WO2022070711A1 - オーディオ回路、それを用いた電子機器および車載オーディオシステム - Google Patents

オーディオ回路、それを用いた電子機器および車載オーディオシステム Download PDF

Info

Publication number
WO2022070711A1
WO2022070711A1 PCT/JP2021/031523 JP2021031523W WO2022070711A1 WO 2022070711 A1 WO2022070711 A1 WO 2022070711A1 JP 2021031523 W JP2021031523 W JP 2021031523W WO 2022070711 A1 WO2022070711 A1 WO 2022070711A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
audio
operational amplifier
reference voltage
Prior art date
Application number
PCT/JP2021/031523
Other languages
English (en)
French (fr)
Inventor
光輝 酒井
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to DE112021004618.7T priority Critical patent/DE112021004618T5/de
Priority to JP2022553552A priority patent/JPWO2022070711A1/ja
Priority to CN202180047771.4A priority patent/CN115769493A/zh
Publication of WO2022070711A1 publication Critical patent/WO2022070711A1/ja
Priority to US18/193,171 priority patent/US20230238926A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2173Class D power amplifiers; Switching amplifiers of the bridge type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/181Low-frequency amplifiers, e.g. audio preamplifiers
    • H03F3/183Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only
    • H03F3/187Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017509Interface arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K4/00Generating pulses having essentially a finite slope or stepped portions
    • H03K4/06Generating pulses having essentially a finite slope or stepped portions having triangular shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K4/00Generating pulses having essentially a finite slope or stepped portions
    • H03K4/06Generating pulses having essentially a finite slope or stepped portions having triangular shape
    • H03K4/066Generating pulses having essentially a finite slope or stepped portions having triangular shape using a Miller-integrator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/26Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being duration, interval, position, frequency, or sequence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/03Indexing scheme relating to amplifiers the amplifier being designed for audio applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/351Pulse width modulation being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/13Acoustic transducers and sound field adaptation in vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • This disclosure relates to an audio amplifier circuit that drives speakers and headphones.
  • FIG. 1 is a block diagram of an audio system 100R using a class D amplifier.
  • the audio system 100R mainly includes a speaker 102, a low-pass filter 104, and an audio circuit 900R.
  • the audio circuit 900R includes a class D amplifier circuit 200R.
  • the class D amplifier circuit 200R generates an output pulse signal S OUT having a duty cycle corresponding to the analog audio signal VIN .
  • the low-pass filter 104 removes the high-frequency component of the output pulse signal S OUT of the class D amplifier circuit 200R and supplies it to the speaker 102.
  • the class D amplifier circuit 200R is a class D amplifier with feedback, and includes an integrator 210, a periodic voltage generation circuit 220, a PWM (Pulse Width Modulation) comparator 230, and a bridge circuit 240.
  • PWM Pulse Width Modulation
  • the integrator 210 includes resistors R11 and R12, a capacitor C11, and an error amplifier 212.
  • An analog audio signal VIN is input to the inverting input terminal (-) of the error amplifier 212 via the first resistor R11, and a feedback signal VFB corresponding to the output pulse signal SOUT is input via the second resistor R12. Entered.
  • the capacitor C11 is provided between the output of the error amplifier 212 and the inverting input terminal, and the reference voltage VCOM is input to the non-inverting input terminal of the error amplifier 212.
  • the gain g D of this class D amplifier circuit 200R is given by R12 / R11.
  • the periodic voltage generation circuit 220 generates a periodic voltage V OSC of a triangular wave or a sawtooth wave.
  • the periodic voltage V OSC is a carrier wave for pulse width modulation.
  • the frequency of the periodic voltage V OSC is a PWM frequency, which is higher than the audible frequency band (20 Hz to 20 kHz) and is defined in the range of several hundred kHz to several MHz.
  • the PWM comparator 230 compares the output signal VINT of the integrator 210 with the periodic voltage V OSC , and generates a PWM signal S PWM that takes high or low according to the comparison result.
  • the driver 250 complementarily switches the high-side transistor MH and the low-side transistor ML of the bridge circuit 240 in response to the PWM signal S PWM .
  • the driver 250 inserts a dead time so that the high-side transistor MH and the low-side transistor ML do not turn on at the same time.
  • the amplitude of the periodic voltage V OSC generated by the periodic voltage generation circuit 220 was fixed regardless of the power supply voltage VCC.
  • the voltage range of the output voltage VINT of the integrator 210 should be included between the peak and bottom of the periodic voltage V OSC . Therefore, the maximum amplitude ⁇ V MAX of the analog audio signal VIN was constrained by the amplitude ⁇ V OSC of the periodic voltage V OSC . Specifically, the amplitude ⁇ V OSC of the periodic voltage V OSC is fixed to, for example, about 2 Vpp, the center level V BIAS of the analog audio signal VIN is determined to be 2.5 V, and its maximum amplitude ⁇ V MAX is determined to be 5 Vpp. rice field.
  • the audio circuit 900R of FIG. 1 is used in a system in which the power supply voltage VCC is large, in other words, the amplitude of the output pulse signal S OUT is large, the amplitude (signal level) of the input voltage VIN is the periodic voltage. It was constrained by V OSC and could not be increased.
  • the gain g of the class D amplifier circuit 200R needs to be designed to be ( VCC / ⁇ V MAX ) times.
  • the gain g of the integrator 210 needs to be tripled.
  • a large gain g causes deterioration of noise characteristics.
  • the present disclosure has been made in view of the above problems, and one of the exemplary purposes of the embodiment is to provide an audio circuit capable of flexibly designing a signal level according to a power supply voltage.
  • the audio circuit includes a class D amplifier circuit that receives an analog audio signal having a first reference voltage as a center level and outputs an output pulse signal having a duty cycle corresponding to the analog audio signal, and a first reference voltage.
  • a bias circuit for generating a second reference voltage having a voltage level obtained by dividing the power supply voltage is provided.
  • the class D amplifier circuit compares the output and periodic voltage of the integrator with the integrator that receives the feedback signal corresponding to the analog audio signal and the output pulse signal, the periodic voltage generation circuit that generates the periodic voltage of the triangular wave or the saw wave, and the periodic voltage of the integrator.
  • the integrator includes a PWM (Pulse Width Modulation) comparator, a bridge circuit to which a power supply voltage is supplied, and a driver that drives the bridge circuit according to the output of the PWM comparator.
  • the integrator has a first operational amplifier that receives a second reference voltage at the non-inverting input terminal, a first resistor that receives an analog audio signal at one end and is connected to the inverting input terminal of the first operational amplifier at the other end, and at one end.
  • a second resistor to which a feedback signal is input and the other end of which is connected to the inverting input terminal of the first operational amplifier is included.
  • the periodic voltage generation circuit generates a periodic voltage having an amplitude corresponding to the second reference voltage.
  • FIG. 1 is a block diagram of an audio system using a class D amplifier.
  • FIG. 2 is a block diagram of an audio system including the audio circuit according to the embodiment.
  • 3A to 3E are diagrams illustrating the operation of the audio circuit of FIG.
  • FIG. 4 is a circuit diagram showing a configuration example of a bias circuit.
  • FIG. 5 is a circuit diagram showing a configuration example of a periodic voltage generation circuit.
  • FIG. 6 is a diagram showing a configuration example of an audio circuit.
  • FIG. 7 is a diagram showing another configuration example of the audio circuit.
  • FIG. 8 is a block diagram of an in-vehicle audio system using the audio circuit according to the embodiment.
  • 9 (a) and 9 (b) are diagrams showing an electronic device using an audio circuit according to an embodiment.
  • the audio circuit is a class D amplifier circuit that receives an analog audio signal having a first reference voltage as a center level and outputs an output pulse signal having a duty cycle corresponding to the analog audio signal, and a first reference voltage. And a bias circuit that generates a second reference voltage having a voltage level that divides the power supply voltage.
  • the class D amplifier circuit compares the output and periodic voltage of the integrator with the integrator that receives the feedback signal corresponding to the analog audio signal and the output pulse signal, the periodic voltage generation circuit that generates the periodic voltage of the triangular wave or the saw wave, and the periodic voltage of the integrator.
  • the integrator includes a PWM (Pulse Width Modulation) comparator, a bridge circuit to which a power supply voltage is supplied, and a driver that drives the bridge circuit according to the output of the PWM comparator.
  • the integrator has a first operational amplifier that receives a second reference voltage at the non-inverting input terminal, a first resistor that receives an analog audio signal at one end and is connected to the inverting input terminal of the first operational amplifier at the other end, and at one end.
  • a second resistor to which a feedback signal is input and the other end of which is connected to the inverting input terminal of the first operational amplifier is included.
  • the periodic voltage generation circuit generates a periodic voltage having an amplitude corresponding to the second reference voltage.
  • the second reference voltage supplied to the integrator changes according to the power supply voltage, and the amplitude of the periodic voltage that becomes the carrier wave of the pulse width modulation also changes according to the second reference voltage.
  • the degree of freedom in designing the signal level of the analog audio signal is increased.
  • the signal level (center level and maximum amplitude) of the analog audio signal so as to be proportional to the power supply voltage. In that case, it is possible to keep the gain of the class D amplifier circuit constant regardless of the power supply voltage.
  • the gain of the class D amplifier circuit when the power supply voltage is high, can be set low by increasing the signal level (center level and maximum amplitude) of the analog audio signal. Deterioration of noise characteristics can be suppressed.
  • the periodic voltage generation circuit generates a periodic voltage based on a clock generation circuit that generates a first clock signal having a voltage level twice the second reference voltage as an amplitude and a first clock signal.
  • a triangular wave generation circuit may be provided. As a result, a triangular wave having the second reference voltage as the center level can be generated.
  • the clock generator receives a second clock signal having a frequency twice the periodic voltage and level shifts the high level voltage of the second clock signal to a voltage level twice the second reference voltage. It may include a level shift circuit and a divider that divides the third clock signal after the level shift by the level shift circuit by 1/2 and generates the first clock signal. As a result, the duty cycle of the first clock signal can be maintained at 50%, and the quality of the triangular wave waveform can be improved.
  • the frequency divider may include a flip-flop.
  • the triangular wave generation circuit includes a second operational amplifier, a third resistor that receives a first clock signal at one end and is connected to an inverting input terminal of the second operational amplifier at the other end, and an output terminal of the second operational amplifier.
  • a first capacitor provided between the inverting input terminals of the second operational amplifier, and a third operational amplifier whose output terminal receives a second reference voltage from the non-inverting input terminal and is connected to the non-inverting input terminal of the second operational amplifier.
  • One end is connected to the output terminal of the second operational amplifier and the other end is connected to the inverting input terminal of the third operational amplifier.
  • the output voltage of the second operational amplifier may be a periodic voltage, including the second capacitor.
  • the voltage supplied to the non-inverting input terminal of the second operational amplifier is adjusted so that the center level of the periodic voltage approaches the second reference voltage.
  • the bias circuit includes a first voltage divider circuit that produces a midpoint voltage that is 1/2 times the power supply voltage, and a second voltage divider circuit that divides the first reference voltage and the midpoint voltage. But it may be.
  • the voltage divider ratio of the second voltage divider circuit may be equal to the gain of the class D amplifier circuit.
  • the class D amplifier circuit can be operated at the optimum operating point according to the power supply voltage.
  • the audio circuit may be integrated on one board.
  • Integrated integration includes the case where all the components of the circuit are formed on the board or the case where the main components of the circuit are integrated together, and some resistors for adjusting the circuit constants. Or a capacitor or the like may be provided outside the substrate.
  • the "state in which the member A is connected to the member B" means that the member A and the member B are physically directly connected, or the member A and the member B are electrically connected. It also includes cases of being indirectly connected via other members that do not affect the state or impair the function.
  • a state in which the member C is provided between the member A and the member B means that the member A and the member C, or the member B and the member C are directly connected, and also electrically. It also includes the case of being indirectly connected via other members that do not affect the connection state or impair the function.
  • FIG. 2 is a block diagram of an audio system 100 including an audio circuit 300 according to an embodiment.
  • the audio system 100 includes a speaker 102, a low-pass filter 104, and an audio circuit 300.
  • the audio circuit 300 includes a class D amplifier circuit 200 and a bias circuit 310, and is configured as a functional IC (Integrated Circuit) integrated on one semiconductor chip.
  • a power supply voltage VCS is supplied to the power supply pin VCS of the audio circuit 300 from the outside.
  • An analog audio signal VIN having the first reference voltage VFIL as the center level is input to the class D amplifier circuit 200.
  • the class D amplifier circuit 200 generates an output pulse signal S OUT having a duty cycle corresponding to the analog audio signal VIN .
  • the low-pass filter 104 removes the high-frequency component of the output pulse signal S OUT of the class D amplifier circuit 200 and supplies it to the speaker 102.
  • a first reference voltage VFIL (or a voltage proportional thereto) and a power supply voltage VCC (or a voltage proportional thereto) are supplied to the bias circuit 310.
  • the bias circuit 310 generates a second reference voltage VFILP obtained by dividing the first reference voltage VFIL and the power supply voltage VCC .
  • the class D amplifier circuit 200 is a class D amplifier with feedback, and includes an integrator 210, a periodic voltage generation circuit 260, a PWM (Pulse Width Modulation) comparator 230, and a bridge circuit 240.
  • PWM Pulse Width Modulation
  • the integrator 210 includes resistors R11 and R12, a capacitor C11, and an error amplifier 212.
  • An analog audio signal VIN is input to the inverting input terminal (-) of the error amplifier 212 via the first resistor R11, and a feedback signal VFB corresponding to the output pulse signal SOUT is input via the second resistor R12. Entered.
  • the capacitor C11 is provided between the output of the error amplifier 212 and the inverting input terminal, and the second reference voltage VFILP is input to the non-inverting input terminal of the error amplifier 212.
  • the gain g D of the class D amplifier circuit 200 is given by R12 / R11.
  • the gain of the class D amplifier circuit 200 may be variably configured and may be freely changed by the designer of the audio system 100.
  • the second reference voltage VFILP is generated so as to satisfy the following equation.
  • V FILP ( VCC / 2 x R12 + V FI L x R11) / (R11 + R12)
  • the periodic voltage generation circuit 260 generates a periodic voltage V OSC of a triangular wave or a sawtooth wave.
  • the periodic voltage V OSC is a carrier wave for pulse width modulation.
  • the frequency of the periodic voltage V OSC is a PWM frequency, which is higher than the audible frequency band (20 Hz to 20 kHz) and is defined in the range of several hundred kHz to several MHz.
  • the PWM comparator 230 compares the output signal VINT of the integrator 210 with the periodic voltage V OSC , and generates a PWM signal S PWM that takes high or low according to the comparison result.
  • the bridge circuit 240 is a push-pull type inverter, and a power supply voltage VCC is supplied to the bridge circuit 240.
  • the bridge circuit 240 includes a high-side transistor MH and a low-side transistor ML.
  • the high-side transistor MH may be a polyclonal transistor or an NaCl transistor.
  • the driver 250 complementarily switches the high-side transistor MH and the low-side transistor ML of the bridge circuit 240 in response to the PWM signal S PWM .
  • the driver 250 inserts a dead time so that the high-side transistor MH and the low-side transistor ML do not turn on at the same time.
  • a second reference voltage VFILP is supplied to the periodic voltage generation circuit 260.
  • the periodic voltage generation circuit 260 generates a periodic voltage V OSC having a peak-to-peak amplitude ⁇ V OSC corresponding to the second reference voltage VFILP .
  • 3A to 3E are diagrams illustrating the operation of the audio circuit 300 of FIG. FIGS. 3A to 3E show different combinations of the power supply voltage VCC , the gain of the class D amplifier circuit 200, and the signal level of the analog audio signal VIN .
  • VFIL 2.5V
  • VFIL 5V
  • VFIL 7.5V.
  • the gains in FIGS. 3A to 3E are set to 2 times, 3 times, 1 time, 1.5 times, and 1 time, respectively.
  • the second reference voltage VFILP which is the center level of the periodic voltage V OSC , is 4.17V, 6.25V, 5V, 6.5V, and 7.5V, respectively.
  • the peak-to-peak amplitude ⁇ V OSC of the periodic voltage V OSC in each of FIGS. 3A to 3E is 1/4 times the power supply voltage VDD , and is 2.5V, 3.75V, 2.5V. , 3.75V, 3.5V.
  • the analog audio signal VIN can be amplified at full scale to drive the speaker 102.
  • the audio circuit 300 it is possible to design a flexible signal level according to the power supply voltage VCC .
  • the signal level (center level and maximum amplitude) of the analog audio signal VIN can be increased. It is possible to set the gain of the class D amplifier circuit 200 low. As a result, the noise characteristics can be improved as compared with the case where the gain of the class D amplifier circuit 200 is high (for example, 3 times).
  • the signal level of the analog audio signal VIN may be determined according to the set value of the volume. This enables full-scale output with various volumes.
  • the present disclosure extends to various devices and circuits grasped as the circuit diagram of FIG. 2 or derived from the above description, and is not limited to a specific configuration.
  • more specific configuration examples will be described not to narrow the scope of the present invention but to facilitate and clarify the essence of the invention and the circuit operation.
  • FIG. 4 is a circuit diagram showing a configuration example of the bias circuit 310.
  • the bias circuit 310 includes resistors R23-26 and buffers 313,314.
  • the fifth resistor R25, the sixth resistor R26, and the buffer 313 form a first voltage dividing circuit 316 that divides the power supply voltage VCC .
  • R25 R26
  • the midpoint voltage VCC / 2 of the power supply voltage VCC is generated and output via the buffer 313.
  • the third resistor R23 and the fourth resistor R24 are provided between the output of the voltage divider circuit 316 and the node (line) FIL in which the first reference voltage V FIL is generated, and constitute the second voltage divider circuit 317. There is.
  • Vx ( VFIL x R23 + V CC / 2 x R24) / (R23 + R24)
  • the buffer 314 has a high input impedance and a low output impedance, and outputs a second reference voltage VFILP having the same voltage level as the voltage Vx.
  • FIG. 5 is a circuit diagram showing a configuration example of the periodic voltage generation circuit 260.
  • the periodic voltage generation circuit 260 includes a clock generation circuit 262 and a triangular wave generation circuit 264.
  • the clock generation circuit 262 generates a first clock signal CLK1 having an amplitude of 2 ⁇ V FILP , which is twice the voltage level of the second reference voltage V FILP .
  • the triangular wave generation circuit 264 generates a periodic voltage V OSC based on the first clock signal CLK1.
  • the voltage source 266 produces a voltage level of 2 ⁇ V FILP that is twice the second reference voltage V FILP .
  • a second clock signal CLK2 having a frequency twice the periodic voltage V OSC is input to the level shift circuit 268.
  • the level shift circuit 268 level shifts the high level voltage of the second clock signal CLK2 (for example, the power supply voltage VDD ) to a voltage level 2 ⁇ V FILP that is twice the second reference voltage V FILP .
  • the frequency divider 270 divides the third clock signal CLK3 after the level shift by the level shift circuit 268 by 1/2 to generate the first clock signal CLK1.
  • the frequency divider 270 can be configured with flip-flops.
  • the duty cycle of the clock output by the level shift circuit 268 may deviate from 50% by passing through the level shift circuit 268 or due to fluctuations in the power supply voltage.
  • the second clock signal CLK2 having a frequency twice the final frequency is input to the level shift circuit 268, and the frequency is divided by 1/2 after the level shift.
  • the duty cycle of one clock signal CLK1 can be maintained at 50%. As a result, the quality of the waveform of the triangular wave can be improved, and the modulation accuracy can be improved.
  • the triangular wave generation circuit 264 includes operational amplifiers OA31 and OA32, resistors R31 and R32, and capacitors C31 and C32.
  • the resistor R31 receives the first clock signal CLK1 at one end thereof, and the other end is connected to the inverting input terminal ( ⁇ ) of the operational amplifier OA31.
  • the capacitor C31 is provided between the output terminal of the operational amplifier OA31 and the inverting input terminal (-) of the operational amplifier OA31.
  • the second reference voltage VFILP is input to the non-inverting input terminal of the operational amplifier OA32.
  • the output terminal of the operational amplifier OA32 is connected to the non-inverting input terminal (+) of the operational amplifier OA31.
  • One end of the resistor R32 is connected to the output terminal of the operational amplifier OA31, and the other end is connected to the inverting input terminal of the operational amplifier OA32.
  • the capacitor C32 is provided between the output terminal of the operational amplifier OA32 and the inverting input terminal of the operational amplifier OA32.
  • the output voltage of the operational amplifier OA31 becomes the periodic voltage V OSC .
  • the voltage supplied to the non-inverting input terminal of the operational amplifier OA31 is adjusted so that the center level of the periodic voltage V OSC approaches the second reference voltage V FILP.
  • V OSC the center level of the periodic voltage
  • V FILP the second reference voltage
  • FIG. 6 is a diagram showing a configuration example (300A) of the audio circuit 300.
  • the audio circuit 300A includes a digital audio interface circuit 330 and a D / A converter 320 in addition to the bias circuit 310 and the class D amplifier circuit 200.
  • the digital audio interface circuit 330 receives the digital audio signal SDIG from an external sound source.
  • the format of the digital audio signal SDIG is not particularly limited, but I 2S ( I 2S (Inter IC Sound)) and the like are exemplified.
  • the D / A converter 320 converts the digital audio signal SDIG received by the digital audio interface circuit 330 into an analog audio signal VIN .
  • the center level VFIL of the analog audio signal VIN is defined according to the reference voltage V REF of the D / A converter 320. Therefore, the bias circuit 310 may be supplied with a first reference voltage V FIL having a voltage level based on the reference voltage V REF .
  • FIG. 7 is a diagram showing another configuration example (300B) of the audio circuit 300.
  • the audio circuit 300B includes an analog input interface circuit 340 in addition to the bias circuit 310 and the class D amplifier circuit 200.
  • the analog input interface circuit 340 includes, for example, a resistor R41 provided between the analog input pin IN and the generation node of the first reference voltage VFIL .
  • An analog audio signal SANLG is input to the analog input pin IN via a coupling capacitor.
  • the bias circuit 310 may be supplied with the first reference voltage VFIL .
  • FIG. 8 is a block diagram of an in-vehicle audio system using the audio circuit according to the embodiment.
  • the in-vehicle audio system 500 includes four speakers 502 FL , 502 FR , 502 RL , 502 RR , four filters 504 FL , 504 FR , 504 RL , 504 RR , a sound source 506, and an audio circuit 300.
  • the sound source 106 outputs a left / right (LR) 2-channel or multi-channel digital audio signal.
  • the audio circuit 300 includes a 4-channel class D amplifier circuit 200 and an interface circuit 301 for the sound source 106.
  • the interface circuit 301 can be associated with the digital audio interface circuit 330 and the D / A converter 320 of FIG.
  • the filter 504, the sound source 506, and the audio circuit 300 are built in the audio head unit and the car navigation device.
  • the audio circuit 300 may be a product independent of the sound source 106.
  • FIG. 9 (a) and 9 (b) are diagrams showing an electronic device using an audio circuit according to an embodiment.
  • the electronic device of FIG. 9A is a display device 600 such as a television.
  • the display device 600 includes speakers 602L, 602R, filters 604L, 604R, a sound source 606, an audio circuit 300, and a display panel 610.
  • the electronic device of FIG. 9B is an audio component device 800.
  • the audio component device 800 includes an audio signal processing circuit 806 corresponding to a sound source, an audio circuit 300, and a filter (not shown).
  • the audio circuit 300 drives 802L and 802R connected via a speaker cable.
  • the half-bridge type class D amplifier has been described, but the present invention can also be applied to a full bridge type (BTL: Bridge-Tied Load) class D amplifier.
  • BTL Bridge-Tied Load
  • the DC of the low-pass filter 104 No block capacitor is required.
  • a filterless modulation method in which the low-pass filter 104 is omitted may be adopted.
  • This disclosure can be used for audio equipment. ..
  • Audio system 102 Speaker 104 Low-pass filter 106 Sound source 300 Audio circuit VCS power supply pin 200 Class D amplifier circuit 210 Integrator 212 Error amplifier 230 PWM comparator 240 Bridge circuit 250 Driver 260 Periodic voltage generation circuit 262 Clock generation circuit 264 Triangular wave generation circuit 266 Voltage Source 268 Level shift circuit 270 Divider 310 Bias circuit 320 D / A converter 330 Digital audio interface circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Nonlinear Science (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

D級アンプ回路200は、第1基準電圧VFILをセンターレベルとするアナログオーディオ信号VINを受け、アナログオーディオ信号VINに応じたデューティサイクルを有する出力パルス信号SOUTを出力する。バイアス回路310は、第1基準電圧VFILと電源電圧VCCを分圧した電圧レベルを有する第2基準電圧VFILPを生成する。D級アンプ回路200の周期電圧発生回路260は、第2基準電圧VFILPに応じた振幅を有する三角波またはのこぎり波の周期電圧VOSCを生成する。

Description

オーディオ回路、それを用いた電子機器および車載オーディオシステム
 本開示は、スピーカやヘッドホンを駆動するオーディオアンプ回路に関する。
 スピーカやヘッドホンなどの電気音響変換素子を駆動するパワーアンプとして、高効率なD級アンプが用いられる。図1は、D級アンプを用いたオーディオシステム100Rのブロック図である。オーディオシステム100Rは主として、スピーカ102、ローパスフィルタ104およびオーディオ回路900Rを備える。
 オーディオ回路900Rは、D級アンプ回路200Rを備える。D級アンプ回路200Rは、アナログオーディオ信号VINに応じたデューティサイクルを有する出力パルス信号SOUTを発生する。ローパスフィルタ104は、D級アンプ回路200Rの出力パルス信号SOUTの高周波成分を除去し、スピーカ102に供給する。
 D級アンプ回路200Rは、フィードバック付きD級アンプであり、積分器210、周期電圧発生回路220、PWM(Pulse Width Modulation)コンパレータ230、ブリッジ回路240を備える。
 積分器210は、抵抗R11,R12、キャパシタC11、エラーアンプ212を含む。エラーアンプ212の反転入力端子(-)には、第1抵抗R11を介してアナログオーディオ信号VINが入力され、第2抵抗R12を介して、出力パルス信号SOUTに応じたフィードバック信号VFBが入力される。キャパシタC11は、エラーアンプ212の出力と反転入力端子の間に設けられ、エラーアンプ212の非反転入力端子には、基準電圧VCOMが入力される。このD級アンプ回路200Rのゲインgは、R12/R11で与えられる。
 周期電圧発生回路220は、三角波またはのこぎり波の周期電圧VOSCを生成する。周期電圧VOSCは、パルス幅変調の搬送波である。周期電圧VOSCの周波数は、PWM周波数であり、可聴周波数帯域(20Hz~20kHz)より高く、数百kHz~数MHzの範囲で定められる。PWMコンパレータ230は、積分器210の出力信号VINTと周期電圧VOSCを比較し、比較結果に応じてハイ・ローをとるPWM信号SPWMを生成する。
 ドライバ250は、PWM信号SPWMに応じて、ブリッジ回路240のハイサイドトランジスタMHとローサイドトランジスタMLを相補的にスイッチングする。ドライバ250は、ハイサイドトランジスタMHとローサイドトランジスタMLが同時にオンしないように、デッドタイムを挿入する。
特許第5618776号公報
 図1のオーディオ回路900Rにおいて、周期電圧発生回路220が発生する周期電圧VOSCの振幅は、電源電圧VCCによらずに固定されていた。
 積分器210の出力電圧VINTの電圧範囲は、周期電圧VOSCのピークとボトムの間に含まれる必要がある。したがって、アナログオーディオ信号VINの最大振幅ΔVMAXは、周期電圧VOSCの振幅ΔVOSCによって制約を受けていた。具体的には、周期電圧VOSCの振幅ΔVOSCは、たとえば2Vpp程度に固定され、アナログオーディオ信号VINのセンターレベルVBIASは2.5V、その最大振幅ΔVMAXは5Vppのように決められていた。
 図1のオーディオ回路900Rを、電源電圧VCCが大きい、言い換えると出力パルス信号SOUTの振幅が大きいシステムで使用する場合であっても、入力電圧VINの振幅(信号レベル)は、周期電圧VOSCによって制約を受けており、大きくすることができなかった。
 またオーディオシステム100Rにおいて、フルスケール出力を得るためには、D級アンプ回路200Rのゲインgは、(VCC/ΔVMAX)倍として設計する必要がある。VCC=15V、ΔVMAX=5Vの場合、積分器210のゲインgは3倍とする必要がある。大きなゲインgは、ノイズ特性の悪化の要因となる。
 本開示は係る課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、電源電圧に応じて、柔軟な信号レベルの設計が可能なオーディオ回路の提供にある。
 本開示に係るオーディオ回路は、第1基準電圧をセンターレベルとするアナログオーディオ信号を受け、アナログオーディオ信号に応じたデューティサイクルを有する出力パルス信号を出力するD級アンプ回路と、第1基準電圧と電源電圧を分圧した電圧レベルを有する第2基準電圧を生成するバイアス回路と、を備える。D級アンプ回路は、アナログオーディオ信号と出力パルス信号に応じたフィードバック信号を受ける積分器と、三角波またはのこぎり波の周期電圧を生成する周期電圧発生回路と、積分器の出力と周期電圧を比較するPWM(Pulse Width Modulation)コンパレータと、電源電圧が供給されたブリッジ回路と、PWMコンパレータの出力に応じて、ブリッジ回路を駆動するドライバと、を備える。積分器は、非反転入力端子に第2基準電圧を受ける第1オペアンプと、一端にアナログオーディオ信号が入力され、他端が第1オペアンプの反転入力端子と接続される第1抵抗と、一端にフィードバック信号が入力され、他端が第1オペアンプの反転入力端子と接続される第2抵抗と、を含む。周期電圧発生回路は、第2基準電圧に応じた振幅を有する周期電圧を生成する。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置などの間で変換したものもまた、本発明の態様として有効である。さらに、この項目(課題を解決するための手段)の記載は、本発明の欠くべからざるすべての特徴を説明するものではなく、したがって、記載されるこれらの特徴のサブコンビネーションも、本発明たり得る。
 本開示のある態様によれば、電源電圧に応じて、柔軟な信号レベルの設計が可能となる。
図1は、D級アンプを用いたオーディオシステムのブロック図である。 図2は、実施の形態に係るオーディオ回路を備えるオーディオシステムのブロック図である。 図3(a)~(e)は、図2のオーディオ回路の動作を説明する図である。 図4は、バイアス回路の構成例を示す回路図である。 図5は、周期電圧発生回路の構成例を示す回路図である。 図6は、オーディオ回路の構成例を示す図である。 図7は、オーディオ回路の別の構成例を示す図である。 図8は、実施の形態に係るオーディオ回路を利用した車載オーディオシステムのブロック図である。 図9(a)、(b)は、実施の形態に係るオーディオ回路を利用した電子機器を示す図である。
(実施形態の概要)
 本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。またこの概要は、考えられるすべての実施形態の包括的な概要ではなく、実施形態の欠くべからざる構成要素を限定するものではない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
 一実施形態に係るオーディオ回路は、第1基準電圧をセンターレベルとするアナログオーディオ信号を受け、アナログオーディオ信号に応じたデューティサイクルを有する出力パルス信号を出力するD級アンプ回路と、第1基準電圧と電源電圧を分圧した電圧レベルを有する第2基準電圧を生成するバイアス回路と、を備える。D級アンプ回路は、アナログオーディオ信号と出力パルス信号に応じたフィードバック信号を受ける積分器と、三角波またはのこぎり波の周期電圧を生成する周期電圧発生回路と、積分器の出力と周期電圧を比較するPWM(Pulse Width Modulation)コンパレータと、電源電圧が供給されたブリッジ回路と、PWMコンパレータの出力に応じて、ブリッジ回路を駆動するドライバと、を備える。積分器は、非反転入力端子に第2基準電圧を受ける第1オペアンプと、一端にアナログオーディオ信号が入力され、他端が第1オペアンプの反転入力端子と接続される第1抵抗と、一端にフィードバック信号が入力され、他端が第1オペアンプの反転入力端子と接続される第2抵抗と、を含む。周期電圧発生回路は、第2基準電圧に応じた振幅を有する周期電圧を生成する。
 この構成によると、積分器に供給される第2基準電圧が電源電圧に追従して変化し、パルス幅変調の搬送波となる周期電圧の振幅も、第2基準電圧に応じて変化する。その結果、アナログオーディオ信号の信号レベルの設計の自由度が高くなる。
 一実施形態において、電源電圧に比例するように、アナログオーディオ信号の信号レベル(センターレベルおよび最大振幅)を設定することも可能である。その場合、電源電圧によらずに、D級アンプ回路のゲインを一定とすることも可能である。
 また一実施形態において、電源電圧が高い場合に、アナログオーディオ信号の信号レベル(センターレベルおよび最大振幅)を大きくすることで、D級アンプ回路のゲインを低く設定することが可能であり、これによりノイズ特性の悪化を抑制できる。
 一実施形態において、周期電圧発生回路は、第2基準電圧の二倍の電圧レベルを振幅とする第1クロック信号を生成するクロック発生回路と、第1クロック信号にもとづいて、周期電圧を生成する三角波発生回路と、を備えてもよい。これにより、第2基準電圧をセンターレベルとする三角波を生成できる。
 一実施形態において、クロック発生回路は、周期電圧の二倍の周波数を有する第2クロック信号を受け、第2クロック信号のハイレベル電圧を、第2基準電圧の二倍の電圧レベルにレベルシフトするレベルシフト回路と、レベルシフト回路によるレベルシフト後の第3クロック信号を1/2分周し、第1クロック信号を生成する分周器と、を含んでもよい。これにより、第1クロック信号のデューティサイクルを50%に保つことができ、三角波の波形の質を高めることができる。
 一実施形態において、分周器はフリップフロップを含んでもよい。
 一実施形態において、三角波発生回路は、第2オペアンプと、一端に第1クロック信号を受け、他端が第2オペアンプの反転入力端子と接続される第3抵抗と、第2オペアンプの出力端子と第2オペアンプの反転入力端子の間に設けられる第1キャパシタと、非反転入力端子に第2基準電圧を受け、その出力端子が第2オペアンプの非反転入力端子と接続されている第3オペアンプと、一端が第2オペアンプの出力端子と接続され、他端が第3オペアンプの反転入力端子と接続される第4抵抗と、第3オペアンプの出力端子と第3オペアンプの反転入力端子の間に設けられる第2キャパシタと、を含み、第2オペアンプの出力電圧が、周期電圧であってもよい。この構成によると、周期電圧のセンターレベルが第2基準電圧に近づくように、第2オペアンプの非反転入力端子に供給される電圧が調節される。その結果、クロック発生回路の出力インピーダンスのばらつき、電源電圧変動による特性悪化を抑制できる。
 一実施形態において、バイアス回路は、電源電圧の1/2倍の中点電圧を生成する第1分圧回路と、第1基準電圧と中点電圧を分圧する第2分圧回路と、を含んでもよい。
 一実施形態において、第2分圧回路の分圧比は、D級アンプ回路のゲインと等しくてもよい。これにより、D級アンプ回路を、電源電圧に応じた最適な動作点で動作させることができる。
 一実施形態において、オーディオ回路はひとつの基板に一体集積化されてもよい。「一体集積化」とは、回路の構成要素のすべてが基板上に形成される場合や、回路の主要構成要素が一体集積化される場合が含まれ、回路定数の調節用に一部の抵抗やキャパシタなどが基板の外部に設けられていてもよい。回路を1つのチップ上に集積化することにより、回路面積を削減することができるとともに、回路素子の特性を均一に保つことができる。
(実施形態)
 以下、好適な実施形態について、図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施形態は、開示および発明を限定するものではなく例示であって、実施形態に記述されるすべての特徴やその組み合わせは、必ずしも開示および発明の本質的なものであるとは限らない。
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合や、部材Aと部材Bが、電気的な接続状態に影響を及ぼさず、あるいは機能を阻害しない他の部材を介して間接的に接続される場合も含む。
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、電気的な接続状態に影響を及ぼさず、あるいは機能を阻害しない他の部材を介して間接的に接続される場合も含む。
 図2は、実施の形態に係るオーディオ回路300を備えるオーディオシステム100のブロック図である。オーディオシステム100は、スピーカ102、ローパスフィルタ104およびオーディオ回路300を備える。
 オーディオ回路300は、D級アンプ回路200およびバイアス回路310を備え、ひとつの半導体チップに集積化した機能IC(Integrated Circuit)として構成される。オーディオ回路300の電源ピンVCCには、外部から電源電圧VCCが供給される。
 D級アンプ回路200には、第1基準電圧VFILをセンターレベルとするアナログオーディオ信号VINが入力される。D級アンプ回路200は、アナログオーディオ信号VINに応じたデューティサイクルを有する出力パルス信号SOUTを発生する。ローパスフィルタ104は、D級アンプ回路200の出力パルス信号SOUTの高周波成分を除去し、スピーカ102に供給する。
 バイアス回路310には、第1基準電圧VFIL(またはそれに比例する電圧)と、電源電圧VCC(またはそれに比例する電圧)が供給される。バイアス回路310は、第1基準電圧VFILと電源電圧VCCを分圧して得られる第2基準電圧VFILPを生成する。
 D級アンプ回路200は、フィードバック付きD級アンプであり、積分器210、周期電圧発生回路260、PWM(Pulse Width Modulation)コンパレータ230、ブリッジ回路240を備える。
 積分器210は、抵抗R11,R12、キャパシタC11、エラーアンプ212を含む。エラーアンプ212の反転入力端子(-)には、第1抵抗R11を介してアナログオーディオ信号VINが入力され、第2抵抗R12を介して、出力パルス信号SOUTに応じたフィードバック信号VFBが入力される。キャパシタC11は、エラーアンプ212の出力と反転入力端子の間に設けられ、エラーアンプ212の非反転入力端子には、第2基準電圧VFILPが入力される。このD級アンプ回路200のゲインgは、R12/R11で与えられる。
 D級アンプ回路200は、そのゲインが可変に構成され、オーディオシステム100の設計者が自由に変更可能としてもよい。
 好ましくは、第2基準電圧VFILPは、以下の式を満たすように生成される。
 VFILP=(VCC/2×R12+VFIL×R11)/(R11+R12)
 周期電圧発生回路260は、三角波またはのこぎり波の周期電圧VOSCを生成する。周期電圧VOSCは、パルス幅変調の搬送波である。周期電圧VOSCの周波数は、PWM周波数であり、可聴周波数帯域(20Hz~20kHz)より高く、数百kHz~数MHzの範囲で定められる。
 PWMコンパレータ230は、積分器210の出力信号VINTと周期電圧VOSCを比較し、比較結果に応じてハイ・ローをとるPWM信号SPWMを生成する。
 ブリッジ回路240は、プッシュプル型のインバータであり、電源電圧VCCが供給されている。ブリッジ回路240は、ハイサイドトランジスタMHとローサイドトランジスタMLを含む。ハイサイドトランジスタMHは、PMOSトランジスタであってもよいし、NMOSトランジスタであってもよい。
 ドライバ250は、PWM信号SPWMに応じて、ブリッジ回路240のハイサイドトランジスタMHとローサイドトランジスタMLを相補的にスイッチングする。ドライバ250は、ハイサイドトランジスタMHとローサイドトランジスタMLが同時にオンしないように、デッドタイムを挿入する。
 周期電圧発生回路260には、第2基準電圧VFILPが供給されている。周期電圧発生回路260は、第2基準電圧VFILPに応じたピークトゥピークの振幅ΔVOSCを有する周期電圧VOSCを生成する。たとえば振幅ΔVOSCは、VCC/N(Nは定数)とすることができ、たとえば、N=4としてもよい。
 以上がオーディオ回路300の構成である。続いてその動作を説明する。図3(a)~(e)は、図2のオーディオ回路300の動作を説明する図である。図3(a)~(e)には、電源電圧VCC、D級アンプ回路200のゲイン、アナログオーディオ信号VINの信号レベルの異なる組み合わせが示される。
 理解の容易化のため、図3(a)、(c)ではVCC=10V、図3(b)、(d)、(e)では、VCC=15Vとする。また図3(a)、(b)では、VFIL=2.5V、図3(c)、(d)では、VFIL=5V、図3(e)ではVFIL=7.5Vであるとする。図3(a)~(e)におけるゲインは、それぞれ2倍、3倍、1倍、1.5倍、1倍に設定される。
 図3(a)~(e)それぞれにおいて、周期電圧VOSCのセンターレベルである第2基準電圧VFILPはそれぞれ、4.17V,6.25V,5V,6.5V,7.5Vとなる。また、図3(a)~(e)それぞれにおける周期電圧VOSCのピークトゥピークの振幅ΔVOSCは、電源電圧VDDの1/4倍であり、2.5V,3.75V,2.5V,3.75V,3.5Vである。いずれの場合であっても、アナログオーディオ信号VINをフルスケールで増幅し、スピーカ102を駆動することができる。
 このように本実施形態に係るオーディオ回路300によれば、電源電圧VCCに応じて、柔軟な信号レベルの設計が可能となる。
 たとえば、図3(c)と(e)に示すように、電源電圧VCCに比例するように、アナログオーディオ信号VINの信号レベル(センターレベルおよび最大振幅)を設定することが可能である。その場合、電源電圧VCCによらずに、D級アンプ回路200のゲインを一定とすることが可能である。
 また、図3(c)、(e)あるいは(d)に示すように、電源電圧VCCが高い場合に、アナログオーディオ信号VINの信号レベル(センターレベルおよび最大振幅)を大きくすることで、D級アンプ回路200のゲインを低く設定することが可能である。これによりD級アンプ回路200のゲインが高い場合(たとえば3倍)に比べて、ノイズ特性を改善できる。
 あるいは、アナログオーディオ信号VINの信号レベルは、ボリウムの設定値に応じて決定してもよい。これにより、さまざまなボリウムで、フルスケールの出力が可能となる。
 本開示は、図2の回路図として把握され、あるいは上述の説明から導かれるさまざまな装置、回路に及ぶものであり、特定の構成に限定されるものではない。以下、本発明の範囲を狭めるためではなく、発明の本質や回路動作の理解を容易、明確化するために、より具体的な構成例を説明する。
 図4は、バイアス回路310の構成例を示す回路図である。バイアス回路310は、抵抗R23~26およびバッファ313,314を含む。
 第5抵抗R25、第6抵抗R26およびバッファ313は、電源電圧VCCを分圧する第1の分圧回路316を構成している。R25=R26のとき、分圧回路316において、電源電圧VCCの中点電圧VCC/2が生成され、バッファ313を介して出力される。
 第3抵抗R23および第4抵抗R24は、分圧回路316の出力と、第1基準電圧VFILが発生するノード(ライン)FILの間に設けられ、第2の分圧回路317を構成している。
 第3抵抗R23および第4抵抗R24の抵抗値の比は、D級アンプ回路200のゲインg、すなわち図2の第1抵抗R11,第2抵抗R12の抵抗値に応じて定めればよい。
 R24:R23=R11:R12
 第3抵抗R23、第4抵抗R24およびの接続ノードNxには、電圧VCC/2と電圧VFILを内分した電圧Vxが発生する。
 Vx=(VFIL×R23+VCC/2×R24)/(R23+R24)
 バッファ314は、ハイ入力インピーダンス、低出力インピーダンスを有し、電圧Vxと同電圧レベルの第2基準電圧VFILPを出力する。
 図5は、周期電圧発生回路260の構成例を示す回路図である。周期電圧発生回路260は、クロック発生回路262、三角波発生回路264を備える。
 クロック発生回路262は、第2基準電圧VFILPの二倍の電圧レベル2×VFILPを振幅とする第1クロック信号CLK1を生成する。三角波発生回路264は、第1クロック信号CLK1にもとづいて、周期電圧VOSCを生成する。
 電圧源266は、第2基準電圧VFILPの二倍の電圧レベル2×VFILPを生成する。レベルシフト回路268には、周期電圧VOSCの二倍の周波数を有する第2クロック信号CLK2が入力される。レベルシフト回路268は、第2クロック信号CLK2のハイレベル電圧(たとえば電源電圧VDD)を、第2基準電圧VFILPの二倍の電圧レベル2×VFILPにレベルシフトする。
 分周器270は、レベルシフト回路268によるレベルシフト後の第3クロック信号CLK3を1/2分周し、第1クロック信号CLK1を生成する。たとえば分周器270はフリップフロップで構成することができる。レベルシフト回路268を通過することにより、あるいは電源電圧の変動によって、レベルシフト回路268が出力するクロックのデューティサイクルは50%から逸脱する場合がある。図5のクロック発生回路262によれば、最終的な周波数の2倍の周波数を有する第2クロック信号CLK2を、レベルシフト回路268に入力し、レベルシフト後に1/2分周することで、第1クロック信号CLK1のデューティサイクルを50%に保つことができる。これにより、三角波の波形の質を高めることができ、変調精度を高めることができる。
 続いて三角波発生回路264の構成例を説明する。三角波発生回路264は、オペアンプOA31,OA32、抵抗R31,R32、キャパシタC31,C32を含む。抵抗R31はその一端に第1クロック信号CLK1を受け、他端がオペアンプOA31の反転入力端子(-)と接続される。キャパシタC31は、オペアンプOA31の出力端子とオペアンプOA31の反転入力端子(-)の間に設けられる。
 オペアンプOA32の非反転入力端子には、第2基準電圧VFILPが入力される。オペアンプOA32の出力端子は、オペアンプOA31の非反転入力端子(+)と接続されている。抵抗R32の一端は、オペアンプOA31の出力端子と接続され、他端はオペアンプOA32の反転入力端子と接続される。キャパシタC32は、オペアンプOA32の出力端子とオペアンプOA32の反転入力端子の間に設けられる。オペアンプOA31の出力電圧が、周期電圧VOSCとなる。
 この構成によると、周期電圧VOSCのセンターレベルが第2基準電圧VFILPに近づくように、オペアンプOA31の非反転入力端子に供給される電圧が調節される。その結果、クロック発生回路262の出力インピーダンスのばらつき、電源電圧変動による特性悪化を抑制できる。
 続いてオーディオ回路300の入力インタフェースについて説明する。
 図6は、オーディオ回路300の構成例(300A)を示す図である。オーディオ回路300Aは、バイアス回路310、D級アンプ回路200に加えて、デジタルオーディオインタフェース回路330およびD/Aコンバータ320を備える。
 デジタルオーディオインタフェース回路330は、外部音源からデジタルオーディオ信号SDIGを受信する。デジタルオーディオ信号SDIGのフォーマットは特に限定されないが、IS(IS(Inter IC Sound))などが例示される。
 D/Aコンバータ320は、デジタルオーディオインタフェース回路330が受信したデジタルオーディオ信号SDIGをアナログオーディオ信号VINに変換する。
 この構成において、アナログオーディオ信号VINのセンターレベルVFILは、D/Aコンバータ320の基準電圧VREFに応じて規定される。したがって、バイアス回路310には、基準電圧VREFにもとづく電圧レベルを有する第1基準電圧VFILを供給すればよい。
 図7は、オーディオ回路300の別の構成例(300B)を示す図である。オーディオ回路300Bは、バイアス回路310、D級アンプ回路200に加えて、アナログ入力インタフェース回路340を備える。アナログ入力インタフェース回路340は、たとえばアナログ入力ピンINと第1基準電圧VFILの発生ノードの間に設けられる抵抗R41を含む。アナログ入力ピンINには、カップリングキャパシタを介して、アナログオーディオ信号SANLGが入力される。この場合、バイアス回路310には、第1基準電圧VFILを供給すればよい。
(用途)
 オーディオ回路300の用途を説明する。図8は、実施の形態に係るオーディオ回路を利用した車載オーディオシステムのブロック図である。
 車載オーディオシステム500は、4個のスピーカ502FL,502FR,502RL,502RR、4個のフィルタ504FL,504FR,504RL,504RR、音源506およびオーディオ回路300を備える。
 音源106は、左右(LR)2チャンネルあるいはマルチチャンネルのデジタルオーディオ信号を出力する。オーディオ回路300は、4チャンネルのD級アンプ回路200と、音源106とのインタフェース回路301を備える。インタフェース回路301は、図3のデジタルオーディオインタフェース回路330およびD/Aコンバータ320に対応付けることができる。
 フィルタ504、音源506およびオーディオ回路300は、オーディオヘッドユニットやカーナビゲーション装置に内蔵される。あるいはオーディオ回路300は、音源106とは独立した製品であってもよい。
 図9(a)、(b)は、実施の形態に係るオーディオ回路を利用した電子機器を示す図である。図9(a)の電子機器は、テレビなどのディスプレイ装置600である。ディスプレイ装置600は、スピーカ602L,602R、フィルタ604L,604R、音源606およびオーディオ回路300、ディスプレイパネル610を備える。
 図9(b)の電子機器は、オーディオコンポーネント装置800である。オーディオコンポーネント装置800は、音源に相当するオーディオ信号処理回路806、オーディオ回路300、図示しないフィルタを備える。オーディオ回路300は、スピーカケーブルを介して接続される802L,802Rを駆動する。
 上述した実施形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なことが当業者に理解される。以下、こうした変形例について説明する。
 実施の形態では、ハーフブリッジ型のD級アンプを説明したが、フルブリッジ型(BTL:Bridge-Tied Load)のD級アンプにも本発明は適用可能であり、この場合、ローパスフィルタ104のDCブロックコンデンサが不要となる。さらに、フルブリッジ型のD級アンプでは、ローパスフィルタ104を省略したフィルタレス変調方式を採用してもよい。
 本開示は、オーディオ装置に利用できる。。
 100 オーディオシステム
 102 スピーカ
 104 ローパスフィルタ
 106 音源
 300 オーディオ回路
 VCC 電源ピン
 200 D級アンプ回路
 210 積分器
 212 エラーアンプ
 230 PWMコンパレータ
 240 ブリッジ回路
 250 ドライバ
 260 周期電圧発生回路
 262 クロック発生回路
 264 三角波発生回路
 266 電圧源
 268 レベルシフト回路
 270 分周器
 310 バイアス回路
 320 D/Aコンバータ
 330 デジタルオーディオインタフェース回路

Claims (10)

  1.  第1基準電圧をセンターレベルとするアナログオーディオ信号を受け、前記アナログオーディオ信号に応じたデューティサイクルを有する出力パルス信号を出力するD級アンプ回路と、
     前記第1基準電圧と電源電圧を分圧した電圧レベルを有する第2基準電圧を生成するバイアス回路と、
     を備え、
     前記D級アンプ回路は、
     前記アナログオーディオ信号と前記出力パルス信号に応じたフィードバック信号を受ける積分器と、
     三角波またはのこぎり波の周期電圧を生成する周期電圧発生回路と、
     前記積分器の出力と前記周期電圧を比較するPWM(Pulse Width Modulation)コンパレータと、
     前記電源電圧が供給されたブリッジ回路と、
     前記PWMコンパレータの出力に応じて、前記ブリッジ回路を駆動するドライバと、
     を備え、
     前記積分器は、
     非反転入力端子に前記第2基準電圧を受ける第1オペアンプと、
     一端に前記アナログオーディオ信号が入力され、他端が前記第1オペアンプの反転入力端子と接続される第1抵抗と、
     一端に前記フィードバック信号が入力され、他端が前記第1オペアンプの反転入力端子と接続される第2抵抗と、
     を含み、
     前記周期電圧発生回路は、前記第2基準電圧に応じた振幅を有する周期電圧を生成する、オーディオ回路。
  2.  前記周期電圧発生回路は、
     前記第2基準電圧の二倍の電圧レベルを振幅とする第1クロック信号を生成するクロック発生回路と、
     前記第1クロック信号にもとづいて、前記周期電圧を生成する三角波発生回路と、
     を備える、請求項1に記載のオーディオ回路。
  3.  前記クロック発生回路は、
     前記周期電圧の二倍の周波数を有する第2クロック信号を受け、前記第2クロック信号のハイレベル電圧を、前記第2基準電圧の二倍の電圧レベルにレベルシフトするレベルシフト回路と、
     前記レベルシフト回路によるレベルシフト後の第3クロック信号を1/2分周し、前記第1クロック信号を生成する分周器と、
     を含む、請求項2に記載のオーディオ回路。
  4.  前記分周器はフリップフロップを含む、請求項3に記載のオーディオ回路。
  5.  前記三角波発生回路は、
     第2オペアンプと、
     一端に前記第1クロック信号を受け、他端が前記第2オペアンプの反転入力端子と接続される第3抵抗と、
     前記第2オペアンプの出力端子と前記第2オペアンプの前記反転入力端子の間に設けられる第1キャパシタと、
     非反転入力端子に前記第2基準電圧を受け、その出力端子が前記第2オペアンプの非反転入力端子と接続されている第3オペアンプと、
     一端が前記第2オペアンプの前記出力端子と接続され、他端が前記第3オペアンプの反転入力端子と接続される第4抵抗と、
     前記第3オペアンプの出力端子と前記第3オペアンプの前記反転入力端子の間に設けられる第2キャパシタと、
     を含み、前記第2オペアンプの出力電圧が、前記周期電圧である、請求項2から4のいずれかに記載のオーディオ回路。
  6.  前記バイアス回路は、
     前記電源電圧の1/2倍の中点電圧を生成する第1分圧回路と、
     前記第1基準電圧と前記中点電圧を分圧する第2分圧回路と、
     を含む、請求項1から5のいずれかに記載のオーディオ回路。
  7.  前記第2分圧回路の分圧比は、前記D級アンプ回路のゲインと等しい、請求項6に記載のオーディオ回路。
  8.  ひとつの基板に一体集積化される、請求項1から7のいずれかに記載のオーディオ回路。
  9.  スピーカと、
     前記スピーカを駆動する請求項1から8のいずれかに記載のオーディオ回路と、
     を備える、車載オーディオシステム。
  10.  請求項1から8のいずれかに記載のオーディオ回路を備える、電子機器。
PCT/JP2021/031523 2020-09-30 2021-08-27 オーディオ回路、それを用いた電子機器および車載オーディオシステム WO2022070711A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021004618.7T DE112021004618T5 (de) 2020-09-30 2021-08-27 Audioschaltung, elektronisches gerät mit dieser schaltung und audiosystem im fahrzeug
JP2022553552A JPWO2022070711A1 (ja) 2020-09-30 2021-08-27
CN202180047771.4A CN115769493A (zh) 2020-09-30 2021-08-27 音频电路、使用其的电子设备及车载音频***
US18/193,171 US20230238926A1 (en) 2020-09-30 2023-03-30 Audio circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020166165 2020-09-30
JP2020-166165 2020-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/193,171 Continuation US20230238926A1 (en) 2020-09-30 2023-03-30 Audio circuit

Publications (1)

Publication Number Publication Date
WO2022070711A1 true WO2022070711A1 (ja) 2022-04-07

Family

ID=80950009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031523 WO2022070711A1 (ja) 2020-09-30 2021-08-27 オーディオ回路、それを用いた電子機器および車載オーディオシステム

Country Status (5)

Country Link
US (1) US20230238926A1 (ja)
JP (1) JPWO2022070711A1 (ja)
CN (1) CN115769493A (ja)
DE (1) DE112021004618T5 (ja)
WO (1) WO2022070711A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116761115B (zh) * 2023-08-11 2023-12-12 上海海栎创科技股份有限公司 一种低成本高效能的放音电源控制电路及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273671A (ja) * 2002-03-18 2003-09-26 Mitsubishi Electric Corp アナログ型pwm信号生成回路
JP2004312594A (ja) * 2003-04-10 2004-11-04 Japan Radio Co Ltd D級増幅回路
JP2012029185A (ja) * 2010-07-27 2012-02-09 New Japan Radio Co Ltd D級増幅回路
JP2016046544A (ja) * 2014-08-19 2016-04-04 ローム株式会社 スイッチング回路、オーディオアンプ集積回路、電子機器、電気音響変換素子の駆動方法
US20180234062A1 (en) * 2017-02-10 2018-08-16 Stmicroelectronics S.R.L. Triangular-wave voltage generator and corresponding class-d amplifier circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618776U (ja) 1979-07-21 1981-02-19

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273671A (ja) * 2002-03-18 2003-09-26 Mitsubishi Electric Corp アナログ型pwm信号生成回路
JP2004312594A (ja) * 2003-04-10 2004-11-04 Japan Radio Co Ltd D級増幅回路
JP2012029185A (ja) * 2010-07-27 2012-02-09 New Japan Radio Co Ltd D級増幅回路
JP2016046544A (ja) * 2014-08-19 2016-04-04 ローム株式会社 スイッチング回路、オーディオアンプ集積回路、電子機器、電気音響変換素子の駆動方法
US20180234062A1 (en) * 2017-02-10 2018-08-16 Stmicroelectronics S.R.L. Triangular-wave voltage generator and corresponding class-d amplifier circuit

Also Published As

Publication number Publication date
US20230238926A1 (en) 2023-07-27
JPWO2022070711A1 (ja) 2022-04-07
DE112021004618T5 (de) 2023-06-15
CN115769493A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
JP3941443B2 (ja) 自走式pwm増幅器
EP1578011B1 (en) Power amplifying apparatus
US9525390B2 (en) Switching circuit
JP2003115730A (ja) Pwm変調回路及び電力増幅回路
WO2022070711A1 (ja) オーディオ回路、それを用いた電子機器および車載オーディオシステム
JP6381960B2 (ja) オーディオアンプ、オーディオ出力回路、オーディオ用集積回路、電子機器、オーディオ信号の増幅方法
US20230247354A1 (en) Audio circuit
JP7271393B2 (ja) 半導体集積回路、車載電子部品、車載電子機器
US11936349B2 (en) Audio circuit, electronic device and vehicle audio system with the audio circuit
US20060071697A1 (en) Pwm generator
JP7387391B2 (ja) オーディオ回路、それを用いた電子機器および車載オーディオシステム
US6943623B2 (en) Amplification circuitry
JP5343782B2 (ja) D級増幅器
US7602245B2 (en) Method, apparatus and system for reducing DC coupling capacitance at switching amplifier
US7868693B2 (en) Class-D amplifier
JP4623286B2 (ja) デューティ調整回路
JP2022057757A (ja) オーディオ回路、それを用いた電子機器および車載オーディオシステム
JP2020155837A (ja) D級アンプ及び音響再生システム
JP5198013B2 (ja) スイッチング増幅器のdcカップリングキャパシタンスを減少させるための方法、装置及びシステム
JP2005303823A (ja) 増幅回路
US20220329255A1 (en) D/a converter
CN113141163B (zh) D类功率放大器电路
US8724831B2 (en) Amplification circuit and method therefor
GB2389724A (en) Class D amplification circuitry with improved noise performance
TW202127794A (zh) D類功率放大器電路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553552

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21875014

Country of ref document: EP

Kind code of ref document: A1