WO2022088784A1 - 刚柔耦合超精双轴转台 - Google Patents

刚柔耦合超精双轴转台 Download PDF

Info

Publication number
WO2022088784A1
WO2022088784A1 PCT/CN2021/108025 CN2021108025W WO2022088784A1 WO 2022088784 A1 WO2022088784 A1 WO 2022088784A1 CN 2021108025 W CN2021108025 W CN 2021108025W WO 2022088784 A1 WO2022088784 A1 WO 2022088784A1
Authority
WO
WIPO (PCT)
Prior art keywords
rigid
flexible
flexible coupling
bracket
worktable
Prior art date
Application number
PCT/CN2021/108025
Other languages
English (en)
French (fr)
Inventor
杨志军
黄建彬
危宇泰
Original Assignee
佛山市华道超精科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市华道超精科技有限公司 filed Critical 佛山市华道超精科技有限公司
Publication of WO2022088784A1 publication Critical patent/WO2022088784A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2014Undercarriages with or without wheels comprising means allowing pivoting adjustment around a vertical axis

Definitions

  • the invention relates to the technical field of turntables, in particular to a rigid-flexible coupling ultra-precision double-axis turntable.
  • Two-axis turntables are widely used as tracking or aiming devices in photoelectric radar, laser weapons, and laser satellite communications. Uncertain changes in surface roughness between kinematic pairs in a two-axis turntable can lead to uncertain changes in the magnitude of frictional resistance.
  • the speed of the dual-axis turntable is relatively low, and the amplitude fluctuation of the above-mentioned frictional resistance easily leads to the phenomenon of "crawling" of the dual-axis turntable.
  • the driver Under the action of the closed-loop control system, the driver will overcome the frictional resistance by increasing the driving force and compensate the positioning error of the dual-axis turntable.
  • the dual-axis turntable will experience frequent “static ⁇ moving” state switching.
  • the frictional resistance between the motion pairs will experience the state switching of "static friction ⁇ dynamic friction”
  • the difference between the static friction coefficient and the dynamic friction coefficient will lead to the sudden change of acceleration at the moment of the above state switching, resulting in
  • the "jitter" of the two-axis turntable near the final positioning position affects the angular positioning accuracy.
  • the angular positioning error of the dual-axis turntable will be infinitely amplified, and it will be missed by a tiny bit and a thousand miles away.
  • the general positioning accuracy of the existing dual-axis turntable is 5 arcseconds, and an error of 1m occurs at 20km. Therefore, how to reduce the influence of the angular positioning error caused by the switching of friction states during the process of starting, stopping and micro-rotation is an important issue that affects the execution accuracy of the dual-axis turntable.
  • the existing technology mainly relies on two aspects to reduce its influence on the angular positioning accuracy: on the one hand, an accurate friction force model is established for rotational control driving force compensation; on the other hand, a frictionless or low friction kinematic pair design is adopted.
  • an accurate friction force model is established for rotational control driving force compensation; on the other hand, a frictionless or low friction kinematic pair design is adopted.
  • due to factors such as the difference in the microscopic characteristics of the contact surfaces between the kinematic pairs and manufacturing errors it is difficult to establish a highly accurate friction force model, which leads to the need for complex compensation control methods in the rotation control system.
  • the implementation cost of low-friction motion pairs such as air bearing or magnetic bearing is relatively high, which limits its application range.
  • foreign high-precision turntables such as Aerotech
  • the positioning accuracy is about 2arc sec. Most of the air-bearing bearings without mechanical contact are used, which are very expensive, and most high-precision turntables cannot be sold in China. .
  • the present invention provides a rigid-flexible coupled ultra-precision biaxial turntable.
  • the present invention provides the following technical solutions:
  • the main body includes a first rigid-flexible coupling rotary platform, a second rigid-flexible coupling rotary platform, a third rigid-flexible coupling shaft and a stage connected by a U-shaped connecting frame or a Y-shaped connecting frame;
  • the first rigid-flexible coupling rotating platform includes a first support, a first rotating shaft, a first flexible hinge and a first worktable, the first rotating shaft is arranged on the first support through a bearing, and the first worktable passes through the first support.
  • a flexible hinge is connected to the first rotating shaft to form the first rotating shaft of the rigid-flexible coupling ultra-precision double-axis turntable.
  • the second rigid-flexible coupling rotating platform includes a second bracket, a second rotating shaft, a second flexible hinge, and a second worktable;
  • the second bracket is arranged on one side of the U-shaped connecting frame or the Y-shaped connecting frame, and the first
  • the two rotating shafts are arranged on the second bracket through the bearing, and the second worktable is arranged on the second rotating shaft through the second flexible hinge;
  • the third rigid-flexible coupling shaft includes a third bracket, a third rotating shaft, a third flexible hinge and a third worktable; the third bracket is arranged on the other side of the U-shaped connecting frame or the Y-shaped connecting frame, and the third The rotating shaft is arranged on the third bracket through the bearing, and the third working platform is arranged on the third rotating shaft through the third flexible hinge; the object platform is connected with the second working platform and the third working platform in any combination.
  • the second axis of the rigid-flexible coupling ultra-precision dual-axis turntable rotation is integrally formed.
  • the second bracket and the third bracket and the U-shaped connection frame or the Y-shaped connection frame are integrally formed structures.
  • the second worktable, the third worktable and the carrier are integrally formed structures.
  • first worktable and the first flexible hinge are directly processed and formed on the base of the U-shaped connecting frame or the Y-shaped connecting frame.
  • the first main detection element composed of a first main encoder disk and a first main reading head, used for real-time measurement of the rotation angle of the first rotating shaft under any circumstances, and a first auxiliary encoder disk and a first main detection element.
  • the first sub-reading head constitutes a first sub-detecting element for indirectly measuring the elastic deformation of the first flexible hinge.
  • the first main encoder disc is arranged on the first shaft; the first main reading head is arranged on the first bracket;
  • the first sub-encoding disk is connected with the first worktable, and the first sub-reading head is fixedly arranged on the first bracket through a first sub-reading head bracket.
  • a second main detection element which is composed of a second main reading head and a second main encoder disk, and is used to measure the rotation angle of the second shaft in real time under any circumstances, and includes a second auxiliary encoder disk and a second main detection element.
  • the second sub-reading head is composed of a second sub-detecting element for indirectly measuring the elastic deformation of the second flexible hinge.
  • the second main encoder disk is fixed on the second shaft, and the second main reading head is installed on the second bracket;
  • the second sub-encoding disk is connected with the second worktable or the object platform, and the second sub-reading head is fixedly arranged on the second bracket through a second sub-reading head bracket.
  • the first flexible hinge, the second flexible hinge and the third flexible hinge are all flexible hinge pieces arranged radially symmetrically.
  • the drive provided on the first worktable and the second worktable can be That is, the driving element can be divided into a first driving element and a second driving element, wherein the first driving element acts on the first table; the second driving element acts on the second table; the specific structure of the driving element A motor drive structure based on the principle of electromagnetic force can be used.
  • the frictionless flexible hinge structure motion pair is used to achieve high-precision continuous changing rotation, which avoids the rotational "jitter” caused by the sudden acceleration of acceleration caused by the switching of the friction state of the motion pair under low-speed conditions.
  • the dual-axis turntable design with rigid-flexible coupling is adopted.
  • the first flexible hinge, the second flexible hinge and the third flexible hinge can actively adapt to the friction change of the kinematic pair by relying on their own elastic deformation, avoiding the friction state of the kinematic pair.
  • the effect of "crawling" caused by switching on continuous rotation positioning is conducive to achieving higher positioning accuracy.
  • Both axes are designed with dual detection elements, which converts the unmeasurable friction force into the elasticity of the first flexible hinge and the second flexible hinge in the first rigid-flexible coupling rotating platform and the second rigid-flexible coupling rotating platform.
  • the amount of deformation, the obtained data feedback can achieve more precise control compensation.
  • the first flexible hinge, the second flexible hinge and the third flexible hinge are designed as a whole with the first rigid-flexible coupling rotating platform, the second rigid-flexible coupling rotating platform and the third rigid-flexible coupling shaft as rotating parts,
  • the core rotating part itself has a flexible hinge sheet structure, and the elastic deformation of the flexible hinge is used to compensate the rotation, thereby reducing the "crawl” caused by the friction change during the start, stop and micro-rotation of the dual-axis turntable. Accuracy of rotation and angular positioning Impact.
  • Figure 1 is a schematic diagram of the overall structure of a rigid-flexible coupled ultra-precision dual-axis turntable
  • Figure 2 is a front view of a rigid-flexible coupled ultra-precision biaxial turntable
  • Figure 3 is a front cross-sectional view of a rigid-flexible coupled ultra-precision biaxial turntable
  • Fig. 4 is the overall schematic diagram of the first rigid-flexible coupling rotating platform
  • Fig. 5 is the front sectional view of the first rigid-flexible coupling rotating platform
  • Fig. 6 is the overall schematic diagram of the second rigid-flexible coupling rotating platform
  • Fig. 7 is the top view of the second rigid-flexible coupling rotating platform
  • Fig. 8 is the front sectional view of the second rigid-flexible coupling rotating platform
  • Fig. 9 is the structural sectional view of the third rigid-flexible coupling rotating platform part
  • Figure 10 is a schematic structural diagram of the first flexible hinge part
  • FIG. 11 is a schematic structural diagram of the second flexible hinge part
  • FIG. 12 is a schematic structural diagram of the third flexible hinge part.
  • the rigid-flexible coupling ultra-precision dual-axis turntable includes a first rigid-flexible coupling rotary platform 1, a second rigid-flexible coupling rotary platform 2, a first rigid-flexible coupling rotary platform 2, Three rigid-flexible coupling shafts 3 and stage 4;
  • the first rigid-flexible coupled rotating platform 1 includes a first bracket 101, a first rotating shaft 102, a first flexible hinge 103 and a first worktable 104.
  • the first rotating shaft 102 is arranged on the first support 101 through a bearing, and the first workbench passes through
  • the first flexible hinge 103 is connected to the first rotating shaft 102 to form the first rotating shaft of the rigid-flexible coupled ultra-precision biaxial turntable.
  • the second rigid-flexible coupling rotating platform 2 includes a second bracket 201, a second rotating shaft 202, a second flexible hinge 203, and a second worktable 204;
  • the second bracket 201 is arranged on one of the U-shaped connecting frame 5 or the Y-shaped connecting frame
  • the second shaft 202 is arranged on the second bracket 201 through a bearing
  • the second table 204 is arranged on the second shaft 202 through a second flexible hinge 203;
  • the third rigid-flexible coupling shaft 3 includes a third bracket 301, a third rotating shaft 302, a third flexible hinge 303 and a third worktable 304;
  • the third bracket 301 is arranged on the other side of the U-shaped connecting frame 5 or the Y-shaped connecting frame
  • the third rotating shaft 302 is set on the third bracket 301 through a bearing
  • the third worktable 304 is set on the third rotating shaft 302 through the third flexible hinge 303;
  • the stations 304 can be connected in any combination, including active connection methods such as plug-in. Alternatively, the setting of the stage is cancelled, and the second worktable and the third worktable are directly integrally formed.
  • the second rigid-flexible coupling rotating platform 2 , the third rigid-flexible coupling shaft 3 and the stage 4 constitute the second axis of rotation of the rigid-flexible coupling ultra-precision double-axis turntable as a whole.
  • the elastic deformation reaction force of the first flexible hinge 103 can be used to overcome the friction force between the motion pairs connected to the first rigid-flexible coupling rotating platform 1.
  • the elastic deformation reaction force of the first flexible hinge 103 is greater than the first
  • there is resistance such as static friction between the kinematic pairs connected to the rigid-flexible coupling rotating platform 1
  • the first rigid-flexible coupling rotating platform 1 will change from a static state to a moving state.
  • the rotation of the first rigid-flexible coupling rotating platform 1 can be divided into two situations:
  • the rotation amount of the first rigid-flexible coupling rotating platform 1 is the elastic deformation amount of the first flexible hinge 103;
  • the rotation amount of the first rigid-flexible coupling rotating platform 1 is the elastic deformation amount of the first flexible hinge 103 and the rotation amount of the first rotating shaft 102 superposition.
  • the motion state of the kinematic pair connected to the first rigid-flexible coupling rotary platform 1 is switched between the above-mentioned situations A and B, the difference between the static friction coefficient and the kinetic friction coefficient of the kinematic pair connected to the first rigid-flexible coupling rotary platform 1 It leads to a sudden change in resistance, produces a rigid impact on the double-axis turntable, and causes the frictional "crawling" of the kinematic pair.
  • the biaxial turntable can actively adapt to the sudden change of frictional resistance caused by the switching of the friction state of the kinematic pair by the elastic deformation of the first flexible hinge 103 , so as to alleviate the rigid impact of the sudden change of frictional resistance on the first rigid-flexible coupled rotating platform 1 .
  • the first rigid-flexible coupled rotary platform 1 can rely on the elastic deformation of the first flexible hinge 103 to achieve continuous rotational changes, avoiding the influence of frictional "crawling" on the rotational positioning accuracy.
  • the rotation amount of the second rigid-flexible coupling rotating platform 2 is the elasticity of the second flexible hinge 203 deformation
  • the rotation amount of the second rigid-flexible coupling rotating platform 2 is the elasticity of the second flexible hinge 203 The superposition of the deformation amount and the rotation amount of the second shaft 202 .
  • the second rigid-flexible coupled rotating platform 2 can actively adapt to the above-mentioned sudden change in frictional resistance caused by the switching of the friction state of the kinematic pair by virtue of the elastic deformation of its own second flexible hinge 203, so as to alleviate the rigidity of the second rigid-flexible coupled rotating platform 2 caused by the sudden change in frictional resistance. shock.
  • the second rigid-flexible coupled rotating platform 2 can rely on the elastic deformation of its own second flexible hinge 203 to achieve continuous rotational changes, avoiding the influence of frictional "crawling" on the rotational positioning accuracy.
  • the driving element can be divided into a first driving element and a second driving element, wherein the first driving element acts on the first table 104; the second driving element acts on the second table 204;
  • the specific structure of the parts can be driven by a motor based on the principle of electromagnetic force.
  • the carrier 4 is connected to the second workbench 204 and the third workbench 304 in any combination, including active connection such as external hanging. Or the setting of the stage 4 is cancelled, and the second table 204 and the third table 304 are directly integrally formed.
  • the second bracket 201 and the third bracket 301 and the U-shaped connecting frame are integrally formed structures.
  • the second worktable 204, the third worktable 304 and the stage 4 are integrally formed structures.
  • the first worktable and the first flexible hinge 103 are directly processed and formed on the base of the U-shaped connecting frame 5 or the Y-shaped connecting frame.
  • first main detection element 6 (a grating) composed of a first main detection element 602 and a first main reading head 601 and used to measure the rotation angle of the first shaft 102 in real time under any circumstances
  • first sub-detection element 7 (grating) which is composed of a first sub-encoding disc 702 and a first sub-reading head 701 and is used to indirectly measure the elastic deformation of the first flexible hinge 103 .
  • the first main detection element 602 is arranged on the first rotating shaft 102; the first main reading head 601 is arranged on the first bracket 101;
  • the first sub-code disc 702 is connected to the first worktable 104 , and the first sub-reading head 701 is fixedly arranged on the first bracket 101 through a first sub-reading head bracket 703 .
  • the rotation angle of the first rigid-flexible coupling rotating platform 1 can be measured under any circumstances.
  • the amount of elastic deformation of the first flexible hinge 103 is indirectly measured, and the unmeasurable frictional force is converted into a measurable amount of elastic deformation of the first flexible hinge 103 .
  • the rotation angle data measured by the rotation angle of the first main detection element 6 and the first auxiliary detection element 7 can be used as a feedback link to form a closed-loop control system with a rotary driver, etc., to achieve high-precision rotational positioning of the first rigid-flexible coupled rotary platform 1 .
  • it also includes a second main detection element 8 composed of a second main reading head 802 and a second main encoder disk 801 for measuring the rotation angle of the second shaft 202 in real time under any circumstances, and a second main detection element 8 composed of The second sub-encoding disc 902 and the second sub-reading head 901 are formed, and are used to indirectly measure the second sub-detecting element 9 of the elastic deformation of the second flexible hinge 203 .
  • the second main encoder disk 801 is fixed on the second shaft 202, and the second main reading head 802 is installed on the second bracket 201;
  • the second main code disc is fixed on the second shaft, and the second main reading head is installed on the second bracket;
  • the second sub-code disk 902 is connected to the second worktable 204 or the stage 4 , and the second sub-reading head 901 is fixedly arranged on the second bracket 21 through a second sub-reading head bracket 903 .
  • the rotation angle of the second rigid-flexible coupling rotating platform 2 can be measured under any circumstances.
  • the amount of elastic deformation of the second flexible hinge 203 is indirectly measured, and the unmeasurable friction force is converted into a measurable amount of elastic deformation of the second flexible hinge 203 .
  • the rotation angle data of the rotation angle measurement of the second main detection element 8 and the second auxiliary detection element 9 can be used as a feedback link to form a closed-loop control system with a rotary driver, etc., to realize the high-precision rotation positioning of the second rigid-flexible coupled rotary platform 2.
  • the stage 4 can rotate with the third rigid-flexible coupling shaft 3 and form a kinematic pair.
  • the third rigid-flexible coupling shaft 3 can also rely on the elastic deformation of the third flexible hinge 303 to achieve continuous rotation changes, so as to avoid the influence of frictional "crawling" on the rotational positioning accuracy.
  • the first flexible hinge 103 , the second flexible hinge 203 and the third flexible hinge 303 are all flexible hinge pieces arranged radially symmetrically.
  • the first rigid-flexible coupling rotating platform 1 and the second rigid-flexible coupling rotating platform 2 brake first and drive the first rotating shaft 102 to brake through their own first flexible hinge 103 and second flexible hinge 203 to damp vibrational energy.
  • the frictionless flexible hinge structure motion pair is used to achieve high-precision continuous changing rotation, which avoids the rotational "jitter” caused by the sudden acceleration of acceleration caused by the switching of the friction state of the motion pair under low-speed conditions.
  • the dual-axis turntable design with rigid-flexible coupling is adopted.
  • the first flexible hinge 103, the second flexible hinge 203 and the third flexible hinge 303 can actively adapt to the change of the friction force of the kinematic pair by relying on their own elastic deformation, avoiding the movement
  • the influence of "crawling" caused by the switching of the auxiliary friction state on the continuous rotation positioning is beneficial to achieve higher positioning accuracy.
  • Both axes adopt the design of dual detection elements, which converts the friction force that cannot be measured into the first flexible hinge 103 and the second flexible hinge 103 in the first rigid-flexible coupling rotating platform 1 and the second rigid-flexible coupling rotating platform 2 that can be measured.
  • the elastic deformation amount of the hinge 203 and the obtained data feedback can realize more precise control compensation.
  • the shaft 3 is designed as a whole, so that the core rotating part itself has a flexible hinge sheet structure, and the elastic deformation of the flexible hinge is used to compensate the rotation, thereby reducing the "crawl" caused by the friction change during the start, stop and micro-rotation of the dual-axis turntable. Effects on rotational and angular positioning accuracy.
  • Flexible hinge (or flexible pivot, flexible bearing, cross spring bearing) is a kind of elastic support with simple structure and relatively regular shape. Work with limited deformation. Under a torsional load, a rotational motion occurs within a limited angular range around its center of rotation.
  • a frictionless motion pair formed by the first flexible hinge 103 , the second flexible hinge 203 and the third flexible hinge 303 can rely on elastic deformation to achieve continuous and high-precision rotation.
  • the structure of the flexible hinge is often used in conjunction with a friction motion pair (including a rotor and a stator) to achieve high-precision rotation by compensating for rotation.
  • the elastic deformation of the flexible hinge is used to overcome the friction dead zone, and there is no need to use a highly accurate friction force model; the elastic deformation of the flexible hinge is used to compensate the rotation, which simplifies the compensation control method, the structure design is simple, and the use cost is low; rigid
  • the positioning accuracy of the flexible coupling ultra-precision dual-axis turntable is higher.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Units (AREA)

Abstract

一种刚柔耦合超精双轴转台,包括由U型连接架或Y型连接架连接的第一刚柔耦合旋转平台(1)、第二刚柔耦合旋转平台(2)、第三刚柔耦合轴(3)和载物台(4);第一刚柔耦合旋转平台(1)包括第一支架(101)、第一转轴(102)、第一柔性铰链(103)和第一工作台(104);第二刚柔耦合旋转平台(2)包括第二支架(201)、第二转轴(202)、第二柔性铰链(203)和第二工作台(204);第三刚柔耦合轴(3)包含第三支架(301)、第三转轴(302)、第三柔性铰链(303)和第三工作台(304)。通过将第一柔性铰链、第二柔性铰链和第三柔性铰链与作为旋转部件的第一刚柔耦合旋转平台、第二刚柔耦合旋转平台以及第三刚柔耦合轴设计为一体,使核心旋转部件本身存在柔性铰链片结构,利用柔性铰链的弹性变形对旋转进行补偿,从而降低双轴转台启动、停止和微旋转过程中摩擦力变化导致的"爬行"对旋转和角定位精度的影响。

Description

刚柔耦合超精双轴转台 技术领域
本发明涉及转台技术领域,具体的说,是一种刚柔耦合超精双轴转台。
背景技术
双轴转台在光电雷达、激光武器、激光卫星通讯中广泛用作跟踪或者瞄准装置。双轴转台中运动副之间表面粗糙度的不确定变化会导致摩擦阻力的幅值不确定变化。在双轴转台的启动、停止和微旋转过程中,双轴转台的速度相对较低,上述摩擦阻力的幅值波动容易导致双轴转台出现“爬行”现象。在闭环控制***作用下,驱动器将会通过增大驱动力的方式来克服摩擦阻力,补偿双轴转台定位误差。在上述补偿过程中,双轴转台将经历频繁的“静止→运动”状态切换。在“静止→运动”过程中,运动副之间的摩擦阻力会经历“静摩擦力→动摩擦力”的状态切换,而静摩擦系数与动摩擦系数之间的差异会导致上述状态切换瞬间的加速度突变,造成双轴转台在最终定位位置附近的“抖动”,从而影响角定位精度。
在光电雷达、激光武器、激光卫星通讯应用领域,由于距离遥远,双轴转台的角定位误差会被无限放大,失之毫厘,谬之千里。现有双轴转台普遍定位精度在5角秒,20km就出现1m误差。因此,如何降低在启动、停止和微旋转过程中由于摩擦状态切换造成的角定位误差影响是影响双轴转台执行精度的重要问题。
目前现有技术主要依靠两方面来降低其对角定位精度的影响:一方面建立精确的摩擦力模型,用于旋转控制驱动力补偿;另一方面采用无摩擦或低摩擦的运动副设计。然而,由于运动副之间的接触面微观特性差异与制造误差等因素,很难建立高度精确的摩擦力模型,导致旋转控制***中需要采用复杂的补偿控制方法。另一方面,气浮轴承或磁悬浮轴承等低摩擦运动副的实施成本较高,限制了其使用范围。目前国外高精度转台(如Aerotech)占高精度转台的绝大部分市场,定位精度2arc sec左右,采用的大多是无机械接触的气浮轴承,价格十分昂贵,且大多高精度转台无法售往国内。
发明内容
为了更好的克服背景技术所指出的至少一个缺陷,本发明提供一种刚柔耦合超精双轴转台。为实现上述目的,本发明提供如下技术方案是:
刚柔耦合超精双轴转台,主体包括由U型连接架或Y型连接架连接的第一刚柔耦合旋转平台、第二刚柔耦合旋转平台、第三刚柔耦合轴和载物台;
所述第一刚柔耦合旋转平台包括第一支架、第一转轴、第一柔性铰链和第一工作台,所述第一转轴通过轴承设置在第一支架上,所述第一工作台通过第一柔性铰链连接到第一转轴上,以构成刚柔耦合超精双轴转台旋转的第一轴。
所述第二刚柔耦合旋转平台包括第二支架、第二转轴、第二柔性铰链、和第二工作台;所述第二支架设置在U型连接架或Y型连接架的一侧,第二转轴通过轴承设置在第二支架上,所述第二工作台通过第二柔性铰链设置在第二转轴上;
所述第三刚柔耦合轴包含第三支架、第三转轴、第三柔性铰链和第三工作台;所述第三支架设置于U型连接架或Y型连接架的另一侧,第三转轴通过轴承设置在第三支架上,第三工作台通过第三柔性铰链设置在第三转轴上;所述载物台与第二工作台和第三工作台之间以任意方式组合连接。通过第二刚柔耦合旋转平台、第三刚柔耦耦合轴以及载物台,整体构成刚柔耦合超精双轴转台旋转的第二轴。
进一步的,所述载物台取消设置,第二工作台与第三工作台直接一体化成。
进一步的,所述第二支架和第三支架与U型连接架或Y型连接架为一体化成型结构。
进一步的,所述第二工作台和第三工作台与载物台为一体化成型结构。
进一步的,所述第一工作台与第一柔性铰链直接在U型连接架或Y型连接架的底座加工成型。
作为优选的,还包括由第一主编码盘和第一主读数头构成,用于实时测量第一转轴在任意情况下的旋转角度的第一主检测元件,及包括由第一副编码盘和第一副读数头构成,用于间接测出第一柔性铰链弹性变形量的第一副检测元件。
作为优选的,所述第一主编码盘设置在第一转轴上;所述第一主读数头设置在第一支架上;
所述第一副编码盘与第一工作台相连接,所述第一副读数头通过一第一副读数头支架固定设置在所述第一支架上。
作为优选的,还包括由第二主读数头和第二主编码盘构成,用于实时测量第二转轴在任意情况下的旋转角度的第二主检测元件,及包括由第二副编码盘和第二副读数头构成,用于间接测出第二柔性铰链弹性变形量的第二副检测元件。
作为优选的,所述第二主编码盘固定在第二转轴上,所述第二主读数头安装设置在第二支架上;
所述第二副编码盘与第二工作台或载物台相连接,所述第二副读数头通过一第二副读数头支架固定设置在第二支架上。
作为优选的,所述的第一柔性铰链、第二柔性铰链和第三柔性铰链均为辐射对称布置的柔性铰链片。
作为向第二刚柔耦合旋转平台2和第一刚柔耦合旋转平台1提供旋转驱动力的一种实施例:作为公知的,可以通过设置在第一工作台上的和第二工作台的驱动件来实现,即驱动件可分为第一驱动元件和第二驱动元件,其中第一驱动元件作用在第一工作台上;第二驱动元件作用在第二工作台上;驱动件的具体结构可以采用电磁力原理的电机驱动结构。
与现有技术相比,本发明的有益效果是:
1.采用无摩擦的柔性铰链结构运动副来实现高精度连续变化旋转,避免了低速工况下运动副摩擦状态切换导致加速度突变导致的旋转“抖动”。
2.采用了刚柔耦合的双轴转台设计,所使用的第一柔性铰链、第二柔性铰链和第三柔性铰链可以依靠自身弹性变形主动适应运动副的摩擦力变化,避免了运动副摩擦状态切换导致的“爬行”对连续旋转定位的影响,有利于实现更高的定位精度。
3.双轴都采用双检测元件的设计,将无法测量的摩擦力转化为可测的第一刚柔耦合旋转平台和第二刚柔耦合旋转平台中第一柔性铰链和第二柔性铰链的弹性变形量,得到的数据反馈可实现更精准的控制补偿。
4.巧妙地将第一柔性铰链、第二柔性铰链和第三柔性铰链与作为旋转部件的第一刚柔耦合旋转平台、第二刚柔耦合旋转平台以及第三刚柔耦合轴设计为一体,使核心旋转部件本身就存在柔性铰链片结构,利用柔性铰链的弹性变形对旋 转进行补偿,从而降低双轴转台启动、停止和微旋转过程中摩擦力变化导致的“爬行”对旋转和角定位精度的影响。
附图说明
图1是刚柔耦合超精双轴转台的整体结构示意图;
图2是刚柔耦合超精双轴转台的的正视图;
图3是刚柔耦合超精双轴转台的前剖视图;
图4是第一刚柔耦合旋转平台的整体示意图;
图5是第一刚柔耦合旋转平台的前剖视图;
图6是第二刚柔耦合旋转平台的整体示意图;
图7是第二刚柔耦合旋转平台的俯视图;
图8是第二刚柔耦合旋转平台的前剖视图;
图9是第三刚柔耦合旋转平台部分的结构剖视图;
图10是第一柔性铰链部分的结构示意图;
图11是第二柔性铰链部分的结构示意图;
图12是第三柔性铰链部分的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1-12所示,刚柔耦合超精双轴转台,包括由U型连接架5或Y型连接架连接的第一刚柔耦合旋转平台1、第二刚柔耦合旋转平台2、第三刚柔耦合轴3和载物台4;
第一刚柔耦合旋转平台1包括第一支架101、第一转轴102、第一柔性铰链103和第一工作台104,第一转轴102通过轴承设置在第一支架101上,第一工作台通过第一柔性铰链103连接到第一转轴102上,以构成刚柔耦合超精双轴转 台旋转的第一轴。
第二刚柔耦合旋转平台2包括第二支架201、第二转轴202、第二柔性铰链203、和第二工作台204;第二支架201设置在U型连接架5或Y型连接架的一侧,第二转轴202通过轴承设置在第二支架201上,第二工作台204通过第二柔性铰链203设置在第二转轴202上;
所述第三刚柔耦合轴3包含第三支架301、第三转轴302、第三柔性铰链303和第三工作台304;第三支架301设置于U型连接架5或Y型连接架的另一侧,第三转轴302通过轴承设置在第三支架301上,第三工作台304通过第三柔性铰链303设置在第三转轴302上;载物台4与第二工作台204和第三工作台304之间以任意方式组合连接,包括外挂等活动连接方式。或者,载物台取消设置,第二工作台与第三工作台直接一体化成型。
通过第二刚柔耦合旋转平台2、第三刚柔耦耦合轴3以及载物台4,整体构成刚柔耦合超精双轴转台旋转的第二轴。
本方案中,第一柔性铰链103的弹性变形反作用力可以用于克服第一刚柔耦合旋转平台1所连接的运动副间的摩擦力,当第一柔性铰链103的弹性变形反作用力大于第一刚柔耦合旋转平台1所连接的运动副之间的静摩擦力等阻力时,第一刚柔耦合旋转平台1将由静止状态转为运动状态。第一刚柔耦合旋转平台1的旋转可以分为两种情况:
A.当第一柔性铰链103的弹性变形力小于运动副的静摩擦力等阻力时,第一刚柔耦合旋转平台1的旋转量为第一柔性铰链103的弹性变形量;
B.当第一柔性铰链103的弹性变形力大于运动副的静摩擦力等阻力时,第一刚柔耦合旋转平台1的旋转量为第一柔性铰链103的弹性变形量与第一转轴102旋转量的叠加。当第一刚柔耦合旋转平台1所连接的运动副的运动状态在上述情况A与B之间切换时,第一刚柔耦合旋转平台1所连接的运动副静摩擦系数与动摩擦系数之间的差异导致阻力突变,产生对双轴转台的刚性冲击,并导致运动副的摩擦“爬行”。双轴转台可以依靠第一柔性铰链103的弹性变形主动适应由运动副摩擦状态切换导致的摩擦阻力突变,缓解摩擦阻力突变对第一刚柔耦合旋转平台1的刚性冲击。在上述任意情况下,第一刚柔耦合旋转平台1都可以依靠第一柔性铰链103的弹性变形来实现连续旋转变化,规避摩擦“爬行”情况 对旋转定位精度的影响。
类似的,第二刚柔耦合旋转平台2的旋转可以分为两种情况:
a.当第二刚柔耦合旋转平台2的第二柔性铰链203的弹性变形力小于运动副的静摩擦力等阻力时,第二刚柔耦合旋转平台2的旋转量为第二柔性铰链203的弹性变形量;
b.当第二刚柔耦合旋转平台2中第二柔性铰链203的弹性变形力大于运动副的静摩擦力等阻力时,第二刚柔耦合旋转平台2的旋转量为第二柔性铰链203的弹性变形量与第二转轴202旋转量的叠加。当第二刚柔耦合旋转平台2所连接的运动副的运动状态在上述情况a与b之间切换时,第二刚柔耦合旋转平台2所连接的运动副静摩擦系数与动摩擦系数之间的差异导致阻力突变,产生对旋转平台的刚性冲击,并导致运动副的摩擦“爬行”。第二刚柔耦合旋转平台2可以依靠自身的第二柔性铰链203的弹性变形主动适应上述由运动副摩擦状态切换导致的摩擦阻力突变,缓解摩擦阻力突变对第二刚柔耦合旋转平台2的刚性冲击。在上述任意情况下,第二刚柔耦合旋转平台2都可以依靠自身的第二柔性铰链203的弹性变形来实现连续旋转变化,规避摩擦“爬行”情况对旋转定位精度的影响。
作为向第二刚柔耦合旋转平台2和第一刚柔耦合旋转平台1提供旋转驱动力的一种实施例:作为公知的,可以通过设置在第一工作台104上的和第二工作台204的驱动件来实现,即驱动件可分为第一驱动元件和第二驱动元件,其中第一驱动元件作用在第一工作台104上;第二驱动元件作用在第二工作台204上;驱动件的具体结构可以采用电磁力原理的电机驱动结构。
作为一种实施例,载物台4与第二工作台204和第三工作台304之间以任意方式组合连接,包括外挂等活动连接方式。或载物台4取消设置,第二工作台204与第三工作台304直接一体化成型。
作为一种实施例,第二支架201和第三支架301与U型连接架为一体化成型结构。
作为一种实施例,第二工作台204和第三工作台304与载物台4为一体化成型结构。
作为一种实施例,第一工作台与第一柔性铰链103直接在U型连接架5或Y 型连接架的底座加工成型。
作为一种实施例,还包括由第一主检测元件602和第一主读数头601构成,用于实时测量第一转轴102在任意情况下的旋转角度的第一主检测元件6(光栅),及包括由第一副编码盘702和第一副读数头701构成,用于间接测出第一柔性铰链103弹性变形量的第一副检测元件7(光栅)。
第一主检测元件602设置在第一转轴102上;第一主读数头601设置在第一支架101上;
第一副编码盘702与第一工作台104相连接,第一副读数头701通过一第一副读数头支架703固定设置在第一支架101上。
通过第一主检测元件6和第一副检测元件7的设置,可以测量第一刚柔耦合旋转平台1在任意情况下的旋转角度。间接测出由于第一柔性铰链103的弹性变形量,将无法测量的摩擦力转化为可测的第一柔性铰链103的弹性变形量。第一主检测元件6和第一副检测元件7的旋转角度测量的旋转角度数据可以作为反馈环节与旋转驱动器等形成闭环控制***,实现第一刚柔耦合旋转平台1的高精度旋转定位。
作为一种实施例,还包括由第二主读数头802和第二主编码盘801构成,用于实时测量第二转轴202在任意情况下的旋转角度的第二主检测元件8,及包括由第二副编码盘902和第二副读数头901构成,用于间接测出第二柔性铰链203弹性变形量的第二副检测元件9。
第二主编码盘801固定在第二转轴202上,第二主读数头802安装设置在第二支架201上;
所述第二主编码盘固定在第二转轴上,所述第二主读数头安装设置在第二支架上;
第二副编码盘902与第二工作台204或载物台4相连接,第二副读数头901通过一第二副读数头支架903固定设置在第二支架21上。
通过第二主检测元件8和第二副检测元件9的设置,可以测量第二刚柔耦合旋转平台2在任意情况下的旋转角度。间接测出由于第二柔性铰链203的弹性变形量,将无法测量的摩擦力转化为可测的第二柔性铰链203的弹性变形量。第二主检测元件8和第二副检测元件9的旋转角度测量的旋转角度数据可以作为反馈 环节与旋转驱动器等形成闭环控制***,实现第二刚柔耦合旋转平台2的高精度旋转定位。
载物台4可随着第三刚柔耦合轴3的旋转和形成运动副。特别地,第三刚柔耦合轴3也可以依靠第三柔性铰链303的弹性变形来实现连续旋转变化,规避摩擦“爬行”情况对旋转定位精度的影响。
作为一种实施例,第一柔性铰链103、第二柔性铰链203和第三柔性铰链303均为辐射对称布置的柔性铰链片。
本发明的主要原理和步骤如下:
1.在驱动力未能克服第一刚柔耦合旋转平台1和第二刚柔耦合旋转平台2的静摩擦时,第一刚柔耦合旋转平台1和第二刚柔耦合旋转平台2分别通过自身的第一柔性铰链103和第二柔性铰链203的弹性变形产生微小旋转变形,实现精密微旋转。
2、当驱动力加大时,克服了摩擦力,带动第一刚柔耦合旋转平台1的第一转轴102和第二刚柔耦合旋转平台2的第二转轴202运动,而此时对应的柔性铰链的弹性变形增大到一定程度,进入限位状态,所有的驱动力传递到第一转轴102进行高速运动。
3、当停止时,第一刚柔耦合旋转平台1和第二刚柔耦合旋转平台2先制动并通过自身的第一柔性铰链103和第二柔性铰链203带动第一转轴102制动,衰减振动能量。
本发明的的主要优点包括:
1.采用无摩擦的柔性铰链结构运动副来实现高精度连续变化旋转,避免了低速工况下运动副摩擦状态切换导致加速度突变导致的旋转“抖动”。
2.采用了刚柔耦合的双轴转台设计,所使用的第一柔性铰链103、第二柔性铰链203和第三柔性铰链303可以依靠自身弹性变形主动适应运动副的摩擦力变化,避免了运动副摩擦状态切换导致的“爬行”对连续旋转定位的影响,有利于实现更高的定位精度。
3.双轴都采用双检测元件的设计,将无法测量的摩擦力转化为可测的第一刚柔耦合旋转平台1和第二刚柔耦合旋转平台2中第一柔性铰链103和第二柔性铰链203的弹性变形量,得到的数据反馈可实现更精准的控制补偿。
4.双轴都采用单驱动闭环控制***,且所采用的驱动结构和检测元件结构都连接在第一刚柔耦合旋转平台1和第二刚柔耦合旋转平台2上,控制***设计简单,可靠性更高。
5.巧妙地将第一柔性铰链103、第二柔性铰链203和第三柔性铰链303与作为旋转部件的第一刚柔耦合旋转平台1、第二刚柔耦合旋转平台2以及第三刚柔耦合轴3设计为一体,使核心旋转部件本身就存在柔性铰链片结构,利用柔性铰链的弹性变形对旋转进行补偿,从而降低双轴转台启动、停止和微旋转过程中摩擦力变化导致的“爬行”对旋转和角定位精度的影响。
柔性铰链(或称柔性枢轴,柔性轴承、十字弹簧轴承)是一种结构简单、形状较为规则的弹性支承,具有和几何中心轴重合的回转中心,依靠在圆周径向均布的弹性薄片的有限变形进行工作。在扭转载荷下,绕其回转中心在有限角度范围内产生回转运动。
通过第一柔性铰链103、第二柔性铰链203和第三柔性铰链303构成的一种无外摩擦运动副,能够依靠弹性变形来实现连续高精度的旋转。该柔性铰链的结构往往与摩擦运动副(包含了转子和定子)配合使用,通过对旋转进行补偿来实现高精度的旋转。利用柔性铰链的弹性变形来克服摩擦死区,无须利用高度精确的摩擦力模型;利用柔性铰链片的弹性变形来对旋转进行补偿,简化了补偿控制方法,结构设计简单,使用成本较低;刚柔耦合超精度双轴转台的定位精度更高。
本说明中未作详细描述的内容属于本领域专业技术人员公知的现有技术。尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 刚柔耦合超精双轴转台,其特征在于:包括由U型连接架或Y型连接架连接的第一刚柔耦合旋转平台、第二刚柔耦合旋转平台、第三刚柔耦合轴和载物台;
    所述第一刚柔耦合旋转平台包括第一支架、第一转轴、第一柔性铰链和第一工作台,所述第一转轴通过轴承设置在第一支架上,所述第一工作台通过第一柔性铰链连接到第一转轴上;
    所述第二刚柔耦合旋转平台包括第二支架、第二转轴、第二柔性铰链、和第二工作台;所述第二支架设置在U型连接架或Y型连接架的一侧,第二转轴通过轴承设置在第二支架上,所述第二工作台通过第二柔性铰链设置在第二转轴上;
    所述第三刚柔耦合轴包含第三支架、第三转轴、第三柔性铰链和第三工作台;所述第三支架设置于U型连接架或Y型连接架的另一侧,第三转轴通过轴承设置在第三支架上,第三工作台通过第三柔性铰链设置在第三转轴上;所述载物台与第二工作台和第三工作台之间以任意方式组合连接。
  2. 根据权利要求1所述的刚柔耦合超精双轴转台,其特征在于:所述载物台取消设置,第二工作台与第三工作台直接一体化成型。
  3. 根据权利要求1所述的刚柔耦合超精双轴转台,其特征在于:所述第二支架和第三支架与U型连接架为一体化成型结构。
  4. 根据权利要求1所述的刚柔耦合超精双轴转台,其特征在于:所述第二工作台和第三工作台与载物台为一体化成型结构。
  5. 根据权利要求1所述的刚柔耦合超精双轴转台,其特征在于:所述第一工作台与第一柔性铰链直接在U型连接架或Y型连接架的底座加工成型。
  6. 根据权利要求1所述的刚柔耦合超精双轴转台,其特征在于:还包括由第一主编码盘和第一主读数头构成,用于实时测量第一转轴在任意情况下的旋转角度的第一主检测元件,及包括由第一副编码盘和第一副读数头构成,用于间接测出第一柔性铰链弹性变形量的第一副检测元件。
  7. 根据权利要求6所述的刚柔耦合超精双轴转台,其特征在于:所述第一主编码盘设置在第一转轴上;所述第一主读数头设置在第一支架上;
    所述第一副编码盘与第一工作台相连接,所述第一副读数头通过一第一副读数头支架固定设置在所述第一支架上。
  8. 根据权利要求1所述的刚柔耦合超精双轴转台,其特征在于:还包括由第二主读数头和第二主编码盘构成,用于实时测量第二转轴在任意情况下的旋转角度的第二主检测元件,及包括由第二副编码盘和第二副读数头构成,用于间接测出第二柔性铰链弹性变形量的第二副检测元件。
  9. 根据权利要求8所述的刚柔耦合超精双轴转台,其特征在于:所述第二主编码盘固定在第二转轴上,所述第二主读数头安装设置在第二支架上;
    所述第二副编码盘与第二工作台或载物台相连接,所述第二副读数头通过一第二副读数头支架固定设置在第二支架上。
  10. 根据权利要求1-9任意一项所述的刚柔耦合超精双轴转台,其特征在于:所述的第一柔性铰链、第二柔性铰链和第三柔性铰链均为辐射对称布置的柔性铰链片。
PCT/CN2021/108025 2020-10-27 2021-07-23 刚柔耦合超精双轴转台 WO2022088784A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011164205.5A CN112483832A (zh) 2020-10-27 2020-10-27 刚柔耦合超精双轴转台
CN202011164205.5 2020-10-27

Publications (1)

Publication Number Publication Date
WO2022088784A1 true WO2022088784A1 (zh) 2022-05-05

Family

ID=74927481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108025 WO2022088784A1 (zh) 2020-10-27 2021-07-23 刚柔耦合超精双轴转台

Country Status (2)

Country Link
CN (1) CN112483832A (zh)
WO (1) WO2022088784A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114778074A (zh) * 2022-05-11 2022-07-22 北京理工大学 一种刚液柔耦合动力学特性研究的实验平台

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112483832A (zh) * 2020-10-27 2021-03-12 佛山市华道超精科技有限公司 刚柔耦合超精双轴转台

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202236A (ja) * 2008-01-31 2009-09-10 Minoru Kanematsu 昇降機能付き主軸ユニット、cnc工作機械及び加工ライン
CN106002312A (zh) * 2016-06-29 2016-10-12 广东工业大学 一种单驱动刚柔耦合精密运动平台及其实现方法及应用
KR101965072B1 (ko) * 2017-10-25 2019-04-02 현대위아 주식회사 Cnc 선반장치
CN110202563A (zh) * 2019-07-01 2019-09-06 贵州理工学院 一种基于sma驱动多段刚柔耦合的柔性机械臂
CN110561478A (zh) * 2019-09-30 2019-12-13 佛山科学技术学院 一种刚柔耦合夹持器
CN110928238A (zh) * 2019-10-23 2020-03-27 广东工业大学 一种刚柔耦合旋转平台及其控制方法
CN111324152A (zh) * 2019-12-05 2020-06-23 广东工业大学 一种新型的刚柔耦合高精度旋转平台及其控制方法
CN112483832A (zh) * 2020-10-27 2021-03-12 佛山市华道超精科技有限公司 刚柔耦合超精双轴转台

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907217B (zh) * 2010-06-29 2013-03-27 浙江天地人科技有限公司 高精度定位云台
CN206504077U (zh) * 2017-01-03 2017-09-19 重庆零度智控智能科技有限公司 云台、手持式设备及飞行器
CN206608704U (zh) * 2017-04-01 2017-11-03 哈尔滨理工大学 可调光强双轴转台
CN210624100U (zh) * 2019-09-10 2020-05-26 四叶草(苏州)智能科技有限公司 一种可调式agv激光定位云台
CN110966496A (zh) * 2019-12-12 2020-04-07 浙江大学 一种带谐波减速器的三自由度精密定位拍摄云台

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202236A (ja) * 2008-01-31 2009-09-10 Minoru Kanematsu 昇降機能付き主軸ユニット、cnc工作機械及び加工ライン
CN106002312A (zh) * 2016-06-29 2016-10-12 广东工业大学 一种单驱动刚柔耦合精密运动平台及其实现方法及应用
KR101965072B1 (ko) * 2017-10-25 2019-04-02 현대위아 주식회사 Cnc 선반장치
CN110202563A (zh) * 2019-07-01 2019-09-06 贵州理工学院 一种基于sma驱动多段刚柔耦合的柔性机械臂
CN110561478A (zh) * 2019-09-30 2019-12-13 佛山科学技术学院 一种刚柔耦合夹持器
CN110928238A (zh) * 2019-10-23 2020-03-27 广东工业大学 一种刚柔耦合旋转平台及其控制方法
CN111324152A (zh) * 2019-12-05 2020-06-23 广东工业大学 一种新型的刚柔耦合高精度旋转平台及其控制方法
CN112483832A (zh) * 2020-10-27 2021-03-12 佛山市华道超精科技有限公司 刚柔耦合超精双轴转台

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114778074A (zh) * 2022-05-11 2022-07-22 北京理工大学 一种刚液柔耦合动力学特性研究的实验平台

Also Published As

Publication number Publication date
CN112483832A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
WO2018000516A1 (zh) 一种单驱动刚柔耦合精密运动平台及其实现方法及应用
CN110768424B (zh) 一种刚柔耦合高精度振镜电机及其控制方法
WO2022088784A1 (zh) 刚柔耦合超精双轴转台
CN110346145B (zh) 一种船式航空发动机推力测力台架
CN101358893B (zh) 全自动游码式力校准机
WO2018184256A1 (zh) 基于单点激光测振仪的多方向大角度连续扫描测振辅助仪
CN109765002B (zh) 一种组合式静压气浮轴承支承机构
US20210164545A1 (en) Relative Translation System
CN102069201B (zh) 一种自由曲面超精密车削的两自由度动态误差抵消装置
CN110928238B (zh) 一种刚柔耦合旋转平台及其控制方法
CN201364223Y (zh) 全自动游码式力校准机
US11626815B2 (en) High-precision rigid-flexible coupling rotating platform and control method thereof
CN115950457A (zh) 一种惯性导航***校准用惯性器件离心测试装置
CN111324152B (zh) 一种刚柔耦合高精度旋转平台及其控制方法
CN201267958Y (zh) 一种能够自动更换砂轮的可回转砂轮架
CN110941241A (zh) 一种刚柔耦合旋转平台
CN214095945U (zh) 一种高精度正交回转轴测量装置
CN108470705A (zh) 应用于光电子封装的平面运动平台
CN201950226U (zh) 一种自由曲面超精密车削的两自由度动态误差抵消装置
CN214065997U (zh) 一种高精度正交回转轴装置
JP4475483B2 (ja) XYθステージ装置及びその制御方法
CN110932469A (zh) 一种刚柔耦合振镜电机及其控制方法
CN108267966B (zh) 一种低频挠性力矩模拟装置
CN110948422B (zh) 一种能实现工件固位多自由度一体化测量的新型装置
CN116989835B (zh) 可自适应调节的导轨***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884520

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21884520

Country of ref document: EP

Kind code of ref document: A1