WO2022088398A1 - 一种用于冻土区高替代率轻型骨料混凝土及制备方法 - Google Patents

一种用于冻土区高替代率轻型骨料混凝土及制备方法 Download PDF

Info

Publication number
WO2022088398A1
WO2022088398A1 PCT/CN2020/134504 CN2020134504W WO2022088398A1 WO 2022088398 A1 WO2022088398 A1 WO 2022088398A1 CN 2020134504 W CN2020134504 W CN 2020134504W WO 2022088398 A1 WO2022088398 A1 WO 2022088398A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
aggregate
rate
frozen soil
mold
Prior art date
Application number
PCT/CN2020/134504
Other languages
English (en)
French (fr)
Inventor
王仕俊
范雪峰
付兵彬
宋军
杨德州
方昱璋
平常
韩旭杉
姜明军
Original Assignee
国网甘肃省电力公司经济技术研究院
国家电网有限公司
国网甘肃省电力公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网甘肃省电力公司经济技术研究院, 国家电网有限公司, 国网甘肃省电力公司 filed Critical 国网甘肃省电力公司经济技术研究院
Priority to AU2020385368A priority Critical patent/AU2020385368A1/en
Publication of WO2022088398A1 publication Critical patent/WO2022088398A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • C04B2201/32Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors

Definitions

  • the invention relates to the field of concrete, in particular to a high-replacement-rate lightweight aggregate concrete used in frozen soil regions and a preparation method.
  • Porous thermal insulation concrete belongs to the category of thermal insulation materials. It is a special concrete with certain physical and mechanical properties that covers the surface of thermal equipment and pipelines, which can prevent or reduce heat exchange with the outside world and reduce heat dissipation. Compared with traditional concrete, porous concrete has the characteristics of light weight and good thermal insulation effect.
  • the common thermal insulation concrete is foam concrete. Foamed concrete can be divided into several categories according to the standards of cementitious materials, main fillers, and air bubbles, as shown in the following table:
  • Ceramsite is an artificial expanded silicate porous lightweight aggregate fired from clay under the action of high temperature. Most of its appearance features are round or elliptical spheres.
  • the surface of the ceramsite is a dense shell composed of pottery or enamel, which has the function of water-proof and gas-retaining, and gives the ceramsite high strength.
  • the internal structure of ceramsite is characterized by fine honeycomb micropores, and these micropores are closed rather than connected. Therefore, ceramsite can significantly improve the thermal insulation performance of concrete.
  • the currently developed concrete has high thermal conductivity, poor thermal insulation performance and low replacement rate, and the effect of thermal insulation and thermal insulation in frozen soil areas is not obvious.
  • the invention provides a high replacement rate lightweight aggregate concrete for frozen soil areas. and preparation method, the concrete developed by the present invention can make the thermal conductivity of lightweight aggregate concrete reach 0.524W/(m ⁇ K) at room temperature, which is 58.6% lower than that of plain concrete.
  • the density is more than 20%, which significantly enhances the thermal insulation performance of concrete. It can play a good thermal insulation effect in the frozen soil layer, and has a wide application prospect.
  • the present invention provides a high replacement rate lightweight aggregate concrete for frozen soil area and a preparation method, which can effectively reduce the heat exchange of frozen soil foundation. .
  • a high-replacement light-weight aggregate concrete for frozen soil area the concrete comprises, according to weight percentage: 31% of 42.5 grade ordinary Portland cement, 17% of water, 8% of ceramsite, 7% of coarse bone 37% fine aggregate, the slump of the concrete is 40-60mm.
  • the fine aggregate is sand
  • the particle size of the sand is 0.35-5 mm
  • the density is 1300-1700 kg/m 3 .
  • the coarse aggregate is fine stone
  • the particle size of the fine stone is 5-16 mm
  • the density is 2500-2700 kg/m 3 .
  • the particle size of the ceramsite is 3-18mm, the bulk density is 480kg/m 3 , the water absorption rate of the ceramsite is 0.5h, the coefficient rate is 7.2%, the 1h water absorption rate is 7.6%, and the 24h water absorption rate is 8.4% .
  • a preparation method for light-weight aggregate concrete with high replacement rate in frozen soil area comprises the following steps:
  • Step 1 Stir and pulverize the ceramsite, put the pulverized ceramsite into clean water for cleaning, and then dry it in an oven at 100°C;
  • Step 2 prepare raw materials, and configure the raw materials according to the weight percentage of claim 1;
  • Step 3 Put the raw materials prepared in step 2 into the concrete mixer, and the concrete mixer stirs at a speed of 150r/min. After fully mixing, it is loaded into a 70mm ⁇ 70mm ⁇ 70mm mold in two times. When inserting the tamper, keep the tamper vertical, and insert the tamper evenly in the mold. When inserting the bottom concrete, the insert should reach the bottom of the test mold, and when inserting the upper layer, it should penetrate the bottom concrete. After inserting and tamping, use a spatula to insert and pull along the inner wall of the test mold several times, and tap the surrounding area of the test mold with a rubber hammer to ensure that the concrete is fully dense;
  • Step 4 Put the concrete test block after the mold is installed in a curing box with a temperature of 25°C and a humidity of 99% for one day. Immediately after removing the mold, put it into a curing box with a temperature of 25°C and a humidity of 99% for curing. The period is 28 days;
  • Step 5 Measure the weight of the test block and measure the thermal conductivity.
  • the thermal conductivity is measured by the hot wire method. A slender metal wire is buried inside the sample with uniform initial temperature distribution. After voltage is applied to both ends of the metal wire, the metal The temperature of the wire increases. According to the temperature rise rate, the heating voltage is 0.8V.
  • the thermal conductivity of the test block at room temperature of 25°C, 50°C and 75°C is measured respectively, and the thermal protection structure and concrete construction of the frozen soil base layer are determined according to the thermal conductivity. thickness.
  • the large-scale finite element numerical calculation software is used to numerically calculate the thermal conductivity of different thermal protection materials, the form of thermal protection structures and the thickness of the insulation layer, the surface temperature, and the temperature of the underlying soil;
  • the concrete developed by the present invention can make the thermal conductivity of lightweight aggregate concrete reach 0.524W/(m ⁇ K) at room temperature, which is 58.6% lower than that of plain concrete, and significantly enhances the thermal insulation of concrete It can reduce the density of concrete by more than 20% and has a wide range of application prospects.
  • the thermal conductivity of concrete is determined during the preparation process of concrete, and the protection structure and thermal conductivity of frozen soil base layer are determined according to the geological conditions, thermal boundary conditions and thermal conductivity of concrete in the field construction process. Concrete construction thickness.
  • Figure 1 shows the thermal conductivity of the concrete of the present invention.
  • the fine aggregate is sand, the particle size of the sand is 0.35-5 mm, and the density is 1300-1700 kg/m3.
  • the coarse aggregate is fine stone, the particle size of the fine stone is 5-16 mm, and the density is 2500-2700 kg/m3.
  • the lightweight aggregate is ceramsite with a particle size of 3-18 mm, and a bulk density of 480 kg/m3.
  • the thermal conductivity is measured by the hot wire method. A slender metal wire is buried inside the sample with uniform initial temperature distribution. The temperature of the wire increases. According to the temperature rise rate, the heating voltage is 0.8V. The thermal conductivity of the test block at room temperature of 25°C, 50°C and 75°C is measured respectively, and the thermal protection structure and concrete construction of the frozen soil base layer are determined according to the thermal conductivity. thickness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种用于冻土区高替代率的轻骨料混凝土及其制备方法,轻骨料混凝土的组分包括:水泥,水,轻骨料,粗骨料以及细骨料。水泥,水,轻骨料,粗骨料以及细骨料的质量比为31:17:8:7:37,通过对水泥,水,轻骨料,粗骨料以及细骨料的质量比进行调试配比,可以使轻骨料混凝土室温下的导热系数达到0.524W/(m·K),相比素混凝土的导热系数下降了58.6%,显著增强了混凝土的保温隔热性能。

Description

一种用于冻土区高替代率轻型骨料混凝土及制备方法 技术领域
本发明涉及混凝土领域,尤其涉及一种用于冻土区高替代率轻型骨料混凝土及制备方法。
背景技术
在季节性冻土地区中由于冻土的热稳定性差、水热活动强烈、对环境变化极为敏感等性质会对工程地基的设计、施工和安全运营等构成严重威胁。土体冻结过程中由于土中水分冻结会出现体积膨胀现象,这种冻胀作用会产生切向力,最终对基础产生冻拔作用,其主要危害是将铁塔基础拔起,导致基础失去稳定性;冻胀作用还会产生水平冻胀力,当基础两侧冻胀力不平衡时,会产生水平推力,造成线路基础发生水平位移和倾斜。相反地,在地温升高或人工活动影响下,冻土也会因为融化而发生下沉的现象,其主要危害是造成铁塔基础发生不均匀沉陷或倾覆破坏。
工程若直接采用混凝土作为垫层,则起不到保温隔热的作用。多孔隔热混凝土属于保温隔热材料的范畴,是覆盖在热力设备和管道的表面,能阻止或减少与外界发生热交换,减少热量耗散的具有一定物理、力学性能的特种混凝土。相对于传统混凝土,多孔混凝土具有质量轻、保温隔热效果好等特点,目前常见的隔热混凝土为泡沫混凝土。按胶凝材料、主要填充料、气泡方式等标准可将泡沫混凝土分为几类,具体如下表:
表1泡沫混凝土分类
Figure PCTCN2020134504-appb-000001
但是,泡沫混凝土的制备工艺复杂,物理力学性质不稳定且强度较低。陶粒是由黏土在高温作用下烧成的人造膨胀型硅酸盐多孔轻质骨料,外观特征大部分呈圆形或椭圆形球体。陶粒的表面是一层由陶质或釉质组成的致密外壳,具有隔水保气作用,并且赋予陶粒较高的强度。陶粒的内部结构特征呈细密蜂窝状微孔,这些微孔都是封闭型的,而不是连通型的,因此,陶粒能够显著改善混凝土隔热性能。但是目前所研制的混凝土导热系数大,隔热保温性能较差且替代率低,在冻土区应用隔热保温效果不明显,本发明提供一种用于冻土区高替代率轻型骨料混凝土及制备方法,本发明所研制的混凝土可以使轻型骨料混凝土室温下的导热系数达到0.524W/(m·K),相比素混凝土的导热系数下降了58.6%,,替代率高能够降低混凝土密度20%以上,显著增强了混凝土的保温隔热性能,在冻土地层应用能够起到很好的 隔热保温效果,具有较广泛的应用前景。
发明内容
为了解决当前混凝土导热系数大、隔热性能差和替代率低等技术问题,本发明提供一种用于冻土区高替代率轻型骨料混凝土及制备方法,有效的降低冻土地基的热交换。
一种用于冻土区高替代率轻型骨料混凝土,所述混凝土按照重量百分比包括:31%的42.5级普通硅酸盐水泥,17%的水,8%的陶粒,7%的粗骨料,37%的细骨料,所述混凝土的塌落度为40~60mm。
进一步地,所述细骨料为砂子,砂子的粒径为0.35~5mm,密度为1300~1700kg/m 3
进一步地,所述粗骨料为细石,所述细石的粒径为5~16mm,密度为2500~2700kg/m 3
进一步地,所述陶粒的粒径3~18mm,堆积密度480kg/m 3,所述陶粒的吸水率为0.5h系数率为7.2%,1h吸水率为7.6%,24h吸水率为8.4%。
一种用于冻土区高替代率轻型骨料混凝土的制备方法,所述制备方法包括以下步骤:
步骤1、将陶粒搅拌粉碎,粉碎后的陶粒放入清水中进行清洗,然后在烘箱100℃环境下烘干;
步骤2、准备原材料,将原材料按照权利要求1所述的重量百分比进行配置;
步骤3、将步骤2中配置好的原材料放入混凝土搅拌机,混凝土搅拌机以150r/min的速度进行搅拌,充分混合之后,分两次装入70mm×70mm×70mm型模具,装入模具之后,采用插捣棒进行插捣,插捣时保持插捣棒垂直,并在模具内均匀插捣,在插捣底层混凝土时,插捣棒应到达试模底部,在插捣上层时,应贯穿底层混凝土,插捣完成后,用抹刀沿试模内壁插拔数次,并用橡皮锤轻轻敲击试模四周,保证混凝土充分密实;
步骤4、将装模后的混凝土试块在温度25℃、湿度99%的养护箱内静置一天,拆模后立即再放入温度25℃,湿度99%的养护箱内进行养护,养护龄期为28天;
步骤5、进行试块重量测量及导热系数测量,导热系数测量采用热线法测量,一根细长的金属丝埋在初始温度分布均匀的试样内部,在金属丝两端加上电压后,金属丝温度升高,根据温升速率,加热电压为0.8V,分别测量试块在室温25℃、50℃、75℃试验温度下的导热系数,根据导热系数确定冻土基层热防护结构与混凝土施工厚度。
根据冻土区现场的地质条件、热边界条件和材料导热系数,评价冻土区的应用效果。具体的:
1)以陶粒混凝土作为基础的热防护材料,设计不同的热防护结构形式与保温层厚度;
2)结合现场勘察结果与实际工程经验,利用大型有限元数值计算软件对不同热防护材料导热系数、热防护结构形式与保温层厚度、地表温度、底层土体温度等进行数值计算;
3)得到不同工况下塔基及周围土体的变形、应力、温度变化结果,根据计算结果得到各种工况下基础底部的冻胀和融沉变形,评价实际场地中的应用效果。
4)通过改变参数,得到较优的热防护材料参数与混凝土层厚度。
有益效果:本发明所研制的混凝土可以使轻型骨料混凝土室温下的导热系数达到0.524W/(m·K),相比素混凝土的导热系数下降了58.6%,显著增强了混凝土的保温隔热性能,降低混凝土密度20%以上,具有较广泛的应用前景,在混凝土制备过程中测定混凝土的导热系数,在现场施工过程中根据地质条件、热边界条件和混凝土导热系数确定冻土基层防护结构和混凝土施工厚度。
附图说明
图1示出了本发明混凝土的热传导系数。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
用于冻土区高替代率轻型骨料混凝土的制备方法:
(1)将陶粒搅拌粉碎,增大陶粒与砂浆的粘结,从而提高陶粒混凝土的强度;得到的陶粒在清水中冲洗,并在干燥箱100℃环境下烘干;
(2)准备原材料,按照组合物的总重计,所述水泥的重量含量为31%、水的重量含量为17%、陶粒的重量含量为8%、粗骨料的重量含量为7%,细骨料的重量含量为37%,塌落度要求为40~60mm;
原料中:普通PO42.5水泥;粒径3~18mm陶粒,堆积密度480kg/m3,吸水率如下表所示:
表2陶粒吸水率
Figure PCTCN2020134504-appb-000002
述细骨料为砂子,所述砂子的粒径为0.35~5mm,密度为1300~1700kg/m3。所述粗骨料为细石,所述细石的粒径为5~16mm,密度为2500~2700kg/m3。所述轻型骨料为粒径3~18mm的陶粒,堆积密度480kg/m3。
(3)以150r/min在混凝土搅拌机中拌合陶粒混凝土,分两次装入70mm×70mm×70mm型模具,拌合物装入模内之后,应采用插捣棒进行插捣,保证混凝土充分密实;
(4)在温度25℃,湿度99%的养护箱内静置一天,试块拆模后立即放入温度25℃,湿 度99%的养护箱内进行养护,养护龄期为28天,养护结束后,即得到本发明的高替代率轻型骨料混凝土,随即进行试块质量测量及导热系数测量。
(5)进行试块重量测量及导热系数测量,导热系数测量采用热线法测量,一根细长的金属丝埋在初始温度分布均匀的试样内部,在金属丝两端加上电压后,金属丝温度升高,根据温升速率,加热电压为0.8V,分别测量试块在室温25℃、50℃、75℃试验温度下的导热系数,根据导热系数确定冻土基层热防护结构与混凝土施工厚度。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (5)

  1. 一种用于冻土区高替代率轻型骨料混凝土,其特征在于,所述混凝土按照重量百分比包括:31%的42.5级普通硅酸盐水泥,17%的水,8%的陶粒,7%的粗骨料,37%的细骨料,所述混凝土的塌落度为40~60mm。
  2. 根据权利要求1所述的一种用于冻土区高替代率轻型骨料混凝土,其特征在于:所述细骨料为砂子,砂子的粒径为0.35~5mm,密度为1300~1700kg/m 3
  3. 根据权利要求1所述的一种用于冻土区高替代率轻型骨料混凝土,其特征在于:所述粗骨料为细石,所述细石的粒径为5~16mm,密度为2500~2700kg/m 3
  4. 根据权利要求1所述的一种用于冻土区高替代率轻型骨料混凝土,其特征在于:所述陶粒的粒径3~18mm,堆积密度480kg/m 3,所述陶粒的吸水率为0.5h系数率为7.2%,1h吸水率为7.6%,24h吸水率为8.4%。
  5. 一种权利要求1-4之一所述的一种用于冻土区高替代率轻型骨料混凝土的制备方法,其特征在于,所述制备方法包括以下步骤:
    步骤1、将陶粒搅拌粉碎,然后在烘箱100℃环境下烘干;
    步骤2、准备原材料,将原材料按照权利要求1所述的重量百分比进行配置;
    步骤3、将步骤2中配置好的原材料放入混凝土搅拌机,混凝土搅拌机以150r/min的速度进行搅拌,充分混合之后,分两次装入70mm×70mm×70mm型模具,装入模具之后,采用插捣棒进行插捣,插捣时保持插捣棒垂直,并在模具内均匀插捣,在插捣底层混凝土时,插捣棒应到达试模底部,在插捣上层时,应贯穿底层混凝土,插捣完成后,用抹刀沿试模内壁插拔数次,并用橡皮锤轻轻敲击试模四周,保证混凝土充分密实;
    步骤4、将装模后的混凝土试块在温度25℃、湿度99%的养护箱内静置一天,拆模后立即再放入温度25℃,湿度99%的养护箱内进行养护,养护龄期为28天;
    步骤5、进行试块重量测量及导热系数测量,导热系数测量采用热线法测量,一根细长的金属丝埋在初始温度分布均匀的试样内部,在金属丝两端加上电压后,金属丝温度升高,根据温升速率,加热电压为0.8V,分别测量试块在室温25℃、50℃、75℃试验温度下的导热系数,根据导热系数确定冻土基层热防护结构与混凝土施工厚度。
PCT/CN2020/134504 2020-10-27 2020-12-08 一种用于冻土区高替代率轻型骨料混凝土及制备方法 WO2022088398A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2020385368A AU2020385368A1 (en) 2020-10-27 2020-12-08 High-replacement-ratio lightweight aggregate concrete for frozen soil zone and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011159536.XA CN112374823A (zh) 2020-10-27 2020-10-27 一种用于冻土区高替代率轻型骨料混凝土及制备方法
CN202011159536.X 2020-10-27

Publications (1)

Publication Number Publication Date
WO2022088398A1 true WO2022088398A1 (zh) 2022-05-05

Family

ID=74577008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134504 WO2022088398A1 (zh) 2020-10-27 2020-12-08 一种用于冻土区高替代率轻型骨料混凝土及制备方法

Country Status (3)

Country Link
CN (1) CN112374823A (zh)
AU (1) AU2020385368A1 (zh)
WO (1) WO2022088398A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116396098A (zh) * 2023-04-20 2023-07-07 南通市建设混凝土有限公司 一种保温混凝土及其制备工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172316A (zh) * 2013-03-29 2013-06-26 长沙理工大学 一种混合粒径页岩陶粒轻骨料结构混凝土及其制备方法
CN105036657A (zh) * 2015-07-29 2015-11-11 国网智能电网研究院 一种轻骨料高强混凝土及其制备方法
CN110284516A (zh) * 2019-06-25 2019-09-27 中国电力工程顾问集团西北电力设计院有限公司 一种轻型化预制装配式混凝土板柱基础及其施工方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2911038C2 (de) * 1979-03-21 1986-03-06 Neumann-Venevere, Elizabeth Katri, 3014 Laatzen Verfahren zur Herstellung von hochfesten, dichten Zuschlagstoffen für den Straßenbau oder für Normalbeton aus tonigsilikatischen Rohstoffen
US4882067A (en) * 1988-04-27 1989-11-21 Ceramic Bonding, Inc. Process for the chemical bonding of heavy metals from sludge in the silicate structure of clays and shales and the manufacture of building and construction materials therewith
CN105523740B (zh) * 2015-01-27 2018-10-12 山东大学 一种保温轻质混凝土材料及其制备方法
CN109551608A (zh) * 2018-12-27 2019-04-02 江苏诚意工程技术研究院有限公司 一种透水混凝土试块制作方法
CN111170688A (zh) * 2020-02-19 2020-05-19 广东派安建材有限公司 一种高性能混凝土制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172316A (zh) * 2013-03-29 2013-06-26 长沙理工大学 一种混合粒径页岩陶粒轻骨料结构混凝土及其制备方法
CN105036657A (zh) * 2015-07-29 2015-11-11 国网智能电网研究院 一种轻骨料高强混凝土及其制备方法
CN110284516A (zh) * 2019-06-25 2019-09-27 中国电力工程顾问集团西北电力设计院有限公司 一种轻型化预制装配式混凝土板柱基础及其施工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN BO: "Study on the Pavement Characteristics of Fly Ash Ceramsite Concrete", CHINA MASTER’S THESES FULL-TEXT DATABASE, no. 3, 15 March 2018 (2018-03-15), XP055926343 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116396098A (zh) * 2023-04-20 2023-07-07 南通市建设混凝土有限公司 一种保温混凝土及其制备工艺
CN116396098B (zh) * 2023-04-20 2023-11-14 南通市建设混凝土有限公司 一种保温混凝土及其制备工艺

Also Published As

Publication number Publication date
AU2020385368A1 (en) 2022-05-12
CN112374823A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
CN103664073B (zh) 一种利用黄河沙制备的蒸压加气混凝土砌块及其制备方法
CN103641393B (zh) 一种利用黄河沙制备的蒸压加气混凝土自保温砌块及其制备方法
CN103664114B (zh) 一种自保温粉煤灰蒸压加气混凝土砌块及其制备方法
CN104150951B (zh) 一种低吸水率的发泡混凝土及其制备方法
CN102277911A (zh) 一种现浇用承重型自保温墙体及其制备方法
CN105523740A (zh) 一种保温轻质混凝土材料及其制备方法
WO2022088397A1 (zh) 一种碱液处理陶粒轻型混凝土砌块的制备方法
CN106630901B (zh) 绿色高性能混凝土
CN111960856B (zh) 一种保温隔音混凝土及其制备方法和施工方法
CN108585681A (zh) 一种混凝土多孔节能砖及其制备方法
WO2022088398A1 (zh) 一种用于冻土区高替代率轻型骨料混凝土及制备方法
CN109400064A (zh) 一种硫酸钙晶须气凝胶泡沫混凝土及其制备方法
Wu et al. Study on preparation and performance of advanced aerogel foamed concrete with ultra-light aerogel
CN104863291A (zh) 一种轻质墙体的制作方法
CN104844044A (zh) 一种污泥陶粒和陶粒增强泡沫混凝土自保温砌块及砌块的制备方法
CN205777030U (zh) 一种气凝胶泡沫混凝土砌块
CN108329002A (zh) 一种轻质泡沫地质聚合物复合保温板及其制备方法
CN1253398C (zh) 现浇聚苯乙烯水泥复合发泡材料及施工方法
CN110451916A (zh) 一种膨胀珍珠岩轻质保温装饰一体板及其制备方法
CN112341064B (zh) 一种可透水水泥混凝土砌块及其制备方法
Rafi et al. Analytical study on special concretes with M20 & M25 grades for construction
CN108285308A (zh) 一种保温砂浆、保温层结构及保温外墙体结构
Indra The Utilization of Crushed Clay Brick as Coarse Aggregate on Eco-Green Lightweight Foamed Concrete
CN112321213A (zh) 一种隔热混凝土及其制备方法
CN113530242B (zh) 环保防水保温施工方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020385368

Country of ref document: AU

Date of ref document: 20201208

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959557

Country of ref document: EP

Kind code of ref document: A1