WO2022071007A1 - 溶接レール - Google Patents

溶接レール Download PDF

Info

Publication number
WO2022071007A1
WO2022071007A1 PCT/JP2021/034463 JP2021034463W WO2022071007A1 WO 2022071007 A1 WO2022071007 A1 WO 2022071007A1 JP 2021034463 W JP2021034463 W JP 2021034463W WO 2022071007 A1 WO2022071007 A1 WO 2022071007A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail
weld
martensite
welded
less
Prior art date
Application number
PCT/JP2021/034463
Other languages
English (en)
French (fr)
Inventor
正治 上田
健二 才田
照久 宮▲崎▼
拓也 棚橋
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US18/017,777 priority Critical patent/US20230193438A1/en
Priority to JP2022553843A priority patent/JP7417170B2/ja
Priority to BR112023001279A priority patent/BR112023001279A2/pt
Priority to CA3185907A priority patent/CA3185907A1/en
Priority to AU2021352012A priority patent/AU2021352012A1/en
Publication of WO2022071007A1 publication Critical patent/WO2022071007A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B11/00Rail joints
    • E01B11/44Non-dismountable rail joints; Welded joints
    • E01B11/50Joints made by electric welding
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B5/00Rails; Guard rails; Distance-keeping means for them
    • E01B5/02Rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/04Flash butt welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/26Railway- or like rails

Definitions

  • the present invention relates to a welded rail.
  • Flash butt welding is widely used as a rail welding method. It is known that flash butt welding has advantages such as automation, high quality stability, and short welding time.
  • Flash butt welding is a technology that melts the end faces of rails by heating and then presses and consolidates the melted surfaces to join the rails to each other.
  • the rail is heated from room temperature to near its melting point and then cooled. Therefore, flash butt welding changes the metallographic structure and hardness of the rail.
  • the portion where the metallurgical properties, mechanical properties, etc. have changed due to heat such as welding and cutting is called a heat-affected zone (HAZ).
  • Patent Document 1 in flash welding of a rail, in order to reduce the HAZ width in the rail longitudinal direction, the length of the rail longitudinal direction on the crown surface is 15 mm or more, and the thickness of the portion in contact with the crown surface is 10 mm or more.
  • the pad is set within 20 mm or more and 50 mm or less from the rail end face before welding, and then the rail is flash butt welded to reduce the hardness of the welded joint HAZ to 15 mm or less (rail longitudinal direction). It has been shown that it can be done.
  • Patent Document 2 in order to reduce the HAZ width in the rail longitudinal direction in the flash welding of the rail, the late flash speed is set to 2.1 mm / sec or more, the HAZ width is set to 27 mm or less, and the softening width is set to 10 mm or less.
  • a flash butt welding method for realizing a rail welding joint is described.
  • the pillar cooling region in the rail weld is cooled in at least a part of the temperature range until the transformation from austenite to pearlite is completed; the first pillar cooling step; A second pillar cooling step of cooling the pillar cooling region after the entire pillar is transformed into pearlite; a foot cooling step of cooling the foot in the rail weld; a head in the rail weld.
  • the cooling time of the first pillar cooling step and the second pillar cooling step is t (minutes)
  • the k value is ⁇ 0.1t + 0.
  • a cooling method for a rail welded portion satisfying the formula represented by 63 ⁇ k ⁇ ⁇ 0.1 t + 2.33 is disclosed.
  • Patent Document 1 In the method of mounting the pad as in Patent Document 1, it is necessary to mount the pad separately prepared in a designated range. However, since the place where the pad is arranged is very close to the butt end face of the rail, the scattered molten metal adheres to the pad. Therefore, in the method of Patent Document 1, it is not easy to attach / detach the pad, and it is also troublesome to remove the metal adhering to the pad. Therefore, the method of Patent Document 1 has a problem that the efficiency of flash butt welding, which is automated and has high welding efficiency, is impaired. Further, the technique described in Patent Document 1 mainly aims to reduce the unevenness of the welded joint portion, and does not consider improving the fatigue damage resistance and the breakage resistance of the welded joint portion.
  • Patent Document 2 by cooling the rail with a pad, a martensite structure that reduces the toughness of the welded joint is likely to be generated, and the possibility of breakage of the rail increases. There was the problem I said.
  • the main purpose of Patent Document 2 is to reduce the unevenness of the weld joint portion due to wear, and not to improve the fatigue damage resistance and breakage resistance of the rail weld joint portion. Further, under the welding conditions as shown in Patent Document 2, when the HAZ width is reduced, a coarse martensite structure that reduces toughness is likely to be generated at the rail welding joint portion, and there is a possibility that the rail may be broken. There was a problem that the number increased.
  • the main object of the technique described in Patent Document 3 is to reduce the residual stress in the rail after flash butt welding. Reducing the HAZ width is not the object of the technique described in Patent Document 3. Further, when flash butt welding is performed so as to narrow the HAZ width, the temperature gradient from the rail base material portion to the rail welded portion becomes steep, and the residual stress in the rail after welding increases. Therefore, it is not easy to narrow the HAZ width in the technique of Patent Document 3. Further, in the flash butt welding of rails, the cooling speed of the weld joint portion after welding is high. Therefore, a martensite structure having low toughness is likely to be generated at the welded joint portion. In particular, a martensite structure is formed inside the rail head and in the alloy segregated portion of the column portion.
  • the present invention has been devised in view of the above-mentioned problems, and an object of the present invention is to improve fatigue damage resistance and breakage resistance in a welded joint portion of a welded rail. It is an object of the present invention to provide a rail capable of satisfying extremely strict fatigue damage resistance and breakage resistance requirements in a flush butt welded joint portion of a rail of a freight railroad having a severe track environment.
  • the gist of the present invention lies in the rails shown below.
  • the welded rail according to one aspect of the present invention includes a plurality of rail portions having a height h having a head portion and a pillar portion, and a welded joint portion for joining the rail portions.
  • C 0.75 to 1.20%
  • Si 0.10 to 2.00%
  • Mn 0.10 to 2.00%
  • Cr 0.10 to 1.
  • P ⁇ 0.0250%
  • S ⁇ 0.0250%
  • Mo 0 to 0.50%
  • Co 0 to 1.00%
  • B 0 to 0.0050%
  • Cu 0 to 1.
  • the HAZ width of the welded joint is 60 mm or less, and the outer surface of the crown of the welded joint is a cross section parallel to the longitudinal direction and the vertical direction of the weld rail and passing through the center of the welded joint.
  • the area ratio of the martensite structure is 0.0006% or more and 0.1000% or less in the region from 0 to (2/3) ⁇ h and ⁇ 5 mm in the longitudinal direction from the welding center, and the particle size in the region.
  • the number of martensite structures of 20 to 200 ⁇ m is 3 to 80.
  • the Cr segregation degree in the region of the welded joint portion may be 2.00 or less.
  • the rail portion further contains, as the chemical component, Mo: 0.01 to 0.50%, Co: 0.01 in unit mass%.
  • B 0.0001 to 0.0050%, Cu: 0.01 to 1.00%, Ni: 0.01 to 1.00%, V: 0.01 to 0.50%, Nb: 0.0010 to 0.0500%, Ti: 0.0030 to 0.0500%, Mg: 0.0005 to 0.0200%, Ca: 0.0005 to 0.0200%, REM: 0.0005 to It may contain one or more of 0.0500%, N: 0.0020 to 0.0200%, Zr: 0.0001 to 0.0200%, and Al: 0.0100 to 1.00%.
  • a welded rail having excellent fatigue damage resistance and breakage resistance according to an embodiment of the present invention will be described in detail.
  • the mass% in the composition is simply described as%.
  • the welded rail 1 includes a plurality of rail portions 12 having a head portion 121 and a pillar portion 122, and a welded joint portion 11 for joining the rail portions 12.
  • the reference numeral "A" in FIG. 1A indicates a welding center described later.
  • the rail before welding is distinguished from the welded rail by simply calling it "rail” for convenience. That is, the “rail” is a rail before welding that does not have a welded joint portion 11, and the “welded rail” is a rail after welding that has a welded joint portion 11.
  • the “rail portion” is a portion of the weld rail 1 other than the weld joint portion 11.
  • the rail head (or head) 121 refers to a portion above the constricted portion in the vertical center of the rail portion 12 in the cross section of the rail portion 12 shown in FIG.
  • the rail pillar portion (or pillar portion) 122 refers to a constricted portion in the vertical center of the rail portion 12 in the cross section of the rail portion 12 shown in the figure.
  • the rail bottom portion (or bottom portion) 123 refers to a portion of the cross section of the rail portion 12 shown in the figure below the constricted portion in the vertical center of the rail.
  • the upper outer surface is referred to as a crown surface or a rail crown outer surface 1211.
  • the constricted portion of the lower part of the rail head 121 is referred to as a rail lower jaw (or lower jaw) 1212.
  • the vertical direction of the welding rail 1 means the vertical direction when the welding rail 1 is used as a track.
  • the welded joint portion 11 is a “welded joint” defined in JIS Z 3001-1: 2018, and means a joint portion in which members are united by welding.
  • the welded joint portion 11 includes a heat affected zone (HAZ) 111.
  • the member is a rail that is a material of the rail portion 12.
  • the shape of the weld joint portion 11 is substantially the same as that of the rail portion 12. Therefore, the welded joint portion 11 also has a shape having a portion corresponding to the head portion and the pillar portion, similarly to the rail portion 12.
  • the longitudinal cross section of the weld joint portion 11 is a cross section of the weld joint portion 11 and its surroundings that are parallel to the longitudinal direction and the vertical direction of the weld rail 1 and pass through the center of the weld joint portion 11.
  • 5A and 5B show schematic views of the longitudinal cross section of the welded joint 11.
  • the heat-affected zone (HAZ) means a region between the softened zones shown in FIG. 1B in the weld rail according to the present embodiment.
  • FIG. 1B continuously measures the hardness of the welded joint portion 11 at a position 5 mm below the outer surface of the rail crown outer surface of the welded joint portion 11 along the longitudinal direction of the welded rail in the longitudinal cross section of the welded joint portion 11 of the welded rail.
  • the graph of the hardness distribution of the longitudinal cross section obtained by the above It is an example of the graph of the hardness distribution of the longitudinal cross section obtained by the above. Normally, in the graph of the hardness distribution of the weld rail obtained by flash butt welding, two valleys occur on both sides of the rail seam. The softest part on the left side and the right side of the rail joint is defined as the softest part of the welded joint portion 11. The region between these two softening zones is defined as the heat affected zone (HAZ) 111. Further, the distance between the two softening portions measured along the longitudinal direction of the weld rail is defined as the HAZ width W. The region discolored after etching the longitudinal cross section of the welded joint 11 with nital generally coincides with HAZ according to the above definition.
  • the welding center A means a straight line along the vertical direction of the welding rail passing through the center of the heat-affected zone 111 in the longitudinal cross section of the welding joint portion 11. Normally, the weld center A roughly coincides with the rail seam.
  • the present inventors investigated the damage generated in the welded joint portion of the welded rail.
  • the damage occurrence form includes (1) breakage starting from the fatigue crack generated from the bottom of the weld rail, and (2) the inside of the head of the weld rail and It was confirmed that there was a breakage originating from a brittle crack generated from the column. Therefore, we investigated the causes of these occurrences.
  • reference numeral 5 indicates a load stabilizer that presses the wheel 3 rotated by the motor 4.
  • the wheel 3 repeatedly rolls the head of the weld rail 1 back and forth along the longitudinal direction while applying a predetermined load to the wheel 3 using the load stabilizer 5.
  • the rail before welding, the flash butt welding conditions, the characteristics of the flash butt welded joint, and the conditions for the rolling fatigue test of the welded rail / wheel are as shown below.
  • Cooling conditions for welded joints after welding Average cooling rate of the crown: 1.0 ° C / sec (temperature range: 800 to 400 ° C) Average cooling rate of lower jaw and pillars: 1.0 ° C / sec in the temperature range of 800 to 500 ° C. 1.0 ° C / sec in the temperature range of 500 to 400 ° C. Then allow to cool to 50 ° C
  • the HAZ width is in the range of 40 mm or more and 60 mm or less
  • the unevenness generated in the welded joint portion is reduced, the number of times the wheel passes repeatedly until the fracture exceeds 2 million times, and the number of times the wheel passes repeatedly until the fracture occurs 2 million times. It was in the range of more than 3 million times and less than 3 million times, and met the acceptance criteria.
  • the HAZ width is 20 mm or more and less than 40 mm
  • the unevenness generated in the welded joint portion is further reduced, and the number of times the wheel passes repeatedly until fracture is in the range of 3 million times or more and less than 4 million times.
  • the HAZ width is 10 mm or more and less than 20 mm
  • the unevenness generated in the welded joint portion is further reduced, and the wheel does not break even if the number of times the wheel passes repeatedly is 4 million times. From this test, it was found that the service life of the welded joint is further improved as the HAZ width decreases.
  • FIGS. 5A and 5B Calculation of area ratio of martensite structure Evaluation site (see FIGS. 5A and 5B): Area B surrounded by a broken line in FIGS. 5A and 5B.
  • the region B will be described in detail as follows.
  • the left side of FIG. 5A is a cross-sectional view of the weld rail perpendicular to the longitudinal direction of the weld rail.
  • the right side of FIG. 5A is a cross-sectional view taken along the line CC shown in the left side of FIG. 5A, that is, the weld joint portion parallel to the longitudinal direction and the vertical direction of the weld rail and the center of the weld joint portion. It is a cross-sectional view through.
  • FIG. 5B is a perspective view of a sample for microstructure observation, which is cut out from a welding rail and has a cross section shown on the right side of FIG. 5A.
  • the region B has a depth of 0 mm or more (2/3) ⁇ hmm from the rail crown outer shell surface 1211 and a width of ⁇ 5 mm (total width 10 mm) in the longitudinal direction from the welding center A in the longitudinal cross section of the welded joint. It is an area.
  • “h” means the height of the welding rail 1.
  • this site is referred to as a martensite evaluation region B.
  • the martensite evaluation area B is a site heated to A1 point or higher in the flash butt welding, and the martensite structure is most likely to be generated in the flash butt welding test so far. Because it is a welded part.
  • Observation of martensite structure After polishing the martensite evaluation region B, nightal etching was performed, observation was performed with an optical microscope, and martensite was photographed.
  • polishing conditions Buffing with 1 ⁇ m diamond paste
  • Nittal Etch conditions Alcohol + 5% nitrate
  • Optical microscope observation conditions 200 times
  • Vision Overall of martensite evaluation area B
  • Calculation of area ratio of martensite structure of martensite evaluation area B , Take an optical microscope photograph at a magnification of 200 times. Then, using image analysis software, this optical micrograph is binarized. Since martensite is usually displayed in white, the area ratio of the white region to the martensite evaluation region B in the binarized optical micrograph can be regarded as the area ratio of the martensite structure.
  • the metal structure other than the martensite structure is a pearlite structure.
  • carbide-free martensite appears as a white region and can be clearly distinguished from pearlite.
  • a trace amount of bainite structure may be contained in the weld joint portion of the weld rail, in the weld rail according to the present embodiment, the bainite structure in the weld joint portion is regarded as a martensite structure. This is because it is difficult to distinguish between the two by an optical micrograph, and further, the effects of the two on the breakage resistance of the weld rail are almost the same.
  • Rail component before welding 0.75 to 1.20% C-0.50% Si-1.00% Mn-0.20% Cr-0.0150% P-0.0120% S (The balance is iron And impurities)
  • Rail shape 136 lbs (weight: 67 kg / m).
  • Hardness of the outer surface of the crown 420 HV ⁇ Flash butt welding conditions (preheated flash method) Cooling conditions for welded joints after welding
  • Initial flash time 15 sec
  • Preheating frequency 10 times
  • Late flash time 20 sec Average late flash speed: 0.6mm / sec Late flash speed immediately before upset (for 3 sec): 1.8 mm / sec
  • Upset load 65kN
  • Cooling conditions for welded joints after welding Average cooling rate of the crown: 1.0 ° C / sec (temperature range: 800 to 400 ° C) Average cooling rate of lower jaw and pillars: 0.5 to 2.0 ° C / sec in the temperature range of 800 to 500 ° C. 1.0 ° C / sec in the temperature range of 500 to 400 ° C.
  • the particle size and the number density of the martensite structure in the martensite evaluation region B also affect the breakage resistance of the weld rail. Specifically, when the number of martensite structures having a particle size of 20 to 200 ⁇ m in the welded joint portion of the welded rail is more than 80, the welded rail is broken in the drop weight test. Therefore, it was found that it is necessary to control the amount of martensite structure having a particle size of 20 ⁇ m or more in order to control the breakage of the weld rail.
  • Cooling conditions for welded joints after welding Average cooling rate of the crown: 1.0 ° C / sec (temperature range: 800 to 400 ° C) Average cooling rate of lower jaw and pillars: 1.0 ° C / sec in the temperature range of 800 to 500 ° C. 0.4 to 2.4 ° C / sec in the temperature range of 500 to 400 ° C. Then allow to cool to 50 ° C
  • the proeutectoid phase is ferrite
  • suppression of ferrite formation by Mn promotes martensite formation.
  • the weld rail according to the present embodiment is hypereutectoid steel, and the initial phase is cementite. Therefore, it is presumed that the effect of Mn on promoting the formation of martensite in hypereutectoid steel is smaller than that in subeutectoid steel.
  • the present inventors presume that Cr segregation should be suppressed instead of Mn segregation as a means of suppressing the formation of martensite.
  • Cooling conditions for welded joints after welding Average cooling rate of the crown: 1.0 ° C / sec (temperature range: 800 to 400 ° C) Average cooling rate of lower jaw and pillars: 0.5 to 2.0 ° C / sec in the temperature range of 800 to 500 ° C. 0.4 to 1.6 ° C / sec in the temperature range of 500 to 400 ° C. Then allow to cool to 50 ° C
  • the element distribution in the range of (1/6) ⁇ h to (3/6) ⁇ h from the outer surface of the crown of the weld rail. Create a map. Based on the element distribution map, a region where Cr enrichment occurs is identified, and this region is identified as a macrosegregation zone. Then, as shown in FIG. 7, the Cr concentration is continuously analyzed along the line crossing the segregation zone (so-called line analysis). If the segregation zone has a shape such as an ellipse, perform line analysis so that it passes through the center of the segregation zone. This line analysis is performed on the entire cross section of the weld joint.
  • the Cr segregation degree in the martensite evaluation region B of the welded joint (hereinafter referred to as , "Cr segregation degree of weld joint") was reduced to 2.0 or less, and it was found that the number of martensite structures with a particle size of 20 to 200 ⁇ m decreased in the same HAZ width. rice field.
  • the number of martensite structures having a particle size of 20 to 200 ⁇ m was 65 to 80.
  • the number of martensite structures having a particle size of 20 to 200 ⁇ m is 35 to 50 in the same HAZ width. It turned out to be decreasing.
  • the number of martensite structures having a particle size of 20 to 200 ⁇ m is reduced to 5 to 15 in the same HAZ width. I found out that.
  • Table 3 shows the results of the drop test.
  • the Cr segregation degree of the weld joint is in the range of more than 2.0 to 2.4 or less, and the number of martensite structures with a particle size of 20 to 200 ⁇ m is 65 to 80 in the weld rail.
  • the weld rail was unbroken at a drop weight height of 5000 mm.
  • the height of the drop weight is reduced. No breakage occurred even at 7500 mm.
  • the drop weight height is reached. It was confirmed that no breakage occurred even at a diameter of 10000 mm, and the breakage resistance was further improved.
  • C is an element effective for promoting pearlite transformation, suppressing the formation of martensite structure in the welded joint, and ensuring the wear resistance of the weld rail. If the C content is less than 0.75%, a proeutectoid ferrite structure is formed in this component system, so that the minimum strength and wear resistance required for welded joints mainly composed of pearlite structure cannot be maintained. .. Further, even if the C content is set to less than 0.75%, the effect of suppressing the formation of martensite structure in the welded joint does not occur. On the other hand, when the C content exceeds 1.20%, an initial cementite structure is likely to be formed in the weld joint portion, and the breakage resistance and wear resistance of the pearlite structure are lowered.
  • the C content was limited to 0.75 to 1.20%.
  • the C content is preferably 0.80% or more, 0.85% or more, or 0.90% or more.
  • the C content is preferably 1.15% or less, 1.10% or less, or 1.00% or less. In order to stabilize the formation of the pearlite structure, it is desirable that the C content is 0.80 to 1.10%.
  • Si is an element that dissolves in the ferrite phase of the pearlite structure, increases the hardness of the welded joint, and improves wear resistance.
  • Si content is less than 0.10%, these effects cannot be fully expected.
  • the Si content exceeds 2.00%, the hardenability of the rail steel is remarkably increased, a large amount of martensite structure is generated in the weld joint portion, and the breakage resistance and wear resistance of the weld rail are lowered. do. Therefore, the Si content was limited to 0.10 to 2.00%.
  • the Si content is preferably 0.20% or more, 0.30% or more, or 0.50% or more.
  • the Si content is preferably 1.80% or less, 1.60% or less, or 1.50% or less. In order to stabilize the formation of the pearlite structure and improve the breakage resistance and wear resistance of the weld rail, it is desirable that the Si content is 0.20 to 1.50%.
  • Cr is an element that raises the equilibrium transformation temperature, refines the lamellar spacing of the pearlite structure by increasing the supercooling degree, improves the hardness of the pearlite structure, and improves the wear resistance of the weld joint.
  • the Cr content is less than 0.10%, these effects cannot be fully expected.
  • the Cr content exceeds 1.50%, the hardenability of the rail steel is remarkably increased, a bainite structure, a martensite structure, etc. are formed in the weld joint, and the wear resistance and breakage resistance of the weld rail are improved. descend. Further, an excessive amount of Cr promotes Cr concentration in the segregated portion and promotes the formation of martensite structure in the welded joint portion.
  • the Cr content was limited to 0.10 to 1.50%.
  • the Cr content is preferably 0.20% or more, 0.30% or more, or 0.50% or more.
  • the Cr content is preferably 1.40% or less, 1.30% or less, or 1.00% or less. In order to stabilize the formation of the pearlite structure and improve the wear resistance of the weld rail, it is desirable to set the Cr content to 0.20 to 1.00%.
  • Mn is an element that enhances the hardenability of weld rails, stabilizes pearlite transformation, and at the same time, miniaturizes the lamellar spacing of the pearlite structure, secures the hardness of the weld joint, and further improves wear resistance.
  • the Mn content is less than 0.10%, the effect is small, a soft proeutectoid ferrite structure is formed, and the wear resistance of the weld joint portion is lowered.
  • the Mn content exceeds 2.00%, the hardenability of the rail steel is remarkably increased, a bainite structure and a martensite structure are formed in the weld joint, and the weld rail has breakage resistance and wear resistance. Decreases.
  • the Mn content was limited to 0.10 to 2.00%.
  • the Mn content is preferably 0.20% or more, 0.30% or more, or 0.50% or more.
  • the Mn content is preferably 1.80% or less, 1.60% or less, or 1.50% or less. In order to stabilize the formation of the pearlite structure and improve the wear resistance and breakage resistance of the welded joint, it is desirable that the Mn content is 0.20 to 1.50%.
  • P is an impurity element contained in steel.
  • the lower limit of the P content does not have to be limited and may be, for example, 0%, but the lower limit of the P content may be about 0.0020% in consideration of the dephosphorization ability of the refining step.
  • the P content is preferably 0.0025% or more, 0.0030% or more, or 0.0050% or more.
  • the P content is preferably 0.0200% or less, 0.0150% or less, or 0.0120% or less.
  • S is an impurity element contained in steel.
  • the lower limit of the S content does not have to be limited and may be, for example, 0%, but the lower limit of the S content may be about 0.0020% in consideration of the desulfurization capacity of the refining step.
  • the S content is preferably 0.0025% or more, 0.0030% or more, or 0.0050% or more.
  • the S content is preferably 0.0200% or less, 0.0150% or less, or 0.0120% or less.
  • the rail portion manufactured with the above composition has improved wear resistance by increasing the hardness of the welded joint portion, improved toughness, prevention of softening of the weld heat affected zone, and cross-sectional hardness inside the head.
  • one or more selected from the group consisting of Mo, Co, B, Cu, Ni, V, Nb, Ti, Mg, Ca, REM, N, Zr, and Al may be contained. ..
  • the welded rail according to the present embodiment can exert its effect, so that the lower limit of the content of these elements is 0%.
  • Mo increases the equilibrium transformation point to make the lamellar spacing of the pearlite structure finer and improve the hardness of the welded joint.
  • Co dissolves in the ferrite phase of the pearlite structure to make the lamellar structure just below the rolling surface of the welded joint finer and increase the hardness of the worn surface.
  • B reduces the cooling rate dependence of the pearlite transformation temperature and makes the hardness distribution inside the head of the welded joint uniform.
  • Cu and Ni dissolve in ferrite in the pearlite structure to increase the hardness of the welded joint and at the same time improve the toughness.
  • V, Nb, and Ti improve the fatigue strength of the welded joint portion by precipitation hardening of carbides and nitrides generated in the process of cooling the welded rail after welding the rail.
  • V, Nb, and Ti stably generate carbides and nitrides at the time of reheating, and prevent softening of the heat-affected zone of the weld joint.
  • Mg, Ca, and REM finely disperse MnS-based sulfides and reduce fatigue damage generated from inclusions in welded joints.
  • N promotes the precipitation of carbides and nitrides of V in the subsequent cooling process after welding, and improves the fatigue damage resistance of the welded joint portion.
  • Zr suppresses the formation of segregation zones in the center of the slab by increasing the equiaxed crystallization rate of the solidified structure, suppresses the formation of proeutectoid cementite structure and martensite structure, and suppresses the formation of segregated parts of the weld rail. Suppresses Cr enrichment. Further, Al shifts the eutectoid transformation temperature to the high temperature side, suppresses the formation of the eutectic cementite structure, and improves the breakage resistance of the weld joint portion.
  • Mo is an element that raises the equilibrium transformation temperature, refines the lamellar spacing of the pearlite structure by increasing the supercooling degree, improves the hardness of the pearlite structure, and improves the wear resistance of the weld joint.
  • the Mo content is preferably 0.01% or more.
  • the Mo content exceeds 0.50%, the transformation rate may be significantly reduced, a martensite structure may be formed in the welded joint portion, and the breakage resistance of the welded joint portion may be lowered. Therefore, it is desirable to set the Mo content to 0.01 to 0.50%.
  • the Mo content is preferably 0.02% or more, 0.05% or more, or 0.10% or more.
  • the Mo content is preferably 0.45% or less, 0.40% or less, or 0.30% or less.
  • the Co content is preferably 0.01% or more.
  • the Co content exceeds 1.00%, the above effect is saturated and the lamella structure cannot be miniaturized according to the Co content.
  • the Co content exceeds 1.00%, the economic efficiency is lowered due to the increase in the alloy cost. Therefore, it is desirable to set the Co content to 0.01 to 1.00%.
  • the Co content is preferably 0.02% or more, 0.05% or more, or 0.10% or more.
  • the Co content is preferably 0.90% or less, 0.80% or less, or 0.60% or less.
  • B forms an iron charcoal boride (Fe 23 (CB) 6 ) at the austenite grain boundary, reduces the cooling rate dependence of the pearlite transformation temperature by the effect of promoting pearlite transformation, and reduces the dependence of the pearlite transformation temperature on the cooling rate from the head surface to the inside of the weld joint. It is an element that makes the hardness distribution up to and extends the life of welded rails.
  • the B content is preferably 0.0001% or more. On the other hand, if the B content exceeds 0.0050%, coarse iron-carbon boride may be produced, which may promote brittle fracture and reduce the breakage resistance of the welded joint portion.
  • the B content is 0.0001 to 0.0050%.
  • the B content is preferably 0.0002% or more, 0.0005% or more, or 0.0010% or more.
  • the B content is preferably 0.0040% or less, 0.0030% or less, or 0.0020% or less.
  • the Cu is an element that dissolves in the ferrite phase of the pearlite structure, improves the hardness of the weld rail by strengthening the solid solution, and improves the wear resistance of the weld joint.
  • the Cu content is preferably 0.01% or more.
  • the Cu content is preferably 0.02% or more, 0.05% or more, or 0.10% or more.
  • the Cu content is preferably 0.90% or less, 0.80% or less, or 0.60% or less. In order to secure the hardness of the welded joint and suppress the formation of martensite structure, it is desirable to control the Cu content to 0.20% or less.
  • Ni is an element that improves the toughness of the pearlite structure, and at the same time, improves the hardness of the weld rail by strengthening the solid solution and improves the wear resistance of the weld joint. Further, in the weld heat-affected zone, Ni is an element that binds to Ti and precipitates as a fine intermetallic compound of Ni 3 Ti, and suppresses the softening of the weld joint portion by strengthening the precipitation. Further, when Cu is contained in the weld rail, Ni suppresses the embrittlement of the grain boundaries. In order to obtain the above effects, the Ni content is preferably 0.01% or more.
  • Ni content exceeds 1.00%, a martensite structure may be formed in the welded joint due to the remarkable improvement in hardenability of the rail steel, and the wear resistance and the breakage resistance may be lowered. Therefore, it is desirable to set the Ni content to 0.01 to 1.00%.
  • the Ni content is preferably 0.02% or more, 0.05% or more, or 0.10% or more.
  • the Ni content is preferably 0.90% or less, 0.80% or less, or 0.60% or less.
  • V is an element that increases the hardness (strength) of the pearlite structure and improves the fatigue damage resistance of the weld joint by precipitation hardening of V generated in the cooling process after hot rolling with charcoal and nitride.
  • the V content is preferably 0.01% or more.
  • the V content exceeds 0.50%, the number of fine V charcoal / nitride becomes excessive, the pearlite structure becomes brittle, and the fatigue damage resistance of the welded joint may decrease. Therefore, it is desirable that the V content is 0.01 to 0.50%.
  • the V content is preferably 0.02% or more, 0.03% or more, or 0.04% or more.
  • the V content is preferably 0.45% or less, 0.40% or less, or 0.30% or less.
  • Nb is an element that increases the hardness of the pearlite structure and improves the fatigue damage resistance of the weld joint by precipitation hardening with Nb carbides and Nb nitrides generated in the cooling process after hot rolling. Further, in the weld heat-affected zone reheated to a temperature range of 1 point or less, Nb stably produces Nb carbides and Nb nitrides in a wide temperature range from a low temperature range to a high temperature range, and the weld joint. It is an effective element to prevent the softening of the heat-affected zone. In order to obtain the above-mentioned effects, the Nb content is preferably 0.0010% or more.
  • the Nb content is 0.0010 to 0.0500%.
  • the Nb content is preferably 0.0020% or more, 0.0025% or more, or 0.0050% or more.
  • the Nb content is preferably 0.0400% or less, 0.0300% or less, or 0.0200% or less.
  • Ti is an element that increases the hardness of the pearlite structure and improves the fatigue damage resistance of the welded joint by precipitation hardening with Ti carbides and Ti nitrides generated in the cooling process after hot rolling.
  • Ti utilizes the fact that Ti carbides and Ti nitrides precipitated during reheating during welding do not dissolve in the matrix, thereby refining the structure of the heat-affected zone heated to the austenite region and forming the weld joint. It is an effective ingredient to prevent brittleness.
  • the Ti content is preferably 0.0030% or more.
  • the Ti content is 0.0030 to 0.0500%.
  • the Ti content is preferably 0.0040% or more, 0.0050% or more, or 0.0080% or more.
  • the Ti content is preferably 0.0400% or less, 0.0300% or less, or 0.0200% or less.
  • Mg combines with S to form fine sulfides (MgS), which finely disperse MnS, alleviate stress concentration around MnS, and improve fatigue damage resistance of weld joints. It is an element.
  • the Mg content is preferably 0.0005% or more.
  • the Mg content exceeds 0.0200%, a coarse oxide of Mg is generated, and stress concentration around the coarse oxide tends to generate fatigue cracks, resulting in fatigue resistance damage to the weld joint. Sex may be reduced. Therefore, it is desirable that the Mg content is 0.0005 to 0.0200%.
  • the Mg content is preferably 0.0010% or more, 0.0020% or more, or 0.0050% or more.
  • the Mg content is preferably 0.0180% or less, 0.0150% or less, or 0.0120% or less.
  • the Ca content is preferably 0.0005% or more.
  • the Ca content is preferably 0.0010% or more, 0.0020% or more, or 0.0050% or more.
  • the Ca content is preferably 0.0180% or less, 0.0150% or less, or 0.0120% or less.
  • REM Radar Metals
  • REM 2O 2S REM oxysulfide
  • the REM content is preferably 0.0005% or more.
  • the REM content is 0.0005 to 0.0500%.
  • the REM content is preferably 0.0010% or more, 0.0020% or more, or 0.0050% or more.
  • the REM content is preferably 0.0400% or less, 0.0300% or less, or 0.0250% or less.
  • REM is a total of 17 elements consisting of Sc, Y and La (lanthanoid).
  • "REM content” means the total value of the contents of all these REM elements. As long as the total content is within the above range, the same effect can be obtained regardless of whether the number of REM elements is one or more.
  • N is an impurity element mixed in the steelmaking process. Even if degassing is actively performed, about 0.0020% of N remains in the steel. According to normal refining, the N content is about 0.0040%. Further, N is an element effective for promoting the pearlite transformation from the austenite grain boundaries by segregating at the austenite grain boundaries and improving the toughness of the weld joint mainly by reducing the pearlite block size. Is. Further, when N and V are contained at the same time, the precipitation of carbonitride of V is promoted in the cooling process after welding of the rail, the hardness of the pearlite structure is increased, and the fatigue damage resistance of the weld joint is improved. ..
  • the N content is preferably 0.0020% or more, or 0.0050% or more.
  • the N content is 0.0020 to 0.0200%.
  • ⁇ -Fe becomes a solidified nucleus of high carbon rail steel which is a solidified primary crystal, and increases the equiaxed crystallization rate of the solidified structure.
  • the Zr content is preferably 0.0001% or more.
  • the Zr content is 0.0001 to 0.0200%.
  • the Zr content is preferably 0.0010% or more, 0.0020% or more, or 0.0050% or more.
  • the Zr content is preferably 0.0180% or less, 0.0150% or less, or 0.0120% or less.
  • the Al is an element that raises the eutectoid transformation temperature, suppresses the formation of an eutectoid cementite structure that is harmful to toughness, and improves the breakage resistance of welded joints.
  • the Al content is preferably 0.0100% or more, and more preferably 0.500% or more.
  • the Al content exceeds 1.00%, it becomes difficult to dissolve Al in the steel, coarse alumina-based inclusions are generated, and fatigue cracks are likely to occur from these coarse inclusions. Therefore, the fatigue damage resistance of the welded joint may decrease. Further, if the Al content exceeds 1.00%, oxides may be generated during rail welding, and the rail weldability may be significantly deteriorated.
  • the Al content is 0.0100 to 1.00%.
  • the Al content is preferably 0.0200% or more, 0.0500% or more, or 0.1000% or more.
  • the Al content is preferably 1.80% or less, 1.50% or less, or 1.20% or less.
  • the balance of the chemical composition in the rail portion of the weld rail according to the present embodiment contains iron and impurities (elements other than the above-mentioned S, P, N and Al).
  • Impurities are components that are mixed in, for example, by raw materials such as ore or scrap, or by various factors in the manufacturing process when industrially manufacturing steel materials, and adversely affect the welding rail according to the present embodiment. It means something that is acceptable to the extent that it does not exist.
  • Rail steel having the above composition is melted in a melting furnace that is usually used such as a converter and an electric furnace, and this molten steel is used to produce ingots (blooms) by a continuous casting method. In addition, it is manufactured as a rail through hot rolling. Further, if necessary, heat treatment is performed for the purpose of controlling the metal structure and hardness of the head of the weld rail. The method for manufacturing the rail steel will be described later.
  • the HAZ width is in the range of 40 mm or more and 60 mm or less, the unevenness generated in the welded joint portion is reduced, the number of repetitions until fracture exceeds 2 million times, and the acceptance criteria are satisfied.
  • the HAZ width is 20 mm or more and less than 40 mm, the unevenness generated in the welded joint portion is further reduced, and the number of repetitions until fracture is in the range of 3 to 4 million times.
  • the HAZ width is 10 mm or more and less than 20 mm, the unevenness generated in the welded joint is further reduced, and the welded joint is not broken even if the number of repetitions is 4 million times. Further improve.
  • the HAZ width of the welded joint is limited to 60 mm or less.
  • the HAZ width of the welded joint portion may be 55 mm or less, 50 mm or less, 40 mm or less, 30 mm or less, or 25 mm or less.
  • the lower limit of the HAZ width is not particularly limited. However, in order to reduce the HAZ width, it is necessary to reduce the welding heat input, which may cause rapid cooling of the heat-affected zone and formation of martensite. Therefore, the HAZ width may be 10 mm or more, 15 mm or more, 18 mm or more, or 20 mm or more. Further, the hardness of the HAZ is not particularly limited, but for example, the hardness of the softened portions at both ends of the HAZ may be defined as 230 HV or more, 250 HV or more, or 280 HV or more.
  • the area ratio of the martensite structure of the welded joint exceeds 0.1000%, the weld rail will break in the drop test. Therefore, the area ratio of the martensite structure of the welded joint is limited to 0.1000% or less.
  • the martensite evaluation site, the reason for selecting the evaluation site, and the calculation method of the area ratio of the martensite structure are as shown above.
  • the area ratio of the martensite structure of the welded joint is 0.0800% or less, 0.0600% or less, or 0.0500% or less. For example, by applying the welding conditions described later to the welding rail, the area ratio of the martensite structure can be reduced to 0.1000% or less.
  • the area ratio of the martensite structure of the welded joint is small.
  • the welded joint is rapidly cooled, and a small amount of martensite is inevitably generated in the welded joint.
  • the present inventors have confirmed that even if the welding conditions described later are applied to the weld rail, at least about 0.0006% of martensite is generated in the weld joint portion. Therefore, the lower limit of the area ratio of the martensite structure of the welded joint is 0.0006%.
  • the area ratio of the martensite structure of the welded joint may be defined as 0.0010% or more, 0.0020% or more, or 0.0050% or more.
  • the particle size in the martensite evaluation region B of the welded joint is 20 to 20.
  • the number of 200 ⁇ m martensite structures is controlled. Regarding this requirement, first, the reason why the number of martensite structures having a particle size of 20 to 200 ⁇ m is controlled will be described.
  • the particle size and the number of martensite structures in the martensite evaluation region B of the welded joint may be simply referred to as "the particle size of the martensite structure of the welded joint" and "the number of martensite structures of the welded joint". be.
  • a martensite structure having a particle size of less than 20 ⁇ m does not cause rail breakage.
  • the number of martensite structures having a particle size of less than 20 ⁇ m is not particularly limited in the welded rail according to the present embodiment.
  • a martensite structure having a particle size of 20 ⁇ m or more may cause breakage in the weld rail depending on the state of occurrence. Therefore, in the welding rail according to the present embodiment, the number of martensite structures having a particle size of 20 ⁇ m or more is controlled.
  • the upper limit of the particle size of the martensite structure whose number is controlled is 200 ⁇ m.
  • the number of martensite structures having a particle size of more than 200 ⁇ m is not particularly limited. This is because when a martensite structure having a particle size of more than 200 ⁇ m is generated, the area ratio of the martensite structure is very likely to exceed 0.1000%. In other words, when the area ratio of the martensite structure is defined as 0.1000% or less as described above, there is very little possibility that the weld rail is broken by the martensite structure having a particle size of more than 200 ⁇ m.
  • a martensite structure with a particle size of 20 to 200 ⁇ m may cause breakage of the weld rail.
  • the weld rail did not break under the above test conditions.
  • the above-mentioned test conditions apply a load equal to or higher than the usage environment of the welding rail to the welding rail. Therefore, if the number of martensite structures having a particle size of 20 to 200 ⁇ m is 80 or less, it is highly probable that breakage can be prevented even when the welded rail is actually used.
  • the number of martensite structures having a particle size of 20 to 200 ⁇ m exceeds 80, the weld rail is broken. Therefore, the number of martensite structures having a particle size of 20 to 200 ⁇ m in the welded joint is limited to 80 or less. In order to stably suppress breakage of the weld rail, it is desirable that the number of martensite structures having a particle size of 20 to 200 ⁇ m is 70 or less, 60 or less, or 50 or less. From the viewpoint of preventing breakage of the weld rail, it is preferable that the number of martensite structures having a particle size of 20 to 200 ⁇ m is small.
  • the lower limit of the number of martensite structures having a particle size of 20 to 200 ⁇ m is three.
  • the number of martensite structures having a particle size of 20 to 200 ⁇ m may be 4 or more, 6 or more, or 10 or more.
  • the Cr segregation degree in the martensite evaluation region B of the welded joint portion may be simply referred to as “Cr segregation degree of the welded joint portion”.
  • the segregated part is defined as the region where Cr is concentrated.
  • the bulk Cr concentration is defined as the Cr concentration outside the segregation section.
  • the Cr concentration in the segregated portion is defined as the average value of the maximum value of the Cr concentration inside the segregated portion and the bulk Cr concentration.
  • the Cr segregation degree in the segregation section is defined as a value obtained by dividing the Cr concentration in the segregation section by the bulk Cr concentration.
  • the Cr segregation degree in the martensite evaluation region B of the weld joint is the average of the Cr segregation degrees of 20 places in order from the maximum value among the Cr segregation degrees in the 20 or more segregation parts included in the martensite evaluation area B. Defined as a value.
  • the specific method for specifying the segregated portion, the method for measuring the bulk Cr concentration, and the method for measuring the maximum value of the Cr concentration inside the segregated portion are as described above.
  • the breakage resistance is further improved.
  • the martensite structure having a particle size of 20 to 200 ⁇ m is formed in the weld rail in which the Cr segregation degree of the weld joint is controlled in the range of 1.30 or more and less than 1.60. The number was reduced to 5-15. As a result of a drop test on these weld rails, it was confirmed that breakage did not occur even at a drop weight height of 10000 mm, and the breakage resistance was extremely significantly improved. Therefore, the Cr segregation degree of the welded joint portion may be limited to 2.00 or less, 1.80 or less, 1.60 or less, or 1.40 or less.
  • the above-mentioned weld rail having excellent fatigue damage resistance and breakage resistance can be preferably obtained.
  • a welded rail that meets the above requirements is excellent in fatigue damage resistance and breakage resistance regardless of the manufacturing method. Therefore, the method for manufacturing the welded rail according to the present embodiment is not particularly limited.
  • the manufacturing method described below does not limit the range of the welded rail according to the present embodiment, and should be understood as a desirable example of the manufacturing method.
  • the present inventors have found that it is extremely difficult to simultaneously achieve shortening of the HAZ width in the welded joint and suppression of the formation of coarse martensite in the welded joint.
  • the amount of heat input during welding was reduced to suppress the temperature rise of the base metal around the welded joint, the amount of heat removed from the welded joint to the base metal was significantly increased. It was clarified that this significantly increased the cooling rate of the welded joint and promoted the formation of martensite.
  • the method for manufacturing a welded rail according to the present embodiment obtained based on the above findings is as follows. -The process of casting bloom with the above-mentioned chemical composition and A step of heating the bloom at 1000 to 1350 ° C., a step of hot rolling the bloom with a rolling start temperature of 1000 to 1350 ° C. and a rolling end temperature of 750 to 1100 ° C., and a step of obtaining a rail. A step of cooling the rail, where the cooling start temperature is 700 to 900 ° C, the cooling stop temperature is 500 to 650 ° C, and the average cooling rate between the cooling start temperature and the cooling stop temperature is 1 to 20 ° C / sec.
  • the number of preheatings 2 to 14 times
  • the late flash time is 10 to 30 sec
  • the average late flash speed 0.3 mm / sec or more
  • the late flash speed immediately before the upset is 0.
  • the flash time is 150 to 250 sec
  • the flash speed is 0.10 mm / sec or more
  • the ends of the plurality of rails are flash butt welded.
  • the average cooling rate of the outer surface of the crown of the welded joint in the temperature range of 800 to 400 ° C is 0.5 to 2.0 ° C / sec, and the outer surface of the lower jaw and the outer shell of the column in the temperature range of 800 to 500 ° C.
  • the average cooling rate CR1 of the surface is 0.5 to 2.0 ° C./sec
  • the average cooling rate CR2 of the weld joint in the temperature range of 500 to 400 ° C. is 0.4 to 1.6 ° C./sec
  • CR2 The process of cooling the weld joint of the weld rail with / CR1 set to 0.80 or less, Have.
  • Desirable Flash Butt Welding Conditions in the method for manufacturing a welding rail according to the present embodiment will be described.
  • preheating flash method preheating flash method
  • continuous flash method continuous flash method.
  • any method can be adopted.
  • the flash butt welding includes an initial flash process, a preheating process, a late flash process, and an upset process.
  • the initial flash process is a flash process that starts from the state where the rail is at room temperature.
  • the initial flush process creates a flush between the end faces (ie, welded surfaces) of the pair of rails so that the welded surface is relative to the longitudinal direction of the rail. Adjust vertically.
  • the welded surface is heated by the resistance heat generation and the arc heat generation of the flash.
  • the time for performing the initial flash step that is, the initial flash time is preferably 10 sec or more and 40 sec or less.
  • the preheating process In the preheating process, a large current is passed through the pair of rails for a certain period of time while the opposing welded surfaces of the pair of rails are forcibly brought into contact with each other, and the base metal near the welded surfaces is heated by resistance heat generation. Then pull the pair of rails apart. The contact and separation of the welded surface is repeated one or more times.
  • the number of preheatings (contact and separation of welded surfaces) is preferably 2 or more.
  • the number of preheatings is more preferably 4 times or more, and further preferably 12 times or more.
  • the upper limit of the number of preheatings is not particularly specified, but is, for example, 14 times or less, or 13 times or less.
  • the late flash process first, a flash is partially generated between the opposing weld surfaces, and the weld surface is heated by the resistance heat generation and arc heat generation of this flash.
  • the flash generated in a part of the welded surface is generated in the entire welded surface by increasing the flash speed, and the entire welded surface is uniformly heated by the resistance heat generation and the arc heat generation of the flash.
  • the oxide generated during the preheating step is scattered and reduced by the flash.
  • the flash speed is a speed at which jigs for gripping a pair of rails are brought close to each other.
  • the late flash time is 10 sec or more and 30 sec or less
  • the average late flash speed is 0.3 mm / sec or more
  • the late flash speed immediately before the upset (for 3 sec) is 0.5 mm / sec or more. ..
  • the average late flash speed is the average value of the flash speeds in the entire late flash process
  • the late flash speed immediately before the upset is the average value of the flash speeds in 3 seconds before the start of the upset.
  • the late flush allowance that is, the amount of melt damage of the rail in the late flush process is 10 mm or more.
  • the upset process After the entire surface of the welded surface is melted by the late flash process, the welded surfaces are rapidly brought into close contact with each other by a large pressing force, most of the molten metal on the welded surface is discharged to the outside, and the high temperature behind the welded surface is reached. Pressurization and deformation are applied to the heated portion, thereby forming a joint. That is, the oxide generated during welding is discharged by the upset process and is finely and dispersed, so that it is possible to reduce the possibility of remaining on the joint surface as a defect that impairs bending performance. .. Further, by discharging most of the molten metal to the outside, it contributes to the reduction of the HAZ width of the welded joint portion. In order to surely reduce the HAZ width of the welded joint, it is desirable that the upset load is 50 kN or more. More preferably, the upset load is 65 kN or more.
  • the flash butt welding does not include the preheating step and consists of a flash step and an upset step.
  • the HAZ width of the welded joint increases when the flash time is long. Further, when the flash speed is increased, the heat distribution in the vicinity of the welded surface becomes steeper, and as a result, the HAZ width of the welded joint portion is reduced. Therefore, it is desirable that the flash time is 150 sec or more and 250 sec or less, and the flash speed is 0.10 mm / sec or more.
  • the upset step in the case of the continuous flash method may have the same conditions as the upset step in the case of the preheated flash method described above.
  • Desirable cooling conditions after flash butt welding will be described. Regardless of whether the flash butt welding is a preheating flash method or a continuous flash method, the cooling conditions after the flash butt welding can be controlled in the same manner.
  • the welded joint is heated to the austenite region. Therefore, if appropriate cooling is not applied, the hardness of the welded joint portion will decrease. On the other hand, a large amount of martensite structure, which is the starting point of fracture, is generated inside the head of the weld rail and in the column.
  • the average cooling rate of the crown outer surface surface 1211 of the weld rail shown in FIG. 2 is set to be within the range of 0.5 to 2.0 ° C./sec. Is desirable.
  • the average cooling rate in the temperature range of 800 to 400 ° C. is the time required to lower the temperature from 800 ° C. to 400 ° C., which is obtained by dividing 400 ° C. (that is, the difference between 800 ° C. and 400 ° C.). The value.
  • the average cooling rate of the outer surface of the crown in this temperature range is less than 0.5 ° C./sec, the hardness of the weld joint portion decreases and the wear of the crown portion of the weld rail is promoted. Further, if the average cooling rate of the outer surface of the crown in this temperature range exceeds 2.0 ° C./sec, the hardness of the weld joint becomes excessive and the rolling contact fatigue damage resistance of the crown of the weld rail decreases. do. Further, when the average cooling rate of the outer surface of the crown exceeds 2.0 ° C./sec, the martensite structure becomes coarse and the number of martensite structures having a particle size of 20 to 200 ⁇ m becomes more than 80.
  • the cooling rate can be controlled by adjusting the temperature and the elapsed time based on the above temperature measurement.
  • the cooling conditions that reduce the martensite structure generated inside the head of the weld rail and in the columns will be described.
  • the outer surface of the lower jaw 1212 of the weld rail and the outer surface of the column 122 of the weld rail shown in FIG. 2 have an average cooling rate CR1 of 0.5. It is desirable to cool in the range of ⁇ 2.0 ° C / sec.
  • the average cooling rate in the temperature range of 800 to 500 ° C. is the time required to lower the temperature from 800 ° C. to 500 ° C., which is obtained by dividing 300 ° C. (that is, the difference between 800 ° C. and 500 ° C.). The value.
  • the average cooling rate CR1 of the lower jaw and the outer surface of the column in this temperature range is less than 0.5 ° C / sec, the hardness of the inside of the head and the column decreases, and it is necessary as a weld joint of the weld rail. It becomes difficult to secure the minimum strength that is said to be. Further, when the average cooling rate CR1 of the outer surface of the lower jaw and the outer surface of the pillar in this temperature range exceeds 2.0 ° C./sec, the martensite structure is formed even if the cooling rate in the temperature range of less than 500 ° C. is controlled. The particle size of the martensite structure becomes coarse, and the area ratio of the martensite structure exceeds 0.1000%.
  • the cooling rate of the outer surface of the crown is controlled within the range of 800 to 400 ° C, while the cooling rate of the lower jaw and the column is controlled within the temperature range of 800 to 500 ° C. This difference in temperature range is due to the difference in the purpose of cooling rate control.
  • the purpose of cooling rate control on the outer surface of the crown is to sufficiently generate pearlite transformation and maintain hardness.
  • the purpose of controlling the cooling rate in the lower jaw and the column is to reduce the amount of martensite produced in the segregated part.
  • the subsequent cooling that is, the temperature range of 500 to 400 It is desirable to control the average cooling rate CR2 in cooling at ° C. It is desirable that the average cooling rate CR2 in the temperature range of 500 to 400 ° C. in the welded joint is 0.4 to 1.6 ° C./sec.
  • the average cooling rate CR2 in the temperature range of 500 to 400 ° C. is the time required to lower the temperature from 500 ° C. to 400 ° C., which is obtained by dividing 100 ° C. (that is, the difference between 500 ° C. and 400 ° C.).
  • the average cooling rate in this temperature range is the average cooling rate of the lower jaw of the welding rail and the entire outer surface of the pillar portion of the welding rail.
  • the average cooling rate CR2 in this temperature range is less than 0.4 ° C./sec, the pearlite structure of the weld joint is tempered, the hardness of the inside of the head and the column is reduced, and the weld joint of the weld rail is reduced. It becomes difficult to secure the minimum strength required for welding.
  • the average cooling rate CR2 in this temperature range exceeds 1.6 ° C./sec, the pearlite transformation is not sufficiently completed, and the number of martensite structures having a particle size of 20 to 200 ⁇ m in the weld joint increases. , The damage resistance of the welded rail is reduced.
  • the average cooling rate of the entire outer surface of the lower jaw of the weld rail and the column portion of the weld rail (CR1 )
  • CR2 / CR1 becomes 0.80 or less
  • the cooling rate in the low temperature region (CR2) which is important for promoting the pearlite transformation, becomes smaller than the cooling rate in the high temperature region (CR1), and the pearlite transformation progresses sufficiently. This is because the amount of martensite produced is reduced.
  • the area ratio of the amount of martensite structure formed is 0.1000% or less, and the number of martensite structures having a particle size of 20 to 200 ⁇ m is controlled to 5 to 80.
  • the average cooling rate (CR1) immediately after welding 800 to 500 ° C.
  • the metal structure of the welded joint is not particularly limited as long as the above-mentioned martensite provisions are satisfied, but the structure described below further improves the fatigue damage resistance and breakage resistance of the weld rail.
  • the head of the welded joint (the region from the outer surface of the crown to the depth of 1/3 h) has a pearlite structure other than the above-mentioned limited martensite structure.
  • a metal structure other than the pearlite structure may be used as long as the strength, ductility, and toughness required for the weld rail can be secured.
  • the conditions for continuous casting of bloom which is the material of the rail, will be described.
  • the Cr segregation degree of the flash butt welded joint portion it is preferable to alleviate the segregation in the bloom which is the rolled material of the rail. If the Cr segregation degree is lowered at the bloom stage, the Cr segregation degree of the welded joint portion can also be lowered. It is presumed that this is because the segregation state of the bloom is maintained even after the rail rolling, and the segregation state of the rail is maintained even after the welding process.
  • the segregation state of the alloying elements in Bloom can be appropriately controlled by a known method.
  • the bloom reheating temperature will be explained. If the bloom reheating temperature is less than 1000 ° C., rolling defects can be ensured in hot formability in rail rolling, and rail manufacturing becomes difficult. Further, if the reheating temperature exceeds 1350 ° C., the steel may melt and it may be difficult to manufacture the rail. Therefore, the bloom reheating temperature is preferably in the range of 1000 to 1350 ° C. With the bloom heated within this temperature range, hot rolling of the bloom is started.
  • the final rolling temperature is less than 750 ° C.
  • the pearlite transformation starts immediately after the rolling is completed, so that the rail cannot be made harder by the heat treatment after the rolling is completed, and the wear resistance cannot be ensured.
  • the final rolling temperature exceeds 1100 ° C.
  • the austenite grains become coarse in the rail after rolling, the hardenability is significantly increased, and a bainite structure harmful to wear resistance is generated on the head of the rail. In this case, the wear resistance of the welded rail is lowered, and the minimum ductility required for the welded rail cannot be ensured. Therefore, the final rolling temperature is preferably in the range of 750 to 1100 ° C.
  • normal rail hole rolling may be performed while controlling the bloom reheating temperature and the final rolling temperature of the rail as described above. For example, after rough rolling a piece of steel, intermediate rolling by a reverse rolling mill is performed over multiple passes, and then finish rolling by a continuous rolling mill is performed by two or more passes, and the final rolling temperature is set at the time of final rolling of this finish rolling. It may be controlled within the above temperature range.
  • the heat treatment conditions after hot rolling are within the range shown below in order to maintain the pearlite structure and control the hardness of the rail head.
  • the cooling rate will be explained. If the average cooling rate of the rail after hot rolling is less than 1 ° C./sec, the pearlite transformation temperature rises, the rail cannot be made of high hardness, and the wear resistance of the welded rail cannot be ensured. Further, when the average cooling rate of the rail after hot rolling exceeds 20 ° C./sec, a bainite structure and a martensite structure are formed at the rail head in this component system, and the wear resistance of the rail is lowered. Therefore, the average cooling rate of the rail after hot rolling is set in the range of 1 to 20 ° C./sec. The average cooling rate is a value obtained by dividing the difference between the cooling start temperature and the cooling stop temperature, which will be described later, by the cooling time.
  • the cooling start temperature of the rail will be described. If the cooling start temperature of the rail is less than 700 ° C, in this component system, a pearlite structure is generated on the rail in the high temperature range before accelerated cooling, so the rail cannot be made hard and the wear resistance of the welded rail is ensured. Can not. Further, when the cooling start temperature of the rail is less than 700 ° C., an proactive cementite structure may be formed on the rail, and the wear resistance of the welded rail may be lowered. Further, when the cooling start temperature of the rail exceeds 900 ° C., the hardenability of the rail is significantly increased, a bainite structure harmful to the wear resistance is formed on the rail head, and the wear resistance is lowered.
  • the cooling start temperature is in the range of 700 to 900 ° C.
  • the cooling start temperature is the rail temperature when accelerated cooling to the rail is started.
  • the cooling start temperature is the rail temperature when the refrigerant starts to be injected onto the rail.
  • the cooling shutdown temperature of the rail will be described.
  • the cooling stop temperature of the rail exceeds 650 ° C.
  • the pearlite transformation starts in the high temperature range immediately after the cooling stop, so that many pearlite structures having low hardness are generated.
  • the hardness of the head cannot be ensured, and it becomes difficult to secure the wear resistance required for the welded rail.
  • accelerated cooling is performed to a temperature lower than 500 ° C.
  • a large amount of bainite structure which is harmful to wear resistance, is generated immediately after the cooling is stopped in this component system.
  • the cooling shutdown temperature is in the range of 500 to 650 ° C.
  • the cooling stop temperature is the rail temperature at the end of accelerated cooling to the rail.
  • the cooling start temperature is the rail temperature when the refrigerant has been injected onto the rail. Even after the accelerated cooling is completed, the rail temperature will continue to decrease due to heat dissipation, but the rail temperature decrease due to heat dissipation is not included in the accelerated cooling.
  • the type of heat-treated refrigerant for the rail is not particularly limited.
  • the cooling rate of the rail during heat treatment by air injection cooling, mist cooling, mixed injection cooling of water and air, or a combination thereof is used. Is controlled as described above. If the average cooling rate of the rail in the temperature range of 900 to 500 ° C. is within the above range, the rail after hot rolling may be naturally cooled to room temperature. In this case, the above-mentioned case may be used. The rules for cooling start temperature and cooling stop temperature may be ignored.
  • a pearlite structure is desirable for the rail head (1/3 h from the outer surface of the crown).
  • a metal structure other than the pearlite structure may be used as long as the strength and ductility required for the rail can be secured.
  • the structure of the rail is substantially the same as the structure of the rail portion of the welded rail.
  • Welded rails were manufactured by manufacturing rails having the components shown in Tables 4-1 to 4-4 and subjecting them to flash butt welding.
  • the manufacturing conditions for welded rails are as follows. The changed conditions are described in the remarks column of Tables 5-3 to 5-4.
  • Bloom manufacturing conditions start of light reduction of bloom: Central solid phase ratio 20% Rail manufacturing conditions ⁇ Bloom heating temperature (that is, hot rolling start temperature): 1250 ° C ⁇ Rail finish rolling temperature: 950 ° C ⁇ Rail cooling start temperature: 800 °C ⁇ Rail cooling shutdown temperature: 550 ° C ⁇ Average rail cooling rate: 5.0 ° C / sec Flash butt welding conditions (1)
  • preheating flash method corresponding to "preheating" shown in Tables 5-1 and 5-2
  • Number of preheating in rail flash butt welding 8 times ⁇ Flash in rail flash butt welding Time: 25 sec ⁇ Average flash speed in flash butt welding of rails: 0.8 mm / sec ⁇ Flash speed just before upset (for 3 sec) in flash butt welding of rail: 2.0 mm / sec ⁇
  • continuous flash method corresponding to "continuous” shown in Tables 5-1 and 5-2
  • Flash time in flash butt welding of rail 200 sec ⁇
  • the HAZ width of the weld joint of the weld rail, the area ratio of the martensite structure in the martensite evaluation region, the number of martensite structures having a particle size of 20 to 200 ⁇ m, and the Cr segregation rate were evaluated. It is shown in Table 5-2.
  • the evaluation method for these elements is as described above. Further, fatigue damage resistance and breakage resistance of the welded rail were also evaluated by the above-mentioned methods and are shown in Tables 5-1 to 5-2.
  • the definitions of the codes of the evaluation results shown in the table are as follows.
  • Example 21 is an example in which the HAZ width of the welded joint (see the “HAZ width” column in the table) exceeds the scope of the invention because the average late flash rate was too low.
  • the fatigue damage property did not meet the pass / fail criteria.
  • the average cooling rate CR2 and CR2 / CR1 of the weld joint in the temperature range of 500 to 400 ° C. were too large, so that the area ratio of the martensite structure in the martensite evaluation region (“MS area ratio” in the table). (See) is an example beyond the scope of the invention.
  • the breakability did not meet the pass / fail criteria.
  • Example 26 and 27 the average cooling rate CR2 and CR2 / CR1 of the weld joint in the temperature range of 500 to 400 ° C. were too large, so that the number of martensite structures having a particle size of 20 to 200 ⁇ m in the martensite evaluation region was too large. Is an example beyond the scope of the invention. In these Examples 26 and 27, the breakability did not meet the pass / fail criteria. In Example 28, since the average cooling rate CR1 on the outer surface of the crown of the weld joint in the temperature range of 800 to 400 ° C. was too large, the number of martensite structures having a particle size of 20 to 200 ⁇ m in the martensite evaluation region was within the scope of the invention. This is an example beyond. In this example 25, the breakability did not meet the pass / fail criteria.
  • Welding rail 11 Welding joint 111 Heat-affected zone (HAZ) 12 Rail part 121 Head of welded rail (head) 1211 Overhead outer surface of welded rail (overhead outer surface) 1212 Welding rail lower jaw (lower jaw) 122 Welding rail pillar (pillar) 123 Bottom of welded rail (bottom) A Welding center B Martensite evaluation area 2 Sleepers 3 Wheels 4 Motors 5 Load stabilizer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

本発明の一態様に係る溶接レールは、頭部及び柱部を有する、高さhの複数のレール部と、レール部を接合する溶接継ぎ手部とを備え、レール部は、 所定の化学成分を有し、溶接継ぎ手部のHAZ幅が60mm以下であり、溶接継ぎ手部の、溶接レールの長手方向及び上下方向に平行かつ溶接継ぎ手部の中心を通る断面の、頭頂部外郭表面から0~(2/3)×h、且つ溶接中心から長手方向に±5mmの領域において、マルテンサイト組織の面積率が0.0006%以上0.1000%以下であり、領域において、粒径20~200μmのマルテンサイト組織の個数が3~80個である。

Description

溶接レール
 本発明は、溶接レールに関する。
 本願は、2020年9月30日に、日本に出願された特願2020-165639号に基づき優先権を主張し、その内容をここに援用する。
 フラッシュバット溶接は、レールの溶接方法として広く普及している。フラッシュバット溶接の特徴として、自動化が可能であり、品質の安定性が高く、溶接時間が短いなどの長所を有することが知られている。
 フラッシュバット溶接は、加熱によりレール端面を溶かした後、溶融面を加圧密着させて、互いのレールを接合する技術である。フラッシュバット溶接の際、レールは室温からその融点近くまで加熱され、次いで冷却される。そのため、フラッシュバット溶接によって、レールの金属組織及び硬さに変化が生じる。溶接、切断などの熱で冶金的性質、機械的性質などが変化を生じた部分は、熱影響部(HAZ:Heat Affected Zone)と呼ばれる。
 HAZのうち、溶接時にA1点以上まで加熱された箇所においては、金属組織のオーステナイト化及びパーライト変態が生じる。さらにHAZのうち、A1点未満であるが、その近傍まで加熱された箇所においては、金属組織であるパーライト組織の分解が生じる。これにより、HAZでは硬度の低下が発生する。溶接レールにおいて硬度低下が発生すると、車輪の通過によるレール頭部のHAZの摩耗が促進される。そして、HAZと母材との摩耗速度の違いにより、溶接継ぎ手部に凹凸が発生し易くなる。このため、列車走行時に溶接継ぎ手部に過大な荷重が作用し、溶接レールの折損等の可能性が増す。このため、レールのフラッシュバット溶接において、溶接継ぎ手部のHAZ幅を狭めること、及びHAZにおける軟化を抑制することが求められる。なお、HAZ幅とHAZの軟化との間には相関があり、HAZ幅が増加するほどHAZの軟化が著しくなる傾向にある。そのため、HAZ幅を低減すれば、HAZ軟化の抑制も達成されることとなる。
 例えば、HAZ幅を狭めるために、次のような技術が提案されている。
 特許文献1においては、レールのフラッシュ溶接において、レール長手方向のHAZ幅を低減するため、頭頂面におけるレール長手方向の長さが15mm以上であり、かつ頭頂面と接触する部分の厚みが10mm以上の当て金を溶接前のレール端面から20mm以上50mm以内にセットし、その後、レールをフラッシュバット溶接することにより、硬さが低下する溶接継ぎ手のHAZの幅(レール長手方向)を15mm以下にすることができることが示されている。
 特許文献2においては、レールのフラッシュ溶接において、レール長手方向のHAZ幅を低減するため、後期フラッシュ速度を2.1mm/sec以上とし、HAZ幅が27mm以下、かつ、軟化幅が10mm以下とするレール溶接継ぎ手を実現するフラッシュバット溶接方法が記されている。
 特許文献3においては、レール溶接部における柱部冷却領域を、オーステナイトからパーライトへの変態が完了するまでの少なくとも一部の温度範囲において冷却する第1の柱部冷却工程と;前記レール溶接部における前記柱部の全体がパーライトへ変態後、前記柱部冷却領域を冷却する第2の柱部冷却工程と;前記レール溶接部における足部を冷却する足部冷却工程と;前記レール溶接部における頭部を冷却する頭部冷却工程と;を有し、前記第1の柱部冷却工程及び前記第2の柱部冷却工程の冷却時間をt(分)とすると、k値が-0.1t+0.63≦k≦-0.1t+2.33で示される式を満たすレール溶接部の冷却方法が開示されている。
日本国特開2007-289970号公報 国際公開第2011/052562号 国際公開第2010/116680号
 しかしながら、特許文献1のように当て金を装着する方法では、別途用意された当て金を指定された範囲に装着する必要がある。しかし、当て金が配置される箇所は、レールの突合せ端面に極めて近いので、飛散した溶融金属が当て金に固着する。そのため、特許文献1の方法では、当て金の脱着が容易ではなく、さらに、当て金に固着した金属の除去にも手間を要する。そのため、特許文献1の方法は、自動化され溶接能率の高いフラッシュバット溶接の効率を損なう問題がある。また、特許文献1に記載の技術は、溶接継ぎ手部の凹凸を低減することを主な目的としており、溶接継ぎ手部の耐疲労損傷性及び耐折損性を向上させることは考慮されていない。さらに、特許文献1に記載の技術では、当て金を用いてレールを冷却することにより、溶接継ぎ手部の靭性を低下させるマルテンサイト組織が生成し易くなり、レールの折損等の可能性が増すと言った問題があった。
 特許文献2は、摩耗による溶接継ぎ手部の凹凸を低減することが主な目的であり、レール溶接接ぎ手部の耐疲労損傷性及び耐折損性を向上させることを目的としたものではなかった。また、特許文献2に示すような溶接条件では、HAZ幅を低減させた場合に、レール溶接接ぎ手部に靭性を低下させる粗大なマルテンサイト組織が生成し易くなり、レールの折損等の可能性が増すと言った問題があった。
 特許文献3に記載の技術の主な目的は、フラッシュバット溶接後のレールにおける残留応力の低減にある。HAZ幅を減少させることは、特許文献3に記載の技術の目的とはされていない。また、HAZ幅を狭めるようにフラッシュバット溶接を行うと、レール母材部からレール溶接部にかけての温度勾配が急峻化して、溶接後のレールにおける残留応力が増大する。そのため、特許文献3の技術においてHAZ幅を狭めることは容易ではない。
 また、レールのフラッシュバット溶接では、溶接後の溶接接ぎ手部の冷却速度が高い。このため、溶接接ぎ手部では、靭性の低いマルテンサイト組織が生成し易い。特に、レール頭部内部及び柱部の合金偏析部にマルテンサイト組織が生成する。パーライト組織中にマルテンサイト組織が生成すると、レールの折損が発生することが知られている。このため、溶接接ぎ手部のマルテンサイト組織については、その生成量がレールの規格等で規制されている(例えば、「CN SPECIFICATION FOR THE MANUFACTURE OF STEEL RAIL」Canadian National Railway Company,August 8, 2006,12-16D)。しかしながら、これまでこのマルテンサイト組織の有害性については明確な評価はされておらず、有害性に対する定量的な評価もされていない。
 本発明は、上述した問題点に鑑み案出されたものであり、溶接レールの溶接継ぎ手部における耐疲労損傷性及び耐折損性を向上させることを目的としたものである。好ましくは、軌道環境が厳しい貨物鉄道のレールのフラッシュバット溶接継ぎ手部における、極めて厳しい耐疲労損傷性及び耐折損性の要求を満足することができるレールを提供することを課題とする。
 本発明の要旨は、下記に示すレールにある。
(1)本発明の一態様に係る溶接レールは、頭部及び柱部を有する、高さhの複数のレール部と、前記レール部を接合する溶接継ぎ手部とを備え、前記レール部は、化学成分として、単位質量%で、C:0.75~1.20%、Si:0.10~2.00%、Mn:0.10~2.00%、Cr:0.10~1.50%、P≦0.0250%、S≦0.0250%、Mo:0~0.50%、Co:0~1.00%、B:0~0.0050%、Cu:0~1.00%、Ni:0~1.00%、V:0~0.50%、Nb:0~0.0500%、Ti:0~0.0500%、Mg:0~0.0200%、Ca:0~0.0200%、REM:0~0.0500%、N:0~0.0200%、Zr:0~0.0200%、及びAl:0~1.00%を含有し、残部がFeおよび不純物からなり、前記溶接継ぎ手部のHAZ幅が60mm以下であり、前記溶接継ぎ手部の、溶接レールの長手方向及び上下方向に平行かつ前記溶接継ぎ手部の中心を通る断面の、頭頂部外郭表面から0~(2/3)×h、且つ溶接中心から長手方向に±5mmの領域において、マルテンサイト組織の面積率が0.0006%以上0.1000%以下であり、前記領域において、粒径20~200μmのマルテンサイト組織の個数が3~80個である。
(2)上記(1)に記載の溶接レールでは、さらに、前記溶接継ぎ手部の前記領域におけるCr偏析度が2.00以下であってもよい。
(3)上記(1)または(2)に記載の溶接レールでは、前記レール部がさらに、前記化学成分として、単位質量%で、Mo:0.01~0.50%、Co:0.01~1.00%、B:0.0001~0.0050%、Cu:0.01~1.00%、Ni:0.01~1.00%、V:0.01~0.50%、Nb:0.0010~0.0500%、Ti:0.0030~0.0500%、Mg:0.0005~0.0200%、Ca:0.0005~0.0200%、REM:0.0005~0.0500%、N:0.0020~0.0200%、Zr:0.0001~0.0200%、Al:0.0100~1.00%、の一種以上を含有してもよい。
 本発明の上記態様によれば、溶接レールの溶接継ぎ手部の耐疲労損傷性及び耐折損性を向上させることが可能となる。
溶接レールの側面図である。 溶接レールの長手方向断面における硬さ分布の一例である。 溶接レールのレール部の、長手方向に垂直な断面図である。 レール/車輪の転動による損傷を再現する転動疲労試験機の概要を示した図である。 レールの落重試験の概要を示した図である。 溶接レールの溶接継ぎ手部の長手方向断面図、及び、溶接レールの溶接継ぎ手部のC-C断面図である。 長手方向断面及び溶接継ぎ手部の斜視図である。 溶接継ぎ手部の粒径20~200μmのマルテンサイト組織の個数とレール折損の関係を示したグラフである。 偏析部のCr濃度の算定方法を示したグラフである。 溶接継ぎ手部のHAZ幅と粒径20~200μmのマルテンサイト組織の個数の関係を示したグラフである。
 本発明の一実施形態に係る耐疲労損傷性及び耐折損性に優れた溶接レールにつき、詳細に説明する。以下、組成における質量%は、単に%と記載する。
 まず、本実施形態において用いられる用語を説明する。
 溶接レール1は、図1A及び図2に示されるように、頭部121及び柱部122を有する複数のレール部12と、これらレール部12を接合する溶接継ぎ手部11とを備えるものである。なお、図1A中の符号「A」は、後述する溶接中心を示す。また、溶接前のレールに関しては、便宜上、単に「レール」、と称することにより、溶接レールと区別する。即ち、「レール(rail)」は溶接継ぎ手部11を有しない溶接前のレールのことであり、「溶接レール(welded rail)」は溶接継ぎ手部11を有する溶接後のレールのことであり、「レール部(rail portion)」は溶接レール1における溶接継ぎ手部11以外の部分のことである。
 レール頭部(又は頭部)121とは、図2に示されるレール部12の横断面において、レール部12の上下方向中央における括れた部分よりも上側の部分をいう。また、レール柱部(又は柱部)122とは、図に示されるレール部12の横断面において、レール部12の上下方向中央における括れた部分をいう。さらに、レール底部(又は底部)123とは、図に示されるレール部12の横断面において、レールの上下方向中央における括れた部分よりも下側の部分をいう。また、レール頭部121において、上部の外郭表面を頭頂面、又はレール頭頂部外郭表面1211と称する。また、レール頭部121の下部の括れた部分を、レール顎下部(又は顎下部)1212と称する。なお、当然ながら、溶接レール1の上下方向とは、溶接レール1が軌道として使用される際の上下方向を意味する。
 溶接継ぎ手部11とは、JIS Z 3001-1:2018に規定された「溶接継手」のことであり、部材を溶接で一つにした結合部を意味する。溶接継ぎ手部11は熱影響部(HAZ)111を含む。本実施形態において、部材とはレール部12の材料となるレールのことである。なお、溶接レール1において溶接継ぎ手部11の形状はレール部12と略同一となる。従って、溶接継ぎ手部11も、レール部12と同様に、頭部及び柱部に該当する箇所を有する形状をなす。
 溶接継ぎ手部11の長手方向断面とは、溶接レール1の長手方向及び上下方向に平行であり、且つ溶接継ぎ手部11の中心を通る、溶接継ぎ手部11及びその周囲の断面のことである。図5A及び図5Bに、溶接継ぎ手部11の長手方向断面の概略図を示す。
 熱影響部111(heat-affected zone、HAZ)とは、本実施形態に係る溶接レールにおいては、図1Bに示される最軟化部の間の領域を意味する。図1Bは、溶接レールの溶接継ぎ手部11の長手方向断面において、溶接レールの長手方向に沿って、溶接継ぎ手部11のレール頭頂部外郭表面1211から5mm下の位置の硬さを連続的に測定することによって得られる、長手方向断面の硬さ分布のグラフの一例である。通常、フラッシュバット溶接によって得られた溶接レールの硬さ分布のグラフにおいては、レールの継目の両側に2つの谷が生じる。レールの継目の左側及び右側それぞれにおいて最も柔らかい箇所を、溶接継ぎ手部11の最軟化部と定義する。この2つの最軟化部の間の領域を、熱影響部(HAZ)111と定義する。また、溶接レールの長手方向に沿って測定される、2つの最軟化部の間隔を、HAZ幅Wと定義する。なお、ナイタールを用いて溶接継ぎ手部11の長手方向断面をエッチングした後で変色した領域は、上述の定義によるHAZとおおむね一致する。
 溶接中心Aとは、溶接継ぎ手部11の長手方向断面において、熱影響部111の中心を通る、溶接レールの上下方向に沿った直線を意味する。通常、溶接中心Aは、レールの継目とおおむね一致する。
 次に、本発明の技術思想について説明する。本発明者らは、溶接レールの溶接継ぎ手部に発生する損傷を調査した。実軌道で発生した損傷レールを調査した結果、損傷の発生形態には、(1)溶接レールの底部から発生する疲労き裂を起点とする折損、及び(2)溶接レールの頭部の内部及び柱部から発生する、脆性き裂を起点とする折損があることを確認した。そこで、これらの発生原因を調査した。
 まず、(1)底部から発生する疲労き裂を起点とする折損について調査した。底部から疲労き裂が発生している溶接継ぎ手部では、その頭部で摩耗による深い凹部が生じていた。また、底部から疲労き裂が発生している溶接継ぎ手部では、溶接継ぎ手部のHAZ幅が著しく大きいことがわかった。
 さらに、溶接レールの底部から発生する疲労き裂を起点とする折損を抑制するために、溶接継ぎ手部のHAZ幅と、折損との関係を検証した。共析鋼レール、及び過共析鋼レール(0.75~1.20%C)を用いてフラッシュバット溶接試験を行い、HAZ幅が異なる種々の溶接継ぎ手を作成した。そして、図3に示すレール/車輪の転動による損傷を再現する試験機を用いて、HAZ幅と溶接レールの底部の応力との関係を評価した。図3において、符号1は上述の溶接レールであり、符号2は溶接レール1が載置される枕木を示す。また、符号5は、モーター4によって回転する車輪3を押さえる荷重安定装置を示す。転動疲労試験では、荷重安定装置5を用いて所定の荷重を車輪3に加えながら、車輪3が溶接レール1の頭部を長手方向に沿って前後に転動することを繰り返す。溶接前のレール、フラッシュバット溶接条件、フラッシュバット溶接継ぎ手部の特性、溶接レール/車輪の転動疲労試験の条件は下記に示すとおりである。
 [溶接レール/車輪の転動試験]
●溶接前のレール
 成分:0.75~1.20%C、Si、Mn、Crを含有し、残部が鉄及び不純物
 レール形状:136ポンド(重さ:67kg/m)。
 レール頭頂部外郭表面の硬さ:420HV
●フラッシュバット溶接条件(予熱フラッシュ方式)
 初期フラッシュ時間:15sec
 予熱回数:2~16回
 後期フラッシュ時間:15~30sec
 平均的な後期フラッシュ速度:0.2~1.0mm/sec
 アプセット直前(3sec間)の後期フラッシュ速度:0.3~3.0mm/sec
 アプセット荷重:65~85kN
●溶接後の溶接継ぎ手部の冷却条件
 頭頂部の平均冷却速度:1.0℃/sec(温度範囲:800~400℃)
 顎下部、及び柱部の平均冷却速度:
  800~500℃の温度範囲で1.0℃/secとし、
  500~400℃の温度範囲で1.0℃/secとし、
  その後50℃まで放冷
●フラッシュバット溶接継ぎ手部の特性
 HAZ幅:10~80mm
 溶接中心の硬さ:390~440 HV
 最軟化部の硬さ:280 HV
●溶接レール/車輪の転動疲労試験の条件
 試験機:転動疲労試験機(図3参照)
 試験片となる溶接レールの形状:長さ2m(長さ方向中央部にフラッシュバット溶接継ぎ手部あり)
 車輪:AARタイプ(直径920mm)
 ラジアル荷重:300kN
 スラスト荷重:50kN
 底部応力:400MPa(試験初期にひずみゲージを用いて測定された実測値)
 潤滑:水・乾燥の繰り返し潤滑(即ち、溶接レールに一定時間水をかけ、その後、水の供給を停止させて水を乾燥させるサイクルを繰り返す)
 車輪を用いた荷重印加の繰り返し回数:最大400万回
 累積通過トン数:最大12千万トン
 合格基準:荷重印加200万回まで未破断
※累積通過トン数:溶接レールの上を走行した貨車の総重量、本試験の場合は車輪から作用した通過重量の2倍で評価。即ち、上述のラジアル荷重(300kN)×車輪通過回数×2によって求められる値が累積通過トン数である。
●評価
 底部き裂の調査方法:目視、及び磁粉探傷
Figure JPOXMLDOC01-appb-T000001
 その結果、表1に示すように、HAZ幅が小さいほど、破断までの繰り返し回数が増加し、溶接継ぎ手部の使用寿命が向上した。また、上述の転動疲労試験後の溶接レールを観察すると、HAZ幅が小さいほど、溶接継ぎ手部に生成する凹凸が減少することがわかった。
 具体的には、HAZ幅が60mmを超えると、溶接継ぎ手部に生成する凹凸が大きくなり、破断までの車輪通過繰り返し回数が200万回未満となり、合格基準を満たさなかった。
 また、HAZ幅が40mm以上~60mm以下の範囲になると、溶接継ぎ手部に生成する凹凸が減少し、破断までの車輪通過繰り返し回数が200万回を超え、破断までの車輪通過繰り返し回数が200万回以上~300万回未満の範囲となり、合格基準を満たした。
 さらに、HAZ幅が20mm以上~40mm未満になると、溶接継ぎ手部に生成する凹凸がさらに減少し、破断までの車輪通過繰り返し回数が300万回以上~400万回未満の範囲となった。
 これに加えて、HAZ幅が10mm以上~20mm未満になると、溶接継ぎ手部に生成する凹凸がさらに減少し、車輪通過繰り返し回数が400万回でも破断しなくなった。
 本試験により、HAZ幅の減少に伴い、溶接継ぎ手部の使用寿命がより一層向上することが判明した。
 次に、(2)溶接レールの頭部の内部及び柱部から発生する脆性き裂を起点とする折損の発生原因を調査した。折損が発生した溶接レールの折損の起点部と金属組織との関係を調査した結果、折損の起点部には靭性を低下させるマルテンサイト組織が生成していることが確認された。
 そこで、このマルテンサイト組織と溶接レールの折損との関係を調査した。まず、マルテンサイト組織の生成量と溶接レールの折損との関係を調査した。共析鋼レール、及び過共析鋼レール(0.75~1.20%C)を用いて、フラッシュバット溶接試験を行い、図4に示す溶接レールの落重試験を行い、マルテンサイト組織の生成量と溶接レールの折損の有無との関係を評価した。フラッシュバット溶接条件、及び溶接後の溶接継ぎ手部の冷却条件は、上述の溶接試験の条件と同一であった。溶接前のレール、フラッシュバット溶接継ぎ手部の特性、マルテンサイト組織の評価、落重試験の条件は下記に示すとおりである。
●溶接前のレール
 成分:0.75~1.20%C、Si、Mn、Crを含有し、残部が鉄及び不純物
 レール形状:136ポンド(重さ:67kg/m)
 頭頂部外郭表面の硬さ:420 HV
●フラッシュバット溶接継ぎ手部の特性
 HAZ幅:40mm
 溶接中心の硬さ:380~440 HV
 最軟化部の硬さ:280 HV
 マルテンサイト評価領域Bにおけるマルテンサイト組織の面積率:0.0001~0.2000%
 マルテンサイト評価領域Bにおけるマルテンサイト組織の粒径範囲:5μm以上
●マルテンサイト組織の面積率の算定
 評価部位(図5A及び図5B参照):図5A及び図5Bにおいて破線で囲まれた領域B
 領域Bについて詳細に説明すると以下の通りである。図5Aの左側は、溶接レールの長手方向に垂直な、溶接レールの断面図である。図5Aの右側は、図5Aの左側の図に示されたC-C破線におけるC-C断面図、即ち、溶接継ぎ手部の、溶接レールの長手方向及び上下方向に平行かつ溶接継ぎ手部の中心を通る断面図である。なお、溶接継ぎ手部の中心とは、溶接レールを使用する際の溶接レールの幅方向における、溶接継ぎ手部の中心のことである。図5Bは、溶接レールから切り出され、図5Aの右側に示された断面が現出した組織観察用試料の斜視図である。領域Bは、溶接継ぎ手部の長手方向断面の、レール頭頂部外郭表面1211から深さ0mm以上(2/3)×hmm以下、且つ溶接中心Aから長手方向に幅±5mm(合計幅10mm)の領域である。ここで、「h」は溶接レール1の高さを意味する。以下、この部位を、マルテンサイト評価領域Bと称する。
 評価部位の選定理由:マルテンサイト評価領域Bは、フラッシュバット溶接においてA1点以上に加熱される部位であり、かつ、これまでのフラッシュバット溶接試験においてマルテンサイト組織が最も生成しやすいことが確認された部位であるため。
 マルテンサイト組織の観察:マルテンサイト評価領域Bを研磨後、ナイタールエッチを行い、光学顕微鏡により観察を行い、マルテンサイトを写真撮影することにより実施した。
 研磨条件:1μmダイヤペーストでのバフ研磨
 ナイタールエッチ条件:アルコール+5%硝酸
 光学顕微鏡観察条件:200倍
 視野:マルテンサイト評価領域Bの全体
 マルテンサイト組織の面積率の算定:マルテンサイト評価領域Bの、倍率200倍の光学顕微鏡写真を撮影する。次いで、画像解析ソフトを用いて、この光学顕微鏡写真を二値化する。マルテンサイトは通常白色に表示されるので、二値化後の光学顕微鏡写真においてマルテンサイト評価領域Bに占める白色領域の面積割合を、マルテンサイト組織の面積率とみなすことができる。なお、本実施形態に係る溶接レールの溶接継ぎ手部において、マルテンサイト組織以外の金属組織はパーライト組織である。このような金属組織の光学顕微鏡写真において、炭化物を含まないマルテンサイトは白色領域として現れ、パーライトとは明瞭に区別することができる。なお、溶接レールの溶接継ぎ手部において微量なベイナイト組織が含まれる場合もあるが、本実施形態に係る溶接レールにおいては、溶接継ぎ手部におけるベイナイト組織はマルテンサイト組織とみなす。両者を光学顕微鏡写真で判別することが難しく、さらに、両者が溶接レールの耐折損性に及ぼす影響がほぼ同一であるからである。
●落重試験条件(図4参照)
 姿勢:頭部を下側、底部を上側として溶接レールを2点支持し、溶接レールの底部に落錘落下
 スパン(2つの支持点の間隔):1000mm
 落錘重量:10kN
 落錘高さ:5000mm
 その結果、溶接継ぎ手部のマルテンサイト評価領域Bにおけるマルテンサイト組織の面積率が0.1000%を超えると、落重試験において、溶接レールの折損が発生することが判明した。なお、粒径20~200μmのマルテンサイト組織の個数が、後述する通り80個以下であっても、マルテンサイト組織の面積率が0.1000%を超えると折損が発生した。
 さらに、マルテンサイト評価領域Bにおけるマルテンサイト組織の粒径と、溶接レールの折損との関係を調査した。共析鋼レール、及び過共析鋼レール(0.75~1.20%C)を用いて、フラッシュバット溶接試験を行った。溶接後の冷却条件を変化させ、マルテンサイト組織の粒径を変化させた溶接継ぎ手を作成した。これらに、図4に示すレールの落重試験を行い、マルテンサイト組織の粒径と溶接レールの折損の有無との関係を評価した。溶接前のレール、フラッシュバット溶接継ぎ手部の特性およびマルテンサイト組織の粒径測定は下記に示すとおりである。なお、マルテンサイト組織の面積率、及び落重試験の条件は上記に示したとおりである。
 ●溶接前のレール
 成分:0.75~1.20%C-0.50%Si-1.00%Mn-0.20%Cr-0.0150%P-0.0120%S(残部は鉄及び不純物)
 レール形状:136ポンド(重さ:67kg/m)。
 頭頂部外郭表面の硬さ:420 HV
●フラッシュバット溶接条件(予熱フラッシュ方式)
 溶接後の溶接継ぎ手部の冷却条件
 初期フラッシュ時間:15sec
 予熱回数:10回
 後期フラッシュ時間:20sec
 平均的な後期フラッシュ速度:0.6mm/sec
 アプセット直前(3sec間)の後期フラッシュ速度:1.8mm/sec
 アプセット荷重:65kN
●溶接後の溶接継ぎ手部の冷却条件
 頭頂部の平均冷却速度:1.0℃/sec(温度範囲:800~400℃)
 顎下部、及び柱部の平均冷却速度:
  800~500℃の温度範囲で0.5~2.0℃/secとし、
  500~400℃の温度範囲で1.0℃/secとし、
  その後50℃まで放冷
●フラッシュバット溶接継ぎ手部の特性
 HAZ幅:40mm
 溶接中心の硬さ:390 HV
 最軟化部の硬さ:280 HV
 マルテンサイト評価領域Bにおけるマルテンサイト組織の面積率:0.0001~0.1000%
 マルテンサイト評価領域Bにおけるマルテンサイト組織の粒径範囲:5μm以上
●マルテンサイト組織の粒径測定:マルテンサイト評価領域Bにおけるマルテンサイト組織の写真について、画像解析により個々のマルテンサイト組織それぞれの面積を測定した。そして、マルテンサイト組織の形状を円と仮定し、面積に基づいて円相当直径を算定した。
Figure JPOXMLDOC01-appb-T000002
 その結果、表2に示すように、マルテンサイト評価領域Bにおけるマルテンサイト組織の粒径、及び個数密度も溶接レールの耐折損性に影響することが判明した。具体的には、溶接レールの溶接継ぎ手部における粒径20~200μmのマルテンサイト組織の個数が80個超であると、落重試験において溶接レールに折損が発生した。したがって、溶接レールの折損を制御するためには、粒径が20μm以上のマルテンサイト組織の生成量を制御する必要あることがわかった。
 さらに、粒径が20~200μmのマルテンサイト組織と溶接レールの折損との関係を詳細に調査した。共析鋼レール、及び過共析鋼レール(0.75~1.20%C)を用いて、フラッシュバット溶接試験を行い、溶接後の冷却条件を変化させ、粒径が20~200μmのマルテンサイト組織の数を変化させた溶接継ぎ手を作成した。これらに、図4に示す溶接レールの落重試験を行い、粒径が20~200μmのマルテンサイト組織の個数と溶接レールの折損の有無との関係を評価した。溶接前のレールおよびフラッシュバット溶接継ぎ手部の特性は下記に示すとおりである。なお、マルテンサイト組織の面積率および粒径の算定、落重試験の条件は上記に示したとおりである。
●溶接前のレール
 成分:0.75~1.20%C-0.50%Si-1.00%Mn-0.20%Cr-0.0150%P-0.0120%S
 レール形状:136ポンド(重さ:67kg/m)。
 頭頂部外郭表面の硬さ:420 HV
●フラッシュバット溶接条件(予熱フラッシュ方式)
 初期フラッシュ時間:15sec
 予熱回数:8回
 後期フラッシュ時間:20sec
 平均的な後期フラッシュ速度:1.0mm/sec
 アプセット直前(3sec間)の後期フラッシュ速度:2.0mm/sec
 アプセット荷重:65kN
●溶接後の溶接継ぎ手部の冷却条件
 頭頂部の平均冷却速度:1.0℃/sec(温度範囲:800~400℃)
 顎下部、及び柱部の平均冷却速度:
  800~500℃の温度範囲で1.0℃/secとし、
  500~400℃の温度範囲で0.4~2.4℃/secとし、
  その後50℃まで放冷
●フラッシュバット溶接継ぎ手部の特性
 HAZ幅:35mm
 溶接中心の硬さ:390 HV
 最軟化部の硬さ:280 HV
 マルテンサイト評価領域Bにおけるマルテンサイト組織の面積率:0.0001~0.1000%
 マルテンサイト評価領域Bにおける粒径20~200μmのマルテンサイト組織の個数:3~160個
 マルテンサイト評価領域Bにおけるマルテンサイト組織の粒径範囲:20μm以上
 その結果、図6に示すように、粒径20~200μmのマルテンサイト組織の個数がマルテンサイト評価領域Bにおいて80個以下である場合、溶接レールに折損が発生しないことがわかった。一方、粒径20~200μmのマルテンサイト組織の個数がマルテンサイト評価領域Bにおいて80個超である場合、溶接レールに折損が発生することが判明した。したがって、溶接レールの折損を制御するためには、マルテンサイト評価領域Bにおける粒径20~200μmのマルテンサイト組織の個数を80個以下に制御する必要があることがわかった。
 さらに、溶接継ぎ手部のマルテンサイト組織の生成量を一層抑制し、溶接レールの耐折損性をより一層向上させる方法を検討した。本発明者らは、マルテンサイト組織の生成部位を詳細に観察した。その結果、マルテンサイト組織は溶接継ぎ手部のCr偏析部に生成していることが確認された。
 これは、本発明者らの予想とは異なる結果であった。鉄鋼の技術分野では、マルテンサイトはMn偏析部に生成しやすいことが知られている。例えば落合ら「高炭素鋼線材のMn偏析におよぼす鋳片均熱処理の影響」鉄と鋼、1989年第7号、第1217頁等には、Mnの偏析部にマルテンサイトが生成する旨が報告されている。従って本発明者らは、溶接レールの溶接継ぎ手部においても、マルテンサイト組織の生成部位とMn偏析部位とが一致すると予想していた。しかし予想に反し、本発明者らは、Crの偏析がマルテンサイト組織の生成量等に影響していることを知見した。具体的には、本発明者らが、マルテンサイトの生成領域を詳細に調査したところ、マルテンサイトの生成領域の近傍にはMn及びCrが偏析していたが、マルテンサイトの生成領域ではCrだけが偏析していた。
 Mnがマルテンサイトの生成を促進する理由は、Mnがフェライトの生成を抑制するからである。亜共析鋼においては、初析相がフェライトであるので、Mnによるフェライト生成の抑制は、マルテンサイトの生成を促進する。一方、本実施形態に係る溶接レールは過共析鋼であり、初析相はセメンタイトである。そのため、Mnが過共析鋼においてマルテンサイトの生成を促進する効果は、亜共析鋼よりも小さいと推定される。以上の理由により、マルテンサイトの生成を抑制する手段として、Mn偏析ではなくCr偏析を抑制すべきであると本発明者らは推定している。
 そこで、Cr偏析度が異なる2種類のレールについて、マルテンサイト組織の生成状況とマルテンサイト組織の生成した部位のCr偏析状態を詳細に分析した。レール、フラッシュバット溶接継ぎ手部の特性、分析方法およびCr濃化状態の定量化方法は下記に示すとおりである。なお、マルテンサイト組織の面積率および粒径の算定は上記に示したとおりである。
●溶接前のレール
 成分:0.85%C-0.50%Si-1.00%Mn-0.20%Cr-0.0150%P-0.0120%S
 レール形状:136ポンド(重さ:67kg/m)。
 頭頂部外郭表面の硬さ:420 HV
●フラッシュバット溶接条件(予熱フラッシュ方式)
 初期フラッシュ時間:15sec
 予熱回数:2~14回
 後期フラッシュ時間:15~30sec
 平均的な後期フラッシュ速度:0.3~1.2mm/sec
 アプセット直前(3sec間)の後期フラッシュ速度:0.5~3.0mm/sec
 アプセット荷重:65~85kN
●溶接後の溶接継ぎ手部の冷却条件
 頭頂部の平均冷却速度:1.0℃/sec(温度範囲:800~400℃)
 顎下部、及び柱部の平均冷却速度:
  800~500℃の温度範囲で0.5~2.0℃/secとし、
  500~400℃の温度範囲で0.4~1.6℃/secとし、
  その後50℃まで放冷
●フラッシュバット溶接継ぎ手部の特性
 HAZ幅:10~60mm
 マルテンサイト評価領域Bにおけるマルテンサイト組織の面積率:0.0001~0.1000%
 マルテンサイト評価領域Bにおけるマルテンサイト組織の粒径範囲:20μm以上
●分析方法
 装置:EPMA(Electron Probe Micro Analyzer)
 分析元素:C、Si、Mn、Cr、P、S
 ビーム径:2μm
●溶接継ぎ手部のマルテンサイト評価領域BにおけるCr偏析度の評価方法
 分析位置:マルテンサイト評価領域B
 定量化:Crの成分の濃化がある部分を偏析部と位置づけ、各偏析部の偏析部Cr濃度、及びバルクCr濃度を求め、各部位のCr偏析度を算定し、最大Cr偏析度から上位20ヶ所のCr偏析度の平均値を、溶接継ぎ手部のマルテンサイト評価領域BにおけるCr偏析度として算定した。
 偏析部のCr濃度:偏析部のCr濃度プロファイルからCr濃度の最大値を求め、Cr濃度の最大値とバルク濃度とを平均した値(図7参照)。
 バルクCr濃度:偏析部のCr濃度プロファイルから偏析部のない部分のCr濃度を求めた値。偏析部でない部分のCr濃度は、偏析部の左右に存在するCr濃度分布において、長さ1000μmの領域のCr濃度を平均化した値。偏析部の左右で値が異なる場合、値の小さい方の値をバルク濃度とする(図7参照)。
 各分析位置において、下式から各部位のCr偏析度を求める。
 各部位のCr偏析度=各部位の偏析部Cr濃度/各部位のバルクCr濃度
 次に、Cr偏析度の評価の手順を具体的に説明すると、以下の通りである。
 まず、EPMAの面分析によって、溶接継ぎ手断面のマルテンサイト評価領域Bにおいて、溶接レールの頭頂部外郭表面から(1/6)×h~(3/6)×hの深さの範囲における元素分布マップを作成する。元素分布マップに基づいて、Crの濃化が生じている領域を特定し、この領域をマクロな偏析帯と特定する。
 そして、図7に示されるように、偏析帯を横切る線に沿って連続的にCr濃度の分析を行う(いわゆる線分析)。偏析帯が楕円等の長さを伴う形状となっている場合は偏析帯中心を通るように線分析を行う。この線分析は溶接継ぎ手の全断面において実施する。この評価は3つの溶接継ぎ手断面について行い、3つの溶接継ぎ手断面における各部位のCr偏析度の上位20ヶ所の各部位のCr偏析度の平均値を求める。これを下式の「Cr偏析度」とみなす。
 Cr偏析度=偏析部Cr濃度/バルクCr濃度
●落重試験条件(図4参照)
 姿勢:頭部を下側、底部を上側として溶接レールを2点支持し、底部に落錘落下
 スパン(2つの支持点の間隔):1000mm
 落錘重量:10kN
 落錘高さ:5000mm、7500mm、又は10000mm
 その結果、図8に示されるように、マルテンサイト組織の生成部位である偏析部にはCrが濃化していることが確認された。このCrの濃化と、マルテンサイトの析出状態との間には相関があり、Crの濃化の度合いが高いほど、マルテンサイトが多量に生成していることがわかった。
 そこで、Cr偏析度の平均値の異なった溶接レールの溶接継ぎ手部のマルテンサイト組織を詳細に観察した結果、図8に示すように、溶接継ぎ手部のマルテンサイト評価領域BにおけるCr偏析度(以下、「溶接継ぎ手部のCr偏析度」と記載する)が2.0以下まで低下した溶接レールでは、同一HAZ幅において、粒径20~200μmのマルテンサイト組織の個数が減少していることがわかった。
 具体的には、溶接継ぎ手部のCr偏析度が2.0超~2.4以下の溶接レールでは、粒径20~200μmのマルテンサイト組織の個数が65~80個であった。これに対して、溶接継ぎ手部のCr偏析度が1.6以上~2.0以下の範囲の溶接レールでは、同一HAZ幅において、粒径20~200μmのマルテンサイト組織の個数が35~50個まで減少していることがわかった。さらに、溶接継ぎ手部のCr偏析度が1.3以上~1.6未満の範囲の溶接レールでは、同一HAZ幅において、粒径20~200μmのマルテンサイト組織の個数が5~15個まで減少していることがわかった。
 さらに、落重試験を行った結果を表3に示す。落重試験を行った結果、溶接継ぎ手部のCr偏析度が2.0超~2.4以下の範囲であり、粒径20~200μmのマルテンサイト組織の個数が65~80個の溶接レールでは、落錘高さ5000mmでは溶接レールは未折損であった。一方、溶接継ぎ手部のCr偏析度が1.6以上2.0以下の範囲であり、粒径20~200μmのマルテンサイト組織の個数が35~50個まで減少した溶接レールでは、落錘高さ7500mmでも折損が発生しなかった。また、溶接継ぎ手部のCr偏析度が1.3以上~1.6未満の範囲であり、粒径20~200μmのマルテンサイト組織の個数が5~15個まで減少した溶接レールでは、落錘高さ10000mmでも折損が発生せず、耐折損性が一層向上していることが確認された。
Figure JPOXMLDOC01-appb-T000003
 これらの結果から、フラッシュバット溶接継ぎ手部において、マルテンサイト組織の生成にともなう、溶接レールの頭部内部から発生する脆性き裂起因の耐折損性をさらに向上させるためには、溶接継ぎ手部のCr偏析度をさらに低下させ、マルテンサイト数をさらに減少させる必要があることがわかった。
 上述の知見に基づいて得られた、耐疲労損傷性及び耐折損性に優れた本実施形態に係る溶接レールにつき、以下に詳細に説明する。以下、合金成分の含有量の単位「質量%」は、単に「%」と記載する。
 (1)鋼の化学成分の限定理由
 本実施形態の溶接レールのレール部の化学成分の限定理由について詳細に説明する。
 Cは、パーライト変態を促進させて、溶接継ぎ手部のマルテンサイト組織の生成を抑制し、かつ、溶接レールの耐摩耗性を確保するために有効な元素である。C含有量が0.75%未満になると、本成分系では、初析フェライト組織が生成するので、パーライト組織を主体とする溶接継ぎ手部に要求される最低限の強度及び耐摩耗性が維持できない。また、C含有量を0.75%未満にしたとしても、溶接継ぎ手部のマルテンサイト組織の生成を抑制する効果は生じない。一方、C含有量が1.20%を超えると、溶接継ぎ手部に初析セメンタイト組織が生成し易くなり、パーライト組織の耐折損性及び耐摩耗性が低下する。このため、C含有量を0.75~1.20%に限定した。C含有量は好ましくは0.80%以上、0.85%以上、又は0.90%以上である。C含有量は好ましくは1.15%以下、1.10%以下、又は1.00%以下である。なお、パーライト組織の生成を安定化するには、C含有量を0.80~1.10%とすることが望ましい。
 Siは、パーライト組織のフェライト相に固溶し、溶接継ぎ手部の硬さを上昇させ、耐摩耗性を向上させる元素である。しかし、Si含有量が0.10%未満では、これらの効果が十分に期待できない。一方、Si含有量が2.00%を超えると、レール鋼の焼入性が著しく増加し、溶接継ぎ手部に多量のマルテンサイト組織が生成し、溶接レールの耐折損性及び耐摩耗性が低下する。このため、Si含有量を0.10~2.00%に限定した。Si含有量は好ましくは0.20%以上、0.30%以上、又は0.50%以上である。Si含有量は好ましくは1.80%以下、1.60%以下、又は1.50%以下である。なお、パーライト組織の生成を安定化し、溶接レールの耐折損性及び耐摩耗性を向上させるためには、Si含有量を0.20~1.50%とすることが望ましい。
 Crは、平衡変態温度を上昇させ、過冷度の増加により、パーライト組織のラメラ間隔を微細化し、パーライト組織の硬さを向上させ、溶接継ぎ手部の耐摩耗性を向上させる元素である。しかし、Cr含有量を0.10%未満では、これらの効果が十分に期待できない。一方、Cr含有量が1.50%を超える場合、レール鋼の焼入れ性が著しく増加し、溶接継ぎ手部にベイナイト組織及びマルテンサイト組織等が生成し、溶接レールの耐摩耗性及び耐折損性が低下する。さらに、過剰な量のCrは、偏析部のCr濃化を助長し、溶接継ぎ手部のマルテンサイト組織の生成を促進する。これにより、過剰な量のCrは、溶接継ぎ手部のマルテンサイト組織の粗大化、及びマルテンサイト組織の生成数の増加を招く。このため、Cr含有量を0.10~1.50%に限定した。Cr含有量は好ましくは0.20%以上、0.30%以上、又は0.50%以上である。Cr含有量は好ましくは1.40%以下、1.30%以下、又は1.00%以下である。なお、パーライト組織の生成を安定化し、溶接レールの耐摩耗性を向上させるためには、Cr含有量を0.20~1.00%とすることが望ましい。
 Mnは、溶接レールの焼入れ性を高め、パーライト変態を安定化すると同時に、パーライト組織のラメラ間隔を微細化し、溶接継ぎ手部の硬さを確保し、耐摩耗性をより一層向上させる元素である。しかし、Mn含有量が0.10%未満では、その効果が小さく、軟質な初析フェライト組織が生成し、溶接継ぎ手部の耐摩耗性が低下する。一方、Mn含有量が2.00%を超えると、レール鋼の焼入性が著しく増加し、溶接継ぎ手部にベイナイト組織及びマルテンサイト組織などが生成し、溶接レールの耐折損性及び耐摩耗性が低下する。このため、Mn含有量を0.10~2.00%に限定した。Mn含有量は好ましくは0.20%以上、0.30%以上、又は0.50%以上である。Mn含有量は好ましくは1.80%以下、1.60%以下、又は1.50%以下である。なお、パーライト組織の生成を安定化し、溶接継ぎ手部の耐摩耗性及び耐折損性を向上させるためには、Mn含有量を0.20~1.50%とすることが望ましい。
 Pは、鋼中に含有される不純物元素である。P含有量が0.0250%を超えると、パーライト組織の脆化により、溶接継ぎ手部の耐折損性が低下する。このため、P含有量を0.0250%以下に限定した。なお、P含有量の下限は限定する必要はなく、例えば0%でもよいが、精錬工程の脱燐能力を考慮すると、P含有量の下限値を0.0020%程度としてもよい。P含有量は好ましくは0.0025%以上、0.0030%以上、又は0.0050%以上である。P含有量は好ましくは0.0200%以下、0.0150%以下、又は0.0120%以下である。
 Sは、鋼中に含有される不純物元素である。S含有量が0.0250%を超えると、粗大なMnS系硫化物の介在物の周囲に応力集中が生成し、溶接継ぎ手部の耐折損性が低下する。このため、S含有量を0.0250%以下に限定した。なお、S含有量の下限は限定する必要はなく、例えば0%でもよいが、精錬工程の脱硫能力を考慮すると、S含有量の下限値を0.0020%程度としてもよい。S含有量は好ましくは0.0025%以上、0.0030%以上、又は0.0050%以上である。S含有量は好ましくは0.0200%以下、0.0150%以下、又は0.0120%以下である。
 さらに、上記の成分組成で製造されるレール部には、溶接継ぎ手部の硬さの増加による耐摩耗性の向上、靭性の向上、溶接熱影響部の軟化の防止、並びに頭部内部の断面硬度分布を制御する目的で、Mo、Co、B、Cu、Ni、V、Nb、Ti、Mg、Ca、REM、N、Zr、及びAlからなる群から選択される一種以上を含有させてもよい。ただし、これら元素がレール部に含有されなくても、本実施形態に係る溶接レールはその効果を発揮することができるので、これら元素の含有量の下限値は0%である。
 Moは、平衡変態点を上昇させることによりパーライト組織のラメラ間隔を微細化し、溶接継ぎ手部の硬さを向上させる。Coは、パーライト組織のフェライト相に固溶することにより溶接継ぎ手部のころがり面直下のラメラ組織を微細化し、摩耗面の硬さを高める。Bは、パーライト変態温度の冷却速度依存性を低減させ、溶接継ぎ手部の頭部内部の硬度分布を均一にする。Cu、及びNiは、パーライト組織中のフェライトに固溶し、溶接継ぎ手部の硬さを高め、同時に靭性を向上させる。V、Nb、及びTiは、レールの溶接後の溶接レールの冷却の過程で生成した炭化物及び窒化物などの析出硬化により、溶接継ぎ手部の疲労強度を向上させる。また、V、Nb、及びTiは、再加熱時に炭化物及び窒化物などを安定的に生成させ、溶接継ぎ手熱影響部の軟化を防止する。Mg、Ca、及びREMは、MnS系硫化物を微細分散し、溶接継ぎ手部において介在物から生成する疲労損傷を低減する。Nは、溶接後のその後の冷却過程でVの炭化物及び窒化物などの析出を促進させ、溶接継ぎ手部の耐疲労損傷性を向上させる。Zrは、凝固組織の等軸晶化率を高めることにより、鋳片中心部の偏析帯の形成を抑制し、初析セメンタイト組織及びマルテンサイト組織などの生成を抑制し、溶接レールの偏析部のCrの濃化を抑制する。さらにAlは、共析変態温度を高温側へ移動させ、初析セメンタイト組織の生成を抑制し、溶接継ぎ手部の耐折損性を向上させる。
 Moは、平衡変態温度を上昇させ、過冷度の増加により、パーライト組織のラメラ間隔を微細化し、パーライト組織の硬さを向上させ、溶接継ぎ手部の耐摩耗性を向上させる元素である。上述の効果を得るためには、Mo含有量を0.01%以上とすることが好ましい。一方、Mo含有量が0.50%を超える場合、変態速度が著しく低下し、溶接継ぎ手部にマルテンサイト組織が生成し、溶接継ぎ手部の耐折損性が低下する場合がある。このため、Mo含有量を0.01~0.50%とすることが望ましい。Mo含有量は好ましくは0.02%以上、0.05%以上、又は0.10%以上である。Mo含有量は好ましくは0.45%以下、0.40%以下、又は0.30%以下である。
 Coは、パーライト組織のフェライト相に固溶し、車輪との接触による変形が生じるころがり面直下のパーライト組織のラメラ組織を微細化し、ころがり面の硬さを向上させ、溶接継ぎ手部の耐摩耗性を向上させる元素である。上述の効果を得るためには、Co含有量を0.01%以上とすることが好ましい。一方、Co含有量が1.00%を超えると、上記の効果が飽和し、Co含有量に応じたラメラ組織の微細化が図れない。また、Co含有量が1.00%を超えると、合金コストの増大により経済性が低下する。このため、Co含有量を0.01~1.00%とすることが望ましい。Co含有量は好ましくは0.02%以上、0.05%以上、又は0.10%以上である。Co含有量は好ましくは0.90%以下、0.80%以下、又は0.60%以下である。
 Bは、オーステナイト粒界に鉄炭ほう化物(Fe23(CB))を形成し、パーライト変態の促進効果により、パーライト変態温度の冷却速度依存性を低減させ、溶接継ぎ手部の頭表面から内部までの硬度分布を均一化し、溶接レールを高寿命化する元素である。上述の効果を得るためには、B含有量を0.0001%以上とすることが好ましい。一方、B含有量が0.0050%を超えると、粗大な鉄炭ほう化物が生成し、脆性破壊を助長し、溶接継ぎ手部の耐折損性が低下する場合がある。このため、B含有量を0.0001~0.0050%とすることが望ましい。B含有量は好ましくは0.0002%以上、0.0005%以上、又は0.0010%以上である。B含有量は好ましくは0.0040%以下、0.0030%以下、又は0.0020%以下である。
 Cuは、パーライト組織のフェライト相に固溶し、固溶強化により溶接レールの硬さを向上させ、溶接継ぎ手部の耐摩耗性を向上させる元素である。上述の効果を得るためには、Cu含有量を0.01%以上とすることが好ましい。一方、Cu含有量が1.00%を超えると、レール鋼の著しい焼入れ性向上により、溶接継ぎ手部にマルテンサイト組織が生成し、耐折損性が低下する場合がある。このため、Cu含有量を0.01~1.00%にすることが好ましい。Cu含有量は好ましくは0.02%以上、0.05%以上、又は0.10%以上である。Cu含有量は好ましくは0.90%以下、0.80%以下、又は0.60%以下である。なお、溶接継ぎ手部の硬さを確保し、マルテンサイト組織の生成を抑制するためには、Cu含有量を0.20%以下に制御することが望ましい。
 Niは、パーライト組織の靭性を向上させ、同時に、固溶強化により溶接レールの硬さを向上させ、溶接継ぎ手部の耐摩耗性を向上させる元素である。さらに、溶接熱影響部においては、NiはTiと結びついて微細なNiTiの金属間化合物として析出し、析出強化により溶接継ぎ手部の軟化を抑制する元素である。また、Cuが溶接レールに含有されている場合、Niは粒界の脆化を抑制する。上述の効果を得るためには、Ni含有量を0.01%以上にすることが好ましい。Ni含有量が1.00%を超えると、レール鋼の著しい焼入れ性向上により、溶接継ぎ手部にマルテンサイト組織が生成し、耐摩耗性及び耐折損性が低下する場合がある。このため、Ni含有量を0.01~1.00%とすることが望ましい。Ni含有量は好ましくは0.02%以上、0.05%以上、又は0.10%以上である。Ni含有量は好ましくは0.90%以下、0.80%以下、又は0.60%以下である。
 Vは、熱間圧延後の冷却過程で生成するVの炭・窒化物による析出硬化により、パーライト組織の硬さ(強度)を高め、溶接継ぎ手部の耐疲労損傷性を向上させる元素である。上述の効果を得るためには、V含有量を0.01%以上とすることが好ましい。一方、V含有量が0.50%を超えると、微細なVの炭・窒化物の数が過剰となり、パーライト組織が脆化し、溶接継ぎ手部の耐疲労損傷性が低下する場合がある。このため、V含有量を0.01~0.50%とすることが望ましい。V含有量は好ましくは0.02%以上、0.03%以上、又は0.04%以上である。V含有量は好ましくは0.45%以下、0.40%以下、又は0.30%以下である。
 Nbは、熱間圧延後の冷却過程で生成したNb炭化物及びNb窒化物による析出硬化により、パーライト組織の硬さを高め、溶接継ぎ手部の耐疲労損傷性を向上させる元素である。また、Ac1点以下の温度域に再加熱された溶接熱影響部において、Nbは低温度域から高温度域までの幅広い温度域においてNb炭化物及びNb窒化物などを安定的に生成させ、溶接継ぎ手の熱影響部の軟化を防止するのに有効な元素である。上述の効果を得るためには、Nb含有量を0.0010%以上とすることが好ましい。一方、Nb含有量が0.0500%を超えると、Nbの炭化物及び窒化物などの析出硬化が過剰となり、パーライト組織自体が脆化し、溶接継ぎ手部の耐疲労損傷性が低下する場合がある。このため、Nb含有量を0.0010~0.0500%とすることが望ましい。Nb含有量は好ましくは0.0020%以上、0.0025%以上、又は0.0050%以上である。Nb含有量は好ましくは0.0400%以下、0.0300%以下、又は0.0200%以下である。
 Tiは、熱間圧延後の冷却過程で生成したTi炭化物及びTi窒化物による析出硬化により、パーライト組織の硬さを高め、溶接継ぎ手部の耐疲労損傷性を向上させる元素である。また、Tiは、溶接時の再加熱において析出したTi炭化物及びTi窒化物がマトリックス中に溶解しないことを利用して、オーステナイト域まで加熱される熱影響部の組織を微細化し、溶接継ぎ手部の脆化を防止するのに有効な成分である。上述の効果を得るためには、Ti含有量を0.0030%以上とすることが好ましい。一方、Ti含有量が0.0500%を超えると、粗大なTiの炭化物、Tiの窒化物が生成し、これらの周囲における応力集中により、疲労き裂が生成しやすくなり、溶接継ぎ手部の耐疲労損傷性が低下する場合がある。このため、Ti含有量を0.0030~0.0500%とすることが望ましい。Ti含有量は好ましくは0.0040%以上、0.0050%以上、又は0.0080%以上である。Ti含有量は好ましくは0.0400%以下、0.0300%以下、又は0.0200%以下である。
 Mgは、Sと結合して微細な硫化物(MgS)を形成し、このMgSがMnSを微細に分散させ、MnSの周囲における応力集中を緩和し、溶接継ぎ手部の耐疲労損傷性を向上させる元素である。上述の効果を得るためには、Mg含有量を0.0005%以上とすることが好ましい。一方、Mg含有量が0.0200%を超える場合、Mgの粗大酸化物が生成し、この粗大酸化物の周囲における応力集中により、疲労き裂が生成しやすくなり、溶接継ぎ手部の耐疲労損傷性が低下する場合がある。このため、Mg含有量を0.0005~0.0200%とすることが望ましい。Mg含有量は好ましくは0.0010%以上、0.0020%以上、又は0.0050%以上である。Mg含有量は好ましくは0.0180%以下、0.0150%以下、又は0.0120%以下である。
 Caは、Sとの結合力が強いので硫化物(CaS)を形成し、このCaSがMnSを微細に分散させ、MnSの周囲における応力集中を緩和し、溶接継ぎ手部の耐疲労損傷性を向上させる元素である。上述の効果を得るためには、Ca含有量を0.0005%以上とすることが好ましい。一方、Ca含有量が0.0200%を超える場合、Caの粗大酸化物が生成し、この粗大酸化物の周囲における応力集中により、疲労き裂が生成しやすくなり、溶接継ぎ手部の耐疲労損傷性が低下する場合がある。このため、Ca含有量を0.0005~0.0200%とすることが望ましい。Ca含有量は好ましくは0.0010%以上、0.0020%以上、又は0.0050%以上である。Ca含有量は好ましくは0.0180%以下、0.0150%以下、又は0.0120%以下である。
 REM(Rare Earth Metals)は、脱酸・脱硫元素であり、REMのオキシサルファイド(REMS)を生成し、Mn硫化物系介在物の生成核となる。オキシサルファイド(REMS)は、融点が高いので、圧延後のMn硫化物系介在物の延伸を抑制する。この結果、REMはMnSを微細に分散させ、MnSの周囲における応力集中を緩和し、溶接継ぎ手部の耐疲労損傷性を向上させる。上述の効果を得るためには、REM含有量を0.0005%以上とすることが好ましい。一方、REM含有量が0.0500%を超えると、粗大で硬質なREMのオキシサルファイド(REMS)が生成し、このオキシサルファイドの周囲における応力集中により、疲労き裂が生成しやすくなり、溶接継ぎ手部の耐疲労損傷性が低下する場合がある。このため、REM含有量を0.0005~0.0500%とすることが望ましい。REM含有量は好ましくは0.0010%以上、0.0020%以上、又は0.0050%以上である。REM含有量は好ましくは0.0400%以下、0.0300%以下、又は0.0250%以下である。
 なお、REMとはSc、YおよびLa(ランタノイド)からなる合計17元素である。「REMの含有量」とは、これらの全REM元素の含有量の合計値を意味する。全含有量が上記範囲内であれば、REM元素の種類が1種類であっても2種類以上であっても、同様な効果が得られる。
 Nは、製鋼工程で混入する不純物元素である。脱ガスを積極的に行っても0.0020%程度のNは鋼中に残留する。通常の精錬によれば、N含有量は0.0040%程度となる。また、Nはオーステナイト粒界に偏析することにより、オーステナイト粒界からのパーライト変態を促進させ、主に、パーライトブロックサイズを微細化することにより、溶接継ぎ手部の靭性を向上させるのに有効な元素である。また、NとVとを同時に含有させると、レールの溶接後の冷却過程でVの炭窒化物の析出を促進させ、パーライト組織の硬さを高め、溶接継ぎ手部の耐疲労損傷性を向上させる。上述の効果を得るためには、N含有量を0.0020%以上、又は0.0050%以上とすることが好ましい。一方、N含有量が0.0200%を超えると、Nを鋼中に固溶させることが困難となり、疲労損傷の起点となる気泡が生成し易くなる場合がある。このため、N含有量を0.0020~0.0200%とすることが望ましい。
 Zrは、γ-Feとの格子整合性が良いZrO介在物を生成するので、γ-Feが凝固初晶である高炭素レール鋼の凝固核となり、凝固組織の等軸晶化率を高めることにより、鋳片中心部の偏析帯の形成を抑制し、溶接継ぎ手部に生成するマルテンサイト組織の生成を抑制する元素である。上述の効果を得るためには、Zr含有量を0.0001%以上とすることが好ましい。一方、Zr含有量が0.0200%を超えると、粗大なZr系介在物が多量に生成し、この粗大介在物の周囲における応力集中により、疲労き裂が生成しやすくなり、溶接継ぎ手部の耐疲労損傷性が低下する場合がある。このため、Zr含有量を0.0001~0.0200%とすることが望ましい。Zr含有量は好ましくは0.0010%以上、0.0020%以上、又は0.0050%以上である。Zr含有量は好ましくは0.0180%以下、0.0150%以下、又は0.0120%以下である。
 Alは、共析変態温度を上昇させる元素であり、靭性に有害な初析セメンタイト組織の生成を抑制し、溶接継ぎ手部の耐折損性を向上させる。上述の効果を得るためには、Al含有量を0.0100%以上とすることが好ましく、0.500%以上とすることがさらに好ましい。一方、Al含有量が1.00%を超えると、Alを鋼中に固溶させることが困難となり、粗大なアルミナ系介在物が生成し、この粗大な介在物から疲労き裂が発生しやすくなり、溶接継ぎ手部の耐疲労損傷性が低下する場合がある。さらに、Al含有量が1.00%を超えると、レール溶接時に酸化物が生成し、レール溶接性が著しく低下する場合がある。このため、Al含有量を0.0100~1.00%とすることが望ましい。Al含有量は好ましくは0.0200%以上、0.0500%以上、又は0.1000%以上である。Al含有量は好ましくは1.80%以下、1.50%以下、又は1.20%以下である。
 本実施形態に係る溶接レールのレール部における化学成分の残部は、鉄及び不純物(上述されたS、P、N及びAl以外の元素)を含む。不純物とは、例えば鋼材を工業的に製造する際に、鉱石若しくはスクラップ等のような原料、又は製造工程の種々の要因によって混入する成分であって、本実施形態に係る溶接レールに悪影響を与えない範囲で許容されるものを意味する。
 上記のような成分組成で構成されるレール鋼は、転炉、電気炉などの通常使用される溶解炉で溶製を行い、この溶鋼を連続鋳造法により鋼塊(ブルーム)を製造し、次に、熱間圧延を経てレールとして製造される。さらに、必要に応じて溶接レールの頭部の金属組織及び硬さを制御する目的から熱処理を行う。レール鋼の製造方法については後述される。
 (2)フラッシュバット溶接継ぎ手部のHAZ幅の限定理由
 次に、本実施形態において、溶接継ぎ手部のHAZ幅を60mm以下に限定した理由について説明する。表1に示すように、HAZ幅が小さくなると、溶接継ぎ手部に生成する凹凸が減少し、破断までの繰り返し回数が増加し、溶接継ぎ手部の使用寿命が向上する。具体的には、HAZ幅が60mmを超えると、溶接継ぎ手部に生成する凹凸が大きくなり、破断までの繰り返し回数が200万回未満となり、合格基準を満たさない。また、HAZ幅が40mm以上60mm以下の範囲になると、溶接継ぎ手部に生成する凹凸が減少し、破断までの繰り返し回数が200万回を超え、合格基準を満たす。さらに、HAZ幅が20mm以上40mm未満になると、溶接継ぎ手部に生成する凹凸がさらに減少し、破断までの繰り返し回数が300~400万回の範囲となる。さらに、HAZ幅が10mm以上20mm未満になると、溶接継ぎ手部に生成する凹凸がさらに減少し、繰り返し回数が400万回でも破断しなくなり、HAZ幅の減少に伴い、溶接継ぎ手部の使用寿命がより一層向上する。溶接レール/車輪の転動試験を行った結果、上述の旨が判明した。このため、溶接継ぎ手部のHAZ幅を60mm以下に限定した。溶接継ぎ手部のHAZ幅を55mm以下、50mm以下、40mm以下、30mm以下、又は25mm以下としてもよい。なお、破断までの繰り返し回数を安定的に向上させるには、HAZ幅は15~25mmの範囲に制御することが望ましい。
 HAZ幅の下限値は特に限定されない。ただし、HAZ幅を小さくするためには溶接入熱を小さくする必要があり、このことが熱影響部の急冷及びマルテンサイトの生成を引き起こす場合がある。そのため、HAZ幅を10mm以上、15mm以上、18mm以上、又は20mm以上としてもよい。また、HAZの硬さも特に限定されないが、例えばHAZの両端の最軟化部の硬さを230HV以上、250HV以上、又は280HV以上と規定してもよい。
 (3)フラッシュバット溶接継ぎ手部のマルテンサイト組織の面積率の限定理由
 次に、本実施形態において、溶接継ぎ手部の長手方向断面の、頭頂部外郭表面から0~(2/3)×h、且つ溶接中心から長手方向に±5mmの領域(マルテンサイト評価領域B)におけるマルテンサイト組織の面積率を0.1000%以下に限定した理由について説明する。以下、溶接継ぎ手部のマルテンサイト評価領域Bにおけるマルテンサイト組織の面積率を、単に「溶接継ぎ手部のマルテンサイト組織の面積率」と称する場合がある。
 溶接継ぎ手部のマルテンサイト組織の面積率が0.1000%を超えると、落重試験において、溶接レールの折損が発生する。このため、溶接継ぎ手部のマルテンサイト組織の面積率を0.1000%以下に限定した。なお、マルテンサイト評価部位、評価部位の選定理由およびマルテンサイト組織の面積率の算定方法は上記に示したとおりである。なお、溶接レールの折損を安定的に抑制するには、溶接継ぎ手部のマルテンサイト組織の面積率は0.0800%以下、0.0600%以下、又は0.0500%以下が望ましい。例えば後述する溶接条件を溶接レールに適用することによって、マルテンサイト組織の面積率を0.1000%以下にすることが可能である。
 溶接継ぎ手部のマルテンサイト組織の面積率は少ないほど好ましい。しかし、HAZ幅を60mm以下にする場合は、溶接継ぎ手部が急冷されることとなり、必然的に微量のマルテンサイトが溶接継ぎ手部に生成する。後述する溶接条件を溶接レールに適用したとしても、溶接継ぎ手部には、少なくとも約0.0006%のマルテンサイトが生成されることを本発明者らは確認した。従って、溶接継ぎ手部のマルテンサイト組織の面積率の下限値は0.0006%とされる。例えば、溶接継ぎ手部のマルテンサイト組織の面積率を0.0010%以上、0.0020%以上、又は0.0050%以上と規定してもよい。
 なお、従来の研究においては、微量のマルテンサイト組織が溶接レールの機械特性に影響することが知られていなかった。従って、溶接レールの組織評価においては、微量のマルテンサイト組織は、たとえ検出されても無視されていた。しかし本発明者らは、微量のマルテンサイト組織が溶接レールに与える影響を知見したので、溶接継ぎ手部のマルテンサイト組織の面積率を上述の如く規定した。
 (4)フラッシュバット溶接継ぎ手部において個数制御されるマルテンサイト組織の粒径を20~200μmに限定する理由
 本実施形態に係る溶接レールでは、溶接継ぎ手部のマルテンサイト評価領域Bにおける粒径20~200μmのマルテンサイト組織の個数が制御される。この要件に関し、先ず、粒径20~200μmのマルテンサイト組織を個数制御の対象とした理由について説明する。以下、溶接継ぎ手部のマルテンサイト評価領域Bにおけるマルテンサイト組織の粒径及び個数を、単に「溶接継ぎ手部のマルテンサイト組織の粒径」「溶接継ぎ手部のマルテンサイト組織の個数」と称する場合がある。
 上述のマルテンサイト組織の面積規定が満たされる限り、粒径が20μm未満のマルテンサイト組織は、レール折損を発生させないと考えられる。このような観点から、本実施形態に係る溶接レールでは、粒径が20μm未満のマルテンサイト組織の個数は特に限定されない。一方、粒径が20μm以上のマルテンサイト組織は、その発生状況によっては、溶接レールに折損を発生させるおそれがある。したがって、本実施形態に係る溶接レールでは、粒径20μm以上のマルテンサイト組織の個数を制御対象とする。
 なお、個数が制御されるマルテンサイト組織の粒径の上限値は200μmとされる。換言すると、粒径が200μm超のマルテンサイト組織の個数は特に限定されない。何故なら、粒径が200μm超のマルテンサイト組織が生成する場合、マルテンサイト組織の面積率が0.1000%を超過する可能性が極めて高いからである。換言すると、マルテンサイト組織の面積率を上述の通り0.1000%以下と規定した場合、粒径が200μm超のマルテンサイト組織によって溶接レールの折損が惹起されるおそれは極めて少ない。
 (5)フラッシュバット溶接継ぎ手部の粒径20~200μmのマルテンサイト組織の個数の限定理由
 次に、本実施形態において、溶接継ぎ手部のマルテンサイト評価領域Bにおける粒径20~200μmのマルテンサイト組織の個数を、3~80個に限定した理由について説明する。
 上述のように、粒径20~200μmのマルテンサイト組織は、溶接レールの折損を引き起こす恐れがある。しかしながら、図6に示したように、粒径20~200μmのマルテンサイト組織の個数が3~80個であれば、上述の試験条件において溶接レールに折損が発生しなかった。上述の試験条件は、溶接レールの使用環境と同等以上の負荷を溶接レールに印加するものである。そのため、粒径20~200μmのマルテンサイト組織の個数が80個以下であれば、溶接レールを現実に使用に供した場合も折損を防止できる蓋然性が高い。一方、粒径20~200μmのマルテンサイト組織の個数が80個を超えると溶接レールに折損が発生した。このため、溶接継ぎ手部の粒径20~200μmのマルテンサイト組織の個数を80個以下に限定した。なお、溶接レールの折損を安定的に抑制するには、粒径20~200μmのマルテンサイト組織の個数は70個以下、60個以下、又は50個以下が望ましい。
 溶接レールの折損を防止する観点から、粒径20~200μmのマルテンサイト組織の個数は小さい程好ましい。しかしながら、溶接レールの製造設備の能力を考慮すると、粒径20~200μmのマルテンサイト組織の個数を3個未満にすることは難しい。従って、粒径20~200μmのマルテンサイト組織の個数の下限値は3個である。粒径20~200μmのマルテンサイト組織の個数を4個以上、6個以上、又は10個以上としてもよい。
 (6)溶接継ぎ手部のCr偏析度の限定理由
 上述のレール部の化学成分規定、及び溶接継ぎ手部のマルテンサイト規定が満たされることにより、溶接レールに優れた耐疲労損傷性及び耐折損性を付与することができる。一方、本発明者らの検討によれば、溶接継ぎ手部におけるCr偏析を緩和することにより、溶接レールの耐疲労損傷性及び耐折損性を一層優れたものとすることができる。次に、本実施形態において、溶接継ぎ手部のマルテンサイト評価領域BにおけるCr偏析度を2.00以下に限定した理由について説明する。以下、溶接継ぎ手部のマルテンサイト評価領域BにおけるCr偏析度を、単に「溶接継ぎ手部のCr偏析度」と称する場合がある。ここで上述のように、
 偏析部は、Crの濃化が生じている領域と定義され、
 バルクCr濃度は、偏析部の外部におけるCr濃度と定義され、
 偏析部Cr濃度は、偏析部の内部におけるCr濃度の最大値とバルクCr濃度との平均値と定義され、
 偏析部におけるCr偏析度は、偏析部Cr濃度をバルクCr濃度で割って得られる値と定義され、
 溶接継ぎ手部のマルテンサイト評価領域BにおけるCr偏析度は、マルテンサイト評価領域Bに含まれる20か所以上の偏析部におけるCr偏析度のうち、最大値から順に20か所のCr偏析度の平均値と定義される。
 具体的な、偏析部の特定方法、バルクCr濃度の測定方法、及び偏析部の内部におけるCr濃度の最大値の測定方法は、上述の通りである。
 図8、及び表3に示すように、溶接継ぎ手部のCr偏析度が2.00超~2.40以下の溶接レールでは、粒径20~200μmのマルテンサイト組織の個数が65~80個生成していた。これに対して、溶接継ぎ手部のCr偏析度を1.60以上~2.00以下の範囲に制御した溶接レールでは、粒径20~200μmのマルテンサイト組織の個数が35~50個の範囲となった。これら溶接レールに落重試験を行った結果、落錘高さ7500mmでは、溶接レールは未折損であった。従って、溶接継ぎ手部のCr偏析度を低下させることによって、耐折損性が一層向上した。また、図8、及び表3に示したように、溶接継ぎ手部のCr偏析度を1.30以上~1.60未満の範囲に制御した溶接レールでは、粒径20~200μmのマルテンサイト組織の個数が5~15個まで減少した。これら溶接レールに落重試験を行った結果、落錘高さ10000mmでも折損が発生せず、耐折損性が極めて顕著に向上していることが確認された。したがって、溶接継ぎ手部のCr偏析度を2.00以下、1.80以下、1.60以下、又は1.40以下に限定してもよい。
 次に、本発明の別の態様に係る溶接レールの製造方法について説明する。本実施形態に係る溶接レールの製造方法によれば、上述した耐疲労損傷性及び耐折損性に優れた溶接レールを好適に得ることができる。ただし、上述の要件を満たす溶接レールは、その製法に関わらず、耐疲労損傷性及び耐折損性に優れたものとなる。従って、本実施形態に係る溶接レールの製造方法は特に限定されない。以下に説明する製造方法は、本実施形態に係る溶接レールの範囲を限定するものではなく、その製造方法の望ましい一例として理解されるべきである。
 耐疲労損傷性及び耐折損性に優れた溶接レールを得るためには、(1)溶接レールの底部から発生する疲労き裂を起点とする折損、及び(2)溶接レールの頭部の内部及び柱部から発生する、脆性き裂を起点とする折損の両方を抑制することが好ましい。底部から発生する疲労き裂を起点とする折損を抑制するためには、溶接継ぎ手部におけるHAZ幅を狭めることが有効である。頭部の内部及び柱部から発生する、脆性き裂を起点とする折損の両方を抑制するためには、溶接継ぎ手部における粗大なマルテンサイトの生成を抑制することが有効である。
 しかしながら本発明者らは、溶接継ぎ手部におけるHAZ幅の短縮と、溶接継ぎ手部における粗大マルテンサイト生成の抑制とを同時に達成することは極めて困難である旨を知見した。HAZ幅を狭めるためには、レールの溶接時の入熱量を小さくして、A1点以上の温度まで加熱される領域の幅を狭める必要がある。しかしながら、溶接時の入熱量を小さくして、溶接継ぎ手部の周囲の母材の温度上昇を抑制すると、溶接継ぎ手部から母材への抜熱量が著しく増大した。これにより、溶接継ぎ手部の冷却速度が著しく大きくなり、マルテンサイトの生成が促進されることが明らかになった。
 そこで本発明者らが一層の検討を重ねたところ、溶接完了後の冷却速度を厳格に制御することにより、HAZ幅の短縮とマルテンサイト変態の抑制との両方を達成可能であることが判明した。また、熱間圧延前のブルームにおけるCrの偏析を抑制することで、溶接時のマルテンサイト変態を一層効果的に抑制可能であることも知見された。
 以上の知見に基づいて得られた、本実施形態に係る溶接レールの製造方法は、
・上述の化学成分を有するブルームを鋳造する工程と、
・ブルームを1000~1350℃で加熱する工程と、圧延開始温度を1000~1350℃とし、圧延終了温度を750~1100℃として、ブルームを熱間圧延して、レールを得る工程と、
・冷却開始温度を700~900℃とし、冷却停止温度を500~650℃とし、冷却開始温度及び冷却停止温度の間の平均冷却速度を1~20℃/secとして、レールを冷却する工程と、
・予熱フラッシュ方式の場合は、予熱回数:2~14回、後期フラッシュ時間を10~30sec、平均的な後期フラッシュ速度:0.3mm/sec以上、アプセット直前(3sec間)の後期フラッシュ速度を0.5mm/sec以上、及びアプセット荷重を50kN以上とし、連続フラッシュ方式の場合は、フラッシュ時間を150~250sec、フラッシュ速度を0.10mm/sec以上として、複数の前記レールの端部をフラッシュバット溶接して、レール部と溶接継ぎ手部とを有する溶接レールを得る工程と、
・800~400℃の温度範囲における溶接継ぎ手部の頭頂部外郭表面の平均冷却速度を0.5~2.0℃/secとし、800~500℃の温度範囲における顎下部外郭表面および柱部外郭表面の平均冷却速度CR1を0.5~2.0℃/secとし、500~400℃の温度範囲における溶接継ぎ手部の平均冷却速度CR2を0.4~1.6℃/secとし、且つCR2/CR1を0.80以下として、溶接レールの溶接継ぎ手部を冷却する工程と、
を有する。
 (7)望ましいフラッシュバット溶接条件
 まず、本実施形態に係る溶接レールの製造方法における、望ましいフラッシュバット溶接条件について説明する。レールのフラッシュバット溶接には、予熱フラッシュ方式及び連続フラッシュ方式がある。本実施形態に係る溶接レールの製造方法では、いずれの方式を採用することも可能である。
 予熱フラッシュ方式の場合は、フラッシュバット溶接は、初期フラッシュ工程、予熱工程、後期フラッシュ工程、及びアプセット工程を含む。
 初期フラッシュ工程は、レールが常温の状態から始まるフラッシュ工程である。引き続き行われる予熱工程における溶接面の接触を生じやすくするために、初期フラッシュ工程では、一対のレールの端面(即ち溶接面)の間にフラッシュを生じさせ、溶接面をレールの長手方向に対して垂直に調整する。さらに、初期フラッシュ工程では、フラッシュの抵抗発熱とアーク発熱により、溶接面を加熱する。初期フラッシュ工程を行う時間、即ち初期フラッシュ時間は10sec以上、40sec以下が望ましい。
 予熱工程では、一対のレールの対向する溶接面同士を強制的に接触させた状態で、一定時間、一対のレールに大電流を流し、抵抗発熱により溶接面付近の母材を加熱する。その後、一対のレールを引き離す。溶接面の接触および分離を1回以上繰り返す。予熱(溶接面の接触及び分離)の回数は2回以上とすることが好ましい。予熱回数は、より好ましくは4回以上であり、さらには12回以上とすることが望ましい。予熱回数の上限値は特に規定されないが、例えば14回以下、又は13回以下である。
 後期フラッシュ工程では、まず、対向する溶接面間において部分的にフラッシュを生じさせるとともに、このフラッシュの抵抗発熱及びアーク発熱により、溶接面を加熱する。次いで、後期フラッシュ工程では、溶接面の一部に生じていたフラッシュを、フラッシュ速度の上昇により溶接面全体に生じさせ、このフラッシュの抵抗発熱及びアーク発熱により溶接面全体を均一に加熱する。さらに後期フラッシュ工程では、予熱工程中に生じた酸化物を、フラッシュにより飛散させ、減少させる。なお、フラッシュ速度とは、一対のレールを把持する治具を互いに近づける速度である。
 後期フラッシュ工程を行う時間、即ち後期フラッシュ時間が長いと、溶接継ぎ手部のHAZ幅が増加する。また、後期フラッシュ工程におけるフラッシュ速度、即ち後期フラッシュ速度を上昇させると、溶接面近傍の熱分布が急峻化し、その結果、溶接継ぎ手部のHAZ幅が低減する。このため、後期フラッシュ時間を10sec以上、30sec以下とし、平均的な後期フラッシュ速度を0.3mm/sec以上、アプセット直前(3sec間)の後期フラッシュ速度を0.5mm/sec以上とすることが望ましい。ここで、平均的な後期フラッシュ速度とは、後期フラッシュ工程全体におけるフラッシュ速度の平均値であり、アプセット直前の後期フラッシュ速度とは、アプセット開始前の3秒間におけるフラッシュ速度の平均値である。なお、溶接継ぎ手部のHAZ幅を確実に減少させるためには、後期フラッシュ代、すなわち、後期フラッシュ工程におけるレールの溶損量は10mm以上とすることが望ましい。
 アプセット工程では、後期フラッシュ工程によって溶接面全面を溶融させた後、大加圧力で溶接面同士を急速に密着させ、溶接面の溶融金属の大部分を外部へ排出するとともに、溶接面後方の高温に加熱された部分に加圧及び変形を与え、これにより接合部を形成する。つまり、溶接中に生成された酸化物は、アプセット工程によって排出されるとともに、微細・分散化されるので、曲げ性能を阻害する欠陥として接合面に残存する可能性を低くすることが可能である。また、溶融金属の大部分を外部へ排出することにより、溶接継ぎ手部のHAZ幅の減少に寄与する。溶接継ぎ手部のHAZ幅を確実に減少させるには、アプセット荷重を50kN以上とすることが望ましい。より好ましくはアプセット荷重を65kN以上とすることが望ましい。
 連続フラッシュ方式の場合は、フラッシュバット溶接は、予熱工程を含まず、フラッシュ工程とアプセット工程とからなる。フラッシュ工程では、フラッシュ時間が長いと溶接継ぎ手部のHAZ幅が増加する。また、フラッシュ速度を上昇させると、溶接面近傍の熱分布が急峻化し、その結果、溶接継ぎ手部のHAZ幅が低減する。このため、フラッシュ時間は150sec以上、250sec以下とし、フラッシュ速度は0.10mm/sec以上が望ましい。連続フラッシュ方式の場合におけるアプセット工程は、上述した予熱フラッシュ方式の場合におけるアプセット工程と同様の条件とすればよい。なお、溶接継ぎ手部のHAZ幅を確実に減少させるには、フラッシュ工程の前にパルスフラッシュ等で予熱を行い、フラッシュ時間を低減し、フラッシュ速度を増加させることが望ましい。
 予熱フラッシュ方式及び連続フラッシュ方式のいずれが用いられた場合であっても、溶接レールの溶接継ぎ手部には、アプセットによって余盛が形成される。従って、余盛を除去するためのトリミングを、溶接レールに行うことが好ましい。作業効率を考慮すると、トリミングは、フラッシュバット溶接の終了後、且つ溶接レールの冷却前に行うことが好ましい。
 (8)望ましいフラッシュバット溶接後の冷却条件
 次に、望ましいフラッシュバット溶接後の冷却条件について説明する。なお、フラッシュバット溶接が予熱フラッシュ方式及び連続フラッシュ方式のいずれであっても、フラッシュバット溶接後の冷却条件は同様に制御することができる。
 溶接継ぎ手部はオーステナイト域まで加熱される。このため、適切な冷却を施さないと、溶接継ぎ手部の硬さが低下する。その一方で、溶接レールの頭部の内部及び柱部などに、破壊の起点となるマルテンサイト組織が多量に生成する。
 まず、溶接継ぎ手部の硬さを確保する冷却条件について説明する。溶接直後の、温度範囲800~400℃の溶接継ぎ手部において、図2に示した溶接レールの頭頂部外郭表面1211の平均冷却速度を0.5~2.0℃/secの範囲内として冷却することが望ましい。なお、800~400℃の温度範囲における平均冷却速度とは、温度を800℃から400℃まで低下させるのに要する時間で、400℃(即ち800℃と400℃との差)を割って得られる値である。この温度帯での頭頂部外郭表面の平均冷却速度が0.5℃/sec未満になると、溶接継ぎ手部の硬さが低下し、溶接レールの頭頂部の摩耗が促進する。また、この温度帯での頭頂部外郭表面の平均冷却速度が2.0℃/secを超えると、溶接継ぎ手部の硬さが過剰となり、溶接レールの頭頂部の耐ころがり接触疲労損傷性が低下する。さらに、頭頂部外郭表面の平均冷却速度が2.0℃/secを超えると、マルテンサイト組織が粗大化して、粒径20~200μmのマルテンサイト組織の個数が80個超となる。
 なお、上記の温度は、溶接後の溶接継ぎ手の頭頂部の外郭表面を放射温度計又は接触式温度計で測定し、制御することが望ましい。また、冷却速度は、上記の温度測定をベースに、温度と経過時間を調整することにより制御が可能となる。
 次に、溶接レールの頭部の内部及び柱部などに生成するマルテンサイト組織を減少させる冷却条件について説明する。溶接直後の、温度範囲800~500℃の溶接継ぎ手部において、図2に示した溶接レールの顎下部1212の外郭表面および溶接レールの柱部122の外郭表面を、平均冷却速度CR1を0.5~2.0℃/secの範囲で冷却することが望ましい。なお、800~500℃の温度範囲における平均冷却速度とは、温度を800℃から500℃まで低下させるのに要する時間で、300℃(即ち800℃と500℃との差)を割って得られる値である。この温度帯での顎下部及び柱部の外郭表面の平均冷却速度CR1が0.5℃/sec未満になると、頭部内部及び柱部の硬さが低下し、溶接レールの溶接継ぎ手部として必要とされる最低限の強度の確保が困難となる。また、この温度帯での顎下部及び柱部の外郭表面の平均冷却速度CR1が2.0℃/secを超えると、たとえ500℃未満の温度帯における冷却速度を制御しても、マルテンサイト組織の粒径が粗大化し、マルテンサイト組織の面積率が0.1000%を超える。なお、頭頂部外郭表面の冷却速度制御が800~400℃の範囲内で行われるのに対し、顎下部及び柱部の冷却速度制御が800~500℃の温度範囲内で行われる。この温度範囲の相違は、冷却速度制御の目的の差に起因するものである。頭頂部外郭表面における冷却速度制御の目的は、パーライト変態を十分に生じさせて硬さを維持することにある。一方、顎下部及び柱部における冷却速度制御の目的は、偏析部におけるマルテンサイトの生成量を減少させることにある。
 さらに、溶接継ぎ手部に生成するマルテンサイト組織の面積率を減少させるためには、溶接直後(800~500℃)の冷却における平均冷却速度CR1に加えて、その後の冷却、即ち温度範囲500~400℃の冷却における平均冷却速度CR2を制御することが望ましい。溶接継ぎ手部における、温度範囲500~400℃の平均冷却速度CR2は0.4~1.6℃/secとすることが望ましい。なお、500~400℃の温度範囲における平均冷却速度CR2とは、温度を500℃から400℃まで低下させるのに要する時間で、100℃(即ち500℃と400℃との差)を割って得られる値である。また、この温度帯における平均冷却速度は、溶接レールの顎下部、及び溶接レールの柱部の外郭表面全体での平均冷却速度のことである。この温度帯での平均冷却速度CR2が0.4℃/sec未満になると、溶接継ぎ手部のパーライト組織が焼き戻され、頭部内部及び柱部の硬さが低下し、溶接レールの溶接継ぎ手部として必要とされる最低限の強度の確保が困難となる。また、この温度帯での平均冷却速度CR2が1.6℃/secを超えると、パーライト変態が十分に終了せず、溶接継ぎ手部の粒径20~200μmのマルテンサイト組織の生成数が増加し、溶接レールの耐損傷性が低下する。
 さらに、マルテンサイト組織の面積率、粒径20~200μmのマルテンサイト組織の生成数を低減させるには、溶接レールの顎下部、及び溶接レールの柱部の外郭表面全体の平均冷却速度(CR1、温度範囲:800~500℃)と、その後の平均冷却速度(CR2、温度範囲:500~400℃)の比(CR2/CR1)を0.80以下に制御することが望ましい。CR2/CR1が0.80以下になると、パーライト変態の促進に重要な低温域の冷却速度(CR2)が、高温域の冷却速度(CR1)と比較して小さくなり、パーライト変態が十分に進行し、マルテンサイトの生成量が減少するからである。
 したがって、溶接継ぎ手部の折損を防止するために、マルテンサイト組織の生成量の面積率を0.1000%以下とし、粒径20~200μmのマルテンサイト組織の個数を5~80個に制御するには、溶接直後の高温域の冷却における冷却速度と、その後の低温域の冷却における平均冷却速度をそれぞれ制御することに加えて、さらに、溶接直後(800~500℃)の平均冷却速度(CR1)とその後(500~400℃)の平均冷却速度(CR2)の比(CR2/CR1)を0.80以下に制御することが望ましい。
 (9)溶接継ぎ手部の望ましい金属組織
 次に、本実施形態における溶接継ぎ手部の望ましい金属組織について説明する。溶接継ぎ手部の金属組織は、上述のマルテンサイトの規定が満たされる限り特に限定されないが、以下に説明する構成を有することにより、溶接レールの耐疲労損傷性及び耐折損性が一層向上する。
 車輪と接触する溶接レールの頭部では、耐摩耗性の確保が最も重要である。金属組織と耐摩耗性との関係を調査した結果、頭部の耐摩耗性を確保するためにはパーライト組織が最もよいことが確認された。そこで、溶接継ぎ手部の頭部(頭頂部外郭表面から深さ1/3hまでの領域)については、上記限定のマルテンサイト組織以外の部分はパーライト組織が望ましい。なお、それ以外の部位については、溶接レールに必要な強度、延性、靭性を確保できるものであれば、上記限定のマルテンサイト組織以外の部分は、パーライト組織以外の金属組織でもよい。
 (10)溶接に供するレールの製造条件
 次に、本実施形態に係る溶接レールの製造方法において用いられる、レールの望ましい製造条件について説明する。
 まず、レールの素材であるブルームの連続鋳造条件について説明する。
 フラッシュバット溶接継ぎ手部のCr偏析度を制御するためには、レールの圧延素材であるブルームにおける偏析を緩和することが好ましい。ブルームの段階でCr偏析度を低下させておくと、溶接継ぎ手部のCr偏析度も低下させることができる。これは、ブルームの偏析状態がレール圧延を経ても維持され、されに、レールの偏析状態が溶接工程を経ても維持されるからであると推定される。ブルームにおける合金元素の偏析状態は、公知の方法で適宜制御することができる。例えば、連続鋳造の際に、凝固が完了していないブルームを軽圧下すること、及び、凝固が完了した後のブルームに均熱拡散処理をすることなどが、元素の偏析を解消するための手段の例として挙げられる。ただし、1の元素の偏析の解消に有効な方法が、他の元素の偏析の解消にも有効であるとは限らない。例えば、偏析が問題になりやすい元素としてMnが挙げられるが、Mnの偏析を解消するための条件は、Crの偏析を解消するために必ずしも有効ではない。Crの偏析を解消するためには、この目的に応じた手段を選択する必要がある。
 次に、ブルームの熱間圧延条件について説明する。
 まず、ブルーム再加熱温度について説明する。ブルーム再加熱温度が1000℃未満では、レール圧延において熱間での造形性が確保できす、圧延疵が発生し、レール製造が困難となる。また、再加熱温度が1350℃を超えると、鋼が溶融し、レール製造が困難となる場合がある。従って、ブルーム再加熱温度は1000~1350℃の範囲が望ましい。ブルームをこの温度範囲内に加熱した状態で、ブルームの熱間圧延を開始する。
 次に、熱間圧延における最終圧延温度(レールが最終パスを通過するときの温度)について説明する。
 最終圧延温度が750℃未満では、圧延完了の直後にパーライト変態が開始するので、圧延終了後の熱処理においてレールを高硬度化できず、耐摩耗性を確保できない。また、最終圧延温度が1100℃を超えると、圧延後のレールにおいてオーステナイト粒が粗大化し、焼入れ性が大幅に増加し、耐摩耗性に有害なベイナイト組織がレールの頭部に生成する。この場合、溶接レールの耐摩耗性が低下し、また、溶接レールに必要な最低限の延性が確保できない。従って、最終圧延温度は750~1100℃の範囲が望ましい。
 その他の熱間圧延条件については特に限定しない。溶接レールの頭部の硬さを確保するためには、ブルームの再加熱温度、及びレールの最終圧延温度を上述のように制御しながら、通常のレールの孔型圧延を行えばよい。例えば、鋼片を粗圧延した後、リバース圧延機による中間圧延を複数パスに渡って行い、続いて連続圧延機による仕上げ圧延を2パス以上行い、この仕上げ圧延の最終圧延時に、最終圧延温度を上記の温度範囲内に制御すればよい。
 次に、圧延後のレールの熱処理条件について説明する。
 熱間圧延後の熱処理条件については、パーライト組織を維持し、レール頭部の硬さを制御するために、下記に示す条件範囲で行う。
 まず、冷却速度について説明する。熱間圧延後のレールの平均冷却速度が1℃/sec未満では、パーライト変態温度が上昇し、レールを高硬度化できず、溶接レールの耐摩耗性を確保できない。また、熱間圧延後のレールの平均冷却速度が20℃/secを超えると、本成分系では、レール頭部において、ベイナイト組織及びマルテンサイト組織が生成し、レールの耐摩耗性が低下する。従って、熱間圧延後のレールの平均冷却速度を1~20℃/secの範囲とする。なお、平均冷却速度とは、後述する冷却開始温度と冷却停止温度との差を、冷却時間で割って得られる値である。
 次に、レールの冷却開始温度について説明する。レールの冷却開始温度が700℃未満では、本成分系では、加速冷却前の高温度域で、レールにパーライト組織が生成するので、レールを高硬度化できず、溶接レールの耐摩耗性を確保できない。また、レールの冷却開始温度が700℃未満である場合、レールに初析セメンタイト組織が生成し、溶接レールの耐摩耗性が低下する場合もある。また、レールの冷却開始温度が900℃を超えると、レールの焼入れ性が大幅に増加し、レール頭部に耐摩耗性に有害なベイナイト組織が生成し、耐摩耗性が低下する。従って、冷却開始温度は、700~900℃の範囲とする。なお、冷却開始温度とは、レールへの加速冷却を開始したときのレール温度である。例えば、加速冷却手段が冷媒である場合は、冷却開始温度とは、冷媒をレールに噴射し始めたときのレール温度である。
 次に、レールの冷却停止温度について説明する。レールの冷却停止温度が650℃を超えると、本成分系では、冷却停止直後の高温度域でパーライト変態が開始するので、硬さが低いパーライト組織が多く生成する。その結果、頭部の硬さが確保できず、溶接レールに必要な耐摩耗性を確保することが困難となる。また、500℃未満まで加速冷却を行うと、本成分系では、冷却停止直後に耐摩耗性に有害なベイナイト組織が多く生成する。その結果、溶接レールとして必要な耐摩耗性を確保することが困難となる。従って、冷却停止温度は500~650℃の範囲とする。なお、冷却停止温度とは、レールへの加速冷却を終了したときのレール温度である。例えば、加速冷却手段が冷媒である場合は、冷却開始温度とは、冷媒をレールに噴射し終えたときのレール温度である。加速冷却が終了した後も、レールの温度は放熱によって低下し続けることとなるが、放熱によるレールの温度低下は、加速冷却には含めない。
 レールの熱処理冷媒の種類は特に限定しない。レールに耐摩耗性を付与するために、レールの硬さを制御するためには、空気噴射冷却、ミスト冷却、水及び空気の混合噴射冷却、又はこれらの組み合わせにより、熱処理時のレールの冷却速度を上述のように制御する。なお、レールの900~500℃の温度範囲での平均冷却速度が上述の範囲内となる場合であれば、熱間圧延後のレールを室温まで自然放冷してもよく、この場合、上述の冷却開始温度及び冷却停止温度の規定は無視しても良い。
 (11)レールの望ましい金属組織
 次に、本実施形態におけるレールの望ましい金属組織について説明する。
 車輪と接触するレール頭部では耐摩耗性の確保が最も重要である。金属組織と耐摩耗性の関係を調査した結果、パーライト組織が最もよいことが確認された。そこで、レール頭部(頭頂部外郭表面から1/3h)についてはパーライト組織が望ましい。なお、それ以外の部位については、レールに必要な強度と延性を確保できるものであれば、パーライト組織以外の金属組織でもよい。なお、レールの構成は、溶接レールのレール部の構成と略同一となる。
 実施例により本発明の一態様の効果を更に具体的に説明する。ただし、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例に過ぎない。本発明は、この一条件例に限定されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限り、種々の条件を採用し得る。
 表4-1~表4-4に記載の成分を有するレールを製造し、フラッシュバット溶接に供することによって、溶接レールを製造した。溶接レールの製造条件は、原則的に、以下の通りとした。変更された条件については表5-3~表5-4の備考欄に記載されている。
ブルーム製造条件
●ブルームの軽圧下開始:中心固相率20%
レール製造条件
●ブルームの加熱温度(即ち熱間圧延開始温度):1250℃
●レールの仕上圧延温度:950℃
●レールの冷却開始温度:800℃
●レールの冷却停止温度:550℃
●レールの平均冷却速度:5.0℃/sec
フラッシュバット溶接条件
(1)予熱フラッシュ方式(表5-1、5-2に記載の「予熱」に対応)の場合
●レールのフラッシュバット溶接における予熱回数:8回
●レールのフラッシュバット溶接におけるフラッシュ時間:25sec
●レールのフラッシュバット溶接における平均的なフラッシュ速度:0.8mm/sec
●レールのフラッシュバット溶接におけるアプセット直前(3sec間)のフラッシュ速度:2.0mm/sec
●レールのフラッシュバット溶接におけるアプセット荷重:65kN
(2)連続フラッシュ方式(表5-1、5-2に記載の「連続」に対応)の場合
●レールのフラッシュバット溶接におけるフラッシュ時間:200sec
●レールのフラッシュバット溶接における平均的なフラッシュ速度:0.25mm/sec
●レールのフラッシュバット溶接におけるアプセット荷重:60kN
(3)溶接後の冷却条件(予熱フラッシュ方式、連続フラッシュ方式共通)
●800~400℃の温度範囲における溶接継ぎ手部の頭頂部外郭表面の平均冷却速度:1.0℃/sec
●800~500℃の温度範囲における溶接継ぎ手部の顎下部及び柱部の外郭表面の平均冷却速度:1.0℃/sec
●500~400℃の温度範囲における溶接継ぎ手部の平均冷却速度:0.6℃/sec
●CR2/CR1:0.60
 ただし一部の溶接レールには、上述の条件に代えて、表5-3~表5-4の「備考」欄に記載の製造条件を適用した。
 そして、溶接レールの溶接継ぎ手部のHAZ幅、並びにマルテンサイト評価領域におけるマルテンサイト組織の面積率、粒径20~200μmのマルテンサイト組織の個数、及びCr偏析率を評価し、表5-1~表5-2に記載した。これらの要素の評価方法は、上述の通りとした。さらに、溶接レールの耐疲労損傷性及び耐折損性も、上述の方法によって評価し、表5-1~表5-2に記載した。なお、表に記載された評価結果の符号の定義は以下の通りである。
 転動疲労試験結果の符号の定義
A:寿命400万回以上
B:寿命300万回以上~400万回未満
C:寿命200万回以上~300万回未満
X:寿命200万回未満
 評価結果がXとなった溶接レールは、転動疲労試験に関して不合格と判定した。
 落重試験結果の符号の定義
AA:落錘高さ10000mmまでレール未折損
A:落錘高さ75000mmまでレール未折損
B:落錘高さ5000mmまでレール未折損
X:折損発生
 評価結果がXとなった溶接レールは、落重試験に関して不合格と判定した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 例21は、平均的な後期フラッシュ速度が小さすぎたので、溶接継ぎ手部のHAZ幅(表の「HAZ幅」列参照)が発明範囲を超えた例である。この例21においては、疲労損傷性が合否基準に満たなかった。
 例23は、500~400℃の温度範囲における溶接継ぎ手部の平均冷却速度CR2、及びCR2/CR1が大きすぎたことにより、マルテンサイト評価領域におけるマルテンサイト組織の面積率(表の「MS面積率」参照)が発明範囲を超えた例である。この例23においては、折損性が合否基準に満たなかった。
 例26及び例27は、500~400℃の温度範囲における溶接継ぎ手部の平均冷却速度CR2、及びCR2/CR1が大きすぎたので、マルテンサイト評価領域における粒径20~200μmのマルテンサイト組織の個数が発明範囲を超えた例である。これら例26及び例27においては、折損性が合否基準に満たなかった。
 例28は、800~400℃の温度範囲における溶接継ぎ手部の頭頂部外郭表面の平均冷却速度CR1が大きすぎたので、マルテンサイト評価領域における粒径20~200μmのマルテンサイト組織の個数が発明範囲を超えた例である。この例25においては、折損性が合否基準に満たなかった。
 一方、本発明の範囲内にある例は、いずれも疲労損傷性及び折損性が合否基準を上回っていた。即ち、本発明によれば、溶接継ぎ手部の耐疲労損傷性及び耐折損性を向上させ、溶接レールの使用寿命を大きく向上させることができた。
1    溶接レール
11   溶接継ぎ手部
111  熱影響部(HAZ)
12   レール部
121  溶接レールの頭部(頭部)
1211 溶接レールの頭頂部外郭表面(頭頂部外郭表面)
1212 溶接レールの顎下部(顎下部)
122  溶接レールの柱部(柱部)
123  溶接レールの底部(底部)
A    溶接中心
B    マルテンサイト評価領域
2    枕木
3    車輪
4    モーター
5    荷重安定装置

Claims (3)

  1.  頭部及び柱部を有する、高さhの複数のレール部と、
     前記レール部を接合する溶接継ぎ手部と
    を備え、
     前記レール部は、化学成分として、単位質量%で、
     C:0.75~1.20%、
     Si:0.10~2.00%、
     Mn:0.10~2.00%、
     Cr:0.10~1.50%、
     P≦0.0250%、
     S≦0.0250%、
     Mo:0~0.50%、
     Co:0~1.00%、
     B:0~0.0050%、
     Cu:0~1.00%、
     Ni:0~1.00%、
     V:0~0.50%、
     Nb:0~0.0500%、
     Ti:0~0.0500%、
     Mg:0~0.0200%、
     Ca:0~0.0200%、
     REM:0~0.0500%、
     N:0~0.0200%、
     Zr:0~0.0200%、及び
     Al:0~1.00%
    を含有し、残部がFeおよび不純物からなり、
     前記溶接継ぎ手部のHAZ幅が60mm以下であり、
     前記溶接継ぎ手部の、溶接レールの長手方向及び上下方向に平行かつ前記溶接継ぎ手部の中心を通る断面の、頭頂部外郭表面から0~(2/3)×h、且つ溶接中心から長手方向に±5mmの領域において、マルテンサイト組織の面積率が0.0006%以上0.1000%以下であり、
     前記領域において、粒径20~200μmのマルテンサイト組織の個数が3~80個であることを特徴とする溶接レール。
  2.  さらに、前記溶接継ぎ手部の前記領域におけるCr偏析度が2.00以下であることを特徴とする請求項1に記載の溶接レール。
  3.  前記レール部がさらに、前記化学成分として、単位質量%で、
     Mo:0.01~0.50%、
     Co:0.01~1.00%、
     B:0.0001~0.0050%、
     Cu:0.01~1.00%、
     Ni:0.01~1.00%、
     V:0.01~0.50%、
     Nb:0.0010~0.0500%、
     Ti:0.0030~0.0500%、
     Mg:0.0005~0.0200%、
     Ca:0.0005~0.0200%、
     REM:0.0005~0.0500%、
     N:0.0020~0.0200%、
     Zr:0.0001~0.0200%、
     Al:0.0100~1.00%、
    の一種以上を含有する
    ことを特徴とする請求項1または2に記載の溶接レール。
PCT/JP2021/034463 2020-09-30 2021-09-21 溶接レール WO2022071007A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/017,777 US20230193438A1 (en) 2020-09-30 2021-09-21 Welded rail
JP2022553843A JP7417170B2 (ja) 2020-09-30 2021-09-21 溶接レール
BR112023001279A BR112023001279A2 (pt) 2020-09-30 2021-09-21 Trilho soldado
CA3185907A CA3185907A1 (en) 2020-09-30 2021-09-21 Welded rail
AU2021352012A AU2021352012A1 (en) 2020-09-30 2021-09-21 Welded rail

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-165639 2020-09-30
JP2020165639 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022071007A1 true WO2022071007A1 (ja) 2022-04-07

Family

ID=80951616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034463 WO2022071007A1 (ja) 2020-09-30 2021-09-21 溶接レール

Country Status (6)

Country Link
US (1) US20230193438A1 (ja)
JP (1) JP7417170B2 (ja)
AU (1) AU2021352012A1 (ja)
BR (1) BR112023001279A2 (ja)
CA (1) CA3185907A1 (ja)
WO (1) WO2022071007A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080135A1 (ja) * 2021-11-05 2023-05-11 日本製鉄株式会社 溶接レール
JP7364992B1 (ja) * 2023-02-10 2023-10-19 日本製鉄株式会社 フラッシュバット溶接レールの製造方法
WO2024141872A1 (de) * 2022-12-30 2024-07-04 Voestalpine Railway Systems GmbH Verfahren und eine vorrichtung zum verschweissen von befahrbaren komponenten eines gleises mittels abbrennstumpfschweissen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289970A (ja) * 2006-04-21 2007-11-08 Nippon Steel Corp レールのフラッシュバット溶接方法
WO2010116680A1 (ja) * 2009-03-30 2010-10-14 新日本製鐵株式会社 レール溶接部の冷却方法、レール溶接部の冷却装置、及びレール溶接継手
WO2011052562A1 (ja) * 2009-10-30 2011-05-05 新日本製鐵株式会社 レール鋼のフラッシュバット溶接方法
JP2012101280A (ja) * 2010-10-14 2012-05-31 Nippon Steel Corp レール鋼のフラッシュバット溶接方法
JP5549782B2 (ja) * 2011-05-25 2014-07-16 新日鐵住金株式会社 レール溶接部の再加熱方法
US20190100822A1 (en) * 2017-09-29 2019-04-04 CF&I Steel L.P. D/B/A EVRAZ Rocky Mountain Steel Method for joining steel rails with controlled weld heat input

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289970A (ja) * 2006-04-21 2007-11-08 Nippon Steel Corp レールのフラッシュバット溶接方法
WO2010116680A1 (ja) * 2009-03-30 2010-10-14 新日本製鐵株式会社 レール溶接部の冷却方法、レール溶接部の冷却装置、及びレール溶接継手
WO2011052562A1 (ja) * 2009-10-30 2011-05-05 新日本製鐵株式会社 レール鋼のフラッシュバット溶接方法
JP2012101280A (ja) * 2010-10-14 2012-05-31 Nippon Steel Corp レール鋼のフラッシュバット溶接方法
JP5549782B2 (ja) * 2011-05-25 2014-07-16 新日鐵住金株式会社 レール溶接部の再加熱方法
US20190100822A1 (en) * 2017-09-29 2019-04-04 CF&I Steel L.P. D/B/A EVRAZ Rocky Mountain Steel Method for joining steel rails with controlled weld heat input

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080135A1 (ja) * 2021-11-05 2023-05-11 日本製鉄株式会社 溶接レール
WO2024141872A1 (de) * 2022-12-30 2024-07-04 Voestalpine Railway Systems GmbH Verfahren und eine vorrichtung zum verschweissen von befahrbaren komponenten eines gleises mittels abbrennstumpfschweissen
JP7364992B1 (ja) * 2023-02-10 2023-10-19 日本製鉄株式会社 フラッシュバット溶接レールの製造方法

Also Published As

Publication number Publication date
JP7417170B2 (ja) 2024-01-18
AU2021352012A1 (en) 2023-02-23
CA3185907A1 (en) 2022-04-07
BR112023001279A2 (pt) 2023-04-11
US20230193438A1 (en) 2023-06-22
JPWO2022071007A1 (ja) 2022-04-07

Similar Documents

Publication Publication Date Title
WO2022071007A1 (ja) 溶接レール
JP4824141B2 (ja) 耐摩耗性および靭性に優れたパーライト系レール
US10047411B2 (en) Rail
US9670570B2 (en) High carbon steel rail with enhanced ductility
WO2013161026A1 (ja) パーライトレール、パーライトレールのフラッシュバット溶接方法、およびパーライトレールの製造方法
JP5267306B2 (ja) 高炭素鋼レールの製造方法
WO2017200096A1 (ja) レール
JP3267772B2 (ja) 高強度、高延性、高靭性レールの製造法
JP7453600B2 (ja) スポット溶接継手及びスポット溶接継手の製造方法
WO2020189232A1 (ja) レール
JP2004162085A (ja) 疲労き裂伝播抵抗に優れた鋼板およびその製造方法
JP2912123B2 (ja) 耐表面損傷性に優れた高強度・高靭性ベイナイト系レールの製造法
JPS621811A (ja) 耐損傷性にすぐれた軌条の製造法
WO2023080135A1 (ja) 溶接レール
CA2849133C (en) High carbon steel rail with enhanced ductility
JPH1192867A (ja) 耐摩耗性、溶接性に優れた低偏析性パーライト系レールおよびその製造法
WO2024134875A1 (ja) レール
JP2017206743A (ja) 耐摩耗性および靭性に優れたレール
JP6601167B2 (ja) 耐摩耗性に優れたレール
JPH10280098A (ja) 耐摩耗性に優れた高靭性レール
JP2003293088A (ja) 耐摩耗性および耐内部疲労損傷性に優れたパーライト系レール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875309

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553843

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3185907

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023001279

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021352012

Country of ref document: AU

Date of ref document: 20210921

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112023001279

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230124

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875309

Country of ref document: EP

Kind code of ref document: A1