WO2022078028A1 - 一种甲醛气体传感器组模 - Google Patents

一种甲醛气体传感器组模 Download PDF

Info

Publication number
WO2022078028A1
WO2022078028A1 PCT/CN2021/110750 CN2021110750W WO2022078028A1 WO 2022078028 A1 WO2022078028 A1 WO 2022078028A1 CN 2021110750 W CN2021110750 W CN 2021110750W WO 2022078028 A1 WO2022078028 A1 WO 2022078028A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensitive element
sensor module
gas sensor
formaldehyde
formaldehyde gas
Prior art date
Application number
PCT/CN2021/110750
Other languages
English (en)
French (fr)
Inventor
林仕伟
符坚
陈宝
周义龙
陈汉德
林正玺
王玲转
林慧媛
符智豪
黄修彩
Original Assignee
海南聚能科技创新研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南聚能科技创新研究院有限公司 filed Critical 海南聚能科技创新研究院有限公司
Publication of WO2022078028A1 publication Critical patent/WO2022078028A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/045Circuits
    • G01N27/046Circuits provided with temperature compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention relates to the technical field of formaldehyde gas detection, and more particularly, to a formaldehyde gas sensor module.
  • Formaldehyde is a colorless, but irritating gas to the eyes and nose of the human body. It is a toxic and harmful substance in indoor air. When the concentration of formaldehyde in indoor air is greater than 0.08mg/ m3 , it may cause red eyes, itchy eyes, throat discomfort or pain, hoarseness, sneezing, chest tightness, asthma, dermatitis and other phenomena. However, in newly renovated rooms, decorative materials and furniture will release a large amount of formaldehyde, which makes the indoor formaldehyde content high, which may cause many diseases in the human body. Therefore, effective detection of indoor formaldehyde concentration is required.
  • a formaldehyde sensor is usually used to detect the indoor formaldehyde concentration in real time
  • the formaldehyde sensor mainly includes an electrochemical sensor, an optical sensor, and a photobiochemical sensor.
  • electrochemical sensors have simple structure, low cost, stable product performance, and the detection range and resolution can basically meet the requirements of indoor environmental detection, but they have the disadvantage of many interfering substances and short working life; optical sensors are expensive and bulky, not suitable for Online real-time analysis, and its performance is unstable and lacks practicability.
  • Optical sensors are expensive and bulky, and are not suitable for on-line real-time analysis; although photobiochemical sensors are highly selected and only respond to a single gas, their performance is unstable due to the stability of enzymes and lacks practicability.
  • Semiconductor sensors are favored by the market due to their simple working principle, short response time, simple fabrication and low cost. Therefore, the most commonly used formaldehyde sensors on the market are semiconductor sensors, but the semiconductor sensor needs to have a significant response to ppm and sub-ppm formaldehyde at a higher working temperature, which makes the semiconductor formaldehyde sensor less accurate.
  • the purpose of the present invention is to provide a formaldehyde gas sensor module, which can sense and effectively detect the formaldehyde concentration under low temperature conditions, that is, the working temperature of the formaldehyde sensor can be effectively reduced, energy consumption can be reduced, and the performance of the formaldehyde sensor can be improved. More stable and longer service life.
  • the present invention provides the following technical solutions:
  • a formaldehyde gas sensor module comprising: a circuit board, a sensitive element for sensing formaldehyde, a heating element for enhancing the sensing effect of the sensitive element under low temperature conditions, and a detection for amplifying and converting the sensitive element Signal analog circuit, a housing for fixing the circuit board, and a control device, the sensitive element, the heating element and the analog circuit are all arranged on the circuit board, and the circuit board is arranged on the inside the shell;
  • the control device is connected with the sensitive element and the analog circuit through a first control circuit to obtain detection data, and the control device is connected with the heating element through a second control circuit to control the operation of the heating element, Both the first control circuit and the second control circuit are provided on the circuit board.
  • the sensitive element is a porous TiO 2 nanomaterial
  • the heating element is an ultraviolet lamp.
  • the preparation method of the TiO 2 nanomaterial includes:
  • the S4 includes,
  • the interdigital electrode is raised from normal temperature to 150°C-200°C at a speed of 3°C/min-5°C/min, kept for 2h-3h and then cooled to normal temperature;
  • the interdigital electrode is raised from normal temperature to 500°C-600°C at a speed of 3°C/min-5°C/min, kept for 5h-6h and then cooled to normal temperature.
  • the wavelength of the ultraviolet rays emitted by the ultraviolet lamp is 350nm-400nm.
  • the ultraviolet lamp is vertically irradiated on the sensitive element, and the distance between the irradiation end of the ultraviolet lamp and the sensitive element is 1 mm-20 mm.
  • the first control circuit is provided with a voltage dividing resistor.
  • the analog circuit includes three triodes connected in series, and the triodes are all welded on the circuit board.
  • the casing includes an upper casing and a lower casing, and the upper casing and the lower casing are detachably connected.
  • the housing is provided with an air inlet hole and an air outlet hole, and the air inlet hole and the air outlet hole are arranged staggered from the sensitive element.
  • the control device can control the conduction of the first control circuit to turn on the power supply, input a constant voltage, the sensitive element can effectively sense formaldehyde, and the resistance value of the sensitive element when formaldehyde exists There will be changes, so that the current of the first control circuit changes, but the detection signal of the sensitive element is relatively weak, and the detection signal needs to be amplified and effectively converted by the analog circuit, so that the control device can receive valid detection data.
  • the control device can control the conduction of the second control circuit, so that the heating element operates and the sensitive element is heated, so that the sensitive element can also effectively sense formaldehyde under low temperature conditions, which is beneficial to improve the detection effect and detection of the sensitive element.
  • Accuracy Since there is a correlation between the resistance value of the sensitive element and the formaldehyde concentration, the formaldehyde concentration in the air can be obtained by converting the resistance value of the sensitive element by the detected resistance value of the sensitive element and then using the fitting function to convert the resistance value of the sensitive element.
  • the formaldehyde gas sensor module provided by the present invention can sense and effectively detect the formaldehyde concentration under low temperature conditions, that is, it can effectively reduce the working temperature of the formaldehyde sensor, reduce energy consumption, and make the performance of the formaldehyde sensor more stable , longer service life.
  • FIG. 1 is a schematic structural diagram of a formaldehyde gas sensor module provided by the present invention.
  • Figure 2 is a circuit diagram of the formaldehyde gas sensor module.
  • 1 is the circuit board
  • 2 is the sensitive element
  • 3 is the heating element
  • 4 is the analog circuit
  • 5 is the housing
  • 6 is the first control circuit
  • 7 is the second control circuit
  • 8 is the voltage divider resistor
  • 9 is the triode
  • 10 11 is the lower casing
  • 12 is the air inlet hole
  • 13 is the air outlet hole
  • 14 is the external wire.
  • the core of the invention is to provide a formaldehyde gas sensor module, which can sense and effectively detect the formaldehyde concentration under low temperature conditions, that is, it can effectively reduce the working temperature of the formaldehyde sensor, reduce energy consumption, and make the performance of the formaldehyde sensor more stable and usable. Longer life.
  • FIG. 1 is a schematic structural diagram of the formaldehyde gas sensor module provided by the present invention
  • FIG. 2 is a circuit diagram of the formaldehyde gas sensor module.
  • This specific embodiment provides a formaldehyde gas sensor module, including: a circuit board 1, a sensing element 2 for sensing formaldehyde, a heating element 3 for enhancing the sensing effect of the sensing element 2 under low temperature conditions, amplifying And the analog circuit 4 for converting the detection signal of the sensitive element 2, the housing 5 for fixing the circuit board 1 and the control device, the sensitive element 2, the heating element 3 and the analog circuit 4 are all arranged on the circuit board 1, and the circuit board 1 is provided with The control device is connected with the sensitive element 2 and the analog circuit 4 through the first control circuit 6 to obtain detection data, and the control device is connected with the heating element 3 through the second control circuit 7 to control the operation of the heating element 3, The first control circuit 6 and the second control circuit 7 are both arranged on the circuit board 1 .
  • control device can be set as an electronically controlled switch.
  • the electronically controlled switch is connected to the circuit board 1, the sensitive element 2, the heating element 3 and the analog circuit 4.
  • the electronically controlled switch can be controlled by the first control circuit 6 and the second control circuit.
  • the opening and closing of the control circuit 7 is used to control the opening and closing of the device.
  • the electric control switch can be arranged on the casing 5 to facilitate the operation and use of the user.
  • An external wire 14 can also be welded on the circuit board 1, and the external wire 14 is used to connect an external power source, so as to supply power to the whole device and transmit electrical signals to effectively measure the formaldehyde concentration.
  • the shape, structure and position of the circuit board 1, the sensitive element 2, the heating element 3, the analog circuit 4, the casing 5 and the control device can be determined in the actual application process according to the actual situation and actual demand.
  • the control device can control the first control circuit 6 to conduct, so as to turn on the power supply, input a constant voltage, and the sensitive element 2 can effectively sense formaldehyde.
  • the sensitive element 2 can effectively sense formaldehyde.
  • formaldehyde exists, the sensitive element 2.
  • the resistance value will change, so that the current of the first control circuit 6 changes, but the detection signal of the sensitive element 2 is relatively weak, and the detection signal needs to be amplified and effectively converted by the analog circuit 4, so that the control device can receive effective detection. data.
  • control device can control the second control circuit 7 to conduct, so as to make the heating element 3 operate and heat the sensitive element 2, so that the sensitive element 2 can also effectively sense formaldehyde under low temperature conditions, which is beneficial to improve the sensitive element 2. detection effect and detection accuracy. Since there is a correlation between the resistance value of the sensitive element 2 and the formaldehyde concentration, the formaldehyde concentration in the air can be obtained by converting the resistance value of the sensitive element 2 through the detected resistance value of the sensitive element 2 and using the fitting function to convert the resistance value of the sensitive element 2 .
  • the formaldehyde gas sensor module provided by the present invention can sense and effectively detect the formaldehyde concentration under low temperature conditions, that is, it can effectively reduce the working temperature of the formaldehyde sensor, reduce energy consumption, and make the performance of the formaldehyde sensor more stable , longer service life.
  • the sensitive element 2 is a porous Al 2 O 3 nanomaterial
  • the heating element 3 is an ultraviolet lamp.
  • the device can greatly reduce the operating temperature of the semiconductor sensor and improve the loudness, precision and selectivity of the semiconductor sensor by using the TiO 2 nanometer gas-sensing material and irradiating the TiO 2 nanometer gas-sensing material with an ultraviolet lamp. , so that the device can effectively sense formaldehyde at a lower working temperature.
  • the sensitive element 2 is made of porous TiO 2 nanomaterials, the porous structure can effectively increase the contact area between the sensitive element 2 and formaldehyde, thereby improving the sensing effect of the sensitive element 2 .
  • the preparation method of TiO 2 nanomaterials includes,
  • ultrasonic vibration can ensure that the TiO2 nanotube powder is dissolved more uniformly, and the two high-temperature firings are to make the TiO2 nanomaterials better fix on the Al2O3 substrate and ensure that the TiO2 nanomaterials It is not easy to fall off, that is, the phenomenon of sensor failure due to the falling off of TiO 2 nanomaterials can be avoided.
  • S4 includes,
  • the interdigital electrode is raised from normal temperature to 150°C-200°C at a rate of 3°C/min-5°C/min, kept for 2h-3h and then cooled to normal temperature;
  • the interdigital electrode is raised from normal temperature to 500°C-600°C at a speed of 3°C/min-5°C/min, kept for 5h-6h and then cooled to normal temperature.
  • the two high-temperature firing parameters can be set as follows: from normal temperature to 150°C at a speed of 3°C/min, then drop to normal temperature after holding for 2 hours, and then rise to 500°C at a speed of 3°C/min, keep After 5 hours, the temperature is lowered to normal temperature, which can better fix the TiO 2 nanomaterial without causing damage to the TiO 2 nanomaterial.
  • the wavelength of ultraviolet light emitted by the ultraviolet lamp is 350nm-400nm.
  • the UV lamp can be set as a small UV lamp with a length of about 1 cm and a width of about 0.3 cm. Since the wavelength of ultraviolet light is smaller than the semiconductor oxide gap, when the TiO2 nanomaterial is irradiated with ultraviolet light, the TiO2 nanomaterial will be excited to generate electron-hole pairs, which will assist the TiO2 nanomaterial to increase its sensitivity to formaldehyde gas, thereby reducing the working temperature. The TiO2 nanomaterials do not need to be heated to high temperature to work, which can effectively prolong the service life of the sensor.
  • the ultraviolet lamp is vertically irradiated on the sensitive element 2, and the distance between the irradiation end of the ultraviolet lamp and the sensitive element 2 is 1 mm-20 mm.
  • the ultraviolet lamp radiates the sensitive element 2 at a close distance and vertically, which can make the light more concentrated, so that the ultraviolet light can excite the sensitive element 2 more effectively.
  • the sensitive element 2 is a specially treated porous TiO 2 nanomaterial
  • the heating element 3 is an ultraviolet lamp. This combination can be very effective for low-concentration formaldehyde. Sensitivity and selectivity, at the same time, can also reduce the operating temperature of the gas sensor, reduce energy consumption, and make the sensor stable in performance and long in life.
  • the first control circuit 6 is provided with a voltage dividing resistor 8 .
  • the sensitive element 2 of the semiconductor sensor when the sensitive element 2 of the semiconductor sensor is not processed, the sensitivity of the sensitive element 2 to formaldehyde gas is not strong, so the resistance value of the sensitive element 2 is relatively large, about 800k ⁇ .
  • the sensitive element 2 when the sensitive element 2 is irradiated by ultraviolet rays, the sensitivity of the sensitive element 2 increases, and the resistance value becomes very small, about 20k ⁇ , so the resistance value of the sensitive element 2 changes in a relatively large range.
  • a voltage dividing resistor 8 needs to be set on the first control circuit 6 to protect the circuit.
  • the voltage dividing resistor 8 can be set to 100M ⁇ -1G ⁇ .
  • the circuit board 1 can be arranged inside the housing 5 , and components such as a sensitive element 2 , a heating element 3 , an analog circuit 4 , a voltage dividing resistor 8 and an external wire 14 are arranged on the circuit board 1 .
  • the analog circuit 4 includes three triodes 9 connected in series, and the triodes 9 are all welded on the circuit board 1 .
  • the analog circuit 4 is composed of three triodes 9 connected in series, and the three triodes 9 are connected to the circuit board 1 by welding.
  • the amplification effect of the three triodes 9 is better, and the circuit amplification effect can be effectively ensured.
  • the three triodes 9 can be welded on the circuit board 1 , which can make the overall structure of the device more compact, the volume is smaller, and the manufacturing process can be simplified.
  • the casing 5 includes an upper casing 10 and a lower casing 11 , and the upper casing 10 and the lower casing 11 are detachably connected.
  • the upper casing 10 and the lower casing 11 can be disassembled to replace the internal parts, and the new parts can be used together with other undamaged parts. , in order to improve the overall service life of the device.
  • the shape, size, structure, material and connection method of the upper casing 10 and the lower casing 11 can be determined in the actual application process according to the actual situation and actual demand.
  • the housing 5 is provided with an air inlet hole 12 and an air outlet hole 13 , and the air inlet hole 12 and the air outlet hole 13 are arranged staggered from the sensitive element 2 .
  • the air inlet holes 12 and the air outlet holes 13 are provided on the housing 5 to facilitate the circulation of gas.
  • the staggered arrangement of the sensitive element 2, the air inlet hole 12 and the air outlet hole 13 is to avoid that when the sensitive element 2 is facing the air inlet hole 12 and the air outlet hole 13, the surface of the sensitive element 2 is easy to accumulate dust, which in turn affects the sensing of the sensitive element 2. Effect.
  • the position, size, shape, etc. of the air inlet hole 12 and the air outlet hole 13 can be determined according to the actual situation and actual demand.
  • the sensitive element 2 of the formaldehyde gas sensor module provided by the present invention is made by dissolving porous TiO2 nanotube powder in terpineol, then ultrasonically oscillating for 10min-40min to make a solvent, and then using a small spoon to take a small amount of solvent and evenly apply it on the Then, the interdigital electrodes are fired twice at high temperature, and then the interdigitated electrodes are fixed on the Al 2 O 3 substrate to form the sensitive element 2 of the formaldehyde sensor. Finally, use a gas soldering iron to solder the sensitive element 2 on the circuit board 1, and ensure that the position of the sensitive element 2 and the positions of the air inlet 12 and the air outlet 13 are staggered.
  • the two high-temperature firing operations include: first, rising from normal temperature to 150°C at a speed of 3°C/min, cooling to normal temperature after holding for 2 hours, and then rising from normal temperature to 500°C at a speed of 3°C/min, Keep it for 5h and then cool down to room temperature.
  • the heating element 3 is set as an ultraviolet lamp, and the ultraviolet wavelength radiated by the ultraviolet lamp is 350nm-400nm.
  • the distance between the ultraviolet lamp and the sensitive element 2 is 1mm-20mm, and the ultraviolet lamp irradiates the sensitive element 2 vertically to effectively excite the TiO2 nanomaterial to generate electron-hole pairs, and assist the TiO2 nanomaterial to increase its sensitivity to formaldehyde gas. Therefore, the working temperature is reduced, so that the TiO 2 nanomaterial does not need to be heated to a high temperature to work, which can effectively prolong the service life of the sensor.
  • the preparation method of the porous nanotube TiO 2 material used in the present invention is simple, the required materials are low in price, and the dosage is small, and the used ultraviolet lamp is small in size. After the shielding effect, the ultraviolet rays will not cause harm to the human body.
  • the nanotube TiO2 material is irradiated with ultraviolet light, so that the nanotube TiO2 material has good sensitivity and selectivity to low-concentration formaldehyde, and at the same time, it can greatly reduce the operating temperature of the sensitive element 2, reduce energy consumption, and make the sensor performance stable ,long life.
  • the electronic control switch of the first control circuit 6 where the sensitive element 2 is located can be pressed to turn on the power supply, and a constant voltage is input.
  • the sensitive element 2 can sense formaldehyde gas and generate a weak electrical signal. 2 After the output electrical signal passes through the three triodes 9, the weak electrical signal is amplified to a more appropriate current.
  • the resistance value R1 of the sensitive element 2 can be calculated when the UV lamp is not irradiated. It is the zero adjustment value of the resistance value of the sensitive element 2, that is, the situation where the resistance value of the sensitive element 2 is the largest and the current of the first control circuit 6 is the smallest.
  • the electric control switch of the second control circuit 7 where the heating element 3 is located can be pressed, so that the second control circuit 7 is turned on, so that the ultraviolet lamp in the heating element 3 is turned on.
  • the nanotube TiO2 material is irradiated by ultraviolet light, the photon energy of the ultraviolet light can make the nanotube TiO2 material generate electron-hole pairs, so as to enhance the conductivity of the nanotube TiO2 material, so that the resistance value of the nanotube TiO2 material becomes smaller.
  • the current value I2 of the first control circuit 6 is measured again.
  • C is the formaldehyde concentration
  • Rx is the response of the sensor to formaldehyde
  • the resistance value of the sensitive element 2 when the ultraviolet lamp is irradiated so the device can effectively detect the formaldehyde concentration.
  • orientation or positional relationship indicated by “upper” and “lower” in the present application is based on the orientation or positional relationship shown in the accompanying drawings, and is only for the convenience of simplified description and easy understanding, rather than An indication or implication that the referred device or element must have a particular orientation, be constructed and operate in a particular orientation, is not to be construed as a limitation of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

一种甲醛气体传感器组模,包括:电路板、用于感应甲醛的敏感元件、用于加强敏感元件在低温条件下的感应效果的加热元件、用于放大和转化敏感元件的检测信号的模拟电路、壳体以及控制装置,敏感元件、加热元件以及模拟电路均设于电路板上,电路板设于壳体内;控制装置通过第一控制电路与敏感元件、模拟电路连接,以获取检测数据,控制装置通过第二控制电路与加热元件连接,以控制加热元件运行,第一控制电路和第二控制电路均设于电路板。本发明所提供的甲醛气体传感器组模,可以在低温条件下感应并有效检测甲醛浓度,也即可有效降低甲醛传感器的工作温度,减少耗能,使得甲醛传感器的性能更稳定、使用寿命更长。

Description

一种甲醛气体传感器组模
本申请要求于2020年10月13日提交中国专利局、申请号为202011090576.3、发明名称为“一种甲醛气体传感器组模”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及甲醛气体检测技术领域,更具体地说,涉及一种甲醛气体传感器组模。
背景技术
甲醛是一种无色,但对人体的眼鼻等有刺激作用的气体,属于室内空气有毒有害物质。当室内空气中甲醛浓度大于0.08mg/m 3时,就可能会引起人体产生眼红、眼痒、咽喉不适或疼痛、声音嘶哑、喷嚏、胸闷、气喘、皮炎等现象。然而,新装修的房间中,装饰材料和家具会释放大量甲醛,使得室内甲醛含量较高,可能会引起人体产生许多疾病。因此,需要对室内甲醛浓度进行有效检测。
现有技术中,通常是利用甲醛传感器实时检测室内甲醛浓度,甲醛传感器主要包括有电化学传感器、光学传感器和光生化传感器等。其中,电化学传感器的结构简单,成本低,产品性能稳定,检测范围和分别率基本能达到室内环境检测要求,但其缺点干扰物质多,工作寿命短;光学传感器价格昂贵,体积大,不适用在线实时分析,且其性能不稳定,缺乏实用性。光学传感器价格昂贵,体积大,不适用在线实时分析;光生化传感器虽然选择高,只对单一的气体响应,但由于酶的稳定性使其性能不稳定,缺乏实用性。半导体传感器由于工作原理简单,响应时间短,制作简单,成本低廉而备受市场青睐。因此,目前市场上使用较多的甲醛传感器为半导体传感器,但半导体传感器需要在较高工作温度下才会对ppm及亚ppm的甲醛具有明显响应,使得半导体甲醛传感器的精度较差。
综上所述,如何提供一种工作温度低、响应强度大的半导体甲醛传感 器,是目前本领域技术人员亟待解决的问题。
发明内容
有鉴于此,本发明的目的是提供一种甲醛气体传感器组模,可以在低温条件下感应并有效检测甲醛浓度,也即可有效降低甲醛传感器的工作温度,减少耗能,使得甲醛传感器的性能更稳定、使用寿命更长。
为了实现上述目的,本发明提供如下技术方案:
一种甲醛气体传感器组模,包括:电路板、用于感应甲醛的敏感元件、用于加强所述敏感元件在低温条件下的感应效果的加热元件、用于放大和转化所述敏感元件的检测信号的模拟电路、用于固定所述电路板的壳体以及控制装置,所述敏感元件、所述加热元件以及所述模拟电路均设于所述电路板上,所述电路板设于所述壳体内;
所述控制装置通过第一控制电路与所述敏感元件、所述模拟电路连接,以获取检测数据,所述控制装置通过第二控制电路与所述加热元件连接,以控制所述加热元件运行,所述第一控制电路和所述第二控制电路均设于所述电路板。
优选的,所述敏感元件为多孔的TiO 2纳米材料,所述加热元件为紫外灯。
优选的,所述TiO 2纳米材料的制备方法包括,
S1:将多孔的TiO 2纳米管粉末溶解于松油醇;
S2:利用超声波震荡溶解后的所述TiO 2纳米管粉末以制成溶剂,溶解时间为10min-40min;
S3:取适量所述溶剂均匀涂抹在叉指电极上;
S4:对所述叉指电极进行两次高温烧制;
S5:将烧制后的所述叉指电极固定在Al 2O 3衬底上。
优选的,所述S4包括,
S41:所述叉指电极以3℃/min-5℃/min的速度由常温上升至150℃-200℃,保持2h-3h后降温至常温;
S42:所述叉指电极以3℃/min-5℃/min的速度由常温上升至500℃ -600℃,保持5h-6h后降温至常温。
优选的,所述紫外灯发射的紫外线波长为350nm-400nm。
优选的,所述紫外灯垂直照射于所述敏感元件上,所述紫外灯的照射端和所述敏感元件之间的距离为1mm-20mm。
优选的,所述第一控制电路设有分压电阻。
优选的,所述模拟电路包括三个串联的三极管,所述三极管均焊接于所述电路板上。
优选的,所述壳体包括上壳体和下壳体,所述上壳体和所述下壳体可拆卸连接。
优选的,所述壳体上设有进气孔和出气孔,所述进气孔和所述出气孔均与所述敏感元件错开设置。
在使用本发明所提供的甲醛气体传感器组模时,控制装置可以控制第一控制电路导通,以接通电源,输入恒定电压,敏感元件可以有效感应甲醛,当有甲醛存在时敏感元件阻值会发生改变,使得第一控制电路的电流产生变化,但敏感元件的检测信号比较微弱,该检测信号需要通过模拟电路放大和有效转换,以使得控制装置接收到有效的检测数据。与此同时,控制装置可以控制第二控制电路导通,以使加热元件运行,对敏感元件进行加热,使得敏感元件在低温条件下也可以有效感应甲醛,有利于提高敏感元件的检测效果和检测准确度。由于敏感元件的电阻值和甲醛浓度之间存在关联性,故通过检测到的敏感元件电阻值,再利用拟合函数对敏感元件电阻值进行换算,即可得出空气中的甲醛浓度。
综上所述,本发明所提供的甲醛气体传感器组模,可以在低温条件下感应并有效检测甲醛浓度,也即可有效降低甲醛传感器的工作温度,减少耗能,使得甲醛传感器的性能更稳定、使用寿命更长。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明所提供的甲醛气体传感器组模的结构示意图;
图2为甲醛气体传感器组模的电路图。
图1-图2中:
1为电路板、2为敏感元件、3为加热元件、4为模拟电路、5为壳体、6为第一控制电路、7为第二控制电路、8为分压电阻、9为三极管、10为上壳体、11为下壳体、12为进气孔、13为出气孔、14为外接电线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的核心是提供一种甲醛气体传感器组模,可以在低温条件下感应并有效检测甲醛浓度,也即可有效降低甲醛传感器的工作温度,减少耗能,使得甲醛传感器的性能更稳定、使用寿命更长。
请参考图1和图2,其中,图1为本发明所提供的甲醛气体传感器组模的结构示意图;图2为甲醛气体传感器组模的电路图。
本具体实施例提供了一种甲醛气体传感器组模,包括:电路板1、用于感应甲醛的敏感元件2、用于加强敏感元件2在低温条件下的感应效果的加热元件3、用于放大和转化敏感元件2的检测信号的模拟电路4、用于固定电路板1的壳体5以及控制装置,敏感元件2、加热元件3以及模拟电路4均设于电路板1上,电路板1设于壳体5内;控制装置通过第一控制电路6与敏感元件2、模拟电路4连接,以获取检测数据,控制装置通过第二控制电路7与加热元件3连接,以控制加热元件3运行,第一控制电路6和第二控制电路7均设于电路板1。
需要说明的是,可以将控制装置设置为电控开关,电控开关与电路板1、敏感元件2、加热元件3和模拟电路4连接,电控开关可以通过控制第 一控制电路6和第二控制电路7的开闭,以控制本装置的开启和关闭。可以将电控开关设置在壳体5上,以便于使用者操作使用。还可以在电路板1上焊接外接电线14,外接电线14用于连接外接电源,从而为整个设备供电和传输电信号,以有效测量甲醛浓度。
可以在实际运用过程中,根据实际情况和实际需求,对电路板1、敏感元件2、加热元件3、模拟电路4、壳体5以及控制装置的形状、结构、位置等进行确定。
在使用本发明所提供的甲醛气体传感器组模时,控制装置可以控制第一控制电路6导通,以接通电源,输入恒定电压,敏感元件2可以有效感应甲醛,当有甲醛存在时敏感元件2阻值会发生改变,使得第一控制电路6的电流产生变化,但敏感元件2的检测信号比较微弱,该检测信号需要通过模拟电路4放大和有效转换,以使得控制装置接收到有效的检测数据。与此同时,控制装置可以控制第二控制电路7导通,以使加热元件3运行,对敏感元件2进行加热,使得敏感元件2在低温条件下也可以有效感应甲醛,有利于提高敏感元件2的检测效果和检测准确度。由于敏感元件2的电阻值和甲醛浓度之间存在关联性,故通过检测到的敏感元件2电阻值,再利用拟合函数对敏感元件2电阻值进行换算,即可得出空气中的甲醛浓度。
综上所述,本发明所提供的甲醛气体传感器组模,可以在低温条件下感应并有效检测甲醛浓度,也即可有效降低甲醛传感器的工作温度,减少耗能,使得甲醛传感器的性能更稳定、使用寿命更长。
在上述实施例的基础上,优选的,敏感元件2为多孔的Al 2O 3纳米材料,加热元件3为紫外灯。
需要说明的是,本装置通过使用TiO 2纳米气敏材料,并利用紫外灯照射TiO 2纳米气敏材料的方式,能够大幅度降低半导体传感器的工作温度,提高半导体传感器的响度、精度和选择性,使得本装置可以在较低工作温度下有效感应甲醛。并且,由于敏感元件2为多孔的TiO 2纳米材料,多孔结构可以有效增大敏感元件2和甲醛的接触面积,提高敏感元件2的感应效果。
优选的,TiO 2纳米材料的制备方法包括,
S1:将多孔的TiO 2纳米管粉末溶解于松油醇;
S2:利用超声波震荡溶解后的TiO 2纳米管粉末以制成溶剂,溶解时间为10min-40min;
S3:取适量溶剂均匀涂抹在叉指电极上;
S4:对叉指电极进行两次高温烧制;
S5:将烧制后的叉指电极固定在Al 2O 3衬底上。
需要说明的是,超声波震荡可以确保TiO 2纳米管粉末溶解更为均匀,而两次高温烧制是为了使TiO 2纳米材料更好的固定在Al 2O 3衬底上,确保TiO 2纳米材料不易脱落,也即可避免传感器因TiO 2纳米材料脱落而失效的现象发生。
优选的,S4包括,
S41:叉指电极以3℃/min-5℃/min的速度由常温上升至150℃-200℃,保持2h-3h后降温至常温;
S42:叉指电极以3℃/min-5℃/min的速度由常温上升至500℃-600℃,保持5h-6h后降温至常温。
其中,可以将两次高温烧制参数进行如下设置:以3℃/min的速度由常温升至150℃,保持2h后下降至常温,而后,以3℃/min的速度上升至500℃,保持5h后降温至常温,这样可以更好的固定TiO 2纳米材料,且不会对TiO 2纳米材料造成破坏。
在上述实施例的基础上,优选的,紫外灯发射的紫外线波长为350nm-400nm。
需要说明的是,可以将紫外灯设置为长约1cm,宽约0.3cm的小型紫外灯。由于紫外光波长小于半导体氧化物间隙,利用紫外线照射TiO 2纳米材料时,会激发TiO 2纳米材料产生电子空穴对,辅助TiO 2纳米材料增加它对甲醛气体的敏感性,从而减低工作温度,使得TiO 2纳米材料不需要加热至高温才能工作,这样可有效延长传感器的使用寿命。
优选的,紫外灯垂直照射于敏感元件2上,紫外灯的照射端和敏感元件2之间的距离为1mm-20mm。紫外灯近距离且垂直辐射敏感元件2,可 以使得光线更为集中,使得紫外线更有效的激发敏感元件2。
还需要说明的是,本发明所提供的甲醛气体传感器组模,其敏感元件2为经特殊处理的多孔TiO 2纳米材料,加热元件3为紫外灯,这种组合能够对低浓度甲醛有很好灵敏度和选择性,同时,也能够降低气敏传感器的工作温度,减少耗能,使得传感器性能稳定、寿命长。
在上述实施例的基础上,优选的,第一控制电路6设有分压电阻8。
需要说明的是,半导体传感器的敏感元件2在未进行任何处理时,该敏感元件2对甲醛气体的敏感性不强,故敏感元件2电阻值比较大,大约为800kΩ。然而,当敏感元件2被紫外线照射时,敏感元件2的敏感性增加,电阻值会变得很小,大约为20kΩ,故敏感元件2的电阻值变化范围比较大,为了避免电流过大而造成电路烧坏,需要串联一个阻值大的大电阻进行分压,故需要在第一控制电路6上设置分压电阻8,以保护电路,例如可以将分压电阻8设置为100MΩ-1GΩ。可以将电路板1设置在壳体5内部,并在电路板1上设置敏感元件2、加热元件3、模拟电路4、分压电阻8和外接电线14等部件。
优选的,模拟电路4包括三个串联的三极管9,三极管9均焊接于电路板1上。
需要说明的是,由于分压电阻8的阻值过大,会使得工作时第一控制电路6的电流过小,故需要对电流进行放大,以使电流处于正常测量范围内,所以需要利用模拟电路4放大电流。模拟电路4由三个三极管9串联构成,三个三极管9通过焊接的方式连接在电路板1上,使用三个三极管9的放大效果更好,可以有效确保电路放大效果。并且,三个三极管9均可焊接在电路板1上,可以使得装置整体结构更为紧凑、体积更小,简化制作工艺。
在上述实施例的基础上,优选的,壳体5包括上壳体10和下壳体11,上壳体10和下壳体11可拆卸连接。
需要说明的是,如果壳体5内的零件发生受损现象,则可以通过拆卸上壳体10和下壳体11,以对内部零件进行替换,将新的零件配合其它未受损部件继续使用,以提高装置的整体使用寿命。
可以在实际运用过程中,根据实际情况和实际需求,对上壳体10和下壳体11的形状、尺寸、结构、材质以及连接方式等进行确定。
优选的,壳体5上设有进气孔12和出气孔13,进气孔12和出气孔13均与敏感元件2错开设置。
需要说明的是,在壳体5上设置进气孔12和出气孔13,是为了便于气体循环流动,例如可以将进气孔12和出气孔13设置在壳体5相对两侧。另外,敏感元件2和进气孔12、出气孔13错开设置,是为了避免敏感元件2正对进气孔12和出气孔13时,敏感元件2表面容易积灰,继而影响敏感元件2的感应效果。
可以根据实际情况和实际需求,对进气孔12和出气孔13的位置、尺寸、形状等进行确定。
为了进一步说明本发明所提供的甲醛气体传感器组模的组成及其使用过程,接下来进行举例说明。
本发明所提供的甲醛气体传感器组模的敏感元件2是由多孔的TiO 2纳米管粉末溶解于松油醇后,经超声波震荡10min-40min制成溶剂,再利用小勺取少量溶剂均匀涂抹在叉指电极上,而后,对叉指电极进行两次高温烧制操作,之后,将叉指电极固定在Al 2O 3衬底上,以形成甲醛传感器的敏感元件2。最后,使用气体烙铁将敏感元件2焊接在电路板1上,并确保敏感元件2的位置和进气孔12、出气孔13的位置错开。
其中,两次高温烧制操作包括有:首先,以3℃/min的速度由常温上升至150℃,保持2h后降温至常温,然后,以3℃/min的速度由常温上升至500℃,保持5h后降温至常温。
另外,本装置将加热元件3设置为紫外灯,紫外灯辐射的紫外线波长为350nm-400nm。紫外灯和敏感元件2的距离为1mm-20mm,且紫外灯垂直照射敏感元件2上,以有效激发TiO 2纳米材料产生电子空穴对,辅助TiO 2纳米材料增加它对甲醛气体的敏感性,从而减低工作温度,使得TiO 2纳米材料不需要加热至高温才能工作,这样可有效延长传感器的使用寿命。
本发明所采用的多孔的纳米管TiO 2材料的制作方法简单,所需的材料价格低廉、用量小,且所使用的紫外灯体积小,由于紫外灯设于壳体5内, 在壳体5的遮挡作用后,紫外线不会对人体造成危害。同时,利用紫外线照射纳米管TiO 2材料,使得纳米管TiO 2材料对低浓度甲醛有很好灵敏度和选择性,同时,能够大幅度降低敏感元件2的工作温度、减少耗能,使得传感器性能稳定、寿命长。
在使用本装置时,可以按下敏感元件2所在的第一控制电路6的电控开关,以接通电源,输入恒定电压,敏感元件2可以感应甲醛气体,并产生微弱的电信号,敏感元件2输出的电信号经过三个三极管9后,微弱的电信号被放大得较为合适的电流。根据已知分压电阻8的阻值Ro、此时第一控制电路6的电流值I1、恒定电压的电压值Uo等,即可算出未照射紫外灯时敏感元件2的阻值R1,此时为敏感元件2阻值的调零值,也即敏感元件2的阻值最大、第一控制电路6的电流最小的情况。
之后,可以按下加热元件3所在的第二控制电路7的电控开关,使得第二控制电路7被接通,以使加热元件3中紫外灯亮起。紫外线照射纳米管TiO 2材料时,紫外线的光子能量可使纳米管TiO 2材料产生电子空穴对,以增强纳米管TiO 2材料的导电性,使得纳米管TiO 2材料的阻值变小,待纳米管TiO 2材料阻值稳定后,再测出此时第一控制电路6的电流值I2,根据已知的分压电阻8的阻值Ro、测出的电流值I2、恒定电压的电压值Uo等,即可算出照射紫外灯时敏感元件2的阻值Rx,也即Rx=Uo/I2-Ro。
由于甲醛浓度与敏感元件2响应之间存在拟合函数关系,通过该拟合函数可以算出当前的甲醛浓度,也即C=f(Rx)。其中,C为甲醛浓度,Rx为传感器对甲醛的响应,也为照射紫外灯时敏感元件2的阻值,故本装置可以有效检测甲醛浓度。
需要进行说明的是,本申请文件中提到的第一控制电路6和第二控制电路7,其中,第一和第二只是为了区分位置的不同,并没有先后顺序之分。
另外,还需要说明的是,本申请的“上”、“下”等指示的方位或位置关系,是基于附图所示的方位或位置关系,仅是为了便于简化描述和便于理解,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。本发明所提供的所有实施例的任意组合方式均在此发明的保护范围内,在此不做赘述。
以上对本发明所提供的甲醛气体传感器组模进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 一种甲醛气体传感器组模,其特征在于,包括:电路板(1)、用于感应甲醛的敏感元件(2)、用于加强所述敏感元件(2)在低温条件下的感应效果的加热元件(3)、用于放大和转化所述敏感元件(2)的检测信号的模拟电路(4)、用于固定所述电路板(1)的壳体(5)以及控制装置,所述敏感元件(2)、所述加热元件(3)以及所述模拟电路(4)均设于所述电路板(1)上,所述电路板(1)设于所述壳体(5)内;
    所述控制装置通过第一控制电路(6)与所述敏感元件(2)、所述模拟电路(4)连接,以获取检测数据,所述控制装置通过第二控制电路(7)与所述加热元件(3)连接,以控制所述加热元件(3)运行,所述第一控制电路(6)和所述第二控制电路(7)均设于所述电路板(1)。
  2. 根据权利要求1所述的甲醛气体传感器组模,其特征在于,所述敏感元件(2)为多孔的TiO 2纳米材料,所述加热元件(3)为紫外灯。
  3. 根据权利要求2所述的甲醛气体传感器组模,其特征在于,所述TiO 2纳米材料的制备方法包括,
    S1:将多孔的TiO 2纳米管粉末溶解于松油醇;
    S2:利用超声波震荡溶解后的所述TiO 2纳米管粉末以制成溶剂,溶解时间为10min-40min;
    S3:取适量所述溶剂均匀涂抹在叉指电极上;
    S4:对所述叉指电极进行两次高温烧制;
    S5:将烧制后的所述叉指电极固定在Al 2O 3衬底上。
  4. 根据权利要求3所述的甲醛气体传感器组模,其特征在于,所述S4包括,
    S41:所述叉指电极以3℃/min-5℃/min的速度由常温上升至150℃-200℃,保持2h-3h后降温至常温;
    S42:所述叉指电极以3℃/min-5℃/min的速度由常温上升至500℃-600℃,保持5h-6h后降温至常温。
  5. 根据权利要求2至4任一项所述的甲醛气体传感器组模,其特征在于,所述紫外灯发射的紫外线波长为350nm-400nm。
  6. 根据权利要求5所述的甲醛气体传感器组模,其特征在于,所述紫外灯垂直照射于所述敏感元件(2)上,所述紫外灯的照射端和所述敏感元件(2)之间的距离为1mm-20mm。
  7. 根据权利要求1至4任一项所述的甲醛气体传感器组模,其特征在于,所述第一控制电路(6)设有分压电阻(8)。
  8. 根据权利要求7所述的甲醛气体传感器组模,其特征在于,所述模拟电路(4)包括三个串联的三极管(9),所述三极管(9)均焊接于所述电路板(1)上。
  9. 根据权利要求1至4任一项所述的甲醛气体传感器组模,其特征在于,所述壳体(5)包括上壳体(10)和下壳体(11),所述上壳体(10)和所述下壳体(11)可拆卸连接。
  10. 根据权利要求1至4任一项所述的甲醛气体传感器组模,其特征在于,所述壳体(5)上设有进气孔(12)和出气孔(13),所述进气孔(12)和所述出气孔(13)均与所述敏感元件(2)错开设置。
PCT/CN2021/110750 2020-10-13 2021-08-05 一种甲醛气体传感器组模 WO2022078028A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011090576.3 2020-10-13
CN202011090576.3A CN112198197A (zh) 2020-10-13 2020-10-13 一种甲醛气体传感器组模

Publications (1)

Publication Number Publication Date
WO2022078028A1 true WO2022078028A1 (zh) 2022-04-21

Family

ID=74010010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110750 WO2022078028A1 (zh) 2020-10-13 2021-08-05 一种甲醛气体传感器组模

Country Status (2)

Country Link
CN (1) CN112198197A (zh)
WO (1) WO2022078028A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112198197A (zh) * 2020-10-13 2021-01-08 海南聚能科技创新研究院有限公司 一种甲醛气体传感器组模

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419181A (zh) * 2008-11-21 2009-04-29 重庆大学 检测甲醛的气敏材料及用该材料制作的气敏元器件
KR20150051249A (ko) * 2013-11-01 2015-05-12 한국과학기술원 금속 촉매의 전사 방법에 의해 결착된 라즈베리 중공 구조의 금속 산화물 소재, 그 제조방법 및 이를 이용한 고감도 센서
CN205593987U (zh) * 2016-04-11 2016-09-21 李海涛 一种甲醛检测仪
CN107517198A (zh) * 2017-04-17 2017-12-26 周倩 甲醛浓度信号转换信号数据模块
CN107843691A (zh) * 2017-10-19 2018-03-27 广东美的制冷设备有限公司 甲醛传感器模组的控制方法
CN112198197A (zh) * 2020-10-13 2021-01-08 海南聚能科技创新研究院有限公司 一种甲醛气体传感器组模

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201844992U (zh) * 2010-11-01 2011-05-25 柏建荣 甲醛检测控制器
CN203365378U (zh) * 2013-07-31 2013-12-25 张译元 蓝牙手机甲醛检测仪
CN203606342U (zh) * 2013-11-21 2014-05-21 湖南工业大学 一种室内空气甲醛含量测量计
CN105717008A (zh) * 2014-12-04 2016-06-29 锦州海伯伦汽车电子有限公司 车载空气质量监测模块
CN204330667U (zh) * 2015-01-14 2015-05-13 江西科技学院 一种手握式甲醛检测仪
CN105259313A (zh) * 2015-10-27 2016-01-20 哈尔滨朋来科技开发有限公司 一种家用固定式甲醛测试仪
CN106841067B (zh) * 2017-01-17 2019-05-28 大连理工大学 一种基于选择性波段的气体传感器及其检测方法
CN106841325B (zh) * 2017-01-18 2019-10-11 西安交通大学 一种基于半导体气敏传感器阵列检测呼出气体装置
CN206725533U (zh) * 2017-05-08 2017-12-08 陈生娟 甲醛无线采集盒
CN206710360U (zh) * 2017-05-23 2017-12-05 惠安县品创工业设计有限公司 一种新型甲醛气体快速检测装置
CN107389759A (zh) * 2017-06-13 2017-11-24 成都昂迪加科技有限公司 一种基于电化学传感器的甲醛检测器
CN207365230U (zh) * 2017-09-30 2018-05-15 上海嘉春装饰设计工程有限公司 一种除甲醛的空气净化装置
CN207623275U (zh) * 2017-11-27 2018-07-17 河南省日立信股份有限公司 基于NB-IoT的甲醛检测装置
CN109011862A (zh) * 2018-07-05 2018-12-18 杨柳锋 一种室内甲醛检测处理装置
CN209148646U (zh) * 2018-10-09 2019-07-23 陕西中盛建设科技服务有限公司 一种检测室内橱柜甲醛含量的装置
CN209589768U (zh) * 2019-02-19 2019-11-05 河南郑大零醛屋环保科技有限公司 一种室内气体检测分析仪
CN109781797A (zh) * 2019-03-13 2019-05-21 珠海格力电器股份有限公司 Tvoc气体检测器件、空气处理装置
CN211263273U (zh) * 2019-07-22 2020-08-14 周刚 能够控温的半导体气体传感器
CN110687170A (zh) * 2019-11-12 2020-01-14 大连理工大学 一种基于紫外光波段的TiO2/SnO2气体传感器及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419181A (zh) * 2008-11-21 2009-04-29 重庆大学 检测甲醛的气敏材料及用该材料制作的气敏元器件
KR20150051249A (ko) * 2013-11-01 2015-05-12 한국과학기술원 금속 촉매의 전사 방법에 의해 결착된 라즈베리 중공 구조의 금속 산화물 소재, 그 제조방법 및 이를 이용한 고감도 센서
CN205593987U (zh) * 2016-04-11 2016-09-21 李海涛 一种甲醛检测仪
CN107517198A (zh) * 2017-04-17 2017-12-26 周倩 甲醛浓度信号转换信号数据模块
CN107843691A (zh) * 2017-10-19 2018-03-27 广东美的制冷设备有限公司 甲醛传感器模组的控制方法
CN112198197A (zh) * 2020-10-13 2021-01-08 海南聚能科技创新研究院有限公司 一种甲醛气体传感器组模

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN, HAO ET AL.: "A comparative study on UV light activated porous Ti02 and ZnO film sensors for gas sensing at room temperature", CERAMICS INTERNATIONAL, vol. 38, 26 July 2011 (2011-07-26), pages 503 - 509, XP028118660, DOI: 10.1016/j.ceramint.2011.07.035 *
LIN, SHIWEI ET AL.: "A selective room temperature formaldehyde gas sensor using Ti02 nanotube arrays", SENSORS AND ACTUATORS B: CHEMICAL, vol. 156, 31 August 2011 (2011-08-31), pages 505 - 509, XP055344056, DOI: 10.1016/j.snb.2011.02.046 *
LIU, LIPENG ET AL.: "Room temperature impedance spectroscopy-based sensing of formaldehyde with porous Ti02 under UV illumination", SENSORS AND ACTUATORS B: CHEMICAL, vol. 185, 28 April 2013 (2013-04-28), pages 1 - 9, XP028595386, DOI: 10.1016/j.snb.2013.04.090 *
WU, GUOQIANG ET AL.: "Hierarchical structured Ti02 nano-tubes for formaldehyde sensing", CERAMICS INTERNATIONAL, vol. 38, 9 May 2012 (2012-05-09), pages 6341 - 6347, XP055733379, DOI: 10.1016/j.ceramint.2012.05.004 *

Also Published As

Publication number Publication date
CN112198197A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2022078028A1 (zh) 一种甲醛气体传感器组模
CN102575983A (zh) 红外线式气体检测器以及红外线式气体测量装置
US20190212244A1 (en) Pm2.5 measurement device
JP2012118063A (ja) 光イオン化検出器及び関連する方法
CN104458636A (zh) 一种具有温度气压自动补偿的co2气体浓度监测装置及方法
CN102721662A (zh) 一种矿用高光源利用效率的红外气体传感器
CN104360692A (zh) 低浓度标准臭氧发生器的反馈控制装置
CN106092995B (zh) 一种荧光溶液浓度的室内检测探头
JPH10339698A (ja) 赤外線式ガス検出装置
CN108614029B (zh) 高灵敏度微型光离子化传感器
CN206959989U (zh) 一种基于stm32的可见分光光度计
CN214252184U (zh) 一种基于多孔TiO2纳米材料的甲醛气体传感器组模
CN105158191B (zh) 含砷精金矿焙烧炉内三氧化二砷气体的浓度检测装置
CN106290089A (zh) 一种高精度的微型化颗粒物传感器
CN112834603B (zh) 一种组合式高效热解吸装置
CN103235011B (zh) 一种半导体臭氧传感器测量电路
WO2022148140A1 (zh) 具有湿敏元件的电子雾化设备
JP3126759B2 (ja) 光学式分析装置
JP2009244072A (ja) イオン化式ガスセンサおよびガス検知システム
CN105588815A (zh) 一种基于微气流的红外气体探测器
CN211122644U (zh) 一种空气质量检测终端
RU2598695C2 (ru) Устройство для дистанционного обнаружения источников альфа-излучения
CN204287984U (zh) 低浓度标准臭氧发生器的反馈控制装置
CN109884165B (zh) 光离子化检测器电离室及光电离检测器
JP2000206033A (ja) タバコ煙粒子計測装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879075

Country of ref document: EP

Kind code of ref document: A1