WO2022091701A1 - Motor control device, and washing machine or washing and drying machine having said motor control device installed therein - Google Patents

Motor control device, and washing machine or washing and drying machine having said motor control device installed therein Download PDF

Info

Publication number
WO2022091701A1
WO2022091701A1 PCT/JP2021/036541 JP2021036541W WO2022091701A1 WO 2022091701 A1 WO2022091701 A1 WO 2022091701A1 JP 2021036541 W JP2021036541 W JP 2021036541W WO 2022091701 A1 WO2022091701 A1 WO 2022091701A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
current
unit
polarity
control device
Prior art date
Application number
PCT/JP2021/036541
Other languages
French (fr)
Japanese (ja)
Inventor
昊 孫
晃史 亀田
禎士 上瀧
裕智 藤岡
陽子 賀門
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022558948A priority Critical patent/JP7442052B2/en
Priority to CN202180072186.XA priority patent/CN116349128A/en
Publication of WO2022091701A1 publication Critical patent/WO2022091701A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting

Definitions

  • the present disclosure relates to a motor control device that sensorlessly controls the rotation of a brushless motor (permanent magnet synchronous motor) having a rotor having a convex pole structure, and a washing machine or a washing / drying machine equipped with this motor control device.
  • a brushless motor permanent magnet synchronous motor
  • Patent Document 1 discloses a motor control device in which a rotor drives a brushless motor having a convex pole structure sensorlessly and determines a magnetic pole at startup.
  • This motor control device converts DC power into AC power to obtain motor power, and drives a brushless motor having a rotor having a convex pole structure.
  • This motor control device includes a current detector, a 3-phase / dq-axis conversion unit, a dq-axis current control unit, a dq-axis / 3-phase conversion unit, an AC alternating voltage generation unit for estimating the magnetic pole position, and a magnetic pole position estimation. It has a unit, a d-axis current / DC bias generation unit, and an NS discrimination unit.
  • the current detector detects the motor current from the inverter to the brushless motor.
  • the three-phase / dq-axis conversion unit converts the AC current detection value detected by the current detector into the dq-axis and outputs the d-axis current detection value and the q-axis current detection value.
  • the dq-axis current control unit calculates a d-axis voltage command and a q-axis voltage command such that the d-axis current detection value and the q-axis current detection value follow the d-axis current command input and the q-axis current command input.
  • the dq-axis / three-phase conversion unit converts the d-axis voltage command and the q-axis voltage command into a three-phase AC voltage command and gives the inverter as a control signal.
  • the AC alternating voltage generation unit for estimating the magnetic pole position superimposes an auxiliary AC alternating voltage on the d-axis voltage command.
  • the magnetic pole position estimation unit estimates the magnetic pole position of the permanent magnet synchronous motor from the q-axis current detection value and the auxiliary AC alternating voltage.
  • the d-axis current DC bias generator sets the direction of the magnetic pole position estimated by the magnetic pole position estimation unit as the d-axis, and adds the d-axis DC bias current with a constant waveform that alternates between positive and negative symmetry to the d-axis current command.
  • the d-axis current command after this bias addition is input to the dq-axis current control unit.
  • the NS discriminator calculates the d-axis applied voltage and the d-axis current change rate at the positive / negative switching timing of the d-axis DC bias current, and from the relationship between the calculated d-axis applied voltage and the d-axis current change rate, the permanent magnet synchronous motor.
  • the direction of the north pole and the south pole of the permanent magnet is discriminated, and an NS discriminant signal is output.
  • the present disclosure discloses a motor control device capable of correctly detecting a magnetic pole even when the initially estimated d-axis direction is incorrect by 90 ° or 270 ° with respect to the correct direction, and a washing machine equipped with this motor control device. Provide a washer / dryer.
  • the motor control device in the present disclosure controls a brushless motor having a rotor having a convex pole structure driven by an inverter circuit.
  • the motor control device in the present disclosure includes an inverter circuit, a current detection unit, an initial phase estimation unit, and a polarity discrimination unit.
  • the current detection unit detects the current of the brushless motor.
  • the initial phase estimation unit estimates the initial phase of the brushless motor based on the current detected by the current detection unit.
  • the polarity discriminating unit discriminates the polarity of the magnetic poles of the brushless motor based on the current detected by the current detecting unit.
  • the polarity discriminator superimposes voltages in the positive and negative directions of the d-axis and q-axis with respect to the initial phase estimated by the initial phase estimation unit, and the d-axis and q-axis detected by the current detection unit, respectively. Based on the difference between the positive and negative current amplitudes, the polarity of the magnetic poles of the brushless motor is determined and the initial phase is corrected.
  • washing machine or the washer / dryer in the present disclosure is equipped with the motor control device in the present disclosure.
  • the motor control device in the present disclosure can correctly detect the magnetic pole even when the initially estimated direction of the d-axis is incorrect by 90 ° or 270 ° with respect to the correct direction.
  • the washing machine or the washer / dryer in the present disclosure is equipped with the motor control device in the present disclosure as described above, for example, the washing tub, the drum, and the like can be smoothly rotated.
  • FIG. 1 is a diagram showing a configuration of a motor control device according to the first embodiment.
  • FIG. 2 is a block diagram showing a configuration of a sensorless estimation unit of the motor control device according to the first embodiment.
  • FIG. 3 is a block diagram showing a detailed configuration of an inductance drive unit of the motor control device according to the first embodiment.
  • FIG. 4 is a block diagram showing a detailed configuration of an induced voltage drive unit of the motor control device according to the first embodiment.
  • FIG. 5 is a flowchart showing the flow of the motor drive control process of the motor control device according to the first embodiment.
  • FIG. 6A is a diagram for explaining a problem regarding the initial phase estimation of the rotor.
  • FIG. 6B is a diagram for explaining a problem regarding the initial phase estimation of the rotor.
  • FIG. 6C is a diagram for explaining a problem regarding the initial phase estimation of the rotor.
  • FIG. 7 is a diagram showing magnetic saturation characteristics of an electromagnetic steel sheet used in a general brushless motor.
  • FIG. 8 is a flowchart showing the flow of the polarity discrimination process of the motor control device according to the first embodiment.
  • FIG. 9 is a diagram showing an example of an applied voltage and current at the time of d-axis determination of the motor control device according to the first embodiment.
  • FIG. 10 is a diagram showing an example of the applied voltage and current at the time of determining the d-axis and the q-axis of the motor control device according to the first embodiment.
  • FIG. 11 is a diagram for explaining the applied voltage and current at the time of offset correction at the time of determining the polarity of the motor control device according to the first embodiment.
  • FIG. 12 is a diagram for explaining the outline of polarity discrimination when current control is performed in the motor control device according to the second embodiment.
  • the motor control device in the present disclosure controls a brushless motor having a rotor having a convex pole structure driven by an inverter circuit.
  • the motor control device in the present disclosure includes an inverter circuit, a current detection unit, an initial phase estimation unit, and a polarity discrimination unit.
  • the current detection unit detects the current of the brushless motor.
  • the initial phase estimation unit estimates the initial phase of the brushless motor based on the current detected by the current detection unit.
  • the polarity discriminating unit discriminates the polarity of the magnetic poles of the brushless motor based on the current detected by the current detecting unit.
  • the polarity discriminator superimposes voltages in the positive and negative directions of the d-axis and q-axis with respect to the initial phase estimated by the initial phase estimation unit, and the d-axis and q-axis detected by the current detection unit, respectively. Based on the difference between the positive and negative current amplitudes, the polarity of the magnetic poles of the brushless motor is determined and the initial phase is corrected.
  • the motor control device in the present disclosure can correctly detect the magnetic pole even when the initially estimated direction of the d-axis is incorrect by 90 ° or 270 ° with respect to the correct direction. Therefore, the motor control device in the present disclosure can suppress reverse start and start failure at the start of the brushless motor, and can perform smoother acceleration than at the start of the brushless motor.
  • the polarity discriminator superimposes a voltage in the positive and negative directions of the d-axis, and the absolute difference in current amplitude in the positive and negative directions of the d-axis detected by the current detection unit is used. If the value is larger than the reference value, the polarity determination of the brushless motor may be terminated. When the absolute value of the current amplitude difference in the positive and negative directions of the d-axis is smaller than the reference value, the polarity discriminating unit performs the following.
  • the polarity discriminator superimposes the voltage in the positive and negative directions of the q-axis, and the current amplitude difference in the positive and negative directions of the q-axis detected by the current detection unit and the positive and negative directions of the d-axis.
  • the polarity of the magnetic poles of the brushless motor may be determined based on the current amplitude difference of the brushless motor, and the initial phase may be corrected.
  • the polarity discriminant unit may use the current detected by the current detection unit as an offset current value immediately before superimposing the voltage in the positive and negative directions of the d-axis and the q-axis, respectively. ..
  • the polarity discriminator superimposes voltages in the positive and negative directions of the d-axis and q-axis, respectively, and offsets the current from the maximum value of the current amplitude in the positive and negative directions of the d-axis and q-axis detected by the current detector. Based on the value obtained by subtracting the value, the polarity of the magnetic pole of the brushless motor may be determined and the initial phase may be corrected.
  • the polarity discriminator may control the current flowing through the brushless motor to be 0 while discriminating the polarity of the magnetic poles of the brushless motor.
  • washing machine or the washer / dryer in the present disclosure is equipped with the motor control device in the present disclosure.
  • the initial phase of the rotor is estimated when the brushless motor having a convex pole structure is driven without a sensor, when the brushless motor is started to be driven, and when the brushless motor is stopped prior to the drive.
  • the difference in inductance L between the direction of the magnetic pole (d-axis direction) and the direction orthogonal to the magnetic pole (q-axis direction), which is a characteristic of the rotor having convex polarity, is used.
  • a low-amplitude high-frequency or pulsed voltage and current are applied to the stator winding, and it is estimated in which direction the rotor is oriented.
  • the direction of the rotor can be estimated, but the polarity (NS) of the magnetic poles is not known, so the polarity determination for determining the N pole and the S pole of the magnetic poles is performed.
  • the direction of the d-axis estimated at the time of initial phase estimation is the direction of the magnetic pole, but the estimated value may be the direction orthogonal to the magnetic pole (q-axis direction) at a certain rate.
  • the inventors have discovered that the correct rotor direction cannot be obtained even if the polarity is determined, so that a phenomenon such as reverse drive or step-out and non-rotation may occur at the start of drive of the brushless motor.
  • the subject matter of this disclosure has been constructed.
  • the present disclosure provides a motor control device capable of correctly detecting a magnetic pole by polarity determination even if the d-axis direction estimated at the time of initial phase estimation is incorrect by 90 ° or 270 ° with respect to the correct direction.
  • FIG. 1 is a diagram showing a configuration of a motor control device 10 according to the first embodiment.
  • the motor control device 10 receives power from the AC power supply 30.
  • the rectifying circuit 11 converts the received AC power into DC power, and supplies power to the inverter circuit 13 via the DC power smoothing capacitor 12.
  • the inverter circuit 13 is composed of three sets of two in series, a total of six switching elements 14a, 14b, 14c, 14d, 14e and 14f.
  • the inverter circuit 13 drives the brushless motor 40 by PWM driving the ON / OFF of the switching elements 14a, 14b, 14c, 14d, 14e and 14f by the control circuit 20 described later.
  • resistors 15a, 15b and 15c are connected to the lower side, that is, the emitter side of the switching elements 14d, 14e and 14f. There is. The other ends of the resistors 15a, 15b and 15c are connected to one side of the output of the rectifier circuit 11 and the smoothing capacitor 12.
  • the voltage across the resistors 15a, 15b and 15c is input to the current detection unit 21 in the control circuit 20. As will be described later, various controls are performed using the current value detected by the current detection unit 21.
  • the control circuit 20 has an initial phase estimation unit 22, a polarity discrimination unit 23, and a sensorless estimation unit 24, together with the current detection unit 21 described above.
  • the motor control device 10 has a computer system having a processor and a memory. Then, the processor executes the program stored in the memory, so that the computer system functions as the control circuit 20.
  • the program executed by the processor is assumed to be recorded in advance in the memory of the computer system here, but may be recorded in a non-temporary recording medium such as a memory card and provided, or a telecommunications line such as the Internet. May be provided through.
  • FIG. 2 is a block diagram showing a configuration of a sensorless estimation unit 24 of the motor control device 10 according to the first embodiment.
  • the sensorless estimation unit 24 has an inductance type inductance drive unit 24b, an induced voltage type induced voltage drive unit 24c, and a drive method switching unit 24a.
  • the inductance type inductance drive unit 24b estimates the phase of the magnetic poles by utilizing the convex polarity of the rotor 41 having the convex pole structure of the brushless motor 40.
  • the induced voltage drive unit 24c of the induced voltage method estimates the magnetic pole position by using the counter electromotive force during rotation of the brushless motor 40.
  • the drive method switching unit 24a switches the method for estimating the magnetic pole position between the inductance method and the induced voltage method.
  • the inductance L changes according to the phase of the magnetic pole of the rotor 41 of the brushless motor 40. Therefore, the inductance type inductance drive unit 24b applies a high frequency current not related to the motor drive current to the motor to detect the motor current, and calculates the amount of position estimation error due to the inductance change from them. Then, the inductance drive unit 24b estimates the magnetic pole position so as to converge the amount of position estimation error to zero.
  • FIG. 3 is a block diagram showing a detailed configuration of the inductance drive unit 24b of the motor control device 10 according to the first embodiment.
  • the inductance drive unit 24b includes uvw ⁇ dq current conversion unit 24ba, position estimation ⁇ calculation unit 24bb, high frequency current control unit 24bc, angular velocity ⁇ calculation unit 24bd, position angle ⁇ calculation unit 24be, speed current control unit 24bf, and dq ⁇ uvw. It is composed of a voltage conversion unit 24 bg.
  • the uvw ⁇ dq current conversion unit 24ba outputs the dq current value by inputting the three-phase current values (Iu, Iv, Iw) (see FIG. 1) of the brushless motor 40 detected by the current detection unit 21.
  • the position estimation ⁇ calculation unit 24bb estimates the position of the magnetic pole from the dq current and outputs the position estimation value ⁇ .
  • the high-frequency current control unit 24bc controls the high-frequency current superimposed on the drive current.
  • the angular velocity ⁇ calculation unit 24bd calculates and outputs the angular velocity ⁇ from the position estimated value ⁇ .
  • the position angle ⁇ calculation unit 24be calculates and outputs the position angle ⁇ from the position estimation value ⁇ and the angular velocity ⁇ .
  • the velocity / current control unit 24bf feeds back the deviation between the estimated angular velocity (angular velocity ⁇ ) and the velocity command value ⁇ * , performs velocity calculation (PI control), determines the current command value of the brushless motor 40, and outputs the current command value.
  • the dq ⁇ uvw voltage conversion unit 24bg calculates the voltage (Vu, Vv, Vw) from the position angle ⁇ and the current command value, and outputs the voltage (Vu, Vv
  • the position estimation ⁇ calculation unit 24bb calculates the position estimation value ⁇ based on the following formula 1.
  • the motor to be driven in the first embodiment is a brushless motor 40 having a rotor 41 having a convex pole structure (d-axis inductance Ld ⁇ q-axis inductance Lq), the inductance L (magnetic resistance) depends on the phase of the magnetic poles. ) Changes. Since the change in the inductance L appears in the current of the brushless motor 40, the position estimation error amount is calculated according to the change amount of the current of the brushless motor 40 from the above equation 1.
  • the high frequency current control unit 24bc controls the high frequency current that is not related to the motor drive current.
  • a pulse current equivalent to a 2.56 ms period of 0.4 A is applied in the d-axis direction, and the q-axis current value when the pulse current is applied and the q-axis when the pulse current is not applied. The difference between the current values is calculated.
  • the position angle ⁇ calculation unit 24be and the angular velocity ⁇ calculation unit 24bd calculate the position angle ⁇ and the angular velocity ⁇ , respectively, based on the following formulas 2 and 3.
  • the position angle ⁇ is calculated by inputting the amount of position estimation error and the time integral of the angular velocity ⁇ , and the angular velocity ⁇ is calculated as the time derivative of the position angle ⁇ . Both the position angle ⁇ and the angular velocity ⁇ are calculated so that the amount of position estimation error converges to zero based on the feedback control.
  • induced voltage drive unit 24c calculates the induced voltage proportional to the speed of the brushless motor 40 from the voltage applied to the brushless motor 40 and the current, and estimates the magnetic pole position so as to converge the voltage error to zero.
  • FIG. 4 is a block diagram showing a detailed configuration of the induced voltage drive unit 24c of the motor control device 10 according to the first embodiment.
  • the induced voltage drive unit 24c includes an uvw ⁇ dq current conversion unit 24ca, a position estimation ⁇ calculation unit 24cc, an angular velocity ⁇ calculation unit 24cc, a position angle ⁇ calculation unit 24cd, a speed current control unit 24ce, and a dq ⁇ uvw voltage. It is composed of a conversion unit 24cf.
  • the uvw ⁇ dq current conversion unit 24ca outputs the dq current value by inputting the three-phase current values (Iu, Iv, Iw) of the brushless motor 40 detected by the current detection unit 21.
  • the position estimation ⁇ calculation unit 24cc estimates the position of the magnetic pole from the dq current and outputs the position estimation value ⁇ .
  • the angular velocity ⁇ calculation unit 24cc calculates and outputs the angular velocity ⁇ from the position estimated value ⁇ .
  • the position angle ⁇ calculation unit 24cd calculates and outputs the position angle ⁇ from the position estimation value ⁇ and the angular velocity ⁇ .
  • the speed / current control unit 24ce feeds back the deviation between the estimated angular velocity (angular velocity ⁇ ) and the speed command value ⁇ *, performs speed calculation (PI control), determines the current command value of the motor, and outputs it.
  • the dq ⁇ uvw voltage conversion unit 24cf calculates the voltage (Vu, Vv, Vw) from the position angle ⁇ and the current command value, and outputs the voltage (Vu, Vv, Vw) to the control circuit 20.
  • the position estimation ⁇ calculation unit 24cc calculates the position estimation value ⁇ based on the following mathematical formula 4.
  • Equation 4 for the position estimation value ⁇ , the d-axis current Id, the q-axis current Iq, the d-axis voltage Vd, and the angular velocity ⁇ are input, and the parameters of the q-axis inductance Lq and the resistance value Ra of the brushless motor 40 are used for this. It is calculated.
  • the angular velocity ⁇ calculation unit 24cc and the position angle ⁇ calculation unit 24cd calculate the angular velocity ⁇ and the position angle ⁇ , respectively, based on the following formulas 5 and 6.
  • the angular velocity ⁇ calculation unit 24cc calculates the angular velocity ⁇ using PI (proportional integration) so that the position estimation value ⁇ converges to zero, and further calculates the time integration of ⁇ to obtain the estimated phase (position).
  • the output is made as an angle ⁇ ).
  • the drive method switching unit 24a in the block diagram of the sensorless estimation unit 24 shown in FIG. 2 switches between the inductance drive unit 24b and the induced voltage drive unit 24c according to the rotation speed of the brushless motor 40 and the like. Specifically, the drive system switching unit 24a passes the position angle ⁇ , the angular velocity ⁇ , the motor current / voltage, and the angular velocity feedback control parameters required for motor control in real time, and realizes instantaneous switching.
  • FIG. 5 is a flowchart showing the flow of the motor drive control process of the motor control device 10 according to the first embodiment.
  • the motor control device 10 starts motor drive control in step S001.
  • the motor control device 10 performs initial phase estimation in step S002.
  • the motor control device 10 performs polarity discrimination in step S003, and corrects the phase estimated by the initial phase estimation according to the discrimination result. Details of the initial phase estimation in step S002 and the polarity determination in step S003 will be described later.
  • the motor control device 10 performs motor start control by the inductance drive unit 24b in step S004, and determines in step S005 whether the rotation speed of the brushless motor 40 is equal to or higher than a certain level.
  • step S005 YES
  • the motor control device 10 switches the drive system in step S006. That is, the drive method switching unit 24a switches from the inductance drive unit 24b to the induced voltage drive unit 24c.
  • step S007 the motor control device 10 performs motor steady rotation control by the induced voltage drive unit 24c, performs motor deceleration control in step S008, and ends motor drive control in step S009.
  • FIGS. 6A to 6C are diagrams for explaining a problem regarding the initial phase estimation of the rotor 41.
  • the initial phase estimation d-axis and the initial phase estimation q-axis are indicated by solid lines, and the actual d-axis and the actual q-axis are indicated by broken lines.
  • FIG. 6A shows how the rotor 41 having the magnet 42 inside the brushless motor 40 and the dq axis have a correct relationship.
  • the d-axis is the magnetic pole direction
  • the q-axis is the direction orthogonal to the d-axis.
  • the north pole direction of the magnetic pole is the positive direction of the d-axis
  • the south pole is the negative direction of the d-axis.
  • the initial phase estimation unit 22 estimates the phase of the initial rotor 41 by the inductance drive unit 24b. Specifically, a drive period in which both the motor rotation speed and the motor current have a command value of 0 is provided for 100 ms, and the phase of the initial rotor 41 is estimated.
  • the inductance drive unit 24b estimates the phase by using the difference (Ld ⁇ Lq) of the inductance L in the d-axis and q-axis directions, which is a feature of the rotor 41 having a convex pole structure of the brushless motor 40. That is, the inductance drive unit 24b discriminates between the rotor 41 and the horizontal direction (d axis) or the vertical direction (q axis). I can't tell if it's oriented. Further, as shown in FIG.
  • the inductance L of the dq axis with respect to the rotor 41 has a periodicity of 2 ⁇ , and the initial phase is erroneously set in the q-axis direction deviated by 90 ° or 270 ° from the actual d-axis.
  • the motor control device 10 takes measures against the above problems by the following polarity discriminating unit 23.
  • FIG. 7 is a diagram showing magnetic saturation characteristics of an electromagnetic steel sheet, which is a rotor core used in a general brushless motor.
  • the time derivative (di / dt) of the current is small when the inductance L is large, and the current per unit time.
  • the amount of change i becomes smaller.
  • the time derivative (di / dt) of the current becomes large, and the current change amount i in a unit time becomes large. That is, when the inductance L fluctuates, the current i also fluctuates.
  • the polarity discriminating unit 23 utilizes the characteristic that the inductance L fluctuates due to magnetic saturation. For example, the polarity discriminating unit 23 applies voltages + Vd and ⁇ Vd having the same absolute value in the positive and negative directions of the estimated d-axis, which is the result of initial phase estimation by the initial phase estimation unit 22, for the same time. The polarities are discriminated by the magnitude of the amount of change in the flowing current + Id1 and -Id2, respectively.
  • the polarity of the magnetic pole of the initial phase estimation d-axis is determined by the absolute value of the current change amount when a voltage + Vd is applied in the positive direction of the initial phase estimation d-axis
  • FIG. 8 is a flowchart showing the flow of the polarity discrimination process of the motor control device 10 according to the first embodiment.
  • the polarity discrimination unit 23 starts the polarity discrimination process in step S101.
  • the polarity determination unit 23 performs initialization processing in step S102, and performs Id offset calculation when the current of the initial phase estimation d-axis is 0 in step S103. That is, the polarity determination unit 23 stores the d-axis current Id detected by the current detection unit 21 as an offset current value immediately before the processing of steps S104 to S107 described later in which the voltage is superimposed in the positive and negative directions of the d-axis. do. Since the details of the offset calculation of the d-axis current Id and the offset calculation of the q-axis current Iq described later will be described later (see FIG. 11), the following description of FIG. 8 will be described without considering the offset current value.
  • step S104 the polarity discriminating unit 23 superimposes voltage + Vd in the positive direction of the initial phase estimation d-axis for a certain period of time, and in step S105, the absolute value of the amount of change in the current value in the positive direction of the initial phase estimation d-axis.
  • is integrated ( ⁇ + Id).
  • step S106 the polarity discriminating unit 23 superimposes voltage ⁇ Vd in the negative direction of the initial phase estimation d-axis for a certain period of time, and in step S107, the absolute amount of change in the current value in the negative direction of the initial phase estimation d-axis is absolute.
  • the polarity discriminating unit 23 repeats the processes of steps S104 to S107 three times.
  • the processes of steps S104 to S107 are repeated three times, but the number of repetitions is not limited to this, and may be, for example, two or four times. This also applies to the number of times that the processes of steps S115 to S118, which will be described later, are repeated.
  • step S108 the polarity discriminating unit 23 compares the integration of the maximum current amplitude of the absolute value of the amount of change in the current after applying the voltage in each of the positive and negative directions of the initial phase estimation d-axis, and the comparison result. Perform processing according to. Specifically, if ⁇ -Id> ⁇ + Id (step S108: YES), the polarity discriminating unit 23 proceeds to the process of step S109, and if ⁇ -Id ⁇ ⁇ + Id (step S108: NO), step S110. Proceed to the process of.
  • step S109 since the actual d-axis may be in the direction opposite to the direction of the initial phase estimation d-axis, the polarity determination unit 23 adds 180 ° to the phase value at the time of initial phase estimation, and the phase information. It is stored in ⁇ tpD, which is a temporary storage location for.
  • step S110 since the direction of the initial phase estimation d-axis may be correct, the polarity determination unit 23 stores the phase value at the time of initial phase estimation in ⁇ tpD, which is a temporary storage place for phase information. The polarity determination unit 23 performs d-axis determination in the above processes of steps S101 to S110, and corrects the estimated phase.
  • the polarity determination unit 23 confirms the accuracy of the d-axis determination on the initial phase estimation d-axis.
  • the polarity discriminating unit 23 is the difference between the integration of the maximum current amplitude of the absolute value of the amount of change in the current after applying the voltage in each of the positive and negative directions of the initial phase estimation d-axis performed in steps S104 to S107 in step S111.
  • the absolute value ⁇ Id
  • the polarity determination unit 23 confirms whether or not the absolute value ⁇ Id of this difference is larger than the default reference value Idth.
  • step S112 YES
  • the polarity determination unit 23 proceeds to the process of step S113, and if ⁇ Id ⁇ Idth (step S112: NO), proceeds to the process of step S114. ..
  • step S113 the polarity determination unit 23 assumes that the value stored in ⁇ tpD, which is a temporary storage location for phase information, is correct, stores the same value in the estimated phase, and ends the polarity determination process in step S126.
  • the initial phase estimation d-axis may be incorrect by + 90 ° or + 270 °. Since this direction is the q-axis direction of the initial phase estimation, the polarity determination unit 23 performs the determination again in the q-axis direction. In step S114, the polarity determination unit 23 calculates the IQ offset when the current of the initial phase estimation q axis is 0.
  • step S115 the polarity discriminating unit 23 superimposes voltage + Vq in the positive direction of the initial phase estimation q-axis for a certain period of time, and in step S116, the absolute value of the amount of change in the current value in the positive direction of the initial phase estimation q-axis.
  • is integrated ( ⁇ + Iq).
  • step S117 the polarity discriminating unit 23 superimposes the voltage ⁇ Vq in the negative direction of the initial phase estimation q-axis for a certain period of time, and in step S118, the absolute amount of change in the current value in the negative direction of the initial phase estimation q-axis.
  • is integrated ( ⁇ -Iq).
  • the polarity discriminating unit 23 repeats the processes of steps S115 to S118 three times.
  • step S119 the polarity discriminating unit 23 compares the integration of the maximum current amplitude of the absolute value of the amount of change in the current after applying the voltage in each of the positive and negative directions of the initial phase estimation q-axis, and the comparison result. Perform processing according to. Specifically, if the polarity determination unit 23 is ⁇ -Iq> ⁇ + Iq (step S119: YES), the process proceeds to step S120, and if ⁇ -Iq ⁇ ⁇ + Iq (step S119: NO), step S121. Proceed to processing.
  • step S120 since the actual positive direction of the d-axis may be the negative direction of the initial phase estimation q-axis, the polarity determination unit 23 adds 270 ° to the phase value at the time of initial phase estimation. It is stored in ⁇ tpQ, which is a temporary storage location for phase information.
  • step S121 since the actual positive direction of the d-axis may be the positive direction of the initial phase estimation q-axis, the polarity determination unit 23 sets 90 ° as the phase value at the time of initial phase estimation. Add and save in ⁇ tpQ, which is a temporary storage location for location information.
  • the polarity determination unit 23 performs the q-axis determination in the processes of steps S114 to S121 and corrects the estimated phase.
  • the polarity discriminating unit 23 integrates the current maximum amplitude of the absolute value of the amount of change in the current after applying the voltage in each of the positive and negative directions of the initial phase estimation q-axis performed in steps S115 to S118 in step S122.
  • the absolute value of the difference ⁇ Iq
  • is calculated.
  • the polarity determination unit 23 compares the absolute value ⁇ Id of the difference obtained in the d-axis direction with the absolute value ⁇ Iq of the difference obtained in the q-axis direction, and performs processing according to the comparison result.
  • the polarity discriminating unit 23 proceeds to the process of step S124, and if ⁇ Id ⁇ Iq (step S123: NO), proceeds to the process of step S125. ..
  • step S124 the polarity determination unit 23 stores the same value in the estimated phase assuming that the value of the temporary storage location ⁇ tmpD of the phase information is correct, and in step S125, assuming that the value of the temporary storage location ⁇ tmmpQ of the phase information is correct, the same value is set. Save to the estimated phase. Finally, the polarity determination unit 23 ends the polarity determination process in step S126.
  • FIG. 9 is a diagram showing an example of the applied voltage and current at the time of d-axis determination of the motor control device 10 in the first embodiment.
  • the voltage of ⁇ Vd is superimposed in the negative direction of the initial phase estimation d-axis, and the maximum value of the current amplitude of ⁇ Id at that time is stored. If the stored + Id and -Id have a
  • the motor control device 10 can correct the direction of the N pole and the S pole even if the direction of the d-axis whose initial phase is estimated is incorrect by 180 °.
  • FIG. 10 is a diagram showing an example of the applied voltage and current at the time of determining the d-axis and the q-axis of the motor control device 10 in the first embodiment.
  • the voltage of -Vd is superimposed in the negative direction of the initial phase estimation d-axis, and the maximum value of the current amplitude of -Id at that time is stored. If the difference between the stored + Id and -Id (
  • the voltage of -Vq is superimposed in the negative direction of the initial phase estimation q-axis, and the maximum value of the current amplitude of -Iq at that time is stored. If the stored + Iq and -Iq have a
  • the motor control device 10 can correct the direction of the N pole and the S pole even if the direction of the d-axis whose initial phase is estimated is incorrect by 90 ° or 270 °.
  • FIG. 11 is a diagram for explaining an applied voltage and a current at the time of offset correction at the time of determining the polarity of the motor control device 10 according to the first embodiment.
  • the polarity discriminating unit 23 stores the average value of the currents before the d-axis or q-axis direction voltage superposition in FIGS. 9 and 10 for a certain period as the offset current value. In the processing of steps S105, S107, S116, and S118 of FIG. 8, the polarity discriminating unit 23 detects the maximum current amplitude value and then subtracts the stored offset current value as the final maximum current amplitude value.
  • the motor control device 10 can suppress the influence on the polarity discrimination even when the current value does not converge to 0 by using the initial current as the offset current value and correcting it. Therefore, the motor control device 10 can make a more accurate determination.
  • the motor control device 10 controls the brushless motor 40 having the rotor 41 having the convex pole structure driven by the inverter circuit 13.
  • the motor control device 10 includes an inverter circuit 13, a current detection unit 21, an initial phase estimation unit 22, and a polarity determination unit 23.
  • the current detection unit 21 detects the current of the brushless motor 40.
  • the initial phase estimation unit 22 estimates the initial phase of the brushless motor 40 based on the current detected by the current detection unit 21.
  • the polarity determination unit 23 determines the polarity of the magnetic pole of the brushless motor 40 based on the current detected by the current detection unit 21.
  • the polarity discriminating unit 23 superimposes a voltage on the initial phase estimated by the initial phase estimation unit 22 in the positive and negative directions of the d-axis and the q-axis, respectively, and the d-axis and the current detection unit 21 detect the voltage.
  • the polarity of the magnetic pole of the brushless motor 40 is determined based on the difference in current amplitude in the positive and negative directions of each of the q-axis, and the initial phase is corrected.
  • the motor control device 10 can determine the correct magnetic pole direction at the time of polarity determination even if the motor control device 10 mistakenly estimates in the q-axis direction from the original d-axis direction at the time of initial phase estimation. That is, the motor control device 10 can correctly detect the magnetic pole even when the initially estimated direction of the d-axis is incorrect by 90 ° or 270 ° with respect to the correct direction. Therefore, the motor control device 10 can smoothly start and accelerate without any operation such as reversal or step-out when the brushless motor 40 is started.
  • the polarity determination unit 23 of the motor control device 10 superimposes a voltage in the positive and negative directions of the d-axis, and the positive and negative directions of the d-axis detected by the current detection unit 21.
  • the polarity determination of the brushless motor 40 is terminated.
  • the polarity discriminating unit 23 performs the following when the absolute value of the current amplitude difference in the positive and negative directions of the d-axis is smaller than the reference value Idth.
  • the polarity discriminating unit 23 superimposes the voltage in the positive and negative directions of the q-axis, and the current amplitude difference in the positive and negative directions of the q-axis detected by the current detecting unit 21 and the positive and negative of the d-axis. Based on the current amplitude difference in the direction of, the polarity of the magnetic pole of the brushless motor 40 is determined, and the initial phase is corrected.
  • the motor control device 10 can determine the correct magnetic pole direction at the time of polarity determination even if the motor control device 10 mistakenly estimates in the q-axis direction from the original d-axis direction at the time of initial phase estimation. That is, the motor control device 10 can correctly detect the magnetic pole even when the initially estimated direction of the d-axis is incorrect by 90 ° or 270 ° with respect to the correct direction. Therefore, the motor control device 10 can smoothly start and accelerate without any operation such as reversal or step-out when the brushless motor 40 is started.
  • the polarity discriminating unit 23 of the motor control device 10 detects the current detected by the current detecting unit 21 immediately before superimposing the voltage in the positive and negative directions of the d-axis and the q-axis, respectively.
  • the offset current value The polarity discriminating unit 23 superimposes a voltage in the positive and negative directions of the d-axis and the q-axis, respectively, and from the maximum value of the current amplitude in the positive and negative directions of the d-axis and the q-axis detected by the current detection unit 21. Based on the value obtained by subtracting the offset current value, the polarity of the magnetic pole of the brushless motor 40 is determined, and the initial phase is corrected.
  • the motor control device 10 can more accurately determine the correct magnetic pole direction at the time of polarity determination. Therefore, even more smoothly, smooth starting and acceleration can be performed without operations such as reversal and step-out when the motor is started.
  • the polarity discriminating unit of the motor control device controls so that the command current value ( ⁇ Id, ⁇ Iq) becomes 0A while discriminating the polarity. It is different from the polarity discriminating unit 23 of the motor control device 10.
  • FIG. 12 is a diagram for explaining the outline of polarity discrimination when current control is performed in the motor control device according to the second embodiment.
  • FIG. 12 shows the difference in the behavior of the Id current between the case where the current control is performed and the case where the current control is not performed in the polarity discrimination.
  • the Id current when the current control is performed is shown by a solid line
  • the Id current when the current control is not performed is shown by a dotted line.
  • the polarity discriminating unit of the motor control device controls so that the current flowing through the brushless motor 40 becomes 0 while discriminating the polarity of the magnetic poles of the brushless motor 40.
  • the motor control device according to the second embodiment can determine the polarity in a shorter period of time.
  • Embodiments 1 and 2 have been described as examples of the techniques in the present disclosure.
  • the technique in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. have been made. It is also possible to combine the components described in the first and second embodiments to form a new embodiment.
  • the motor control device and the brushless motor having a convex pole structure in the present disclosure can be mounted on a washing machine or a washer / dryer.
  • a brushless motor having a convex electrode structure and a motor control device in the present disclosure are used as a brushless motor and a motor control device for driving a drum of a drum type washing machine
  • the stopped drum is reversed or fails to start. It can be started smoothly and the number of rotations can be increased without any problem.
  • the present disclosure can contribute to the improvement of the washing rate and the shortening of the operation time, and can provide a high-performance washing machine.
  • the motor control device 10 of the first embodiment and the motor control device of the second embodiment are configured not to include the brushless motor 40.
  • the configuration of the motor control device of the embodiment is an example of the configuration of the motor control device in the present disclosure, and the motor control device in the present disclosure is not limited to the configuration of the motor control device of the embodiment. That is, the motor control device in the present disclosure may include a brushless motor having a rotor having a convex pole structure driven by the inverter circuit in the present disclosure.
  • the present disclosure is applicable to a motor control device that sensorlessly controls the rotation of a brushless motor (permanent magnet synchronous motor) having a rotor having a convex pole structure, and a washing machine or a washing / drying machine equipped with this motor control device.
  • a brushless motor permanent magnet synchronous motor
  • the present disclosure is applicable to, for example, a vertical washing machine, a drum-type washing machine, a drum-type washer-dryer, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

This motor control device (10) controls a brushless motor (40) having a rotor with a salient pole structure that is driven by an inverter circuit (13). The motor control device (10) comprises the inverter circuit (13), a current detection unit (21), an initial phase estimation unit (22), and a polarity identification unit (23). The initial phase estimation unit (22) estimates the initial phase of the brushless motor (40) on the basis of a current detected by the current detection unit (21). The polarity identification unit (23) superimposes voltages in the positive and negative directions of a d-axis and q-axis on the initial phase estimated by the initial phase estimation unit (22), identifies the polarity of a magnetic pole of the brushless motor (40) on the basis of the current amplitude difference in the positive and negative directions of the d-axis and q-axis detected by the current detection unit (21), and corrects the initial phase.

Description

モータ制御装置、及びこのモータ制御装置を搭載した洗濯機または洗濯乾燥機Motor control device, and washing machine or washer / dryer equipped with this motor control device
 本開示は、凸極構造のロータを有するブラシレスモータ(永久磁石同期電動機)の回転をセンサレス制御するモータ制御装置、及びこのモータ制御装置を搭載した洗濯機または洗濯乾燥機に関する。 The present disclosure relates to a motor control device that sensorlessly controls the rotation of a brushless motor (permanent magnet synchronous motor) having a rotor having a convex pole structure, and a washing machine or a washing / drying machine equipped with this motor control device.
 特許文献1は、ロータが凸極構造のブラシレスモータをセンサレス駆動し、起動時に磁極判定を行うモータ制御装置を開示する。このモータ制御装置は直流電力を交流電力に変換してモータ電力とし、凸極構造のロータを有するブラシレスモータを駆動するものである。このモータ制御装置は、電流検出器と、3相・dq軸変換部と、dq軸電流制御部と、dq軸・3相変換部と、磁極位置推定用交流交番電圧発生部と、磁極位置推定部と、d軸電流直流バイアス発生部と、NS判別部と、を有する。電流検出器は、インバータからブラシレスモータへのモータ電流を検出する。3相・dq軸変換部は、電流検出器の検出した交流電流検出値をdq軸変換してd軸電流検出値及びq軸電流検出値を出力する。dq軸電流制御部は、d軸電流指令入力及びq軸電流指令入力に対してd軸電流検出値及びq軸電流検出値が追従するようなd軸電圧指令及びq軸電圧指令を算出する。dq軸・3相変換部は、d軸電圧指令及びq軸電圧指令を3相交流電圧指令に変換してインバータに制御信号として与える。磁極位置推定用交流交番電圧発生部は、d軸電圧指令に補助的な交流交番電圧を重畳する。磁極位置推定部は、q軸電流検出値と補助的な交流交番電圧とから永久磁石同期電動機の磁極位置を推定する。d軸電流直流バイアス発生部は、磁極位置推定部で推定した磁極位置の方向をd軸とし、d軸電流指令に対して、正負対称に交互に切り替わる一定波形のd軸直流バイアス電流を加算し、このバイアス加算後のd軸電流指令をdq軸電流制御部に入力させる。NS判別部は、d軸直流バイアス電流の正負切替タイミングにおけるd軸印加電圧とd軸電流変化率とを算定し、算定したd軸印加電圧とd軸電流変化率との関係から永久磁石同期電動機の永久磁石のN極S極の方向を判別し、NS判別信号を出力する。 Patent Document 1 discloses a motor control device in which a rotor drives a brushless motor having a convex pole structure sensorlessly and determines a magnetic pole at startup. This motor control device converts DC power into AC power to obtain motor power, and drives a brushless motor having a rotor having a convex pole structure. This motor control device includes a current detector, a 3-phase / dq-axis conversion unit, a dq-axis current control unit, a dq-axis / 3-phase conversion unit, an AC alternating voltage generation unit for estimating the magnetic pole position, and a magnetic pole position estimation. It has a unit, a d-axis current / DC bias generation unit, and an NS discrimination unit. The current detector detects the motor current from the inverter to the brushless motor. The three-phase / dq-axis conversion unit converts the AC current detection value detected by the current detector into the dq-axis and outputs the d-axis current detection value and the q-axis current detection value. The dq-axis current control unit calculates a d-axis voltage command and a q-axis voltage command such that the d-axis current detection value and the q-axis current detection value follow the d-axis current command input and the q-axis current command input. The dq-axis / three-phase conversion unit converts the d-axis voltage command and the q-axis voltage command into a three-phase AC voltage command and gives the inverter as a control signal. The AC alternating voltage generation unit for estimating the magnetic pole position superimposes an auxiliary AC alternating voltage on the d-axis voltage command. The magnetic pole position estimation unit estimates the magnetic pole position of the permanent magnet synchronous motor from the q-axis current detection value and the auxiliary AC alternating voltage. The d-axis current DC bias generator sets the direction of the magnetic pole position estimated by the magnetic pole position estimation unit as the d-axis, and adds the d-axis DC bias current with a constant waveform that alternates between positive and negative symmetry to the d-axis current command. , The d-axis current command after this bias addition is input to the dq-axis current control unit. The NS discriminator calculates the d-axis applied voltage and the d-axis current change rate at the positive / negative switching timing of the d-axis DC bias current, and from the relationship between the calculated d-axis applied voltage and the d-axis current change rate, the permanent magnet synchronous motor. The direction of the north pole and the south pole of the permanent magnet is discriminated, and an NS discriminant signal is output.
特開2008-79489号公報Japanese Unexamined Patent Publication No. 2008-79489
 本開示は、初期推定したd軸の方向が正しい方向に対して90°または270°誤っていた場合にも正しく磁極検出を行うことができるモータ制御装置及びこのモータ制御装置を搭載した洗濯機または洗濯乾燥機を提供する。 The present disclosure discloses a motor control device capable of correctly detecting a magnetic pole even when the initially estimated d-axis direction is incorrect by 90 ° or 270 ° with respect to the correct direction, and a washing machine equipped with this motor control device. Provide a washer / dryer.
 本開示におけるモータ制御装置は、インバータ回路により駆動される凸極構造のロータを有するブラシレスモータを制御する。本開示におけるモータ制御装置は、インバータ回路と、電流検出部と、初期位相推定部と、極性判別部と、を備える。電流検出部は、ブラシレスモータの電流を検出する。初期位相推定部は、電流検出部により検出された電流に基づき、ブラシレスモータの初期位相を推定する。極性判別部は、電流検出部により検出された電流に基づき、ブラシレスモータの磁極の極性を判別する。極性判別部は、初期位相推定部により推定された初期位相に対して、d軸及びq軸それぞれの正及び負の方向に電圧を重畳して電流検出部により検出されたd軸及びq軸それぞれの正及び負の方向の電流振幅差に基づいて、ブラシレスモータの磁極の極性を判別し、初期位相を補正する。 The motor control device in the present disclosure controls a brushless motor having a rotor having a convex pole structure driven by an inverter circuit. The motor control device in the present disclosure includes an inverter circuit, a current detection unit, an initial phase estimation unit, and a polarity discrimination unit. The current detection unit detects the current of the brushless motor. The initial phase estimation unit estimates the initial phase of the brushless motor based on the current detected by the current detection unit. The polarity discriminating unit discriminates the polarity of the magnetic poles of the brushless motor based on the current detected by the current detecting unit. The polarity discriminator superimposes voltages in the positive and negative directions of the d-axis and q-axis with respect to the initial phase estimated by the initial phase estimation unit, and the d-axis and q-axis detected by the current detection unit, respectively. Based on the difference between the positive and negative current amplitudes, the polarity of the magnetic poles of the brushless motor is determined and the initial phase is corrected.
 また、本開示における洗濯機または洗濯乾燥機は、本開示におけるモータ制御装置を搭載する。 Further, the washing machine or the washer / dryer in the present disclosure is equipped with the motor control device in the present disclosure.
 本開示におけるモータ制御装置は、初期推定したd軸の方向が正しい方向に対して90°または270°誤っていた場合にも、正しく磁極検出を行うことができる。 The motor control device in the present disclosure can correctly detect the magnetic pole even when the initially estimated direction of the d-axis is incorrect by 90 ° or 270 ° with respect to the correct direction.
 また、本開示における洗濯機または洗濯乾燥機は、上述のような本開示におけるモータ制御装置が搭載されているため、例えば、洗濯槽やドラム等の回転をスムーズに行うことができる。 Further, since the washing machine or the washer / dryer in the present disclosure is equipped with the motor control device in the present disclosure as described above, for example, the washing tub, the drum, and the like can be smoothly rotated.
図1は、実施の形態1におけるモータ制御装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a motor control device according to the first embodiment. 図2は、実施の形態1におけるモータ制御装置のセンサレス推定部の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a sensorless estimation unit of the motor control device according to the first embodiment. 図3は、実施の形態1におけるモータ制御装置のインダクタンス駆動部の詳細な構成を示すブロック図である。FIG. 3 is a block diagram showing a detailed configuration of an inductance drive unit of the motor control device according to the first embodiment. 図4は、実施の形態1におけるモータ制御装置の誘起電圧駆動部の詳細な構成を示すブロック図である。FIG. 4 is a block diagram showing a detailed configuration of an induced voltage drive unit of the motor control device according to the first embodiment. 図5は、実施の形態1におけるモータ制御装置のモータ駆動制御処理の流れを示すフローチャートである。FIG. 5 is a flowchart showing the flow of the motor drive control process of the motor control device according to the first embodiment. 図6Aは、ロータの初期位相推定についての課題を説明するための図である。FIG. 6A is a diagram for explaining a problem regarding the initial phase estimation of the rotor. 図6Bは、ロータの初期位相推定についての課題を説明するための図である。FIG. 6B is a diagram for explaining a problem regarding the initial phase estimation of the rotor. 図6Cは、ロータの初期位相推定についての課題を説明するための図である。FIG. 6C is a diagram for explaining a problem regarding the initial phase estimation of the rotor. 図7は、一般的なブラシレスモータに使用されている電磁鋼板の磁気飽和特性を示す図である。FIG. 7 is a diagram showing magnetic saturation characteristics of an electromagnetic steel sheet used in a general brushless motor. 図8は、実施の形態1におけるモータ制御装置の極性判別処理の流れを示すフローチャートである。FIG. 8 is a flowchart showing the flow of the polarity discrimination process of the motor control device according to the first embodiment. 図9は、実施の形態1におけるモータ制御装置のd軸判定時の印加電圧と電流との一例を示す図である。FIG. 9 is a diagram showing an example of an applied voltage and current at the time of d-axis determination of the motor control device according to the first embodiment. 図10は、実施の形態1におけるモータ制御装置のd軸及びq軸判定時の印加電圧と電流との一例を示す図である。FIG. 10 is a diagram showing an example of the applied voltage and current at the time of determining the d-axis and the q-axis of the motor control device according to the first embodiment. 図11は、実施の形態1におけるモータ制御装置の極性判別時におけるオフセット補正時の印加電圧と電流とを説明するための図である。FIG. 11 is a diagram for explaining the applied voltage and current at the time of offset correction at the time of determining the polarity of the motor control device according to the first embodiment. 図12は、実施の形態2におけるモータ制御装置において電流制御を行った場合の極性判別の概略を説明するための図である。FIG. 12 is a diagram for explaining the outline of polarity discrimination when current control is performed in the motor control device according to the second embodiment.
 本開示におけるモータ制御装置は、インバータ回路により駆動される凸極構造のロータを有するブラシレスモータを制御する。本開示におけるモータ制御装置は、インバータ回路と、電流検出部と、初期位相推定部と、極性判別部と、を備える。電流検出部は、ブラシレスモータの電流を検出する。初期位相推定部は、電流検出部により検出された電流に基づき、ブラシレスモータの初期位相を推定する。極性判別部は、電流検出部により検出された電流に基づき、ブラシレスモータの磁極の極性を判別する。極性判別部は、初期位相推定部により推定された初期位相に対して、d軸及びq軸それぞれの正及び負の方向に電圧を重畳して電流検出部により検出されたd軸及びq軸それぞれの正及び負の方向の電流振幅差に基づいて、ブラシレスモータの磁極の極性を判別し、初期位相を補正する。 The motor control device in the present disclosure controls a brushless motor having a rotor having a convex pole structure driven by an inverter circuit. The motor control device in the present disclosure includes an inverter circuit, a current detection unit, an initial phase estimation unit, and a polarity discrimination unit. The current detection unit detects the current of the brushless motor. The initial phase estimation unit estimates the initial phase of the brushless motor based on the current detected by the current detection unit. The polarity discriminating unit discriminates the polarity of the magnetic poles of the brushless motor based on the current detected by the current detecting unit. The polarity discriminator superimposes voltages in the positive and negative directions of the d-axis and q-axis with respect to the initial phase estimated by the initial phase estimation unit, and the d-axis and q-axis detected by the current detection unit, respectively. Based on the difference between the positive and negative current amplitudes, the polarity of the magnetic poles of the brushless motor is determined and the initial phase is corrected.
 これにより、本開示におけるモータ制御装置は、初期推定したd軸の方向が正しい方向に対して90°または270°誤っていた場合にも、正しく磁極検出を行うことができる。そのため、本開示におけるモータ制御装置は、ブラシレスモータの起動時の逆転起動や起動失敗を抑制し、ブラシレスモータ起動時よりスムーズな加速を行うことができる。 Thereby, the motor control device in the present disclosure can correctly detect the magnetic pole even when the initially estimated direction of the d-axis is incorrect by 90 ° or 270 ° with respect to the correct direction. Therefore, the motor control device in the present disclosure can suppress reverse start and start failure at the start of the brushless motor, and can perform smoother acceleration than at the start of the brushless motor.
 また、本開示におけるモータ制御装置では、極性判別部は、d軸の正及び負の方向に電圧を重畳して電流検出部より検出されたd軸の正及び負の方向の電流振幅差の絶対値が基準値より大きい場合には、ブラシレスモータの極性判別を終了してもよい。極性判別部は、d軸の正及び負の方向の電流振幅差の絶対値が基準値より小さい場合には、以下を行う。すなわち、極性判別部は、q軸の正及び負の方向に電圧を重畳して電流検出部より検出されたq軸の正及び負の方向の電流振幅差と、d軸の正及び負の方向の電流振幅差とに基づいて、ブラシレスモータの磁極の極性を判別し、初期位相を補正してもよい。 Further, in the motor control device of the present disclosure, the polarity discriminator superimposes a voltage in the positive and negative directions of the d-axis, and the absolute difference in current amplitude in the positive and negative directions of the d-axis detected by the current detection unit is used. If the value is larger than the reference value, the polarity determination of the brushless motor may be terminated. When the absolute value of the current amplitude difference in the positive and negative directions of the d-axis is smaller than the reference value, the polarity discriminating unit performs the following. That is, the polarity discriminator superimposes the voltage in the positive and negative directions of the q-axis, and the current amplitude difference in the positive and negative directions of the q-axis detected by the current detection unit and the positive and negative directions of the d-axis. The polarity of the magnetic poles of the brushless motor may be determined based on the current amplitude difference of the brushless motor, and the initial phase may be corrected.
 また、本開示におけるモータ制御装置では、極性判別部は、d軸及びq軸それぞれの正及び負の方向に電圧を重畳する直前に、電流検出部により検出された電流をオフセット電流値としてもよい。極性判別部は、d軸及びq軸それぞれの正及び負の方向に電圧を重畳して電流検出部により検出されたd軸及びq軸それぞれの正及び負の方向の電流振幅最大値からオフセット電流値を差し引いた値に基づいて、ブラシレスモータの磁極の極性を判別し、初期位相を補正してもよい。 Further, in the motor control device of the present disclosure, the polarity discriminant unit may use the current detected by the current detection unit as an offset current value immediately before superimposing the voltage in the positive and negative directions of the d-axis and the q-axis, respectively. .. The polarity discriminator superimposes voltages in the positive and negative directions of the d-axis and q-axis, respectively, and offsets the current from the maximum value of the current amplitude in the positive and negative directions of the d-axis and q-axis detected by the current detector. Based on the value obtained by subtracting the value, the polarity of the magnetic pole of the brushless motor may be determined and the initial phase may be corrected.
 また、本開示におけるモータ制御装置では、極性判別部は、ブラシレスモータの磁極の極性を判別している間、ブラシレスモータに流れる電流が0になるように制御してもよい。 Further, in the motor control device of the present disclosure, the polarity discriminator may control the current flowing through the brushless motor to be 0 while discriminating the polarity of the magnetic poles of the brushless motor.
 また、本開示における洗濯機または洗濯乾燥機は、本開示におけるモータ制御装置を搭載する。 Further, the washing machine or the washer / dryer in the present disclosure is equipped with the motor control device in the present disclosure.
 (本開示の基礎となった知見等)
 発明者らが本開示に想到するに至った当時から、推定したロータの初期位相に対して磁極の極性判定を行う技術が知られている。ロータの初期位相は、凸極構造のブラシレスモータのセンサレス駆動時、ブラシレスモータ駆動開始時に、駆動に先駆けブラシレスモータの停止時に推定される。
(Knowledge, etc. that became the basis of this disclosure)
From the time when the inventors came to the present disclosure, a technique for determining the polarity of the magnetic pole with respect to the estimated initial phase of the rotor has been known. The initial phase of the rotor is estimated when the brushless motor having a convex pole structure is driven without a sensor, when the brushless motor is started to be driven, and when the brushless motor is stopped prior to the drive.
 初期位相推定では、凸極性を持ったロータの特徴である磁極の方向(d軸方向)と磁極と直交する方向(q軸方向)のインダクタンスLの差が利用される。そして初期位相推定では、ステータ巻線に低振幅の高周波あるいはパルス状の電圧及び電流を印加し、ロータがどちらの方向に向いているのかが推定される。この時点ではロータの方向までは推定できるが磁極の極性(NS)は判らないので、磁極のN極、S極を判定する極性判別が行われる。 In the initial phase estimation, the difference in inductance L between the direction of the magnetic pole (d-axis direction) and the direction orthogonal to the magnetic pole (q-axis direction), which is a characteristic of the rotor having convex polarity, is used. Then, in the initial phase estimation, a low-amplitude high-frequency or pulsed voltage and current are applied to the stator winding, and it is estimated in which direction the rotor is oriented. At this point, the direction of the rotor can be estimated, but the polarity (NS) of the magnetic poles is not known, so the polarity determination for determining the N pole and the S pole of the magnetic poles is performed.
 極性判別では、推定したd軸方向に対してステータ巻線に正及び負の両方向のある程度大きなパルス状の電圧及び電流を印加し、その時の印加電圧あるいは検出電流の絶対値の差より磁極NSの方向が推定される。これにより、ブラシレスモータを駆動開始時より逆転駆動や起動失敗することなくスムーズにブラシレスモータの回転を立ち上げることができる。 In the polarity discrimination, a somewhat large pulsed voltage and current are applied to the stator winding in both the positive and negative directions with respect to the estimated d-axis direction, and the magnetic pole NS is obtained from the difference between the applied voltage or the absolute value of the detected current at that time. The direction is estimated. As a result, the rotation of the brushless motor can be smoothly started without reverse drive or start failure from the start of driving the brushless motor.
 しかしながら、初期位相推定時に推定したd軸の方向は正しくは磁極の方向であるが、推定値が磁極と直交する方向(q軸方向)となることが、ある一定割合で発生する。その場合に極性判別を行っても正しいロータの方向は得られないため、ブラシレスモータの駆動開始時に逆転駆動や脱調し回転しないといった現象が発生することがあると言う課題を発明者らは発見し、その課題を解決するために、本開示の主題を構成するに至った。 However, the direction of the d-axis estimated at the time of initial phase estimation is the direction of the magnetic pole, but the estimated value may be the direction orthogonal to the magnetic pole (q-axis direction) at a certain rate. In that case, the inventors have discovered that the correct rotor direction cannot be obtained even if the polarity is determined, so that a phenomenon such as reverse drive or step-out and non-rotation may occur at the start of drive of the brushless motor. However, in order to solve the problem, the subject matter of this disclosure has been constructed.
 そこで本開示は、初期位相推定時に推定したd軸方向が正しい方向に対して90°または270°誤っていても極性判定にて正しく磁極検知できるモータ制御装置を提供する。 Therefore, the present disclosure provides a motor control device capable of correctly detecting a magnetic pole by polarity determination even if the d-axis direction estimated at the time of initial phase estimation is incorrect by 90 ° or 270 ° with respect to the correct direction.
 以下、図面を参照しながら、本開示における実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of already well-known matters or duplicate explanations for substantially the same configuration may be omitted. This is to prevent the following explanation from becoming unnecessarily redundant and to facilitate the understanding of those skilled in the art.
 なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより請求の範囲に記載の主題を限定することを意図していない。 It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
 (実施の形態1)
 以下、図1~図11を用いて、実施の形態1におけるモータ制御装置10を説明する。
(Embodiment 1)
Hereinafter, the motor control device 10 according to the first embodiment will be described with reference to FIGS. 1 to 11.
 [1-1.構成]
 [1-1-1.モータ制御装置の構成]
 図1は、実施の形態1におけるモータ制御装置10の構成を示す図である。
[1-1. Constitution]
[1-1-1. Configuration of motor control device]
FIG. 1 is a diagram showing a configuration of a motor control device 10 according to the first embodiment.
 モータ制御装置10は、交流電源30より受電する。整流回路11は、受電した交流電力を直流電力に変換し、直流電力の平滑コンデンサ12を介しインバータ回路13に電力を供給する。インバータ回路13は、2個直列にした3組合計6個のスイッチング素子14a、14b、14c、14d、14e及び14fにより構成される。 The motor control device 10 receives power from the AC power supply 30. The rectifying circuit 11 converts the received AC power into DC power, and supplies power to the inverter circuit 13 via the DC power smoothing capacitor 12. The inverter circuit 13 is composed of three sets of two in series, a total of six switching elements 14a, 14b, 14c, 14d, 14e and 14f.
 このインバータ回路13は、後述する制御回路20によりスイッチング素子14a、14b、14c、14d、14e及び14fのON/OFFをPWM駆動することでブラシレスモータ40の駆動を行っている。 The inverter circuit 13 drives the brushless motor 40 by PWM driving the ON / OFF of the switching elements 14a, 14b, 14c, 14d, 14e and 14f by the control circuit 20 described later.
 インバータ回路13の2個直列のスイッチング素子14a、14b、14c、14d、14e及び14fのうち、下側、すなわちスイッチング素子14d、14e及び14fのエミッタ側には抵抗15a、15b及び15cが接続されている。抵抗15a、15b及び15cの他端は、整流回路11と平滑コンデンサ12の出力の一方側に接続されている。抵抗15a、15b及び15cの両端の電圧は、制御回路20内の電流検出部21に入力される。後述するように、電流検出部21が検出した電流値を用いて各種制御が行われる。 Of the two series switching elements 14a, 14b, 14c, 14d, 14e and 14f of the inverter circuit 13, resistors 15a, 15b and 15c are connected to the lower side, that is, the emitter side of the switching elements 14d, 14e and 14f. There is. The other ends of the resistors 15a, 15b and 15c are connected to one side of the output of the rectifier circuit 11 and the smoothing capacitor 12. The voltage across the resistors 15a, 15b and 15c is input to the current detection unit 21 in the control circuit 20. As will be described later, various controls are performed using the current value detected by the current detection unit 21.
 制御回路20は、前述の電流検出部21と共に、初期位相推定部22、極性判別部23及びセンサレス推定部24を有する。なお、モータ制御装置10は、プロセッサ及びメモリを有するコンピュータシステムを有している。そして、プロセッサがメモリに格納されているプログラムを実行することにより、コンピュータシステムが制御回路20として機能する。プロセッサが実行するプログラムは、ここではコンピュータシステムのメモリに予め記録されているとしたが、メモリカード等の非一時的な記録媒体に記録されて提供されてもよいし、インターネット等の電気通信回線を通じて提供されてもよい。 The control circuit 20 has an initial phase estimation unit 22, a polarity discrimination unit 23, and a sensorless estimation unit 24, together with the current detection unit 21 described above. The motor control device 10 has a computer system having a processor and a memory. Then, the processor executes the program stored in the memory, so that the computer system functions as the control circuit 20. The program executed by the processor is assumed to be recorded in advance in the memory of the computer system here, but may be recorded in a non-temporary recording medium such as a memory card and provided, or a telecommunications line such as the Internet. May be provided through.
 [1-1-2.センサレス推定部の構成]
 図2は、実施の形態1におけるモータ制御装置10のセンサレス推定部24の構成を示すブロック図である。
[1-1-2. Configuration of sensorless estimation unit]
FIG. 2 is a block diagram showing a configuration of a sensorless estimation unit 24 of the motor control device 10 according to the first embodiment.
 センサレス推定部24は、インダクタンス方式のインダクタンス駆動部24bと、誘起電圧方式の誘起電圧駆動部24cと、駆動方式切り替え部24aとを有する。インダクタンス方式のインダクタンス駆動部24bは、ブラシレスモータ40の凸極構造のロータ41の凸極性を利用して磁極の位相を推定する。誘起電圧方式の誘起電圧駆動部24cは、ブラシレスモータ40の回転時の逆起電力を利用して磁極位置を推定する。駆動方式切り替え部24aは、磁極位置の推定方式をインダクタンス方式と誘起電圧方式との間で切り替える。 The sensorless estimation unit 24 has an inductance type inductance drive unit 24b, an induced voltage type induced voltage drive unit 24c, and a drive method switching unit 24a. The inductance type inductance drive unit 24b estimates the phase of the magnetic poles by utilizing the convex polarity of the rotor 41 having the convex pole structure of the brushless motor 40. The induced voltage drive unit 24c of the induced voltage method estimates the magnetic pole position by using the counter electromotive force during rotation of the brushless motor 40. The drive method switching unit 24a switches the method for estimating the magnetic pole position between the inductance method and the induced voltage method.
 [1-1-3.インダクタンス駆動部の構成]
 ブラシレスモータ40のロータ41の磁極の位相に応じてインダクタンスLが変化する。そのため、インダクタンス方式のインダクタンス駆動部24bは、モータ駆動電流に関係しない高周波電流をモータに印加してモータ電流を検出し、それらよりインダクタンス変化に起因する位置推定誤差量を算出する。そして、インダクタンス駆動部24bは、位置推定誤差量をゼロに収束させるように磁極位置を推定する。
[1-1-3. Inductance drive unit configuration]
The inductance L changes according to the phase of the magnetic pole of the rotor 41 of the brushless motor 40. Therefore, the inductance type inductance drive unit 24b applies a high frequency current not related to the motor drive current to the motor to detect the motor current, and calculates the amount of position estimation error due to the inductance change from them. Then, the inductance drive unit 24b estimates the magnetic pole position so as to converge the amount of position estimation error to zero.
 図3は、実施の形態1におけるモータ制御装置10のインダクタンス駆動部24bの詳細な構成を示すブロック図である。 FIG. 3 is a block diagram showing a detailed configuration of the inductance drive unit 24b of the motor control device 10 according to the first embodiment.
 インダクタンス駆動部24bは、uvw→dq電流変換部24ba、位置推定φ演算部24bb、高周波電流制御部24bc、角速度ω演算部24bd、位置角θ演算部24be、速度電流制御部24bf、及びdq→uvw電圧変換部24bgで構成される。uvw→dq電流変換部24baは、電流検出部21によって検出されるブラシレスモータ40の三相電流値(Iu,Iv,Iw)(図1参照)を入力としてdq電流値を出力する。位置推定φ演算部24bbは、dq電流から磁極の位置推定を行い、位置推定値φを出力する。高周波電流制御部24bcは、駆動電流に重畳させる高周波電流を制御する。角速度ω演算部24bdは、位置推定値φから角速度ωを演算し、出力する。位置角θ演算部24beは、位置推定値φと角速度ωから位置角θを演算し、出力する。速度電流制御部24bfは、推定角速度(角速度ω)と速度指令値ωとの偏差をフィードバックして、速度演算(PI制御)を行いブラシレスモータ40の電流指令値を決定し、出力する。dq→uvw電圧変換部24bgは、位置角θと電流指令値から電圧(Vu,Vv,Vw)を演算し、制御回路20へ出力する。 The inductance drive unit 24b includes uvw → dq current conversion unit 24ba, position estimation φ calculation unit 24bb, high frequency current control unit 24bc, angular velocity ω calculation unit 24bd, position angle θ calculation unit 24be, speed current control unit 24bf, and dq → uvw. It is composed of a voltage conversion unit 24 bg. The uvw → dq current conversion unit 24ba outputs the dq current value by inputting the three-phase current values (Iu, Iv, Iw) (see FIG. 1) of the brushless motor 40 detected by the current detection unit 21. The position estimation φ calculation unit 24bb estimates the position of the magnetic pole from the dq current and outputs the position estimation value φ. The high-frequency current control unit 24bc controls the high-frequency current superimposed on the drive current. The angular velocity ω calculation unit 24bd calculates and outputs the angular velocity ω from the position estimated value φ. The position angle θ calculation unit 24be calculates and outputs the position angle θ from the position estimation value φ and the angular velocity ω. The velocity / current control unit 24bf feeds back the deviation between the estimated angular velocity (angular velocity ω) and the velocity command value ω * , performs velocity calculation (PI control), determines the current command value of the brushless motor 40, and outputs the current command value. The dq → uvw voltage conversion unit 24bg calculates the voltage (Vu, Vv, Vw) from the position angle θ and the current command value, and outputs the voltage (Vu, Vv, Vw) to the control circuit 20.
 dq←→uvw変換及び速度フィードバック制御は一般的な方式であるため、ここではuvw→dq電流変換部24ba、速度電流制御部24bf、dq→uvw電圧変換部24bgについての説明は省略する。 Since dq ← → uvw conversion and speed feedback control are general methods, the description of uvw → dq current conversion unit 24ba, speed current control unit 24bf, and dq → uvw voltage conversion unit 24bg will be omitted here.
 位置推定φ演算部24bbは下記の数式1に基づいて位置推定値φの演算を行う。 The position estimation φ calculation unit 24bb calculates the position estimation value φ based on the following formula 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 本実施の形態1において駆動対象とするモータは、凸極構造のロータ41を有する(d軸インダクタンスLd≠q軸インダクタンスLq)ブラシレスモータ40であるため、磁極の位相に応じてインダクタンスL(磁気抵抗)が変化する。インダクタンスLの変化はブラシレスモータ40の電流に現れるため、上記の数式1よりブラシレスモータ40の電流の変化量に応じて位置推定誤差量を算出する。 Since the motor to be driven in the first embodiment is a brushless motor 40 having a rotor 41 having a convex pole structure (d-axis inductance Ld ≠ q-axis inductance Lq), the inductance L (magnetic resistance) depends on the phase of the magnetic poles. ) Changes. Since the change in the inductance L appears in the current of the brushless motor 40, the position estimation error amount is calculated according to the change amount of the current of the brushless motor 40 from the above equation 1.
 高周波電流制御部24bcはモータ駆動電流に関係しない高周波電流を制御する。本実施の形態1では、2.56ms周期0.4A相当のパルス電流をd軸方向に印加し、パルス電流を印加したときのq軸電流値と、パルス電流を印加していないときのq軸電流値の差分が演算される。 The high frequency current control unit 24bc controls the high frequency current that is not related to the motor drive current. In the first embodiment, a pulse current equivalent to a 2.56 ms period of 0.4 A is applied in the d-axis direction, and the q-axis current value when the pulse current is applied and the q-axis when the pulse current is not applied. The difference between the current values is calculated.
 位置角θ演算部24be、角速度ω演算部24bdは、下記の数式2及び数式3に基づいてそれぞれ位置角θ、角速度ωの演算を行う。 The position angle θ calculation unit 24be and the angular velocity ω calculation unit 24bd calculate the position angle θ and the angular velocity ω, respectively, based on the following formulas 2 and 3.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 位置角θは、位置推定誤差量と角速度ωの時間積分とを入力として計算され、角速度ωは、位置角θの時間微分として計算される。位置角θと角速度ωとは、いずれもフィードバック制御に基づいて位置推定誤差量をゼロに収束させるように算出される。 The position angle θ is calculated by inputting the amount of position estimation error and the time integral of the angular velocity ω, and the angular velocity ω is calculated as the time derivative of the position angle θ. Both the position angle θ and the angular velocity ω are calculated so that the amount of position estimation error converges to zero based on the feedback control.
 [1-1-4.誘起電圧駆動部の構成]
 ブラシレスモータ40の回転により発生する誘起電圧が磁極位置に応じて変化する。そのため、誘起電圧駆動部24cは、ブラシレスモータ40の速度に比例する誘起電圧を、ブラシレスモータ40への印加電圧と電流とより演算し、電圧誤差をゼロに収束させるように磁極位置を推定する。
[1-1-4. Configuration of induced voltage drive unit]
The induced voltage generated by the rotation of the brushless motor 40 changes according to the position of the magnetic pole. Therefore, the induced voltage drive unit 24c calculates the induced voltage proportional to the speed of the brushless motor 40 from the voltage applied to the brushless motor 40 and the current, and estimates the magnetic pole position so as to converge the voltage error to zero.
 図4は、実施の形態1におけるモータ制御装置10の誘起電圧駆動部24cの詳細な構成を示すブロック図である。 FIG. 4 is a block diagram showing a detailed configuration of the induced voltage drive unit 24c of the motor control device 10 according to the first embodiment.
 誘起電圧駆動部24cは、uvw→dq電流変換部24caと、位置推定εγ演算部24cbと、角速度ω演算部24ccと、位置角θ演算部24cdと、速度電流制御部24ceと、dq→uvw電圧変換部24cfと、で構成される。uvw→dq電流変換部24caは、電流検出部21によって検出されるブラシレスモータ40の三相電流値(Iu,Iv,Iw)を入力としてdq電流値を出力する。位置推定εγ演算部24cbは、dq電流から磁極の位置推定を行い、位置推定値εγを出力する。角速度ω演算部24ccは、位置推定値εγから角速度ωを演算し、出力する。位置角θ演算部24cdは、位置推定値εγと角速度ωから位置角θを演算し、出力する。速度電流制御部24ceは、推定角速度(角速度ω)と速度指令値ω*との偏差をフィードバックして、速度演算(PI制御)を行いモータの電流指令値を決定し、出力する。dq→uvw電圧変換部24cfは、位置角θと電流指令値から電圧(Vu,Vv,Vw)を演算し、制御回路20へ出力する。 The induced voltage drive unit 24c includes an uvw → dq current conversion unit 24ca, a position estimation εγ calculation unit 24cc, an angular velocity ω calculation unit 24cc, a position angle θ calculation unit 24cd, a speed current control unit 24ce, and a dq → uvw voltage. It is composed of a conversion unit 24cf. The uvw → dq current conversion unit 24ca outputs the dq current value by inputting the three-phase current values (Iu, Iv, Iw) of the brushless motor 40 detected by the current detection unit 21. The position estimation εγ calculation unit 24cc estimates the position of the magnetic pole from the dq current and outputs the position estimation value εγ. The angular velocity ω calculation unit 24cc calculates and outputs the angular velocity ω from the position estimated value εγ. The position angle θ calculation unit 24cd calculates and outputs the position angle θ from the position estimation value εγ and the angular velocity ω. The speed / current control unit 24ce feeds back the deviation between the estimated angular velocity (angular velocity ω) and the speed command value ω *, performs speed calculation (PI control), determines the current command value of the motor, and outputs it. The dq → uvw voltage conversion unit 24cf calculates the voltage (Vu, Vv, Vw) from the position angle θ and the current command value, and outputs the voltage (Vu, Vv, Vw) to the control circuit 20.
 前述したインダクタンス駆動部24bの場合と同様、dq←→uvw変換及び速度フィードバック制御は一般的な方式である。そのため、ここではuvw→dq電流変換部24ca、速度電流制御部24ce、dq→uvw電圧変換部24cfについての説明は省略する。 Similar to the case of the inductance drive unit 24b described above, dq ← → uvw conversion and speed feedback control are general methods. Therefore, the description of the uvw → dq current conversion unit 24ca, the speed current control unit 24ce, and the dq → uvw voltage conversion unit 24cf will be omitted here.
 位置推定εγ演算部24cbは、下記の数式4に基づいて位置推定値εγの演算を行う。 The position estimation εγ calculation unit 24cc calculates the position estimation value εγ based on the following mathematical formula 4.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 数式4より、位置推定値εγは、d軸電流Id、q軸電流Iq、d軸電圧Vd及び角速度ωを入力し、これにブラシレスモータ40のq軸インダクタンスLq、抵抗値Raのパラメータを用いて算出される。 From Equation 4, for the position estimation value εγ, the d-axis current Id, the q-axis current Iq, the d-axis voltage Vd, and the angular velocity ω are input, and the parameters of the q-axis inductance Lq and the resistance value Ra of the brushless motor 40 are used for this. It is calculated.
 角速度ω演算部24cc、位置角θ演算部24cdは下記の数式5及び数式6に基づいてそれぞれ角速度ω、位置角θの演算を行う。 The angular velocity ω calculation unit 24cc and the position angle θ calculation unit 24cd calculate the angular velocity ω and the position angle θ, respectively, based on the following formulas 5 and 6.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 角速度ω演算部24ccは、位置推定値εγがゼロに収束するようにPI(比例積分)を用いて角速度ωの計算を行い、さらにωの時間積分の計算が行われることにより、推定位相(位置角θ)として出力がなされる。 The angular velocity ω calculation unit 24cc calculates the angular velocity ω using PI (proportional integration) so that the position estimation value εγ converges to zero, and further calculates the time integration of ω to obtain the estimated phase (position). The output is made as an angle θ).
 [1-1-5.駆動方式切り替え部の構成]
 図2に示すセンサレス推定部24のブロック図中の駆動方式切り替え部24aは、ブラシレスモータ40の回転数等に応じて、インダクタンス駆動部24bと誘起電圧駆動部24cの切り替えを行うものである。具体的には、駆動方式切り替え部24aは、モータ制御に必要な位置角θ、角速度ω、モータ電流/電圧及び角速度フィードバック制御パラメータをリアルタイムで引渡し、瞬時切り替えを実現している。
[1-1-5. Drive system switching unit configuration]
The drive method switching unit 24a in the block diagram of the sensorless estimation unit 24 shown in FIG. 2 switches between the inductance drive unit 24b and the induced voltage drive unit 24c according to the rotation speed of the brushless motor 40 and the like. Specifically, the drive system switching unit 24a passes the position angle θ, the angular velocity ω, the motor current / voltage, and the angular velocity feedback control parameters required for motor control in real time, and realizes instantaneous switching.
 [1-2.動作]
 以上のように構成されたモータ制御装置10について、その動作を以下説明する。
[1-2. motion]
The operation of the motor control device 10 configured as described above will be described below.
 [1-2-1.モータ駆動制御の動作]
 図5は、実施の形態1におけるモータ制御装置10のモータ駆動制御処理の流れを示すフローチャートである。
[1-2-1. Operation of motor drive control]
FIG. 5 is a flowchart showing the flow of the motor drive control process of the motor control device 10 according to the first embodiment.
 図5に示すように、モータ制御装置10は、ステップS001で、モータ駆動制御を開始する。モータ制御装置10は、ステップS002で、初期位相推定を行う。モータ制御装置10は、ステップS003で、極性判別を行い、判別結果に応じて、初期位相推定にて推定した位相を補正する。ステップS002の初期位相推定及びステップS003の極性判別について、詳細は後で記載する。 As shown in FIG. 5, the motor control device 10 starts motor drive control in step S001. The motor control device 10 performs initial phase estimation in step S002. The motor control device 10 performs polarity discrimination in step S003, and corrects the phase estimated by the initial phase estimation according to the discrimination result. Details of the initial phase estimation in step S002 and the polarity determination in step S003 will be described later.
 モータ制御装置10は、ステップS004で、インダクタンス駆動部24bにてモータ起動制御を行い、ステップS005で、ブラシレスモータ40の回転数が一定以上であるかを判定する。モータ制御装置10は、ブラシレスモータ40の回転数が一定以上である場合に(ステップS005:YES)、ステップS006で、駆動方式の切り替えを行う。すなわち、駆動方式切り替え部24aが、インダクタンス駆動部24bから誘起電圧駆動部24cに切り替える。続いて、モータ制御装置10は、ステップS007で、誘起電圧駆動部24cにてモータ定常回転制御を行い、ステップS008でモータ減速制御を行い、ステップS009で、モータ駆動制御を終了する。 The motor control device 10 performs motor start control by the inductance drive unit 24b in step S004, and determines in step S005 whether the rotation speed of the brushless motor 40 is equal to or higher than a certain level. When the rotation speed of the brushless motor 40 is equal to or higher than a certain level (step S005: YES), the motor control device 10 switches the drive system in step S006. That is, the drive method switching unit 24a switches from the inductance drive unit 24b to the induced voltage drive unit 24c. Subsequently, in step S007, the motor control device 10 performs motor steady rotation control by the induced voltage drive unit 24c, performs motor deceleration control in step S008, and ends motor drive control in step S009.
 [1-2-2.初期位相推定部の動作]
 図6A~図6Cは、ロータ41の初期位相推定についての課題を説明するための図である。なお、図6A~図6Cでは、初期位相推定d軸及び初期位相推定q軸が実線で、実d軸及び実q軸が破線で示されている。
[1-2-2. Operation of initial phase estimator]
6A to 6C are diagrams for explaining a problem regarding the initial phase estimation of the rotor 41. In FIGS. 6A to 6C, the initial phase estimation d-axis and the initial phase estimation q-axis are indicated by solid lines, and the actual d-axis and the actual q-axis are indicated by broken lines.
 図6Aでは、ブラシレスモータ40の内部にマグネット42を有するロータ41とdq軸とが正しい関係にある様子を示している。d軸は、磁極方向であり、q軸は、d軸と直交する方向である。磁極のN極方向がd軸の正の方向、S極がd軸の負の方向である。 FIG. 6A shows how the rotor 41 having the magnet 42 inside the brushless motor 40 and the dq axis have a correct relationship. The d-axis is the magnetic pole direction, and the q-axis is the direction orthogonal to the d-axis. The north pole direction of the magnetic pole is the positive direction of the d-axis, and the south pole is the negative direction of the d-axis.
 初期位相推定部22は、インダクタンス駆動部24bにて、初期のロータ41の位相を推定する。具体的には、100ms間、モータ回転数及びモータ電流がともに指令値0の駆動期間を設け、初期のロータ41の位相を推定する。 The initial phase estimation unit 22 estimates the phase of the initial rotor 41 by the inductance drive unit 24b. Specifically, a drive period in which both the motor rotation speed and the motor current have a command value of 0 is provided for 100 ms, and the phase of the initial rotor 41 is estimated.
 インダクタンス駆動部24bは、ブラシレスモータ40の凸極構造のロータ41の特徴であるd軸、q軸方向のインダクタンスLの差(Ld≠Lq)を利用して位相を推定する。すなわち、インダクタンス駆動部24bは、ロータ41と水平方向(d軸)または垂直方向(q軸)の判別を行うが、図6Bに示すように、同じd軸でも、N極の向きかS極の向きか判別できない。さらに、図6Cに示すように、ロータ41に対してdq軸のインダクタンスLは2θの周期性があり、実際のd軸に対して90°または270°ずれたq軸方向に初期位相を誤って推定しまう課題が存在する。上記課題に対して、本開示の実施の形態1に係るモータ制御装置10は、以下の極性判別部23にて対策を行う。 The inductance drive unit 24b estimates the phase by using the difference (Ld ≠ Lq) of the inductance L in the d-axis and q-axis directions, which is a feature of the rotor 41 having a convex pole structure of the brushless motor 40. That is, the inductance drive unit 24b discriminates between the rotor 41 and the horizontal direction (d axis) or the vertical direction (q axis). I can't tell if it's oriented. Further, as shown in FIG. 6C, the inductance L of the dq axis with respect to the rotor 41 has a periodicity of 2θ, and the initial phase is erroneously set in the q-axis direction deviated by 90 ° or 270 ° from the actual d-axis. There is a problem to estimate. The motor control device 10 according to the first embodiment of the present disclosure takes measures against the above problems by the following polarity discriminating unit 23.
 [1-2-3.極性判別部の動作]
 図7は、一般的なブラシレスモータに使用されているロータコアである電磁鋼板の磁気飽和特性を示す図である。
[1-2-3. Operation of polarity discriminator]
FIG. 7 is a diagram showing magnetic saturation characteristics of an electromagnetic steel sheet, which is a rotor core used in a general brushless motor.
 図7に示すように、インダクタンスLに関する電圧方程式v=L×(di/dt)の関係式により、インダクタンスLが大きい場合に電流の時間微分である(di/dt)は小さく、単位時間の電流変化量iは小さくなる。また、インダクタンスLが小さい場合に電流の時間微分である(di/dt)は大きくなり、単位時間の電流変化量iは大きくなる。すなわち、インダクタンスLが変動すると電流iも変動する。 As shown in FIG. 7, according to the relational expression of the voltage equation v = L × (di / dt) relating to the inductance L, the time derivative (di / dt) of the current is small when the inductance L is large, and the current per unit time. The amount of change i becomes smaller. Further, when the inductance L is small, the time derivative (di / dt) of the current becomes large, and the current change amount i in a unit time becomes large. That is, when the inductance L fluctuates, the current i also fluctuates.
 極性判別部23は、磁気飽和によりインダクタンスLが変動する特性を利用する。極性判別部23は、例えば、初期位相推定部22により初期位相推定を行った結果である推定d軸の正の方向と負の方向に絶対値が同じ大きさの電圧+Vd、-Vdを同じ時間それぞれ重畳し、流れる電流の変化量の大きさ+Id1、-Id2によって極性を判別する。 The polarity discriminating unit 23 utilizes the characteristic that the inductance L fluctuates due to magnetic saturation. For example, the polarity discriminating unit 23 applies voltages + Vd and −Vd having the same absolute value in the positive and negative directions of the estimated d-axis, which is the result of initial phase estimation by the initial phase estimation unit 22, for the same time. The polarities are discriminated by the magnitude of the amount of change in the flowing current + Id1 and -Id2, respectively.
 具体的には、初期位相推定d軸の磁極の極性判別は、初期位相推定d軸の正の方向に電圧+Vdを印加した時の電流変化量の絶対値|+Id1|と、初期位相推定d軸の負の方向に電圧-Vdを印加した時の電流変化量の絶対値|-Id2|との比較で行う。すなわち、|-Id2|<|+Id1|であれば、推定磁極方向は正の方向(N極)であることを意味する。また、|-Id2|>|+Id1|であれば、推定磁極方向は逆方向(S極)であることを意味する。 Specifically, the polarity of the magnetic pole of the initial phase estimation d-axis is determined by the absolute value of the current change amount when a voltage + Vd is applied in the positive direction of the initial phase estimation d-axis | + Id1 | and the initial phase estimation d-axis. This is performed by comparison with the absolute value | -Id2 | of the amount of change in current when the voltage -Vd is applied in the negative direction of. That is, if | −Id2 | <| + Id1 |, it means that the estimated magnetic pole direction is the positive direction (N pole). Further, if | −Id2 |> | + Id1 |, it means that the estimated magnetic pole direction is the opposite direction (S pole).
 [1-2-4.極性判別の動作]
 図8は、実施の形態1におけるモータ制御装置10の極性判別処理の流れを示すフローチャートである。
[1-2-4. Polarity discrimination operation]
FIG. 8 is a flowchart showing the flow of the polarity discrimination process of the motor control device 10 according to the first embodiment.
 図8に示すように、極性判別部23は、ステップS101で、極性判別処理を開始する。極性判別部23は、ステップS102で、初期化処理を実施し、ステップS103で、初期位相推定d軸の電流0時のIdオフセット計算を行う。つまり、極性判別部23は、d軸の正及び負の方向に電圧を重畳する後述するステップS104~S107の処理直前に、電流検出部21により検出されたd軸電流Idをオフセット電流値として保存する。d軸電流Idのオフセット計算及び後述するq軸電流Iqのオフセット計算の詳細は後述するため(図11参照)、以下の図8の説明では、オフセット電流値を考慮せずに説明する。 As shown in FIG. 8, the polarity discrimination unit 23 starts the polarity discrimination process in step S101. The polarity determination unit 23 performs initialization processing in step S102, and performs Id offset calculation when the current of the initial phase estimation d-axis is 0 in step S103. That is, the polarity determination unit 23 stores the d-axis current Id detected by the current detection unit 21 as an offset current value immediately before the processing of steps S104 to S107 described later in which the voltage is superimposed in the positive and negative directions of the d-axis. do. Since the details of the offset calculation of the d-axis current Id and the offset calculation of the q-axis current Iq described later will be described later (see FIG. 11), the following description of FIG. 8 will be described without considering the offset current value.
 極性判別部23は、ステップS104で、初期位相推定d軸の正の方向に電圧+Vdを一定時間重畳し、ステップS105で、初期位相推定d軸の正の方向の電流値の変化量の絶対値|+Id|の電流振幅最大値を積算(Σ+Id)する。極性判別部23は、ステップS106で、初期位相推定d軸の負の方向に電圧-Vdを一定時間重畳し、ステップS107で、初期位相推定d軸の負の方向の電流値の変化量の絶対値|-Id|の電流振幅最大値を積算(Σ-Id)する。極性判別部23は、このステップS104~S107の処理を3回繰り返す。なお、本実施の形態1では、ステップS104~S107の処理を3回繰り返すものとしたが、繰り返す回数はこれに限られず、例えば2回や4回であってもよい。このことは、後述するステップS115~S118の処理を繰り返す回数についても同様である。 In step S104, the polarity discriminating unit 23 superimposes voltage + Vd in the positive direction of the initial phase estimation d-axis for a certain period of time, and in step S105, the absolute value of the amount of change in the current value in the positive direction of the initial phase estimation d-axis. The maximum current amplitude value of | + Id | is integrated (Σ + Id). In step S106, the polarity discriminating unit 23 superimposes voltage −Vd in the negative direction of the initial phase estimation d-axis for a certain period of time, and in step S107, the absolute amount of change in the current value in the negative direction of the initial phase estimation d-axis is absolute. The maximum value of the current amplitude of the value | -Id | is integrated (Σ-Id). The polarity discriminating unit 23 repeats the processes of steps S104 to S107 three times. In the first embodiment, the processes of steps S104 to S107 are repeated three times, but the number of repetitions is not limited to this, and may be, for example, two or four times. This also applies to the number of times that the processes of steps S115 to S118, which will be described later, are repeated.
 次に、極性判別部23は、ステップS108で、初期位相推定d軸の正及び負の方向それぞれに電圧印加後の電流変化量の絶対値の電流振幅最大値の積算の比較を行い、比較結果に応じた処理を行う。具体的には、極性判別部23は、Σ-Id>Σ+Idであれば(ステップS108:YES)、ステップS109の処理に進み、Σ-Id≦Σ+Idであれば(ステップS108:NO)、ステップS110の処理に進む。 Next, in step S108, the polarity discriminating unit 23 compares the integration of the maximum current amplitude of the absolute value of the amount of change in the current after applying the voltage in each of the positive and negative directions of the initial phase estimation d-axis, and the comparison result. Perform processing according to. Specifically, if Σ-Id> Σ + Id (step S108: YES), the polarity discriminating unit 23 proceeds to the process of step S109, and if Σ-Id ≦ Σ + Id (step S108: NO), step S110. Proceed to the process of.
 ステップS109では、実際のd軸が初期位相推定d軸の方向と逆方向である可能性があるため、極性判別部23は、初期位相推定時の位相の値に180°を加算し、位相情報の一時保管場所であるθtmpDに保存する。ステップS110では、初期位相推定d軸の方向が正しい可能性があるため、極性判別部23は、初期位相推定時の位相の値を位相情報の一時保管場所であるθtmpDに保存する。極性判別部23は、以上のステップS101~S110の処理でd軸判定を行い、推定位相を補正する。 In step S109, since the actual d-axis may be in the direction opposite to the direction of the initial phase estimation d-axis, the polarity determination unit 23 adds 180 ° to the phase value at the time of initial phase estimation, and the phase information. It is stored in θtpD, which is a temporary storage location for. In step S110, since the direction of the initial phase estimation d-axis may be correct, the polarity determination unit 23 stores the phase value at the time of initial phase estimation in θtpD, which is a temporary storage place for phase information. The polarity determination unit 23 performs d-axis determination in the above processes of steps S101 to S110, and corrects the estimated phase.
 次に、極性判別部23は、初期位相推定d軸でのd軸判定の確度の確認を行う。 Next, the polarity determination unit 23 confirms the accuracy of the d-axis determination on the initial phase estimation d-axis.
 極性判別部23は、ステップS111で、ステップS104~S107で行った初期位相推定d軸の正及び負の方向それぞれに電圧印加後の電流変化量の絶対値の電流振幅最大値の積算の差分の絶対値ΔΣId=|Σ+Id-Σ-Id|を計算する。極性判別部23は、ステップS112で、この差分の絶対値ΔΣIdが既定の基準値Idthより大きいか否かを確認する。極性判別部23は、ΔΣId>Idth(例えば、1A)であれば(ステップS112:YES)、ステップS113の処理に進み、ΔΣId≦Idthであれば(ステップS112:NO)、ステップS114の処理に進む。ステップS113では、極性判別部23は、位相情報の一時保管場所であるθtmpDに保存した値が正しいとし、同値を推定位相に保存し、ステップS126で極性判別処理を終了する。 The polarity discriminating unit 23 is the difference between the integration of the maximum current amplitude of the absolute value of the amount of change in the current after applying the voltage in each of the positive and negative directions of the initial phase estimation d-axis performed in steps S104 to S107 in step S111. The absolute value ΔΣId = | Σ + Id-Σ-Id | is calculated. In step S112, the polarity determination unit 23 confirms whether or not the absolute value ΔΣId of this difference is larger than the default reference value Idth. If ΔΣId> Idth (for example, 1A) (step S112: YES), the polarity determination unit 23 proceeds to the process of step S113, and if ΔΣId ≦ Idth (step S112: NO), proceeds to the process of step S114. .. In step S113, the polarity determination unit 23 assumes that the value stored in θtpD, which is a temporary storage location for phase information, is correct, stores the same value in the estimated phase, and ends the polarity determination process in step S126.
 一方、ステップS114の処理に進んできた場合は、初期位相推定d軸が+90°または+270°誤っている可能性がある。この方向は、初期位相推定のq軸方向であるため、極性判別部23は、q軸方向にて再度判定を実施する。極性判別部23は、ステップS114で、初期位相推定q軸の電流0時のIqオフセット計算を行う。 On the other hand, if the process proceeds to step S114, the initial phase estimation d-axis may be incorrect by + 90 ° or + 270 °. Since this direction is the q-axis direction of the initial phase estimation, the polarity determination unit 23 performs the determination again in the q-axis direction. In step S114, the polarity determination unit 23 calculates the IQ offset when the current of the initial phase estimation q axis is 0.
 極性判別部23は、ステップS115で、初期位相推定q軸の正の方向に電圧+Vqを一定時間重畳し、ステップS116で、初期位相推定q軸の正の方向の電流値の変化量の絶対値|+Iq|の電流振幅最大値を積算(Σ+Iq)する。極性判別部23は、ステップS117で、初期位相推定q軸の負の方向に電圧-Vqを一定時間重畳し、ステップS118で、初期位相推定q軸の負の方向の電流値の変化量の絶対値|-Iq|の電流振幅最大値を積算(Σ-Iq)する。極性判別部23は、このステップS115~S118の処理を3回繰り返す。 In step S115, the polarity discriminating unit 23 superimposes voltage + Vq in the positive direction of the initial phase estimation q-axis for a certain period of time, and in step S116, the absolute value of the amount of change in the current value in the positive direction of the initial phase estimation q-axis. The maximum value of the current amplitude of | + Iq | is integrated (Σ + Iq). In step S117, the polarity discriminating unit 23 superimposes the voltage −Vq in the negative direction of the initial phase estimation q-axis for a certain period of time, and in step S118, the absolute amount of change in the current value in the negative direction of the initial phase estimation q-axis. The maximum value of the current amplitude of the value | -Iq | is integrated (Σ-Iq). The polarity discriminating unit 23 repeats the processes of steps S115 to S118 three times.
 次に、極性判別部23は、ステップS119で、初期位相推定q軸の正及び負の方向それぞれに電圧印加後の電流変化量の絶対値の電流振幅最大値の積算の比較を行い、比較結果に応じた処理を行う。具体的には、極性判別部23は、Σ-Iq>Σ+Iqであれば(ステップS119:YES)、ステップS120の処理に進み、Σ-Iq≦Σ+Iqであれば(ステップS119:NO)ステップS121の処理に進む。 Next, in step S119, the polarity discriminating unit 23 compares the integration of the maximum current amplitude of the absolute value of the amount of change in the current after applying the voltage in each of the positive and negative directions of the initial phase estimation q-axis, and the comparison result. Perform processing according to. Specifically, if the polarity determination unit 23 is Σ-Iq> Σ + Iq (step S119: YES), the process proceeds to step S120, and if Σ-Iq ≦ Σ + Iq (step S119: NO), step S121. Proceed to processing.
 ステップS120では、実際のd軸の正の方向が初期位相推定q軸の負の方向の可能性があるため、極性判別部23は、初期位相推定時の位相の値に270°を加算し、位相情報の一時保管場所であるθtmpQに保存する。一方、ステップS121では、実際のd軸の正の方向が初期位相推定q軸の正の方向である可能性があるため、極性判別部23は、初期位相推定時の位相の値に90°を加算し、位置情報の一時保管場所であるθtmpQに保存する。 In step S120, since the actual positive direction of the d-axis may be the negative direction of the initial phase estimation q-axis, the polarity determination unit 23 adds 270 ° to the phase value at the time of initial phase estimation. It is stored in θtpQ, which is a temporary storage location for phase information. On the other hand, in step S121, since the actual positive direction of the d-axis may be the positive direction of the initial phase estimation q-axis, the polarity determination unit 23 sets 90 ° as the phase value at the time of initial phase estimation. Add and save in θtpQ, which is a temporary storage location for location information.
 以上のように、極性判別部23は、ステップS114~S121の処理で、q軸判定を行い、推定位相を補正する。 As described above, the polarity determination unit 23 performs the q-axis determination in the processes of steps S114 to S121 and corrects the estimated phase.
 続いて、極性判別部23は、ステップS122で、ステップS115~S118で行った初期位相推定q軸の正及び負の方向それぞれに電圧印加後の電流変化量の絶対値の電流最大振幅の積算の差分の絶対値ΔΣIq=|Σ+Iq-Σ-Iq|を計算する。極性判別部23は、ステップS123で、d軸方向で求めた差分の絶対値ΔΣIdとq軸方向で求めた差分の絶対値ΔΣIqとの比較を行い、比較結果に応じた処理を行う。具体的には、極性判別部23は、ΔΣId≧ΔΣIqであれば(ステップS123:YES)、ステップS124の処理に進み、ΔΣId<ΔΣIqであれば(ステップS123:NO)、ステップS125の処理に進む。 Subsequently, the polarity discriminating unit 23 integrates the current maximum amplitude of the absolute value of the amount of change in the current after applying the voltage in each of the positive and negative directions of the initial phase estimation q-axis performed in steps S115 to S118 in step S122. The absolute value of the difference ΔΣIq = | Σ + Iq-Σ-Iq | is calculated. In step S123, the polarity determination unit 23 compares the absolute value ΔΣId of the difference obtained in the d-axis direction with the absolute value ΔΣIq of the difference obtained in the q-axis direction, and performs processing according to the comparison result. Specifically, if ΔΣId ≧ ΔΣIq (step S123: YES), the polarity discriminating unit 23 proceeds to the process of step S124, and if ΔΣId <ΔΣIq (step S123: NO), proceeds to the process of step S125. ..
 極性判別部23は、ステップS124では、位相情報の一時保管場所θtmpDの値が正しいとして、同値を推定位相に保存し、ステップS125では、位相情報の一時保管場所θtmpQの値が正しいとして、同値を推定位相に保存する。極性判別部23は、最後に、ステップS126で極性判別処理を終了する。 In step S124, the polarity determination unit 23 stores the same value in the estimated phase assuming that the value of the temporary storage location θtmpD of the phase information is correct, and in step S125, assuming that the value of the temporary storage location θtmmpQ of the phase information is correct, the same value is set. Save to the estimated phase. Finally, the polarity determination unit 23 ends the polarity determination process in step S126.
 [1-2-5.極性判別 d軸判定]
 図9は、実施の形態1におけるモータ制御装置10のd軸判定時の印加電圧と電流との一例を示す図である。
[1-2-5. Polarity judgment d-axis judgment]
FIG. 9 is a diagram showing an example of the applied voltage and current at the time of d-axis determination of the motor control device 10 in the first embodiment.
 以下、図9に示す例を用いて、図8に示す極性判別処理のフローチャート内のステップS104~S107の電圧の重畳及び電流振幅最大値の積算を具体的に説明する。なお、この図9の例では、保存された+Idと-Idとの差分は基準値Idth(例えば、1A)より大きいものとする。まず、初期位相推定d軸の正の方向に+Vdの電圧が重畳されて、そのときの+Idの電流振幅最大値が保存される。次に、初期位相推定d軸の負の方向に-Vdの電圧が重畳されて、そのときの-Idの電流振幅最大値が保存される。保存された+Idと-Idが、|-Id|<|+Id|の関係にあるなら、極性判別直前の初期位相判別で推定された推定位相が以降のモータ駆動制御で用いられる。|-Id|>|+Id|の関係にあるなら、極性判別直前の初期位相判別で推定された推定位相に180°加算した推定位相が以降のモータ駆動制御で用いられる。図9の例では、極性判別直前の初期位相判別で推定した推定位相がそのまま推定位相となる。 Hereinafter, using the example shown in FIG. 9, the superimposition of the voltage and the integration of the maximum value of the current amplitude in steps S104 to S107 in the flowchart of the polarity discrimination process shown in FIG. 8 will be specifically described. In the example of FIG. 9, the difference between the stored + Id and −Id is larger than the reference value Idth (for example, 1A). First, a voltage of + Vd is superimposed in the positive direction of the initial phase estimation d-axis, and the maximum value of the current amplitude of + Id at that time is stored. Next, the voltage of −Vd is superimposed in the negative direction of the initial phase estimation d-axis, and the maximum value of the current amplitude of −Id at that time is stored. If the stored + Id and -Id have a | -Id | <| + Id | relationship, the estimated phase estimated by the initial phase discrimination immediately before the polarity discrimination is used in the subsequent motor drive control. If the relationship is | -Id |> | + Id |, the estimated phase obtained by adding 180 ° to the estimated phase estimated in the initial phase discrimination immediately before the polarity discrimination is used in the subsequent motor drive control. In the example of FIG. 9, the estimated phase estimated by the initial phase discrimination immediately before the polarity discrimination becomes the estimated phase as it is.
 これにより、モータ制御装置10は、初期位相推定したd軸の方向が180°誤っていた場合でも、正しいN極S極の向きに補正することができる。 As a result, the motor control device 10 can correct the direction of the N pole and the S pole even if the direction of the d-axis whose initial phase is estimated is incorrect by 180 °.
 [1-2-6.極性判別 d軸、q軸判定]
 図10は、実施の形態1におけるモータ制御装置10のd軸及びq軸判定時の印加電圧と電流との一例を示す図である。
[1-2-6. Polarity discrimination d-axis, q-axis judgment]
FIG. 10 is a diagram showing an example of the applied voltage and current at the time of determining the d-axis and the q-axis of the motor control device 10 in the first embodiment.
 以下、図10に示す例を用いて、図8に示す極性判別処理のフローチャート内のステップS104~S107、ステップS115~S118の電圧の重畳及び電流振幅最大値の積算を具体的に説明する。図9のd軸判定と同様に、まず、初期位相推定d軸の正の方向に+Vdの電圧が重畳されて、そのときの+Idの電流振幅最大値が保存される。 Hereinafter, using the example shown in FIG. 10, the voltage superposition and the integration of the current amplitude maximum values in steps S104 to S107 and steps S115 to S118 in the flow chart of the polarity discrimination process shown in FIG. 8 will be specifically described. Similar to the d-axis determination in FIG. 9, first, the voltage of + Vd is superimposed in the positive direction of the initial phase estimation d-axis, and the maximum value of the current amplitude of + Id at that time is stored.
 次に、初期位相推定d軸の負の方向に-Vdの電圧が重畳されて、そのときの-Idの電流振幅最大値が保存される。保存された+Idと-Idとの差(||+Id|-|-Id||)が基準値Idthより小さい、すなわち|-Id|≒|+Id|の関係にあるなら、初期位相推定にて推定されたd軸が実d軸に対して、90°または270°ずれている可能性がある。そのため、q軸方向にも電圧が重畳され、極性判別が行われる。上記のd軸と同様に、まず、初期位相推定q軸の正の方向に+Vqの電圧が重畳されて、そのときの+Iqの電流振幅最大値が保存される。 Next, the voltage of -Vd is superimposed in the negative direction of the initial phase estimation d-axis, and the maximum value of the current amplitude of -Id at that time is stored. If the difference between the stored + Id and -Id (|| + Id |-|-Id ||) is smaller than the reference value Idth, that is, in the relationship of | -Id | ≈ | + Id |, it is estimated by the initial phase estimation. There is a possibility that the d-axis is deviated by 90 ° or 270 ° with respect to the actual d-axis. Therefore, the voltage is superimposed also in the q-axis direction, and the polarity is determined. Similar to the above d-axis, first, a voltage of + Vq is superimposed in the positive direction of the initial phase estimation q-axis, and the maximum value of the current amplitude of + Iq at that time is stored.
 次に、初期位相推定q軸の負の方向に-Vqの電圧が重畳されて、そのときの-Iqの電流振幅最大値が保存される。保存された+Iqと-Iqが|-Iq|<|+Iq|の関係にあるなら、極性判別直前の初期位相判別で推定された推定位相に90°が加算される。|-Iq|>|+Iq|の関係にあるなら、極性判別直前の初期位相判別で推定された推定位相に270°が加算される。図10の例では、|-Iq|<|+Iq|の関係にあり、かつ+Idと-Idとの差より、+Iqと-Iqとの差の方が大きいため、極性判別直前の初期位相判別で推定した推定位相に90°が加算されることになる。 Next, the voltage of -Vq is superimposed in the negative direction of the initial phase estimation q-axis, and the maximum value of the current amplitude of -Iq at that time is stored. If the stored + Iq and -Iq have a | -Iq | <| + Iq | relationship, 90 ° is added to the estimated phase estimated by the initial phase discrimination immediately before the polarity discrimination. If the relationship is | -Iq |> | + Iq |, 270 ° is added to the estimated phase estimated by the initial phase discrimination immediately before the polarity discrimination. In the example of FIG. 10, since the relationship is | -Iq | <| + Iq | and the difference between + Iq and -Iq is larger than the difference between + Id and -Id, the initial phase discrimination immediately before the polarity discrimination is performed. 90 ° will be added to the estimated estimated phase.
 これにより、モータ制御装置10は、初期位相推定したd軸の方向が90°または270°誤っていた場合でも、正しいN極S極の向きに補正することができる。 As a result, the motor control device 10 can correct the direction of the N pole and the S pole even if the direction of the d-axis whose initial phase is estimated is incorrect by 90 ° or 270 °.
 [1-2-7.極性判別 オフセット補正]
 図11は、実施の形態1におけるモータ制御装置10の極性判別時におけるオフセット補正時の印加電圧と電流とを説明するための図である。
[1-2-7. Polarity discrimination offset correction]
FIG. 11 is a diagram for explaining an applied voltage and a current at the time of offset correction at the time of determining the polarity of the motor control device 10 according to the first embodiment.
 以下、図8のステップS103のIdオフセット計算及びステップS114のIqオフセット計算の内容を説明する。極性判別部23は、図9、図10のd軸またはq軸方向電圧重畳前の電流の一定期間の平均値をオフセット電流値として、保存する。図8のステップS105、S107、S116、S118の処理では、極性判別部23は、電流振幅最大値を検出したのちに、保存したオフセット電流値を差し引いたものを最終の電流振幅最大値とする。つまり、d軸について、オフセット電流値を+Id0とし、測定した電流振幅最大値+Id‘とすると、極性判別で求めたい+Idは、+Id=+Id’-Id0として、算出できる(図11参照)。これは、Idの正負、Id、Iqに関わらず、同様の演算ができる。 Hereinafter, the contents of the Id offset calculation in step S103 and the IQ offset calculation in step S114 in FIG. 8 will be described. The polarity discriminating unit 23 stores the average value of the currents before the d-axis or q-axis direction voltage superposition in FIGS. 9 and 10 for a certain period as the offset current value. In the processing of steps S105, S107, S116, and S118 of FIG. 8, the polarity discriminating unit 23 detects the maximum current amplitude value and then subtracts the stored offset current value as the final maximum current amplitude value. That is, assuming that the offset current value is + Id0 and the measured current amplitude maximum value + Id'for the d-axis, + Id to be obtained by polarity discrimination can be calculated as + Id = + Id'-Id0 (see FIG. 11). The same operation can be performed regardless of whether Id is positive or negative, Id, or Iq.
 これより、モータ制御装置10は、初期電流をオフセット電流値とし、補正することで、電流値が0に収束していない場合でも、極性判別への影響を抑えることができる。そのため、モータ制御装置10は、より精度よく判別することができる。 From this, the motor control device 10 can suppress the influence on the polarity discrimination even when the current value does not converge to 0 by using the initial current as the offset current value and correcting it. Therefore, the motor control device 10 can make a more accurate determination.
 [1-3.効果等]
 以上のように、本実施の形態1において、モータ制御装置10は、インバータ回路13により駆動される凸極構造のロータ41を有するブラシレスモータ40を制御する。モータ制御装置10は、インバータ回路13と、電流検出部21と、初期位相推定部22と、極性判別部23と、を備える。電流検出部21は、ブラシレスモータ40の電流を検出する。初期位相推定部22は、電流検出部21により検出された電流に基づき、ブラシレスモータ40の初期位相を推定する。極性判別部23は、電流検出部21により検出された電流に基づき、ブラシレスモータ40の磁極の極性を判別する。極性判別部23は、初期位相推定部22により推定された初期位相に対して、d軸及びq軸それぞれの正及び負の方向に電圧を重畳して電流検出部21により検出されたd軸及びq軸それぞれの正及び負の方向の電流振幅差に基づいて、ブラシレスモータ40の磁極の極性を判別し、初期位相を補正する。
[1-3. Effect, etc.]
As described above, in the first embodiment, the motor control device 10 controls the brushless motor 40 having the rotor 41 having the convex pole structure driven by the inverter circuit 13. The motor control device 10 includes an inverter circuit 13, a current detection unit 21, an initial phase estimation unit 22, and a polarity determination unit 23. The current detection unit 21 detects the current of the brushless motor 40. The initial phase estimation unit 22 estimates the initial phase of the brushless motor 40 based on the current detected by the current detection unit 21. The polarity determination unit 23 determines the polarity of the magnetic pole of the brushless motor 40 based on the current detected by the current detection unit 21. The polarity discriminating unit 23 superimposes a voltage on the initial phase estimated by the initial phase estimation unit 22 in the positive and negative directions of the d-axis and the q-axis, respectively, and the d-axis and the current detection unit 21 detect the voltage. The polarity of the magnetic pole of the brushless motor 40 is determined based on the difference in current amplitude in the positive and negative directions of each of the q-axis, and the initial phase is corrected.
 これにより、モータ制御装置10は、初期位相推定時に本来のd軸方向とは誤ってq軸方向に推定してしまった場合でも、極性判別時に正しい磁極方向を判別することができる。すなわち、モータ制御装置10は、初期推定したd軸の方向が正しい方向に対して90°または270°誤っていた場合にも正しく磁極検出を行うことができる。そのため、モータ制御装置10は、ブラシレスモータ40の起動時に逆転や脱調等の動作がなくスムーズな起動及び加速を行うことができる。 As a result, the motor control device 10 can determine the correct magnetic pole direction at the time of polarity determination even if the motor control device 10 mistakenly estimates in the q-axis direction from the original d-axis direction at the time of initial phase estimation. That is, the motor control device 10 can correctly detect the magnetic pole even when the initially estimated direction of the d-axis is incorrect by 90 ° or 270 ° with respect to the correct direction. Therefore, the motor control device 10 can smoothly start and accelerate without any operation such as reversal or step-out when the brushless motor 40 is started.
 本実施の形態1のように、モータ制御装置10の極性判別部23は、d軸の正及び負の方向に電圧を重畳して電流検出部21より検出されたd軸の正及び負の方向の電流振幅差の絶対値が基準値Idthより大きい場合には、ブラシレスモータ40の極性判別を終了する。また、極性判別部23は、d軸の正及び負の方向の電流振幅差の絶対値が基準値Idthより小さい場合には、以下を行う。すなわち、極性判別部23は、q軸の正及び負の方向に電圧を重畳して電流検出部21より検出されたq軸の正及び負の方向の電流振幅差と、d軸の正及び負の方向の電流振幅差とに基づいて、ブラシレスモータ40の磁極の極性を判別し、初期位相を補正する。 As in the first embodiment, the polarity determination unit 23 of the motor control device 10 superimposes a voltage in the positive and negative directions of the d-axis, and the positive and negative directions of the d-axis detected by the current detection unit 21. When the absolute value of the current amplitude difference is larger than the reference value Idth, the polarity determination of the brushless motor 40 is terminated. Further, the polarity discriminating unit 23 performs the following when the absolute value of the current amplitude difference in the positive and negative directions of the d-axis is smaller than the reference value Idth. That is, the polarity discriminating unit 23 superimposes the voltage in the positive and negative directions of the q-axis, and the current amplitude difference in the positive and negative directions of the q-axis detected by the current detecting unit 21 and the positive and negative of the d-axis. Based on the current amplitude difference in the direction of, the polarity of the magnetic pole of the brushless motor 40 is determined, and the initial phase is corrected.
 これにより、モータ制御装置10は、初期位相推定時に本来のd軸方向とは誤ってq軸方向に推定してしまった場合でも極性判別時に正しい磁極方向を判別することができる。すなわち、モータ制御装置10は、初期推定したd軸の方向が正しい方向に対して90°または270°誤っていた場合にも正しく磁極検出を行うことができる。そのため、モータ制御装置10は、ブラシレスモータ40の起動時に逆転や脱調等の動作がなくスムーズな起動及び加速を行うことができる。 As a result, the motor control device 10 can determine the correct magnetic pole direction at the time of polarity determination even if the motor control device 10 mistakenly estimates in the q-axis direction from the original d-axis direction at the time of initial phase estimation. That is, the motor control device 10 can correctly detect the magnetic pole even when the initially estimated direction of the d-axis is incorrect by 90 ° or 270 ° with respect to the correct direction. Therefore, the motor control device 10 can smoothly start and accelerate without any operation such as reversal or step-out when the brushless motor 40 is started.
 本実施の形態1のように、モータ制御装置10の極性判別部23は、d軸及びq軸それぞれの正及び負の方向に電圧を重畳する直前に、電流検出部21により検出された電流をオフセット電流値とする。極性判別部23は、d軸及びq軸それぞれの正及び負の方向に電圧を重畳して電流検出部21により検出されたd軸及びq軸それぞれの正及び負の方向の電流振幅最大値からオフセット電流値を差し引いた値に基づいて、ブラシレスモータ40の磁極の極性を判別し、初期位相を補正する。 As in the first embodiment, the polarity discriminating unit 23 of the motor control device 10 detects the current detected by the current detecting unit 21 immediately before superimposing the voltage in the positive and negative directions of the d-axis and the q-axis, respectively. The offset current value. The polarity discriminating unit 23 superimposes a voltage in the positive and negative directions of the d-axis and the q-axis, respectively, and from the maximum value of the current amplitude in the positive and negative directions of the d-axis and the q-axis detected by the current detection unit 21. Based on the value obtained by subtracting the offset current value, the polarity of the magnetic pole of the brushless motor 40 is determined, and the initial phase is corrected.
 これにより、モータ制御装置10は、より正確に、極性判別時に正しい磁極方向を判別することができる。そのため、より一層、モータ起動時に逆転や脱調等の動作がなくスムーズな起動及び加速を行うことができる。 Thereby, the motor control device 10 can more accurately determine the correct magnetic pole direction at the time of polarity determination. Therefore, even more smoothly, smooth starting and acceleration can be performed without operations such as reversal and step-out when the motor is started.
 (実施の形態2)
 以下、図12を用いて、実施の形態2におけるモータ制御装置を説明する。
(Embodiment 2)
Hereinafter, the motor control device according to the second embodiment will be described with reference to FIG.
 [2-1.動作]
 [2-1-1.指令電流値の制御]
 実施の形態2におけるモータ制御装置の極性判別部は、極性を判別する間、指令電流値(±Id、±Iq)が、0Aになるように制御するようにした点で、実施の形態1におけるモータ制御装置10の極性判別部23と異なる。
[2-1. motion]
[2-1-1. Control of command current value]
In the first embodiment, the polarity discriminating unit of the motor control device according to the second embodiment controls so that the command current value (± Id, ± Iq) becomes 0A while discriminating the polarity. It is different from the polarity discriminating unit 23 of the motor control device 10.
 図12は、実施の形態2におけるモータ制御装置において電流制御を行った場合の極性判別の概略を説明するための図である。 FIG. 12 is a diagram for explaining the outline of polarity discrimination when current control is performed in the motor control device according to the second embodiment.
 図12は、極性判別において、電流制御を行った場合と行わなかった場合とのId電流の挙動の相違を示している。なお、図12では、電流制御を行った場合のId電流が実線で、電流制御を行わなかった場合のId電流が点線で示されている。 FIG. 12 shows the difference in the behavior of the Id current between the case where the current control is performed and the case where the current control is not performed in the polarity discrimination. In FIG. 12, the Id current when the current control is performed is shown by a solid line, and the Id current when the current control is not performed is shown by a dotted line.
 図12に示すように、電流制御を行った場合の電流挙動によると、電流制御を行った場合には、電流応答が速くなるため、Id電流値がより早く0Aに収束していることが分かる。 As shown in FIG. 12, according to the current behavior when the current control is performed, it can be seen that the Id current value converges to 0A earlier because the current response becomes faster when the current control is performed. ..
 [2-2.効果等]
 以上のように、本実施の形態2におけるモータ制御装置の極性判別部は、ブラシレスモータ40の磁極の極性を判別している間、ブラシレスモータ40に流れる電流が0になるように制御する。
[2-2. Effect, etc.]
As described above, the polarity discriminating unit of the motor control device according to the second embodiment controls so that the current flowing through the brushless motor 40 becomes 0 while discriminating the polarity of the magnetic poles of the brushless motor 40.
 これにより、本実施の形態2におけるモータ制御装置は、電圧を重畳する間隔を短くすることが可能となる。そのため、本実施の形態2におけるモータ制御装置は、より短期間で極性を判別することができる。 This makes it possible for the motor control device according to the second embodiment to shorten the interval at which the voltage is superimposed. Therefore, the motor control device according to the second embodiment can determine the polarity in a shorter period of time.
 (他の実施の形態)
 以上のように、本開示における技術の例示として、実施の形態1及び2を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1及び2で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
(Other embodiments)
As described above, Embodiments 1 and 2 have been described as examples of the techniques in the present disclosure. However, the technique in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. have been made. It is also possible to combine the components described in the first and second embodiments to form a new embodiment.
 そこで、以下、他の実施の形態を例示する。 Therefore, other embodiments will be exemplified below.
 本開示におけるモータ制御装置並びに凸極構造のブラシレスモータを、洗濯機あるいは洗濯乾燥機に搭載することができる。例えば、ドラム式洗濯機のドラムの駆動用のブラシレスモータ及びモータ制御装置として、本凸極構造のブラシレスモータ及び本開示におけるモータ制御装置を用いた場合、停止しているドラムを逆転や起動失敗することなく、スムーズに起動し回転数を上げることができる。これにより、本開示は、洗浄率の向上や運転時間の短縮に寄与することができ、高性能の洗濯機を提供することができる。 The motor control device and the brushless motor having a convex pole structure in the present disclosure can be mounted on a washing machine or a washer / dryer. For example, when a brushless motor having a convex electrode structure and a motor control device in the present disclosure are used as a brushless motor and a motor control device for driving a drum of a drum type washing machine, the stopped drum is reversed or fails to start. It can be started smoothly and the number of rotations can be increased without any problem. Thereby, the present disclosure can contribute to the improvement of the washing rate and the shortening of the operation time, and can provide a high-performance washing machine.
 また、実施の形態1のモータ制御装置10及び実施の形態2のモータ制御装置(以下、「実施の形態のモータ制御装置」ともいう)は、ブラシレスモータ40を含まない構成とした。しかしながら、実施の形態のモータ制御装置の構成は、本開示におけるモータ制御装置の構成の一例であり、本開示におけるモータ制御装置は、実施の形態のモータ制御装置の構成に限定されない。すなわち、本開示におけるモータ制御装置は、本開示におけるインバータ回路により駆動される凸極構造のロータを有するブラシレスモータを含む構成であってもよい。 Further, the motor control device 10 of the first embodiment and the motor control device of the second embodiment (hereinafter, also referred to as "motor control device of the embodiment") are configured not to include the brushless motor 40. However, the configuration of the motor control device of the embodiment is an example of the configuration of the motor control device in the present disclosure, and the motor control device in the present disclosure is not limited to the configuration of the motor control device of the embodiment. That is, the motor control device in the present disclosure may include a brushless motor having a rotor having a convex pole structure driven by the inverter circuit in the present disclosure.
 本開示は、凸極構造のロータを有するブラシレスモータ(永久磁石同期電動機)の回転をセンサレス制御するモータ制御装置、及びこのモータ制御装置を搭載した洗濯機または洗濯乾燥機に適用可能である。具体的には、例えば、縦型洗濯機、ドラム式洗濯機、ドラム式洗濯乾燥機などに、本開示は適用可能である。 The present disclosure is applicable to a motor control device that sensorlessly controls the rotation of a brushless motor (permanent magnet synchronous motor) having a rotor having a convex pole structure, and a washing machine or a washing / drying machine equipped with this motor control device. Specifically, the present disclosure is applicable to, for example, a vertical washing machine, a drum-type washing machine, a drum-type washer-dryer, and the like.
 10 モータ制御装置
 11 整流回路
 12 平滑コンデンサ
 13 インバータ回路
 14a スイッチング素子
 14b スイッチング素子
 14c スイッチング素子
 14d スイッチング素子
 14e スイッチング素子
 14f スイッチング素子
 15a 抵抗
 15b 抵抗
 15c 抵抗
 20 制御回路
 21 電流検出部
 22 初期位相推定部
 23 極性判別部
 24 センサレス推定部
 24a 駆動方式切り替え部
 24b インダクタンス駆動部
 24ba uvw→dq電流変換部
 24bb 位置推定φ演算部
 24bc 高周波電流制御部
 24bd 角速度ω演算部
 24be 位置角θ演算部
 24bf 速度電流制御部
 24bg dq→uvw電圧変換部
 24c 誘起電圧駆動部
 24ca uvw→dq電流変換部
 24cb 位置推定εγ演算部
 24cc 角速度ω演算部
 24cd 位置角θ演算部
 24ce 速度電流制御部
 24cf dq→uvw電圧変換部
 30 交流電源
 40 ブラシレスモータ
 41 ロータ
 42 マグネット
10 Motor control device 11 Rectifier circuit 12 Smoothing capacitor 13 Inductance circuit 14a Switching element 14b Switching element 14c Switching element 14d Switching element 14e Switching element 14f Switching element 15a Resistance 15b Resistance 15c Resistance 20 Control circuit 21 Current detection unit 22 Initial phase estimation unit 23 Polarity discrimination unit 24 Sensorless estimation unit 24a Drive method switching unit 24b Inductance drive unit 24ba uvw → dq Current conversion unit 24bb Position estimation φ calculation unit 24bc High frequency current control unit 24bd Angle speed ω calculation unit 24be Position angle θ calculation unit 24bf Speed current control unit 24bb dq → uvw voltage conversion unit 24c induced voltage drive unit 24ca uvw → dq current conversion unit 24cc position estimation εγ calculation unit 24cc angular speed ω calculation unit 24cd position angle θ calculation unit 24ce speed current control unit 24cf dq → uvw voltage conversion unit 30 Power supply 40 Brushless motor 41 Rotor 42 Magnet

Claims (5)

  1.  インバータ回路により駆動される凸極構造のロータを有するブラシレスモータを制御するモータ制御装置であって、
     前記インバータ回路と、
     前記ブラシレスモータの電流を検出する電流検出部と、
     前記電流検出部により検出された電流に基づき、前記ブラシレスモータの初期位相を推定する初期位相推定部と、
     前記電流検出部により検出された電流に基づき、前記ブラシレスモータの磁極の極性を判別する極性判別部と、を備え、
     前記極性判別部は、
     前記初期位相推定部により推定された前記初期位相に対して、d軸及びq軸それぞれの正及び負の方向に電圧を重畳して前記電流検出部により検出されたd軸及びq軸それぞれの正及び負の方向の電流振幅差に基づいて、前記ブラシレスモータの磁極の極性を判別し、前記初期位相を補正する
     モータ制御装置。
    A motor control device that controls a brushless motor having a rotor with a convex pole structure driven by an inverter circuit.
    With the inverter circuit
    A current detector that detects the current of the brushless motor,
    An initial phase estimation unit that estimates the initial phase of the brushless motor based on the current detected by the current detection unit, and an initial phase estimation unit.
    A polarity discriminating unit for discriminating the polarity of the magnetic poles of the brushless motor based on the current detected by the current detecting unit is provided.
    The polarity discriminating unit is
    With respect to the initial phase estimated by the initial phase estimation unit, voltages are superimposed in the positive and negative directions of the d-axis and the q-axis, respectively, and the positive and negative directions of the d-axis and the q-axis detected by the current detection unit are applied. A motor control device that determines the polarity of the magnetic poles of the brushless motor based on the current amplitude difference in the negative direction and corrects the initial phase.
  2.  前記極性判別部は、
     d軸の正及び負の方向に電圧を重畳して前記電流検出部より検出されたd軸の正及び負の方向の前記電流振幅差の絶対値が基準値より大きい場合には、前記ブラシレスモータの極性判別を終了し、
     d軸の正及び負の方向の前記電流振幅差の絶対値が前記基準値より小さい場合には、q軸の正及び負の方向に電圧を重畳して前記電流検出部より検出されたq軸の正及び負の方向の前記電流振幅差と、d軸の正及び負の方向の前記電流振幅差とに基づいて、前記ブラシレスモータの磁極の極性を判別し、前記初期位相を補正する
     請求項1記載のモータ制御装置。
    The polarity discriminating unit is
    When the absolute value of the current amplitude difference in the positive and negative directions of the d-axis detected by the current detector by superimposing the voltage in the positive and negative directions of the d-axis is larger than the reference value, the brushless motor Finish the polarity determination of
    When the absolute value of the current amplitude difference in the positive and negative directions of the d-axis is smaller than the reference value, the q-axis detected by the current detection unit by superimposing the voltage in the positive and negative directions of the q-axis. Claims to determine the polarity of the magnetic poles of the brushless motor and correct the initial phase based on the current amplitude difference in the positive and negative directions and the current amplitude difference in the positive and negative directions of the d-axis. 1. The motor control device according to 1.
  3.  前記極性判別部は、d軸及びq軸それぞれの正及び負の方向に電圧を重畳する直前に、前記電流検出部により検出された電流をオフセット電流値とし、d軸及びq軸それぞれの正及び負の方向に電圧を重畳して前記電流検出部により検出されたd軸及びq軸それぞれの正及び負の方向の電流振幅最大値から前記オフセット電流値を差し引いた値に基づいて、前記ブラシレスモータの磁極の極性を判別し、前記初期位相を補正する
     請求項1または2に記載のモータ制御装置。
    Immediately before the voltage is superimposed in the positive and negative directions of the d-axis and the q-axis, the polarity discriminating unit uses the current detected by the current detection unit as the offset current value, and the positive and negative of the d-axis and the q-axis respectively. The brushless motor is based on a value obtained by subtracting the offset current value from the maximum value of the current amplitude in the positive and negative directions of the d-axis and the q-axis detected by the current detector by superimposing a voltage in the negative direction. The motor control device according to claim 1 or 2, wherein the polarity of the magnetic poles of the motor is determined and the initial phase is corrected.
  4.  前記極性判別部は、前記ブラシレスモータの磁極の極性を判別している間、前記ブラシレスモータに流れる電流が0になるように制御する
     請求項1~3のいずれか1項に記載のモータ制御装置。
    The motor control device according to any one of claims 1 to 3, wherein the polarity discriminating unit controls the current flowing through the brushless motor to become 0 while discriminating the polarity of the magnetic poles of the brushless motor. ..
  5.  請求項1~4のいずれか1項に記載のモータ制御装置を搭載した
     洗濯機または洗濯乾燥機。
    A washing machine or a washer / dryer equipped with the motor control device according to any one of claims 1 to 4.
PCT/JP2021/036541 2020-10-26 2021-10-04 Motor control device, and washing machine or washing and drying machine having said motor control device installed therein WO2022091701A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022558948A JP7442052B2 (en) 2020-10-26 2021-10-04 A motor control device and a washing machine or washer/dryer equipped with this motor control device
CN202180072186.XA CN116349128A (en) 2020-10-26 2021-10-04 Motor control device, and washing machine or washing dryer equipped with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020178624 2020-10-26
JP2020-178624 2020-10-26

Publications (1)

Publication Number Publication Date
WO2022091701A1 true WO2022091701A1 (en) 2022-05-05

Family

ID=81382426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036541 WO2022091701A1 (en) 2020-10-26 2021-10-04 Motor control device, and washing machine or washing and drying machine having said motor control device installed therein

Country Status (4)

Country Link
JP (1) JP7442052B2 (en)
CN (1) CN116349128A (en)
TW (1) TW202232879A (en)
WO (1) WO2022091701A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200154A (en) * 2013-03-29 2014-10-23 株式会社安川電機 Motor controller and magnetic pole position estimation method
WO2020013084A1 (en) * 2018-07-13 2020-01-16 株式会社日立製作所 Permanent magnet synchronous machine control device, electric vehicle, and method of determining magnetic pole polarity of permanent magnet synchronous machine
JP2020031469A (en) * 2018-08-21 2020-02-27 日本電産株式会社 Motor drive control device
JP2020065433A (en) * 2018-10-12 2020-04-23 ファナック株式会社 Magnetic pole initial position detection device using direct-current excitation method and magnetic pole position detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200154A (en) * 2013-03-29 2014-10-23 株式会社安川電機 Motor controller and magnetic pole position estimation method
WO2020013084A1 (en) * 2018-07-13 2020-01-16 株式会社日立製作所 Permanent magnet synchronous machine control device, electric vehicle, and method of determining magnetic pole polarity of permanent magnet synchronous machine
JP2020031469A (en) * 2018-08-21 2020-02-27 日本電産株式会社 Motor drive control device
JP2020065433A (en) * 2018-10-12 2020-04-23 ファナック株式会社 Magnetic pole initial position detection device using direct-current excitation method and magnetic pole position detection device

Also Published As

Publication number Publication date
TW202232879A (en) 2022-08-16
CN116349128A (en) 2023-06-27
JP7442052B2 (en) 2024-03-04
JPWO2022091701A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
JP3282657B2 (en) Initial magnetic pole position estimation method for permanent magnet type brushless motor
JP4406552B2 (en) Electric motor control device
US20190372489A1 (en) Method for driving sensorless motor
JP2002262591A (en) Motor control device and motor-driven vehicle using the device
KR102285399B1 (en) Inverter control unit and drive system
JP2010029030A (en) Motor controller
JP4660688B2 (en) Method and controller for estimating initial magnetic pole position of sensorless salient pole type brushless DC motor
JP4211133B2 (en) Sensorless control system for permanent magnet synchronous motor
JP5743344B2 (en) Control device for synchronous motor
WO2018043501A1 (en) Inverter control device and electric motor driving system
JP4590761B2 (en) Control device for permanent magnet type synchronous motor
JP4397889B2 (en) Magnetic pole position estimation device for synchronous motor
WO2022091701A1 (en) Motor control device, and washing machine or washing and drying machine having said motor control device installed therein
CN111511975B (en) Washing machine
JP3557958B2 (en) Synchronous motor control device and control method
Balazovic et al. Sensorless PMSM control for H-axis washing machine drive
JP3480572B2 (en) Control device for permanent magnet synchronous motor
JP2003311077A (en) Amount of load detection method of washing machine and apparatus therefor
JP2009100544A (en) Motor controller
JP2002095282A (en) Motor controller
JP5282443B2 (en) Control device for permanent magnet type synchronous motor
JP2010130731A (en) Motor controller
JP7468390B2 (en) Motor Control Device
JP7447835B2 (en) motor control device
JP3979771B2 (en) AC motor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022558948

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885820

Country of ref document: EP

Kind code of ref document: A1