WO2022089302A1 - 一种核苷类似物的盐及其晶型、药物组合物和用途 - Google Patents

一种核苷类似物的盐及其晶型、药物组合物和用途 Download PDF

Info

Publication number
WO2022089302A1
WO2022089302A1 PCT/CN2021/125379 CN2021125379W WO2022089302A1 WO 2022089302 A1 WO2022089302 A1 WO 2022089302A1 CN 2021125379 W CN2021125379 W CN 2021125379W WO 2022089302 A1 WO2022089302 A1 WO 2022089302A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
compound
formula
solvent
ether
Prior art date
Application number
PCT/CN2021/125379
Other languages
English (en)
French (fr)
Inventor
沈敬山
谢元超
张磊砢
肖庚富
王震
蒋华良
徐华强
胡天文
田广辉
Original Assignee
苏州旺山旺水生物医药有限公司
中国科学院上海药物研究所
中国科学院武汉病毒研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州旺山旺水生物医药有限公司, 中国科学院上海药物研究所, 中国科学院武汉病毒研究所 filed Critical 苏州旺山旺水生物医药有限公司
Priority to JP2023525545A priority Critical patent/JP2023552672A/ja
Priority to CN202180003236.9A priority patent/CN114391016B/zh
Priority to EP21885029.5A priority patent/EP4234557A4/en
Priority to US18/033,673 priority patent/US20230312584A1/en
Publication of WO2022089302A1 publication Critical patent/WO2022089302A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/53Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the present invention requires the invention patent application entitled “A salt of a nucleoside analog and its crystal form, pharmaceutical composition and use", the application number is 202011156037.5, and the December 2020 patent application filed in China on October 26, 2020
  • the invention belongs to the technical field of medicine, and in particular relates to an acid addition salt of a nucleoside analog, a salt-type crystal, a pharmaceutical composition and a medical application.
  • viruses that have been discovered that can cause human diseases.
  • SARS-CoV SARS-CoV in 2003.
  • H1N1 influenza virus in 2009 the H7N9 avian influenza virus in 2013, the MERS-CoV in 2012, the Ebola virus in 2014, and the dengue virus and Zika virus that have become more prevalent in recent years.
  • Most of these viruses have the characteristics of fast transmission, strong infectivity and high morbidity, which pose severe challenges to the world's medical and health system.
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus with approximately 79% genome-wide similarity to 2003 SARS-CoV. Since its discovery, the virus has spread rapidly around the world.
  • nucleoside analogs to interfere with the replication of viral genetic material is an important strategy for antiviral drug discovery.
  • the object of the present invention is to provide acid addition salts of nucleoside analogs with stable physical properties and good druggability, salt crystals obtained based on the acid addition salts, and medicines containing the acid addition salts or salt crystals thereof
  • the composition, and the corresponding preparation method and pharmaceutical use are provided.
  • the present invention provides a compound of formula I,
  • X is hydrogen or deuterium
  • Y is maleic acid, succinic acid, citric acid, tartaric acid, fumaric acid, formic acid, acetic acid, propionic acid, malonic acid, oxalic acid, benzoic acid, phthalic acid, methanesulfonic acid , ethanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, naphthalenesulfonic acid, 1,5-naphthalenedisulfonic acid, camphor acid, camphorsulfonic acid, salicylic acid, acetylsalicylic acid, aspartic acid, glutamic acid , lactic acid, gluconic acid, ascorbic acid, gallic acid, mandelic acid, malic acid, sorbic acid, trifluoroacetic acid, taurine, homotaurine, 2-hydroxyethanesulfonic acid, cinnamic acid, mucic acid, hydrogen chloride, bromid
  • the compound of formula I is a compound of formula I-1:
  • n is 0.5 to 2, preferably 1.
  • the compound of formula I or formula I-1 is a compound of formula I-1'.
  • the compound of formula I-1' is a crystal having the form of Form A, and the Form A has at least one of the following characteristics: 1) Its XRPD pattern is at at least 3 of the following 2 ⁇ values, preferably at least 5, more preferably at least 7 with characteristic peaks: 5.35° ⁇ 0.2°, 8.11° ⁇ 0.2°, 8.46° ⁇ 0.2°, 15.70° ⁇ 0.2°, 18.08° ⁇ 0.2°, 21.09° ⁇ 0.2° and 21.91° ⁇ 0.2°; 2) Its DSC spectrum has an absorption peak at 204 ⁇ 5°C; 3) After placing it at 25°C, RH80% for 24 hours, the moisture increase is below 1%, preferably below 0.2%, more preferably 0.1% or less; and 4) its solubility in deionized water at 37°C is 0.1 mg/mL or more, preferably 0.2 mg/mL or more, more preferably 0.3 mg/mL.
  • the XRPD pattern of the crystal form A also has characteristic peaks at at least 3, preferably at least 5, more preferably at least 8 of the following 2 ⁇ values: 16.02° ⁇ 0.2°, 16.88° ⁇ 0.2°, 17.22 ° ⁇ 0.2°, 17.76° ⁇ 0.2°, 20.55° ⁇ 0.2°, 23.25° ⁇ 0.2°, 23.89° ⁇ 0.2° and 26.14° ⁇ 0.2°; most preferably, the XRPD pattern of the crystal form A is shown in Figure 2 shown.
  • the DSC spectrum of the crystal form A is shown in FIG. 1 .
  • the compound of formula I-1' is amorphous.
  • the XRPD pattern of the amorphous material is shown in FIG. 6 .
  • the compound of formula I is a compound of formula I-2:
  • n is 0.5 to 2, preferably 1.
  • the compound of formula I or formula I-2 is a compound of formula I-2'.
  • the compound of formula I-2' is a crystal having the form of Form I, and the crystal form I has at least one of the following characteristics: 1) Its XRPD pattern is at at least 3 of the following 2 ⁇ values, preferably at least at least 5, more preferably at least 6 with characteristic peaks: 5.36° ⁇ 0.2°, 8.13° ⁇ 0.2°, 8.48° ⁇ 0.2°, 18.16° ⁇ 0.2°, 20.95° ⁇ 0.2° and 21.95° ⁇ 0.2°; 2) Its DSC spectrum has an absorption peak at 200 ⁇ 5°C; 3) after placing it at 25°C, RH80% for 24 hours, the moisture increase is below 1%, preferably below 0.2%, more preferably below 0.1%; and 4 ) its solubility in deionized water at 37°C is 0.1 mg/mL or more, preferably 0.2 mg/mL or more, more preferably 0.3 mg/mL.
  • the XRPD pattern of the crystal form I also has characteristic peaks at at least 3, preferably at least 5, more preferably at least 7 of the following 2 ⁇ values: 15.71° ⁇ 0.2°, 16.07° ⁇ 0.2°, 16.90 ° ⁇ 0.2°, 17.26° ⁇ 0.2°, 20.55° ⁇ 0.2°, 23.27° ⁇ 0.2° and 26.08° ⁇ 0.2°; most preferably, the XRPD pattern of the crystal form I is shown in FIG. 4 .
  • the DSC spectrum of the crystal form I is shown in FIG. 3 .
  • the compound of formula I-2' is amorphous.
  • the XRPD pattern of the amorphous material is shown in FIG. 7 .
  • the present invention provides a method for preparing a compound shown in formula I, formula I-1, formula I-1', formula I-2 or formula I-2', comprising the following steps:
  • X is hydrogen or deuterium
  • Described acid is maleic acid, succinic acid, citric acid, tartaric acid, fumaric acid, formic acid, acetic acid, propionic acid, malonic acid, oxalic acid, benzoic acid, phthalic acid, methanesulfonic acid, ethanesulfonic acid, benzene Sulfonic acid, toluenesulfonic acid, naphthalenesulfonic acid, 1,5-naphthalenedisulfonic acid, camphoric acid, camphorsulfonic acid, salicylic acid, acetylsalicylic acid, aspartic acid, glutamic acid, lactic acid, gluconic acid, Ascorbic acid, gallic acid, mandelic acid, malic acid, sorbic acid, trifluoroacetic acid, taurine, homotaurine, 2-hydroxyethanesulfonic acid, cinnamic acid, mucic acid, hydrogen chloride, hydrogen bromide, hydrogen iodide,
  • the dosage ratio of the compound of formula II to the solvent A is 1 g:2-20 mL, preferably 1 g:5-10 mL; the content of the acid in the solution B is 40wt% ⁇ 50wt%; the molar ratio of the compound of formula II to the acid is 1:0.9 ⁇ 1; in step 2) of the preparation method, the stirring time is 0.5 ⁇ 5 hours, preferably 0.5 ⁇ 1 hour.
  • the preparation method further includes step 3): mixing the product in step 2) with solvent C, stirring at room temperature and/or under heating conditions, and precipitating a solid to obtain the target product.
  • the dosage ratio of the compound of formula II to the solvent C is 1g:2 ⁇ 20mL, preferably 1g:5 ⁇ 15mL; the temperature of the heating condition is 35 ⁇ 60°C, preferably 50-60°C; the stirring time is 0.5-5 hours, preferably 0.5-2 hours.
  • the solvent A, the solvent B and the solvent C are each independently selected from water, hydrocarbons, alcohols, ethers, ketones, esters, nitriles and homogeneous mixtures thereof;
  • the hydrocarbons are selected from n-pentane, n-hexane, n-heptane, petroleum ether, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, benzene, toluene, xylene, chlorobenzene and dichlorobenzene;
  • the The alcohol is selected from methanol, ethanol, n-propanol, isopropanol, n-butanol, ethylene glycol and propylene glycol;
  • the ether is selected from diethyl ether, n-propyl ether, isopropyl ether, methyl tert-butyl ether, ethylene glycol mono Methyl ether, ethylene glycol mono
  • the solvent A is acetonitrile; the dosage ratio of the compound of formula II to the acetonitrile is 1 g: 2-20 mL, preferably 1 g: 5-10 mL; the The acid is hydrogen bromide, the solvent B is water, the solution B is hydrobromic acid, and the content of hydrogen bromide in the hydrobromic acid is 40wt% to 50wt%; the compound of formula II and the bromide
  • the molar ratio of hydrogen is 1:0.9-1; in step 2) of the preparation method, the stirring time is 0.5-5 hours, preferably 0.5-1 hour; in step 3) of the preparation method,
  • the solvent C is methyl tertiary butyl ether; the dosage ratio of the compound of formula II to the methyl tertiary butyl ether is 1g:2 ⁇ 20mL, preferably 1g:5 ⁇ 15mL; the temperature of the heating condition is 35-60°C, preferably 50-60°C; the stirring time is 0.5-5
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of formula I, formula I-1, formula I-1', formula I-2 or formula I-2'; and optionally Pharmaceutically acceptable excipients.
  • the pharmaceutical composition is an oral formulation or a non-oral formulation. More preferably, the oral formulation is selected from tablets, capsules, granules, powders and syrups; the non-oral formulation is selected from injections, powder injections, sprays and suppositories.
  • the present invention provides a compound represented by formula I, formula I-1, formula I-1', formula I-2 or formula I-2' or a pharmaceutical composition comprising the compound, which is used for Treat and/or relieve illnesses caused by viruses.
  • the virus is SARS-CoV-2.
  • the present invention provides a compound represented by formula I, formula I-1, formula I-1', formula I-2 or formula I-2' or a pharmaceutical composition comprising said compound in the preparation of Use in a medicament for the treatment and/or alleviation of diseases caused by viruses.
  • the virus is SARS-CoV-2.
  • the present invention provides a method for treating and/or alleviating a disease caused by a virus, comprising the steps of: treating and/or alleviating an effective amount of formula I, formula I-1, formula I -1', a compound represented by formula 1-2 or formula 1-2' or a pharmaceutical composition comprising the compound is administered to an individual in need thereof.
  • the virus is SARS-CoV-2.
  • the present invention provides a method for inhibiting virus replication, comprising the steps of: combining the virus with an inhibitory effective amount such as formula I, formula I-1, formula I-1', formula I- 2 or a compound represented by formula I-2' or a pharmaceutical composition comprising the compound.
  • an inhibitory effective amount such as formula I, formula I-1, formula I-1', formula I- 2 or a compound represented by formula I-2' or a pharmaceutical composition comprising the compound.
  • the virus is SARS-CoV-2.
  • the present invention conducts synthesis and separation of acid addition salts of nucleoside analogs with antiviral activity (especially anti-SARS-CoV-2 activity) and their crystals, and studies related physical and chemical properties, Unexpectedly, acid addition salts (for example, the hydrobromide, hydrochloride and maleate of compound Z, and the compound W of hydrobromide and maleate) and their corresponding crystalline forms (e.g., Form A and Form I), which can be used in the preparation of therapeutics and/or alleviation of related diseases caused by viruses (especially SARS-CoV-2) Medicines for diseases.
  • the preparation method in the present invention also has the advantages of high product purity, constant composition, easy storage, simple method and easy repeatability, and the like.
  • Figure 1 shows (2R,3R,4R,5R)-2-(4-amino-5-deuterated pyrrolo[2,1-f][1,2] in the form of crystals with Form A ,4]Triazin-7-yl)-2-cyano-5-(isobutyryloxymethyl)tetrahydrofuran-3,4-diylbis(2-methylpropionate)hydrobromide ( DSC spectrum of compound Z hydrobromide).
  • Figure 2 shows (2R,3R,4R,5R)-2-(4-amino-5-deuterated pyrrolo[2,1-f][1,2 in the form of crystals with Form A ,4]Triazin-7-yl)-2-cyano-5-(isobutyryloxymethyl)tetrahydrofuran-3,4-diylbis(2-methylpropionate)hydrobromide ( XRPD pattern of compound Z hydrobromide).
  • Figure 3 shows (2R,3R,4R,5R)-2-(4-aminopyrrolo[2,1-f][1,2,4]triazine in the form of crystals with Form I -7-yl)-2-cyano-5-(isobutyryloxymethyl)tetrahydrofuran-3,4-diylbis(2-methylpropionate)hydrobromide (compound W hydrobromic acid DSC spectrum of salt).
  • Figure 4 shows (2R,3R,4R,5R)-2-(4-aminopyrrolo[2,1-f][1,2,4]triazine in the form of crystals with Form I -7-yl)-2-cyano-5-(isobutyryloxymethyl)tetrahydrofuran-3,4-diylbis(2-methylpropionate)hydrobromide (compound W hydrobromic acid salt) XRPD pattern.
  • Figure 5 shows (2R,3R,4R,5R)-2-(4-amino-5-deuterated pyrrolo[2,1-f][1,2 in the form of crystals with Form A ,4]Triazin-7-yl)-2-cyano-5-(isobutyryloxymethyl)tetrahydrofuran-3,4-diylbis(2-methylpropionate)hydrobromide ( Overlay of XRPD patterns of compound Z (hydrobromide) under different conditions (storage at room temperature and baking at 80°C for 24 hours).
  • Figure 6 shows (2R,3R,4R,5R)-2-(4-amino-5-deuterated pyrrolo[2,1-f][1,2,4] in amorphous form Triazin-7-yl)-2-cyano-5-(isobutyryloxymethyl)tetrahydrofuran-3,4-diylbis(2-methylpropionate)hydrobromide (compound Z hydrogen bromate) XRPD pattern.
  • Figure 7 shows (2R,3R,4R,5R)-2-(4-aminopyrrolo[2,1-f][1,2,4]triazine-7- in amorphous form yl)-2-cyano-5-(isobutyryloxymethyl)tetrahydrofuran-3,4-diylbis(2-methylpropionate)hydrobromide (Compound W hydrobromide) XRPD pattern.
  • Nucleoside analogs are the most important class of antiviral drugs. For a long time, it has played an important role in the clinical treatment of viral diseases. Nucleoside drugs can be converted into the corresponding triphosphate form in vivo, especially in the stage of virus replication, nucleoside triphosphate can "camouflage" as a substrate and be incorporated into the DNA or RNA chain of the virus, thereby inhibiting the genetic material replication and play an antiviral role.
  • Compound Z and Compound W are described in Chinese Patent Application No. CN202010313870.X. According to experimental tests, these compounds have significant anti-SARS-CoV-2 activity, and also have a good inhibitory effect on a variety of other RNA viruses.
  • Compound Z and Compound W which are free bases, are viscous oils at room temperature, and have poor druggability. Therefore, it is particularly important to find the solid form of Compound Z and Compound W; moreover, Compound Z and Compound W have the problem of poor water solubility. , which has a certain impact on the preparation process in the application as a pharmaceutical preparation.
  • the "salt" in the present invention includes both pharmaceutically acceptable salts (or pharmaceutically acceptable salts) and pharmaceutically unacceptable salts. It is not preferred to administer a pharmaceutically unacceptable salt to a patient, but it can be used to provide pharmaceutical intermediates and bulk pharmaceutical forms.
  • pharmaceutically acceptable salts or “pharmaceutically acceptable acid addition salts” in the present invention refer to acid addition salts prepared using pharmaceutically acceptable acids, including (but not limited to) Not limited to) organic acid salts and inorganic acid salts, the acid used for salt formation is preferably hydrobromic acid, hydrochloric acid, sulfuric acid, nitric acid, methanesulfonic acid or maleic acid, more preferably hydrobromic acid or maleic acid, most preferably hydrobromide acid.
  • the present invention also encompasses (2R,3R,4R,5R)-2-(4-amino-5-deuterated pyrrolo[2,1-f][1,2,4]triazin-7-yl) -2-cyano-5-(isobutyryloxymethyl)tetrahydrofuran-3,4-diylbis(2-methylpropionate) (compound Z) or (2R,3R,4R,5R)- 2-(4-Aminopyrrolo[2,1-f][1,2,4]triazin-7-yl)-2-cyano-5-(isobutyryloxymethyl)tetrahydrofuran-3,
  • the "pharmaceutical composition” described in the present invention comprises at least one compound of the present invention, and optional pharmaceutically acceptable excipients.
  • the pharmaceutical composition of the present invention comprises at least one acid formed from a free base selected from compound Z and compound W and an acid selected from hydrogen bromide, hydrogen chloride, sulfuric acid, nitric acid, methanesulfonic acid and maleic acid Addition salts, and optional pharmaceutically acceptable excipients.
  • the pharmaceutical composition of the present invention comprises Compound Z hydrobromide with crystal form A and/or Compound W hydrobromide with crystal form I, and optional pharmaceutically acceptable excipients.
  • the "auxiliaries” described in the present invention include (but are not limited to) excipients, binders, lubricants, disintegrants, colorants, flavoring agents, and olfactory agents commonly used in the pharmaceutical field. , emulsifiers, surfactants, cosolvents, suspending agents, isotonic agents, buffers, preservatives, antioxidants, stabilizers, absorption enhancers, etc., the above-mentioned auxiliary materials can also be appropriately combined according to needs.
  • the acid addition salt of Compound Z or Compound W of the present invention can be used alone or mixed with suitable pharmaceutically acceptable excipients, It is administered in the form of oral preparations such as tablets, capsules, granules, powders or syrups, or in the form of non-oral preparations such as injections, powder injections, sprays or suppositories.
  • oral preparations such as tablets, capsules, granules, powders or syrups
  • non-oral preparations such as injections, powder injections, sprays or suppositories.
  • the hydrobromide salt of Compound W or Compound Z of the present invention is mixed with at least one pharmaceutically acceptable excipient to prepare, and each unit dose contains 10-2000 mg of active pharmaceutical ingredient (API) .
  • the API and at least one pharmaceutical excipient eg, starch, lactose, magnesium stearate, etc.
  • the plain tablet can be further coated with sugar coating or other suitable substances, or be treated to provide sustained or controlled release to the tablet.
  • the API is mixed with at least one diluent (eg, starch) and optionally granulated, granulated, and the resulting mixture is filled into a capsule shell.
  • the dosage of the drug varies with symptoms, age, etc. Taking adults as an example, it can be administered 1 to 7 times every 1 to 7 days according to the symptoms, and the dosage is about 0.01 to 1000 mg, and the administration method is not limited.
  • the compounds of the present invention can be used to treat and/or alleviate diseases caused by viral infections, or to inhibit viral replication, including but not limited to coronaviruses, influenza viruses, respiratory syncytial viruses, flaviviridae, filoviruses family virus and porcine epidemic diarrhea virus (PEDV), preferably coronavirus, more preferably SARS-CoV-2. Therefore, the compounds of the present invention can be used to prepare corresponding antiviral drugs.
  • diseases caused by viral infections including but not limited to coronaviruses, influenza viruses, respiratory syncytial viruses, flaviviridae, filoviruses family virus and porcine epidemic diarrhea virus (PEDV), preferably coronavirus, more preferably SARS-CoV-2. Therefore, the compounds of the present invention can be used to prepare corresponding antiviral drugs.
  • PDV epidemic diarrhea virus
  • the reagents such as acetonitrile involved in the preparation method are all analytically pure, provided by Sinopharm Chemical Reagent Co., Ltd., unless otherwise specified, the reagents used are all without special treatment.
  • Instrument Bruker D8 advance X-ray polycrystalline diffractometer; Target: Cu-K ⁇ (40kV, 40mA); Sample-to-detector distance: 30cm; Scanning type: Two-axis linkage; Scanning step width: 0.02°; Scanning range: 3° ⁇ 40°; scanning step: 0.1s.
  • the diffraction angle (2 ⁇ value) in XRPD may have an error in the range of ⁇ 0.2°, so the numerical value related to the diffraction angle in the present invention should be understood to be also included in the range of about ⁇ 0.2°. Therefore, the present invention not only covers the crystal forms that are completely consistent with the characteristic signal peaks in the specific XRPD pattern, but also covers the crystal forms that have an error of about ⁇ 0.2° with the characteristic signal peaks in the specific XRPD pattern.
  • test product Place the test product in a suitable clean container, and place it under the conditions of high temperature (80°C), high humidity (25°C, relative humidity 92.5%), and light (light intensity 4500 ⁇ 500lx and 90 ⁇ w/cm2) for 7 days. On the 7th day, samples were taken and tested according to the stability inspection items.
  • test product Take about 10 mg of the test product, put it in a 1.5 ml sample tube, add 1 ml of deionized water, place it in a constant temperature mixer, and shake at 37 °C for 30 minutes; after shaking, place the sample tube in a centrifuge After centrifugation for 2 minutes, take 500 ⁇ l of the supernatant, dilute it with acetonitrile to an appropriate concentration, and use it as the test solution for HPLC analysis. Calculate the solubility of the test in water (37°C) according to the external standard method.
  • DSC Differential scanning calorimetry
  • compound Z formed a salt with 1.0 times equivalent phosphoric acid, and no solid was precipitated in the system.
  • DSC Differential scanning calorimetry
  • the solid powder (0.17g) of the compound W hydrobromide salt (1-2') with crystal form I was added to ethanol (10mL), stirred at room temperature, after the solid was completely dissolved, the solvent was removed by concentration, and the oil was pumped to dryness, A powdery solid (0.17 g) was obtained.
  • X-ray powder diffraction (XRPD) results showed that the obtained solid was amorphous, as shown in FIG. 7 .
  • the hydrobromide, hydrochloride, nitrate, methanesulfonate and maleate of compound Z have no hygroscopicity under the conditions of 25 ° C and RH80%; the hydrobromide of compound Z, The hydrochloride and maleate are very stable under high temperature, light and high humidity conditions, while the nitrate and mesylate of compound Z are relatively less stable.
  • Embodiment 11 the performance comparison of compound W and its acid addition salt
  • Example 10 The steps of Example 10 were repeated, except that Compound W and its different salts were taken and the relative properties were compared.
  • the hydrobromide, hydrochloride, nitrate, methanesulfonate and maleate of compound W are all white powdery solids, and the solid properties of the above salts are significantly better than those of free salts. base form. Among them, the hydrobromide, nitrate, mesylate and maleate of compound W are easier to prepare, and the stability of hydrobromide and maleate is the best.
  • the crystal form A of compound Z hydrobromide has no hygroscopicity under high humidity conditions, and the crystal form is stable under high temperature (80° C.) conditions, as shown in FIG. 5 .
  • the crystalline form I of compound W hydrobromide has no hygroscopicity under high humidity conditions, and has good stability under high temperature (80° C.), high humidity and light conditions.
  • Example 14 Determine the composition ratio of the hydrobromide salt of compound Z and compound W
  • composition ratio of the hydrobromide salt of compound Z and compound W was determined by titration method.
  • compound Z and hydrogen bromide form a salt in the form of a molar ratio of 1:1; compound W and hydrogen bromide form a salt in a form of a molar ratio of 1:1.
  • Grouping 30 SD rats were randomly divided into 5 groups, 6 rats in each group, half male and half male. Before administration, fasting for not less than 12 hours, 4 hours after administration, unified food.
  • the first group of animals were given a single intravenous dose of 10 mg/kg of Compound Z hydrobromide in DMSO/EtOH/PEG300/0.9% NaCl (5/5/40/50, v/v/v/v)
  • the second to fourth groups of animals were given 10mg/kg, 30mg/kg and 90mg/kg of compound Z hydrobromide by single gavage respectively, and the solvent was HS15/ultrapure water (40/10/50, v/v/v); animals in the fifth group were given 30 mg/kg of compound Z hydrobromide by gavage, once a day for 7 consecutive days.
  • Blood collection Before administration (0h) and 5min, 0.25, 0.5, 1, 2, 4, 6, 8, 10, 24, and 48h after administration, the animals in each group were collected by retroocular venous plexus or jugular vein (or other blood collection methods). ) Take 0.2ml of blood, put it in an EDTA-K2 anticoagulation test tube, centrifuge at 2000g for 10min (4°C) within 30min, separate the plasma, and store it at -70°C for testing. Blood collection to centrifugation was performed under crushed ice conditions.
  • Example 16 Pharmacokinetic evaluation of compound Z hydrobromide in beagle dogs
  • Grouping 18 Beagles were randomly divided into 3 groups (A, B and C), 6 dogs in each group, half male and half male. Before administration, fasting for not less than 12 hours, 4 hours after administration, unified food.
  • Administration Administration in two cycles with a washout period of one week.
  • the animals in groups A and B were given a single gavage of 10 mg/kg and 20 mg/kg of compound Z hydrobromide; the animals in group C were given 20 mg/kg of compound Z hydrobromide by gavage, respectively.
  • the solvent is HS 15/Ultrapure water (40/10/50, v/v/v).
  • the animals of two groups of A and B were given 10 mg/kg and 40 mg/kg of compound Z hydrobromide by intravenous and gavage, respectively, and the intravenous vehicle was DMSO/EtOH/PEG300/0.9%NaCl (5/5/40/50, v/v/v/v), the same vehicle was administered by gavage as in the first cycle test.
  • Blood collection The animals in each group were collected from the forelimb vein or other parts at 0.25, 0.5, 1, 2, 4, 6, 8, 10, 24 and 48 h before administration (0 h) and 5 min after administration (only the intravenous injection group). 1.0 mL of blood was added to an anticoagulation blood collection tube containing a stabilizer. After processing, the plasma was separated and placed in a -70°C refrigerator for cryopreservation.
  • nucleoside metabolites in plasma on the 7th day were 0.95 and 0.85 times higher than those after a single administration, indicating that nucleoside metabolites in plasma Metabolites do not accumulate in beagle dogs.
  • Example 17 In vivo safety evaluation of compound Z hydrobromide in SD rats and beagle dogs
  • compound Z hydrobromide was given to beagle dogs by a single gavage of 50, 250 and 1000 mg/kg, and all animals could tolerate it, and the maximum tolerated dose (MTD) was greater than or equal to 1000 mg. /kg.
  • indexes were observed, measured and evaluated: clinical observation, body weight, food consumption, ophthalmological examination, hematology, blood coagulation, plasma biochemistry and plasma electrolytes, urinalysis, anatomical macroscopic morphological observation, organ weight and pathological tissue Biological examination, and concomitant examination of rat bone marrow micronucleus.
  • Test method 40 Beagle dogs were randomly divided into 4 groups, 10 in each group, half male and half male. vehicle by gavage HS15/Ultrapure water (40/10/50, v/v/v) and Compound Z hydrobromide (30, 100 and 250 mg/kg) dissolved in this vehicle, administered once a day, continuously On day 14, three-fifths of the animals in each group (6 in each group, half male and female) were dissected after the end of the dosing period (day 15); the remaining animals in each group (4 in each group, male and female) were dissected half) at the end of the 14-day recovery period (day 29).
  • indexes were observed, measured and evaluated: clinical observation, ophthalmological examination, body weight, food consumption, body temperature, electrocardiogram (HR, PR interval, QRS interval, T wave amplitude, QT interval and QTcV interval), clinical Pathology (hematology, blood coagulation, plasma biochemistry, urine), pathological examination (gross morphological observation, organ weight, histopathological examination).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Virology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于医药技术领域,涉及一种核苷类似物的盐及其晶型、药物组合物和用途。具体而言,该核苷类似物的盐具有如式I所示的结构,其中X为氢或氘,Y为酸,优选溴化氢、氯化氢、硝酸、甲磺酸或马来酸,n为0.5~2,优选1。当X为氢或氘,Y为溴化氢,n为1时,该核苷类似物的盐以具有晶型I或晶型A的晶体或无定形物形式存在,具有固体性状好、稳定性高、溶解性好、引湿性小等优点,可用于制备治疗和/或缓解由病毒(特别是SARS-CoV-2)引起的相关疾病的药物。

Description

一种核苷类似物的盐及其晶型、药物组合物和用途
相关申请的引用
本发明要求2020年10月26日在中国提交的,名称为“一种核苷类似物的盐及其晶型、药物组合物和用途”、申请号为202011156037.5的发明专利申请和2020年12月18日在中国提交的,名称为“一种核苷类似物的盐及其晶型、药物组合物和用途”、申请号为202011505962.4的发明专利申请的优先权,通过引用的方式将该专利申请的全部内容并入本文。
技术领域
本发明属于医药技术领域,具体涉及一种核苷类似物的酸加成盐、盐型晶体、药物组合物和医药用途。
背景技术
病毒性传染病对人类的生命健康构成了严重威胁。目前,已发现的能引起人类疾病的病毒种类众多,随着人类社会活动范围的扩大以及全球化趋势的加强,新的病毒或再发病毒在全球范围内不断出现,例如2003年的SARS-CoV、2009年的H1N1流感病毒、2013年的H7N9禽流感病毒、2012年的MERS-CoV、2014年的埃博拉病毒以及近年来流行较严重的登革热病毒、寨卡病毒等。这些病毒大都具有传播速度快、感染性强、致病率高等特点,向世界医疗卫生体系提出了严峻的挑战。
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)是一种新型的冠状病毒,其与2003年SARS-CoV的全基因组水平相似性约79%。该病毒自发现以来,迅速蔓延至全球。
由于病毒的增殖能力极强,并且在复制过程中容易发生变异,因此很多病毒感染难以通过接种疫苗的方式进行预防,而抗病毒药物则是应对病毒重要的手段之一。作为一种生物体,病毒的遗传物质为DNA或RNA,其复制需要大量的核苷或脱氧核苷三磷酸。利用核苷类似物来干扰病毒遗传物质的复制是抗病毒药物发现的重要策略。
综上所述,本领域迫切需要开发物理性质稳定的、成药性好的核苷类似物用于治疗由病毒感染引起的相关疾病。
发明内容
技术问题
本发明的目的在于提供物理性质稳定的、成药性好的核苷类似物的酸加成盐、基于该酸加成盐得到的盐型晶体、包含该酸加成盐或其盐型晶体的药物组合物,并提供了相应的制备方法以及制药用途。
解决方案
第一方面,本发明提供了一种如式I所示的化合物,
Figure PCTCN2021125379-appb-000001
其中:X为氢或氘;Y为马来酸、琥珀酸、柠檬酸、酒石酸、富马酸、甲酸、乙酸、丙酸、丙二酸、草酸、苯甲酸、邻苯二甲酸、甲磺酸、乙磺酸、苯磺酸、甲苯磺酸、萘磺酸、1,5-萘二磺酸、樟脑酸、樟脑磺酸、水杨酸、乙酰水杨酸、天门冬氨酸、谷氨酸、乳酸、葡萄糖酸、抗坏血酸、没食子酸、杏仁酸、苹果酸、山梨酸、三氟乙酸、牛磺酸、高牛磺酸、2-羟基乙磺酸、肉桂酸、粘酸、氯化氢、溴化氢、碘化氢、硫酸、硝酸、磷酸、高氯酸或其组合,优选溴化氢、氯化氢、硝酸、甲磺酸、马来酸或其组合,更优选溴化氢;n为0.5~2,优选1。
优选地,所述式I化合物为式I-1化合物:
Figure PCTCN2021125379-appb-000002
其中:n为0.5~2,优选1。
更优选地,所述式I或式I-1化合物为式I-1’化合物。
Figure PCTCN2021125379-appb-000003
优选地,所述式I-1’化合物为具有晶型A形式的晶体,所述晶型A具有下列特征中的至少一个:1)其XRPD图谱在下列2θ值中的至少3处,优选至少5处,更优选至少7处具有 特征峰:5.35°±0.2°、8.11°±0.2°、8.46°±0.2°、15.70°±0.2°、18.08°±0.2°、21.09°±0.2°和21.91°±0.2°;2)其DSC图谱在204±5℃处具有吸收峰;3)将其置于25℃,RH80%条件下24小时后,水分增加在1%以下,优选0.2%以下,更优选0.1%以下;和4)其在37℃去离子水中的溶解度在0.1mg/mL以上,优选0.2mg/mL以上,更优选0.3mg/mL。
更优选地,所述晶型A的XRPD图谱还在下列2θ值中的至少3处,优选至少5处,更优选至少8处具有特征峰:16.02°±0.2°、16.88°±0.2°、17.22°±0.2°、17.76°±0.2°、20.55°±0.2°、23.25°±0.2°、23.89°±0.2°和26.14°±0.2°;最优选地,所述晶型A的XRPD图谱如图2所示。
更优选地,所述晶型A的DSC图谱如图1所示。
或者,优选地,所述式I-1’化合物为无定形物。
更优选地,所述无定形物的XRPD图谱如图6所示。
优选地,所述式I化合物为式I-2化合物:
Figure PCTCN2021125379-appb-000004
其中:n为0.5~2,优选1。
更优选地,所述式I或式I-2化合物为式I-2’化合物。
Figure PCTCN2021125379-appb-000005
优选地,所述式I-2’化合物为具有晶型I形式的晶体,所述晶型I具有下列特征中的至少一个:1)其XRPD图谱在下列2θ值中的至少3处,优选至少5处,更优选至少6处具有特征峰:5.36°±0.2°、8.13°±0.2°、8.48°±0.2°、18.16°±0.2°、20.95°±0.2°和21.95°±0.2°;2)其DSC图谱在200±5℃处具有吸收峰;3)将其置于25℃,RH80%条件下24小时后,水分增加在1%以下,优选0.2%以下,更优选0.1%以下;和4)其在37℃去离子水中的溶解度在0.1mg/mL以上,优选0.2mg/mL以上,更优选0.3mg/mL。
更优选地,所述晶型I的XRPD图谱还在下列2θ值中的至少3处,优选至少5处,更优 选至少7处具有特征峰:15.71°±0.2°、16.07°±0.2°、16.90°±0.2°、17.26°±0.2°、20.55°±0.2°、23.27°±0.2°和26.08°±0.2°;最优选地,所述晶型I的XRPD图谱如图4所示。
更优选地,所述晶型I的DSC图谱如图3所示。
或者,优选地,所述式I-2’化合物为无定形物。
更优选地,所述无定形物的XRPD图谱如图7所示。
第二方面,本发明提供了一种如式I、式I-1、式I-1’、式I-2或式I-2’所示的化合物的制备方法,其包括下列步骤:
1)将式II化合物溶于溶剂A中,得到溶液A,在冰浴条件下,将酸或者酸溶于溶剂B中得到的溶液B与所述溶液A混合,得到混合溶液;
Figure PCTCN2021125379-appb-000006
其中:X为氢或氘;
所述酸为马来酸、琥珀酸、柠檬酸、酒石酸、富马酸、甲酸、乙酸、丙酸、丙二酸、草酸、苯甲酸、邻苯二甲酸、甲磺酸、乙磺酸、苯磺酸、甲苯磺酸、萘磺酸、1,5-萘二磺酸、樟脑酸、樟脑磺酸、水杨酸、乙酰水杨酸、天门冬氨酸、谷氨酸、乳酸、葡萄糖酸、抗坏血酸、没食子酸、杏仁酸、苹果酸、山梨酸、三氟乙酸、牛磺酸、高牛磺酸、2-羟基乙磺酸、肉桂酸、粘酸、氯化氢、溴化氢、碘化氢、硫酸、硝酸、磷酸、高氯酸或其组合,优选溴化氢、氯化氢、硝酸、甲磺酸、马来酸或其组合,更优选溴化氢;和
2)将所述混合溶液在室温条件下搅拌并浓缩,即得目标产物。
优选地,在所述制备方法的步骤1)中,所述式II化合物与所述溶剂A的用量比为1g:2~20mL,优选1g:5~10mL;所述溶液B中酸的含量为40wt%~50wt%;所述式II化合物与所述酸的摩尔比为1:0.9~1;在所述制备方法的步骤2)中,所述搅拌的时间为0.5~5小时,优选0.5~1小时。
优选地,所述制备方法还包括步骤3):将步骤2)中的产物与溶剂C混合,在室温和/或加热条件下搅拌,析出固体,即得目标产物。
更优选地,在所述制备方法的步骤3)中,所述式II化合物与所述溶剂C的用量比为1g:2~20mL,优选1g:5~15mL;所述加热条件的温度为35~60℃,优选50~60℃;所述搅拌的时间为0.5~5小时,优选0.5~2小时。
优选地,在所述制备方法中,所述溶剂A、溶剂B和溶剂C各自独立地选自水、烃、醇、醚、酮、酯、腈及其均相混合物;所述烃类选自正戊烷、正己烷、正庚烷、石油醚、 二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、苯、甲苯、二甲苯、氯苯和二氯苯;所述醇选自甲醇、乙醇、正丙醇、异丙醇、正丁醇、乙二醇和丙二醇;所述醚选自***、正丙醚、异丙醚、甲基叔丁基醚、乙二醇单甲醚、乙二醇单***、乙二醇单丙醚、乙二醇二甲醚、乙二醇二***、丙二醇单甲醚、丙二醇单***、丙二醇二甲醚、四氢呋喃、二氧六环、二甲氧基乙烷和二甘醇二甲醚;所述酮类选自丙酮、丁酮和二乙基甲酮;所述酯选自甲酸甲酯、甲酸乙酯、甲酸丙酯、甲酸丁酯、乙酸甲酯、乙酸乙酯、乙酸丙酯和乙酸丁酯;所述腈选自乙腈和丙腈;并且所述溶剂A与所述溶剂B互溶。
更优选地,在所述制备方法的步骤1)中,所述溶剂A为乙腈;所述式II化合物与所述乙腈的用量比为1g:2~20mL,优选1g:5~10mL;所述酸为溴化氢,所述溶剂B为水,所述溶液B为氢溴酸,所述氢溴酸中溴化氢的含量为40wt%~50wt%;所述式II化合物与所述溴化氢的摩尔比为1:0.9~1;在所述制备方法的步骤2)中,所述搅拌的时间为0.5~5小时,优选0.5~1小时;在所述制备方法的步骤3)中,所述溶剂C为甲基叔丁基醚;所述式II化合物与所述甲基叔丁基醚的用量比为1g:2~20mL,优选1g:5~15mL;所述加热条件的温度为35~60℃,优选50~60℃;所述搅拌的时间为0.5~5小时,优选0.5~2小时。
第三方面,本发明提供了一种药物组合物,其包含如式I、式I-1、式I-1’、式I-2或式I-2’所示的化合物;和任选的药学上可接受的辅料。
优选地,所述药物组合物为口服制剂或非口服制剂。更优选地,所述口服制剂选自片剂、胶囊剂、颗粒剂、散剂和糖浆剂;所述非口服制剂选自注射剂、粉针剂、喷剂和栓剂。
第四方面,本发明提供了如式I、式I-1、式I-1’、式I-2或式I-2’所示的化合物或包含所述化合物的药物组合物,其用于治疗和/或缓解由病毒引起的疾病。优选地,所述病毒为SARS-CoV-2。
第五方面,本发明提供了如式I、式I-1、式I-1’、式I-2或式I-2’所示的化合物或包含所述化合物的药物组合物在制备用于治疗和/或缓解由病毒引起的疾病的药物中的用途。优选地,所述病毒为SARS-CoV-2。
第六方面,本发明提供了一种用于治疗和/或缓解由病毒引起的疾病的方法,其包括下列步骤:将治疗和/或缓解有效量的如式I、式I-1、式I-1’、式I-2或式I-2’所示的化合物或包含所述化合物的药物组合物施用于对其有需要的个体。优选地,所述病毒为SARS-CoV-2。
第七方面,本发明提供了一种用于抑制病毒复制的方法,其包括下列步骤:将所述病毒与抑制有效量的如式I、式I-1、式I-1’、式I-2或式I-2’所示的化合物或包含所述化合物的药物组合物接触。优选地,所述病毒为SARS-CoV-2。
有益效果
经过广泛而深入的研究,本发明对具有抗病毒活性(特别是抗SARS-CoV-2活性)的核苷类似物的酸加成盐及其晶体进行合成、分离,以及相关的理化性质研究,意外地发 现了具有固体性状好、稳定性高、溶解性好、引湿性小等优点的酸加成盐(例如,化合物Z的氢溴酸盐、盐酸盐和马来酸盐,以及化合物W的氢溴酸盐和马来酸盐)及其对应晶型(例如,晶型A和晶型I),可用于制备治疗和/或缓解由病毒(特别是SARS-CoV-2)引起的相关疾病的药物。并且,本发明中的制备方法还具有产品纯度高、组成恒定、易贮存、方法简单且易重复等优点。
附图说明
图1示出了以具有晶型A的晶体的形式存在的(2R,3R,4R,5R)-2-(4-氨基-5-氘代吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)氢溴酸盐(化合物Z氢溴酸盐)的DSC图谱。
图2示出了以具有晶型A的晶体的形式存在的(2R,3R,4R,5R)-2-(4-氨基-5-氘代吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)氢溴酸盐(化合物Z氢溴酸盐)的XRPD图谱。
图3示出了以具有晶型I的晶体的形式存在的(2R,3R,4R,5R)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)氢溴酸盐(化合物W氢溴酸盐)的DSC图谱。
图4示出了以具有晶型I的晶体的形式存在的(2R,3R,4R,5R)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)氢溴酸盐(化合物W氢溴酸盐)的XRPD图谱。
图5示出了以具有晶型A的晶体的形式存在的(2R,3R,4R,5R)-2-(4-氨基-5-氘代吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)氢溴酸盐(化合物Z氢溴酸盐)在不同条件(室温存放以及于80℃烘24小时)下的XRPD图谱叠加图。
图6示出了以无定形物的形式存在的(2R,3R,4R,5R)-2-(4-氨基-5-氘代吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)氢溴酸盐(化合物Z氢溴酸盐)的XRPD图谱。
图7示出了以无定形物的形式存在的(2R,3R,4R,5R)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)氢溴酸盐(化合物W氢溴酸盐)的XRPD图谱。
具体实施方式
[术语定义]
核苷类似物
核苷类似物是最重要的一类抗病毒药物。长期以来,在病毒性疾病的临床治疗中发挥了重要的作用。核苷类药物在生物体内可转化为相应的三磷酸形式,尤其是在病毒复制阶段,核苷三磷酸能“伪装”成底物,掺入到病毒的DNA或RNA链中,从而抑制遗传物 质的复制,发挥抗病毒作用。
化合物Z和化合物W
Figure PCTCN2021125379-appb-000007
化合物Z和化合物W记载于CN202010313870.X号中国专利申请中,经实验测试,该类化合物具有显著的抗SARS-CoV-2活性,并且对多种其它RNA病毒也有良好的抑制作用。然而,作为游离碱的化合物Z和化合物W在常温下为粘稠油状物,成药性差,因此寻找化合物Z和化合物W的固体存在形式显得尤为重要;而且,化合物Z和化合物W存在水溶性差的问题,在作为药物制剂应用中对制剂工艺造成了一定的影响。
盐和溶剂合物
除非另有说明,本发明中所述的“盐”既包括药学上可接受的盐(或称药用盐),也包括药学上不可接受的盐。不优选对患者施用药学上不可接受的盐,但其可用于提供药物中间体和散装药物形式。
除非另有说明,本发明中所述的“药学上可接受的盐”或“药学上可接受的酸加成盐”是指使用药学上可接受的酸制备的酸加成盐,包括(但不限于)有机酸盐和无机酸盐,用于成盐的酸优选氢溴酸、盐酸、硫酸、硝酸、甲磺酸或马来酸,更优选氢溴酸或马来酸,最优选氢溴酸。
当将本发明的(2R,3R,4R,5R)-2-(4-氨基-5-氘代吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)(化合物Z)或(2R,3R,4R,5R)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)(化合物W)的酸加成盐放置在空气中或者重结晶时,将会吸收水分,进而产生吸附水形式的水合物,这种含有水分的酸加成盐也包含在本发明的范围当中。
另外,本发明还涵盖(2R,3R,4R,5R)-2-(4-氨基-5-氘代吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)(化合物Z)或(2R,3R,4R,5R)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)(化合物W)的酸加成盐与溶剂形成的溶剂合物(或称溶剂化物),只要是制备盐和/或晶体时使用的溶剂即可,无特殊限定。具体而言,例如可以是水合物、醇合物、丙酮合物、酯合物、醚合物、甲苯合物等,优选水合物或醇合物。
药物组合物
除非另有说明,本发明中所述的“药物组合物”包含至少一种本发明中的化合物,以及任选的药学上可接受的辅料。优选地,本发明中的药物组合物包含至少一种由选自化合物Z和化合物W的游离碱和选自溴化氢、氯化氢、硫酸、硝酸、甲磺酸和马来酸的酸形成的酸加成盐,以及任选的药学上可接受的辅料。更优选地,本发明中的药物组合物包含具有晶型A的化合物Z氢溴酸盐和/或具有晶型I的化合物W氢溴酸盐,以及任选的药学上可接受的辅料。
除非另有说明,本发明中所述的“辅料”包括(但不限于)医药领域中常用的赋形剂、粘合剂、润滑剂、崩解剂、着色剂、矫味剂、矫嗅剂、乳化剂、表面活性剂、助溶剂、悬浮剂、等渗剂、缓冲剂、防腐剂、抗氧化剂、稳定剂、吸收促进剂等,也可根据需要将上述辅料进行适当组合后使用。
在作为病毒感染性疾病的治疗药物或预防药物使用时,本发明的化合物Z或化合物W的酸加成盐(即式I化合物)可以单独或使其与适宜的药学上可接受的辅料混合,以片剂、胶囊剂、颗粒剂、散剂或糖浆剂等口服制剂形式或者以注射剂、粉针剂、喷剂或栓剂等非口服制剂形式给药。这些制剂形式均可通过本领域中的常规制剂方法制得。
在口服药物组合物中,将本发明的化合物W或化合物Z的氢溴酸盐与至少一种药学上可接受的辅料进行混合配制,每单位剂量中包含10~2000mg的药物活性成分(API)。例如,当该口服药物组合物为片剂时,将API与至少一种药用辅料(例如,淀粉、乳糖、硬脂酸镁等)进行混合和压片,还可以进一步给素片包裹糖衣或其他适宜的物质,或者将其进行处理,使得药片具有缓释或控释效果。又如,当该口服药物组合物为胶囊剂时,将API与至少一种稀释剂(例如,淀粉)进行混合和任选的制粒、整粒,并将所得混合物装入胶囊壳中。
医药用途
药物的使用量随症状、年龄等不同而不同,以成年人为例,可以根据症状每1~7日给药1~7次,给药量约为0.01~1000mg,给药方式不限。
本发明的化合物可用于治疗和/或缓解由病毒感染引起的疾病,或者抑制病毒复制,这些病毒包括(但不限于)冠状病毒、流感病毒、呼吸道合胞病毒、黄病毒科病毒、丝状病毒科病毒和猪流行性腹泻病毒(PEDV),优选冠状病毒,更优选SARS-CoV-2。因此,本发明的化合物可用于制备相应的抗病毒药物。
下面将结合具体实施例来进一步阐述本发明。应理解,这些实施例仅用于说明本发明,而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,例如Sambrook等人,分子克隆:实验室手册(New York:Cold Spring Harbor Laboratory Press,1989)中记载的条件,或按照制造厂商所建议的条件。除非另外说明,本发明中的百分比和份数均按重量计算。
试剂和耗材说明
在本发明的实施例中,制备方法中涉及的乙腈等试剂均为分析纯,由国药集团化学 试剂有限公司提供,除非特别说明,所用试剂均未经过特别处理。(2R,3R,4R,5R)-2-(4-氨基-5-氘代吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)(化合物Z)和(2R,3R,4R,5R)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)(化合物W)参照专利CN202010313870X中的实施例制备,纯度大于98%,氘代率大于98%。高效液相色谱实验涉及的三乙胺、磷酸为色谱纯,由国药集团化学试剂有限公司提供。核磁共振谱在Brucker 500Hz和Brucker 600Hz核磁共振仪上测定。
通用测试方法
1、X射线粉末衍射(XRPD)测试方法:
仪器:Bruker D8 advance X射线多晶衍射仪;靶:Cu-Kα(40kV,40mA);样品到检测器距离:30cm;扫描类型:两轴联动;扫描步宽:0.02°;扫描范围:3°~40°;扫描步径:0.1s。
一般情况下,XRPD中的衍射角度(2θ值)可以在±0.2°的范围内产生误差,因此本发明中涉及衍射角度的数值应当理解为也包含在约±0.2°的范围内的数值。所以,本发明不仅涵盖与具体XRPD图谱中的特征信号峰完全吻合的晶型,还涵盖与具体XRPD图谱中的特征信号峰存在±0.2°左右的误差的晶型。
2、DSC测试方法:
仪器:METTLER TOLEDO差示扫描量热仪;温度范围:50-260℃;扫描速率:20℃/min;氮气流速:50mL/min。
3、引湿性测试方法:
取供试品适量,平铺于已放置在人工气候箱(温度为25℃±1℃,相对湿度为80%±2%)中24小时的具塞玻璃称量瓶中,将称量瓶敞口,并与瓶盖同置于人工气候箱(温度为25℃±1℃,相对湿度为80%±2%)中放置24小时后取出,测定供试品放入人工气候箱前后的水分,通过比较水分变化来考察引湿性。
4、稳定性测试方法:
将供试品置于适宜的洁净容器中,分别放置于高温(80℃),高湿(25℃,相对湿度92.5%),光照(光照强度4500±500lx和90μw/cm2)条件下,放置7天,于第7天取样,按稳定性考察项目进行检测。
5、溶解度测试方法:
取供试品约10mg,置于1.5ml的样品管中,加入去离子水1ml,置于恒温混匀仪中,于37℃振摇30分钟;振摇结束后,将样品管置于离心机中,离心2分钟后,取上清液500μl,用乙腈稀释至合适浓度,作为供试品溶液,进行HPLC分析,按外标法计算供试品在水(37℃)中的溶解度。
实施例1:制备(2R,3R,4R,5R)-2-(4-氨基-5-氘代吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)氢溴酸盐
Figure PCTCN2021125379-appb-000008
将(2R,3R,4R,5R)-2-(4-氨基-5-氘代吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)(化合物Z,下同)(12g,23.90mmol)溶于乙腈(100mL)中,冰浴下,滴加40%氢溴酸(4.37g,21.6mmol),加毕,恢复至室温搅拌,30分钟后将反应液浓缩,加入甲基叔丁基醚(150mL),搅拌30分钟,有固体析出,升温至55℃,继续搅拌2小时,冷却至室温,静置后过滤,干燥,得白色固体形式的标题化合物(10.8g,收率78%,HPLC纯度99.2%)。
1H-NMR(600MHz,CDCl 3):δ13.05(s,1H),9.73(s,1H),9.46(s,1H),8.00(s,1H),7.04(s,1H),6.02(d,J=5.8Hz,1H),5.41(dd,J=5.8,4.0Hz,1H),4.65(q,J=4.0Hz,1H),4.40–4.33(m,2H),2.71–2.60(m,2H),2.58–2.52(m,1H),1.26–1.22(m,6H),1.21–1.18(m,6H),1.17–1.13(m,6H).
13C-NMR(150MHz,DMSO-d 6):δ176.01,175.35,174.59,150.65,139.98,125.81,115.79,115.43,112.21,82.22,75.64,73.33,70.72,62.99,33.67,33.62,33.56,19.11,19.02,18.92,18.87,18.85,18.70。
MS:m/z 503.1[M+1] +
差示扫描量热分析(DSC)结果显示,所得固体于201.21℃开始出现吸热峰,并于204.26℃时达到峰值,如图1所示。
X射线粉末衍射(XRPD)结果显示,所得固体为晶体形式,对应于晶型A,如表1及图2所示。
表1.化合物Z氢溴酸盐的晶型A的XRPD数据
Figure PCTCN2021125379-appb-000009
将具有晶型A的化合物Z氢溴酸盐(I-1’)的固体粉末(2.5g)加入到乙醇(10mL)中,室温搅拌,固体全部溶清后,浓缩除去溶剂,油泵抽干,得到粉末状固体(2.5g)。X射线粉末衍射(XRPD)结果显示,所得固体为无定形物,如图6所示。
实施例2:制备(2R,3R,4R,5R)-2-(4-氨基-5-氘代吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)盐酸盐
Figure PCTCN2021125379-appb-000010
将化合物Z(210mg,0.42mmol)溶于乙腈(8mL)中,冰浴下,滴加36%浓盐酸(50mg,0.49mmol),加毕,恢复至室温搅拌,20分钟后将反应液浓缩,加入乙酸异丙酯和正庚烷的混合溶液(V/V=1:1,12mL),有棉絮状固体析出,升温至60℃,搅拌30分钟,缓缓降温至0℃,继续搅拌30分钟,体系呈胶状,过滤困难,滤物干燥,得白色固体形式的标题化合物(120mg,收率53%,HPLC纯度98.9%)。
1H-NMR(500MHz,CDCl 3):δ13.60(s,1H),10.48(s,1H),9.69(s,1H),8.05(s,1H), 7.03(s,1H),6.05(d,J=5.8Hz,1H),5.48–5.40(m,1H),4.66(q,J=3.9Hz,1H),4.47–4.31(m,2H),2.75–2.50(m,3H),1.29–1.24(m,6H),1.24–1.12(m,12H)。
MS:m/z 503.1[M+1] +
实施例3:制备(2R,3R,4R,5R)-2-(4-氨基-5-氘代吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)硝酸盐
Figure PCTCN2021125379-appb-000011
将化合物Z(53mg,0.1mmol)溶于乙腈(0.5mL)中,冰浴下,加入65%硝酸(10mg,0.1mmol),搅拌30分钟后,将反应液浓缩,加入乙酸异丙酯(4mL),有白色固体析出,搅拌1小时,过滤,滤物干燥,得白色固体形式的标题化合物(45mg,收率80%,HPLC纯度99.0%)。
1H-NMR(500MHz,CDCl 3):δ9.79(s,1H),9.58(s,1H),7.99(s,1H),7.06(s,1H),6.07(d,J=5.8Hz,1H),5.49–5.41(m,1H),4.68(q,J=3.9Hz,1H),4.46–4.34(m,2H),2.75–2.63(m,2H),2.62–2.53(m,1H),1.30–1.26(m,6H),1.24–1.21(m,6H),1.19(t,J=7.2Hz,6H)。
MS:m/z 503.1[M+1] +
实施例4:制备(2R,3R,4R,5R)-2-(4-氨基-5-氘代吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)甲磺酸盐
Figure PCTCN2021125379-appb-000012
将化合物Z(8.07g,16.07mmol)溶于醋酸异丙酯(80mL)中,冰浴下,滴加甲磺酸(1.54g,16.07mmol),加毕,室温搅拌30分钟,加入正庚烷(80mL),有大量棉絮状固体析出,升温至60℃,搅拌30分钟,再冷却至0℃,继续搅拌30分钟,析出大量固体,过滤,滤物干燥,得白色固体形式的标题化合物(8.0g,收率83%,HPLC纯度99.1%)。
1H-NMR(600MHz,CDCl 3):δ13.60(s,1H),9.98(s,1H),9.91(s,1H),7.76(s,1H),6.97(s,1H),6.01(d,J=5.8Hz,1H),5.45–5.38(m,1H),4.64(q,J=3.9Hz,1H),4.40–4.30(m, 2H),2.94(s,3H),2.71–2.64(m,1H),2.64–2.58(m,1H),2.57–2.50(m,1H),1.27–1.22(m,6H),1.21–1.11(m,12H)。
MS:m/z 503.1[M+1] +
实施例5:制备(2R,3R,4R,5R)-2-(4-氨基-5-氘代吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)马来酸盐
Figure PCTCN2021125379-appb-000013
将化合物Z(2.85g,5.67mmol)溶于无水乙醇(20mL)中,加入马来酸(0.66g,5.67mmol),加热回流,30分钟后将反应液冷却至室温,加入正庚烷(40mL),有大量棉絮状固体析出,升温至45℃,搅拌1.5小时,再冷却至0℃,继续搅拌30分钟,过滤,滤物干燥,得白色固体形式的标题化合物(2.5g,收率71%,HPLC纯度98.9%)。
1H-NMR(600MHz,DMSO-d 6):δ8.11(s,1H),8.01(s,1H),7.94(s,1H),6.76(s,1H),6.26(s,2H),6.07(d,J=5.7Hz,1H),5.44(dd,J=5.7,3.7Hz,1H),4.63(q,J=3.7Hz,1H),4.33(dd,J=12.4,3.3Hz,1H),4.28(dd,J=12.4,4.1Hz,1H),2.67–2.56(m,2H),2.49–2.45(m,1H),1.17(d,J=7.0Hz,3H),1.15(d,J=7.0Hz,3H),1.12–1.09(m,6H),1.05(d,J=7.0Hz,3H),1.02(d,J=7.0Hz,3H)。
MS:m/z 503.1[M+1] +
实施例6:制备(2R,3R,4R,5R)-2-(4-氨基-5-氘代吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)半硫酸盐
Figure PCTCN2021125379-appb-000014
参照实施例1-5的方法,化合物Z与0.5倍当量硫酸成盐,体系中未析出固体。
实施例7:制备(2R,3R,4R,5R)-2-(4-氨基-5-氘代吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)硫酸盐
Figure PCTCN2021125379-appb-000015
参照实施例1-5的方法,化合物Z与1.0倍当量硫酸成盐,体系中未析出固体。
实施例8:制备(2R,3R,4R,5R)-2-(4-氨基-5-氘代吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)磷酸盐
Figure PCTCN2021125379-appb-000016
参照实施例1-5的方法,化合物Z与1.0倍当量磷酸成盐,体系中未析出固体。
实施例9:制备(2R,3R,4R,5R)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)氢溴酸盐
Figure PCTCN2021125379-appb-000017
将(2R,3R,4R,5R)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-2-氰基-5-(异丁酰氧基甲基)四氢呋喃-3,4-二基双(2-甲基丙酸酯)(化合物W,下同)(550mg,1.1mmol)溶于乙腈(100mL)中,冰浴下,滴加40%氢溴酸(202mg,1.0mmol),加毕,恢复至室温搅拌,30分钟后将反应液浓缩,加入甲基叔丁基醚(8mL),室温搅拌30分钟,有固体析出,升温至55℃,继续搅拌2小时,冷却至室温,静置后过滤,干燥,得白色固体形式的标题化合物(0.5g,收率78%,HPLC纯度99.1%)。
1H-NMR(500MHz,CDCl 3):δ12.92(br,1H),9.98(s,1H),9.46(s,1H),8.09(s,1H),7.97(d,J=4.8Hz,1H),7.03(d,J=4.8Hz,1H),6.03(d,J=5.9Hz,1H),5.43(dd,J=5.9,4.1Hz,1H),4.64(q,J=4.1Hz,1H),4.43–4.33(m,2H),2.73–2.52(m,3H),1.27–1.22(m,6H),1.22–1.18(m,6H),1.18–1.14(m,6H)。
13C-NMR(150MHz,DMSO-d 6):δ176.01,175.36,174.60,151.03,140.54,125.55,115.97,115.47,112.22,107.79,82.19,75.68,73.29,70.72,62.99,33.67,33.62,33.56,19.11,19.02,18.92,18.87,18.85,18.70。
MS:m/z 502.1[M+1] +
差示扫描量热分析(DSC)结果显示,所得固体于195.41℃开始出现吸热峰,并于200.11℃时达到峰值,如图3所示。
X射线粉末衍射(XRPD)结果显示,所得固体为晶体形式,对应于晶型I,如表2及图4所示。
表2.化合物W氢溴酸盐的晶型I的XRPD数据
Figure PCTCN2021125379-appb-000018
将具有晶型I的化合物W氢溴酸盐(I-2’)的固体粉末(0.17g)加入到乙醇(10mL)中,室温搅拌,固体全部溶清后,浓缩除去溶剂,油泵抽干,得到粉末状固体(0.17g)。X射线粉末衍射(XRPD)结果显示,所得固体为无定形物,如图7所示。
实施例10:化合物Z及其酸加成盐的性能比较
(1)化合物Z及其盐的性状、制备情况比较
选取化合物Z及其不同的盐(通过实施例1-8制备),比较性状及制备难易程度,结果见表3。
表3.化合物Z及其盐的性状及制备情况
化合物 性状 制备情况
化合物Z 粘稠油状物 /
化合物Z的氢溴酸盐 白色粉末状固体 操作简单,固体能自然沉降,过滤容易
化合物Z的盐酸盐 白色粉末状固体,需研磨 体系为胶状,过滤困难
化合物Z的硝酸盐 白色粉末状固体 操作简单,固体能自然沉降,过滤容易
化合物Z的甲磺酸盐 白色粉末状固体 固体不易自然沉降,过滤速率较慢
化合物Z的马来酸盐 白色粉末状固体 固体不易自然沉降,过滤速率较慢
化合物Z的半硫酸盐 未得到固体 /
化合物Z的硫酸盐 未得到固体 /
化合物Z的磷酸盐 未得到固体 /
由上表可见,除半硫酸盐、硫酸盐和磷酸盐外,化合物Z的其他酸加成盐形式均性状良好。另外,化合物Z的氢溴酸盐和硝酸盐更容易制备。
(2)化合物Z的盐的引湿性、稳定性比较
选取化合物Z的不同的盐(通过实施例1-5制备),比较引湿性及稳定性,结果见表4。
表4.化合物Z的盐的引湿性及稳定性
Figure PCTCN2021125379-appb-000019
由上表可见,化合物Z的氢溴酸盐、盐酸盐、硝酸盐、甲磺酸盐和马来酸盐在25℃、RH80%的条件下无引湿性;化合物Z的氢溴酸盐、盐酸盐和马来酸盐在高温、光照、高湿条件下均很稳定,而化合物Z的硝酸盐和甲磺酸盐的稳定性相对较差。
(3)化合物Z及其盐的溶解性比较
选取化合物Z及其不同的盐(通过实施例1、4和5制备),比较溶解度。
称取适量样品,置于玻璃样试管中,逐步递增加入选定的溶媒,观察澄清情况。测定了各种酸盐在去离子水中的溶解度,结果见表5。
表5.化合物Z及其盐在去离子水中的溶解度
化合物 水中的溶解度(mg/mL)
化合物Z 0.029
化合物Z的氢溴酸盐 0.410
化合物Z的甲磺酸盐 0.464
化合物Z的马来酸盐 0.351
由上表可见,化合物Z的碱式化合物的水溶性明显小于化合物Z的盐,而水溶性大小 在制备药物制剂、口服生物用度等方面具有举足轻重的影响。因此,将化合物Z成盐更有利于制成药物制剂,用于人用药物用途。
实施例11:化合物W及其酸加成盐的性能比较
重复实施例10的步骤,不同的是采取化合物W及其不同的盐,比较相关性能。
与化合物Z及其盐的情况相同,化合物W的氢溴酸盐、盐酸盐、硝酸盐、甲磺酸盐、马来酸盐都为白色粉末状固体,以上盐的固体性状显著优于游离碱形式。其中,化合物W的氢溴酸盐、硝酸盐、甲磺酸盐、马来酸盐更容易制备,并且氢溴酸盐和马来酸盐的稳定性最优。
实施例12:化合物Z氢溴酸盐的晶型A的优越性
考察具有晶型A的化合物Z氢溴酸盐晶体的引湿性和稳定性,结果见表6。
表6.化合物Z氢溴酸盐的晶型A的引湿性和稳定性
Figure PCTCN2021125379-appb-000020
由上表可见,化合物Z氢溴酸盐的晶型A在高湿条件下无引湿性,在高温(80℃)条件下,晶型稳定,如图5所示。
实施例13:化合物W氢溴酸盐的晶型I的优越性
考察具有晶型I的化合物W氢溴酸盐晶体的引湿性和稳定性,结果见表7。
表7.化合物W氢溴酸盐的晶型I的引湿性和稳定性
项目 化合物W氢溴酸盐的晶型I
引湿性 在25℃、RH80%的条件下放置24小时,水分增加<0.1%,无引湿性
稳定性 在高温(80℃)、高湿或光照条件下放置7天,稳定性好
由上表可见,化合物W氢溴酸盐的晶型I在高湿条件下无引湿性,在高温(80℃)、高湿、光照条件下,稳定性好。
实施例14:确定化合物Z和化合物W的氢溴酸盐的组成比例
采用滴定方法确定化合物Z和化合物W的氢溴酸盐的组成比例。
分别取实施例1中制备的化合物Z的氢溴酸盐和实施例9中制备的化合物W的氢溴酸盐,各约0.10g,精密称定,加入甲醇-水等体积混合溶液(20ml),使其溶解,采用电位滴定法指示终点,用硝酸银滴定液(0.1mol/L)滴定,结果见表8。
表8.化合物Z和化合物W的氢溴酸盐的组成比例
Figure PCTCN2021125379-appb-000021
由上表可见,化合物Z与溴化氢以摩尔比为1:1的形式成盐;化合物W与溴化氢以摩尔比为1:1的形式成盐。
实施例15:化合物Z氢溴酸盐在SD大鼠体内的药代动力学评价
分组:SD大鼠30只,随机分成5组,每组6只,雌雄各半。给药前,禁食不少于12h,给药后4h,统一进食。
给药:第一组动物单次静脉给予10mg/kg的化合物Z氢溴酸盐,溶媒为DMSO/EtOH/PEG300/0.9%NaCl(5/5/40/50,v/v/v/v);第二至第四组动物分别单次灌胃给予10mg/kg、30mg/kg和90mg/kg的化合物Z氢溴酸盐,溶媒为
Figure PCTCN2021125379-appb-000022
HS15/超纯水(40/10/50,v/v/v);第五组动物灌胃给予30mg/kg的化合物Z氢溴酸盐,每天一次,连续7天。
采血:各组动物于给药前(0h)及给药后5min、0.25、0.5、1、2、4、6、8、10、24和48h经眼球后静脉丛或颈静脉(或其他采血方式)取血0.2ml,置于EDTA-K2抗凝试管中,30min内于2000g离心10min(4℃),分离血浆,于-70℃保存待测。采血至离心过程在碎冰条件下操作。
处理:采用LC-MS/MS技术,对大鼠血浆中核苷代谢产物(2R,3R,4S,5R)-2-(4-氨基-5氘代吡咯并[2,1-f][1,2,4]三嗪-7-基)-3,4-二羟基-5-(羟甲基)四氢呋喃-2-甲腈的浓度进行分析,计算药动学参数。
表9.大鼠静注给药后血浆中核苷代谢产物的药动学参数(n=6,雌雄各半)
Figure PCTCN2021125379-appb-000023
表10.大鼠灌胃给药后血浆中核苷代谢产物的药动学参数(n=6,雌雄各半)
Figure PCTCN2021125379-appb-000024
由表9可见,化合物Z氢溴酸盐(10mg/kg)经静脉注射施用于SD大鼠后,核苷代谢产物的血浆消除较快,半衰期(t1/2)平均为1.44±0.53h。
由表10可见,化合物Z氢溴酸盐经灌胃施用于SD大鼠后,吸收迅速,并可迅速生成其核苷代谢产物,1h左右可达到最高血药浓度(Cmax)。单次灌胃给予10、30和90mg/kg后,以核苷代谢产物计算,化合物Z氢溴酸盐的生物利用度(F%)分别为86.4%、79.2%和79.6%。多次灌胃(30mg/kg,每天1次,连续7天)后,第7天核苷代谢产物在血浆中的Cmax和AUC0-t为单次给药后的0.84和0.71倍,表明核苷代谢产物在大鼠体内无蓄积。
实施例16:化合物Z氢溴酸盐在比格犬体内的药代动力学评价
分组:18只比格犬,随机分成3组(A、B和C),每组6只,雌雄各半。给药前,禁食不少于12h,给药后4h,统一进食。
给药:分两周期给药,清洗期为一周。在第一周期试验中,A和B两组动物分别单次灌胃给予10mg/kg和20mg/kg的化合物Z氢溴酸盐;C组动物灌胃给予20mg/kg化合物Z的氢溴酸盐,每天1次,连续7天,溶媒为
Figure PCTCN2021125379-appb-000025
HS 15/超纯水(40/10/50,v/v/v)。在第二周期试验中,A和B两组动物分别单次静脉和灌胃给予10mg/kg和40mg/kg的化合物Z氢溴酸盐,静脉给药溶媒为DMSO/EtOH/PEG300/0.9%NaCl(5/5/40/50,v/v/v/v),灌胃给药溶媒与第一周期试验相同。
采血:各组动物于给药前(0h)及给药后5min(仅静脉注射组)、0.25、0.5、1、2、 4、6、8、10、24和48h经前肢静脉或其他部位取血1.0mL,加入到含稳定剂的抗凝采血管中,处理后,分离血浆,放入-70℃冰箱冷冻保存。
处理:采用LC-MS/MS技术,对比格犬血浆中核苷代谢产物(2R,3R,4S,5R)-2-(4-氨基-5氘代吡咯并[2,1-f][1,2,4]三嗪-7-基)-3,4-二羟基-5-(羟甲基)四氢呋喃-2-甲腈的浓度进行分析,计算药动学参数。
表11.比格犬静注给药后血浆中核苷代谢产物的药动学参数(n=6,雌雄各半)
Figure PCTCN2021125379-appb-000026
表12.比格犬灌胃给药后血浆中核苷代谢产物的药动学参数(n=6,雌雄各半)
Figure PCTCN2021125379-appb-000027
由表11可见,化合物Z氢溴酸盐(10mg/kg)经静脉注射施用于比格犬后,核苷代谢产物的t1/2平均为3.94±0.85h。
由表12可见,化合物Z氢溴酸盐经灌胃施用于比格犬后,吸收迅速,并可迅速生成其核苷代谢产物,1h左右可达到Cmax,在20mg/kg剂量下,t1/2为4.21h。单次灌胃给予10、20和40mg/kg后,以核苷代谢产物计算,化合物Z氢溴酸盐的F%分别为87.4%、101.7%和 99.9%。多次灌胃(20mg/kg,每天1次,连续7天)后,第7天核苷代谢产物在血浆中的Cmax和AUC0-t为单次给药后的0.95和0.85倍,表明核苷代谢产物在比格犬体内无蓄积。
实施例17:化合物Z氢溴酸盐在SD大鼠和比格犬体内安全性评价
根据NMPA《药物非临床研究质量管理规范》(2017),评价化合物Z氢溴酸盐在SD大鼠和比格犬体内的安全性,分别开展急性毒性试验和14天长期毒性试验。
1.SD大鼠单次灌胃毒性试验
方法:SD大鼠40只,随机分成4组,每组10只,雌雄各半。分别单次灌胃给予溶媒
Figure PCTCN2021125379-appb-000028
HS 15/超纯水(40/10/50,v/v/v)和溶解于该溶媒中的化合物Z氢溴酸盐(200、600和2000mg/kg,以游离碱计)。给药后,连续观察14天,于第15天进行计划解剖。试验期间,对临床观察、体重、耗食量和解剖肉眼形态学观察进行评价。
结果:试验期间,各组动物均未见提前死亡或安乐死;各剂量组动物在试验期间均未见异常临床症状;与对照组相比,各给药组动物的平均体重和耗食量均未见供试品相关改变;解剖肉眼观察均未见异常。
综上,在本试验条件下,SD大鼠单次灌胃给予200、600或2000mg/kg的化合物Z氢溴酸盐,所有动物均能很好耐受,最大耐受剂量(MTD)大于等于2000mg/kg。
2.比格犬单次灌胃毒性试验
方法:比格犬8只,随机分成4组,每组2只,雌雄各一。分别单次灌胃给予溶媒
Figure PCTCN2021125379-appb-000029
HS 15/超纯水(40/10/50,v/v/v)和溶解于该溶媒中的化合物Z氢溴酸盐(50、250和1000mg/kg,以游离碱计)。给药后,连续观察14天,于第15天进行计划解剖。对临床观察、体重、耗食量、临床病理(血液、血凝、血浆生化)、肉眼形态学观察等进行评价。
结果:试验期间,各组动物均未出现非计划死亡;在1000mg/kg组中,仅雌性动物第1天可见呕吐物含可疑药物,雄性动物第2天可见软便、呕吐物含饲料;在1000mg/kg组中,仅雄性动物第2天可见体重明显下降;与对照组相比,各给药组动物的耗食量、临床病理及解剖肉眼观察均未见明显供试品相关改变。
综上,在本试验条件下,比格犬单次灌胃给予50、250和1000mg/kg的化合物Z氢溴酸盐,所有动物均可耐受,最大耐受剂量(MTD)为大于等于1000mg/kg。
3.SD大鼠连续灌胃14天、停药14天毒性试验
方法:SD大鼠120只,随机分成4组,每组30只,雌雄各半。分别灌胃给予溶媒
Figure PCTCN2021125379-appb-000030
HS15/超纯水(40/10/50,v/v/v)和溶解于该溶媒中的化合物Z氢溴酸盐(100、300和600mg/kg),每天给药1次、连续给药14天,各组中三分之二数量的动物(每组20只,雌雄各半)在给药期结束后(第15天)解剖;各组中剩余的动物(每组10只,雌雄各半)在14天恢复期结束后(第29天)解剖。对下列指标进行了观察、测量和评价:临床观察、体重、耗食量、眼科检查、血液学、血凝、血浆生化和血浆电解质、尿液分析、解剖肉眼形态学观察、脏器重量及病理组织学检查,及伴随进行大鼠骨髓微 核检查。
结果:试验期间,600mg/Kg组有两只动物死亡,死因与药物的相关性不确定。300mg/kg和600mg/Kg组动物在血液学、血浆生化、尿液分析、病理学检查等方面可观察到药物引起的不良反应,在恢复期结束,各检测指标恢复正常或呈恢复趋势。
综上,在本试验条件下,SD大鼠每天1次、连续14天灌胃给予100、300和600mg/kg的化合物Z氢溴酸盐,停药恢复14天,雌雄动物未观察到不良反应的剂量(NOAEL)为100mg/kg。
4.比格犬灌胃给药14天、停药恢复14天毒性试验
试验方法:比格犬40只,随机分成4组,每组10只,雌雄各半。分别灌胃给予溶媒
Figure PCTCN2021125379-appb-000031
HS15/超纯水(40/10/50,v/v/v)和溶解于该溶媒中的化合物Z氢溴酸盐(30、100和250mg/kg),每天给药1次,连续给药14天,各组中五分之三数量的动物(每组6只,雌雄各半)在给药期结束后(第15天)解剖;各组中剩余的动物(每组4只,雌雄各半)在14天恢复期结束后(第29天)解剖。对下列指标进行了观察、测量和评价:临床观察、眼科检查、体重、耗食量、体温、心电图(HR、PR间期、QRS间期、T波振幅、QT间期和QTcV间期)、临床病理(血液学、血凝、血浆生化学、尿液)、病理学检查(肉眼形态学观察、脏器重量、病理组织学检查)。
结果:试验期间,所有动物均未见非计划死亡。250mg/kg和100mg/Kg组动物在眼科检查、临床病理、病理学检查等方面可观察到药物引起的不良反应,在恢复期结束,各检测指标恢复正常或呈恢复趋势。
综上,在本试验条件下,比格犬每天1次、连续14天灌胃给予30、100和250mg/kg的化合物Z氢溴酸盐,停药恢复14天,雌雄动物未观察到不良反应的剂量(NOAEL)为30mg/kg。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献都被单独引用作为参考。此外应理解,在阅读本发明的上述内容之后,本领域技术人员可以对本发明做出各种调整或修改,这些等价形式同样落入本申请所附权利要求书所限定的范围之内。

Claims (29)

  1. 一种式I化合物,
    Figure PCTCN2021125379-appb-100001
    其中
    X为氢或氘;
    Y为马来酸、琥珀酸、柠檬酸、酒石酸、富马酸、甲酸、乙酸、丙酸、丙二酸、草酸、苯甲酸、邻苯二甲酸、甲磺酸、乙磺酸、苯磺酸、甲苯磺酸、萘磺酸、1,5-萘二磺酸、樟脑酸、樟脑磺酸、水杨酸、乙酰水杨酸、天门冬氨酸、谷氨酸、乳酸、葡萄糖酸、抗坏血酸、没食子酸、杏仁酸、苹果酸、山梨酸、三氟乙酸、牛磺酸、高牛磺酸、2-羟基乙磺酸、肉桂酸、粘酸、氯化氢、溴化氢、碘化氢、硫酸、硝酸、磷酸、高氯酸或其组合,优选溴化氢、氯化氢、硝酸、甲磺酸、马来酸或其组合,更优选溴化氢;
    n为0.5~2,优选1。
  2. 如权利要求1所述的化合物,其特征在于,其为式I-1化合物:
    Figure PCTCN2021125379-appb-100002
    其中
    n为0.5~2,优选1。
  3. 如权利要求1或2所述的化合物,其特征在于,其为式I-1’化合物:
    Figure PCTCN2021125379-appb-100003
  4. 如权利要求3所述的化合物,其特征在于,
    所述式I-1’化合物为具有晶型A形式的晶体,所述晶型A具有下列特征中的至少一个:
    1)其XRPD图谱在下列2θ值中的至少3处,优选至少5处,更优选至少7处具有特征峰:5.35°±0.2°、8.11°±0.2°、8.46°±0.2°、15.70°±0.2°、18.08°±0.2°、21.09°±0.2°和21.91°±0.2°;
    2)其DSC图谱在204±5℃处具有吸收峰;
    3)将其置于25℃,RH80%条件下24小时后,水分增加在1%以下,优选0.2%以下,更优选0.1%以下;和
    4)其在37℃去离子水中的溶解度在0.1mg/mL以上,优选0.2mg/mL以上,更优选0.3mg/mL。
  5. 如权利要求4所述的化合物,其特征在于,
    所述晶型A的XRPD图谱还在下列2θ值中的至少3处,优选至少5处,更优选至少8处具有特征峰:16.02°±0.2°、16.88°±0.2°、17.22°±0.2°、17.76°±0.2°、20.55°±0.2°、23.25°±0.2°、23.89°±0.2°和26.14°±0.2°。
  6. 如权利要求4或5所述的化合物,其特征在于,
    所述晶型A的XRPD图谱如图2所示。
  7. 如权利要求4所述的化合物,其特征在于,
    所述晶型A的DSC图谱如图1所示。
  8. 如权利要求3所述的化合物,其特征在于,
    所述式I-1’化合物为无定形物。
  9. 如权利要求8所述的化合物,其特征在于,
    所述无定形物的XRPD图谱如图6所示。
  10. 如权利要求1所述的化合物,其特征在于,其为式I-2化合物:
    Figure PCTCN2021125379-appb-100004
    其中
    n为0.5~2,优选1。
  11. 如权利要求1或10所述的化合物,其特征在于,其为式I-2’化合物:
    Figure PCTCN2021125379-appb-100005
  12. 如权利要求11所述的化合物,其特征在于,
    所述式I-2’化合物为具有晶型I形式的晶体,所述晶型I具有下列特征中的至少一个:
    1)其XRPD图谱在下列2θ值中的至少3处,优选至少5处,更优选至少6处具有特征峰:5.36°±0.2°、8.13°±0.2°、8.48°±0.2°、18.16°±0.2°、20.95°±0.2°和21.95°±0.2°;
    2)其DSC图谱在200±5℃处具有吸收峰;
    3)将其置于25℃,RH80%条件下24小时后,水分增加在1%以下,优选0.2%以下,更优选0.1%以下;和
    4)其在37℃去离子水中的溶解度在0.1mg/mL以上,优选0.2mg/mL以上,更优选0.3mg/mL。
  13. 如权利要求12所述的化合物,其特征在于,
    所述晶型I的XRPD图谱还在下列2θ值中的至少3处,优选至少5处,更优选至少7处具有特征峰:15.71°±0.2°、16.07°±0.2°、16.90°±0.2°、17.26°±0.2°、20.55°±0.2°、23.27°±0.2°和26.08°±0.2°。
  14. 如权利要求12或13所述的化合物,其特征在于,
    所述晶型I的XRPD图谱如图4所示。
  15. 如权利要求11所述的化合物,其特征在于,
    所述式I-2’化合物为无定形物。
  16. 如权利要求15所述的化合物,其特征在于,
    所述无定形物的XRPD图谱如图7所示。
  17. 如权利要求12所述的化合物,其特征在于,
    所述晶型I的DSC图谱如图3所示。
  18. 一种如权利要求1至17中任一项所述的化合物的制备方法,其包括下列步骤:
    1)将式II化合物溶于溶剂A中,得到溶液A,在冰浴条件下,将酸或者酸溶于溶剂B中得到的溶液B与所述溶液A混合,得到混合溶液;
    Figure PCTCN2021125379-appb-100006
    其中
    X为氢或氘;
    所述酸为马来酸、琥珀酸、柠檬酸、酒石酸、富马酸、甲酸、乙酸、丙酸、丙二酸、草酸、苯甲酸、邻苯二甲酸、甲磺酸、乙磺酸、苯磺酸、甲苯磺酸、萘磺酸、1,5-萘二磺酸、樟脑酸、樟脑磺酸、水杨酸、乙酰水杨酸、天门冬氨酸、谷氨酸、乳酸、葡萄糖酸、抗坏血酸、没食子酸、杏仁酸、苹果酸、山梨酸、三氟乙酸、牛磺酸、高牛磺酸、2-羟 基乙磺酸、肉桂酸、粘酸、氯化氢、溴化氢、碘化氢、硫酸、硝酸、磷酸、高氯酸或其组合,优选溴化氢、氯化氢、硝酸、甲磺酸、马来酸或其组合,更优选溴化氢;和
    2)将所述混合溶液在室温条件下搅拌并浓缩,即得目标产物。
  19. 如权利要求18所述的制备方法,其特征在于,
    在步骤1)中,
    所述式II化合物与所述溶剂A的用量比为1g:2~20mL,优选1g:5~10mL;
    所述溶液B中酸的含量为40wt%~50wt%;
    所述式II化合物与所述酸的摩尔比为1:0.9~1;
    在步骤2)中,
    所述搅拌的时间为0.5~5小时,优选0.5~1小时。
  20. 如权利要求18或19所述的制备方法,其特征在于,其还包括下列步骤:
    3)将步骤2)中的产物与溶剂C混合,在室温和/或加热条件下搅拌,析出固体,即得目标产物。
  21. 如权利要求20所述的制备方法,其特征在于,
    在步骤3)中,
    所述式II化合物与所述溶剂C的用量比为1g:2~20mL,优选1g:5~15mL;
    所述加热条件的温度为35~60℃,优选50~60℃;
    所述搅拌的时间为0.5~5小时,优选0.5~2小时。
  22. 如权利要求18至21中任一项所述的制备方法,其特征在于,
    所述溶剂A、溶剂B和溶剂C各自独立地选自水、烃、醇、醚、酮、酯、腈及其均相混合物;
    所述烃类选自正戊烷、正己烷、正庚烷、石油醚、二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、苯、甲苯、二甲苯、氯苯和二氯苯;
    所述醇选自甲醇、乙醇、正丙醇、异丙醇、正丁醇、乙二醇和丙二醇;
    所述醚选自***、正丙醚、异丙醚、甲基叔丁基醚、乙二醇单甲醚、乙二醇单***、乙二醇单丙醚、乙二醇二甲醚、乙二醇二***、丙二醇单甲醚、丙二醇单***、丙二醇二甲醚、四氢呋喃、二氧六环、二甲氧基乙烷和二甘醇二甲醚;
    所述酮类选自丙酮、丁酮和二乙基甲酮;
    所述酯选自甲酸甲酯、甲酸乙酯、甲酸丙酯、甲酸丁酯、乙酸甲酯、乙酸乙酯、乙酸丙酯和乙酸丁酯;
    所述腈选自乙腈和丙腈;并且
    所述溶剂A与所述溶剂B互溶。
  23. 如权利要求22所述的制备方法,其特征在于,
    在步骤1)中,
    所述溶剂A为乙腈;所述式II化合物与所述乙腈的用量比为1g:2~20mL,优选1g:5~10mL;所述酸为溴化氢,所述溶剂B为水,所述溶液B为氢溴酸,所述氢溴酸中溴化氢的含量为40wt%~50wt%;所述式II化合物与所述溴化氢的摩尔比为1:0.9~1;
    在步骤2)中,
    所述搅拌的时间为0.5~5小时,优选0.5~1小时;
    在步骤3)中,
    所述溶剂C为甲基叔丁基醚;所述式II化合物与所述甲基叔丁基醚的用量比为1g:2~20mL,优选1g:5~15mL;所述加热条件的温度为35~60℃,优选50~60℃;所述搅拌的时间为0.5~5小时,优选0.5~2小时。
  24. 一种药物组合物,其包含
    1)如权利要求1至17中任一项所述的化合物;和
    2)任选的药学上可接受的辅料。
  25. 如权利要求24所述的药物组合物,其特征在于,
    所述药物组合物为口服制剂或非口服制剂;
    所述口服制剂选自片剂、胶囊剂、颗粒剂、散剂和糖浆剂;
    所述非口服制剂选自注射剂、粉针剂、喷剂和栓剂。
  26. 如权利要求1至17中任一项所述的化合物或者如权利要求24或25所述的药物组合物,其用于治疗和/或缓解由病毒引起,优选由SARS-CoV-2引起的疾病。
  27. 如权利要求1至17中任一项所述的化合物或者如权利要求24或25所述的药物组合物在制备用于治疗和/或缓解由病毒引起,优选由SARS-CoV-2引起的疾病的药物中的用途。
  28. 一种用于治疗和/或缓解由病毒引起,优选由SARS-CoV-2引起的疾病的方法,其包括下列步骤:
    将治疗和/或缓解有效量的如权利要求1至17中任一项所述的化合物或者如权利要 求24或25所述的药物组合物施用于对其有需要的个体。
  29. 一种用于抑制病毒,优选SARS-CoV-2复制的方法,其包括下列步骤:
    将所述病毒,优选SARS-CoV-2与抑制有效量的如权利要求1至17中任一项所述的化合物或者如权利要求24或25所述的药物组合物接触。
PCT/CN2021/125379 2020-10-26 2021-10-21 一种核苷类似物的盐及其晶型、药物组合物和用途 WO2022089302A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023525545A JP2023552672A (ja) 2020-10-26 2021-10-21 ヌクレオシド類似体の塩及びその結晶形、医薬組成物並びに用途
CN202180003236.9A CN114391016B (zh) 2020-10-26 2021-10-21 一种核苷类似物的盐及其晶型、药物组合物和用途
EP21885029.5A EP4234557A4 (en) 2020-10-26 2021-10-21 NUCLEOSIDE ANALOGUE SALT AND CRYSTALLINE FORM THEREOF, PHARMACEUTICAL COMPOSITION AND USE
US18/033,673 US20230312584A1 (en) 2020-10-26 2021-10-21 Salt of nucleoside analog, and crystal form, pharmaceutical composition and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011156037.5 2020-10-26
CN202011156037 2020-10-26
CN202011505962.4 2020-12-18
CN202011505962 2020-12-18

Publications (1)

Publication Number Publication Date
WO2022089302A1 true WO2022089302A1 (zh) 2022-05-05

Family

ID=81383620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125379 WO2022089302A1 (zh) 2020-10-26 2021-10-21 一种核苷类似物的盐及其晶型、药物组合物和用途

Country Status (1)

Country Link
WO (1) WO2022089302A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330540A (zh) * 2019-08-08 2019-10-15 木天(济南)生物科技有限公司 核苷盐及其制备方法
CN111961057A (zh) * 2020-05-26 2020-11-20 李小冬 一种α构型核苷及其在治疗猫冠状病毒感染的应用
CN112778310A (zh) * 2020-04-20 2021-05-11 中国科学院上海药物研究所 核苷类似物或含有核苷类似物的组合制剂在抗病毒中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330540A (zh) * 2019-08-08 2019-10-15 木天(济南)生物科技有限公司 核苷盐及其制备方法
CN112778310A (zh) * 2020-04-20 2021-05-11 中国科学院上海药物研究所 核苷类似物或含有核苷类似物的组合制剂在抗病毒中的应用
CN111961057A (zh) * 2020-05-26 2020-11-20 李小冬 一种α构型核苷及其在治疗猫冠状病毒感染的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MACKMAN RICHARD L., HUI HON C., PERRON MICHEL, MURAKAMI EISUKE, PALMIOTTI CHRISTOPHER, LEE GARY, STRAY KIRSTEN, ZHANG LIJUN, GOYAL: "Prodrugs of a 1′-CN-4-Aza-7,9-dideazaadenosine C -Nucleoside Leading to the Discovery of Remdesivir (GS-5734) as a Potent Inhibitor of Respiratory Syncytial Virus with Efficacy in the African Green Monkey Model of RSV", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 64, no. 8, 22 April 2021 (2021-04-22), US , pages 5001 - 5017, XP055926529, ISSN: 0022-2623, DOI: 10.1021/acs.jmedchem.1c00071 *
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
WEI DAIBAO; HU TIANWEN; ZHANG YUMIN; ZHENG WEI; XUE HAITAO; SHEN JINGSHAN; XIE YUANCHAO; AISA HAJI A.: "Potency and pharmacokinetics of GS-441524 derivatives against SARS-CoV-2", BIOORGANIC, ELSEVIER, AMSTERDAM, NL, vol. 46, 11 August 2021 (2021-08-11), AMSTERDAM, NL, XP086796993, ISSN: 0968-0896, DOI: 10.1016/j.bmc.2021.116364 *
XIE YUANCHAO; YIN WANCHAO; ZHANG YUMIN; SHANG WEIJUAN; WANG ZHEN; LUAN XIAODONG; TIAN GUANGHUI; AISA HAJI A.; XU YECHUN; XIAO GENG: "Design and development of an oral remdesivir derivative VV116 against SARS-CoV-2", CELL RESEARCH, SPRINGER SINGAPORE, SINGAPORE, vol. 31, no. 11, 28 September 2021 (2021-09-28), Singapore , pages 1212 - 1214, XP037606810, ISSN: 1001-0602, DOI: 10.1038/s41422-021-00570-1 *
YIN WANCHAO; LUAN XIAODONG; LI ZHIHAI; ZHOU ZIWEI; WANG QINGXING; GAO MINQI; WANG XIAOXI; ZHOU FULAI; SHI JINGJING; YOU ERLI; LIU : "Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin", NATURE STRUCTURAL & MOLECULAR BIOLOGY, NATURE PUBLISHING GROUP US, NEW YORK, vol. 28, no. 3, 1 January 1900 (1900-01-01), New York , pages 319 - 325, XP037407902, ISSN: 1545-9993, DOI: 10.1038/s41594-021-00570-0 *

Similar Documents

Publication Publication Date Title
US10662198B2 (en) Polymorphic form of compound, preparation method and use thereof
US20090247532A1 (en) Crystalline polymorph of sitagliptin phosphate and its preparation
CN112142679B (zh) 一种吉非替尼与香草酸共晶甲醇溶剂合物及其制备方法
CN110759908B (zh) 用于抑制Bcl-2蛋白的N-苯磺酰基苯甲酰胺类化合物及其组合物及应用
CN110248948A (zh) 墨蝶呤及其盐的多晶型物
US20080234323A1 (en) Amorphous and Three Crystalline Forms of Rimonabant Hydrochloride
CN115572298A (zh) 一种核苷类似物及其盐的晶型、制备方法和应用
CN116615424A (zh) 经取代的吡唑并嘧啶的固态形式和其用途
JP2023024729A (ja) ヤヌスキナーゼ阻害剤の結晶形
KR100525275B1 (ko) 시알산 유도체를 함유하는 고체분산체
CN111868057B (zh) 一种二氢嘧啶类化合物的固体形式及其制备方法和用途
WO2016070697A1 (zh) 一种jak激酶抑制剂的硫酸氢盐的结晶形式及其制备方法
CN103058972A (zh) 一类含环己烷结构的苯基c-葡萄糖苷衍生物、其制备方法和用途
WO2022089302A1 (zh) 一种核苷类似物的盐及其晶型、药物组合物和用途
KR20110026311A (ko) 엔테카비어의 신규한 염
US8344017B2 (en) Anti-hepatitis C virus agents and anti-HIV agents
US11524953B2 (en) Niraparib solid state form
CN114391016B (zh) 一种核苷类似物的盐及其晶型、药物组合物和用途
WO2006088080A1 (ja) シクロヘプタ[b]ピリジン-3-カルボニルグアニジン誘導体およびそれを含有する医薬品
US11008361B2 (en) Liver-specific delivery-based anti-hepatitis C prodrug nucleoside cyclo-phosphate compound and uses thereof
KR20050059132A (ko) 신규 결정
CN108558869B (zh) 用于治疗肝癌的化合物及其制剂
WO2023284872A1 (zh) 一种dpp4抑制活性化合物的多晶型及其制备方法
CN110498761B (zh) 乙酰金刚烷胺哌嗪(啶)类化合物作为脑神经保护剂应用
CN118290384A (zh) 大豆苷元与哌嗪共晶物及制备方法和其组合物与用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885029

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525545

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021885029

Country of ref document: EP

Effective date: 20230526