WO2022073451A1 - 一种确定直流充电电流的方法、装置以及一种汽车 - Google Patents

一种确定直流充电电流的方法、装置以及一种汽车 Download PDF

Info

Publication number
WO2022073451A1
WO2022073451A1 PCT/CN2021/121679 CN2021121679W WO2022073451A1 WO 2022073451 A1 WO2022073451 A1 WO 2022073451A1 CN 2021121679 W CN2021121679 W CN 2021121679W WO 2022073451 A1 WO2022073451 A1 WO 2022073451A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging current
current
battery
temperature
charging
Prior art date
Application number
PCT/CN2021/121679
Other languages
English (en)
French (fr)
Inventor
吴麦青
宋丹丹
张超志
郝阳
刘震辉
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to KR1020237012555A priority Critical patent/KR20230068421A/ko
Priority to JP2023521516A priority patent/JP2023545275A/ja
Publication of WO2022073451A1 publication Critical patent/WO2022073451A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present disclosure relates to the field of automobile control, and in particular, to a method and device for determining a DC charging current, and an automobile.
  • the present disclosure provides a method, a device, and an automobile for determining a DC charging current, which minimizes the impact on battery life and performance while meeting the fast charging charging current requirement.
  • a first aspect of the embodiments of the present disclosure provides a method for determining a DC charging current, the method comprising:
  • the DC charging current is sent to the charging pile.
  • the method before determining the first charging current according to the battery temperature, the method further includes:
  • the first charging current is changed to the fifth charging current current; when the lowest temperature of the battery during charging is reduced to not higher than the corresponding second preset current value, changing the first charging current to a sixth charging current;
  • the first charging current is changed to the seventh charging current current; when the maximum temperature of the battery during charging is reduced to not higher than the corresponding fourth preset current value, the first charging current is changed to the eighth charging current.
  • the method before determining the second charging current according to the cell voltage of the battery, the method further includes:
  • the second charging current is changed to the ninth charging current
  • the second charging current is changed to the tenth charging current.
  • compare the magnitudes of the first charging current and the second charging current take a smaller value and make corrections to form a third charging current, including:
  • the difference between the value of the first charging current and the calibration value forms the third charging current
  • the difference between the value of the second charging current and the calibration value forms the third charging current.
  • the first charging current is changed to the eleventh charging current; if the lowest temperature of the battery is low changing the first charging current to zero at a corresponding fifth preset current value;
  • the first charging current is changed to the twelfth charging current; if the lowest temperature of the battery is not higher than the corresponding When the seventh preset current value is , the first charging current is changed to the thirteenth charging current;
  • the first charging current is changed to the fourteenth charging current; if the maximum temperature of the battery is higher than the corresponding At the eighth preset current value, the first charging current is changed to zero.
  • the second charging current is changed to zero.
  • a second aspect of the embodiments of the present disclosure provides an apparatus for determining a DC charging current, the apparatus comprising:
  • a first determining module configured to determine the first charging current according to the battery temperature
  • a second determining module configured to determine the second charging current according to the cell voltage of the battery
  • a comparison and correction module configured to compare the magnitudes of the first charging current and the second charging current, take a smaller value and make corrections to form a third charging current
  • the meter lookup module is used to obtain the fourth charging current by looking up the highest temperature and the highest elevator voltmeter according to the battery temperature;
  • a determining charging current module is used for comparing the magnitudes of the third charging current and the fourth charging current, taking the smaller value and summing it with the consumption current of the high-voltage accessory to obtain the DC charging current required for battery charging.
  • the device further includes:
  • the temperature interval setting module is used to set multiple temperature intervals according to the initial temperature of the battery
  • the temperature interval setting current module is used to respectively set the corresponding first charging current for each temperature interval
  • the first charging current is changed to the fifth charging current current; when the lowest temperature of the battery during charging is reduced to not higher than the corresponding second preset current value, changing the first charging current to a sixth charging current;
  • the first charging current is changed to the seventh charging current current; when the maximum temperature of the battery during charging is reduced to not higher than the corresponding fourth preset current value, the first charging current is changed to the eighth charging current.
  • the device further includes:
  • the voltage interval setting module is used to set multiple voltage intervals according to the highest cell voltage of the battery
  • the voltage interval setting current module is used to respectively set the corresponding second charging current for each voltage interval
  • the second charging current is changed to the ninth charging current
  • the second charging current is changed to the tenth charging current.
  • the comparison and correction module includes:
  • a correction unit configured to form the third charging current by making a difference between the value of the first charging current and a calibration value if the value of the first charging current is small;
  • the temperature interval setting module is further configured to set an initial temperature interval, a special temperature interval and an end temperature interval according to the initial temperature of the battery;
  • the temperature interval setting current module is further configured to respectively set corresponding first charging currents for the starting temperature interval, the special temperature interval and the ending temperature interval;
  • the first charging current is changed to the eleventh charging current; if the lowest temperature of the battery is low changing the first charging current to zero at a corresponding fifth preset current value;
  • the first charging current is changed to the twelfth charging current; if the lowest temperature of the battery is not higher than the corresponding When the seventh preset current value is , the first charging current is changed to the thirteenth charging current;
  • the first charging current is changed to the fourteenth charging current; if the maximum temperature of the battery is higher than the corresponding At the eighth preset current value, the first charging current is changed to zero.
  • the voltage interval setting current module is further configured to change the second charging current to zero when the highest cell voltage of the battery is not lower than a preset voltage threshold.
  • a third aspect of the embodiments of the present disclosure provides an automobile, where the automobile includes: a vehicle controller;
  • the vehicle controller executes the method for determining the DC charging current as described above.
  • the first charging current is determined according to the battery temperature
  • the second charging current is determined according to the cell voltage of the battery
  • the magnitudes of the first charging current and the second charging current are compared, and the smaller value is taken.
  • the third charging current integrates the factors of battery temperature and cell voltage, and takes the smaller value of the two to ensure that on the basis of the size of the charging current, it will not exceed the battery temperature and cell voltage. The upper limit value of the charging current under the factor.
  • the third charging current On the basis of the third charging current, check the highest temperature and the highest elevator voltmeter according to the battery temperature to obtain the fourth charging current, then compare the magnitudes of the third charging current and the fourth charging current, take the smaller value and consume it with the high-voltage accessories The current is summed to obtain the DC charging current required for battery charging, and finally the DC charging current is sent to the charging pile.
  • the third charging current Since the third charging current has integrated the factors of battery temperature and cell voltage, it will not exceed the upper limit value of the charging current under the factors of battery temperature and cell voltage, so it is compared with the fourth charging current to be smaller, and further accurate fast charging The value of the charging current will not exceed the upper limit of the charging current under the factors of battery temperature and cell voltage while meeting the demand of fast charging charging current, and the charging current will no longer change linearly, but will be a constant charging current. Minimal impact on battery life and performance, with high utility value.
  • FIG. 1 is a flowchart of a method for determining a DC charging current according to an embodiment of the present disclosure
  • FIG. 2 is an example diagram of specific temperature interval and charging current value setting in an embodiment of the present disclosure
  • FIG. 3 is an example diagram of specific voltage interval and charging current value setting in an embodiment of the present disclosure
  • FIG. 4 is a block diagram of an apparatus for determining a DC charging current according to an embodiment of the present disclosure
  • Figure 5 schematically shows a block diagram of a computing processing device for performing methods according to the present disclosure.
  • Figure 6 schematically shows a memory unit for holding or carrying program code implementing the method according to the present disclosure.
  • the large charging current may exceed the upper limit of the allowable charging current under the current temperature factor of the battery, and may also exceed the upper limit of the allowable charging current under the current cell voltage factor of the battery, and the linear change of the charging current is not stable, it will present a current value. Bigger and smaller repeating changes, not continuously getting bigger or smaller.
  • FIG. 1 shows a flowchart of a method for determining a DC charging current according to an embodiment of the present disclosure. The method includes:
  • Step 101 Determine the first charging current according to the battery temperature.
  • the first charging current is first determined according to the battery temperature.
  • the so-called first charging current is the upper limit value of the allowable charging current based on the current temperature of the battery.
  • the inventor creatively proposes the following idea:
  • a plurality of temperature ranges are set, and then a corresponding first charging current is set for each temperature range respectively. That is, according to the current temperature when the battery is about to be charged, multiple temperature ranges are set.
  • temperature is a key and sensitive factor. In general, it is based on the working efficiency, life, performance and other factors of the battery. , Electric vehicles will have air conditioners and other equipment to heat and dissipate the battery to maintain the temperature of the battery. However, in practice, due to factors such as ambient temperature and working state, the battery temperature will inevitably have various sizes.
  • Step 102 Determine the second charging current according to the cell voltage of the battery.
  • the second charging current similarly, before the electric vehicle is charged, that is, before the electric vehicle is connected to the DC charging pile, the second charging current also needs to be determined according to the cell voltage of the battery.
  • the so-called second charging current is the upper limit of the allowable charging current based on the current cell voltage of the battery.
  • the inventor creatively proposes the following idea:
  • the highest cell voltage of the battery multiple temperature ranges are set, and then a corresponding second charging current is set for each temperature range. That is, a plurality of temperature zones are set according to the current highest cell voltage when the battery is about to be charged. Due to the particularity of the battery, the highest cell voltage is also a key and sensitive factor.
  • electric vehicles use battery modules, and the battery module includes multiple cells, based on the working efficiency, life, and performance of the battery. As well as various factors such as the manufacturing process, the cell voltage of each battery may be slightly different. However, in practice, due to factors such as manufacturing process and working state, with the increase of use time, the cell voltage of each battery will inevitably change, and the difference in voltage value between them may increase, and the battery is fully charged.
  • the voltage during charging is generally the upper limit of the allowable voltage, and the battery voltage will naturally drop after a period of use. Similarly, the battery voltage will be relatively low before charging, and the battery voltage will gradually increase as the charging progresses. And the cell voltage value of each battery is different. Therefore, it is necessary to set multiple temperature ranges according to the current highest cell voltage of the battery, and for each temperature range and considering factors such as the voltage increase during the charging process, the inventor has also conducted a more detailed and targeted analysis. Distinguish, the detailed technical solution will be explained below, and will not be repeated here.
  • Step 103 Compare the magnitudes of the first charging current and the second charging current, take a smaller value and make corrections to form a third charging current.
  • the magnitudes of the first charging current and the second charging current are compared, the smaller value between the two is taken, and correction is made to form a third charging current. recharging current.
  • the so-called correction is that after the first charging current and the second charging current take a smaller value, a calibration value is subtracted to further reduce the charging current, and the smaller value after the correction is the third charging current.
  • the reason for the correction is that the temperature value of the battery is an estimated value, which is not very accurate. Although the highest cell voltage value is actually measured, there are inevitable errors.
  • the charging current value caused by the error may be too high, so a calibration value is proposed, which is a classic value obtained after a large number of calculations, simulations and actual measurements. While the charging current value may be too high, it also meets the demand for fast charging current. Therefore, after comparing the magnitudes of the first charging current and the second charging current, and taking a smaller value, the third charging current is formed after correction is made.
  • the value of the first charging current is smaller after the comparison between the first charging current and the second charging current, the difference between the value of the first charging current and the calibration value forms the third charging current; If the value of the second charging current is smaller after the current is compared with the second charging current, the difference between the value of the second charging current and the calibration value forms the third charging current.
  • Step 104 Check the maximum temperature and the maximum elevator voltmeter according to the battery temperature to obtain the fourth charging current.
  • the fourth charging current needs to be obtained by checking the highest temperature and the highest elevator voltmeter according to the current temperature of the battery.
  • the table of maximum temperature and maximum elevator voltage is a table of charging current corresponding to known battery temperature.
  • the charging current obtained based on this table is the upper limit allowed under the current temperature, and it is also a value that changes linearly. Through this table, the upper limit value of the charging current at the current temperature of the battery can be obtained.
  • Step 105 Compare the magnitudes of the third charging current and the fourth charging current, take the smaller value and sum it with the consumption current of the high-voltage accessory to obtain the DC charging current required for battery charging.
  • the magnitudes of the third charging current and the fourth charging current are compared again, and the smaller value between the two is taken, and then compared with the consumption of the high-voltage accessory The currents are summed to finally obtain the DC charging current required to charge the battery.
  • the third charging current since the third charging current has integrated the factors of the current temperature of the battery and the current highest cell voltage, and will not exceed the upper limit value of the charging current under the factors of the battery temperature and the cell voltage, it is compared with the fourth charging current. When the value is smaller, it further eliminates the problem that all other possible factors cause the determined charging current to be too high, and the fast charging charging current value is accurate.
  • the upper limit value of the charging current under the cell voltage factor, and the charging current is a constant charging current, there is no problem exceeding the allowable upper limit of the charging current under the current temperature factor of the battery, nor does it exceed the allowable charging under the current cell voltage factor of the battery.
  • the value of the DC charging current needs to be sent to a charging device such as a charging pile before the electric vehicle can start charging.
  • the charging current can be automatically re-determined according to the technical solutions of steps 101 to 105 above. It is understandable that during the charging process, the temperature and cell voltage of the battery change slowly and cannot be abruptly changed. Therefore, as long as the current temperature of the battery and the current highest cell voltage are still within the current range, the charging current will basically not change.
  • the so-called starting temperature range means that the battery is allowed to be charged after the current minimum temperature of the battery is higher than a certain temperature value, and the battery is not allowed to be charged when the temperature is lower than this value. This is to protect the battery. For example, it is currently known that if the initial minimum temperature of the battery is lower than -20°C, it cannot be charged, otherwise the battery life and performance will be seriously affected. Therefore, it is necessary to set the starting temperature range.
  • the so-called special temperature range means that when the battery is in this temperature range, when the temperature increases, it needs to consider that the maximum temperature of the battery is not lower than a value to change the charging current, and when the temperature decreases, it needs to consider that the minimum temperature of the battery is not higher than a value. value when changing the charge current. For example: it is currently known that 15°C is a special value. When the maximum temperature of the battery is not lower than 15°C, the charging current needs to be considered according to the maximum temperature of the battery. The temperature takes into account the charging current. This value is also the preset temperature threshold.
  • the so-called termination temperature range means that after the current maximum temperature of the battery is higher than a certain temperature value, the battery is not allowed to be charged, and the battery is allowed to be charged only when the current maximum temperature is not higher than this value, which is also to protect the battery. For example, it is currently known that if the initial maximum temperature of the battery is higher than 55°C, it cannot be charged, otherwise the battery life and performance will be seriously affected. Therefore, it is necessary to set the end temperature range.
  • the so-called normal temperature range refers to other temperature ranges other than the above-mentioned starting temperature range, special temperature range, and ending temperature range.
  • the battery temperature may rise during charging.
  • the first charging current is changed to the first charging current.
  • Five charging currents; and the battery temperature may also decrease during charging.
  • the lowest temperature of the battery is decreased to not higher than the corresponding second preset current value, the first charging current is changed to the sixth charging current.
  • the battery temperature may rise during charging, and when its maximum temperature rises to no lower than the corresponding third preset current value, change the first charging current to the third Seven charging currents; the battery temperature may also decrease during charging, and when its maximum temperature decreases to no higher than the corresponding fourth preset current value, the first charging current is changed to the eighth charging current.
  • the first charging current is changed to the eleventh charging current; if the lowest temperature of the battery is lower When the corresponding fifth preset current value is used, the first charging current is changed to zero; for a special temperature range, if the maximum temperature of the battery is not lower than the corresponding sixth preset current value, the first charging current is changed.
  • the twelfth charging current is the twelfth charging current; if the lowest temperature of the battery is not higher than the corresponding seventh preset current value, change the first charging current to the thirteenth charging current; for the termination temperature range, if the highest temperature of the battery is not higher than When it is higher than the corresponding eighth preset current value, change the first charging current to the fourteenth charging current; if the maximum temperature of the battery is higher than the corresponding eighth preset current value, change the first charging current to zero .
  • FIG. 2 is an exemplary diagram of setting specific temperature intervals and charging current values in an embodiment of the present disclosure.
  • SOH is the abbreviation of state of heath, Chinese: state of health.
  • the temperature range where the initial minimum temperature of the battery is lower than -20°C is the initial temperature range
  • the temperature range where the initial battery temperature is [5°C, 14°C] is a special temperature range
  • the initial maximum temperature of the battery is equal to 55°C.
  • the temperature range of °C and above is the termination temperature range, and the rest are the normal temperature range.
  • the heating function may also be used to heat the battery to increase the temperature of the battery, so that the battery can be charged in a better state.
  • the cell voltage of the battery due to the characteristics of the battery, the cell voltage of the battery will increase with the charging, so according to the highest cell voltage of the battery, set multiple voltage intervals; set the corresponding voltage interval for each voltage interval the second charging current;
  • the second charging current is changed to the ninth charging current; and the highest cell voltage of the battery is not lower than the corresponding
  • the second charging current is changed to the tenth charging current.
  • the second charging current is changed to zero when the highest cell voltage of the battery is not lower than the preset voltage threshold.
  • the preset voltage threshold of the battery is 4.2V, then when the highest cell voltage of the battery reaches 4.2V, the battery cannot be recharged.
  • the highest cell voltage of the battery 7 voltage intervals are set: the voltage interval in which the highest cell voltage is lower than V1 (Maximum cell voltage ⁇ V1 in Figure 3), and the voltage interval in which the highest cell voltage is not lower than V1 and lower than V2 (V1 ⁇ Maximum cell voltage ⁇ V2 in Fig. 3), the highest cell voltage is not lower than V2 and lower than V3 voltage range (V2 ⁇ Maximum cell voltage ⁇ V3 in Fig.
  • the highest cell voltage is not lower than V3 and Voltage range below V4 (V3 ⁇ Maximum cell voltage ⁇ V4 in Figure 3), the highest cell voltage is not lower than V4 and lower than V5 (V4 ⁇ Maximum cell voltage ⁇ V5 in Figure 3), the highest cell voltage
  • the voltage range is not lower than V5 and lower than V6 (V5 ⁇ Maximum cell voltage ⁇ V6 in Figure 3), and the voltage range where the highest cell voltage is not lower than 4.2V (Maximum cell voltage ⁇ 4.2 in Figure 3).
  • V1, V2, V3, V4, V5, V6 are shown in the following table:
  • the charging current based on this voltage range is set to 15.6A (15.6A*SOH in Figure 3); when the battery When the current highest cell voltage of the battery is not lower than V1 and lower than the voltage range of V2 (V1 ⁇ Maximum cell voltage ⁇ V2 in Figure 3), or the current highest cell voltage of the battery rises to not low as the charging progresses
  • the charging current based on this voltage range is changed to 156A (156A*SOH in Figure 3); when the current highest cell voltage of the battery When the voltage is not lower than V2 and lower than the voltage range of V3 (V2 ⁇ Maximum cell voltage ⁇ V3 in Figure 3), or the current highest cell voltage of the battery increases to not lower than V2 and lower than When the voltage range is V3 (V2 ⁇ Maximum cell voltage ⁇ V3 in Figure 3).
  • the charging current based on this voltage range is changed to 78A (78A*SOH in Figure 3); when the current highest battery voltage When the cell voltage is not lower than V4 and lower than the voltage range of V5 (V4 ⁇ Maximum cell voltage ⁇ V5 in Figure 3), or the current highest cell voltage of the battery increases to not lower than V4 and When the voltage range is lower than V5 (V4 ⁇ Maximum cell voltage ⁇ V5 in Figure 3), the charging current based on this voltage range is changed to 51.5A (51.5A*SOH in Figure 3).
  • the set charging current should be 156A*SOH; but according to the highest cell voltage of 3.98V, which is in the voltage range of not less than 3.875V and less than 4.13V, the set charging current should be is 109.2A*SOH. Then compare the size of the two charging currents and take the smaller value. The charging current should be 109.2A*SOH, and then correct it.
  • the corrected charging current is 108A*SOH, and then according to the battery
  • the temperature is 26°C
  • check the highest temperature and the highest elevator voltmeter, and the corresponding charging current is 156A*SOH. Compare the two and take the smaller value.
  • the charging current is 108A*SOH, and then sum it with the consumption current of the high-voltage accessories.
  • the current consumption of the high-voltage accessory is 10A*SOH, then the final DC charging current required for battery charging is 118A*SOH, and this value can be sent to the charging pile.
  • the corresponding charging current is 51A*SOH, and then the corresponding charging current is determined according to the highest cell voltage at that time, and the above steps are repeated again to obtain a new battery charge.
  • the required DC charging current can be sent to the charging pile.
  • An embodiment of the present disclosure further provides an apparatus for determining a DC charging current.
  • FIG. 4 a block diagram of an apparatus for determining a DC charging current is shown in an embodiment of the present disclosure, and the apparatus includes:
  • a first determining module 410 configured to determine the first charging current according to the battery temperature
  • the second determination module 420 is configured to determine the second charging current according to the cell voltage of the battery
  • a comparison and correction module 430 configured to compare the magnitudes of the first charging current and the second charging current, take a smaller value and make corrections to form a third charging current
  • the table lookup module 440 is used to obtain the fourth charging current by checking the maximum temperature and the maximum elevator voltmeter according to the battery temperature;
  • the determining charging current module 450 is used for comparing the magnitudes of the third charging current and the fourth charging current, taking the smaller value and summing it with the consumption current of the high-voltage accessory to obtain the DC charging current required for battery charging.
  • the device further includes:
  • the temperature interval setting module is used to set multiple temperature intervals according to the initial temperature of the battery
  • the temperature interval setting current module is used to respectively set the corresponding first charging current for each temperature interval
  • the first charging current is changed to the fifth charging current current; when the lowest temperature of the battery during charging is reduced to not higher than the corresponding second preset current value, changing the first charging current to a sixth charging current;
  • the first charging current is changed to the seventh charging current current; when the maximum temperature of the battery during charging is reduced to not higher than the corresponding fourth preset current value, the first charging current is changed to the eighth charging current.
  • the device further includes:
  • the voltage interval setting module is used to set multiple voltage intervals according to the highest cell voltage of the battery
  • the voltage interval setting current module is used to respectively set the corresponding second charging current for each voltage interval
  • the second charging current is changed to the ninth charging current
  • the second charging current is changed to the tenth charging current.
  • the comparison and correction module 430 includes:
  • a correction unit configured to form the third charging current by making a difference between the value of the first charging current and a calibration value if the value of the first charging current is small;
  • the temperature interval setting module is further configured to set an initial temperature interval, a special temperature interval and an end temperature interval according to the initial temperature of the battery;
  • the temperature interval setting current module is further configured to respectively set corresponding first charging currents for the starting temperature interval, the special temperature interval and the ending temperature interval;
  • the first charging current is changed to the eleventh charging current; if the lowest temperature of the battery is low changing the first charging current to zero at a corresponding fifth preset current value;
  • the first charging current is changed to the twelfth charging current; if the lowest temperature of the battery is not higher than the corresponding When the seventh preset current value is , the first charging current is changed to the thirteenth charging current;
  • the first charging current is changed to the fourteenth charging current; if the maximum temperature of the battery is higher than the corresponding At the eighth preset current value, the first charging current is changed to zero.
  • the voltage interval setting current module is further configured to change the second charging current to zero when the highest cell voltage of the battery is not lower than a preset voltage threshold.
  • An embodiment of the present disclosure further provides an automobile, where the automobile includes: a vehicle controller; the vehicle controller executes the method for determining a DC charging current described in any one of the above steps 101 to 105 .
  • the method for determining the DC charging current of the embodiments of the present disclosure comprehensively considers the factors of the battery temperature and the cell voltage, so that the upper limit value of the charging current under the factors of the battery temperature and the cell voltage will not be exceeded.
  • the charging current obtained from the table is taken to be smaller after comparison, and the further accurate charging current value of fast charging will not exceed the upper limit value of charging current under the factors of battery temperature and cell voltage while satisfying the charging current demand of fast charging, and charging
  • the current is a constant charging current, there is no problem of exceeding the upper limit of the charging current allowed under the current temperature factor of the battery, and there is no problem exceeding the upper limit of the charging current allowed under the current cell voltage factor of the battery, let alone the current of the charging current.
  • the problem of repeated changes in the value of larger and smaller values minimizes the impact of current fast charging on battery life and performance, and has high practical value.
  • the device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
  • Various component embodiments of the present disclosure may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components in a computing processing device according to embodiments of the present disclosure.
  • DSP digital signal processor
  • the present disclosure can also be implemented as apparatus or apparatus programs (eg, computer programs and computer program products) for performing some or all of the methods described herein.
  • Such a program implementing the present disclosure may be stored on a computer-readable medium, or may be in the form of one or more signals. Such signals may be downloaded from Internet sites, or provided on carrier signals, or in any other form.
  • Figure 5 illustrates a computing processing device that may implement methods in accordance with the present disclosure.
  • the computing processing device traditionally includes a processor 1010 and a computer program product or computer readable medium in the form of a memory 1020 .
  • the memory 1020 may be electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has storage space 1030 for program code 1031 for performing any of the method steps in the above-described methods.
  • the storage space 1030 for program codes may include various program codes 1031 for implementing various steps in the above methods, respectively. These program codes can be read from or written to one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks. Such computer program products are typically portable or fixed storage units as described with reference to FIG. 6 .
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 5 .
  • the program code may, for example, be compressed in a suitable form.
  • the storage unit includes computer readable code 1031', ie code readable by a processor such as 1010, for example, which, when executed by a computing processing device, causes the computing processing device to perform any of the methods described above. of the various steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本公开提供了一种确定直流充电电流的方法、装置以及一种汽车,涉及汽车控制领域。所述方法包括:根据电池温度确定第一充电电流;根据电池的单体电压确定第二充电电流;比较第一充电电流和第二充电电流的大小,取较小值并做修正,形成第三充电电流;根据电池温度查最高温度及最高电梯电压表得到第四充电电流;比较第三充电电流和第四充电电流的大小,取较小值后与高压附件消耗电流求和,得到电池充电所需的直流充电电流。本公开在满足快充充电电流需求的同时,不但不会超出电池温度以及单体电压因素下充电电流上限值,且充电电流为恒定的充电电流,将目前快充充电对电池寿命和性能的影响降到最低,具有较高的实用性价值。

Description

一种确定直流充电电流的方法、装置以及一种汽车
相关申请的交叉引用
本公开要求在2020年10月09日提交中国专利局、申请号为202011074538.9、名称为“一种确定直流充电电流的方法、装置以及一种汽车”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及汽车控制领域,尤其涉及一种确定直流充电电流的方法、装置以及一种汽车。
背景技术
目前随着环保要求的提升,新能源车型日渐普及,尤其是以电池为驱动能源的电动汽车受到大众的喜爱。但是随便电动汽车的普及,随之而来的问题也越来越多,解决这些问题就成了当前新能源车型面临的严峻考验。
在众多问题中充电桩不足以及充电时间较长的问题显得尤为重要,为了缩短充电时间,快充充电,即直流充电也就应运而生。
但是对于快充的充电电流设置与交流充电所设置的充电电流存在很大的差异性,快充电流大小的设置需考虑多方面因素,基于充电时间较短的要求,一般情况下快充的充电电流呈线性变化且电流值较大,而呈线性变化且电流值较大的充电电流对电池寿命以及性能的影响很大,如何在保证充电时间较短的同时,将对电池寿命以及性能的影响降到最低,是业界亟需解决的问题。
发明内容
本公开提供一种确定直流充电电流的方法、装置以及一种汽车,在满足快充充电电流需求的同时,将其对电池寿命以及性能的影响降到最低。
为了解决上述技术问题,本公开实施例第一方面提供了一种确定直流充电电流的方法,所述方法包括:
根据电池温度确定第一充电电流;
根据电池的单体电压确定第二充电电流;
比较所述第一充电电流和所述第二充电电流的大小,取较小值并做修正,形成第三充电电流;
根据电池温度查最高温度及最高电梯电压表得到第四充电电流;
比较所述第三充电电流和所述第四充电电流的大小,取较小值后与高压附件消耗电流求和,得到电池充电所需的直流充电电流;
将所述直流充电电流发送至充电桩。
可选地,在根据电池温度确定第一充电电流之前,还包括:
按照电池初始温度,设置多个温度区间;
为每个温度区间分别设置相应的第一充电电流;
其中,对于低于预设温度阈值的每个温度区间,在充电期间电池的最低温度升高至不低于对应的第一预设电流值时,将所述第一充电电流更改为第五充电电流;在充电期间电池的最低温度降低至不高于对应的第二预设电流值时,将所述第一充电电流更改为第六充电电流;
其中,对于高于预设温度阈值的每个温度区间,在充电期间电池的最高温度升高至不低于对应的第三预设电流值时,将所述第一充电电流更改为第七充电电流;在充电期间电池的最高温度降低至不高于对应的第四预设电流值时,将所述第一充电电流更改为第八充电电流。
可选地,在根据电池的单体电压确定第二充电电流之前,还包括:
按照电池的最高单体电压,设置多个电压区间;
为每个电压区间分别设置相应的第二充电电流;
其中,在充电期间电池的最高单体电压低于对应的第一预设电压值时,将所述第二充电电流更改为第九充电电流;
在充电期间电池的最高单体电压不低于对应的第一预设电压值,且同时低于第二预设电压值时,将所述第二充电电流更改为第十充电电流。
可选地,比较所述第一充电电流和所述第二充电电流的大小,取较小值并做修正,形成第三充电电流,包括:
比较所述第一充电电流和所述第二充电电流的大小,取较小值;
若所述第一充电电流的值较小,则所述第一充电电流的值与标定值做差形成所述第三充电电流;
若所述第二充电电流的值较小,则所述第二充电电流的值与所述标定值 做差形成所述第三充电电流。
可选地,还包括:
按照电池初始温度,设置起始温度区间、特殊温度区间和终止温度区间;
为所述起始温度区间、所述特殊温度区间和所述终止温度区间分别设置相应的第一充电电流;
其中,在所述起始温度区间内,若电池的最低温度不低于对应的第五预设电流值时,将所述第一充电电流更改为第十一充电电流;若电池的最低温度低于对应的第五预设电流值时,将所述第一充电电流更改为零;
在所述特殊温度区间内,若电池的最高温度不低于对应的第六预设电流值时,将所述第一充电电流更改为第十二充电电流;若电池的最低温度不高于对应的第七预设电流值时,将所述第一充电电流更改为第十三充电电流;
在所述终止温度区间内,若电池的最高温度不高于对应的第八预设电流值时,将所述第一充电电流更改为第十四充电电流;若电池的最高温度高于对应的第八预设电流值时,将所述第一充电电流更改为零。
可选地,还包括:
在所述电池的最高单体电压不低于预设电压阈值时,将所述第二充电电流更改为零。
本公开实施例第二方面提供一种确定直流充电电流的装置,所述装置包括:
第一确定模块,用于根据电池温度确定第一充电电流;
第二确定模块,用于根据电池的单体电压确定第二充电电流;
比较修正模块,用于比较所述第一充电电流和所述第二充电电流的大小,取较小值并做修正,形成第三充电电流;
查表模块,用于根据电池温度查最高温度及最高电梯电压表得到第四充电电流;
确定充电电流模块,用于比较所述第三充电电流和所述第四充电电流的大小,取较小值后与高压附件消耗电流求和,得到电池充电所需的直流充电电流。
可选地,所述装置还包括:
温度区间设置模块,用于按照电池初始温度,设置多个温度区间;
温度区间设置电流模块,用于为每个温度区间分别设置相应的第一充电电流;
其中,对于低于预设温度阈值的每个温度区间,在充电期间电池的最低温度升高至不低于对应的第一预设电流值时,将所述第一充电电流更改为第五充电电流;在充电期间电池的最低温度降低至不高于对应的第二预设电流值时,将所述第一充电电流更改为第六充电电流;
其中,对于高于预设温度阈值的每个温度区间,在充电期间电池的最高温度升高至不低于对应的第三预设电流值时,将所述第一充电电流更改为第七充电电流;在充电期间电池的最高温度降低至不高于对应的第四预设电流值时,将所述第一充电电流更改为第八充电电流。
可选地,所述装置还包括:
电压区间设置模块,用于按照电池的最高单体电压,设置多个电压区间;
电压区间设置电流模块,用于为每个电压区间分别设置相应的第二充电电流;
其中,在充电期间电池的最高单体电压低于对应的第一预设电压值时,将所述第二充电电流更改为第九充电电流;
在充电期间电池的最高单体电压不低于对应的第一预设电压值,且同时低于第二预设电压值时,将所述第二充电电流更改为第十充电电流。
可选地,所述比较修正模块包括:
比较取小单元,用于比较所述第一充电电流和所述第二充电电流的大小,取较小值;
修正单元,用于若所述第一充电电流的值较小,则所述第一充电电流的值与标定值做差形成所述第三充电电流;
还用于若所述第二充电电流的值较小,则所述第二充电电流的值与所述标定值做差形成所述第三充电电流。
可选地,所述温度区间设置模块还用于按照电池初始温度,设置起始温度区间、特殊温度区间和终止温度区间;
所述温度区间设置电流模块还用于为所述起始温度区间、所述特殊温度区间和所述终止温度区间分别设置相应的第一充电电流;
其中,在所述起始温度区间内,若电池的最低温度不低于对应的第五预 设电流值时,将所述第一充电电流更改为第十一充电电流;若电池的最低温度低于对应的第五预设电流值时,将所述第一充电电流更改为零;
在所述特殊温度区间内,若电池的最高温度不低于对应的第六预设电流值时,将所述第一充电电流更改为第十二充电电流;若电池的最低温度不高于对应的第七预设电流值时,将所述第一充电电流更改为第十三充电电流;
在所述终止温度区间内,若电池的最高温度不高于对应的第八预设电流值时,将所述第一充电电流更改为第十四充电电流;若电池的最高温度高于对应的第八预设电流值时,将所述第一充电电流更改为零。
可选地,所述电压区间设置电流模块还用于在所述电池的最高单体电压不低于预设电压阈值时,将所述第二充电电流更改为零。
本公开实施例第三方面提供一种汽车,所述汽车包括:整车控制器;
所述整车控制器执行如以上任一所述的确定直流充电电流的方法。
本公开提供的确定直流充电电流的方法,根据电池温度确定第一充电电流,根据电池的单体电压确定第二充电电流,之后比较第一充电电流和第二充电电流的大小,取较小值并做修正,形成第三充电电流;该第三充电电流综合电池温度和单体电压的因素,取两者的较小值,保证充电电流大小的基础上,不会超出电池温度以及单体电压因素下充电电流上限值。
在第三充电电流的基础上,再根据电池温度查最高温度及最高电梯电压表得到第四充电电流,之后比较第三充电电流和第四充电电流的大小,取较小值后与高压附件消耗电流求和,得到电池充电所需的直流充电电流,最后将直流充电电流发送至充电桩。
由于第三充电电流已经综合电池温度和单体电压的因素,不会超出电池温度以及单体电压因素下充电电流上限值,因此再与第四充电电流比较后取小,进一步的精确快充充电电流值大小,在满足快充充电电流需求的同时,不会超出电池温度以及单体电压因素下充电电流上限值,且充电电流不再呈线性变化,而为恒定的充电电流,将其对电池寿命和性能的影响降到最低,具有较高的实用性价值。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例一种确定直流充电电流的方法的流程图;
图2是本公开实施例中具体温度区间以及充电电流值设置的示例图;
图3是本公开实施例中具体电压区间以及充电电流值设置的示例图;
图4是本公开实施例一种确定直流充电电流的装置的框图;
图5示意性地示出了用于执行根据本公开的方法的计算处理设备的框图;并且
图6示意性地示出了用于保持或者携带实现根据本公开的方法的程序代码的存储单元。
具体实施例
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
发明人发现,目前快充电流大小的设置需考虑多方面因素,基于充电时间较短的要求,一般情况下快充的充电电流呈线性变化且电流值较大,而呈线性变化且电流值较大的充电电流可能会超出电池当前温度因素下允许的充电电流上限,也可能会超过电池当前单体电压因素下允许的充电电流上限,并且充电电流的线性变化并不稳定,其会呈现电流值变大、变小的反复变化,而不是持续变大或者持续变小。
因此上述情况都会对电池寿命以及性能产生严重影响,导致电池寿命较短,电池性能较差,间接造成用户驾乘体验感差,用户可能使用较短时间就需要维修甚至更换电池,这同样间接的提升了用户的使用成本,造成较差的使用感。
针对上述问题,发明人进过大量研究、计算、仿真以及实地测试,创造性的提出本公开的确定直流充电电流的方法,以下对本公开的技术方案进行详细描述和说明。
图1示出了本公开实施例一种确定直流充电电流的方法的流程图。该方法包括:
步骤101:根据电池温度确定第一充电电流。
本公开实施例中,在电动汽车进行充电前,即,电动汽车接入直流充电桩之前,首先根据电池温度确定第一充电电流。所谓第一充电电流即为基于电池当前温度因素下,允许的充电电流的上限值。
本公开实施例中,为了进一步的精确基于电池当前温度因素下,允许的充电电流的上限值,发明人创造性的提出了如下构思:
按照电池初始温度,设置多个温度区间,之后再为每个温度区间分别设置相应的第一充电电流。即,根据电池将要进行充电时的当前温度,设置多个温度区间,由于电池的特殊性,温度是一个关键且敏感的因素,一般情况下,基于电池的工作效率以及寿命、性能等多方面因素,电动汽车会有空调等设备对电池进行加热和散热,以维持电池的温度。但实际中,限于环境温度、工作状态等因素,电池温度不可避免的会存在各种大小,因此需要依据电池的当前温度,也即初始温度,来设置多个温度区间,而针对每个温度区间以及考虑到充电过程中的各种因素,发明人还进行了更为细致的、有针对性的区分,详细的技术方案在下文处解释,在此先不赘述。
步骤102:根据电池的单体电压确定第二充电电流。
本公开实施例中,同样的,在电动汽车进行充电前,即,电动汽车接入直流充电桩之前,还需要根据电池的单体电压确定第二充电电流。所谓第二充电电流即为基于电池当前单体电压因素下,允许的充电电流的上限值。
本公开实施例中,为了进一步的精确基于电池当前单体电压因素下,允许的充电电流的上限值,发明人还创造性的提出了如下构思:
按照电池的最高单体电压,设置多个温度区间,之后再为每个温度区间分别设置相应的第二充电电流。即,根据电池将要进行充电时的当前最高单体电压,设置多个温度区间。由于电池的特殊性,最高单体电压同样也是一个关键且敏感的因素,一般情况下,电动汽车使用的是电池模块,而电池模 块包括多个单体电池,基于电池的工作效率、寿命、性能以及制作工艺等多方面因素,每个电池的单体电压可能会略有差别。但实际中,限于制作工艺、工作状态等因素,随着使用时间的增长,每个电池的单体电压不可避免的会出现变化,彼此之间的电压值差别可能会增大,而且电池在充满电时的电压一般为其电压允许上限值,使用一段时间后的电池电压自然会下降,同理,充电前电池的电压会比较低,而随着充电的进行,电池电压会逐渐升高,并且每个电池的单体电压值大小不同。因此需要依据电池的当前最高单体电压,来设置多个温度区间,而针对每个温度区间以及考虑到充电过程中的电压升高等因素,发明人还进行了更为细致的、有针对性的区分,详细的技术方案在下文处解释,在此先不赘述。
步骤103:比较第一充电电流和第二充电电流的大小,取较小值并做修正,形成第三充电电流。
本公开实施例中,在确定了第一充电电流和第二充电电流之后,比较第一充电电流和第二充电电流的大小,取两者之间的较小值,并做修正,形成第三充电电流。所谓修正就是在第一充电电流和第二充电电流取较小值之后,再减去一个标定值,进一步的降低充电电流,修正后的取小值即为第三充电电流。之所以做修正,是因为电池的温度值是一个估算值,其并不是十分精确,而最高单体电压值虽然是实际测量得到的,但是不可避免的存在误差,为了消除估算的不精确以及测量误差产生的充电电流值可能偏高问题,所以提出了一个标定值,该标定值是经过大量的计算、仿真以及实测之后得到的一个经典值,在保证可以消除估算的不精确以及测量误差产生的充电电流值可能偏高问题的同时,还满足了快充充电电流需求的大小。因此,在比较第一充电电流和第二充电电流的大小,取较小值之后,再做修正,才形成第三充电电流。
自然可以理解的是,若第一充电电流和第二充电电流比较后第一充电电流的值较小,则第一充电电流的值与标定值的做差形成第三充电电流;若第一充电电流和第二充电电流比较后第二充电电流的值较小,则第二充电电流的值与标定值的做差形成第三充电电流。
步骤104:根据电池温度查最高温度及最高电梯电压表得到第四充电电流。
本公开实施例中,在确定第三充电电流之后,还需要根据电池当前温度 查最高温度及最高电梯电压表得到第四充电电流。最高温度及最高电梯电压表为目前已知的电池温度对应的充电电流的表格,基于该表得到的充电电流是当前温度下允许的上限值,同时也是一个线性变化的值。通过该表即可得到电池当前温度下的充电电流上限值。
步骤105:比较第三充电电流和第四充电电流的大小,取较小值后与高压附件消耗电流求和,得到电池充电所需的直流充电电流。
本公开实施例中,在确定第三充电电流以及第四充电电流之后,再一次比较第三充电电流和第四充电电流的大小,取这两者之间的较小值,再与高压附件消耗电流求和,最终得到电池充电所需的直流充电电流。
本公开实施例中,由于第三充电电流已经综合电池当前温度和当前最高单体电压的因素,不会超出电池温度以及单体电压因素下充电电流上限值,因此再与第四充电电流比较后取小,就进一步的消除了所有其他可能因素导致确定出的充电电流偏高的问题,精确了快充充电电流值大小,在满足快充充电电流需求的同时,不但不会超出电池温度以及单体电压因素下充电电流上限值,且充电电流为恒定的充电电流,不存在超出电池当前温度因素下允许的充电电流上限的问题,也不存在超过电池当前单体电压因素下允许的充电电流上限的问题,更不存在充电电流的电流值变大、变小的反复变化的问题,将目前快充充电对电池寿命和性能的影响降到最低。
需要说明的是,在最终得到电池充电所需的直流充电电流之后,还需要将该直流充电电流的值发送给充电桩等充电设备,电动汽车才可以开始充电。而在充电过程中,随着电池温度和单体电压的变化,可以按照上述步骤101~步骤105的技术方案,自动重新确定充电电流。可以理解的是,充电过程中,电池的温度和单体电压是缓慢变化的,不可能是突变的,因此只要电池当前温度和当前最高单体电压还处于当前区间范围时,充电电流基本不会变化,为恒定值,只有当电池当前温度或者当前最高单体电压变化至其他区间范围,充电电流才可能变化为其他值,并且变化为其他值之后,在没有出现再次变化至其他区间范围之前,均会以该值进行充电,而并不会出现变大或者变小的情况。
以下,对本公开实施例中根据电池初始温度,设置多个温度区间的技术方案,以及根据电池的最高单体电压,设置多个电压区间的技术方案,分别 进行详细解释。
针对电池初始温度:由于电池的特性,需要设置起始温度区间、特殊温度区间、终止温度区间以及常规温度区间。
所谓起始温度区间,是指电池的当前最低温度高于一定温度值之后,才允许电池进行充电,而低于该值时不允许电池进行充电,这样做是为了保护电池。例如:目前已知的,若是电池初始最低温度低于-20℃,则不可以进行充电,否则会严重影响电池寿命以及性能。因此需要设置起始温度区间。
所谓特殊温度区间,是指电池在该温度区间内,当温度升高时需要考虑电池的最高温度不低于一个值时变化充电电流,而当温度降低时需要考虑电池的最低温度不高于一个值时变化充电电流。例如:目前已知的,15℃是一个比较特殊的值,当电池最高温度不低于15℃时,就需要按照电池的最高温度考虑充电电流,而在15℃以下时,需要按照电池的最低温度考虑充电电流。该值也即为预设温度阈值。
所谓终止温度区间,是指电池的当前最高温度高于一定温度值之后,不允许电池进行充电,而只有当前最高温度不高于该值时,才允许电池进行充电,这样做也是为了保护电池。例如:目前已知的,若是电池初始最高温度高于55℃,则不可以进行充电,否则会严重影响电池寿命以及性能。因此需要设置终止温度区间。
所谓常规温度区间,就是指除上述起始温度区间、特殊温度区间、终止温度区间以外的其他温度区间。对于低于预设温度阈值的每个温度区间,在充电期间电池温度可能会上升,当其最低温度升高至不低于对应的第一预设电流值时,将第一充电电流更改为第五充电电流;而在充电期间电池温度也可能会降低,当其最低温度降低至不高于对应的第二预设电流值时,将第一充电电流更改为第六充电电流。
对于高于预设温度阈值的每个温度区间,在充电期间电池温度可能会上升,当其最高温度升高至不低于对应的第三预设电流值时,将第一充电电流更改为第七充电电流;在充电期间电池温度也可能会降低,当其最高温度降低至不高于对应的第四预设电流值时,将第一充电电流更改为第八充电电流。
本公开实施例中,针对起始温度区间内,若电池的最低温度不低于对应的第五预设电流值时,将第一充电电流更改为第十一充电电流;若电池的最 低温度低于对应的第五预设电流值时,将第一充电电流更改为零;针对特殊温度区间内,若电池的最高温度不低于对应的第六预设电流值时,将第一充电电流更改为第十二充电电流;若电池的最低温度不高于对应的第七预设电流值时,将第一充电电流更改为第十三充电电流;针对终止温度区间内,若电池的最高温度不高于对应的第八预设电流值时,将第一充电电流更改为第十四充电电流;若电池的最高温度高于对应的第八预设电流值时,将第一充电电流更改为零。
上述针对电池初始温度,设置多个温度区间,以及每个温度区间的充电电流,可以结合图2,进一步进行清晰解释,图2为本公开实施例中具体温度区间以及充电电流值设置的示例图:
1)、电池初始最低温度低于-20℃(图2中Tmin≤-20℃),则基于该温度区间的充电电流设置为0A(图2中DC charger current=0A),也就是电池不允许充电;之后若是电池温度升高,当电池当前温度的最低温度不低于-15℃时(图2中Tmin≥-15℃),将充电电流更改为7.8A*SOH(图2中DC charger current=7.8A*SOH)。SOH为state of heath的缩写,中文:健康状态。
2)、电池初始温度处于[-19℃,-6℃](图2中-19℃≤Tmin≤-6℃),则基于该温度区间的充电电流设置为7.8A*SOH(图2中DC charger current=7.8A*SOH);之后若是电池温度升高,当电池当前温度的最低温度不小于-3℃时(图2中Tmin≥-3℃),充电电流更改为15.6A*SOH(图2中DC charger current=15.6A*SOH);同样,若是电池温度降低,当电池当前温度的最低温度不大于-20℃时(图2中Tmin≤-20℃),充电电流更改为0(图2中DC charger current=0A)。
3)、电池初始温度处于[-5℃,4℃],则基于该温度区间的充电电流设置为15.6A*SOH(图2中DC charger current=15.6A*SOH);之后若是电池温度升高,当电池当前温度的最低温度不小于7℃时(图2中Tmin≥7℃),充电电流更改为31.2A*SOH(图2中DC charger current=31.2A*SOH);同样,若是电池温度降低,当电池当前温度的最低温度不高于-8℃时(图2中Tmin≤-8℃),充电电流更改为7.8A*SOH(图2中DC charger current=7.8A*SOH)。
4)、电池初始温度处于[5℃,14℃],则基于该温度区间的充电电流设置为31.2A*SOH(图2中DC charger current=31.2A*SOH);之后若是电池温度 升高,当电池当前温度的最高温度不低于15℃时(图2中Tmax≥15℃),充电电流更改为78A*SOH(图2中DC charger current=78A*SOH);同样,若是电池温度降低,当电池当前温度的最低温度不高于3℃时(图2中Tmin≤3℃),充电电流更改为15.6A*SOH(图2中DC charger current=15.6A*SOH)。
5)、电池初始温度处于[15℃,19℃],则基于该温度区间的充电电流设置为78A*SOH(图2中DC charger current=78A*SOH);之后若是电池温度升高,当电池当前温度的最高温度不低于22℃时(图2中Tmax≥22℃),充电电流更改为156A*SOH(图2中DC charger current=156A*SOH);同样,若是电池温度降低,当电池当前温度的最高温度不高于13℃时(图2中Tmax≤13℃),充电电流更改为31.2A*SOH(图2中DC charger current=31.2A*SOH)。
6)、电池初始温度处于[20℃,40℃],则基于该温度区间的充电电流设置为156A*SOH(图2中DC charger current=156A*SOH);之后若是电池温度升高,当电池当前温度的最高温度不低于43℃时(图2中Tmax≥43℃),充电电流更改为51A*SOH(图2中DC charger current=51A*SOH);同样,若是电池温度降低,当电池当前温度的最高温度不高于17℃时(图2中Tmax≤17℃),充电电流更改为78A*SOH(图2中DC charger current=78A*SOH)。
7)、电池初始温度处于[41℃,52℃],则基于该温度区间的充电电流设置为51A*SOH(图2中DC charger current=51A*SOH);之后若是电池温度升高,当电池当前温度的最高温度不低于53℃时(图2中Tmax≥53℃),充电电流更改为15.6A*SOH(图2中DC charger current=15.6A*SOH);同样,若是电池温度降低,当电池当前温度的最高温度不高于38℃时(图2中Tmax≤38℃),充电电流更改为156A*SOH(图2中DC charger current=156A*SOH)。
8)、电池初始温度处于[53℃,54℃],则基于该温度区间的充电电流设置为15.6A*SOH(图2中DC charger current=15.6A*SOH);之后若是电池温度升高,当电池当前温度的最高温度不低于55℃时(图2中Tmax≥55℃),充电电流更改为0A(图2中DC charger current=0A);同样,随着电池温度降低,当电池当前温度的最高温度不高于50℃时(图2中Tmax≤50℃),充电电流更改为51A*SOH(图2中DC charger current=51A*SOH)。
9)、电池初始最高温度等于55℃(图2中Tmax=55℃),则基于该温度区间的充电电流设置为0(图2中DC charger current=0A),即不允许充电, 需要给电池冷却,若是电池温度降低,当电池当前温度的最高温度不高于54℃时(图2中Tmax≤54℃),充电电流更改为15.6A*SOH(图2中DC charger current=15.6A*SOH)。
上述9个温度区间中,电池初始最低温度低于-20℃的温度区间为起始温度区间,电池初始温度处于[5℃,14℃]的温度区间为特殊温度区间,电池初始最高温度等于55℃以及以上的温度区间为终止温度区间,其余的为常规温度区间。
需要说明的是,一般情况下,电池充电过程中电池温度自然会缓慢上升,但是当外界环境温度过于恶略时,也可能出现虽然电池在充电,但是电池温度却在下降的情况。当然,在各种条件、因素允许的情况下,也可能会使用加热功能来对电池进行加热,以提升电池的温度,让电池处于更优的状态下被充电。
针对电池的单体电压:由于电池的特性,电池的单体电压会随着充电的进行而升高,因此按照电池的最高单体电压,设置多个电压区间;为每个电压区间分别设置相应的第二充电电流;
其中,在充电期间电池的最高单体电压低于对应的第一预设电压值时,将第二充电电流更改为第九充电电流;而在充电期间电池的最高单体电压不低于对应的第一预设电压值,且同时低于第二预设电压值时,将第二充电电流更改为第十充电电流。还有一个特殊的情况,在电池的最高单体电压不低于预设电压阈值时,将第二充电电流更改为零。例如:电池的预设电压阈值为4.2V,那么当电池的最高单体电压达到4.2V时,电池不可以再充电。
上述针对电池的最高单体电压,设置多个电压区间,以及每个电压区间的充电电流,可以结合图3,进一步进行清晰解释,图3为本公开实施例中具体电压区间以及充电电流值设置的示例图:
按照电池的最高单体电压,设置7个电压区间:最高单体电压低于V1的电压区间(图3中Maximum cell voltage<V1)、最高单体电压不低于V1且低于V2的电压区间(图3中V1≤Maximum cell voltage<V2)、最高单体电压不低于V2且低于V3的电压区间(图3中V2≤Maximum cell voltage<V3)、最高单体电压不低于V3且低于V4的电压区间(图3中V3≤Maximum cell voltage<V4)、最高单体电压不低于V4且低于V5的电压区间(图3中V4 ≤Maximum cell voltage<V5)、最高单体电压不低于V5且低于V6的电压区间(图3中V5≤Maximum cell voltage<V6),以及最高单体电压不低于4.2V的电压区间(图3中Maximum cell voltage≥4.2)。
其中,V1、V2、V3、V4、V5、V6的取值见下表:
V 1 3.2V
V2 3.875V
V3 4.13V
V 4 4.14V
V5 4.15V
V6 4.16V
当电池的当前最高单体电压低于V1的电压区间时(图3中Maximum cell voltage<V1),则基于该电压区间的充电电流设置为15.6A(图3中15.6A*SOH);当电池的当前最高单体电压不低于V1且低于V2的电压区间时(图3中V1≤Maximum cell voltage<V2),或者是随着充电的进行电池的当前最高单体电压升高到不低于V1且低于V2的电压区间时(图3中V1≤Maximum cell voltage<V2),则基于该电压区间的充电电流更改为156A(图3中156A*SOH);当电池的当前最高单体电压不低于V2且低于V3的电压区间时(图3中V2≤Maximum cell voltage<V3),或者是随着充电的进行电池的当前最高单体电压升高到不低于V2且低于V3的电压区间时(图3中V2≤Maximum cell voltage<V3),则基于该电压区间的充电电流更改为109.2A(图3中109.2A*SOH)。
当电池的当前最高单体电压不低于V3且低于V4的电压区间时(图3中V3≤Maximum cell voltage<V4),或者是随着充电的进行电池的当前最高单体电压升高到不低于V3且低于V4的电压区间时(图3中V3≤Maximum cell voltage<V4),则基于该电压区间的充电电流更改为78A(图3中78A*SOH);当电池的当前最高单体电压不低于V4且低于V5的电压区间时(图3中V4≤Maximum cell voltage<V5),或者是随着充电的进行电池的当前最高单体电压升高到不低于V4且低于V5的电压区间时(图3中V4≤Maximum cell voltage<V5),则基于该电压区间的充电电流更改为51.5A(图3中 51.5A*SOH)。
当电池的当前最高单体电压不低于V5且低于V6的电压区间时(图3中V5≤Maximum cell voltage<V6),或者是随着充电的进行电池的当前最高单体电压升高到不低于V5且低于V6的电压区间时(图3中V5≤Maximum cell voltage<V6),则基于该电压区间的充电电流更改为15.6A(图3中15.6A*SOH);当电池的当前最高单体电压不低于4.2V的电压区间时(图3中Maximum cell voltage≥4.2),或者是随着充电的进行电池的当前最高单体电压升高到不低于4.2V的电压区间时(图3中Maximum cell voltage≥4.2),则基于该电压区间的充电电流更改为0A(图3中0A)。
结合上述示例,例举一个简单的实例,说明本公开实施例的确定直流充电电流的方法:假设电池初始温度为26℃,最高单体电压为3.98V,那么根据初始温度26℃,其处于[20℃,40℃]这个温度区间,设置的充电电流应该为156A*SOH;但根据最高单体电压3.98V,其处于不低于3.875V且低于4.13V的电压区间,设置的充电电流应该为109.2A*SOH。那么比较两者充电电流的大小后取较小值,充电电流应该为109.2A*SOH,再对其进行修正,假设标定值为1.2,那么修正后的充电电流为108A*SOH,之后再根据电池温26℃度查最高温度及最高电梯电压表得到对应的充电电流为156A*SOH,比较两者的大小取较小值,充电电流即为108A*SOH,再与高压附件消耗电流求和,假设高压附件消耗电流为10A*SOH,那么最终得到电池充电所需的直流充电电流就为118A*SOH,将该数值发送至充电桩即可。之后若是电池温度升高至最高温度不低于43℃,则对应的充电电流为51A*SOH,再根据当时的最高单体电压确定对应的充电电流,再一次重复上述步骤,再次得到电池充电新的所需的直流充电电流,将该新的数值发送至充电桩即可。
本公开实施例还提供一种确定直流充电电流的装置,参照图4,示出了本公开实施例一种确定直流充电电流的装置的框图,所述装置包括:
第一确定模块410,用于根据电池温度确定第一充电电流;
第二确定模块420,用于根据电池的单体电压确定第二充电电流;
比较修正模块430,用于比较所述第一充电电流和所述第二充电电流的大小,取较小值并做修正,形成第三充电电流;
查表模块440,用于根据电池温度查最高温度及最高电梯电压表得到第四 充电电流;
确定充电电流模块450,用于比较所述第三充电电流和所述第四充电电流的大小,取较小值后与高压附件消耗电流求和,得到电池充电所需的直流充电电流。
可选地,所述装置还包括:
温度区间设置模块,用于按照电池初始温度,设置多个温度区间;
温度区间设置电流模块,用于为每个温度区间分别设置相应的第一充电电流;
其中,对于低于预设温度阈值的每个温度区间,在充电期间电池的最低温度升高至不低于对应的第一预设电流值时,将所述第一充电电流更改为第五充电电流;在充电期间电池的最低温度降低至不高于对应的第二预设电流值时,将所述第一充电电流更改为第六充电电流;
其中,对于高于预设温度阈值的每个温度区间,在充电期间电池的最高温度升高至不低于对应的第三预设电流值时,将所述第一充电电流更改为第七充电电流;在充电期间电池的最高温度降低至不高于对应的第四预设电流值时,将所述第一充电电流更改为第八充电电流。
可选地,所述装置还包括:
电压区间设置模块,用于按照电池的最高单体电压,设置多个电压区间;
电压区间设置电流模块,用于为每个电压区间分别设置相应的第二充电电流;
其中,在充电期间电池的最高单体电压低于对应的第一预设电压值时,将所述第二充电电流更改为第九充电电流;
在充电期间电池的最高单体电压不低于对应的第一预设电压值,且同时低于第二预设电压值时,将所述第二充电电流更改为第十充电电流。
可选地,所述比较修正模块430包括:
比较取小单元,用于比较所述第一充电电流和所述第二充电电流的大小,取较小值;
修正单元,用于若所述第一充电电流的值较小,则所述第一充电电流的值与标定值做差形成所述第三充电电流;
还用于若所述第二充电电流的值较小,则所述第二充电电流的值与所述 标定值做差形成所述第三充电电流。
可选地,所述温度区间设置模块还用于按照电池初始温度,设置起始温度区间、特殊温度区间和终止温度区间;
所述温度区间设置电流模块还用于为所述起始温度区间、所述特殊温度区间和所述终止温度区间分别设置相应的第一充电电流;
其中,在所述起始温度区间内,若电池的最低温度不低于对应的第五预设电流值时,将所述第一充电电流更改为第十一充电电流;若电池的最低温度低于对应的第五预设电流值时,将所述第一充电电流更改为零;
在所述特殊温度区间内,若电池的最高温度不低于对应的第六预设电流值时,将所述第一充电电流更改为第十二充电电流;若电池的最低温度不高于对应的第七预设电流值时,将所述第一充电电流更改为第十三充电电流;
在所述终止温度区间内,若电池的最高温度不高于对应的第八预设电流值时,将所述第一充电电流更改为第十四充电电流;若电池的最高温度高于对应的第八预设电流值时,将所述第一充电电流更改为零。
可选地,所述电压区间设置电流模块还用于在所述电池的最高单体电压不低于预设电压阈值时,将所述第二充电电流更改为零。
本公开实施例还提供一种汽车,所述汽车包括:整车控制器;所述整车控制器执行以上步骤101~步骤105中任一所述的确定直流充电电流的方法。
通过上述实施例,本公开实施例的确定直流充电电流的方法,由于综合考虑电池温度和单体电压的因素,使得不会超出电池温度以及单体电压因素下充电电流上限值,再与查表得到的充电电流比较后取小,进一步的精确快充充电电流值大小,在满足快充充电电流需求的同时,不但不会超出电池温度以及单体电压因素下充电电流上限值,且充电电流为恒定的充电电流,不存在超出电池当前温度因素下允许的充电电流上限的问题,也不存在超过电池当前单体电压因素下允许的充电电流上限的问题,更不会存在充电电流的电流值变大、变小的反复变化的问题,将目前快充充电对电池寿命和性能的影响降到最低,具有较高的实用性价值。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络 单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本公开的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本公开实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本公开还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本公开的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图5示出了可以实现根据本公开的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图6所述的便携式或者固定存储单元。该存储单元可以具有与图5的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是 还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本公开的保护之内。

Claims (14)

  1. 一种确定直流充电电流的方法,其特征在于,所述方法包括:
    根据电池温度确定第一充电电流;
    根据电池的单体电压确定第二充电电流;
    比较所述第一充电电流和所述第二充电电流的大小,取较小值并做修正,形成第三充电电流;
    根据电池温度查最高温度及最高电梯电压表得到第四充电电流;
    比较所述第三充电电流和所述第四充电电流的大小,取较小值后与高压附件消耗电流求和,得到电池充电所需的直流充电电流。
  2. 根据权利要求1所述的方法,其特征在于,在根据电池温度确定第一充电电流之前,还包括:
    按照电池初始温度,设置多个温度区间;
    为每个温度区间分别设置相应的第一充电电流;
    其中,对于低于预设温度阈值的每个温度区间,在充电期间电池的最低温度升高至不低于对应的第一预设电流值时,将所述第一充电电流更改为第五充电电流;在充电期间电池的最低温度降低至不高于对应的第二预设电流值时,将所述第一充电电流更改为第六充电电流;
    其中,对于高于预设温度阈值的每个温度区间,在充电期间电池的最高温度升高至不低于对应的第三预设电流值时,将所述第一充电电流更改为第七充电电流;在充电期间电池的最高温度降低至不高于对应的第四预设电流值时,将所述第一充电电流更改为第八充电电流。
  3. 根据权利要求1所述的方法,其特征在于,在根据电池的单体电压确定第二充电电流之前,还包括:
    按照电池的最高单体电压,设置多个电压区间;
    为每个电压区间分别设置相应的第二充电电流;
    其中,在充电期间电池的最高单体电压低于对应的第一预设电压值时,将所述第二充电电流更改为第九充电电流;
    在充电期间电池的最高单体电压不低于对应的第一预设电压值,且同时低于第二预设电压值时,将所述第二充电电流更改为第十充电电流。
  4. 根据权利要求1所述的方法,其特征在于,比较所述第一充电电流和 所述第二充电电流的大小,取较小值并做修正,形成第三充电电流,包括:
    比较所述第一充电电流和所述第二充电电流的大小,取较小值;
    若所述第一充电电流的值较小,则所述第一充电电流的值与标定值做差形成所述第三充电电流;
    若所述第二充电电流的值较小,则所述第二充电电流的值与所述标定值做差形成所述第三充电电流。
  5. 根据权利要求1所述的方法,其特征在于,还包括:
    按照电池初始温度,设置起始温度区间、特殊温度区间和终止温度区间;
    为所述起始温度区间、所述特殊温度区间和所述终止温度区间分别设置相应的第一充电电流;
    其中,在所述起始温度区间内,若电池的最低温度不低于对应的第五预设电流值时,将所述第一充电电流更改为第十一充电电流;若电池的最低温度低于对应的第五预设电流值时,将所述第一充电电流更改为零;
    在所述特殊温度区间内,若电池的最高温度不低于对应的第六预设电流值时,将所述第一充电电流更改为第十二充电电流;若电池的最低温度不高于对应的第七预设电流值时,将所述第一充电电流更改为第十三充电电流;
    在所述终止温度区间内,若电池的最高温度不高于对应的第八预设电流值时,将所述第一充电电流更改为第十四充电电流;若电池的最高温度高于对应的第八预设电流值时,将所述第一充电电流更改为零。
  6. 根据权利要求1所述的方法,其特征在于,还包括:
    在所述电池的最高单体电压不低于预设电压阈值时,将所述第二充电电流更改为零。
  7. 一种确定直流充电电流的装置,其特征在于,所述装置包括:
    第一确定模块,用于根据电池温度确定第一充电电流;
    第二确定模块,用于根据电池的单体电压确定第二充电电流;
    比较修正模块,用于比较所述第一充电电流和所述第二充电电流的大小,取较小值并做修正,形成第三充电电流;
    查表模块,用于根据电池温度查最高温度及最高电梯电压表得到第四充电电流;
    确定充电电流模块,用于比较所述第三充电电流和所述第四充电电流的 大小,取较小值后与高压附件消耗电流求和,得到电池充电所需的直流充电电流。
  8. 根据权利要求7所述的装置,其特征在于,所述装置还包括:
    温度区间设置模块,用于按照电池初始温度,设置多个温度区间;
    温度区间设置电流模块,用于为每个温度区间分别设置相应的第一充电电流;
    其中,对于低于预设温度阈值的每个温度区间,在充电期间电池的最低温度升高至不低于对应的第一预设电流值时,将所述第一充电电流更改为第五充电电流;在充电期间电池的最低温度降低至不高于对应的第二预设电流值时,将所述第一充电电流更改为第六充电电流;
    其中,对于高于预设温度阈值的每个温度区间,在充电期间电池的最高温度升高至不低于对应的第三预设电流值时,将所述第一充电电流更改为第七充电电流;在充电期间电池的最高温度降低至不高于对应的第四预设电流值时,将所述第一充电电流更改为第八充电电流。
  9. 根据权利要求7所述的装置,其特征在于,所述装置还包括:
    电压区间设置模块,用于按照电池的最高单体电压,设置多个电压区间;
    电压区间设置电流模块,用于为每个电压区间分别设置相应的第二充电电流;
    其中,在充电期间电池的最高单体电压低于对应的第一预设电压值时,将所述第二充电电流更改为第九充电电流;
    在充电期间电池的最高单体电压不低于对应的第一预设电压值,且同时低于第二预设电压值时,将所述第二充电电流更改为第十充电电流。
  10. 根据权利要求7所述的装置,其特征在于,所述比较修正模块包括:
    比较取小单元,用于比较所述第一充电电流和所述第二充电电流的大小,取较小值;
    修正单元,用于若所述第一充电电流的值较小,则所述第一充电电流的值与标定值做差形成所述第三充电电流;
    还用于若所述第二充电电流的值较小,则所述第二充电电流的值与所述标定值做差形成所述第三充电电流。
  11. 一种汽车,其特征在于,所述汽车包括:整车控制器;
    所述整车控制器执行如权利要求1-6任一所述的确定直流充电电流的方法。
  12. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;以及
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求1-6任一所述的确定直流充电电流的方法。
  13. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-6任一所述的确定直流充电电流的方法。
  14. 一种计算机可读介质,其中存储了如权利要求13所述的计算机程序。
PCT/CN2021/121679 2020-10-09 2021-09-29 一种确定直流充电电流的方法、装置以及一种汽车 WO2022073451A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237012555A KR20230068421A (ko) 2020-10-09 2021-09-29 직류 충전 전류 결정 방법, 장치 및 차량
JP2023521516A JP2023545275A (ja) 2020-10-09 2021-09-29 直流充電電流を決定する方法、装置及び自動車

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011074538.9A CN112383099A (zh) 2020-10-09 2020-10-09 一种确定直流充电电流的方法、装置以及一种汽车
CN202011074538.9 2020-10-09

Publications (1)

Publication Number Publication Date
WO2022073451A1 true WO2022073451A1 (zh) 2022-04-14

Family

ID=74581123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121679 WO2022073451A1 (zh) 2020-10-09 2021-09-29 一种确定直流充电电流的方法、装置以及一种汽车

Country Status (4)

Country Link
JP (1) JP2023545275A (zh)
KR (1) KR20230068421A (zh)
CN (1) CN112383099A (zh)
WO (1) WO2022073451A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383099A (zh) * 2020-10-09 2021-02-19 长城汽车股份有限公司 一种确定直流充电电流的方法、装置以及一种汽车

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110025255A1 (en) * 2009-07-30 2011-02-03 Hitachi Koki Co., Ltd. Solar Power System For Charging Battery Pack
CN105720315A (zh) * 2016-02-26 2016-06-29 成都雅骏新能源汽车科技股份有限公司 一种基于动态温差的动力电池快速直流充电方法
CN106208213A (zh) * 2016-08-04 2016-12-07 广东欧珀移动通信有限公司 一种pid调节充电电流的方法及终端
CN108336778A (zh) * 2017-01-18 2018-07-27 三星电子株式会社 充电控制方法及支持该方法的电子设备
CN110829543A (zh) * 2019-11-26 2020-02-21 桑顿新能源科技有限公司 充电电流动态调整方法、装置和新能源汽车
CN112383099A (zh) * 2020-10-09 2021-02-19 长城汽车股份有限公司 一种确定直流充电电流的方法、装置以及一种汽车
CN112526346A (zh) * 2020-10-13 2021-03-19 长城汽车股份有限公司 一种确定剩余充电时间的方法、装置以及一种汽车

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010001533A1 (en) * 1998-03-24 2001-05-24 Chartec Laboratories A/S Method and apparatus for charging a rechargeable battery with monitoring of battery temperature rate of change
CN107887936B (zh) * 2016-09-30 2021-06-18 蜂巢能源科技有限公司 动力电池的快充方法、***及车辆
CN109546704B (zh) * 2018-11-29 2021-08-24 安徽江淮汽车集团股份有限公司 一种动力电池快充方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110025255A1 (en) * 2009-07-30 2011-02-03 Hitachi Koki Co., Ltd. Solar Power System For Charging Battery Pack
CN105720315A (zh) * 2016-02-26 2016-06-29 成都雅骏新能源汽车科技股份有限公司 一种基于动态温差的动力电池快速直流充电方法
CN106208213A (zh) * 2016-08-04 2016-12-07 广东欧珀移动通信有限公司 一种pid调节充电电流的方法及终端
CN108336778A (zh) * 2017-01-18 2018-07-27 三星电子株式会社 充电控制方法及支持该方法的电子设备
CN110829543A (zh) * 2019-11-26 2020-02-21 桑顿新能源科技有限公司 充电电流动态调整方法、装置和新能源汽车
CN112383099A (zh) * 2020-10-09 2021-02-19 长城汽车股份有限公司 一种确定直流充电电流的方法、装置以及一种汽车
CN112526346A (zh) * 2020-10-13 2021-03-19 长城汽车股份有限公司 一种确定剩余充电时间的方法、装置以及一种汽车

Also Published As

Publication number Publication date
CN112383099A (zh) 2021-02-19
JP2023545275A (ja) 2023-10-27
KR20230068421A (ko) 2023-05-17

Similar Documents

Publication Publication Date Title
WO2022078206A1 (zh) 一种确定剩余充电时间的方法、装置以及一种汽车
US10312699B2 (en) Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of the battery
EP2703829B1 (en) Device and method for estimating the degradation of battery capacity
US9287723B2 (en) Cell balancing apparatus and method using a voltage variation pattern of each cell to estimate an open circuit voltage value for each cell
KR100927541B1 (ko) 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및방법
US8175826B2 (en) Apparatus for estimating open circuit voltage of battery, apparatus for estimating state of charge of battery, and method for controlling the same
JP5493657B2 (ja) 蓄電池装置並びに蓄電池の電池状態評価装置及び方法
US8319479B2 (en) Method of estimating battery recharge time and related device
KR101402802B1 (ko) 배터리 셀의 전압 변화 거동을 이용한 셀 밸런싱 장치 및 방법
CN102854471B (zh) 电池电量计量方法及计量装置
KR20090130406A (ko) 충전상태를 이용한 전지 평활화 시스템 및 방법
CN112924884B (zh) 基于增量容量曲线峰值面积的电池内短路定量诊断方法
JP2003059544A5 (zh)
CN112327171B (zh) 一种基于弛豫时间分布的锂离子电池寿命估计方法
CN111624505B (zh) 复合电源用功率型锂电池内阻测量方法
WO2022073451A1 (zh) 一种确定直流充电电流的方法、装置以及一种汽车
CN111077464A (zh) 能够监测电池状况的直流转换器及其电池状况监测方法
CN114204101A (zh) 一种电动汽车的电池组匹配方法
CN114137415A (zh) 电池组的发热量检测方法、装置、车辆及存储介质
US20070247118A1 (en) Method of end of discharge voltage measurement for battery with estimation thereof
KR20150034593A (ko) 전지 충전 상태 추정 방법 및 장치
CN114675193A (zh) 一种许用功率估算方法、电池管理***及存储介质
KR102545282B1 (ko) 내부 저항에 기초한 슈퍼캐패시터 팩의 수명 추정 방법, 이를 수행하기 위한 기록 매체 및 장치
CN116879787A (zh) 用于对电池荷电状态进行初始化的方法、装置及电动设备
KR20230130238A (ko) 배터리 상태 추정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21876969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023521516

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237012555

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21876969

Country of ref document: EP

Kind code of ref document: A1