TW202232879A - Motor control device, and washing machine or washing and drying machine having said motor control device installed therein - Google Patents

Motor control device, and washing machine or washing and drying machine having said motor control device installed therein Download PDF

Info

Publication number
TW202232879A
TW202232879A TW110136706A TW110136706A TW202232879A TW 202232879 A TW202232879 A TW 202232879A TW 110136706 A TW110136706 A TW 110136706A TW 110136706 A TW110136706 A TW 110136706A TW 202232879 A TW202232879 A TW 202232879A
Authority
TW
Taiwan
Prior art keywords
axis
current
control device
unit
initial phase
Prior art date
Application number
TW110136706A
Other languages
Chinese (zh)
Inventor
孫昊
龜田晃史
上瀧禎士
藤岡裕智
賀門陽子
Original Assignee
日商松下知識產權經營股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商松下知識產權經營股份有限公司 filed Critical 日商松下知識產權經營股份有限公司
Publication of TW202232879A publication Critical patent/TW202232879A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

This motor control device (10) controls a brushless motor (40) having a rotor with a salient pole structure that is driven by an inverter circuit (13). The motor control device (10) comprises the inverter circuit (13), a current detection unit (21), an initial phase estimation unit (22), and a polarity identification unit (23). The initial phase estimation unit (22) estimates the initial phase of the brushless motor (40) on the basis of a current detected by the current detection unit (21). The polarity identification unit (23) superimposes voltages in the positive and negative directions of a d-axis and q-axis on the initial phase estimated by the initial phase estimation unit (22), identifies the polarity of a magnetic pole of the brushless motor (40) on the basis of the current amplitude difference in the positive and negative directions of the d-axis and q-axis detected by the current detection unit (21), and corrects the initial phase.

Description

馬達控制裝置及搭載該馬達控制裝置的洗衣機或洗衣乾燥機Motor control device and washing machine or washer-dryer equipped with the same

本揭示是有關於一種馬達控制裝置及搭載此馬達控制裝置的洗衣機或洗衣乾燥機,前述馬達控制裝置是對具有凸極構造的轉子的無刷馬達(永久磁鐵同步電動機)之旋轉進行無感測器控制。The present disclosure relates to a motor control device that performs non-sensing on the rotation of a brushless motor (permanent magnet synchronous motor) having a rotor having a salient pole structure, and a washing machine or a washing-drying machine equipped with the motor control device. controller control.

專利文獻1揭示一種馬達控制裝置,對轉子為凸極構造的無刷馬達進行無感測器驅動,並且在啟動時進行磁極判定。此馬達控制裝置是將直流電力轉換為交流電力而設為馬達電力,並且驅動具有凸極構造的轉子的無刷馬達之裝置。此馬達控制裝置具有電流檢測器、三相/dq軸轉換部、dq軸電流控制部、dq軸/三相轉換部、磁極位置推定用交流電壓產生部、磁極位置推定部、d軸電流直流偏壓產生部、及NS判別部。電流檢測器是檢測從逆變器往無刷馬達的馬達電流。三相/dq軸轉換部是對電流檢測器所檢測的交流電流檢測值進行dq軸轉換,來輸出d軸電流檢測值及q軸電流檢測值。dq軸電流控制部是算出d軸電壓指令及q軸電壓指令,前述指令是使d軸電流檢測值及q軸電流檢測值相對於d軸電流指令輸入及q軸電流指令輸入而追隨的指令。dq軸/三相轉換部是將d軸電壓指令及q軸電壓指令轉換為三相交流電壓指令,並作為控制訊號來給予至逆變器。磁極位置推定用交流電壓產生部是使輔助的交流電壓重疊於d軸電壓指令。磁極位置推定部是從q軸電流檢測值與輔助的交流電壓,來推定永久磁鐵同步電動機的磁極位置。d軸電流直流偏壓產生部是將磁極位置推定部所推定的磁極位置的方向設為d軸,並且相對於d軸電流指令,加上正負對稱地交互切換的固定波形之d軸直流偏壓電流,而將此偏壓加算後的d軸電流指令輸入至dq軸電流控制部。NS判別部是計算d軸直流偏壓電流的正負切換時間點中的d軸施加電壓與d軸電流變化率,並且從已計算的d軸施加電壓與d軸電流變化率的關係來判別永久磁鐵同步電動機的永久磁鐵的N極S極的方向,並輸出NS判別訊號。 先前技術文獻 Patent Document 1 discloses a motor control device that performs sensorless driving of a brushless motor having a salient-pole rotor and performs magnetic pole determination at the time of startup. This motor control device converts DC power into AC power to obtain motor power, and drives a brushless motor having a rotor having a salient pole structure. This motor control device includes a current detector, a three-phase/dq-axis conversion unit, a dq-axis current control unit, a dq-axis/three-phase conversion unit, an AC voltage generator for magnetic pole position estimation, a magnetic pole position estimation unit, and a d-axis current DC bias A pressure generating unit and an NS discriminating unit. The current detector detects the motor current from the inverter to the brushless motor. The three-phase/dq-axis conversion unit converts the AC current detection value detected by the current detector to dq-axis, and outputs the d-axis current detection value and the q-axis current detection value. The dq-axis current control unit calculates a d-axis voltage command and a q-axis voltage command that follow the d-axis current detection value and the q-axis current detection value with respect to the d-axis current command input and the q-axis current command input. The dq-axis/three-phase conversion unit converts the d-axis voltage command and the q-axis voltage command into a three-phase AC voltage command, and sends it to the inverter as a control signal. The AC voltage generator for magnetic pole position estimation superimposes the auxiliary AC voltage on the d-axis voltage command. The magnetic pole position estimation unit estimates the magnetic pole position of the permanent magnet synchronous motor from the q-axis current detection value and the auxiliary AC voltage. The d-axis current DC bias generating unit sets the direction of the magnetic pole position estimated by the magnetic pole position estimating unit as the d-axis, and adds a d-axis DC bias voltage of a fixed waveform whose positive and negative are alternately switched symmetrically with respect to the d-axis current command. current, and the d-axis current command obtained by adding the bias voltage is input to the dq-axis current control unit. The NS discriminating unit calculates the d-axis applied voltage and the d-axis current change rate at the positive and negative switching time points of the d-axis DC bias current, and discriminates the permanent magnet from the calculated relationship between the d-axis applied voltage and the d-axis current change rate The direction of the N pole and the S pole of the permanent magnet of the synchronous motor is output, and the NS judgment signal is output. prior art literature

專利文獻 專利文獻1:日本專利特開2008-79489號公報 Patent Literature Patent Document 1: Japanese Patent Laid-Open No. 2008-79489

本揭示是提供一種馬達控制裝置及搭載此馬達控制裝置的洗衣機或洗衣乾燥機,前述馬達控制裝置在初始推定的d軸的方向相對於正確的方向而為90°或270°錯誤的情況下,也可以正確地進行磁極檢測。The present disclosure provides a motor control device and a washing machine or washer-dryer equipped with the motor control device. When the initially estimated d-axis direction of the motor control device is 90° or 270° wrong with respect to the correct direction, Magnetic pole detection can also be performed correctly.

本揭示中的馬達控制裝置是控制無刷馬達,前述無刷馬達具有藉由逆變電路驅動的凸極構造的轉子。本揭示中的馬達控制裝置具備逆變電路、電流檢測部、初始相位推定部、及極性判別部。電流檢測部是檢測無刷馬達的電流。初始相位推定部是依據電流檢測部所檢測的電流,來推定無刷馬達的初始相位。極性判別部是依據電流檢測部所檢測的電流,來判別無刷馬達的磁極的極性。極性判別部是依據電流振幅差,來判別無刷馬達的磁極的極性,並補正初始相位,前述電流振幅差是相對於初始相位推定部所推定的初始相位,將電壓重疊於d軸及q軸各自的正及負方向而由電流檢測部檢測出的d軸及q軸各自的正及負方向的電流振幅差。The motor control device of the present disclosure controls a brushless motor having a rotor with a salient pole structure driven by an inverter circuit. The motor control device in the present disclosure includes an inverter circuit, a current detection unit, an initial phase estimation unit, and a polarity determination unit. The current detection unit detects the current of the brushless motor. The initial phase estimation unit estimates the initial phase of the brushless motor based on the current detected by the current detection unit. The polarity discrimination unit discriminates the polarity of the magnetic pole of the brushless motor based on the current detected by the current detection unit. The polarity discriminating unit discriminates the polarity of the magnetic pole of the brushless motor based on the difference in current amplitude, which is a voltage superimposed on the d-axis and the q-axis with respect to the initial phase estimated by the initial phase estimating unit, and corrects the initial phase. The current amplitude difference between the positive and negative directions of the d-axis and the q-axis detected by the current detection unit in the respective positive and negative directions.

又,本揭示中的洗衣機或洗衣乾燥機是搭載本揭示中的馬達控制裝置。Moreover, the washing machine or the washing-drying machine in the present disclosure is equipped with the motor control device in the present disclosure.

本揭示中的馬達控制裝置在初始推定的d軸的方向相對於正確的方向而為90°或270°錯誤的情況下,也可以正確地進行磁極檢測。The motor control device of the present disclosure can accurately perform magnetic pole detection even when the initially estimated direction of the d-axis is 90° or 270° wrong with respect to the correct direction.

又,本揭示中的洗衣機或洗衣乾燥機由於搭載有如上述之本揭示中的馬達控制裝置,因此可以順暢地進行例如洗滌槽或滾筒等的旋轉。Moreover, since the washing machine or the washing-drying machine in the present disclosure is equipped with the motor control device in the present disclosure as described above, for example, the washing tub, the drum, and the like can be smoothly rotated.

用以實施發明之形態Form for carrying out the invention

本揭示中的馬達控制裝置是控制無刷馬達,前述無刷馬達具有藉由逆變電路驅動的凸極構造的轉子。本揭示中的馬達控制裝置具備逆變電路、電流檢測部、初始相位推定部、及極性判別部。電流檢測部是檢測無刷馬達的電流。初始相位推定部是依據電流檢測部所檢測的電流,來推定無刷馬達的初始相位。極性判別部是依據電流檢測部所檢測的電流,來判別無刷馬達的磁極的極性。極性判別部是依據電流振幅差,來判別無刷馬達的磁極的極性,並補正初始相位,前述電流振幅差是相對於初始相位推定部所推定的初始相位,將電壓重疊於d軸及q軸各自的正及負方向而由電流檢測部檢測出的d軸及q軸各自的正及負方向的電流振幅差。The motor control device of the present disclosure controls a brushless motor having a rotor with a salient pole structure driven by an inverter circuit. The motor control device in the present disclosure includes an inverter circuit, a current detection unit, an initial phase estimation unit, and a polarity determination unit. The current detection unit detects the current of the brushless motor. The initial phase estimation unit estimates the initial phase of the brushless motor based on the current detected by the current detection unit. The polarity discrimination unit discriminates the polarity of the magnetic pole of the brushless motor based on the current detected by the current detection unit. The polarity discriminating unit discriminates the polarity of the magnetic pole of the brushless motor based on the difference in current amplitude, which is a voltage superimposed on the d-axis and the q-axis with respect to the initial phase estimated by the initial phase estimating unit, and corrects the initial phase. The current amplitude difference between the positive and negative directions of the d-axis and the q-axis detected by the current detection unit in the respective positive and negative directions.

藉此,本揭示中的馬達控制裝置在初始推定的d軸的方向相對於正確的方向而為90°或270°錯誤的情況下,也可以正確地進行磁極檢測。因此,本揭示中的馬達控制裝置可以抑制無刷馬達的啟動時的逆轉啟動或啟動失敗,從無刷馬達啟動時進行更順暢的加速。Thereby, the motor control device of the present disclosure can accurately perform magnetic pole detection even when the initially estimated direction of the d-axis is 90° or 270° wrong with respect to the correct direction. Therefore, the motor control device of the present disclosure can suppress reverse start or start failure at the start of the brushless motor, and can perform smoother acceleration from the start of the brushless motor.

又,在本揭示中的馬達控制裝置中,極性判別部亦可在將電壓重疊於d軸的正及負方向而由電流檢測部檢測出的d軸的正及負方向的電流振幅差的絕對值比基準值更大的情況下,結束無刷馬達的極性判別。極性判別部在d軸的正及負方向的電流振幅差的絕對值比基準值小的情況下進行以下內容。亦即,極性判別部亦可依據將電壓重疊於q軸的正及負方向而由電流檢測部檢測出的q軸的正及負方向的電流振幅差、與d軸的正及負方向電流振幅差,來判別無刷馬達的磁極的極性,並補正初始相位。Furthermore, in the motor control device of the present disclosure, the polarity determination unit may determine the absolute value of the difference in current amplitude between the positive and negative directions of the d-axis detected by the current detection unit by superimposing the voltage on the positive and negative directions of the d-axis. When the value is larger than the reference value, the polarity determination of the brushless motor ends. The polarity determination unit performs the following when the absolute value of the current amplitude difference between the positive and negative directions of the d-axis is smaller than the reference value. That is, the polarity discriminating unit may detect the difference between the positive and negative current amplitudes of the q-axis and the positive and negative current amplitudes of the d-axis detected by the current detecting unit by superimposing the voltage on the positive and negative directions of the q-axis. The difference is used to determine the polarity of the magnetic pole of the brushless motor, and to correct the initial phase.

又,在本揭示中的馬達控制裝置中,極性判別部亦可將在將要把電壓重疊於d軸及q軸各自的正及負方向之前藉由電流檢測部所檢測出的電流設為偏移電流值。極性判別部亦可依據從將電壓重疊於d軸及q軸各自的正及負方向而由電流檢測部檢測出的d軸及q軸各自的正及負方向的電流振幅最大值減去偏移電流值後的值,來判別無刷馬達的磁極的極性,並補正初始相位。Furthermore, in the motor control device of the present disclosure, the polarity determination unit may offset the current detected by the current detection unit before superimposing the voltages on the positive and negative directions of the d-axis and the q-axis, respectively. current value. The polarity determination unit may also subtract the offset from the maximum value of the current amplitude in the positive and negative directions of the d-axis and the q-axis detected by the current detection unit by superimposing the voltage on the positive and negative directions of the d-axis and the q-axis, respectively. The value after the current value is used to determine the polarity of the magnetic pole of the brushless motor and to correct the initial phase.

又,在本揭示中的馬達控制裝置中,極性判別部亦可在判別無刷馬達的磁極的極性之期間中,控制成使流動於無刷馬達的電流成為0。Furthermore, in the motor control device of the present disclosure, the polarity determination unit may control the current flowing in the brushless motor to be 0 during the period in which the polarity of the magnetic pole of the brushless motor is determined.

又,本揭示中的洗衣機或洗衣乾燥機是搭載本揭示中的馬達控制裝置。 (成為本揭示的基礎之知識見解等) Moreover, the washing machine or the washing-drying machine in the present disclosure is equipped with the motor control device in the present disclosure. (knowledge and insights that form the basis of this disclosure)

發明人們在要想到本揭示的當時,已知對於已推定的轉子的初始相位來進行磁極的極性判定之技術。轉子的初始相位是在凸極構造的無刷馬達的無感測器驅動時、無刷馬達驅動開始時、驅動前無刷馬達的停止時進行推定。When the inventors thought of the present disclosure, a technique for determining the polarity of the magnetic pole was known for the estimated initial phase of the rotor. The initial phase of the rotor is estimated at the time of sensorless driving of the brushless motor with the salient pole structure, when the brushless motor is started to be driven, and when the brushless motor is stopped before driving.

在初始相位推定中,是利用具有凸極性的轉子的特徵即磁極的方向(d軸方向)與和磁極正交的方向(q軸方向)的電感L的差。並且,在初始相位推定中,是對定子繞組施加低振幅的高頻或脈衝狀的電壓及電流,來推定轉子是朝向哪一個方向。雖然在此時間點下可以推定出轉子的方向,但由於不知道磁極的極性(NS),因此會進行判定磁極的N極、S極的極性判別。In the initial phase estimation, the difference between the inductance L in the direction of the magnetic poles (d-axis direction) and the direction orthogonal to the magnetic poles (q-axis direction), which is the characteristic of the rotor having saliency polarity, is used. In addition, in the initial phase estimation, a low-amplitude high-frequency or pulse-like voltage and current are applied to the stator windings to estimate which direction the rotor is facing. Although the direction of the rotor can be estimated at this point in time, since the polarity (NS) of the magnetic pole is not known, the polarities of the N pole and the S pole of the magnetic pole are determined.

在極性判別中,是對於已推定的d軸方向將正及負兩方向的某種程度大小的脈衝狀的電壓及電流施加於定子繞組,藉由此時的施加電壓或檢測電流的絕對值的差來推定磁極NS的方向。藉此,從開始驅動無刷馬達時,可以在沒有逆轉驅動或啟動失敗的情形下順暢地啟動無刷馬達的旋轉。In polarity discrimination, pulse-like voltages and currents of a certain magnitude in both positive and negative directions are applied to the stator winding with respect to the estimated d-axis direction, and the absolute value of the applied voltage or current is detected at this time. The difference is used to estimate the direction of the magnetic pole NS. Thereby, the rotation of the brushless motor can be smoothly started from the start of driving the brushless motor without reverse driving or failure of starting.

然而,雖然在初始相位推定時所推定的d軸的方向正確上是磁極的方向,但是會以某個固定比例發生推定值成為與磁極正交的方向(q軸方向)之情形。發明人們發現即使在該情況下進行極性判別,也無法得到正確的轉子的方向,因此在無刷馬達的驅動開始時有時會發生逆轉驅動或失調而不旋轉的現象,為了解決該課題,導出構成本揭示的主題。However, although the direction of the d-axis estimated at the initial phase estimation is exactly the direction of the magnetic pole, the estimated value becomes the direction orthogonal to the magnetic pole (the q-axis direction) at a fixed ratio. The inventors found that even if the polarity is determined in this case, the correct direction of the rotor cannot be obtained. Therefore, when the driving of the brushless motor starts, the phenomenon of reverse driving or out-of-adjustment and non-rotation may sometimes occur. In order to solve this problem, it is derived. form the subject of this disclosure.

於是,本揭示是提供一種馬達控制裝置,即使初始相位推定時所推定的d軸方向相對於正確的方向而為90°或270°錯誤,仍然可以在極性判定中正確地進行磁極偵測。Therefore, the present disclosure provides a motor control device that can correctly perform magnetic pole detection in polarity determination even if the d-axis direction estimated at the initial phase estimation is 90° or 270° wrong with respect to the correct direction.

以下,一邊參照圖式,一邊詳細地說明本揭示中的實施形態。但是,有時會省略超出必要之詳細的說明。例如,有時會省略已周知的事項的詳細說明、或是對於實質上相同的構成的重複說明。這是因為要避免以下的說明超出必要地變得冗長,使所屬技術領域中具有通常知識者容易理解的緣故。Hereinafter, embodiments in the present disclosure will be described in detail with reference to the drawings. However, more detailed descriptions than necessary are sometimes omitted. For example, a detailed description of well-known matters or an overlapping description of substantially the same configuration may be omitted. This is to prevent the following description from becoming unnecessarily long and to make it easy for those skilled in the art to understand.

另外,附加圖式及以下的說明都是為了讓所屬技術領域中具有通常知識者充分理解本揭示而提供的,並不是意圖藉由這些來限定申請專利範圍中所記載的主題。 (實施形態1) In addition, the attached drawings and the following description are provided so that those skilled in the art can fully understand the present disclosure, and are not intended to limit the subject matter described in the scope of the application. (Embodiment 1)

以下,使用圖1~圖11,來說明實施形態1中的馬達控制裝置10。 [1-1.構成] [1-1-1.馬達控制裝置的構成] Hereinafter, the motor control device 10 in the first embodiment will be described with reference to FIGS. 1 to 11 . [1-1. Composition] [1-1-1. Configuration of motor control device]

圖1是顯示實施形態1中的馬達控制裝置10的構成的圖。FIG. 1 is a diagram showing the configuration of a motor control device 10 in Embodiment 1. As shown in FIG.

馬達控制裝置10是從交流電源30接收電力。整流電路11是將已接收的交流電力轉換為直流電力,並且透過直流電力的平滑電容器12將電力供給至逆變電路13。逆變電路13是由2個串聯的3組合計6個開關元件14a、14b、14c、14d、14e、及14f所構成。The motor control device 10 receives power from the AC power source 30 . The rectifier circuit 11 converts the received AC power into DC power, and supplies the power to the inverter circuit 13 through the smoothing capacitor 12 of the DC power. The inverter circuit 13 is composed of two series-connected three sets of six switching elements 14a, 14b, 14c, 14d, 14e, and 14f.

此逆變電路13是藉由後述的控制電路20來對開關元件14a、14b、14c、14d、14e、及14f的開啟/關閉進行PWM驅動,藉此進行無刷馬達40的驅動。The inverter circuit 13 drives the brushless motor 40 by PWM driving the switching elements 14a, 14b, 14c, 14d, 14e, and 14f on/off by the control circuit 20 described later.

在逆變電路13的2個串聯的開關元件14a、14b、14c、14d、14e、及14f當中,在下側亦即開關元件14d、14e、及14f的發射側上連接有電阻15a、15b、及15c。電阻15a、15b、及15c的另一端是連接於整流電路11與平滑電容器12的輸出的一側。電阻15a、15b、及15c的兩端的電壓是輸入至控制電路20內的電流檢測部21。如後述,可利用電流檢測部21所檢測的電流值來進行各種控制。Among the two series-connected switching elements 14a, 14b, 14c, 14d, 14e, and 14f of the inverter circuit 13, resistors 15a, 15b, and 15c. The other ends of the resistors 15 a , 15 b , and 15 c are connected to the output side of the rectifier circuit 11 and the smoothing capacitor 12 . The voltages at both ends of the resistors 15 a , 15 b , and 15 c are input to the current detection unit 21 in the control circuit 20 . As will be described later, various controls can be performed using the current value detected by the current detection unit 21 .

控制電路20是與前述電流檢測部21一起具有初始相位推定部22、極性判別部23、及無感測器推定部24。又,馬達控制裝置10具有具備有處理器及記憶體的電腦系統。而且,處理器執行記憶體所儲存的程式,藉此使電腦系統作為控制電路20來發揮功能。處理器所執行的程式在此雖然是事先記錄於電腦系統的記憶體中,但亦可記錄於記憶卡等非暫時的記錄媒體來提供,亦可通過網際網路等電信線路來提供。 [1-1-2.無感測器推定部的構成] The control circuit 20 includes an initial phase estimation unit 22 , a polarity determination unit 23 , and a sensorless estimation unit 24 together with the current detection unit 21 . In addition, the motor control device 10 has a computer system including a processor and a memory. Furthermore, the processor executes the program stored in the memory, thereby making the computer system function as the control circuit 20 . Although the program executed by the processor is pre-recorded in the memory of the computer system, it can also be recorded in a non-transitory recording medium such as a memory card, or provided through a telecommunication line such as the Internet. [1-1-2. Configuration of sensorless estimation unit]

圖2是顯示實施形態1中的馬達控制裝置10的無感測器推定部24的構成的方塊圖。FIG. 2 is a block diagram showing the configuration of the sensorless estimation unit 24 of the motor control device 10 in the first embodiment.

無感測器推定部24具有電感方式的電感驅動部24b、感應電壓方式的感應電壓驅動部24c、及驅動方式切換部24a。電感方式的電感驅動部24b是利用無刷馬達40的凸極構造的轉子41的凸極性來推定磁極的相位。感應電壓方式的感應電壓驅動部24c是利用無刷馬達40的旋轉時的反電動勢,來推定磁極位置。驅動方式切換部24a是在電感方式與感應電壓方式之間切換磁極位置的推定方式。 [1-1-3.電感驅動部的構成] The sensorless estimation unit 24 includes an inductive-type inductance driving unit 24b, an induced-voltage-type induced voltage driving unit 24c, and a driving method switching unit 24a. The inductive-type inductive drive unit 24 b uses the saliency of the rotor 41 of the salient-pole structure of the brushless motor 40 to estimate the phase of the magnetic pole. The induced voltage drive unit 24 c of the induced voltage system estimates the magnetic pole position by using the counter electromotive force during the rotation of the brushless motor 40 . The driving method switching unit 24a is an estimation method for switching the magnetic pole position between the inductive method and the induced voltage method. [1-1-3. Configuration of inductance drive unit]

電感L會因應於無刷馬達40的轉子41的磁極相位而變化。因此,電感方式的電感驅動部24b是將和馬達驅動電流沒有關係的高頻電流施加於馬達來檢測馬達電流,藉由該等來算出起因於電感變化的位置推定誤差量。並且,電感驅動部24b是以使位置推定誤差量收斂至零的方式來推定磁極位置。The inductance L varies according to the magnetic pole phase of the rotor 41 of the brushless motor 40 . Therefore, the inductance-type inductance drive unit 24b detects the motor current by applying a high-frequency current unrelated to the motor drive current to the motor, and calculates the position estimation error amount due to the inductance change. In addition, the inductance drive unit 24b estimates the magnetic pole position so that the position estimation error amount converges to zero.

圖3是顯示實施形態1中的馬達控制裝置10的電感驅動部24b的詳細構成的方塊圖。FIG. 3 is a block diagram showing the detailed configuration of the inductance drive unit 24b of the motor control device 10 in the first embodiment.

電感驅動部24b是由uvw→dq電流轉換部24ba、位置推定φ運算部24bb、高頻電流控制部24bc、角速度ω運算部24bd、位置角θ運算部24be、速度電流控制部24bf、及dq→uvw電壓轉換部24bg所構成。uvw→dq電流轉換部24ba是將電流檢測部21所檢測的無刷馬達40的三相電流值(Iu、Iv、Iw)(參照圖1)設為輸入來輸出dq電流值。位置推定φ運算部24bb是從dq電流來進行磁極的位置推定,並且輸出位置推定值φ。高頻電流控制部24bc是控制重疊於驅動電流的高頻電流。角速度ω運算部24bd是從位置推定值φ來運算並輸出角速度ω。位置角θ運算部24be是從位置推定值φ與角速度ω來運算並輸出位置角θ。速度電流控制部24bf是反饋推定角速度(角速度ω)與速度指令值ω*的偏差,進行速度運算(PI控制),來決定並輸出無刷馬達40的電流指令值。dq→uvw電壓轉換部24bg是從位置角θ與電流指令值來運算出電壓(Vu、Vv、Vw),並輸出至控制電路20。The inductance drive unit 24b is composed of a uvw→dq current conversion unit 24ba, a position estimation φ calculation unit 24bb, a high-frequency current control unit 24bc, an angular velocity ω calculation unit 24bd, a position angle θ calculation unit 24be, a velocity current control unit 24bf, and dq→ The uvw voltage conversion unit 24bg is constituted. The uvw→dq current conversion unit 24ba uses the three-phase current values (Iu, Iv, Iw) (refer to FIG. 1 ) of the brushless motor 40 detected by the current detection unit 21 as input, and outputs the dq current value. The position estimation φ computing unit 24bb estimates the position of the magnetic pole from the dq current, and outputs a position estimation value φ. The high-frequency current control unit 24bc controls the high-frequency current superimposed on the drive current. The angular velocity ω calculation unit 24bd calculates and outputs the angular velocity ω from the position estimated value φ. The position angle θ calculation unit 24be calculates and outputs the position angle θ from the position estimated value φ and the angular velocity ω. The speed current control unit 24bf feeds back the deviation between the estimated angular speed (angular speed ω) and the speed command value ω*, performs speed calculation (PI control), and determines and outputs the current command value of the brushless motor 40 . The dq→uvw voltage conversion unit 24bg calculates the voltages (Vu, Vv, Vw) from the position angle θ and the current command value, and outputs them to the control circuit 20 .

由於dq←→uvw轉換及速度反饋控制為一般的方式,因此在此省略針對uvw→dq電流轉換部24ba、速度電流控制部24bf、dq→uvw電壓轉換部24bg的說明。Since dq←→uvw conversion and speed feedback control are common, descriptions of the uvw→dq current conversion unit 24ba, the speed current control unit 24bf, and the dq→uvw voltage conversion unit 24bg are omitted here.

位置推定φ運算部24bb是依據下述數式1來進行位置推定值φ的運算。 [數式1]

Figure 02_image001
The position estimation φ calculation unit 24bb performs calculation of the position estimation value φ according to the following equation 1. FIG. [Formula 1]
Figure 02_image001

在本實施形態1中設為驅動對象的馬達,由於是具有凸極構造的轉子41(d軸電感Ld≠q軸電感Lq)的無刷馬達40,因此電感L(磁阻)會因應於磁極的相位而變化。由於電感L的變化是出現在無刷馬達40的電流中,因此可藉由上述數式1而因應於無刷馬達40的電流的變化量來算出位置推定誤差量。The motor to be driven in the first embodiment is a brushless motor 40 having a rotor 41 having a salient pole structure (d-axis inductance Ld≠q-axis inductance Lq), so the inductance L (reluctance) depends on the magnetic pole changes in phase. Since the change of the inductance L occurs in the current of the brushless motor 40 , the position estimation error amount can be calculated according to the change of the current of the brushless motor 40 according to the above equation 1.

高頻電流控制部24bc是控制和馬達驅動電流沒有關係的高頻電流。在本實施形態1中,是在d軸方向上施加相當於2.56ms週期0.4A的脈衝電流,來運算已施加脈衝電流時的q軸電流值、與未施加脈衝電流時的q軸電流值的差分。The high-frequency current control unit 24bc controls the high-frequency current independent of the motor drive current. In the first embodiment, a pulse current of 0.4A corresponding to a period of 2.56ms is applied in the d-axis direction, and the q-axis current value when the pulse current is applied and the q-axis current value when the pulse current is not applied are calculated. difference.

位置角θ運算部24be、角速度ω運算部24bd是依據下述數式2及數式3來分別進行位置角θ、角速度ω的運算。 [數式2]

Figure 02_image003
[數式3]
Figure 02_image005
The position angle θ calculation unit 24be and the angular velocity ω calculation unit 24bd respectively perform the calculation of the position angle θ and the angular velocity ω based on the following equations 2 and 3. [Equation 2]
Figure 02_image003
[Equation 3]
Figure 02_image005

位置角θ是將位置推定誤差量與角速度ω的時間積分作為輸入來計算,角速度ω是計算為位置角θ的時間微分。位置角θ與角速度ω皆是依據反饋控制而以使位置推定誤差量收斂至零的方式來算出。 [1-1-4.感應電壓驅動部的構成] The position angle θ is calculated using the time integral of the position estimation error amount and the angular velocity ω as an input, and the angular velocity ω is calculated as the time differential of the position angle θ. Both the position angle θ and the angular velocity ω are calculated by feedback control so that the position estimation error amount converges to zero. [1-1-4. Configuration of induced voltage drive unit]

藉由無刷馬達40的旋轉所產生的感應電壓會因應於磁極位置而變化。因此,感應電壓驅動部24c是從對無刷馬達40的施加電壓及電流,來運算出和無刷馬達40的速度成比例的感應電壓,並且以使電壓誤差收斂至零的方式來推定磁極位置。The induced voltage generated by the rotation of the brushless motor 40 varies according to the position of the magnetic pole. Therefore, the induced voltage drive unit 24c calculates an induced voltage proportional to the speed of the brushless motor 40 from the voltage and current applied to the brushless motor 40, and estimates the magnetic pole position so that the voltage error converges to zero .

圖4是顯示實施形態1中的馬達控制裝置10的感應電壓驅動部24c的詳細構成的方塊圖。4 is a block diagram showing the detailed configuration of the induced voltage drive unit 24c of the motor control device 10 in the first embodiment.

感應電壓驅動部24c是由uvw→dq電流轉換部24ca、位置推定εγ運算部24cb、角速度ω運算部24cc、位置角θ運算部24cd、速度電流控制部24ce、及dq→uvw電壓轉換部24cf所構成。uvw→dq電流轉換部24ca是將電流檢測部21所檢測的無刷馬達40的三相電流值(Iu、Iv、Iw)設為輸入來輸出dq電流值。位置推定εγ運算部24cb是從dq電流來進行磁極的位置推定,並且輸出位置推定值εγ。角速度ω運算部24cc是從位置推定值εγ來運算並輸出角速度ω。位置角θ運算部24cd是從位置推定值εγ與角速度ω來運算並輸出位置角θ。速度電流控制部24ce是反饋推定角速度(角速度ω)與速度指令值ω*的偏差,進行速度運算(PI控制),來決定並輸出馬達的電流指令值。dq→uvw電壓轉換部24cf是從位置角θ與電流指令值來運算出電壓(Vu、Vv、Vw),並輸出至控制電路20。The induced voltage drive unit 24c is composed of a uvw→dq current conversion unit 24ca, a position estimation εγ calculation unit 24cb, an angular velocity ω calculation unit 24cc, a position angle θ calculation unit 24cd, a speed current control unit 24ce, and a dq→uvw voltage conversion unit 24cf. constitute. The uvw→dq current conversion unit 24ca outputs the dq current value by using the three-phase current values (Iu, Iv, Iw) of the brushless motor 40 detected by the current detection unit 21 as input. The position estimation εγ calculation unit 24cb estimates the position of the magnetic pole from the dq current, and outputs the position estimation value εγ. The angular velocity ω calculation unit 24cc calculates and outputs the angular velocity ω from the estimated position value εγ. The position angle θ calculation unit 24cd calculates and outputs the position angle θ from the position estimated value εγ and the angular velocity ω. The speed current control unit 24ce feeds back the deviation between the estimated angular speed (angular speed ω) and the speed command value ω*, performs speed calculation (PI control), and determines and outputs the current command value of the motor. The dq→uvw voltage conversion unit 24cf calculates the voltages (Vu, Vv, Vw) from the position angle θ and the current command value, and outputs them to the control circuit 20 .

和前述電感驅動部24b的情況同樣,dq←→uvw轉換及速度反饋控制是一般的方式。因此,在此省略針對uvw→dq電流轉換部24ca、速度電流控制部24ce、dq→uvw電壓轉換部24cf的說明。The dq←→uvw switching and the speed feedback control are general systems as in the case of the aforementioned inductance drive unit 24b. Therefore, the description of the uvw→dq current conversion unit 24ca, the speed current control unit 24ce, and the dq→uvw voltage conversion unit 24cf is omitted here.

位置推定εγ運算部24cb是依據下述數式4來進行位置推定值εγ的運算。 [數式4]

Figure 02_image007
The position estimation εγ calculation unit 24cb performs calculation of the position estimation value εγ according to the following equation 4. [Equation 4]
Figure 02_image007

藉由數式4,位置推定值εγ是輸入d軸電流Id、q軸電流Iq、d軸電壓Vd、及角速度ω,並且在此利用無刷馬達40的q軸電感Lq、電阻值Ra的參數來算出。From Equation 4, the estimated position value εγ is the input d-axis current Id, q-axis current Iq, d-axis voltage Vd, and angular velocity ω, and the parameters of the q-axis inductance Lq and the resistance value Ra of the brushless motor 40 are used here. to calculate.

角速度ω運算部24cc、位置角θ運算部24cd是依據下述數式5及數式6來分別進行角速度ω、位置角θ的運算。 [數式5]

Figure 02_image009
[數式6]
Figure 02_image011
The angular velocity ω calculation unit 24cc and the position angle θ calculation unit 24cd respectively perform calculations of the angular velocity ω and the position angle θ based on the following Expressions 5 and 6. [Equation 5]
Figure 02_image009
[Equation 6]
Figure 02_image011

角速度ω運算部24cc是以位置推定值εγ收斂至零的方式,使用PI(比例積分)來進行角速度ω的計算,並進一步進行ω的時間積分的計算,藉此作為推定相位(位置角θ)來進行輸出。 [1-1-5.驅動方式切換部的構成] The angular velocity ω calculation unit 24cc calculates the angular velocity ω by using PI (proportional integral) so that the estimated position value εγ converges to zero, and further calculates the time integral of ω as an estimated phase (position angle θ) to output. [1-1-5. Configuration of the drive mode switching unit]

圖2所示的無感測器推定部24的方塊圖中的驅動方式切換部24a是因應於無刷馬達40的旋轉數等,來進行電感驅動部24b與感應電壓驅動部24c的切換。具體而言,驅動方式切換部24a是即時地移交在馬達控制中必要的位置角θ、角速度ω、馬達電流/電壓、及角速度反饋控制參數,來實現瞬間切換。 [1-2.動作] The drive mode switching unit 24a in the block diagram of the sensorless estimating unit 24 shown in FIG. 2 switches the inductance driving unit 24b and the induced voltage driving unit 24c according to the rotation number of the brushless motor 40 and the like. Specifically, the drive mode switching unit 24a instantly transfers the position angle θ, angular velocity ω, motor current/voltage, and angular velocity feedback control parameters necessary for motor control to realize instantaneous switching. [1-2. Action]

針對如以上所構成的馬達控制裝置10,以下說明其動作。 [1-2-1.馬達驅動控制的動作] The operation of the motor control device 10 configured as above will be described below. [1-2-1. Operation of motor drive control]

圖5是顯示實施形態1中的馬達控制裝置10的馬達驅動控制處理的流程的流程圖。5 is a flowchart showing a flow of motor drive control processing performed by the motor control device 10 in the first embodiment.

如圖5所示,馬達控制裝置10是在步驟S001中開始馬達驅動控制。馬達控制裝置10是在步驟S002中進行初始相位推定。馬達控制裝置10是在步驟S003中進行極性判別,並且因應於判別結果,來補正初始相位推定所推定的相位。針對步驟S002的初始相位推定及步驟S003的極性判別,詳細內容將記載於後文。As shown in FIG. 5 , the motor control device 10 starts the motor drive control in step S001. The motor control device 10 performs initial phase estimation in step S002. The motor control device 10 performs polarity determination in step S003, and corrects the phase estimated by the initial phase estimation in accordance with the determination result. The details of the initial phase estimation in step S002 and the polarity determination in step S003 will be described later.

馬達控制裝置10是在步驟S004中藉由電感驅動部24b來進行馬達啟動控制,並且在步驟S005中判定無刷馬達40的旋轉數是否為一定以上。馬達控制裝置10在無刷馬達40的旋轉數為一定以上的情況下(步驟S005:「是」),則在步驟S006中,進行驅動方式的切換。亦即,驅動方式切換部24a是從電感驅動部24b切換至感應電壓驅動部24c。接著,馬達控制裝置10是在步驟S007中藉由感應電壓驅動部24c來進行馬達穩定旋轉控制,在步驟S008中進行馬達減速控制,在步驟S009中結束馬達驅動控制。 [1-2-2.初始相位推定部的動作] The motor control device 10 performs motor start-up control by the inductance drive unit 24b in step S004, and determines in step S005 whether or not the number of revolutions of the brushless motor 40 is equal to or greater than a certain level. When the number of revolutions of the brushless motor 40 is greater than or equal to a certain value (step S005: YES), the motor control device 10 switches the driving method in step S006. That is, the driving method switching unit 24a switches from the inductive driving unit 24b to the induced voltage driving unit 24c. Next, the motor control device 10 performs motor stable rotation control by the induced voltage drive unit 24c in step S007, performs motor deceleration control in step S008, and ends the motor drive control in step S009. [1-2-2. Operation of the initial phase estimation unit]

圖6A~圖6C是用於說明針對轉子41的初始相位推定的課題的圖。另外,在圖6A~圖6C中,初始相位推定d軸及初始相位推定q軸為實線,實d軸及實q軸是以虛線來顯示。6A to 6C are diagrams for explaining the problem of estimating the initial phase of the rotor 41 . In addition, in FIGS. 6A to 6C , the initial phase estimation d axis and the initial phase estimation q axis are indicated by solid lines, and the solid d axis and the solid q axis are indicated by broken lines.

在圖6A中是顯示在無刷馬達40的內部中具有磁鐵42的轉子41與dq軸是處於正確的關係之情形。d軸為磁極方向,q軸是與d軸正交的方向。磁極的N極方向為d軸的正方向,S極為d軸的負方向。In FIG. 6A is shown the situation in which the rotor 41 with the magnets 42 in the interior of the brushless motor 40 is in the correct relationship with the dq axis. The d-axis is the magnetic pole direction, and the q-axis is a direction orthogonal to the d-axis. The N pole direction of the magnetic pole is the positive direction of the d-axis, and the S pole is the negative direction of the d-axis.

初始相位推定部22是藉由電感驅動部24b來推定初始的轉子41的相位。具體而言,在100ms期間,馬達旋轉數及馬達電流皆設置指令值0的驅動期間,來推定初始的轉子41的相位。The initial phase estimation unit 22 estimates the initial phase of the rotor 41 by the inductance drive unit 24b. Specifically, the initial phase of the rotor 41 is estimated during a drive period in which the number of motor revolutions and the motor current are set to a command value of 0 during a period of 100 ms.

電感驅動部24b是利用無刷馬達40的凸極構造的轉子41的特徵即d軸、q軸方向的電感L的差(Ld≠Lq)來推定相位。亦即,雖然電感驅動部24b是進行轉子41與水平方向(d軸)或垂直方向(q軸)的判別,但如圖6B所示,即使是相同的d軸,也無法判別是N極的方向或S極的方向。並且,如圖6C所示,相對於轉子41,dq軸的電感L具有2θ的週期性,存在有將初始相位錯誤地推定為相對於實際的d軸而90°或270°偏移的q軸方向之課題。對於上述課題,本揭示的實施形態1之馬達控制裝置10是藉由以下的極性判別部23來進行對策。 [1-2-3.極性判別部的動作] The inductance drive unit 24b estimates the phase using the difference (Ld≠Lq) of the inductances L in the d-axis and q-axis directions, which is a feature of the rotor 41 of the salient pole structure of the brushless motor 40 . That is, although the inductance drive unit 24b discriminates between the rotor 41 and the horizontal direction (d-axis) or the vertical direction (q-axis), as shown in FIG. 6B , even if it is the same d-axis, it cannot be discriminated as to the N pole. direction or the direction of the S pole. In addition, as shown in FIG. 6C , the inductance L of the dq-axis has a periodicity of 2θ with respect to the rotor 41, and there is a case where the initial phase is erroneously estimated to be shifted by 90° or 270° from the actual d-axis. The subject of direction. The motor control device 10 according to the first embodiment of the present disclosure takes a countermeasure against the above-mentioned problem by the following polarity determination unit 23 . [1-2-3. Operation of the polarity discrimination unit]

圖7是顯示使用於一般的無刷馬達的轉子鐵芯即電磁鋼板的磁性飽和特性的圖。FIG. 7 is a diagram showing magnetic saturation characteristics of an electromagnetic steel sheet used as a rotor core of a general brushless motor.

如圖7所示,藉由有關於電感L的電壓方程式v=L×(di/dt)的關係式,在電感L較大的情況下,電流的時間微分即(di/dt)較小,單位時間的電流變化量i會變小。又,在電感L較小的情況下,電流的時間微分即(di/dt)會變大,單位時間的電流變化量i會變大。亦即,若電感L變動,則電流i也會變動。As shown in FIG. 7 , according to the relational expression of the voltage equation v=L×(di/dt) about the inductance L, when the inductance L is large, the time differential of the current (di/dt) is small, The current variation i per unit time will become smaller. In addition, when the inductance L is small, the time differential of the current (di/dt) increases, and the amount of current change i per unit time increases. That is, when the inductance L fluctuates, the current i also fluctuates.

極性判別部23是利用因磁性飽和而電感L變動的特性。極性判別部23是例如在相同時間將絕對值相同大小的電壓+Vd、-Vd分別重疊於初始相位推定部22進行了初始相位推定的結果即推定d軸的正方向與負方向,並且藉由流動的電流的變化量的大小+Id1、-Id2來判別極性。The polarity determination unit 23 utilizes the characteristic that the inductance L fluctuates due to magnetic saturation. For example, the polarity determination unit 23 superimposes the voltages +Vd and -Vd of the same absolute value at the same time on the initial phase estimation unit 22 , which is the result of performing the initial phase estimation, ie, the positive and negative directions of the d-axis are estimated. The polarity is determined by the magnitude of the change in the current +Id1 and -Id2.

具體而言,初始相位推定d軸的磁極的極性判別是藉由絕對值|+Id1|與絕對值|-Id2|的比較來進行,前述絕對值|+Id1|是將電壓+Vd施加於初始相位推定d軸的正方向時的電流變化量的絕對值,前述絕對值|-Id2|是將電壓-Vd施加於初始相位推定d軸的負方向時的電流變化量的絕對值。亦即,若為|-Id2|<|+Id1|,則是指推定磁極方向為正方向(N極)。又,若為|-Id2|>|+Id1|,則是指推定磁極方向為反方向(S極)。 [1-2-4.極性判別的動作] Specifically, the polarity of the magnetic pole of the initial phase estimation d-axis is determined by comparing the absolute value |+Id1| with the absolute value |-Id2|, which is the voltage +Vd applied to the initial phase estimation d The absolute value of the current change amount in the positive direction of the axis, the absolute value |-Id2| is the absolute value of the current change amount when the voltage -Vd is applied to the initial phase estimation in the negative direction of the d axis. That is, if it is |-Id2|<|+Id1|, it means that the magnetic pole direction is estimated to be the positive direction (N pole). In addition, if it is |-Id2|>|+Id1|, it means that the magnetic pole direction is estimated to be the opposite direction (S pole). [1-2-4. Action for polarity determination]

圖8是顯示實施形態1中的馬達控制裝置10的極性判別處理的流程的流程圖。FIG. 8 is a flowchart showing the flow of polarity discrimination processing by the motor control device 10 in the first embodiment.

如圖8所示,極性判別部23是在步驟S101中開始極性判別處理。極性判別部23是在步驟S102中實施初始化處理,在步驟S103中進行初始相位推定d軸的電流0時的Id偏移計算。亦即,極性判別部23是在即將要將電壓重疊於d軸的正及負方向之後述的步驟S104~S107的處理之前,將電流檢測部21所檢測的d軸電流Id作為偏移電流值來儲存。由於d軸電流Id的偏移計算及後述的q軸電流Iq的偏移計算的詳細內容將於後文描述(參照圖11),因此在以下的圖8的說明中是不考慮偏移電流值來說明。As shown in FIG. 8 , the polarity determination unit 23 starts the polarity determination process in step S101. The polarity determination unit 23 performs an initialization process in step S102 , and in step S103 performs Id offset calculation when estimating the d-axis current 0 in the initial phase. That is, the polarity determination unit 23 uses the d-axis current Id detected by the current detection unit 21 as the offset current value immediately before the processing of steps S104 to S107 to be described later in which the voltage is superimposed on the positive and negative directions of the d-axis. to store. Since the details of the offset calculation of the d-axis current Id and the offset calculation of the q-axis current Iq, which will be described later, will be described later (see FIG. 11 ), the offset current value is not considered in the following description of FIG. 8 . to explain.

極性判別部23是在步驟S104中在一定時間中將電壓+Vd重疊於初始相位推定d軸的正方向,在步驟S105中,累積運算初始相位推定d軸的正方向的電流值的變化量之絕對值|+Id|的電流振幅最大值(Σ+Id)。極性判別部23是在步驟S106中在一定時間中將電壓-Vd重疊於初始相位推定d軸的負方向,在步驟S107中,累積運算初始相位推定d軸的負方向的電流值的變化量之絕對值|-Id|的電流振幅最大值(Σ-Id)。極性判別部23是將此步驟S104~S107的處理重複3次。另外,在本實施形態1中,雖然是將步驟S104~S107的處理設為重複3次,但是重複的次數並不限定於此,亦可為例如2次或4次。這點對於重複後述步驟S115~S118的處理之次數也是同樣的。In step S104, the polarity determination unit 23 superimposes the voltage +Vd on the positive direction of the initial phase estimation d-axis for a certain period of time, and in step S105, accumulates and calculates the absolute value of the change amount of the current value in the positive direction of the initial phase estimation d-axis. Value |+Id| The current amplitude maximum value (Σ+Id). In step S106, the polarity determination unit 23 superimposes the voltage -Vd on the negative direction of the initial phase estimation d-axis for a certain period of time, and in step S107, accumulates and calculates the amount of change in the current value in the negative direction of the initial phase estimation d-axis. The current amplitude maximum value (Σ-Id) of absolute value |-Id|. The polarity determination unit 23 repeats the processing of steps S104 to S107 three times. In addition, in this Embodiment 1, although the process of steps S104 to S107 is repeated three times, the number of repetitions is not limited to this, and may be, for example, two or four times. The same is true for the number of times the processing of steps S115 to S118 to be described later is repeated.

接著,極性判別部23是在步驟S108中,進行電流振幅最大值的累積運算的比較,並且進行因應於比較結果的處理,前述電流振幅最大值是電壓分別施加於初始相位推定d軸的正及負方向後的電流變化量的絕對值之電流振幅最大值。具體而言,極性判別部23是在Σ-Id>Σ+Id時(步驟S108:「是」),進入至步驟S109的處理,在Σ-Id≦Σ+Id時(步驟S108:「否」),進入至步驟S110的處理。Next, in step S108, the polarity determination unit 23 performs a comparison of the cumulative calculation of the current amplitude maximum value, which is a voltage applied to the positive and The maximum value of the current amplitude of the absolute value of the current change amount after the negative direction. Specifically, the polarity determination unit 23 proceeds to the process of step S109 when Σ-Id>Σ+Id (step S108: YES), and proceeds to the process of Σ-Id≦Σ+Id (step S108: NO) The process of step S110.

在步驟S109中,由於實際的d軸可能是初始相位推定d軸的方向的相反方向,因此極性判別部23是在初始相位推定時的相位的值加上180°,並且儲存至相位資訊的暫時保管場所即θtmpD。在步驟S110中,由於初始相位推定d軸的方向可能是正確的,因此極性判別部23是將初始相位推定時的相位的值儲存至相位資訊的暫時保管場所即θtmpD。極性判別部23是藉由以上的步驟S101~S110的處理來進行d軸判定,並且補正推定相位。In step S109, since the actual d-axis may be the opposite direction to the direction of the initial phase estimation d-axis, the polarity determination unit 23 adds 180° to the phase value at the initial phase estimation, and stores it in the temporary phase of the phase information. The storage place is θtmpD. In step S110, since the initial phase estimation may be correct in the direction of the d-axis, the polarity determination unit 23 stores the value of the phase at the initial phase estimation in θtmpD, which is a temporary storage location for phase information. The polarity determination unit 23 performs the d-axis determination by the processing of the above steps S101 to S110, and corrects the estimated phase.

接著,極性判別部23是進行初始相位推定d軸的d軸判定的準確度之確認。Next, the polarity determination unit 23 checks the accuracy of the d-axis determination of the initial phase estimation d-axis.

極性判別部23是在步驟S111中計算電流振幅最大值的累積運算的差分之絕對值ΔΣId=|Σ+Id-Σ-Id|,前述電流振幅最大值是步驟S104~S107所進行之電壓分別施加於初始相位推定d軸的正及負方向後的電流變化量的絕對值之電流振幅最大值。極性判別部23是在步驟S112中確認此差分的絕對值ΔΣId是否比既定的基準值Idth更大。極性判別部23是當ΔΣId>Idth(例如1A)時(步驟S112:「是」),進入至步驟S113的處理,當ΔΣId≦Idth時(步驟S112:「否」),進入至步驟S114的處理。在步驟S113中,極性判別部23是因儲存在相位資訊的暫時保管場所即θtmpD中的值為正確,而將該值儲存於推定相位,並且在步驟S126中結束極性判別處理。The polarity discrimination unit 23 calculates the absolute value ΔΣId=|Σ+Id-Σ-Id| of the difference of the cumulative operation of the maximum current amplitude value in step S111, and the current amplitude maximum value is obtained by applying the voltages performed in steps S104 to S107 to the initial The current amplitude maximum value of the absolute value of the current change amount after the phase estimation in the positive and negative directions of the d-axis. The polarity determination unit 23 checks in step S112 whether the absolute value ΔΣId of the difference is larger than the predetermined reference value Idth. The polarity determination unit 23 proceeds to the process of step S113 when ΔΣId>Idth (for example, 1A) (step S112: "Yes"), and proceeds to the process of step S114 when ΔΣId≦Idth (step S112: "NO") . In step S113, since the value stored in θtmpD, which is the temporary storage location of the phase information, is correct, the polarity determination unit 23 stores the value in the estimated phase, and in step S126 ends the polarity determination process.

另一方面,在已進入至步驟S114的處理之情況下,會有初始相位推定d軸以+90°或+270°錯誤的可能性。由於此方向為初始相位推定的q軸方向,因此極性判別部23是在q軸方向上再次實施判定。極性判別部23是在步驟S114中進行初始相位推定q軸的電流0時的Iq偏移計算。On the other hand, in the case where the process has proceeded to step S114, there is a possibility that the initial phase estimation d-axis is wrong at +90° or +270°. Since this direction is the q-axis direction of the initial phase estimation, the polarity determination unit 23 performs determination again in the q-axis direction. In step S114, the polarity determination unit 23 performs Iq offset calculation when estimating the current 0 of the q-axis in the initial phase.

極性判別部23是在步驟S115中在一定時間中將電壓+Vq重疊於初始相位推定q軸的正方向,在步驟S116中,累積運算初始相位推定q軸的正方向的電流值的變化量之絕對值|+Iq|的電流振幅最大值(Σ+Iq)。極性判別部23是在步驟S117中在一定時間中將電壓-Vq重疊於初始相位推定q軸的負方向,在步驟S118中,累積運算初始相位推定q軸的負方向的電流值的變化量之絕對值|-Iq|的電流振幅最大值(Σ-Iq)。極性判別部23是將此步驟S115~S118的處理重複3次。The polarity determination unit 23 superimposes the voltage +Vq on the positive direction of the initial phase estimation q-axis for a certain period of time in step S115, and in step S116, accumulates and calculates the absolute value of the change amount of the current value in the positive direction of the initial phase estimation q-axis. Value |+Iq| Maximum value of current amplitude (Σ+Iq). In step S117, the polarity determination unit 23 superimposes the voltage -Vq on the negative direction of the initial phase estimation q-axis for a certain period of time, and in step S118, accumulates and calculates the amount of change in the current value in the negative direction of the initial phase estimation q-axis. The current amplitude maximum value (Σ-Iq) of absolute value |-Iq|. The polarity determination unit 23 repeats the processing of steps S115 to S118 three times.

接著,極性判別部23是在步驟S119中,進行電流振幅最大值的累積運算的比較,並且進行因應於比較結果的處理,前述電流振幅最大值是電壓分別施加於初始相位推定q軸的正及負方向後的電流變化量的絕對值之電流振幅最大值。具體而言,極性判別部23是在Σ-Iq>Σ+Iq時(步驟S119:「是」),進入至步驟S120的處理,在Σ-Iq≦Σ+Iq時(步驟S119:「否」),進入至步驟S121的處理。Next, in step S119, the polarity determination unit 23 performs a comparison of the cumulative calculation of the current amplitude maximum value, which is a voltage applied to the positive and The maximum value of the current amplitude of the absolute value of the current change amount after the negative direction. Specifically, the polarity determination unit 23 proceeds to the process of step S120 when Σ-Iq>Σ+Iq (step S119: YES), and proceeds to the process of Σ-Iq≦Σ+Iq (step S119: NO) The process of step S121.

在步驟S120中,由於實際的d軸可能是初始相位推定q軸的負方向,因此極性判別部23是在初始相位推定時的相位的值加上270°,並且儲存至相位資訊的暫時保管場所即θtmpQ。另一方面,在步驟S121中,由於實際的d軸的正方向可能是初始相位推定q軸的正方向,因此極性判別部23是在初始相位推定時的相位的值加上90°,並且儲存至相位資訊的暫時保管場所即θtmpQ。In step S120, since the actual d-axis may be the negative direction of the initial phase estimation q-axis, the polarity determination unit 23 adds 270° to the value of the phase at the initial phase estimation, and stores it in the temporary storage place of the phase information That is θtmpQ. On the other hand, in step S121, since the actual positive direction of the d-axis may be the positive direction of the initial phase estimation q-axis, the polarity determination unit 23 adds 90° to the value of the phase at the time of initial phase estimation, and stores To θtmpQ, the temporary storage place of the phase information.

如以上,極性判別部23是藉由步驟S114~S121的處理,來進行q軸判定,並且補正推定相位。As described above, the polarity determination unit 23 performs the q-axis determination and corrects the estimated phase by the processing of steps S114 to S121.

接著,極性判別部23是在步驟S122中計算電流最大振幅的累積運算的差分之絕對值ΔΣIq=|Σ+Iq-Σ-Iq|,前述電流最大振幅是步驟S115~S118所進行之電壓分別施加於初始相位推定q軸的正及負方向後的電流變化量的絕對值之電流最大振幅。極性判別部23是在步驟S123中進行在d軸方向中所求出的差分的絕對值ΔΣId與在q軸方向上所求出的差分的絕對值ΔΣIq的比較,並且進行因應於比較結果的處理。具體而言,極性判別部23是在ΔΣId≧ΔΣIq時(步驟S123:「是」),進入至步驟S124的處理,在ΔΣId<ΔΣIq時(步驟S123:「否」),進入至步驟S125的處理。Next, the polarity determination unit 23 calculates the absolute value ΔΣIq=|Σ+Iq−Σ−Iq| of the difference of the cumulative operation of the maximum current amplitude in step S122, and the aforementioned maximum current amplitude is obtained by applying the voltages performed in steps S115 to S118 to the initial The current maximum amplitude of the absolute value of the current change amount after the phase estimation in the positive and negative directions of the q-axis. The polarity determination unit 23 compares the absolute value ΔΣId of the difference obtained in the d-axis direction with the absolute value ΔΣIq of the difference obtained in the q-axis direction in step S123, and performs processing according to the comparison result. . Specifically, when ΔΣId≧ΔΣIq (step S123: YES), the polarity determination unit 23 proceeds to the process of step S124, and when ΔΣId<ΔΣIq (step S123: NO), proceeds to the process of step S125 .

極性判別部23是在步驟S124中因相位資訊的暫時保管場所θtmpD的值為正確,而將該值儲存於推定相位,在步驟S125中,因相位資訊的暫時保管場所θtmpQ的值為正確,而將該值儲存於推定相位。極性判別部23最後是在步驟S126中結束極性判別處理。 [1-2-5.極性判別 d軸判定] In step S124, since the value of the temporary storage location θtmpD of the phase information is correct, the polarity determination unit 23 stores the value in the estimated phase, and in step S125, since the value of the temporary storage location θtmpQ of the phase information is correct, This value is stored in the estimated phase. The polarity discriminating unit 23 finally ends the polarity discriminating process in step S126. [1-2-5. Polarity judgment d-axis judgment]

圖9是顯示實施形態1中的馬達控制裝置10的d軸判定時的施加電壓與電流之一例的圖。9 is a diagram showing an example of the applied voltage and current at the time of d-axis determination by the motor control device 10 in the first embodiment.

以下,使用圖9所示的例子,具體地說明圖8所示的極性判別處理的流程圖內之步驟S104~S107的電壓的重疊及電流振幅最大值的累積運算。另外,在此圖9的例子中,已儲存的+Id與-Id的差分是設為比基準值Idth(例如1A)更大的值。首先,將+Vd的電壓重疊於初始相位推定d軸的正方向,並且儲存此時的+Id的電流振幅最大值。接著,將-Vd的電壓重疊於初始相位推定d軸的負方向,並且儲存此時的-Id的電流振幅最大值。若已儲存的+Id與-Id為|-Id|<|+Id|的關係,則在之後的馬達驅動控制中,使用即將極性判別前的初始相位判別所推定的推定相位。若為|-Id|>|+Id|的關係,則在之後的馬達驅動控制中,使用在即將極性判別前的初始相位判別所推定的推定相位加上180°的推定相位。在圖9的例子中,即將極性判別前的初始相位判別所推定的推定相位會照原樣成為推定相位。Hereinafter, using the example shown in FIG. 9 , the superposition of voltages and the calculation of the accumulation of the maximum current amplitude in steps S104 to S107 in the flowchart of the polarity determination process shown in FIG. 8 will be specifically described. In addition, in this example of FIG. 9, the difference between +Id and -Id that has been stored is set to a value larger than the reference value Idth (for example, 1A). First, the +Vd voltage is superimposed on the initial phase to estimate the positive direction of the d-axis, and the current amplitude maximum value of +Id at this time is stored. Next, the voltage of -Vd is superimposed on the initial phase to estimate the negative direction of the d-axis, and the current amplitude maximum value of -Id at this time is stored. If the stored +Id and -Id are in the relationship |-Id|<|+Id|, the estimated phase estimated by the initial phase determination immediately before the polarity determination is used in the subsequent motor drive control. If the relationship is |-Id|>|+Id|, the estimated phase obtained by adding 180° to the estimated phase estimated in the initial phase determination immediately before the polarity determination is used in the subsequent motor drive control. In the example of FIG. 9 , the estimated phase estimated by the initial phase determination immediately before the polarity determination is the estimated phase as it is.

藉此,馬達控制裝置10即使在初始相位推定的d軸的方向為180°錯誤的情況下,也可以補正至正確的N極S極的方向。 [1-2-6.極性判別 d軸、q軸判定] Thereby, even when the direction of the d-axis estimated by the initial phase is 180° wrong, the motor control device 10 can correct the direction of the N pole and the S pole correctly. [1-2-6. Polarity judgment d-axis, q-axis judgment]

圖10是顯示實施形態1中的馬達控制裝置10的d軸及q軸判定時的施加電壓與電流之一例的圖。FIG. 10 is a diagram showing an example of the applied voltage and current at the time of d-axis and q-axis determination by the motor control device 10 in the first embodiment.

以下,使用圖10所示的例子,具體地說明圖8所示的極性判別處理的流程圖內之步驟S104~S107、步驟S115~S118的電壓的重疊及電流振幅最大值的累積運算。和圖9的d軸判定同樣,首先,將+Vd的電壓重疊於初始相位推定d軸的正方向,並且儲存此時的+Id的電流振幅最大值。Hereinafter, using the example shown in FIG. 10 , the superposition of voltages and the accumulation calculation of the current amplitude maximum value in steps S104 to S107 and steps S115 to S118 in the flowchart of the polarity determination process shown in FIG. 8 will be specifically described. Similar to the d-axis determination in FIG. 9 , first, the +Vd voltage is superimposed on the initial phase to estimate the positive direction of the d-axis, and the current amplitude maximum value of +Id at this time is stored.

接著,將-Vd的電壓重疊於初始相位推定d軸的負方向,並且儲存此時的-Id的電流振幅最大值。若已儲存的+Id與-Id的差(||+Id|-|-Id||)比基準值Idth更小,亦即為|-Id|≒|+Id|的關係,則初始相位推定所推定的d軸可能相對於實d軸而90°或270°偏移。因此,也將電壓重疊於q軸方向,來進行極性判別。和上述的d軸同樣,首先,將+Vq的電壓重疊於初始相位推定q軸的正方向,並且儲存此時的+Iq的電流振幅最大值。Next, the voltage of -Vd is superimposed on the initial phase to estimate the negative direction of the d-axis, and the current amplitude maximum value of -Id at this time is stored. If the difference between the stored +Id and -Id (||+Id|-|-Id||) is smaller than the reference value Idth, that is, the relationship of |-Id|≒|+Id|, the initial phase estimation estimated The d-axis may be offset by 90° or 270° relative to the real d-axis. Therefore, the voltages are also superimposed in the q-axis direction to perform polarity discrimination. As with the d-axis described above, first, the +Vq voltage is superimposed on the initial phase to estimate the positive direction of the q-axis, and the current amplitude maximum value of +Iq at this time is stored.

接著,將-Vq的電壓重疊於初始相位推定q軸的負方向,並且儲存此時的-Iq的電流振幅最大值。若已儲存的+Iq與-Iq為|-Iq|<|+Iq|的關係,則在即將極性判別前的初始相位判別所推定的推定相位上加上90°。若為|-Iq|>|+Iq|的關係,則在即將極性判別前的初始相位判別所推定的推定相位上加上270°。在圖10的例子中,由於為|-Iq|<|+Iq|的關係,且相較於+Id與-Id的差,+Iq與-Iq的差較大,因此會在即將極性判別前的初始相位判別所推定的推定相位上加上90°。Next, the voltage of -Vq is superimposed on the initial phase to estimate the negative direction of the q-axis, and the current amplitude maximum value of -Iq at this time is stored. If the stored +Iq and -Iq are in the relationship of |-Iq|<|+Iq|, 90° is added to the estimated phase estimated by the initial phase determination immediately before the polarity determination. If the relationship is |-Iq|>|+Iq|, 270° is added to the estimated phase estimated by the initial phase determination immediately before the polarity determination. In the example of FIG. 10 , since the relationship is |-Iq|<|+Iq|, and the difference between +Iq and -Iq is larger than the difference between +Id and -Id, the initial phase immediately before the polarity determination is 90° is added to the estimated phase estimated by the judgment.

藉此,馬達控制裝置10即使在初始相位推定的d軸的方向為90°或270°錯誤的情況下,也可以補正至正確的N極S極的方向。 [1-2-7.極性判別 偏移補正] Thereby, even when the direction of the d-axis estimated by the initial phase is wrong by 90° or 270°, the motor control device 10 can correct the direction of the N pole and the S pole correctly. [1-2-7. Polarity discrimination offset correction]

圖11是用於說明實施形態1中的馬達控制裝置10的極性判別時之偏移補正時的施加電壓與電流的圖。11 is a diagram for explaining the applied voltage and current at the time of offset correction at the time of polarity determination of the motor control device 10 in the first embodiment.

以下,說明圖8的步驟S103的Id偏移計算及步驟S114的Iq偏移計算的內容。極性判別部23是將圖9、圖10的d軸或q軸方向電壓重疊前的電流的一定期間的平均值作為偏移電流值來儲存。在圖8的步驟S105、S107、S116、S118的處理中,極性判別部23是在檢測到電流振幅最大值後,將已減去儲存的偏移電流值的值設為最終的電流振幅最大值。亦即,針對d軸,若將偏移電流值設為+Id0,並假設已測定的電流振幅最大值+Id‘,則欲以極性判別求出的+Id可以算出為+Id=+Id’-Id0(參照圖11)。這無論Id的正負、Id、Iq如何,都可以進行同樣的運算。Hereinafter, the contents of the Id offset calculation in step S103 and the Iq offset calculation in step S114 in FIG. 8 will be described. The polarity determination unit 23 stores, as the offset current value, the average value of the current for a certain period before the voltages in the d-axis or q-axis directions of FIGS. 9 and 10 are superimposed. In the processes of steps S105 , S107 , S116 , and S118 in FIG. 8 , after detecting the maximum current amplitude value, the polarity determination unit 23 sets the value obtained by subtracting the stored offset current value as the final maximum current amplitude value . That is, for the d-axis, if the offset current value is +Id0, and the measured current amplitude maximum value +Id' is assumed, the +Id to be determined by the polarity can be calculated as +Id=+Id'-Id0 (see Fig. 11). Regardless of whether Id is positive or negative, Id or Iq, the same operation can be performed.

藉此,馬達控制裝置10可以將初始電流設為偏移電流值來補正,藉此即使在電流值未收斂至0的情況下,仍然可以抑制對極性判別的影響。因此,馬達控制裝置10可以用更佳的精確度來判別。 [1-3.效果等] Thereby, the motor control device 10 can correct the initial current as the offset current value, thereby suppressing the influence on the polarity determination even when the current value does not converge to 0. Therefore, the motor control device 10 can discriminate with better accuracy. [1-3. Effects, etc.]

如以上,在本實施形態1中,馬達控制裝置10是控制無刷馬達40,前述無刷馬達40具有藉由逆變電路13驅動的凸極構造的轉子41。馬達控制裝置10具備逆變電路13、電流檢測部21、初始相位推定部22、及極性判別部23。電流檢測部21是檢測無刷馬達40的電流。初始相位推定部22是依據電流檢測部21所檢測的電流,來推定無刷馬達40的初始相位。極性判別部23是依據電流檢測部21所檢測的電流,來判別無刷馬達40的磁極的極性。極性判別部23是依據電流振幅差,來判別無刷馬達40的磁極的極性,並補正初始相位,前述電流振幅差是相對於初始相位推定部22所推定的初始相位,將電壓重疊於d軸及q軸各自的正及負方向而由電流檢測部21檢測出的d軸及q軸各自的正及負方向的電流振幅差。As described above, in the first embodiment, the motor control device 10 controls the brushless motor 40 having the salient-pole rotor 41 driven by the inverter circuit 13 . The motor control device 10 includes an inverter circuit 13 , a current detection unit 21 , an initial phase estimation unit 22 , and a polarity determination unit 23 . The current detection unit 21 detects the current of the brushless motor 40 . The initial phase estimation unit 22 estimates the initial phase of the brushless motor 40 based on the current detected by the current detection unit 21 . The polarity discrimination unit 23 discriminates the polarity of the magnetic pole of the brushless motor 40 based on the current detected by the current detection unit 21 . The polarity discriminating unit 23 discriminates the polarity of the magnetic pole of the brushless motor 40 based on the current amplitude difference, which is a voltage superimposed on the d-axis with respect to the initial phase estimated by the initial phase estimating unit 22, and corrects the initial phase. The difference in current amplitude between the positive and negative directions of the d-axis and the q-axis, respectively, detected by the current detection unit 21 and the positive and negative directions of the q-axis.

藉此,馬達控制裝置10即使在初始相位推定時和原本的d軸方向不同而推定成q軸方向的情況下,仍然可以在極性判別時判別正確的磁極方向。亦即,馬達控制裝置10在初始推定的d軸的方向相對於正確的方向而為90°或270°錯誤的情況下,也可以正確地進行磁極檢測。因此,馬達控制裝置10在無刷馬達40的啟動時,可以在沒有逆轉或失調等動作的情形下,進行順暢的啟動及加速。Thereby, even when the initial phase estimation is different from the original d-axis direction and the q-axis direction is estimated, the motor control device 10 can determine the correct magnetic pole direction at the time of polarity determination. That is, the motor control device 10 can accurately perform magnetic pole detection even when the initially estimated direction of the d-axis is 90° or 270° wrong with respect to the correct direction. Therefore, when the brushless motor 40 is started, the motor control device 10 can smoothly start and accelerate without any movement such as reverse rotation or out-of-balance.

如本實施形態1,馬達控制裝置10的極性判別部23是在將電壓重疊於d軸的正及負方向而由電流檢測部21所檢測出的d軸的正及負方向的電流振幅差的絕對值比基準值Idth更大的情況下,結束無刷馬達40的極性判別。又,極性判別部23在d軸的正及負方向的電流振幅差的絕對值比基準值Idth更小的情況下是進行以下內容。亦即,極性判別部23是依據將電壓重疊於q軸的正及負方向而由電流檢測部21檢測出的q軸的正及負方向的電流振幅差、與d軸的正及負方向的電流振幅差,來判別無刷馬達40的磁極的極性,並補正初始相位。As in the first embodiment, the polarity determination unit 23 of the motor control device 10 superimposes the voltage on the positive and negative directions of the d-axis to detect the difference in current amplitude between the positive and negative directions of the d-axis by the current detection unit 21 . When the absolute value is larger than the reference value Idth, the polarity determination of the brushless motor 40 ends. The polarity determination unit 23 performs the following when the absolute value of the current amplitude difference between the positive and negative directions of the d-axis is smaller than the reference value Idth. That is, the polarity discrimination unit 23 is based on the difference in current amplitude between the positive and negative directions of the q-axis detected by the current detection unit 21 by superimposing the voltage on the positive and negative directions of the q-axis, and the difference between the positive and negative directions of the d-axis. The current amplitude difference is used to determine the polarity of the magnetic pole of the brushless motor 40, and to correct the initial phase.

藉此,馬達控制裝置10即使在初始相位推定時和原本的d軸方向不同而推定成q軸方向的情況下,仍然可以在極性判別時判別正確的磁極方向。亦即,馬達控制裝置10在初始推定的d軸的方向相對於正確的方向而為90°或270°錯誤的情況下,也可以正確地進行磁極檢測。因此,馬達控制裝置10在無刷馬達40的啟動時,可以在沒有逆轉或失調等動作的情形下,進行順暢的啟動及加速。Thereby, even when the initial phase estimation is different from the original d-axis direction and the q-axis direction is estimated, the motor control device 10 can determine the correct magnetic pole direction at the time of polarity determination. That is, the motor control device 10 can accurately perform magnetic pole detection even when the initially estimated direction of the d-axis is 90° or 270° wrong with respect to the correct direction. Therefore, when the brushless motor 40 is started, the motor control device 10 can smoothly start and accelerate without any movement such as reverse rotation or out-of-balance.

如本實施形態1,馬達控制裝置10的極性判別部23是將在將要把電壓重疊於d軸及q軸各自的正及負方向之前藉由電流檢測部21所檢測出的電流設為偏移電流值。極性判別部23是依據從將電壓重疊於d軸及q軸各自的正及負方向而由電流檢測部21檢測出的d軸及q軸各自的正及負方向的電流振幅最大值減去偏移電流值後的值,來判別無刷馬達40的磁極的極性,並補正初始相位。As in the first embodiment, the polarity determination unit 23 of the motor control device 10 offsets the current detected by the current detection unit 21 before superimposing the voltages on the positive and negative directions of the d-axis and the q-axis, respectively. current value. The polarity determination unit 23 subtracts the bias from the maximum value of the current amplitude in the positive and negative directions of the d-axis and the q-axis detected by the current detection unit 21 by superimposing the voltage on the positive and negative directions of the d-axis and the q-axis, respectively. The value after shifting the current value is used to determine the polarity of the magnetic pole of the brushless motor 40, and to correct the initial phase.

藉此,馬達控制裝置10可以更正確地在極性判別時判別正確的磁極方向。因此,在馬達啟動時,可以在沒有逆轉或失調等動作的情形下,進行更加順暢的啟動及加速。 (實施形態2) Thereby, the motor control device 10 can more accurately discriminate the correct magnetic pole direction at the time of polarity discrimination. Therefore, when the motor is started, it is possible to perform smoother start-up and acceleration without reversing or running out of alignment. (Embodiment 2)

以下,使用圖12來說明實施形態2中的馬達控制裝置。 [2-1.動作] [2-1-1.指令電流值的控制] Hereinafter, the motor control device in Embodiment 2 will be described with reference to FIG. 12 . [2-1. Action] [2-1-1. Control of command current value]

實施形態2中的馬達控制裝置的極性判別部是在判別極性的期間中,控制成使指令電流值(±Id、±Iq)成為0A,這一點是和實施形態1中的馬達控制裝置10的極性判別部23不同。The polarity determination unit of the motor control device in the second embodiment controls the command current values (±Id, ±Iq) to be 0 A during the period of determining the polarity, which is different from the motor control device 10 in the first embodiment. The polarity determination unit 23 is different.

圖12是用於說明在實施形態2中的馬達控制裝置中進行電流控制時的極性判別的概略的圖。FIG. 12 is a diagram for explaining the outline of polarity determination when current control is performed in the motor control device in Embodiment 2. FIG.

圖12是顯示在極性判別中,已進行了電流控制的情況與未進行電流控制的情況之Id電流的行為的差異。另外,在圖12中,以實線來顯示已進行了電流控制時的Id電流,以點線來顯示未進行電流控制時的Id電流。FIG. 12 shows the difference in the behavior of the Id current between the case where the current control is performed and the case where the current control is not performed in the polarity discrimination. In addition, in FIG. 12 , the Id current when the current control is performed is indicated by a solid line, and the Id current when the current control is not performed is indicated by a dotted line.

如圖12所示,根據進行了電流控制時的電流行為,可知在進行了電流控制的情況下,由於電流響應會變快,因此Id電流值會更快地收斂至0A。 [2-2.效果等] As shown in FIG. 12 , from the current behavior when the current control is performed, it can be seen that when the current control is performed, since the current response becomes faster, the Id current value converges to 0A more quickly. [2-2. Effects, etc.]

如以上,本實施形態2中的馬達控制裝置的極性判別部是在判別無刷馬達40的磁極的極性之期間中,控制成使流動於無刷馬達40的電流成為0。As described above, the polarity determination unit of the motor control device in the second embodiment controls the current flowing in the brushless motor 40 to be zero during the period in which the polarity of the magnetic pole of the brushless motor 40 is determined.

藉此,本實施形態2中的馬達控制裝置即可以縮短重疊電壓的間隔。因此,本實施形態2中的馬達控制裝置可以在更短期間內判別極性。 (其他實施形態) As a result, the motor control device in the second embodiment can shorten the interval between the superimposed voltages. Therefore, the motor control device in the second embodiment can determine the polarity in a shorter period of time. (Other Embodiments)

如以上,作為本揭示中的技術的例示,說明了實施形態1及2。然而,本揭示中的技術並不限定於此,也能夠應用於進行過變更、置換、附加、省略等的實施形態。又,也可以組合上述實施形態1及2中所說明的各個構成要素,來作成新的實施形態。As above, Embodiments 1 and 2 have been described as examples of the technology in the present disclosure. However, the technology of the present disclosure is not limited to this, and can be applied to embodiments in which changes, substitutions, additions, and omissions have been performed. Moreover, you may combine each component demonstrated in the said Embodiment 1 and 2, and may make a new embodiment.

於是,以下例示出其他實施形態。Therefore, other embodiments are exemplified below.

可以將本揭示中的馬達控制裝置以及凸極構造的無刷馬達搭載於洗衣機或洗衣乾燥機。例如,使用本凸極構造的無刷馬達及本揭示中的馬達控制裝置,來作為滾筒式洗衣機的滾筒之驅動用的無刷馬達及馬達控制裝置的情況下,可以在沒有逆轉或啟動失敗的情形下,順暢地啟動正停止著的滾筒並且提升旋轉數。藉此,本揭示可以有助於洗淨率的提升或運轉時間的縮短,而可以提供高性能的洗衣機。The motor control device and the brushless motor of the salient pole structure according to the present disclosure can be mounted on a washing machine or a washing-drying machine. For example, when the brushless motor of the present salient pole structure and the motor control device of the present disclosure are used as the brushless motor and the motor control device for driving the drum of a front-loading washing machine, there is no reversal or start-up failure. In this case, smoothly start the stopped drum and increase the number of revolutions. Thereby, the present disclosure can contribute to the improvement of the washing rate and the shortening of the operation time, and can provide a high-performance washing machine.

又,實施形態1的馬達控制裝置10及實施形態2的馬達控制裝置(以下,也稱為「實施形態的馬達控制裝置」)是設為不包含無刷馬達40的構成。然而,實施形態的馬達控制裝置的構成僅是本揭示中的馬達控制裝置的構成之一例,本揭示中的馬達控制裝置並不限定於實施形態的馬達控制裝置的構成。亦即,本揭示中的馬達控制裝置亦可為包含無刷馬達的構成,前述無刷馬達具有藉由本揭示中的逆變電路所驅動的凸極構造的轉子。 產業上之可利用性 In addition, the motor control device 10 of the first embodiment and the motor control device of the second embodiment (hereinafter, also referred to as "the motor control device of the embodiment") are configured not to include the brushless motor 40 . However, the configuration of the motor control device in the embodiment is only an example of the configuration of the motor control device in the present disclosure, and the motor control device in the present disclosure is not limited to the configuration of the motor control device in the embodiment. That is, the motor control device in the present disclosure may include a brushless motor having a rotor of a salient-pole structure driven by the inverter circuit in the present disclosure. industrial availability

本揭示可以應用於馬達控制裝置及搭載此馬達控制裝置的洗衣機或洗衣乾燥機,前述馬達控制裝置是對具有凸極構造的轉子的無刷馬達(永久磁鐵同步電動機)之旋轉進行無感測器控制。具體而言,例如,本揭示可以應用於直立式洗衣機、滾筒式洗衣機、滾筒式洗衣乾燥機等。The present disclosure can be applied to a motor control device that performs sensorless rotation of a brushless motor (permanent magnet synchronous motor) having a rotor having a salient pole structure, and a washing machine or a washer-dryer equipped with the motor control device. control. Specifically, for example, the present disclosure can be applied to an upright type washing machine, a drum type washing machine, a drum type washing and drying machine, and the like.

10:馬達控制裝置 11:整流電路 12:平滑電容器 13:逆變電路 14a,14b,14c,14d,14e,14f:開關元件 15a,15b,15c:電阻 20:控制電路 21:電流檢測部 22:初始相位推定部 23:極性判別部 24:無感測器推定部 24a:驅動方式切換部 24b:電感驅動部 24ba:uvw→dq電流轉換部 24bb:位置推定φ運算部 24bc:高頻電流控制部 24bd:角速度ω運算部 24be:位置角θ運算部 24bf:速度電流控制部 24bg:dq→uvw電壓轉換部 24c:感應電壓驅動部 24ca:uvw→dq電流轉換部 24cb:位置推定εγ運算部 24cc:角速度ω運算部 24cd:位置角θ運算部 24ce:速度電流控制部 24cf:dq→uvw電壓轉換部 30:交流電源 40:無刷馬達 41:轉子 42:磁鐵 d:d軸 di/dt:電流的時間微分 Iu,Iv,Iw:三相電流值 L:電感 N:N極 q:q軸 S:極 S001~S009,S101~S126:步驟 +Id,-Id,+Iq,-Iq:電流值的變化量 |+Id|,|-Id|,|+Iq|,|-Iq|:電流值的變化量之絕對值 +Vd,-Vd,+Vq,-Vq:電壓 φ:位置推定值 ω*:速度指令值 10: Motor control device 11: Rectifier circuit 12: Smoothing capacitor 13: Inverter circuit 14a, 14b, 14c, 14d, 14e, 14f: Switching elements 15a, 15b, 15c: Resistors 20: Control circuit 21: Current detection section 22: Initial phase estimation section 23: Polarity discrimination section 24: Sensorless Estimation Section 24a: Drive mode switching section 24b: Inductance drive part 24ba: uvw→dq current conversion part 24bb: Position estimation φ calculation part 24bc: High frequency current control section 24bd: Angular velocity ω calculation unit 24be: Position angle θ calculation part 24bf: Speed current control section 24bg:dq→uvw voltage conversion part 24c: Induced voltage drive part 24ca: uvw→dq current conversion part 24cb: Position estimation εγ calculation unit 24cc: Angular velocity ω calculation unit 24cd: Position angle θ calculation unit 24ce: Speed current control section 24cf:dq→uvw voltage conversion section 30: AC power 40: Brushless Motor 41: Rotor 42: Magnets d: d axis di/dt: time derivative of current Iu,Iv,Iw: Three-phase current value L: Inductance N:N pole q:q axis S: extremely S001~S009, S101~S126: Steps +Id, -Id, +Iq, -Iq: Variation of current value |+Id|,|-Id|,|+Iq|,|-Iq|: Absolute value of current value change +Vd,-Vd,+Vq,-Vq: Voltage φ: estimated position value ω*: Speed command value

圖1是顯示實施形態1中的馬達控制裝置的構成的圖。FIG. 1 is a diagram showing the configuration of a motor control device in Embodiment 1. FIG.

圖2是顯示實施形態1中的馬達控制裝置的無感測器推定部的構成的方塊圖。FIG. 2 is a block diagram showing the configuration of a sensorless estimation unit of the motor control device in Embodiment 1. FIG.

圖3是顯示實施形態1中的馬達控制裝置的電感驅動部的詳細構成的方塊圖。FIG. 3 is a block diagram showing a detailed configuration of an inductive drive unit of the motor control device in Embodiment 1. FIG.

圖4是顯示實施形態1中的馬達控制裝置的感應電壓驅動部的詳細構成的方塊圖。4 is a block diagram showing a detailed configuration of an induced voltage drive unit of the motor control device in Embodiment 1. FIG.

圖5是顯示實施形態1中的馬達控制裝置的馬達驅動控制處理的流程的流程圖。5 is a flowchart showing a flow of motor drive control processing performed by the motor control device in Embodiment 1. FIG.

圖6A是用於說明針對轉子的初始相位推定的課題的圖。6A is a diagram for explaining a problem of estimating the initial phase of the rotor.

圖6B是用於說明針對轉子的初始相位推定的課題的圖。FIG. 6B is a diagram for explaining the problem of estimating the initial phase of the rotor.

圖6C是用於說明針對轉子的初始相位推定的課題的圖。FIG. 6C is a diagram for explaining the problem of estimating the initial phase of the rotor.

圖7是顯示使用於一般的無刷馬達的電磁鋼板的磁性飽和特性的圖。FIG. 7 is a graph showing magnetic saturation characteristics of an electromagnetic steel sheet used in a general brushless motor.

圖8是顯示實施形態1中的馬達控制裝置的極性判別處理的流程的流程圖。FIG. 8 is a flowchart showing a flow of polarity discrimination processing by the motor control device in Embodiment 1. FIG.

圖9是顯示實施形態1中的馬達控制裝置的d軸判定時的施加電壓與電流之一例的圖。9 is a diagram showing an example of the applied voltage and current at the time of d-axis determination by the motor control device in Embodiment 1. FIG.

圖10是顯示實施形態1中的馬達控制裝置的d軸及q軸判定時的施加電壓與電流之一例的圖。10 is a diagram showing an example of the applied voltage and current at the time of d-axis and q-axis determination of the motor control device in Embodiment 1. FIG.

圖11是用於說明實施形態1中的馬達控制裝置的極性判別時之偏移補正時的施加電壓與電流的圖。FIG. 11 is a diagram for explaining the applied voltage and current during offset correction at the time of polarity determination of the motor control device in Embodiment 1. FIG.

圖12是用於說明在實施形態2中的馬達控制裝置中進行電流控制時的極性判別的概略的圖。FIG. 12 is a diagram for explaining the outline of polarity determination when current control is performed in the motor control device in Embodiment 2. FIG.

10:馬達控制裝置 10: Motor control device

11:整流電路 11: Rectifier circuit

12:平滑電容器 12: Smoothing capacitor

13:逆變電路 13: Inverter circuit

14a,14b,14c,14d,14e,14f:開關元件 14a, 14b, 14c, 14d, 14e, 14f: Switching elements

15a,15b,15c:電阻 15a, 15b, 15c: Resistors

20:控制電路 20: Control circuit

21:電流檢測部 21: Current detection section

22:初始相位推定部 22: Initial phase estimation section

23:極性判別部 23: Polarity discrimination section

24:無感測器推定部 24: Sensorless Estimation Section

30:交流電源 30: AC power

40:無刷馬達 40: Brushless Motor

Iu,Iv,Iw:三相電流值 Iu,Iv,Iw: Three-phase current value

Claims (5)

一種馬達控制裝置,是控制無刷馬達的馬達控制裝置,前述無刷馬達具有藉由逆變電路驅動的凸極構造的轉子,前述馬達控制裝置具備: 前述逆變電路; 電流檢測部,檢測前述無刷馬達的電流; 初始相位推定部,依據前述電流檢測部所檢測的電流,來推定前述無刷馬達的初始相位;及 極性判別部,依據前述電流檢測部所檢測的電流,來判別前述無刷馬達的磁極的極性, 前述極性判別部是依據電流振幅差,來判別前述無刷馬達的磁極的極性,並補正前述初始相位,前述電流振幅差是相對於前述初始相位推定部所推定的前述初始相位,將電壓重疊於d軸及q軸各自的正及負方向而由前述電流檢測部檢測出的d軸及q軸各自的正及負方向的電流振幅差。 A motor control device is a motor control device for controlling a brushless motor, the brushless motor has a rotor of a salient pole structure driven by an inverter circuit, and the motor control device includes: The aforementioned inverter circuit; a current detection unit for detecting the current of the brushless motor; an initial phase estimation unit for estimating the initial phase of the brushless motor according to the current detected by the current detection unit; and The polarity discrimination unit discriminates the polarity of the magnetic pole of the brushless motor according to the current detected by the current detection unit, The polarity discriminating unit discriminates the polarity of the magnetic pole of the brushless motor based on the current amplitude difference, and corrects the initial phase, and the current amplitude difference superimposes the voltage on the initial phase estimated by the initial phase estimating unit. The difference in current amplitude between the positive and negative directions of the d-axis and the q-axis and the positive and negative directions of the d-axis and the q-axis detected by the current detection unit. 如請求項1之馬達控制裝置,其中前述極性判別部是在將電壓重疊於d軸的正及負方向而由前述電流檢測部檢測出的d軸的正及負方向的前述電流振幅差的絕對值比基準值更大的情況下,結束前述無刷馬達的極性判別, 在d軸的正及負方向的前述電流振幅差的絕對值比前述基準值更小的情況下,依據將電壓重疊於d軸的正及負方向而由前述電流檢測部檢測出的d軸的正及負方向的前述電流振幅差、與d軸的正及負方向的前述電流差,來判別前述無刷馬達的磁極的極性,並補正前述初始相位。 The motor control device according to claim 1, wherein the polarity determination unit is an absolute value of the difference in current amplitude between the positive and negative directions of the d-axis detected by the current detection unit by superimposing the voltage on the positive and negative directions of the d-axis. When the value is larger than the reference value, the polarity discrimination of the brushless motor is terminated. When the absolute value of the current amplitude difference in the positive and negative directions of the d-axis is smaller than the reference value, the d-axis detected by the current detection unit is detected by superimposing a voltage on the positive and negative directions of the d-axis. The current amplitude difference between the positive and negative directions and the current difference between the positive and negative directions of the d-axis are used to determine the polarities of the magnetic poles of the brushless motor, and to correct the initial phase. 如請求項1或2之馬達控制裝置,其中前述極性判別部是將在將要把電壓重疊於d軸及q軸各自的正及負方向之前藉由前述電流檢測部所檢測出的電流設為偏移電流值,且依據從將電壓重疊於d軸及q軸各自的正及負方向而由前述電流檢測部檢測出的d軸及q軸各自的正及負方向的電流振幅最大值減去前述偏移電流值後的值,來判別前述無刷馬達的磁極的極性,並補正前述初始相位。The motor control device according to claim 1 or 2, wherein the polarity determination unit sets the current detected by the current detection unit as a bias before superimposing the voltages on the positive and negative directions of the d-axis and the q-axis, respectively. The shift current value is subtracted from the maximum value of the current amplitude in the positive and negative directions of the d-axis and the q-axis detected by the current detection unit by superimposing the voltage on the positive and negative directions of the d-axis and the q-axis, respectively. The value after offsetting the current value is used to determine the polarity of the magnetic pole of the brushless motor, and to correct the initial phase. 如請求項1至3中任一項之馬達控制裝置,其中前述極性判別部是在判別前述無刷馬達的磁極的極性之期間內,控制流動於前述無刷馬達的電流為0。The motor control device according to any one of claims 1 to 3, wherein the polarity determination unit controls the current flowing in the brushless motor to 0 during a period in which the polarity of the magnetic pole of the brushless motor is determined. 一種洗衣機或洗衣乾燥機,搭載了如請求項1至4中任一項之馬達控制裝置。A washing machine or washer-dryer equipped with the motor control device of any one of claims 1 to 4.
TW110136706A 2020-10-26 2021-10-01 Motor control device, and washing machine or washing and drying machine having said motor control device installed therein TW202232879A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-178624 2020-10-26
JP2020178624 2020-10-26

Publications (1)

Publication Number Publication Date
TW202232879A true TW202232879A (en) 2022-08-16

Family

ID=81382426

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110136706A TW202232879A (en) 2020-10-26 2021-10-01 Motor control device, and washing machine or washing and drying machine having said motor control device installed therein

Country Status (4)

Country Link
JP (1) JP7442052B2 (en)
CN (1) CN116349128A (en)
TW (1) TW202232879A (en)
WO (1) WO2022091701A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761243B2 (en) * 2013-03-29 2015-08-12 株式会社安川電機 Motor control device and magnetic pole position estimation method
JP6975333B2 (en) * 2018-07-13 2021-12-01 株式会社日立製作所 Permanent magnet synchronous machine control device, electric vehicle and permanent magnet synchronous machine magnetic pole polarity discrimination method
JP2020031469A (en) * 2018-08-21 2020-02-27 日本電産株式会社 Motor drive control device
JP6962957B2 (en) * 2018-10-12 2021-11-05 ファナック株式会社 DC excitation type magnetic pole initial position detection device and magnetic pole position detection device

Also Published As

Publication number Publication date
JP7442052B2 (en) 2024-03-04
CN116349128A (en) 2023-06-27
WO2022091701A1 (en) 2022-05-05
JPWO2022091701A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
JP5761243B2 (en) Motor control device and magnetic pole position estimation method
JP5534935B2 (en) Rotation sensorless control device
TWI587622B (en) Drive system and inverter device
JP5025142B2 (en) Motor control device
JP2014176157A (en) Motor rotation position detection device, washer, and method for detecting motor rotation position
JP2002335699A (en) Controller of ac motor
KR102285399B1 (en) Inverter control unit and drive system
JP2013081372A (en) Drive unit and control method for brushless motor, and drive unit and control method for brushless fan motor
JP2017077122A (en) Motor control device
JP4660688B2 (en) Method and controller for estimating initial magnetic pole position of sensorless salient pole type brushless DC motor
JP5743344B2 (en) Control device for synchronous motor
WO2018043501A1 (en) Inverter control device and electric motor driving system
JP2010041868A (en) Rotor rotation monitor for synchronous motor, and control system
JP6654373B2 (en) Washing machine
JP5800763B2 (en) AC rotating machine control device
JP4397889B2 (en) Magnetic pole position estimation device for synchronous motor
CN111511975B (en) Washing machine
TW202232879A (en) Motor control device, and washing machine or washing and drying machine having said motor control device installed therein
JP2018023208A (en) Inverter device
JP7196469B2 (en) Controller for synchronous reluctance motor
JP5282443B2 (en) Control device for permanent magnet type synchronous motor
JP6479255B2 (en) Control system for permanent magnet type synchronous motor and control method for permanent magnet type synchronous motor
JP5257661B2 (en) Synchronous motor control method and control apparatus
JP2007282467A (en) Synchronous motor drive device
JP7077878B2 (en) Motor control device