WO2022070550A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2022070550A1
WO2022070550A1 PCT/JP2021/026243 JP2021026243W WO2022070550A1 WO 2022070550 A1 WO2022070550 A1 WO 2022070550A1 JP 2021026243 W JP2021026243 W JP 2021026243W WO 2022070550 A1 WO2022070550 A1 WO 2022070550A1
Authority
WO
WIPO (PCT)
Prior art keywords
ventilation
temperature
time
room
unit
Prior art date
Application number
PCT/JP2021/026243
Other languages
English (en)
French (fr)
Inventor
弘毅 安藤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202180066874.5A priority Critical patent/CN116324294A/zh
Priority to EP21874854.9A priority patent/EP4224080A4/en
Publication of WO2022070550A1 publication Critical patent/WO2022070550A1/ja
Priority to US18/115,416 priority patent/US11874005B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • F24F11/523Indication arrangements, e.g. displays for displaying temperature data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • F24F11/526Indication arrangements, e.g. displays giving audible indications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0002Control or safety arrangements for ventilation for admittance of outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This disclosure relates to an air conditioner.
  • Ventilation is required to improve indoor air quality.
  • the area to be air-conditioned is divided into a plurality of areas by a plurality of human body detection sensors, and when it is detected that there are no people in all the areas, the ventilation fan provided in the indoor unit is operated.
  • An air conditioner designed to allow the air conditioner is disclosed.
  • Patent Document 1 does not disclose how to ventilate when a person is indoors.
  • the purpose of this disclosure is to promote sufficient ventilation when a person is indoors.
  • the air conditioner of the present disclosure is It is an air conditioner that harmonizes the air in the room.
  • the detector that detects the load in the room and A notification unit that notifies the user of information, and With a control unit, When the control unit satisfies the load condition indicating that the fluctuation of the load detected by the detection unit is within a predetermined range in the first time, the notification unit needs to ventilate the user. Notify.
  • the detection unit includes a temperature sensor that detects the temperature in the room.
  • the load condition is that the time during which the temperature in the room detected by the temperature sensor is out of the specified range determined by the reference temperature does not continue for the second time, which is shorter than the first time, in the entire first time. Is.
  • the load in the room can be detected as room temperature. Since the air-conditioned room temperature changes when ventilation is performed, it is possible to judge whether or not the ventilation volume is sufficient based on the fluctuation of the room temperature. If the room temperature does not exceed the specified range for the second hour or more during the first hour, the ventilation volume in the room may be insufficient and the user needs ventilation. By notifying, the lack of ventilation can be resolved.
  • the (3) preferably includes a display unit for displaying information.
  • the control unit causes the display unit to indicate that ventilation is required when the load condition is satisfied. With such a configuration, the user can grasp that ventilation is necessary by checking the display on the display unit.
  • the room may not be provided with a ventilation function. According to the configuration of the present disclosure, it is possible to encourage the user to ventilate by opening a window or a door in a room not provided with a ventilation function.
  • FIG. 1 is a diagram schematically showing an example of the configuration of the air conditioner according to the first embodiment.
  • the air conditioner 10 adjusts the temperature of the air in the room, which is the target space for air conditioning, to a predetermined target temperature.
  • the air conditioner 10 according to the present embodiment performs at least one of a heating operation for raising the temperature in the room and a cooling operation for lowering the temperature in the room.
  • the air conditioner 10 includes indoor units 100A and 100B and an outdoor unit 200.
  • the air conditioner 10 is a multi-type air conditioner 10 in which a plurality of indoor units 100A and 100B are connected in parallel to the outdoor unit 200, and is applied to, for example, a building having a large number of rooms.
  • two indoor units 100A and 100B are connected to one outdoor unit 200.
  • the number of outdoor units 200 and indoor units 100 is not limited.
  • the indoor units 100A and 100B are collectively referred to as the indoor unit 100.
  • the components of the indoor units 100A and 100B may be generically referred to in the same manner.
  • the air conditioner 10 has a refrigerant circuit 300.
  • the refrigerant circuit 300 circulates the refrigerant between the indoor unit 100 and the outdoor unit 200.
  • the refrigerant circuit 300 includes a compressor 230, an outdoor heat exchanger (heat source heat exchanger) 210, indoor heat exchangers (utilized heat exchangers) 110A and 110B, and a refrigerant pipe 301 connecting them.
  • the refrigerant circuit 300 includes valves (not shown) such as an expansion valve, a liquid closing valve, a gas closing valve, and a four-way switching valve, but details thereof will be omitted.
  • the indoor units 100A and 100B are installed in separate rooms.
  • the indoor unit 100A harmonizes the air in one room
  • the indoor unit 100B harmonizes the air in the other room.
  • the indoor unit 100 includes an indoor heat exchanger 110 included in the refrigerant circuit 300.
  • the indoor heat exchanger 110 is a cross-fin tube type or microchannel type heat exchanger, and is used for heat exchange with indoor air.
  • the indoor unit 100 further includes an indoor fan 120.
  • the indoor fan 120 is configured to take indoor air into the indoor unit 100, exchange heat between the taken-in air and the indoor heat exchanger 110, and then blow the air into the room. ..
  • the indoor fan 120 includes a motor whose operating rotation speed can be adjusted by inverter control.
  • the indoor unit 100 further includes a temperature sensor 130, a notification unit 140, and a control unit 150.
  • the temperature sensor 130 detects the room temperature.
  • the room temperature is an example of a load in the room.
  • the notification unit 140 can notify the user that ventilation is required.
  • the notification unit 140 includes an LED 141 and a buzzer 142.
  • the LED 141 emits light to notify the user that ventilation is required, and the buzzer 142 emits a sound to notify the user that ventilation is required.
  • the control unit 150 can control the components of the indoor unit 100 described above.
  • FIG. 2 is a block diagram showing an example of the configuration of the control unit.
  • the control unit 150 includes a processor 151, a non-volatile memory 152, a volatile memory 153, and an input / output interface 154.
  • the volatile memory 153 is, for example, SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), or the like.
  • the non-volatile memory 152 is, for example, a flash memory, a hard disk, a ROM (Read Only Memory), or the like.
  • the non-volatile memory 152 stores data used for executing the control program 155 and the control program 155, which are computer programs. Each function of the indoor unit 100 is exhibited by executing the control program 155 by the processor 151.
  • the control program 155 can be stored in a recording medium such as a flash memory, ROM, or CD-ROM.
  • the processor 151 is, for example, a CPU (Central Processing Unit). However, the processor 151 is not limited to the CPU.
  • the processor 151 may be a GPU (Graphics Processing Unit).
  • the processor 151 may be, for example, an ASIC (Application Specific Integrated Circuit) or a programmable logic device such as a gate array or FPGA (Field Programmable Gate Array). In this case, the ASIC or the programmable logic device is configured to be able to perform the same processing as the control program 155.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the input / output interface 154 is used for input / output of data between the control unit 150 and the components of the indoor unit 100.
  • the input / output interface 154 is connected to the temperature sensor 130, the LED 141, and the buzzer 142. Further, the input / output interface 154 is connected to a communication unit (not shown), and can transmit a signal to the remote controller 160 via the communication unit and receive a signal from the remote controller 160.
  • the remote controller 160 includes a display unit 161 and an operation unit 162.
  • the display unit 161 includes, for example, a liquid crystal panel, and displays information such as a set operation mode (cooling mode, heating mode, etc.), a set temperature, and the like.
  • the operation unit 162 includes, for example, a plurality of button switches, and can receive operations from the user. The user can specify the operation mode and the set temperature by operating the operation unit 162.
  • the remote controller 160 includes a communication unit (not shown), and can transmit the command values of the operation mode and the set temperature received from the user to the control unit 150.
  • the control unit 150 controls each part of the component of the indoor unit 100 according to the command value of the received operation mode and the set temperature.
  • the display unit 161 can display the notification information to the user.
  • the control unit 150 transmits a notification information display command to the remote controller 160.
  • the remote controller 160 receives the command, the remote controller 160 causes the display unit 161 to display the notification information.
  • the outdoor unit 200 includes a compressor 230 and an outdoor heat exchanger 210 included in the refrigerant circuit 300.
  • the compressor 230 sucks the low-pressure gas refrigerant and discharges the high-pressure gas refrigerant.
  • the compressor 230 includes a motor whose operating rotation speed can be adjusted by inverter control, and the gas refrigerant is compressed by the motor.
  • the outdoor heat exchanger 210 is, for example, a cross fin tube type or microchannel type heat exchanger, and is used for heat exchange with a refrigerant by using air as a heat source.
  • the outdoor unit 200 is further provided with an outdoor fan 220.
  • the outdoor fan 220 includes a motor whose operating rotation speed can be adjusted by inverter control.
  • the outdoor fan 220 takes in outdoor air into the outdoor unit 200, exchanges heat between the taken-in air and the outdoor heat exchanger 210, and then blows the air out of the outdoor unit 200. It is configured.
  • a liquid or gaseous refrigerant circulates in the refrigerant pipe 301, and heat exchange is performed between the refrigerant and the outdoor air by the outdoor heat exchanger 210.
  • the indoor heat exchanger 110 exchanges heat between the refrigerant and the indoor air.
  • the outdoor air heated or cooled by the outdoor heat exchanger 210 is discharged to the outside of the outdoor unit 200 by the outdoor fan 220.
  • the indoor air cooled or heated by the indoor heat exchanger 110 is discharged from the indoor unit 100 into the room by the indoor fan 120.
  • the Ministry of Health, Labor and Welfare recommends ventilation at least twice an hour to prevent the spread of COVID-19 infection.
  • the air conditioner 10 determines whether or not ventilation has been performed for a sufficient time during a certain period of time, and if it is determined that ventilation has not been performed for a sufficient time, the user is ventilated. Notify that is required.
  • the load condition is used to determine whether or not ventilation has been performed for a sufficient period of time.
  • the load condition is a condition indicating that the fluctuation of the load in the room is within a predetermined range in the first hour.
  • the air conditioner 10 for example, according to the above-mentioned recommendation of the Ministry of Health, Labor and Welfare, whether or not ventilation is performed at least once in the first hour P1 and for a sufficient time ( second hour P2 or more). Is determined.
  • the load condition is shorter than the time during which the indoor temperature detected by the temperature sensor 130 is out of the specified range determined by the reference temperature T 0 in the entire first time P 1 . Do not continue for more than 2 hours P2.
  • the first hour P 1 is, for example, 30 minutes
  • the second hour P 2 is, for example, 5 minutes.
  • FIG. 3 is a flowchart showing an example of the operation procedure of the air conditioner 10 according to the present embodiment.
  • the processor 151 activates the control program 155, the processor 151 executes the following processing.
  • the processor 151 sets the first timer (step S101) and sets the second timer (step S102).
  • the first timer and the second timer are different timers, and the timing can be started at different timings from each other.
  • the temperature sensor 130 detects the room temperature at a predetermined cycle and outputs the detected room temperature.
  • the processor 151 receives the detection room temperature output from the temperature sensor 130 (step S103).
  • the processor 151 determines whether or not the detection chamber temperature is out of the specified range determined by the reference temperature (step S104).
  • the indoor temperature deviates from the outdoor temperature due to heating or cooling, and is close to the set temperature. For example, when the ventilation system is activated or the doors and windows are opened to ventilate the room, the load in the room fluctuates. As a specific example of load fluctuation, the indoor temperature changes and approaches the outdoor temperature. Therefore, the detection chamber temperature is out of the specified range. On the other hand, when ventilation is not performed, the room temperature maintains a value close to the set temperature. Therefore, the detection chamber temperature is within the specified range. In this way, in step S104, it is determined whether or not ventilation is performed based on the load fluctuation.
  • the reference temperature is a set temperature (set temperature for cooling operation or heating operation) specified by the user.
  • the specified range is a preset temperature range.
  • the specified range is a range in which the upper limit is the temperature T 0 + S, which is higher than the reference temperature T 0 by the set value S, and the lower limit is the temperature T 0 ⁇ S, which is lower than the reference temperature T 0 by the set value S.
  • the set value S is set by a serviceman, for example, when the indoor unit 100 is installed indoors.
  • the set value S can be determined according to the cooling and heating capacities of the air conditioner 10, the size of the room, and the like.
  • the specified range may be any temperature range including the reference temperature, and may be a range different from the above.
  • the processor 151 determines whether or not the value of the first timer exceeds P1 for the first time (step S105).
  • the first time P 1 is a time for determining insufficient ventilation and is set in advance.
  • the first time P 1 is set, for example, at the time of shipment from the factory of the air conditioner 10.
  • step S105 If the value of the first timer does not exceed the first time P1 (NO in step S105), the processor 151 returns to step S102. As a result, the second timer is reset.
  • step S105 If the value of the first timer exceeds P1 for the first time (YES in step S105), the processor 151 proceeds to step S108. Step S108 will be described later.
  • the processor 151 determines whether or not the value of the second timer exceeds the second time P2 (step S106).
  • the second time P 2 is a time for determining whether or not sufficient ventilation is performed, and is set in advance.
  • the second time P 2 is shorter than the first time P 1 .
  • the second time P 2 is set, for example, at the time of shipment from the factory of the air conditioner 10.
  • the processor 151 determines whether or not the value of the first timer exceeds the first time P 1 (step S107). .. If the value of the first timer does not exceed the first time P 1 (NO in step S107), the processor 151 returns to step S103.
  • FIG. 4A is a graph showing an example of a time change of the room temperature when the ventilation is sufficiently performed
  • FIG. 4B shows an example of a time change of the room temperature when the ventilation is not sufficiently performed. It is a graph. 4A and 4B show changes in room temperature in a room where air conditioning is performed.
  • the air-conditioned room temperature T takes a value close to the reference temperature T 0 , which is the set temperature. If ventilation is not performed, the room temperature T maintains a value near the reference temperature T 0 .
  • the room temperature T changes and exceeds the upper limit T 0 + S in the specified range.
  • the time when the room temperature T is out of the specified range exceeds P2 for the second time, it is determined that sufficient ventilation is performed.
  • the time Pex at which the room temperature T deviates from the specified range determined by the reference temperature T 0 exceeds the second time P 2 . Therefore, in the example of FIG. 4A, sufficient ventilation is provided.
  • the time during which the room temperature T is out of the specified range does not exceed P2 for the second time, it is determined that sufficient ventilation is not performed. Even when the room temperature T is within the specified range, it is naturally determined that sufficient ventilation is not performed.
  • the time Pex at which the room temperature T deviates from the specified range determined by the reference temperature T 0 does not exceed the second time P 2 . Therefore, in the example of FIG. 4A, sufficient ventilation is not performed.
  • steps S103 and subsequent steps are executed without resetting the second timer, and the value of the second timer is added. Therefore, if the state where the room temperature T is out of the specified range is maintained, steps S103, S104, S106, and S107 are repeated while the value of the second timer does not exceed the second time P2.
  • step S106 when the value of the second timer exceeds P2 in the second time (YES in step S106), it can be determined that ventilation has been performed for a sufficient time. In this case, the processor 151 ends the process.
  • step S107 when the value of the first timer exceeds P1 in the first time (YES in step S107), the value of the first timer is set to the first time without exceeding the value P2 in the second time. It exceeds P1 . Therefore, it can be determined that sufficient ventilation is not performed in the entire first time P1.
  • the processor 151 informs the user that ventilation is required (insufficient ventilation) (step S108). If the room is not provided with ventilation, a user who knows that ventilation is needed can, for example, open windows and doors. If a ventilation system is installed in the room, but the ventilation system is stopped, the user who knows that ventilation is necessary can operate the ventilation system.
  • step S105 If YES in step S105, the value of the first timer exceeds P1 in the first time without the value of the second timer exceeding P2 in the second time. In this case as well, the processor 151 proceeds to step S108.
  • step S108 the processor 151 controls the LED 141 to emit light, controls the buzzer 142 to sound, and outputs a command to display the notification information to the display unit 161.
  • the user is notified of the lack of ventilation by the light emission of the LED 141, the ringing of the Zar 142, and the display by the display unit 161.
  • the notification information displayed on the display unit 161 includes textual information such as "Insufficient ventilation. Please ventilate.”
  • Notification of insufficient ventilation as described above is executed for each indoor unit 110A and 110B. If insufficient ventilation occurs in the room where the indoor unit 110A is installed and there is no insufficient ventilation in the room where the indoor unit 110B is installed, the indoor unit 110A notifies the insufficient ventilation and the indoor unit 110B has insufficient ventilation. Is not notified. If there is no insufficient ventilation in the room where the indoor unit 110A is installed and there is insufficient ventilation in the room where the indoor unit 110B is installed, the indoor unit 110A does not notify the insufficient ventilation and the indoor unit 110B ventilates. Notify the shortage.
  • the indoor unit 110A In the room where the indoor unit 110A is installed, when the LED 141A, the buzzer 142A, and the display unit 161A notify the insufficient ventilation, the user in the room performs ventilation in the room.
  • the indoor unit 110B In the room where the indoor unit 110B is installed, when the LED 141B, the buzzer 142B, and the display unit 161B notify the insufficient ventilation, the user in the room performs ventilation in the room.
  • FIG. 5 is a flowchart showing an example of a procedure for setting a reference temperature of the air conditioner 10 according to the present embodiment.
  • the temperature sensor 130 repeatedly outputs the detected room temperature at a predetermined cycle.
  • the processor 151 continuously receives the detected room temperature from the temperature sensor 130 (step S201). In this way, the processor 151 acquires the detected room temperature in a time series for a certain period of time.
  • the processor 151 continuously determines whether or not the detection chamber temperature is the same for a certain period of time (step S202). In step S202, if the temperature in the detection chamber is continuously within a certain allowable range, it can be determined that the temperature in the detection chamber is the same.
  • step S202 If the detection chamber temperature is not the same for a certain period of time (NO in step S202), the processor 151 returns to step S201.
  • the processor 151 sets the reference temperature to the detection room temperature (step S203). This completes the setting of the reference temperature.
  • the reference temperature set as described above is used to determine whether or not the ventilation described in the first embodiment is necessary.
  • the fluctuation of the power consumption in the indoor unit 100 is used as the fluctuation of the indoor load.
  • FIG. 6 is a diagram schematically showing an example of the configuration of the indoor unit of the air conditioner according to the present embodiment.
  • the indoor unit 100 according to the present embodiment includes a current sensor 310 and a voltage sensor 320.
  • the AC power supplied from the commercial power source to the indoor unit 100 is converted into DC power by a power converter (not shown) built in the indoor unit 100.
  • the DC power is supplied to the components of the indoor unit 100 such as the indoor fan 120 and various valves.
  • the current sensor 310 detects the output current of the DC power converter.
  • the voltage sensor 320 detects the output voltage of the DC power converter.
  • Each of the current sensor 310 and the voltage sensor 320 is connected to the input / output interface 154 (see FIG. 2) of the control unit 150.
  • the detected current value of the current sensor 310 and the detected voltage value of the voltage sensor 320 are given to the processor 151 via the input / output interface 154.
  • the processor 151 can calculate the power consumption of the indoor unit 100 by using the detected current value and the detected voltage value.
  • FIG. 7 is a flowchart showing an example of the operation procedure of the air conditioner 10 according to the present embodiment.
  • the processor 151 sets the first timer (step S301) and sets the second timer (step S302).
  • Each of the current sensor 310 and the voltage sensor 320 detects the current value and the voltage value at a predetermined cycle, and outputs the detected current value and the detected voltage value.
  • the processor 151 receives the detected current value and the detected voltage value output from the current sensor 310 and the voltage sensor 320 (step S303).
  • the processor 151 calculates the power consumption using the received detected current value and detected voltage value (step S304).
  • the processor 151 determines whether or not the power consumption is out of the specified range determined by the reference power (step S305).
  • the indoor temperature deviates from the outdoor temperature due to heating or cooling, and is close to the set temperature. For example, when the room is ventilated by the ventilation device being activated or the doors and windows being opened, the indoor temperature changes and approaches the outdoor temperature. When the indoor temperature rises and moves away from the set temperature, the indoor fan 120 and the refrigerant circuit 300 operate with high power consumption so that the indoor temperature approaches the set temperature. Therefore, the power consumption of the indoor unit 100 increases, and the power consumption is out of the specified range.
  • step S305 it is determined whether or not ventilation is performed based on the load fluctuation.
  • the reference power is the power consumption when the indoor unit 100 operates near the set temperature.
  • the specified range is a preset power range.
  • the processor 151 determines whether or not the value of the first timer exceeds P1 for the first time (step S306).
  • step S306 If the value of the first timer does not exceed the first time P 1 (NO in step S306), the processor 151 returns to step S302. As a result, the second timer is reset.
  • step S306 If the value of the first timer exceeds P1 for the first time (YES in step S306), the processor 151 proceeds to step S309.
  • the processor 151 determines whether or not the value of the second timer exceeds the second time P2 (step S307).
  • the processor 151 determines whether or not the value of the first timer exceeds the first time P 1 (step S308). .. If the value of the first timer does not exceed the first time P 1 (NO in step S308), the processor 151 returns to step S303.
  • step S308 steps S303 and subsequent steps are executed without resetting the second timer, and the value of the second timer is added. Therefore, if the state in which the power consumption is out of the specified range is maintained, steps S303, S304, S305, S307, and S308 are repeated while the value of the second timer does not exceed the second time P2.
  • step S307 when the value of the second timer exceeds P2 in the second time (YES in step S307), it can be determined that ventilation has been performed for a sufficient time. In this case, the processor 151 ends the process.
  • step S308 when the value of the first timer exceeds P1 in the first time (YES in step S308), the value of the first timer is set to the first time without exceeding the value P2 in the second time. It exceeds P1 . Therefore, it can be determined that sufficient ventilation is not performed in the entire first time P1. In this case, the processor 151 informs the user that ventilation is required (insufficient ventilation) (step S309).
  • step S306 If YES in step S306, the value of the first timer exceeds P1 in the first time without the value of the second timer ever exceeding P2 in the second time. In this case as well, the processor 151 proceeds to step S309.
  • the air conditioner 10 includes a detection unit (temperature sensor 130, current sensor 310, and voltage sensor 320), a notification unit 140, and a control unit 150.
  • the detection unit detects the load in the room.
  • the notification unit 140 notifies the user of the information.
  • the control unit 150 satisfies the load condition indicating that the load fluctuation detected by the detection unit is within the predetermined range in the first time P1
  • the notification unit 140 indicates that the user needs ventilation. Notify.
  • the detection unit may include a temperature sensor 130 that detects the temperature in the room.
  • the load condition is that the time during which the indoor temperature detected by the temperature sensor 130 is out of the specified range determined by the reference temperature T 0 in the entire first time P 1 is shorter than the first time P 1 in the second time P 2 . It can be decided not to continue. With such a configuration, the load in the room can be detected as room temperature. Since the air-conditioned room temperature changes when ventilation is performed, it is possible to judge whether or not the ventilation volume is sufficient based on the fluctuation of the room temperature.
  • the ventilation volume in the room may be insufficient, and the user is ventilated. It is possible to solve the lack of ventilation by notifying that it is necessary.
  • the air conditioner 10 includes a display unit 161 that displays information.
  • the control unit 150 causes the display unit 161 to indicate that ventilation is required when the load condition is satisfied. With such a configuration, the user can grasp that ventilation is necessary by checking the display of the display unit 161.
  • the room in which the air conditioner 10 is installed may not have a ventilation function. It is possible to encourage the user to ventilate by opening a window or a door in a room not provided with a ventilation function.
  • Air conditioner 100, 100A, 100B: Indoor unit, 110, 110A, 110B: Indoor heat exchanger, 120, 120A, 120B: Indoor fan, 130, 130A, 130B: Temperature sensor, 140, 140A, 140B: Notification unit, 141, 141A, 141B: LED, 142, 142A, 142B: Buzzer, 150, 150A, 150B: Control unit, 151: Processor, 152: Non-volatile memory, 153: Volatile memory, 154: Input / output interface, 155: Control program, 160, 160A, 160B: Remote controller, 161, 161A, 161B: Display unit, 162, 162A, 162B: Operation unit 200: Outdoor unit, 210: Outdoor heat exchanger, 220: Outdoor fan, 230: Compressor, 300: Refrigerant circuit, 301: Refrigerant piping, 310: Current sensor, 320: Voltage sensor, P 1 : 1st hour, P 2 : 2nd hour,

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Abstract

空気調和装置10は、室内の負荷を検出する検出部130と、ユーザに情報を報知する報知部140と、制御部150と、を備え、制御部150は、検出部130によって検出された負荷の変動が、第1時間Pにおいて所定範囲内にあることを示す負荷条件を満たす場合、報知部140に、ユーザに換気が必要であることを報知させる。

Description

空気調和装置
 本開示は、空気調和装置に関する。
 室内空気質を改善するためには換気が必要である。例えば、特許文献1には、空調すべき領域を複数の人体検知センサにより複数の領域に区分し、全ての領域に人がいないと検知された場合に、室内機に設けられた換気ファンを作動させるようにした空気調和装置が開示されている。
特開2009-168428号公報
 人が室内で活動することによる室内空気質の低下を抑制するためには、人が室内にいるときに十分な換気が必要である。特に、新型コロナウイルス(COVID-19)の感染拡大防止のため、1時間に2回以上の換気が厚生労働省から提言されている。
 しかしながら、特許文献1には、人が室内にいるときにどのように換気を行うかについては何ら開示されていない。
 本開示は、人が室内にいるときに十分な換気を促すことを目的とする。
 (1)本開示の空気調和装置は、
 室内の空気調和を行う空気調和装置であって、
 前記室内の負荷を検出する検出部と、
 ユーザに情報を報知する報知部と、
 制御部と、を備え、
 前記制御部は、前記検出部によって検出された前記負荷の変動が、第1時間において所定範囲内にあることを示す負荷条件を満たす場合、前記報知部に、ユーザに換気が必要であることを報知させる。
 第1時間内に室内の負荷変動が所定範囲内である場合、室内の換気量が不足している可能性がある。負荷条件を満たした場合にユーザに換気が必要であることを報知することにより、ユーザに換気を促すことができる。
 (2)好ましくは、前記検出部は、前記室内の温度を検出する温度センサを含み、
 前記負荷条件は、前記第1時間の全体において、前記温度センサによって検出された前記室内の温度が基準温度によって定まる規定範囲を外れる時間が、前記第1時間よりも短い第2時間以上継続しないことである。
 このような構成によって、室内の負荷を室温として検出することができる。換気が行われれば空気調和された室温が変化するため、室温の変動によって換気量が十分か否かを判断することができる。第1時間の全体において、室温が基準温度から規定範囲を外れる時間が第2時間以上継続しない場合、室内の換気量が不足している可能性があるため、ユーザに換気が必要であることを報知することで換気量不足を解消することができる。
 (3)好ましくは、情報を表示する表示部を含み、
 前記制御部は、前記負荷条件を満たす場合、換気が必要であることを前記表示部に表示させる。
 このような構成によって、ユーザは表示部の表示を確認することで、換気が必要であることを把握することができる。
 (4)前記室内には、換気機能が設けられていなくてもよい。
 本開示の構成により、換気機能が設けられていない室内において、窓又はドアを開けることによる換気をユーザに促すことができる。
第1実施形態に係る空気調和装置の構成の一例を概略的に示す図である。 制御部の構成の一例を示すブロック図である。 第1実施形態に係る空気調和装置の動作の手順の一例を示すフローチャートである。 換気が十分に行われている場合の室内温度の時間変化の一例を示すグラフである。 換気が十分に行われていない場合の室内温度の時間変化の一例を示すグラフである。 第2実施形態に係る空気調和装置の基準温度の設定の手順の一例を示すフローチャートである。 第3実施形態に係る空気調和装置の室内機の構成の一例を概略的に示す図である。 第3実施形態に係る空気調和装置の動作の手順の一例を示すフローチャートである。
 以下、添付図面を参照しつつ、空気調和装置の実施形態を詳細に説明する。
 [1.第1実施形態]
 [1-1.空気調和装置の構成]
 図1は、第1実施形態に係る空気調和装置の構成の一例を概略的に示す図である。
 空気調和装置10は、空調の対象空間である室内の空気の温度を所定の目標温度に調整する。本実施形態に係る空気調和装置10は、室内の温度を上昇させる暖房運転及び室内の温度を下降させる冷房運転の少なくとも1つを行う。
 空気調和装置10は、室内機100A,100Bと室外機200とを備えている。この空気調和装置10は、室外機200に対して複数台の室内機100A,100Bが並列に接続されたマルチタイプの空気調和装置10であり、例えば、多数の部屋を有するビルに適用される。図1に示す例では、1台の室外機200に2台の室内機100A,100Bが接続されている。ただし、室外機200及び室内機100の台数は限定されない。なお、以下では、室内機100A,100Bをまとめて室内機100とも称する。室内機100A,100Bの構成要素についても同様に総称することがある。
 空気調和装置10は、冷媒回路300を有している。冷媒回路300は、室内機100と室外機200との間で冷媒を循環させる。冷媒回路300は、圧縮機230、室外熱交換器(熱源熱交換器)210、室内熱交換器(利用熱交換器)110A,110B、及びこれらを接続する冷媒配管301を備える。冷媒回路300は、膨張弁、液閉鎖弁、ガス閉鎖弁、四路切換弁等の図示しない弁を備えるが、詳細は省略する。
 室内機100A,100Bのそれぞれは、別々の部屋に設置される。室内機100Aは、1つの部屋の空気を調和し、室内機100Bは他の1つの部屋の空気を調和する。
 室内機100は、冷媒回路300に含まれる室内熱交換器110を備える。室内熱交換器110は、クロスフィンチューブ式又はマイクロチャネル式の熱交換器とされ、室内の空気と熱交換するために用いられる。
 室内機100は、さらに室内ファン120を備える。室内ファン120は、室内の空気を室内機100の内部に取り込み、取り込んだ空気と室内熱交換器110との間で熱交換を行わせた後、当該空気を室内に吹き出すように構成されている。室内ファン120は、インバータ制御によって運転回転数を調整可能なモータを備えている。
 室内機100は、さらに温度センサ130と、報知部140と、制御部150とを備える。温度センサ130は、室内温度を検出する。室内温度は、室内の負荷の一例である。
 報知部140は、ユーザに換気が必要であることを報知することができる。報知部140は、LED141とブザー142とを含む。LED141は、発光することによってユーザに換気が必要であることを報知し、ブザー142は、音を発することによってユーザに換気が必要であることを報知する。
 制御部150は、上記の室内機100の構成部品を制御することができる。図2は、制御部の構成の一例を示すブロック図である。制御部150は、プロセッサ151と、不揮発性メモリ152と、揮発性メモリ153と、入出力インタフェース154とを備える。
 揮発性メモリ153は、例えばSRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)等である。不揮発性メモリ152は、例えばフラッシュメモリ、ハードディスク、ROM(Read Only Memory)等である。不揮発性メモリ152には、コンピュータプログラムである制御プログラム155及び制御プログラム155の実行に使用されるデータが格納される。室内機100の各機能は、制御プログラム155がプロセッサ151によって実行されることで発揮される。制御プログラム155は、フラッシュメモリ、ROM、CD-ROMなどの記録媒体に記憶させることができる。
 プロセッサ151は、例えばCPU(Central Processing Unit)である。ただし、プロセッサ151は、CPUに限られない。プロセッサ151は、GPU(Graphics Processing Unit)であってもよい。プロセッサ151は、例えば、ASIC(Application Specific Integrated Circuit)であってもよいし、ゲートアレイ、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスであってもよい。この場合、ASIC又はプログラマブルロジックデバイスは、制御プログラム155と同様の処理を実行可能に構成される。
 入出力インタフェース154は、制御部150と室内機100の構成部品との間でのデータの入出力に用いられる。入出力インタフェース154は、温度センサ130、LED141、及びブザー142に接続される。さらに入出力インタフェース154は、図示しない通信部に接続されており、当該通信部を介してリモートコントローラ160に信号を送信し、リモートコントローラ160からの信号を受信することができる。
 リモートコントローラ160は、表示部161と操作部162とを含む。表示部161は、例えば液晶パネルを含み、設定されている運転モード(冷房モード、暖房モード等)、設定温度等の情報を表示する。操作部162は、例えば複数のボタンスイッチを含み、ユーザからの操作を受け付けることができる。ユーザは、操作部162を操作することによって、運転モード及び設定温度を指定することができる。リモートコントローラ160は、図示しない通信部を含み、ユーザから受け付けた運転モード及び設定温度の指令値を制御部150へ送信することができる。制御部150は、受信された運転モード及び設定温度の指令値に従って、室内機100の構成部品の各部を制御する。
 表示部161は、ユーザへの報知情報を表示することができる。制御部150は、ユーザへ情報を報知する必要があるイベントが発生した場合、リモートコントローラ160へ報知情報の表示指令を送信する。リモートコントローラ160は当該指令を受信すると、表示部161に報知情報を表示させる。
 再び図1を参照する。
 室外機200は、冷媒回路300に含まれる圧縮機230及び室外熱交換器210を備える。
 圧縮機230は、低圧のガス冷媒を吸引し高圧のガス冷媒を吐出する。圧縮機230は、インバータ制御によって運転回転数を調整可能なモータを備え、当該モータによってガス冷媒を圧縮する。室外熱交換器210は、例えばクロスフィンチューブ式又はマイクロチャネル式の熱交換器であり、空気を熱源として冷媒と熱交換するために用いられる。
 室外機200は、さらに室外ファン220を備える。室外ファン220は、インバータ制御によって運転回転数を調整可能なモータを備えている。室外ファン220は、屋外の空気を室外機200の内部に取り込み、取り込んだ空気と室外熱交換器210との間で熱交換を行わせた後、当該空気を室外機200の外部に吹き出すように構成されている。
 上記構成の空気調和装置10が冷房運転又は暖房運転を行う場合、液状又はガス状の冷媒が冷媒配管301を循環し、室外熱交換器210によって冷媒と室外空気との間で熱交換が行われ、室内熱交換器110によって冷媒と室内空気との間で熱交換が行われる。室外熱交換器210によって加熱又は冷却された室外空気は、室外ファン220によって室外機200の外部へ放出される。室内熱交換器110によって冷却又は加熱された室内空気は、室内ファン120によって室内機100から室内に放出される。
 [1-2.空気調和装置の動作]
 厚生労働省は、COVID-19の感染拡大防止のため、1時間に2回以上の換気を提言している。本実施形態に係る空気調和装置10は、一定期間中に十分な時間の換気が行われたか否かを判定し、十分な時間の換気が行われていないと判定された場合に、ユーザに換気が必要であることを報知する。一定期間中に十分な時間の換気が行われたか否かの判定には、負荷条件が用いられる。負荷条件は、第1時間において室内における負荷の変動が所定範囲内にあることを示す条件である。本実施形態に係る空気調和装置10は、例えば、上述した厚生労働省の提言にしたがい、第1時間Pに1回以上、十分な時間(第2時間P以上)の換気が行われたか否かを判定する。本実施形態では、負荷条件は、第1時間Pの全体において、温度センサ130によって検出された室内の温度が基準温度Tによって定まる規定範囲を外れる時間が、第1時間Pよりも短い第2時間P以上継続しないことである。第1時間Pは例えば30分であり、第2時間Pは例えば5分である。
 図3は、本実施形態に係る空気調和装置10の動作の手順の一例を示すフローチャートである。プロセッサ151が制御プログラム155を起動することにより、プロセッサ151は以下のような処理を実行する。
 プロセッサ151は、第1タイマをセットし(ステップS101)、第2タイマをセットする(ステップS102)。第1タイマと第2タイマとは異なるタイマであり、互いに異なるタイミングで計時を開始することができる。
 温度センサ130は、所定の周期で室内温度を検出し、検出室内温度を出力する。プロセッサ151は、温度センサ130から出力された検出室内温度を受信する(ステップS103)。
 次にプロセッサ151は、検出室内温度が基準温度によって定まる規定範囲を外れるか否かを判定する(ステップS104)。暖房又は冷房によって室内温度は室外温度から乖離し、設定温度に近い温度となっている。例えば、換気装置が作動したり、ドア及び窓が開放されたりして部屋の換気が行われている場合、室内の負荷が変動する。負荷変動の具体的な一例として、室内温度が変化し、室外温度に近づく。したがって、検出室内温度は規定範囲から外れる。他方、換気が行われていない場合、室内温度は設定温度に近い値を維持する。したがって、検出室内温度は規定範囲内に収まる。このように、ステップS104では、負荷変動に基づいて換気が行われているか否かが判断される。
 本実施形態では、基準温度はユーザにより指定された設定温度(冷房運転又は暖房運転のための設定温度)である。規定範囲は、予め設定された温度範囲である。例えば、規定範囲は、基準温度Tから設定値Sだけ高い温度T+Sを上限とし、基準温度Tから設定値Sだけ低い温度T-Sを下限とする範囲である。設定値Sは、例えば室内に室内機100を取り付ける際にサービスマンによって設定される。設定値Sは、空気調和装置10の冷房及び暖房の能力、部屋の広さ等に応じて決定され得る。なお、規定範囲は基準温度を含む温度範囲であればよく、上記とは異なる範囲であってもよい。
 検出室内温度が基準温度によって定まる規定範囲を外れていない場合(ステップS104においてNO)、換気が行われていないと判断することができる。この場合、プロセッサ151は、第1タイマの値が第1時間Pを超えるか否かを判定する(ステップS105)。第1時間Pは、換気不足を判断するための時間であり、予め設定される。第1時間Pは、例えば空気調和装置10の工場出荷時に設定される。
 第1タイマの値が第1時間Pを超えていない場合(ステップS105においてNO)、プロセッサ151はステップS102に戻る。これにより、第2タイマがリセットされる。
 第1タイマの値が第1時間Pを超えている場合(ステップS105においてYES)、プロセッサ151はステップS108に進む。ステップS108については後述する。
 検出室内温度が基準温度によって定まる規定範囲を外れている場合(ステップS104においてYES)、換気が行われていると判断することができる。この場合、プロセッサ151は、第2タイマの値が第2時間Pを超えるか否かを判定する(ステップS106)。第2時間Pは、十分な換気が行われているか否かを判断するための時間であり、予め設定される。第2時間Pは、第1時間Pより短い。第2時間Pは、例えば空気調和装置10の工場出荷時に設定される。
 第2タイマの値が第2時間Pを超えていない場合(ステップS106においてNO)、プロセッサ151は、第1タイマの値が第1時間Pを超えるか否かを判定する(ステップS107)。第1タイマの値が第1時間Pを超えていない場合(ステップS107においてNO)、プロセッサ151はステップS103に戻る。
 図4Aは、換気が十分に行われている場合の室内温度の時間変化の一例を示すグラフであり、図4Bは、換気が十分に行われていない場合の室内温度の時間変化の一例を示すグラフである。図4A及び図4Bは、冷房が行われている部屋における室内温度の変化を示している。空気調和された室内温度Tは、設定温度である基準温度Tに近い値を取る。換気が行われていなければ、室内温度Tは基準温度T付近の値を維持する。換気が行われると、室内温度Tが変化し、規定範囲の上限T+Sを超える。
 本実施形態では、室内温度Tが規定範囲を外れる時間が、第2時間Pを超えていれば十分な換気が行われていると判断される。図4Aの例では、室内温度Tが基準温度Tによって定まる規定範囲を外れる時間Pexが、第2時間Pを超えている。したがって、図4Aの例では、十分な換気が行われている。
 本実施形態では、室内温度Tが規定範囲を外れている時間が、第2時間Pを超えていない場合は、十分な換気が行われていないと判断される。なお、室内温度Tが規定範囲内である場合も、十分な換気が行われていないと当然に判断される。図4Bの例では、室内温度Tが基準温度Tによって定まる規定範囲を外れる時間Pexが、第2時間Pを超えていない。したがって、図4Aの例では、十分な換気が行われていない。
 再び図3を参照する。ステップS107においてNOであれば、第2タイマがリセットされることなくステップS103以降が実行され、第2タイマの値が加算される。したがって、室内温度Tが規定範囲を外れた状態が維持されれば、第2タイマの値が第2時間Pを超えない間、ステップS103,S104,S106,S107が繰り返される。
 ステップS106において、第2タイマの値が第2時間Pを超える場合(ステップS106においてYES)、十分な時間の換気が行われたと判断することができる。この場合、プロセッサ151は、処理を終了する。
 ステップS107において、第1タイマの値が第1時間Pを超える場合(ステップS107においてYES)、第2タイマの値が第2時間Pを超えないまま、第1タイマの値が第1時間Pを超えている。したがって、第1時間Pの全体において、十分な換気が行われていないと判断することができる。この場合、プロセッサ151は、換気が必要であること(換気不足)をユーザに報知する(ステップS108)。室内に換気機能が設けられていない場合、換気が必要であることを知ったユーザは、例えば、窓及びドアを解放することができる。室内に換気装置が設けられているが、換気装置が停止している場合、換気が必要であることを知ったユーザは、換気装置を動作させることができる。
 ステップS105においてYESの場合、第2タイマの値が一度も第2時間Pを超えないまま、第1タイマの値が第1時間Pを超えている。この場合も、プロセッサ151はステップS108に進む。
 ステップS108では、具体的には、プロセッサ151がLED141を発光させるよう制御し、ブザー142を鳴動させるよう制御し、表示部161に報知情報を表示する指令を出力する。これにより、LED141の発光、ザー142の鳴動、及び表示部161による表示によって換気不足がユーザに報知される。表示部161において表示される報知情報は、例えば、「換気が不足しています。換気をしてください。」のような文字情報を含む。
 上記のような換気不足の報知は、室内機110A,110B毎に実行される。室内機110Aが設置された部屋において換気不足が発生し、室内機110Bが設置された部屋においては換気不足が発生していない場合、室内機110Aは換気不足を報知し、室内機110Bは換気不足を報知しない。室内機110Aが設置された部屋において換気不足が発生せず、室内機110Bが設置された部屋において換気不足が発生している場合、室内機110Aは換気不足を報知せず、室内機110Bは換気不足を報知する。室内機110Aが設置された部屋において、LED141A,ブザー142A,及び表示部161Aによって換気不足が報知された場合、当該部屋にいるユーザが、当該部屋において換気を実施する。室内機110Bが設置された部屋において、LED141B,ブザー142B,及び表示部161Bによって換気不足が報知された場合、当該部屋にいるユーザが、当該部屋において換気を実施する。
 [2.第2実施形態]
 本実施形態では、空気調和の結果、収束した室内温度に基準温度が設定される。図5は、本実施形態に係る空気調和装置10の基準温度の設定の手順の一例を示すフローチャートである。
 温度センサ130は、所定周期で繰り返し検出室内温度を出力する。プロセッサ151は、温度センサ130から検出室内温度を継続して受信する(ステップS201)。こうして、プロセッサ151は、一定期間の時系列の検出室内温度を取得する。次にプロセッサ151は、一定期間継続して検出室内温度が同一であったか否かを判定する(ステップS202)。なお、ステップS202において、検出室内温度が継続して一定の許容範囲内にあれば、検出室内温度が同一であると判定することができる。
 一定期間継続して検出室内温度が同一でない場合(ステップS202においてNO)、プロセッサ151はステップS201に戻る。
 一定期間継続して検出室内温度が同一である場合(ステップS202においてYES)、室内温度は一定値に収束したと判断することができる。この場合、プロセッサ151は、基準温度を検出室内温度に設定する(ステップS203)。以上で、基準温度の設定が終了する。
 以上のようにして設定された基準温度は、第1実施形態において説明した換気が必要であるか否かの判定に使用される。
 [3.第3実施形態]
 本実施形態では、室内の負荷変動として、室内機100における消費電力の変動を用いる。
 図6は、本実施形態に係る空気調和装置の室内機の構成の一例を概略的に示す図である。本実施形態に係る室内機100は、電流センサ310と、電圧センサ320とを備える。商用電源から室内機100に供給される交流電力は、室内機100に内蔵される図示しない電力変換器によって直流電力に変換される。直流電力は、室内ファン120、各種弁等の室内機100の構成部品に供給される。電流センサ310は、直流電力変換器の出力電流を検出する。電圧センサ320は、直流電力変換器の出力電圧を検出する。
 電流センサ310及び電圧センサ320のそれぞれは、制御部150の入出力インタフェース154(図2参照)に接続される。電流センサ310の検出電流値及び電圧センサ320の検出電圧値は、入出力インタフェース154を介してプロセッサ151に与えられる。プロセッサ151は、検出電流値及び検出電圧値を用いて、室内機100の消費電力を算出することができる。
 なお、本実施形態に係る室内機100のその他の構成は、第1実施形態において説明した室内機100と同様であるので、同一構成要素については同一符号を付し、その説明を省略する。
 図7は、本実施形態に係る空気調和装置10の動作の手順の一例を示すフローチャートである。プロセッサ151は、第1タイマをセットし(ステップS301)、第2タイマをセットする(ステップS302)。
 電流センサ310及び電圧センサ320のそれぞれは、所定の周期で電流値及び電圧値を検出し、検出電流値及び検出電圧値を出力する。プロセッサ151は、電流センサ310及び電圧センサ320から出力された検出電流値及び検出電圧値を受信する(ステップS303)。
 続いてプロセッサ151は、受信された検出電流値及び検出電圧値を用いて、消費電力を算出する(ステップS304)。プロセッサ151は、消費電力が基準電力によって定まる規定範囲を外れるか否かを判定する(ステップS305)。暖房又は冷房によって室内温度は室外温度から乖離し、設定温度に近い温度となっている。例えば、換気装置が作動したり、ドア及び窓が開放されたりして部屋の換気が行われている場合、室内温度が変化し、室外温度に近づく。室内温度が上昇し、設定温度から離れると、室内温度を設定温度に近づけるよう、室内ファン120及び冷媒回路300が高い消費電力で動作する。したがって、室内機100の消費電力が増大し、規定範囲から外れる。他方、換気が行われていない場合、室内温度は設定温度に近い値を維持する。したがって、室内ファン120及び冷媒回路300は低い消費電力で動作し、室内機100の消費電力は規定範囲内に収まる。このように、ステップS305では、負荷変動に基づいて換気が行われているか否かが判断される。
 本実施形態では、基準電力は、設定温度付近で室内機100が動作するときの消費電力である。規定範囲は、予め設定された電力範囲である。
 消費電力が基準電力によって定まる規定範囲を外れていない場合(ステップS305においてNO)、換気が行われていないと判断することができる。この場合、プロセッサ151は、第1タイマの値が第1時間Pを超えるか否かを判定する(ステップS306)。
 第1タイマの値が第1時間Pを超えていない場合(ステップS306においてNO)、プロセッサ151はステップS302に戻る。これにより、第2タイマがリセットされる。
 第1タイマの値が第1時間Pを超えている場合(ステップS306においてYES)、プロセッサ151はステップS309に進む。
 消費電力が基準電力によって定まる規定範囲を外れている場合(ステップS305においてYES)、換気が行われていると判断することができる。この場合、プロセッサ151は、第2タイマの値が第2時間Pを超えるか否かを判定する(ステップS307)。
 第2タイマの値が第2時間Pを超えていない場合(ステップS307においてNO)、プロセッサ151は、第1タイマの値が第1時間Pを超えるか否かを判定する(ステップS308)。第1タイマの値が第1時間Pを超えていない場合(ステップS308においてNO)、プロセッサ151はステップS303に戻る。
 ステップS308においてNOであれば、第2タイマがリセットされることなくステップS303以降が実行され、第2タイマの値が加算される。したがって、消費電力が規定範囲を外れた状態が維持されれば、第2タイマの値が第2時間Pを超えない間、ステップS303,S304,S305,S307,S308が繰り返される。
 ステップS307において、第2タイマの値が第2時間Pを超える場合(ステップS307においてYES)、十分な時間の換気が行われたと判断することができる。この場合、プロセッサ151は、処理を終了する。
 ステップS308において、第1タイマの値が第1時間Pを超える場合(ステップS308においてYES)、第2タイマの値が第2時間Pを超えないまま、第1タイマの値が第1時間Pを超えている。したがって、第1時間Pの全体において、十分な換気が行われていないと判断することができる。この場合、プロセッサ151は、換気が必要であること(換気不足)をユーザに報知する(ステップS309)。
 ステップS306においてYESの場合、第2タイマの値が一度も第2時間Pを超えないまま、第1タイマの値が第1時間Pを超えている。この場合も、プロセッサ151はステップS309に進む。
 [4.実施形態の作効果]
 (1)空気調和装置10は、検出部(温度センサ130、電流センサ310及び電圧センサ320)と、報知部140と、制御部150とを備える。検出部は、室内の負荷を検出する。報知部140は、ユーザに情報を報知する。制御部150は、検出部によって検出された負荷の変動が、第1時間Pにおいて所定範囲内にあることを示す負荷条件を満たす場合、報知部140に、ユーザに換気が必要であることを報知させる。
 第1時間P内に室内の負荷変動が所定範囲内である場合、室内の換気量が不足している可能性がある。負荷条件を満たした場合にユーザに換気が必要であることを報知することにより、ユーザに換気を促すことができる。
 (2)検出部は、室内の温度を検出する温度センサ130を含んでもよい。負荷条件は、第1時間Pの全体において、温度センサ130によって検出された室内の温度が基準温度Tによって定まる規定範囲を外れる時間が、第1時間Pよりも短い第2時間P以上継続しないこととすることができる。
 このような構成によって、室内の負荷を室温として検出することができる。換気が行われれば空気調和された室温が変化するため、室温の変動によって換気量が十分か否かを判断することができる。第1時間Pの全体において、室温が基準温度Tから規定範囲を外れる時間が第2時間P以上継続しない場合、室内の換気量が不足している可能性があるため、ユーザに換気が必要であることを報知することで換気量不足を解消することができる。
 (3)空気調和装置10は、情報を表示する表示部161を含む。制御部150は、負荷条件を満たす場合、換気が必要であることを表示部161に表示させる。
 このような構成によって、ユーザは表示部161の表示を確認することで、換気が必要であることを把握することができる。
 (4)空気調和装置10が設置される室内には、換気機能が設けられていなくてもよい。
 換気機能が設けられていない室内において、窓又はドアを開けることによる換気をユーザに促すことができる。
 [5.補記]
 なお、本開示は、以上の例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
10:空気調和装置、100,100A,100B:室内機、110,110A,110B:室内熱交換器、120,120A,120B:室内ファン、130,130A,130B:温度センサ、140,140A,140B:報知部、141,141A,141B:LED、142,142A,142B:ブザー、150,150A,150B:制御部、151:プロセッサ、152:不揮発性メモリ、153:揮発性メモリ、154:入出力インタフェース、155:制御プログラム、160,160A,160B:リモートコントローラ、161,161A,161B:表示部、162,162A,162B:操作部200:室外機、210:室外熱交換器、220:室外ファン、230:圧縮機、300:冷媒回路、301:冷媒配管、310:電流センサ、320:電圧センサ、P:第1時間、P:第2時間、T:温度、T:基準温度

Claims (4)

  1.  室内の空気調和を行う空気調和装置(10)であって、
     前記室内の負荷を検出する検出部(130,310,320)と、
     ユーザに情報を報知する報知部(140)と、
     制御部(150)と、を備え、
     前記制御部(150)は、前記検出部(130,310,320)によって検出された前記負荷の変動が、第1時間(P)において所定範囲内にあることを示す負荷条件を満たす場合、前記報知部(140)に、ユーザに換気が必要であることを報知させる、
     空気調和装置。
  2.  前記検出部(130,310,320)は、前記室内の温度を検出する温度センサ(130)を含み、
     前記負荷条件は、前記第1時間(P)の全体において、前記温度センサ(130)によって検出された前記室内の温度が基準温度(T)によって定まる規定範囲を外れる時間が、前記第1時間(P)よりも短い第2時間(P)以上継続しないことである、
     請求項1に記載の空気調和装置。
  3.  前記報知部(140)は、情報を表示する表示部(161)を含み、
     前記制御部(150)は、前記負荷条件を満たす場合、換気が必要であることを前記表示部(161)に表示させる、
     請求項1又は請求項2に記載の空気調和装置。
  4.  前記室内には、換気機能が設けられていない、
     請求項1から請求項3のいずれか1項に記載の空気調和装置。
PCT/JP2021/026243 2020-09-30 2021-07-13 空気調和装置 WO2022070550A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180066874.5A CN116324294A (zh) 2020-09-30 2021-07-13 空调装置
EP21874854.9A EP4224080A4 (en) 2020-09-30 2021-07-13 AIR CONDITIONING DEVICE
US18/115,416 US11874005B2 (en) 2020-09-30 2023-02-28 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-164350 2020-09-30
JP2020164350A JP6974779B1 (ja) 2020-09-30 2020-09-30 空気調和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/115,416 Continuation US11874005B2 (en) 2020-09-30 2023-02-28 Air conditioner

Publications (1)

Publication Number Publication Date
WO2022070550A1 true WO2022070550A1 (ja) 2022-04-07

Family

ID=78766790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026243 WO2022070550A1 (ja) 2020-09-30 2021-07-13 空気調和装置

Country Status (5)

Country Link
US (1) US11874005B2 (ja)
EP (1) EP4224080A4 (ja)
JP (1) JP6974779B1 (ja)
CN (1) CN116324294A (ja)
WO (1) WO2022070550A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202944A (ja) * 1986-02-28 1987-09-07 Matsushita Electric Ind Co Ltd 燃焼式温風暖房器のコントロ−ラ
JP2004127047A (ja) * 2002-10-04 2004-04-22 Daikin Ind Ltd 環境調整機器の監視装置、監視プログラムおよび監視方法
JP2009168428A (ja) 2007-12-21 2009-07-30 Panasonic Corp 空気調和機
JP2017505890A (ja) * 2013-08-18 2017-02-23 センシボ リミテッド Hvacシステムの消費電力評価

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7798418B1 (en) * 2005-06-01 2010-09-21 ABT Systems, LLC Ventilation system control
DE102010061735A1 (de) * 2010-11-22 2012-05-24 Jürgen Falliano Belüftungsüberwachungsgerät für ein Fenster oder für eine Tür und Fenster/Tür mit einem solchen
WO2013038438A1 (ja) * 2011-09-13 2013-03-21 三菱電機株式会社 冷凍空調装置
JP2013095347A (ja) * 2011-11-04 2013-05-20 Suzuki Motor Corp 車両の空調制御装置
CN102789177A (zh) * 2012-07-18 2012-11-21 广东美的电器股份有限公司 一种空调风扇联动***及控制方法
JP2014074554A (ja) * 2012-10-05 2014-04-24 Mitsubishi Electric Corp 換気システム、換気方法、換気制御装置及びプログラム
US9618224B2 (en) * 2013-07-26 2017-04-11 Honeywell International Inc. Air quality based ventilation control for HVAC systems
US10114721B2 (en) 2013-08-18 2018-10-30 Sensibo Ltd. Power consumption assesment of an HVAC system
CN104930673A (zh) * 2014-03-18 2015-09-23 昆山科技大学 结合换气风扇的节能空调***及其控制方法
WO2016151641A1 (ja) * 2015-03-26 2016-09-29 三菱電機株式会社 空気調和機の室内機
WO2017017804A1 (ja) * 2015-07-29 2017-02-02 三菱電機株式会社 空気調和システム、コントローラ、及びプログラム
JP6583195B2 (ja) * 2016-09-07 2019-10-02 株式会社デンソー 車両用空調装置
US11118821B2 (en) * 2017-01-19 2021-09-14 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US20190063769A1 (en) * 2017-08-28 2019-02-28 Field Controls, L.L.C. Fresh air ventilation control system
WO2020110185A1 (ja) * 2018-11-27 2020-06-04 三菱電機株式会社 換気調整装置及び換気調整方法
JP7099333B2 (ja) * 2019-01-10 2022-07-12 トヨタ自動車株式会社 換気制御システム及び換気制御プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202944A (ja) * 1986-02-28 1987-09-07 Matsushita Electric Ind Co Ltd 燃焼式温風暖房器のコントロ−ラ
JP2004127047A (ja) * 2002-10-04 2004-04-22 Daikin Ind Ltd 環境調整機器の監視装置、監視プログラムおよび監視方法
JP2009168428A (ja) 2007-12-21 2009-07-30 Panasonic Corp 空気調和機
JP2017505890A (ja) * 2013-08-18 2017-02-23 センシボ リミテッド Hvacシステムの消費電力評価

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4224080A4

Also Published As

Publication number Publication date
JP6974779B1 (ja) 2021-12-01
EP4224080A1 (en) 2023-08-09
US11874005B2 (en) 2024-01-16
JP2022056547A (ja) 2022-04-11
CN116324294A (zh) 2023-06-23
EP4224080A4 (en) 2024-03-13
US20230204238A1 (en) 2023-06-29
EP4224080A8 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
KR100715999B1 (ko) 멀티형 공기조화기 및 그 운전방법
JP4478082B2 (ja) 空気調和機の制御方法
KR20160114455A (ko) 공기조화기 및 그 제어방법
KR20170103562A (ko) 공기 조화를 위한 제어 장치 및 그 제어 방법
WO2018220810A1 (ja) 空気調和装置
JP2012037159A (ja) 空気調和機の制御装置および冷凍装置の制御装置
KR20120096722A (ko) 공기조화장치 및 그 제어방법
EP2607805A1 (en) Outdoor-air treating air conditioner and multi-air conditioning system using same
KR20150032106A (ko) 공기조화기 및 그 제어방법
KR100630831B1 (ko) 에어컨의 실내 온도센서 고장시 응급 운전방법
WO2022070550A1 (ja) 空気調和装置
JP6298323B2 (ja) 温度環境制御システムおよび装置
WO2022024374A1 (ja) 空気調和システムおよび結露防止方法
JP3119209B2 (ja) 冷凍装置の高圧保護制御装置
US20220154957A1 (en) Air conditioner and controlling method therefor
EP4184072B1 (en) System for determining operation condition of precooling operation/preheating operation of air conditioner
WO2021181486A1 (ja) 空調システム、空調制御装置、空調方法及びプログラム
KR100234079B1 (ko) 공조기기 및 그 제어방법
JP3931778B2 (ja) 空気調和機、空気調和機の運転方法
KR102143347B1 (ko) 원격제어기 및 그를 포함하는 공기조화기 시스템
JP2022056514A (ja) 換気制御装置及び換気システム
WO2022208862A1 (ja) 空気調和機、及び制御方法
KR100630833B1 (ko) 에어컨의 증발기 온도센서 고장시 응급 운전방법
WO2023181324A1 (ja) 空調制御装置、空調システム、空調制御方法及びプログラム
WO2024116241A1 (ja) 空調装置、空調制御装置、空調システム及び空調制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021874854

Country of ref document: EP

Effective date: 20230502