the core length, the smaller the volume fraction of the bent portion 5 with respect to the wound core body 10, and therefore the smaller the effect on iron loss deterioration. Therefore, it is preferable that the core length of the wound core body 10 is long.
  • the core length of the wound core body 10 is preferably 1.5 m or more, and more preferably 1.7 m or more.
  • the core length of the wound core body 10 means the peripheral length at the center point in the stacking direction of the wound core body 10 from the side view.
  • the thickness of the wound steel core main body 10 that is, the total thickness of the laminated steel plates (steel plate laminated thickness) is not particularly limited.
  • noise is considered to be caused by the uneven distribution of the exciting magnetic flux in the iron core, which depends on the thickness of the steel sheet laminate, in the central region of the iron core. It can be said that it is easier to enjoy the effect of this embodiment, that is, the reduction of noise in a thick iron core.
  • the laminated thickness of the steel sheet is preferably 40 mm or more, and more preferably 50 mm or more.
  • the steel plate laminated thickness of the wound iron core main body 10 means the maximum thickness in the laminating direction in the plane portion of the wound iron core main body from the side view.
  • the wound iron core of this embodiment can be suitably used for any conventionally known application.
  • an iron core for a power transmission transformer where noise is a problem a remarkable merit can be exhibited.
  • the first flat surface portion 4 and the corner portion 3 are alternately continuous in the longitudinal direction, and the two first flat surface portions adjacent to each other in the corner portion 3 are adjacent to each other.
  • the grain-oriented electrical steel sheets 1 having an angle of 90 ° formed by 4 include a portion stacked in the plate thickness direction, and have a substantially rectangular laminated structure 2 in a side view. From another point of view, the wound core main body 10 shown in FIGS. 1 and 2 has an octagonal laminated structure 2.
  • the wound core body 10 has an octagonal laminated structure, but the present invention is not limited to this, and the wound core main body is made of a plurality of polygonal annular directional electromagnetic steel sheets in a side view. It suffices that the grain-oriented electrical steel sheets are laminated in the thickness direction, and the plane portions and the bent portions are alternately continuous in the longitudinal direction (circumferential direction).
  • the winding iron core main body 10 will be described as having a substantially rectangular shape having four corner portions 3.
  • Each corner portion 3 of the grain-oriented electrical steel sheet 1 has two or more bent portions 5 having a curved shape in a side view, and has a second flat portion 4a between adjacent bent portions 5, 5. are doing.
  • the corner portion 3 is configured to include two or more bent portions 5 and one or more second flat surface portions 4a. Further, the total bending angle of each of the two bending portions 5 and 5 existing in one corner portion 3 is 90 °. Further, as shown in FIG. 3, each corner portion 3 of the grain-oriented electrical steel sheet 1 has three bent portions 5 having a curved shape in a side view, and is between adjacent bent portions 5, 5. It has a second flat surface portion 4a, and the total bending angle of each of the three bending portions 5, 5 and 5 existing in one corner portion 3 is 90 °. Further, each corner portion 3 may have four or more bent portions.
  • the second flat surface portion 4a is provided between the adjacent bending portions 5 and 5, and the total bending angle of each of the four or more bending portions 5 existing in one corner portion 3 is calculated. It is 90 °. That is, each corner portion 3 according to the present embodiment is arranged between two adjacent first flat surface portions 4 and 4 arranged at right angles, and two or more bent portions 5 and one or more second flat surface portions 4a. And have. Further, in the wound core main body 10 shown in FIG. 2, the bent portion 5 is arranged between the first flat surface portion 4 and the second flat surface portion 4a, but in the wound iron core main body 10 shown in FIG.
  • a bent portion 5 is arranged between the first flat surface portion 4 and the second flat surface portion 4a and between the two second flat surface portions 4a and 4a, respectively. That is, the second flat surface portion 4a may be arranged between two adjacent second flat surface portions 4a, 4a. Further, in the wound core main body 10 shown in FIGS. 2 and 3, the length of the first flat surface portion 4 in the longitudinal direction (circumferential direction of the wound iron core main body 10) is longer than that of the second flat surface portion 4a. However, the lengths of the first flat surface portion 4 and the second flat surface portion 4a may be equal. In the present specification, the "first flat surface portion" and the "second flat surface portion” may be simply referred to as "flat surface portions", respectively.
  • Each corner portion 3 of the grain-oriented electrical steel sheet 1 has two or more bent portions 5 having a curved shape in a side view, and the bending angle of each of the bent portions existing in one corner portion. The total is 90 °.
  • the corner portion 3 has a second flat surface portion 4a between the adjacent bent portions 5 and 5. Therefore, the corner portion 3 is configured to include two or more bent portions 5 and one or more second flat surface portions 4a.
  • the embodiment of FIG. 2 is a case where two bent portions 5 are provided in one corner portion 3.
  • the embodiment of FIG. 3 is a case where three bent portions 5 are provided in one corner portion 3.
  • one corner portion can be composed of two or more bent portions, but from the viewpoint of suppressing the occurrence of strain due to deformation during machining and suppressing iron loss, bending is performed.
  • the bending angle ⁇ ( ⁇ 1, ⁇ 2, ⁇ 3) of the portion 5 is preferably 60 ° or less, and more preferably 45 ° or less.
  • FIG. 6 is a diagram schematically showing an example of a bent portion (curved portion) of a grain-oriented electrical steel sheet.
  • the bending angle of the bent portion 5 means the angle difference generated between the straight portion on the rear side and the straight portion on the front side in the bending direction in the bent portion 5 of the directional electromagnetic steel plate 1, and the directional electromagnetic steel plate 1
  • the angle ⁇ of the complementary angle of the angle formed by the two virtual lines Lb-elongation1 and Lb-elongation2 obtained by extending the straight line portion which is the surface of the flat surface portions 4 and 4a on both sides of the bent portion 5 on the outer surface of the above. Will be done.
  • the point where the extending straight line separates from the surface of the steel sheet is the boundary between the flat surface portions 4, 4a and the bent portion 5 on the surface on the outer surface side of the steel sheet, and is the point F and the point G in FIG.
  • a straight line perpendicular to the outer surface of the steel sheet is extended from each of the points F and G, and the intersections with the surface on the inner surface side of the steel sheet are defined as points E and D, respectively.
  • the points E and D are the boundaries between the flat surface portions 4, 4a and the bent portions 5 on the inner surface side of the steel sheet.
  • the bent portion 5 is a portion of the grain-oriented electrical steel sheet 1 surrounded by the points D, E, F, and G in the side view of the grain-oriented electrical steel sheet 1.
  • the surface of the steel plate between the points D and E, that is, the inner surface of the bent portion 5 is shown as La
  • the surface of the steel plate between the points F and G, that is, the outer surface of the bent portion 5 is shown as Lb. ..
  • FIG. 6 shows the radius of curvature r on the inner surface side (hereinafter, also simply referred to as the radius of curvature r) in the side view of the bent portion 5.
  • the radius of curvature r of the bent portion 5 is obtained.
  • the radius of curvature r at each bent portion 5 of each grain-oriented electrical steel sheet 1 laminated in the plate thickness direction may have some variation.
  • This fluctuation may be due to the molding accuracy, and it is possible that an unintended fluctuation may occur due to handling during laminating. Such an unintended error can be suppressed to about 0.2 mm or less in the current ordinary industrial manufacturing.
  • a typical value can be obtained by measuring the radius of curvature of a sufficiently large number of steel plates and averaging them. Further, although it is conceivable to change it intentionally for some reason, this embodiment does not exclude such an embodiment.
  • the method for measuring the radius of curvature r on the inner surface side of the bent portion 5 is not particularly limited, but it can be measured by observing at 200 times using, for example, a commercially available microscope (Nikon ECLIPSE LV150). Specifically, the point A of the center of curvature as shown in FIG. 6 is obtained from the observation results. As a method of obtaining this, for example, the line segment EF and the line segment DG are extended inward on the opposite side of the point B. If the intersection is defined as A, the magnitude of the radius of curvature r on the inner surface side corresponds to the length of the line segment AC.
  • the intersection point with the arc DE on the inner surface side of the bent portion 5 is defined as the point C.
  • the radius of curvature r on the inner surface side of the bent portion 5 is set to a range of 1 mm or more and 5 mm or less, and a wound steel core using a specific grain-oriented electrical steel sheet whose crystal grain size is controlled as described below is used. This makes it possible to suppress the noise of the winding core.
  • the radius of curvature r on the inner surface side of the bent portion 5 is preferably 3 mm or less. In this case, the effect of the present embodiment is more prominently exhibited.
  • all the bent portions existing in the iron core satisfy the inner surface side radius of curvature r defined in the present embodiment. If there is a bent portion that satisfies the inner surface side radius of curvature r of the present embodiment and a bent portion that does not satisfy the inner surface side radius of curvature r in the wound iron core, at least half or more of the bent portions have the inner surface side radius of curvature r specified in the present embodiment. Satisfaction is the desired form.
  • FIGS. 4 and 5 are diagrams schematically showing an example of one layer of grain-oriented electrical steel sheet 1 in the wound steel core main body 10.
  • the grain-oriented electrical steel sheet 1 used in the present embodiment is bent and has a corner portion 3 composed of two or more bent portions 5. It has a first planar portion 4 and forms a substantially rectangular ring in a side view via a joint portion 6 which is an end face in the longitudinal direction of one or more grain-oriented electrical steel sheets 1.
  • the wound iron core main body 10 may have a laminated structure 2 having a substantially rectangular side view as a whole. As shown in the example of FIG.
  • one grain-oriented electrical steel sheet 1 constitutes one layer of the winding core body 10 via one joint portion 6 (that is, one joint portion for each roll).
  • One grain-oriented electrical steel sheet 1 is connected via 6), and as shown in the example of FIG. 5, one grain-oriented electrical steel sheet 1 constitutes about half a circumference of the wound steel core.
  • the two grain-oriented electrical steel sheets 1 form one layer of the wound steel core body 10 via the two joints 6 (that is, the two directions via the two joints 6 for each roll). (Electrical steel sheets 1 are connected to each other) may be used.
  • the thickness of the grain-oriented electrical steel sheet 1 used in the present embodiment is not particularly limited and may be appropriately selected depending on the intended use, etc., but is usually in the range of 0.15 mm to 0.35 mm. It is preferably in the range of 0.18 mm to 0.23 mm.
  • the configuration of the grain-oriented electrical steel sheet 1 constituting the wound steel core main body 10 will be described.
  • the crystal grain size of the flat surface portions 4, 4a adjacent to the bent portion 5 of the grain-oriented electrical steel sheets laminated adjacent to each other, and the grain size of the grain-oriented electrical steel sheets are controlled in the winding iron core. It features a placement site.
  • Crystal grain size of the flat portion adjacent to the bent portion In the grain-oriented electrical steel sheet 1 constituting the wound steel core of the present embodiment, the crystal grain size of the laminated steel sheets is increased at least in a part of the corner portion. Be controlled. When the crystal grain size in the vicinity of the bent portion 5 becomes fine, the noise reduction effect in the iron core having the iron core shape in the present embodiment is not exhibited. In other words, it means that the noise tends to increase when the crystal grain boundaries are present in the vicinity of the bent portion 5. From the opposite point of view, it is possible to reduce noise by arranging the crystal grain boundaries far away from the bent portion 5.
  • the wound iron core targeted by the present embodiment has a structure in which bent portions limited to a very narrow region and flat portions, which are relatively wide regions as compared with the bent portion 5, are alternately arranged. .. Since the bent portion is bent so as to have a small radius of curvature r, vibration is likely to be limited by the expansion and contraction of the steel sheet due to the magnetostriction of the grain-oriented electrical steel sheet. Further, in the flat surface portion between the relatively wide corner portions of the flat surface portion (the first flat surface portion 4 described above), the steel plate laminated by arranging the coil, the tightening jig, etc. in the central region of the flat surface portion in particular.
  • the region where the reflux magnetic domain exists is expanded due to the influence of strain and the noise is increased.
  • the region where there are many gaps between the laminated steel sheets that are likely to occur near the bent portion that is, in the region where there is no constraint on the out-of-plane movement of the grain-oriented electrical steel sheet
  • the magnetostriction of elongation due to the reflux magnetic domain becomes large, the steel sheet goes out of the plane. It is possible that the vibration will increase and the noise will increase. Therefore, control of the distance between the bent portion and the crystal grain boundary as defined in the present embodiment is effective for noise.
  • Such a mechanism of action of the present embodiment is considered to be a special phenomenon in the iron core of a specific shape targeted by the present embodiment, and has not been considered so far, but the present inventors have obtained it. Interpretations that are consistent with the findings are possible.
  • the crystal grain size is measured as follows.
  • T laminated thickness of the steel plate of the winding core body 10
  • T laminated thickness of the steel plate of the winding core body 10
  • T / 4 including the innermost surface.
  • a total of 5 grain-oriented electrical steel sheets laminated at the position are extracted. If the surface of each of the extracted grain-oriented electrical steel sheets has a primary coating (glass coating, intermediate layer) made of oxides, an insulating coating, etc., these are removed by a known method and then removed.
  • FIG. 7A the crystal structures of the inner surface side surface and the outer surface side surface of the steel sheet are visually observed.
  • the particle size in the boundary direction (direction in which the boundary line B extends (C direction of the directional electromagnetic steel plate)) and the boundary.
  • the particle size in the direction perpendicular to (the direction perpendicular to the boundary (the L direction of the directional electromagnetic steel plate)) is measured as follows.
  • Dc (mm) in the boundary direction for example, as shown in the schematic diagram of FIG. 7 (a)
  • the length of the boundary line B (corresponding to the width of the grain-oriented electrical steel sheet 1 constituting the wound steel core) is Lc.
  • Nc When the number of crystal grain boundaries intersecting the boundary line B is Nc, it is calculated by the following equation (2).
  • the particle size Dl (mm) in the direction perpendicular to the boundary is the position where Lc is divided into 6 in the extending direction (boundary direction) of the boundary line B at 5 positions excluding the end. , Until the line extending perpendicularly to the boundary line B in the direction of the first flat surface portion 4 region starting from the boundary line B between the one bent portion 5 and the first flat surface portion 4 first intersects the crystal grain boundary. Let the distance be Dl1 to Dl5 in the first plane portion 4.
  • the line extending perpendicularly to the boundary line B in the direction of the second flat surface portion 4a region starting from the boundary line B between the one bending portion 5 and the second flat surface portion (flat surface portion in the corner portion) 4a is the first.
  • the distance until the crystal grain boundary or the boundary line B of the other bent portion 5 adjacent to each other across the second flat surface portion 4a intersects with the boundary line B is defined as Dl1 to Dl5 in the second flat surface portion 4a.
  • Dl1 to Dl5 in the first flat surface portion 4 and the second flat surface portion 4a are obtained in the same manner.
  • the particle size Dl (mm) in the direction perpendicular to the boundary is obtained by averaging these Dl1 to Dl5.
  • the crystal grain size Dp (mm) corresponding to the circle of the first flat surface portion 4 and the second flat surface portion 4a adjacent to the bent portion 5 is obtained from the following formula (1).
  • Dp ⁇ (Dc ⁇ Dl / ⁇ ) ⁇ ⁇ ⁇ (1)
  • the subscript ii is added to the crystal grain size on the inner surface side of the second flat surface portion 4a
  • io is added to the crystal grain size on the outer surface side
  • io is added to the crystal grain size on the outer surface side.
  • the subscript oi is added to the crystal grain size on the inner surface side
  • oo is added to the crystal grain size on the outer surface side.
  • these crystal grain sizes are defined by comparison with the average length of the flat surface portion having the shorter length of the two flat surface portions adjacent to each other with the bent portion 5 interposed therebetween.
  • the plane portion having the shorter length is the second plane portion 4a existing in the corner portion, and therefore (Dc, Dl, Twelve crystal grain sizes of Dp)-(ii, io, oi, oo) are defined by comparison with the average length FL of the second flat surface portion 4a.
  • the average length FL (mm) of the second flat surface portion 4a existing in the corner portion is obtained as follows.
  • the boundary between the corner portion and the first flat portion 4 of the bent portion located on the corner end side of the N bent portions 5 is defined as the corner portion and the first flat portion. It is the boundary of 4. That is, in the corner portion, the bent portion 5 and the second flat surface portion 4a are alternately formed from the boundary of one corner portion to the boundary of the other corner portion. That is, the number of the second flat surface portions 4a in the corner portions is (N-1). Further, in the corner portion, the length of the second flat surface portion 4a in the corner portion usually differs depending on the position in the stacking thickness direction. That is, the iron core shape is often designed so that the length of the second flat surface portion 4a becomes longer toward the outer peripheral side.
  • the average length FL of the second flat surface portion 4a existing in the corner portion is within one corner portion of the sample collected for the above-mentioned measurement of the crystal grain size. It is obtained by dividing the total length of all the second flat surface portions 4a of the above by the number. For example, when there are two bent portions 5 in the corner portion, the second flat surface portion 4a in the corner portion becomes one region sandwiched between the bent portions 5, and the length thereof is in the corner portion for the sample. Is the average length of the second plane portion of. When there are three bent portions 5 in the corner portion, the second flat surface portion 4a in the corner portion has two regions sandwiched between the bent portions 5, and the lengths thereof are averaged.
  • the average length of the second flat portion in the corner portion for the sample is calculated. Further, as described above, the total length of the second flat surface portion in the corner portion for each of the total of 5 samples (directional electromagnetic steel plates) laminated at the positions of T / 4 including the innermost surface is averaged. Then, the average length of each sample is calculated, and the average length of the second flat surface portion of all the samples is further averaged to obtain the average length FL of all the second flat surface portions existing in the corner portion. ..
  • One embodiment of the present embodiment is characterized in that, in at least one corner portion 3, the average value of Dp- (ii, io, oi, oo) is Dpx, and Dpx ⁇ FL / 4.
  • Dpx ⁇ FL / 4 is satisfied in all four corners existing in the wound iron core main body 10.
  • Another embodiment is characterized in that, in at least one corner portion 3, the average value of Dl- (ii, io, oi, oo) is Dpy, and Dpy ⁇ FL / 4.
  • Dpy the average value of Dl- (ii, io, oi, oo) is Dpy, and Dpy ⁇ FL / 4.
  • Dpy ⁇ FL / 2 the average value of Dl- (ii, io, oi, oo) is Dpy, and Dpy ⁇ FL / 4.
  • Dpy ⁇ FL / 4 is satisfied in all four corners existing in the wound iron core main body 10.
  • Another embodiment is characterized in that, in at least one corner portion 3, the average value of Dc- (ii, io, oi, oo) is Dpz, and Dpz ⁇ FL / 4.
  • the mechanism described above is particularly susceptible to the grain boundaries existing in the second flat surface portion 4a in the corner portion, and further, the crystal grain boundaries existing parallel to the boundary of the bent portion 5 (direction). It corresponds to the feature that it is easily affected by the crystal grain size in the L direction of the sex electromagnetic steel plate.
  • the vertical distance between the grain boundary and the boundary of the bent portion can be sufficiently increased in the second flat portion 4a in the corner portion.
  • Dpz FL / 2.
  • Dpz ⁇ FL / 4 is satisfied in all four corners existing in the wound iron core main body 10.
  • the orientation of the crystal grains in the grain steel is highly integrated in the ⁇ 110 ⁇ ⁇ 001> orientation. It is a steel sheet and has excellent magnetic properties in the rolling direction.
  • a known grain-oriented electrical steel sheet can be used as the mother steel sheet.
  • an example of a preferable mother steel plate will be described.
  • the chemical composition of the base steel sheet is mass%, contains Si: 2.0% to 6.0%, and the balance consists of Fe and impurities.
  • This chemical composition is for controlling the crystal orientation to a Goss texture integrated in the ⁇ 110 ⁇ ⁇ 001> orientation and ensuring good magnetic properties.
  • Other elements are not particularly limited, but in the present embodiment, in addition to Si, Fe and impurities, elements within a range that does not impair the effects of the present invention may be contained. For example, it is permissible to replace it with a part of Fe and contain the following elements in the following range.
  • the content range of typical selected elements is as follows.
  • C 0 to 0.0050%, Mn: 0-1.0%, S: 0 to 0.0150%, Se: 0 to 0.0150%, Al: 0 to 0.0650%, N: 0 to 0.0050%, Cu: 0 to 0.40%, Bi: 0 to 0.010%, B: 0 to 0.080%, P: 0 to 0.50%, Ti: 0 to 0.0150%, Sn: 0 to 0.10%, Sb: 0 to 0.10%, Cr: 0 to 0.30%, Ni: 0-1.0%, Nb: 0 to 0.030%, V: 0 to 0.030%, Mo: 0 to 0.030%, Ta: 0 to 0.030%, W: 0 to 0.030%.
  • these selective elements may be contained according to the purpose, it is not necessary to limit the lower limit value, and it is not necessary to substantially contain them. Further, even if these selective elements are contained as impurities, the effect of the present embodiment is not impaired. Further, since it is difficult to set the C content in the practical steel sheet to 0% in manufacturing, the C content may be set to more than 0%.
  • Impurities refer to elements that are unintentionally contained, and mean elements that are mixed from ore, scrap, or the manufacturing environment as raw materials when the base steel sheet is industrially manufactured. The upper limit of the total content of impurities may be, for example, 5%.
  • the chemical composition of the mother steel sheet may be measured by a general analysis method for steel.
  • the chemical composition of the mother steel sheet may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Measurement Spectrometry).
  • ICP-AES Inductively Coupled Plasma-Atomic Measurement Spectrometry
  • a 35 mm square test piece is obtained from the center position of the mother steel plate after the coating is removed, and the conditions are based on a calibration curve prepared in advance by Shimadzu ICPS-8100 or the like (measuring device). It can be identified by measuring.
  • C and S may be measured by using the combustion-infrared absorption method
  • N may be measured by using the inert gas melting-thermal conductivity method.
  • the above chemical composition is a component of the grain-oriented electrical steel sheet 1 as a grain steel sheet. If the grain-oriented electrical steel sheet 1 to be the measurement sample has a primary coating (glass coating, intermediate layer) made of oxides, an insulating coating, etc. on the surface, remove them by a known method before chemistry. Measure the composition.
  • the method for manufacturing grain-oriented electrical steel sheet is not particularly limited, but the crystal grain size of the steel sheet can be made by precisely controlling the manufacturing conditions as described later.
  • a grain-oriented electrical steel sheet having such a desired crystal grain size and manufacturing a rolled iron core under suitable processing conditions described later it is possible to obtain a wound steel core capable of suppressing the generation of noise. ..
  • C is first set to 0.04 to 0.1% by mass, and the other slabs having the chemical composition of the grain-oriented electrical steel sheet are heated to 1000 ° C. or higher for hot rolling. After that, it is wound at 400 to 850 ° C. Anneal the hot-rolled plate if necessary.
  • the conditions for annealing the hot-rolled plate are not particularly limited, but from the viewpoint of precipitate control, the annealing temperature: 800 to 1200 ° C. and the annealing time: 10 to 1000 seconds may be used. Then, a cold-rolled steel sheet is obtained by cold-rolling once or two or more times with intermediate annealing sandwiched between them. The cold rolling ratio at this time may be 80 to 99% from the viewpoint of controlling the texture.
  • the cold-rolled steel sheet is heated to 700 to 900 ° C. in a wet hydrogen-inert gas atmosphere, for example, to be decarburized and annealed, and further nitrided and annealed if necessary.
  • an annealing separator is applied onto the annealed steel sheet, and the finish is annealed at a maximum temperature of 1000 ° C. to 1200 ° C. for 40 to 90 hours to form an insulating film at about 900 ° C.
  • decarburization annealing and finish annealing particularly affect the crystal grain size of the steel sheet. Therefore, when manufacturing a wound steel core, it is preferable to use a grain-oriented electrical steel sheet manufactured within the above conditions. Further, the effect of the present embodiment can be enjoyed even if the steel sheet is subjected to a process generally called "magnetic domain control" by a known method in the steel sheet manufacturing process.
  • the crystal grain size which is a feature of the grain-oriented electrical steel sheet 1 used in the present embodiment, by, for example, the maximum temperature and time of finish annealing.
  • the crystal grain size By increasing the average crystal grain size of the entire steel sheet and setting each crystal grain size to FL / 2 or more as described above, even when the bent portion 5 is formed at an arbitrary position when manufacturing the wound iron core. , The above Dpx and the like are expected to be FL / 4 or more.
  • the crystal grains in the vicinity of the bent portion may be coarsened by heating the bent portion after the bending process. By performing such partial heating, it is possible to reliably control a specific corner portion to a desired particle size. Since such a partial heat treatment also releases the strain of the bent portion, it is also effective in improving the iron core characteristics independent of the effect obtained in the present embodiment.
  • the method for manufacturing a wound core according to the present embodiment is not particularly limited as long as the wound core according to the present embodiment can be manufactured.
  • the known methods introduced as Patent Documents 9 to 11 in the background art.
  • a method similar to that of a wound iron core may be applied.
  • the method using AEM UNICORE's UNICORE https://www.aemcores.com.au/technology/unicore/) manufacturing equipment can be said to be optimal.
  • the processing speed (punch speed, mm / sec) during processing, and the heating temperature (° C.) and heating time (° C.) in the rapid heat treatment performed after processing It is preferable to control seconds).
  • the processing speed (punch speed) is preferably 20 to 80 mm / sec.
  • the heating temperature in the rapid heat treatment performed after the processing is 90 to 450 ° C. and the heating time is 6 to 500 seconds.
  • the obtained wound steel core main body 10 may be used as it is as a wound steel core, but if necessary, a plurality of stacked grain-oriented electrical steel sheets 1 may be used as a binding band or a known fastener. It may be fixed integrally and used as a winding iron core.
  • the details of the steel sheet manufacturing process and conditions are as shown in Table 3. Specifically, hot rolling, hot rolled sheet annealing, and cold rolling were carried out. For some, the cold-rolled steel sheet after decarburization annealing was subjected to nitriding treatment (nitriding annealing) in a mixed atmosphere of hydrogen-nitrogen-ammonia. Further, an annealing separator containing MgO as a main component was applied, and finish annealing was performed. An insulating coating coating solution containing phosphate and colloidal silica as a main component and chromium was applied onto the primary coating formed on the surface of the finished annealed steel sheet, and this was heat-treated to form an insulating coating.
  • nitriding treatment nitriding annealing
  • an annealing separator containing MgO as a main component was applied, and finish annealing was performed.
  • L1 is the distance between the directional electromagnetic steel plates 1 parallel to each other on the innermost circumference of the wound iron core in the plan cross section including the central CL, parallel to the X-axis direction (distance between the inner surface side plane portions), and is L2.
  • L3 is the X-axis.
  • L4 is the laminated steel plate of the wound core in the plan view including the center CL parallel to the X-axis direction. It is a width, and L5 is a distance between plane portions (distance between bent portions) arranged adjacent to each other in the innermost part of the wound iron core and formed at right angles together. In other words, L5 is the length in the longitudinal direction of the flat surface portion 4a having the shortest length among the flat surface portions 4, 4a of the innermost grain-oriented electrical steel sheet.
  • r is the radius of curvature (mm) of the bent portion on the inner surface side of the wound core
  • is the bending angle (°) of the bent portion of the wound core.
  • Magnetic properties of grain-oriented electrical steel sheets were measured based on the single sheet magnetic property test method (Single Sheet Tester: SST) specified in JIS C 2556: 2015. As magnetic characteristics, the magnetic flux density B8 (T) in the rolling direction of the steel sheet when excited at 800 A / m and the iron loss of the steel sheet at an AC frequency of 50 Hz and an exciting magnetic flux density of 1.7 T were measured.
  • the wound steel core of the present invention can effectively suppress the generation of inadvertent noise because the crystal grain sizes Dpx, Dpy and Dpz of the laminated grain-oriented electrical steel sheets are each FL / 4 or more. Became clear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Materials For Medical Uses (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

この巻鉄心は、側面視において複数の多角形環状の方向性電磁鋼板が積層された巻鉄心本体を備える巻鉄心であって、方向性電磁鋼板は長手方向に平面部と屈曲部とが交互に連続し、少なくとも一つの屈曲部において、方向性電磁鋼板の結晶粒径Dpx(mm)が、FL/4以上である。ここで、FLとは、平面部の平均長さ(mm)である。

Description

巻鉄心
 本発明は、巻鉄心に関する。本願は、2020年10月26日に、日本に出願された特願2020-178898号に基づき優先権を主張し、その内容をここに援用する。
 方向性電磁鋼板は、Siを7質量%以下含有し、二次再結晶粒が{110}<001>方位(Goss方位)に集積した二次再結晶集合組織を有する鋼板である。方向性電磁鋼板の磁気特性は、{110}<001>方位への集積度に大きく影響される。近年、実用されている方向性電磁鋼板は、結晶の<001>方向と圧延方向との角度が5°程度の範囲内に入るように制御されている。
 方向性電磁鋼板は積層されて変圧器の鉄心などに用いられるが、主要な磁気特性である高磁束密度、低鉄損に加え、振動・騒音の原因となる磁歪が小さいことが求められている。結晶方位はこれら特性と強い相関を有することが知られており、例えば、特許文献1~3のような精緻な方位制御技術が開示されている。
 さらに、方向性電磁鋼板における結晶粒径の影響についてはよく知られており、その制御による特性改善技術としては、特許文献4~7などが開示されている。
 また、巻鉄心の製造は従来、例えば特許文献8に記載されているような、鋼板を筒状に巻き取った後、筒状積層体のままコーナー部を一定曲率になるようにプレスし、略矩形に形成した後、焼鈍することにより歪取りと形状保持を行う方法が広く知られている。
 一方、巻鉄心の別の製造方法として、巻鉄心のコーナー部となる鋼板の部分を曲率半径が3mm以下の比較的小さな屈曲領域が形成されるように予め曲げ加工し、当該曲げ加工された鋼板を積層して巻鉄心とする、特許文献9~11のような技術が開示されている。当該製造方法によれば、従来のような大掛かりなプレス工程が不要で、鋼板は精緻に折り曲げられて鉄心形状が保持され、加工歪も曲げ部(角部)のみに集中するため上記焼鈍工程による歪除去の省略も可能となり、工業的なメリットは大きく適用が進んでいる。
日本国特開2001-192785号公報 日本国特開2005-240079号公報 日本国特開2012-052229号公報 日本国特開平6-89805号公報 日本国特開平8-134660号公報 日本国特開平10-183313号公報 国際公開第O2019/131974号 日本国特開2005-286169号公報 日本国特許第6224468号公報 日本国特開2018-148036号公報 豪国特許出願公開第2012337260号明細書
 本発明は、鋼板を曲率半径が5mm以下の比較的小さな屈曲領域が形成されるように予め曲げ加工し、当該曲げ加工された鋼板を積層して巻鉄心とする方法により製造した巻鉄心において、不用意な騒音の発生が抑制されるように改善した巻鉄心を提供することを目的とする。
 本発明者らは、鋼板を曲率半径が5mm以下の比較的小さな屈曲領域が形成されるように予め曲げ加工し、当該曲げ加工された鋼板を積層して巻鉄心とする方法により製造した変圧器鉄心の騒音を詳細に検討した。その結果、結晶方位の制御がほぼ同等で、単板で測定される磁歪の大きさもほぼ同等である鋼板を素材とした場合であっても、鉄心の騒音に差が生じる場合があることを認識した。
 この原因を探究したところ、問題となる騒音の差は、素材の結晶粒径の影響を受けて生じていることを知見した。さらに、鉄心の寸法形状によっても現象の程度(つまり、鉄心の騒音の差)に違いが生じることを知見した。
 この観点で様々な鋼板製造条件、鉄心形状について検討して騒音への影響を分類した。その結果、特定の製造条件により製造した鋼板を、特定の寸法形状の鉄心素材として使用することで、鉄心の騒音を、鋼板素材の磁歪特性に見合った最適な騒音になるように抑制できるとの結果を得た。
 前記目的を達成するためになされた本発明の要旨は以下の通りである。
 本発明の一実施形態に係る巻鉄心は、側面視において複数の多角形環状の方向性電磁鋼板が板厚方向に積層された巻鉄心本体を備える巻鉄心であって、
 前記方向性電磁鋼板は長手方向に平面部と屈曲部とが交互に連続し、
 前記屈曲部の側面視における内面側曲率半径rは1mm以上5mm以下であり、
 前記方向性電磁鋼板が
質量%で、
  Si:2.0~7.0%、
 を含有し、残部がFeおよび不純物からなる化学組成を有し、
 Goss方位に配向する集合組織を有し、且つ
 少なくとも一つの前記屈曲部において、積層される前記方向性電磁鋼板の結晶粒径Dpx(mm)がFL/4以上である。
 ここで、Dpx(mm)は、下記式(1)により求められるDpの平均値であり、
 Dc(mm)は、前記屈曲部と、この屈曲部を挟むように配置された2つの前記平面部とのそれぞれの境界における境界線が延伸する方向(以下、「境界方向」と記載する。)の平均結晶粒径であり、
 Dl(mm)は、前記境界における境界方向と垂直な方向の平均結晶粒径であり、
 FL(mm)は、前記屈曲部を挟んで隣り合う2つの前記平面部のうち、長さが短い方の平面部の平均長さである。なお、屈曲部を挟んで隣り合う2つの平面部の長さが等しい場合は、いずれかの平面部の長さを採用する。
 また、前記Dpの平均値とは、2つの前記平面部のうちの一方の前記平面部の内面側のDpと外面側のDp、ならびに他方の前記平面部の内面側のDpと外面側のDpの平均値である。
 Dp=√(Dc×Dl/π) ・・・(1)
 また、本発明の他の実施形態に係る巻鉄心は、側面視において複数の多角形環状の方向性電磁鋼板が板厚方向に積層された巻鉄心本体を備える巻鉄心であって、
 前記方向性電磁鋼板は長手方向に平面部と屈曲部とが交互に連続し、
 前記屈曲部の側面視における内面側曲率半径rは1mm以上5mm以下であり、
 前記方向性電磁鋼板が
質量%で、
  Si:2.0~7.0%、
 を含有し、残部がFeおよび不純物からなる化学組成を有し、
 Goss方位に配向する集合組織を有し、且つ
 少なくとも一つの前記屈曲部において、積層される前記方向性電磁鋼板の結晶粒径Dpy(mm)がFL/4以上である。
 ここで、Dpy(mm)は、Dl(mm)の平均値であり、
 Dl(mm)は、前記屈曲部と、この屈曲部を挟むように配置された2つの前記平面部とのそれぞれの境界における境界方向と垂直な方向の平均結晶粒径であり、
 FL(mm)は、前記屈曲部を挟んで隣り合う2つの前記平面部のうち、長さが短い方の平面部の平均長さである。
 また、前記Dlの平均値とは、2つの前記平面部のうちの一方の前記平面部の内面側のDlと外面側のDl、ならびに他方の前記平面部の内面側のDlと外面側のDlの平均値である。
 また、本発明のさらに他の実施形態は、側面視において複数の多角形環状の方向性電磁鋼板が板厚方向に積層された巻鉄心本体を備える巻鉄心であって、
 方向性電磁鋼板は長手方向に平面部と屈曲部とが交互に連続し、
 前記屈曲部の側面視における内面側曲率半径rは1mm以上5mm以下であり、
 前記方向性電磁鋼板が
質量%で、
  Si:2.0~7.0%、
 を含有し、残部がFeおよび不純物からなる化学組成を有し、
 Goss方位に配向する集合組織を有し、且つ
 少なくとも一つの前記屈曲部において、積層される前記方向性電磁鋼板の結晶粒径Dpz(mm)がFL/4以上である。
 ここで、Dpz(mm)は、Dc(mm)の平均値であり、
 Dc(mm)は、前記屈曲部と、この屈曲部を挟むように配置された2つの前記平面部とのそれぞれの境界における境界方向の平均結晶粒径であり、
 FL(mm)は、前記屈曲部を挟んで隣り合う2つの前記平面部のうち、長さが短い方の平面部の平均長さである。
 また、前記Dcの平均値とは、2つの前記平面部のうちの一方の前記平面部の内面側のDcと外面側のDc、ならびに他方の前記平面部の内面側のDcと外面側のDpの平均値である。
 本発明によれば、曲げ加工された方向性電磁鋼板を積層してなる巻鉄心において、不用意な騒音の発生を効果的に抑制することが可能となる。
本発明に係る巻鉄心の一実施形態を模式的に示す斜視図である。 図1の実施形態に示される巻鉄心の側面図である。 本発明に係る巻鉄心の別の一実施形態を模式的に示す側面図である。 本発明に係る巻鉄心を構成する1層の方向性電磁鋼板の一例を模式的に示す側面図である。 本発明に係る巻鉄心を構成する1層の方向性電磁鋼板の別の一例を模式的に示す側面図である。 本発明に係る巻鉄心を構成する方向性電磁鋼板の屈曲部の一例を模式的に示す側面図である。 本発明に係る巻鉄心を構成する方向性電磁鋼板の結晶粒径の測定方法を説明するための模式図である。 実施例および比較例で製造した巻鉄心の寸法パラメーターを示す模式図である。
 以下、本発明の一実施形態に係る巻鉄心について順に詳細に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。なお、下記する数値限定範囲には、下限値及び上限値がその範囲に含まれる。「超」または「未満」と示す数値は、その値が数値範囲に含まれない。また、化学組成に関する「%」は、特に断りがない限り「質量%」を意味する。
 また、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」、「垂直」、「同一」、「直角」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。
 また、本明細書において「方向性電磁鋼板」のことを単に「鋼板」または「電磁鋼板」と記載し、「巻鉄心」のことを単に「鉄心」と記載する場合もある。
 本実施形態に係る巻鉄心は、側面視において複数の多角形環状の方向性電磁鋼板が板厚方向に積層された巻鉄心本体を備える巻鉄心であって、
 前記方向性電磁鋼板は長手方向に平面部と屈曲部とが交互に連続し、
 前記屈曲部の側面視における内面側曲率半径rは1mm以上5mm以下であり、
 前記方向性電磁鋼板が
質量%で、
  Si:2.0~7.0%、
 を含有し、残部がFeおよび不純物からなる化学組成を有し、
 Goss方位に配向する集合組織を有し、且つ
少なくとも一つの前記屈曲部において、積層される前記方向性電磁鋼板の結晶粒径Dpx(mm)がFL/4以上
であることを特徴とする。
 ここで、Dpx(mm)は、下記式(1)により求められるDpの平均値であり、
 Dc(mm)は、前記屈曲部と、この屈曲部を挟むように配置された2つの前記平面部とのそれぞれの境界における境界方向の平均結晶粒径であり、
 Dl(mm)は、前記境界方向と垂直な方向の平均結晶粒径であり、
 FL(mm)は、前記平面部の平均長さである。
 また、Dpの平均値とは、2つの前記平面部のうちの一方の前記平面部の内面側のDpと外面側のDp、ならびに他方の平面部の前記内面側のDpと外面側のDpの平均値である。
 Dp=√(Dc×Dl/π) ・・・(1)
1.巻鉄心及び方向性電磁鋼板の形状
 まず、本実施形態の巻鉄心の形状について説明する。ここで説明する巻鉄心および方向性電磁鋼板の形状自体は、特に目新しいものではない。例えば背景技術において特許文献9~11として紹介した公知の巻鉄心および方向性電磁鋼板の形状に準じたものに過ぎない。
 図1は、巻鉄心の一実施形態を模式的に示す斜視図である。図2は、図1の実施形態に示される巻鉄心の側面図である。また、図3は、巻鉄心の別の一実施形態を模式的に示す側面図である。
 なお、本実施形態において側面視とは、巻鉄心を構成する長尺状の方向性電磁鋼板の幅方向(図1におけるY軸方向)に視ることをいう。側面図とは側面視により視認される形状を表した図(図1のY軸方向の図)である。
 本実施形態に係る巻鉄心は、側面視において複数の多角形環状(矩形状もしくは多角形状)の方向性電磁鋼板1が板厚方向に積層された巻鉄心本体10を備える。当該巻鉄心本体10は、方向性電磁鋼板1が、板厚方向に積み重ねられ、側面視において多角形状の積層構造2を有する。当該巻鉄心本体10を、そのまま巻鉄心として使用してもよいし、必要に応じて、積み重ねられた複数の方向性電磁鋼板1を一体的に固定するために、結束バンド等、公知の締付具等を備えていてもよい。
 本実施形態において、巻鉄心本体10の鉄心長に特に制限はない。鉄心において鉄心長が変化しても、屈曲部5の体積は一定であるため屈曲部5で発生する鉄損は一定である。鉄心長が長いほうが巻鉄心本体10に対する屈曲部5の体積率は小さくなるため、鉄損劣化への影響も小さい。よって、巻鉄心本体10の鉄心長は長いほうが好ましい。巻鉄心本体10の鉄心長は、1.5m以上であることが好ましく、1.7m以上であるとより好ましい。なお、本実施形態において、巻鉄心本体10の鉄心長とは、側面視による巻鉄心本体10の積層方向の中心点における周長をいう。
 また、本実施形態において、巻鉄心本体10の厚み、つまり積層された鋼板の合計厚み(鋼板積層厚さ)に特に制限されない。しかし、後述するように、騒音は、鋼板積層厚さに依存する鉄心中の励磁磁束が鉄心中心領域へ偏在することが原因で発生していると考えられることから、当該偏在が起きやすい鋼板積層厚さが厚い鉄心において本実施形態の効果、つまり騒音の低減をより享受しやすいと言える。このことから、鋼板積層厚さは、40mm以上であることが好ましく、50mm以上であるとより好ましい。なお、本実施形態において、巻鉄心本体10の鋼板積層厚さとは、側面視による巻鉄心本体の平面部における積層方向の最大の厚さをいう。
 本実施形態の巻鉄心は、従来公知のいずれの用途にも好適に用いることができる。特に騒音が問題となる送電変圧器用の鉄心に適用することで、顕著なメリットを発揮することができる。
 図1及び2に示すように、巻鉄心本体10は、長手方向に第1の平面部4とコーナー部3とが交互に連続し、当該各コーナー部3において隣接する2つの第1の平面部4のなす角が90°である方向性電磁鋼板1が、板厚方向に積み重ねられた部分を含み、側面視において略矩形状の積層構造2を有する。また、別の見方をすると、図1及び2に示す巻鉄心本体10は、八角形状の積層構造2を有する。本実施の形態に係る巻鉄心本体10は、八角形状の積層構造を有するが、本発明はこれに限ることなく、巻鉄心本体は、側面視において複数の多角形環状の方向性電磁鋼板が板厚方向に積層され、当該方向性電磁鋼板が長手方向(周方向)に平面部と屈曲部とが交互に連続していればよい。
 以下では、巻鉄心本体10が4つのコーナー部3を有する略矩形状のものとして説明する。
 方向性電磁鋼板1の各コーナー部3は、側面視において、曲線状の形状を有する屈曲部5を2つ以上有するとともに、隣り合う屈曲部5,5の間に第2の平面部4aを有している。したがって、コーナー部3は2以上の屈曲部5と1以上の第2の平面部4aとを備えた構成である。さらに、一つのコーナー部3に存在する2つの屈曲部5,5のそれぞれの曲げ角度の合計が90°となっている。
 また、図3に示すように、方向性電磁鋼板1の各コーナー部3は、側面視において、曲線状の形状を有する屈曲部5を3つ有するとともに、隣り合う屈曲部5,5の間に第2の平面部4aを有しており、且つ、一つのコーナー部3に存在する3つの屈曲部5,5,5のそれぞれの曲げ角度の合計が90°となっている。
 また、各コーナー部3は、4つ以上の屈曲部を有していてもよい。この場合も隣り合う屈曲部5,5の間に第2の平面部4aを有しており、且つ、一つのコーナー部3に存在する4つ以上の屈曲部5のそれぞれの曲げ角度の合計が90°となっている。つまり、本実施形態に係る各コーナー部3は、直角に配置された隣接する2つの第1の平面部4,4間に配置され、2以上の屈曲部5と1以上の第2平面部4aとを有している。
 また、図2に示す巻鉄心本体10では、第1の平面部4と第2の平面部4aとの間に屈曲部5が配置されているが、図3に示す巻鉄心本体10では、第1平面部4と第2の平面部4aとの間および2つの第2の平面部4a,4aの間にそれぞれに屈曲部5が配置されている。つまり、第2の平面部4aは、隣り合う2つの第2の平面部4a,4a間に配置される場合もある。
 さらに、図2および図3に示す、巻鉄心本体10では、第1の平面部4の方が第2の平面部4aより長手方向(巻鉄心本体10の周方向)の長さが長くなっているが、第1の平面部4と第2平面部4aとの長さは等しくてもよい。
 なお、本明細書において、「第1の平面部」および「第2の平面部」をそれぞれ単に「平面部」と記載する場合もある。
 方向性電磁鋼板1の各コーナー部3は、側面視において、曲線状の形状を有する屈曲部5を2つ以上有しており、且つ、一つのコーナー部に存在する屈曲部それぞれの曲げ角度の合計が90°となっている。コーナー部3は、隣り合う屈曲部5,5の間に第2の平面部4aを有している。したがって、コーナー部3は2以上の屈曲部5と1以上の第2の平面部4aとを備えた構成となっている。
 図2の実施形態は1つのコーナー部3中に2つの屈曲部5を有する場合である。図3の実施形態は1つのコーナー部3中に3つの屈曲部5を有する場合である。
 これらの例に示されるように、本実施形態では、1つのコーナー部は2つ以上の屈曲部により構成できるが、加工時の変形による歪み発生を抑制して鉄損を抑える点からは、屈曲部5の曲げ角度φ(φ1、φ2、φ3)は60°以下であることが好ましく、45°以下であることがより好ましい。
 1つのコーナー部に2つの屈曲部を有する図2の実施形態では、鉄損低減の点から、例えば、φ1=60°且つφ2=30°とすることや、φ1=45°且つφ2=45°等とすることができる。また、1つのコーナー部に3つの屈曲部を有する図3の実施形態では、鉄損低減の点から、例えばφ1=30°、φ2=30°且つφ3=30°等とすることができる。更に、生産効率の点からは折り曲げ角度(曲げ角度)が等しいことが好ましいため、1つのコーナー部に2つの屈曲部を有する場合には、φ1=45°且つφ2=45°とすることが好ましい。また、1つのコーナー部に3つの屈曲部を有する図3の実施形態では、鉄損低減の点から、例えばφ1=30°、φ2=30°且つφ3=30°とすることが好ましい。
 図6を参照しながら、屈曲部5について更に詳細に説明する。図6は、方向性電磁鋼板の屈曲部(曲線部分)の一例を模式的に示す図である。屈曲部5の曲げ角度とは、方向性電磁鋼板1の屈曲部5において、折り曲げ方向の後方側の直線部と前方側の直線部の間に生じた角度差を意味し、方向性電磁鋼板1の外面において、屈曲部5を挟む両側の平面部4,4aの表面である直線部分を延長して得られる2つの仮想線Lb-elongation1、Lb-elongation2がなす角の補角の角度φとして表される。この際、延長する直線が鋼板表面から離脱する点が、鋼板外面側の表面における平面部4,4aと屈曲部5の境界であり、図6においては、点Fおよび点Gである。
 さらに、点Fおよび点Gのそれぞれから鋼板外表面に垂直な直線を延長し、鋼板内面側の表面との交点をそれぞれ点Eおよび点Dとする。この点Eおよび点Dが鋼板内面側の表面における平面部4,4aと屈曲部5の境界である。
 そして本実施形態において屈曲部5とは、方向性電磁鋼板1の側面視において、上記点D、点E、点F、点Gにより囲まれる方向性電磁鋼板1の部位である。図6においては、点Dと点Eの間の鋼板表面、すなわち屈曲部5の内側表面をLa、点Fと点Gの間の鋼板表面、すなわち屈曲部5の外側表面をLbとして示している。
 また、図6には、屈曲部5の側面視における内面側曲率半径r(以下、単に曲率半径rとも称する。)が表わされている。上記Laを点E及び点Dを通過する円弧で近似することで、屈曲部5の曲率半径rを得る。曲率半径rが小さいほど屈曲部5の曲線部分の曲がりは急であり、曲率半径rが大きいほど屈曲部5の曲線部分の曲がりは緩やかになる。
 本実施形態の巻鉄心では、板厚方向に積層された各方向性電磁鋼板1の各屈曲部5における曲率半径rは、ある程度の変動を有するものであってもよい。この変動は、成形精度に起因する変動であることもあり、積層時の取り扱いなどで意図せぬ変動が発生することも考えられる。このような意図せぬ誤差は、現在の通常の工業的な製造であれば0.2mm程度以下に抑制することが可能である。このような変動が大きい場合は、十分に多数の鋼板について曲率半径を測定し、平均することで代表的な値を得ることができる。また、何らかの理由で意図的に変化させることも考えられるが、本実施形態はそのような形態を除外するものではない。
 なお、屈曲部5の内面側曲率半径rの測定方法にも特に制限はないが、例えば、市販の顕微鏡(Nikon ECLIPSE LV150)を用いて200倍で観察することにより測定することができる。具体的には、観察結果から、図6に示すような曲率中心A点を求めるが、この求め方として、例えば、線分EFと線分DGを点Bとは反対側の内側に延長させた交点をAと規定すれば、内面側曲率半径rの大きさは、線分ACの長さに該当する。ここで、点Aと点Bを直線で結んだ際、屈曲部5の内面側の円弧DEとの交点を点Cとする。
 本実施形態では、屈曲部5の内面側曲率半径rを、1mm以上5mm以下の範囲として、かつ下記に説明する結晶粒径が制御された特定の方向性電磁鋼板を用いた巻鉄心とすることによって、巻鉄心の騒音を抑制することが可能となる。屈曲部5の内面側曲率半径rは、好ましくは3mm以下である。この場合に、本実施形態の効果がより顕著に発揮される。
 また、鉄心内に存在するすべての屈曲部が本実施形態にて規定する内面側曲率半径rを満足することが最も好ましい形態である。巻鉄心において本実施形態の内面側曲率半径rを満足する屈曲部と、満足しない屈曲部とが存在する場合は、少なくとも半数以上の屈曲部が本実施形態にて規定する内面側曲率半径rを満足することが望ましい形態である。
 図4及び図5は巻鉄心本体10における1層分の方向性電磁鋼板1の一例を模式的に示す図である。図4及び図5の例に示されるように本実施形態に用いられる方向性電磁鋼板1は、折り曲げ加工されたものであって、2つ以上の屈曲部5から構成されるコーナー部3と、第1の平面部4を有し、1つ以上の方向性電磁鋼板1の長手方向の端面である接合部6を介して側面視において略矩形の環を形成する。
 本実施形態においては、巻鉄心本体10が、全体として側面視が略矩形状の積層構造2を有していればよい。図4の例に示されるように、1つの接合部6を介して1枚の方向性電磁鋼板1が巻鉄心本体10の1層分を構成する(つまり、一巻ごとに1箇所の接合部6を介して1枚の方向性電磁鋼板1が接続される)ものであってもよく、図5の例に示されるように1枚の方向性電磁鋼板1が巻鉄心の約半周分を構成し、2つの接合部6を介して2枚の方向性電磁鋼板1が巻鉄心本体10の1層分を構成する(つまり、一巻ごとに2箇所の接合部6を介して2枚の方向性電磁鋼板1が互いに接続される)ものであってもよい。
 本実施形態において用いられる方向性電磁鋼板1の板厚は、特に限定されず、用途等に応じて適宜選択すればよいものであるが、通常0.15mm~0.35mmの範囲内であり、好ましくは0.18mm~0.23mmの範囲である。
2.方向性電磁鋼板の構成
 次に、巻鉄心本体10を構成する方向性電磁鋼板1の構成について説明する。本実施形態においては、隣接して積層される方向性電磁鋼板の屈曲部5に隣接する平面部4,4aの結晶粒径、および結晶粒径を制御した方向性電磁鋼板の巻鉄心内での配置部位を特徴とする。
(1)屈曲部に隣接する平面部の結晶粒径
 本実施形態の巻鉄心を構成する方向性電磁鋼板1は、少なくともコーナー部の一部において、積層される鋼板の結晶粒径が大きくなるよう制御される。屈曲部5近傍の結晶粒径が微細になると、本実施形態での鉄心形状を有する鉄心における騒音低減効果が発現しない。これは言い換えると、屈曲部5近傍に結晶粒界が存在すると騒音が大きくなりやすいことを示している。逆の見方をすると、結晶粒界を屈曲部5から遠く離れるように配置することで騒音の低減が可能であることになる。
 このような現象が発生するメカニズムは明確ではないが、以下のように考えられる。
 本実施形態が対象とする巻鉄心は、非常に狭い領域に限定された屈曲部と、屈曲部5に比べると相対的に広い領域である平面部が交互に配置された構造を有している。屈曲部は小さな曲率半径rとなるよう曲げられた形態ゆえに、方向性電磁鋼板の磁歪に起因する鋼板の伸縮によって振動は制限されやすい。また平面部のうち比較的広いコーナー部間の平面部(上述の第1の平面部4)においては、特に平面部の中央領域にコイルや締め付け治具などが配置されることで積層された鋼板が強く拘束されるため、振動は制限されやすい。一方、コーナー部内に存在する平面部(上述の第2の平面部4a)やコーナー部に近接する平面部(上述の第1の平面部4の長手方向の両端部(屈曲部5に隣接する両端部))は、積層精度により隙間が生じやすいこともあり、磁歪に起因する振動が大きくなりやすい部位と推測される。
 また、結晶粒界に関し、一般的に結晶粒界近傍には還流磁区が発生しやすく、その存在が特に伸びの磁歪を大きくすることが知られている。さらに歪の影響により還流磁区が存在する領域が拡大し騒音を大きくすると考えられている。
 上記の屈曲部近傍に生じやすい積層鋼板間の隙間が多い領域、すなわち方向性電磁鋼板の面外移動に対する拘束がない領域で、還流磁区に起因する伸びの磁歪が大きくなると、鋼板が面外へ振動し騒音が大きくなることが考えられる。このため、本実施形態にて規定するような、屈曲部と結晶粒界の距離の制御が騒音に有効となる。このような本実施形態の作用機序は本実施形態が対象とする特定形状の鉄心での特別な現象であると考えられ、これまでほとんど考慮されてはいないが、本発明者らが得た知見と合致する解釈が可能である。
 本実施形態においては、結晶粒径は以下のように測定される。
 巻鉄心本体10の鋼板積層厚さをT(図8で示す「L3」に相当)としたとき、巻鉄心本体10のコーナー部を含む領域の最内面から、最内面を含みT/4毎の位置に積層された、合計5枚の方向性電磁鋼板を抜き出す。抜き出した各方向性電磁鋼板について、鋼板の表面に酸化物等からなる一次被膜(グラス被膜、中間層)、絶縁被膜等を有している場合は、これらを公知の方法で除去した上で、図7(a)に示すように、鋼板の内面側表面および外面側表面の結晶組織を目視により観察する。そして、各表面において略直線となっている屈曲部と平面部の境界線Bにおいて、該境界方向(境界線Bが延伸する方向(方向性電磁鋼板のC方向))の粒径と、該境界に垂直な方向(境界垂直方向(方向性電磁鋼板のL方向))の粒径を次のように測定する。
 境界方向の粒径Dc(mm)は、例えば図7(a)の模式図に示すように、境界線Bの長さ(巻鉄心を構成する方向性電磁鋼板1の幅に相当)をLc、境界線Bと交差する結晶粒界の数をNcとしたとき、下記式(2)により求める。
 Dc=Lc/(Nc+1) ・・・(2)
 また、境界垂直方向(境界方向と垂直な方向)の粒径Dl(mm)は、境界線Bの延伸方向(境界方向)において、Lcを6分割した位置のうち、端部を除く5カ所において、一方の屈曲部5と第1の平面部4との境界線Bを起点として第1の平面部4領域の方向に境界線Bと垂直に延伸した線が最初に結晶粒界と交差するまでの距離を第1の平面部4におけるDl1~Dl5とする。また、一方の屈曲部5と第2の平面部(コーナー部内の平面部)4aとの境界線Bを起点として第2の平面部4a領域の方向に境界線Bと垂直に延伸した線が最初に結晶粒界または第2の平面部4aを挟んで隣り合う他方の屈曲部5の境界線Bと交差するまでの距離を第2の平面部4aにおけるDl1~Dl5とする。他方の屈曲部5についても、同様にして、第1の平面部4および第2の平面部4aにおけるDl1~Dl5をそれぞれ求める。そして、これらDl1~Dl5を平均した距離として境界垂直方向の粒径Dl(mm)を求める。
 さらに、屈曲部5に隣接する第1の平面部4および第2の平面部4aの円相当の結晶粒径Dp(mm)を、下記式(1)より求める。
 Dp=√(Dc×Dl/π) ・・・(1)
 さらに、図7(b)の模式図に示すように、第2の平面部4aの内面側の結晶粒径に添字iiを、外面側の結晶粒径にioを、第1の平面部4の内面側の結晶粒径に添字oiを、外面側の結晶粒径にooをつける。このように、一つの屈曲部5に対して、(Dc、Dl、Dp)-(ii、io、oi、oo)という12個の結晶粒径(Dcii、Dcio、Dcoi、Dcoo、Dlii、Dlio、Dloi、Dloo、Dpii、Dpio、Dpoi、Dpoo)を決定する。そして、各コーナー部に存在する2つ以上(例えば図2に示す巻鉄心本体10では2つ、図3に示す巻鉄心本体10では3つ)の屈曲部5について、上記12個の結晶粒径のそれぞれを平均し、各コーナー部毎に、(Dc、Dl、Dp)-(ii、io、oi、oo)という12個の結晶粒径を決定する。
 本実施形態おいては、これらの結晶粒径を、屈曲部5を挟んで隣り合う2つの平面部のうち、長さが短い方の平面部の平均長さとの比較で規定する。本実施形態では、屈曲部5を挟んで隣り合う2つの平面部のうち、長さが短い方の平面部は、コーナー部内に存在する第2の平面部4aであるので、(Dc、Dl、Dp)-(ii、io、oi、oo)という12個の結晶粒径を、第2の平面部4aの平均長さFLとの比較で規定する。
 コーナー部内に存在する第2の平面部4aの平均長さFL(mm)は次のように求める。
 コーナー部内に屈曲部5がN個存在する場合、N個の屈曲部5のうちコーナー部端側に位置する屈曲部の第1の平面部4側の境界は、コーナー部と第1の平面部4の境界である。すなわち、コーナー部内においては、一方のコーナー部境界から他方のコーナー部境界に向けて屈曲部5と第2の平面部4aが交互に形成された状態となっている。つまり、コーナー部内の第2の平面部4aの数は(N-1)個となる。さらにコーナー部では、積層厚さ方向の位置によってコーナー部内の第2の平面部4a長さが異なることが通常である。つまり、外周側ほど該第2の平面部4aの長さが長くなるように鉄心形状が設計されることが多い。
 このような状況を勘案し、本実施形態においては、コーナー部内に存在する第2の平面部4aの平均長さFLは、上述の結晶粒径の測定用に採取したサンプルについて、ひとつのコーナー部内のすべての第2の平面部4aの長さの合計をその個数で除して求める。例えばコーナー部内に屈曲部5が2つ存在する場合は、コーナー部内の第2の平面部4aは該屈曲部5に挟まれた1つの領域となるので、その長さがそのサンプルについてのコーナー部内の第2の平面部の平均の長さである。コーナー部内に屈曲部5が3つ存在する場合は、コーナー部内の第2の平面部4aは該屈曲部5に挟まれた2つの領域が存在することとなるので、その長さを平均してそのサンプルについてのコーナー部内の第2の平面部の平均の長さを求める。そしてさらに、前記のように最内面を含みT/4毎の位置に積層された、合計5枚のサンプル(方向性電磁鋼板)それぞれについてのコーナー部内の第2の平面部の合計長さを平均してサンプル毎の平均長さを算出し、全サンプルの第2の平面部の平均長さをさらに平均することで、コーナー部内に存在する全ての第2の平面部の平均長さFLを求める。
 本実施形態の一つの実施形態においては、少なくとも一つのコーナー部3において、Dp-(ii、io、oi、oo)の平均値をDpxとして、Dpx≧FL/4であることを特徴とする。この規定は、上記で説明したメカニズムの基本的な特徴に対応するものである。この規定を満たすことで、結晶粒界と屈曲部5との距離を十分に大きくすることができる。その結果、騒音の発生を効率的に抑制できる。好ましくはDpx≧FL/2である。また、巻鉄心本体10に4つ存在するコーナー部のすべてにおいてDpx≧FL/4を満足することが好ましいことは言うまでもない。
 別の実施形態としては、少なくとも一つのコーナー部3において、Dl-(ii、io、oi、oo)の平均値をDpyとして、Dpy≧FL/4であることを特徴とする。この規定は、上記で説明したメカニズムが特に第1の平面部4および第2の平面部4aに存在する結晶粒界の影響を受けやすいという特徴に対応するものである。この規定を満たすことで第1の平面部4および第2の平面部4aにおいて結晶粒界と屈曲部5の距離を十分に大きくすることができる。その結果、騒音の発生を効率的に抑制できる。好ましくはDpy≧FL/2である。また、巻鉄心本体10に4つ存在するコーナー部のすべてにおいてDpy≧FL/4を満足することが好ましいことは言うまでもない。
 別の実施形態としては、少なくとも一つのコーナー部3において、Dc-(ii、io、oi、oo)の平均値をDpzとして、Dpz≧FL/4であることを特徴とする。この規定は、上記で説明したメカニズムが、特にコーナー部内の第2の平面部4aに存在する結晶粒界の影響を受けやすく、さらに屈曲部5の境界に平行して存在する結晶粒界(方向性電磁鋼板のL方向の結晶粒径)の影響を受けやすいという特徴に対応するものである。この規定を満たすことでコーナー部内の第2の平面部4aにおいて結晶粒界と屈曲部境界との垂直距離を十分に大きくすることができる。その結果、騒音の発生を効率的に抑制できる。好ましくはDpz=FL/2である。また、巻鉄心本体10に4つ存在するコーナー部のすべてにおいてDpz≧FL/4を満足することが好ましいことは言うまでもない。
(2)方向性電磁鋼板
 上述のように、本実施形態において用いられる方向性電磁鋼板1において母鋼板は、当該母鋼板中の結晶粒の方位が{110}<001>方位に高度に集積された鋼板であり、圧延方向に優れた磁気特性を有するものである。
 本実施形態において母鋼板は、公知の方向性電磁鋼板を用いることができる。以下、好ましい母鋼板の一例について説明する。
 母鋼板の化学組成は、質量%で、Si:2.0%~6.0%を含有し、残部がFeおよび不純物からなる。この化学組成は、結晶方位を{110}<001>方位に集積させたGoss集合組織に制御し、良好な磁気特性を確保するためである。その他の元素については、特に限定されるものではないが、本実施形態では、Si、Feおよび不純物に加えて、本発明の効果を阻害しない範囲の元素を含有してもよい。例えば、Feの一部に置き換えて、下記元素を以下の範囲で含有することが許容される。代表的な選択元素の含有範囲は以下のとおりである。
  C:0~0.0050%、
  Mn:0~1.0%、
  S:0~0.0150%、
  Se:0~0.0150%、
  Al:0~0.0650%、
  N:0~0.0050%、
  Cu:0~0.40%、
  Bi:0~0.010%、
  B:0~0.080%、
  P:0~0.50%、
  Ti:0~0.0150%、
  Sn:0~0.10%、
  Sb:0~0.10%、
  Cr:0~0.30%、
  Ni:0~1.0%、
  Nb:0~0.030%、
  V:0~0.030%、
  Mo:0~0.030%、
  Ta:0~0.030%、
  W:0~0.030%。
 これらの選択元素は、その目的に応じて含有させればよいので下限値を制限する必要がなく、実質的に含有していなくてもよい。また、これらの選択元素が不純物として含有されても、本実施形態の効果は損なわれない。また、実用鋼板においてC含有量を0%とすることは、製造上困難であるため、C含有量は0%超としてもよい。なお、不純物は意図せず含有される元素を指し、母鋼板を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境等から混入する元素を意味する。不純物の合計含有量の上限は、例えば、5%であればよい。
 母鋼板の化学成分は、鋼の一般的な分析方法によって測定すればよい。例えば、母鋼板の化学成分は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。具体的には、例えば、被膜除去後の母鋼板の中央の位置から35mm角の試験片を取得し、島津製作所製ICPS-8100等(測定装置)により、予め作成した検量線に基づいた条件で測定することにより特定できる。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。
 なお、上記の化学組成は、母鋼板としての方向性電磁鋼板1の成分である。測定試料となる方向性電磁鋼板1が、表面に酸化物等からなる一次被膜(グラス被膜、中間層)、絶縁被膜等を有している場合は、これらを公知の方法で除去してから化学組成を測定する。
(3)方向性電磁鋼板の製造方法
 方向性電磁鋼板の製造方法は、特に限定されないが、後述するように製造条件を緻密に制御することによって、鋼板の結晶粒径を作り込むことができる。このような所望の結晶粒径を有する方向性電磁鋼板を用い、かつ後述する好適な加工条件によって巻鉄心を製造することで、騒音の発生を抑制することが可能な巻鉄心を得ることができる。製造方法の好ましい具体例としては、例えばまず、Cを0.04~0.1質量%とし、その他は上記方向性電磁鋼板の化学組成を有するスラブを1000℃以上に加熱して熱間圧延を行った後、400~850℃にて巻き取る。必要に応じて熱延板焼鈍を行う。熱延板焼鈍の条件は特に限定されないが、析出物制御の観点から、焼鈍温度:800~1200℃、焼鈍時間:10~1000秒としてよい。次いで、1回又は中間焼鈍を挟む2回以上の冷延により冷延鋼板を得る。この時の冷延率は、集合組織の制御の観点から80~99%としてよい。当該冷延鋼板を、例えば湿水素-不活性ガス雰囲気中で700~900℃に加熱して脱炭焼鈍し、必要に応じて更に窒化焼鈍を行う。その後、焼鈍後の鋼板上に焼鈍分離剤を塗布した上で、最高到達温度:1000℃~1200℃、40~90時間で仕上焼鈍し、900℃程度で絶縁皮膜を形成する。上記各条件のうち、特に脱炭焼鈍、仕上げ焼鈍は鋼板の結晶粒径に影響を及ぼす。そのため、巻鉄心を製造する際には、上記条件の範囲内で製造された方向性電磁鋼板を用いることが好ましい。
 また、一般的に「磁区制御」と呼ばれる処理を鋼板の製造工程において公知の方法で施した鋼板であっても本実施形態の効果を享受できる。
 上記のとおり、本実施形態で使用される方向性電磁鋼板1の特徴である結晶粒径は、例えば仕上焼鈍の最高到達温度と時間によって調整することが好ましい。このように鋼板全体の平均結晶粒径を大きくし、各結晶粒径を上記のFL/2以上としておくことで、巻鉄心を製造する際に屈曲部5が任意の位置に形成された場合でも、上記のDpx等がFL/4以上になることが期待される。または、鋼板製造時点での結晶粒は比較的微細であっても、折り曲げ加工後に屈曲部を加熱することで屈曲部近傍の結晶粒を粗大化させてもよい。このような部分加熱を行うことで、特定のコーナー部を確実に望む粒径に制御することが可能となる。このような部分加熱処理は屈曲部の歪を解放することにもなるため、本実施形態で得られる効果とは独立した鉄心特性の改善にも有効である。
3.巻鉄心の製造方法
 本実施形態に係る巻鉄心の製造方法は、前記本実施形態に係る巻鉄心を製造することができれば特に制限はなく、例えば背景技術において特許文献9~11として紹介した公知の巻鉄心に準じた方法を適用すれば良い。特にAEM UNICORE社のUNICORE(https://www.aemcores.com.au/technology/unicore/)製造装置を使用する方法は最適と言える。
 なお、上記Dpx、Dpy、Dpzを精緻に制御する観点からは、加工時の加工速度(パンチ速度、mm/秒)、ならびに及び加工後に実施する急速加熱処理における加熱温度(℃)および加熱時間(秒)を制御することが好ましい。具体的には、加工速度(パンチ速度)は20~80mm/秒とすることが好ましい。また、加工後に実施する急速加熱処理における加熱温度は90~450℃、加熱時間は6~500秒とすることが好ましい。
 さらに公知の方法に準じて、必要に応じて熱処理を実施しても良い。また得られた巻鉄心本体10は、そのまま巻鉄心として使用してもよいが、更に必要に応じて積み重ねられた複数の方向性電磁鋼板1を結束バンド等、公知の締付具等を用いて一体的に固定して巻鉄心としてもよい。
 本実施形態は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下、本発明の実施例を挙げながら、本発明の技術的内容について更に説明する。以下に示す実施例での条件は、本発明の実施可能性及び効果を確認するために採用した条件例であり、本発明は、この条件例に限定されるものではない。また本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
(方向性電磁鋼板)
 表1に示す化学組成(質量%、表示以外の残部はFe)を有するスラブを素材として、表2に示す化学組成(質量%、表示以外の残部はFe)を有する最終製品(製品板)を製造した。得られた鋼板の幅は1200mmであった。
 表1および表2において、「-」は含有量を意識した制御および製造をしておらず含有量の測定を実施していない元素であることを意味する。また、「<0.002」および「<0.004」は含有量を意識した制御および製造を実施し、含有量の測定を実施したが、精度の信憑性として十分な測定値が得られなかった(検出限界以下)元素であることを意味する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 なお、鋼板の製造工程および条件の詳細は表3に示すとおりである。
 具体的には、熱間圧延、熱延板焼鈍、冷間圧延を実施した。一部については、脱炭焼鈍後の冷延鋼板に、水素-窒素-アンモニアの混合雰囲気で窒化処理(窒化焼鈍)を施した。
 さらに、MgOを主成分とする焼鈍分離剤を塗布し、仕上げ焼鈍を施した。仕上げ焼鈍鋼板の表面に形成された一次被膜の上に、燐酸塩とコロイド状シリカを主体としクロムを含有する絶縁被膜コーティング溶液を塗布し、これを熱処理して、絶縁被膜を形成した。
 この際、仕上げ焼鈍の温度、または時間を調整することで、結晶粒径を制御した鋼板を製造した。製造された鋼板の詳細は表3に示す。
Figure JPOXMLDOC01-appb-T000003
 (鉄心)
 各鋼板を素材として、表4および図8に示す形状を有する鉄心コアNo.a~eを製造した。なお、L1はX軸方向に平行で、中心CLを含む平断面での巻鉄心の最内周にある互いに平行な方向性電磁鋼板1間の距離(内面側平面部間距離)であり、L2はZ軸方向に平行で、中心CLを含む縦断面での巻鉄心の最内周にある互いに平行な方向性電磁鋼板1間の距離(内面側平面部間距離)であり、L3はX軸方向に平行で、中心CLを含む平断面での巻鉄心の積層厚さ(積層方向の厚さ)であり、L4はX軸方向に平行で中心CLを含む平断面での巻鉄心の積層鋼板幅であり、L5は巻鉄心の最内部の互いに隣り合って、かつ、合わせて直角をなすように配置された平面部間距離(屈曲部間の距離)である。言い換えると、L5は、最内周の方向性電磁鋼板の平面部4,4aのうち、最も長さが短い平面部4aの長手方向の長さである。rは巻鉄心の内面側の屈曲部の曲率半径(mm)、φは巻鉄心の屈曲部の曲げ角度(°)である。略矩形状の鉄心コアNo.a~eは、内面側平面部距離がL1である平面部が距離L1のほぼ中央で分割されており、「略コの字」の形状を有する2つの鉄心を結合した構造となっている。
Figure JPOXMLDOC01-appb-T000004
(評価方法)
(1)方向性電磁鋼板の磁気特性
 方向性電磁鋼板の磁気特性は、JIS C 2556:2015に規定された単板磁気特性試験法(Single Sheet Tester:SST)に基づいて測定した。
 磁気特性として、800A/mで励磁したときの鋼板の圧延方向の磁束密度B8(T)と、交流周波数:50Hz、励磁磁束密度:1.7Tでの鋼板の鉄損を測定した。
(2)鉄心における粒径
前述の通り鉄心から抜き出した鋼板の両表面の観察により12個の結晶粒径(Dcii、Dcio、Dcoi、Dcoo、Dlii、Dlio、Dloi、Dloo、Dpii、Dpio、Dpoi、Dpoo)を求めた。
(3)鉄心の騒音
 各鋼板を素材とする鉄心についてIEC60076-10の方法に基づいて鉄心の騒音を測定した。なお本実施例では、騒音が29.0dB未満であった場合を、鉄損効率の悪化を抑制できたものとして評価した。
 磁区幅が異なる各種鋼板を用いて製造した各種鉄心における効率を評価した。結果を表5に示す。同じ鋼種を用いた場合であっても、結晶粒径を適切に制御することにより鉄心の効率を向上できることがわかる。
Figure JPOXMLDOC01-appb-T000005
 以上の結果より、本発明の巻鉄心は、積層される方向性電磁鋼板の結晶粒径Dpx、DpyおよびDpzがそれぞれFL/4以上であるから、不用意な騒音の発生を効果的に抑制できることが明らかとなった。
 本発明によれば、曲げ加工された鋼板を積層してなる巻鉄心において、鉄心の効率の悪化を効果的に抑制することが可能となる。
 1 方向性電磁鋼板
 2 積層構造
 3 コーナー部
 4 第1の平面部(平面部)
 4a 第2の平面部(平面部)
 5 屈曲部
 6 接合部
 10 巻鉄心本体

Claims (3)

  1.  側面視において複数の多角形環状の方向性電磁鋼板が板厚方向に積層された巻鉄心本体を備える巻鉄心であって、
     前記方向性電磁鋼板は長手方向に平面部と屈曲部とが交互に連続し、
     前記屈曲部の側面視における内面側曲率半径rは1mm以上5mm以下であり、
     前記方向性電磁鋼板が
    質量%で、
      Si:2.0~7.0%、
     を含有し、残部がFeおよび不純物からなる化学組成を有し、
     Goss方位に配向する集合組織を有し、且つ
    少なくとも一つの前記屈曲部において、積層される前記方向性電磁鋼板の結晶粒径Dpx(mm)がFL/4以上
    であることを特徴とする、巻鉄心。
     ここで、Dpx(mm)は、下記式(1)により求められるDpの平均値であり、
     Dc(mm)は、前記屈曲部と、この屈曲部を挟むように配置された2つの前記平面部とのそれぞれの境界における境界線が延伸する方向の平均結晶粒径であり、
     Dl(mm)は、前記境界における前記境界線が延伸する方向と垂直な方向の平均結晶粒径であり、
     FL(mm)は、前記屈曲部を挟んで隣り合う2つの前記平面部のうち、長さが短い方の平面部の平均長さである。
     また、前記Dpの平均値とは、2つの前記平面部のうちの一方の前記平面部の内面側のDpと外面側のDp、ならびに他方の前記平面部の内面側のDpと外面側のDpの平均値である。
     Dp=√(Dc×Dl/π) ・・・(1)
  2.  側面視において複数の多角形環状の方向性電磁鋼板が板厚方向に積層された巻鉄心本体を備える巻鉄心であって、
     前記方向性電磁鋼板は長手方向に平面部と屈曲部とが交互に連続し、
     前記屈曲部の側面視における内面側曲率半径rは1mm以上5mm以下であり、
     前記方向性電磁鋼板が
    質量%で、
      Si:2.0~7.0%、
     を含有し、残部がFeおよび不純物からなる化学組成を有し、
     Goss方位に配向する集合組織を有し、且つ
     少なくとも一つの前記屈曲部において、積層される前記方向性電磁鋼板の結晶粒径Dpy(mm)がFL/4以上である
    ことを特徴とする、巻鉄心。
     ここで、Dpy(mm)は、Dl(mm)の平均値であり、
     Dl(mm)は、前記屈曲部と、この屈曲部を挟むように配置された2つの前記平面部とのそれぞれの境界における境界線が延伸する方向と垂直な方向の平均結晶粒径であり、
     FL(mm)は、前記屈曲部を挟んで隣り合う2つの前記平面部のうち、長さが短い方の平面部の平均長さである。
     また、前記Dlの平均値とは、2つの前記平面部のうちの一方の前記平面部の内面側のDlと外面側のDl、ならびに他方の前記平面部の内面側のDlと外面側のDlの平均値である。
  3.  側面視において複数の多角形環状の方向性電磁鋼板が板厚方向に積層された巻鉄心本体を備える巻鉄心であって、
     方向性電磁鋼板は長手方向に平面部と屈曲部とが交互に連続し、
     前記屈曲部の側面視における内面側曲率半径rは1mm以上5mm以下であり、
     前記方向性電磁鋼板が
    質量%で、
      Si:2.0~7.0%、
     を含有し、残部がFeおよび不純物からなる化学組成を有し、
     Goss方位に配向する集合組織を有し、且つ
     少なくとも一つの前記屈曲部において、積層される前記方向性電磁鋼板の結晶粒径Dpz(mm)がFL/4以上である
    ことを特徴とする、巻鉄心。
     ここで、Dpz(mm)は、Dc(mm)の平均値であり、
     Dc(mm)は、前記屈曲部と、この屈曲部を挟むように配置された2つの前記平面部とのそれぞれの境界における境界線が延伸する方向の平均結晶粒径であり、
     FL(mm)は、前記屈曲部を挟んで隣り合う2つの前記平面部のうち、長さが短い方の平面部の平均長さである。
     また、前記Dcの平均値とは、2つの前記平面部のうちの一方の前記平面部の内面側のDcと外面側のDc、ならびに他方の前記平面部の内面側のDcと外面側のDpの平均値である。
PCT/JP2021/039551 2020-10-26 2021-10-26 巻鉄心 WO2022092114A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020237013150A KR20230070021A (ko) 2020-10-26 2021-10-26 권철심
JP2022559175A JP7538440B2 (ja) 2020-10-26 2021-10-26 巻鉄心
CA3195782A CA3195782A1 (en) 2020-10-26 2021-10-26 Wound core
US18/032,519 US20240096540A1 (en) 2020-10-26 2021-10-26 Wound core
CN202180072622.3A CN116419979A (zh) 2020-10-26 2021-10-26 卷绕铁芯
EP21886232.4A EP4234728A4 (en) 2020-10-26 2021-10-26 WOUND CORE
AU2021369232A AU2021369232B2 (en) 2020-10-26 2021-10-26 Wound core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020178898 2020-10-26
JP2020-178898 2020-10-26

Publications (1)

Publication Number Publication Date
WO2022092114A1 true WO2022092114A1 (ja) 2022-05-05

Family

ID=81381456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039551 WO2022092114A1 (ja) 2020-10-26 2021-10-26 巻鉄心

Country Status (8)

Country Link
US (1) US20240096540A1 (ja)
EP (1) EP4234728A4 (ja)
KR (1) KR20230070021A (ja)
CN (1) CN116419979A (ja)
AU (1) AU2021369232B2 (ja)
CA (1) CA3195782A1 (ja)
TW (1) TWI781805B (ja)
WO (1) WO2022092114A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689805A (ja) 1992-09-09 1994-03-29 Nippon Steel Corp 超高磁束密度一方向性電磁鋼板
JPH08134660A (ja) 1994-11-02 1996-05-28 Nippon Steel Corp 極めて低い鉄損を有する一方向性電磁鋼板
JPH10183313A (ja) 1996-10-21 1998-07-14 Kawasaki Steel Corp 鉄損が低く、耐歪特性および実機特性に優れた方向性電磁鋼板
JP2001192785A (ja) 2000-01-06 2001-07-17 Kawasaki Steel Corp 磁気特性に優れた方向性電磁鋼板およびその製造方法
JP2005240079A (ja) 2004-02-25 2005-09-08 Jfe Steel Kk 鉄損劣化率が小さい方向性電磁鋼板
JP2005286169A (ja) 2004-03-30 2005-10-13 Toshiba Corp 変圧器の巻鉄心の製造方法及びその製造装置
JP2012052229A (ja) 2010-08-06 2012-03-15 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
AU2012337260A1 (en) 2011-11-14 2014-05-22 Hitachi Energy Ltd Wind-on core manufacturing method for split core configurations
JP6224468B2 (ja) 2014-01-27 2017-11-01 東芝産業機器システム株式会社 巻鉄心および巻鉄心の製造方法
JP2018148036A (ja) 2017-03-06 2018-09-20 新日鐵住金株式会社 巻鉄心
JP2019087619A (ja) * 2017-11-06 2019-06-06 新日鐵住金株式会社 巻鉄心のbf推定方法
WO2019151399A1 (ja) * 2018-01-31 2019-08-08 Jfeスチール株式会社 方向性電磁鋼板およびこれを用いてなる変圧器の巻鉄心並びに巻鉄心の製造方法
JP2020178898A (ja) 2019-04-25 2020-11-05 株式会社藤商事 遊技機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197233A (en) 1978-03-15 1980-04-08 Kennecott Copper Corporation Anti-fouling and anti-sliming coating material
JP5332946B2 (ja) * 2009-06-25 2013-11-06 新日鐵住金株式会社 窒化型方向性電磁鋼板の窒化後のコイル巻き取り方法
KR101952237B1 (ko) * 2015-02-05 2019-02-26 제이에프이 스틸 가부시키가이샤 방향성 전자 강판 및 그의 제조 방법 그리고 변압기 소음 특성의 예측 방법
CA3086888C (en) 2017-12-28 2022-10-11 Jfe Steel Corporation Grain-oriented electrical steel sheet

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689805A (ja) 1992-09-09 1994-03-29 Nippon Steel Corp 超高磁束密度一方向性電磁鋼板
JPH08134660A (ja) 1994-11-02 1996-05-28 Nippon Steel Corp 極めて低い鉄損を有する一方向性電磁鋼板
JPH10183313A (ja) 1996-10-21 1998-07-14 Kawasaki Steel Corp 鉄損が低く、耐歪特性および実機特性に優れた方向性電磁鋼板
JP2001192785A (ja) 2000-01-06 2001-07-17 Kawasaki Steel Corp 磁気特性に優れた方向性電磁鋼板およびその製造方法
JP2005240079A (ja) 2004-02-25 2005-09-08 Jfe Steel Kk 鉄損劣化率が小さい方向性電磁鋼板
JP2005286169A (ja) 2004-03-30 2005-10-13 Toshiba Corp 変圧器の巻鉄心の製造方法及びその製造装置
JP2012052229A (ja) 2010-08-06 2012-03-15 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
AU2012337260A1 (en) 2011-11-14 2014-05-22 Hitachi Energy Ltd Wind-on core manufacturing method for split core configurations
JP6224468B2 (ja) 2014-01-27 2017-11-01 東芝産業機器システム株式会社 巻鉄心および巻鉄心の製造方法
JP2018148036A (ja) 2017-03-06 2018-09-20 新日鐵住金株式会社 巻鉄心
JP2019087619A (ja) * 2017-11-06 2019-06-06 新日鐵住金株式会社 巻鉄心のbf推定方法
WO2019151399A1 (ja) * 2018-01-31 2019-08-08 Jfeスチール株式会社 方向性電磁鋼板およびこれを用いてなる変圧器の巻鉄心並びに巻鉄心の製造方法
JP2020178898A (ja) 2019-04-25 2020-11-05 株式会社藤商事 遊技機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4234728A4

Also Published As

Publication number Publication date
EP4234728A4 (en) 2023-11-15
KR20230070021A (ko) 2023-05-19
TWI781805B (zh) 2022-10-21
AU2021369232B2 (en) 2024-03-28
TW202232526A (zh) 2022-08-16
CN116419979A (zh) 2023-07-11
JPWO2022092114A1 (ja) 2022-05-05
CA3195782A1 (en) 2022-05-05
EP4234728A1 (en) 2023-08-30
US20240096540A1 (en) 2024-03-21
AU2021369232A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
JP6690739B2 (ja) 巻鉄心、及びその製造方法
JP6776952B2 (ja) 巻鉄心
JP6794888B2 (ja) 方向性電磁鋼板の選別方法、及び、巻鉄心の製造方法
JP7009937B2 (ja) 巻鉄心のbf推定方法
KR20220156644A (ko) 방향성 전자 강판 및 방향성 전자 강판의 제조 방법
WO2022092120A1 (ja) 巻鉄心
JP7103553B1 (ja) 巻鉄心
JP7103555B1 (ja) 巻鉄心
WO2022092114A1 (ja) 巻鉄心
JP7538440B2 (ja) 巻鉄心
JP7541251B2 (ja) 巻鉄心
JP7485954B2 (ja) 巻鉄心
JP7151947B1 (ja) 巻鉄心および巻鉄心の製造方法
WO2023007953A1 (ja) 巻鉄心および巻鉄心の製造方法
JP7188662B2 (ja) 巻鉄心
JP7151946B1 (ja) 巻鉄心および巻鉄心の製造方法
RU2811454C1 (ru) Ленточный сердечник
WO2023007952A1 (ja) 巻鉄心および巻鉄心の製造方法
WO2023167015A1 (ja) 三相三脚巻鉄心およびその製造方法
JP7318846B1 (ja) 三相三脚巻鉄心およびその製造方法
JP7318845B1 (ja) 三相三脚巻鉄心およびその製造方法
WO2022092118A1 (ja) 巻鉄心
WO2023167016A1 (ja) 三相三脚巻鉄心およびその製造方法
JP2022069937A (ja) 巻鉄心
JP2022070241A (ja) 巻鉄心

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559175

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3195782

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202317027592

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237013150

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18032519

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023007344

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023007344

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230419

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021886232

Country of ref document: EP

Effective date: 20230526

ENP Entry into the national phase

Ref document number: 2021369232

Country of ref document: AU

Date of ref document: 20211026

Kind code of ref document: A