WO2022068409A1 - 显示基板及其制备方法、显示装置 - Google Patents

显示基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2022068409A1
WO2022068409A1 PCT/CN2021/111722 CN2021111722W WO2022068409A1 WO 2022068409 A1 WO2022068409 A1 WO 2022068409A1 CN 2021111722 W CN2021111722 W CN 2021111722W WO 2022068409 A1 WO2022068409 A1 WO 2022068409A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
groove
substrate
opening
flexible
Prior art date
Application number
PCT/CN2021/111722
Other languages
English (en)
French (fr)
Inventor
曾科文
詹裕程
何祥飞
贾立
陈腾
陈功
杨波
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/789,168 priority Critical patent/US20230056754A1/en
Publication of WO2022068409A1 publication Critical patent/WO2022068409A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the embodiments of the present disclosure relate to, but are not limited to, the field of display technology, and in particular, relate to a display substrate, a method for manufacturing the same, and a display device.
  • OLED Organic Light Emitting Diode
  • the common layer of the OLED device is easy to absorb water from the outside after being evaporated to the deep hole, which causes the failure of the luminescent material, thereby causing local display failure.
  • an isolation structure is arranged around the deep hole to cut off the common layer of the OLED device, so as to achieve the purpose of blocking the water and oxygen intrusion channel, and ensure the encapsulation effect while realizing the local stretching function.
  • This scheme needs to introduce new technology.
  • the isolation structure preparation process and the corresponding mask are also required, and the isolation structure also occupies space, reduces the pixel density, and affects the display effect.
  • An embodiment of the present disclosure provides a display substrate including a stretchable region, the stretchable region including a plurality of pixel island regions and a plurality of hole regions spaced apart from each other, and a plurality of pixel island regions and a plurality of hole regions located in the pixel island region and the hole region
  • the connection bridge area between the two; the hole area is provided with one or more openings, the hole area includes a composite structure layer stacked on the substrate, the openings pass through the composite structure layer and the openings A part of the hole is arranged in the base, the openings pass through or not through the base, and the wall of the openings is provided with a partition groove;
  • the functional film layer is arranged on the hole wall of the opening, and the functional film layer is cut off at the cut-off groove.
  • Embodiments of the present disclosure also provide a display device, including the display substrate.
  • An embodiment of the present disclosure further provides a method for manufacturing a display substrate, the display substrate includes a stretchable region, the stretchable region includes a plurality of pixel island regions, a plurality of hole regions, and a plurality of A connection bridge area between the pixel island area and the hole area, the hole area is provided with one or more openings, the openings penetrate or do not penetrate the substrate, and the preparation method includes:
  • a composite structure layer is formed on the base of the hole area, the base comprises a laminated flexible layer and a barrier layer, the composite structure layer comprises an inorganic composite insulating layer provided on the barrier layer, and a composite structure is provided on the barrier layer. an organic composite layer on an inorganic composite insulating layer;
  • the first opening exposes the surface of the inorganic composite insulating layer
  • the second opening forming a second opening on the portion of the inorganic composite insulating layer exposed by the first opening, the second opening penetrates the barrier layer, and the second opening exposes the surface of the flexible layer;
  • a third opening is formed on the flexible layer, the third opening passes through or does not pass through the flexible layer, and an orthographic projection of the third opening on the substrate includes an orthographic projection of the second opening on the substrate
  • the first opening, the second opening and the third opening form the opening, and in a direction parallel to the substrate, the third opening is relatively inside the second opening
  • the enlarged part forms a partition groove, and the partition groove is arranged on the hole wall of the opening;
  • a functional film layer is formed on the composite structure layer, the functional film layer is arranged on the hole wall of the opening, and is cut off at the cut-off groove.
  • 1 is a schematic diagram of some deep holes and isolation structures showing the hole region of a substrate
  • FIG. 2a is a schematic plan view of a stretchable region of a display substrate according to an embodiment of the disclosure
  • 2b is a schematic plan view of a stretchable region of another display substrate according to an embodiment of the disclosure.
  • Figure 2c is a schematic diagram of the cross-sectional structure of the position A-A in Figure 2a;
  • FIG. 3 is a schematic view of the structure after forming the base of the display substrate in some exemplary embodiments
  • FIG. 4 is a schematic structural diagram after forming a driving structure layer in a pixel island region of a display substrate and an inorganic composite insulating layer in a hole region in some exemplary embodiments;
  • FIG. 5 illustrates the formation of a planarization layer, an anode and a pixel defining layer of a pixel island region of a display substrate, and an organic composite layer formed in a hole region and first via holes and second via holes formed on the organic composite layer in some exemplary embodiments.
  • FIG. 6 is a schematic view of the structure after forming a third via hole penetrating the third barrier layer of the substrate on the inorganic composite insulating layer in the hole region in some exemplary embodiments;
  • 7a is a schematic structural diagram after forming a fourth via hole and a first isolation groove on the third flexible layer of the substrate in the hole area in some exemplary embodiments;
  • 7b is a schematic structural diagram of forming a fourth via hole and a first isolation groove on the third flexible layer of the substrate in the hole area in other exemplary embodiments;
  • FIG. 8a is a schematic view of the structure after forming a fifth via hole on the second barrier layer of the substrate of the hole area in some exemplary embodiments;
  • FIG. 8b is a schematic structural diagram after forming a fifth via hole on the second barrier layer of the substrate of the hole area in some other exemplary embodiments;
  • FIG. 9 is a schematic structural diagram after forming a sixth via hole and a second isolation groove on the second flexible layer of the substrate in the hole area in some exemplary embodiments;
  • 10a is a schematic view of the structure after forming a seventh via hole on the first barrier layer of the substrate of the hole area, forming a groove and a third isolation groove on the first flexible layer in some exemplary embodiments;
  • 10b is a schematic structural diagram of forming a seventh via hole on the first barrier layer of the substrate in the hole region, forming an eighth via hole and a third isolation groove on the first flexible layer in some other exemplary embodiments;
  • Figure 11a is a schematic structural diagram after forming an organic functional layer and a cathode in some exemplary embodiments
  • Fig. 11b is a partial enlarged structural view of the part A in Fig. 11a.
  • the stretchable area of the OLED display substrate is provided with a deep hole 01, the deep hole 01 penetrates or does not penetrate the flexible substrate, and an isolation structure 02 is arranged around the deep hole 01, and the isolation structure 02 is concave.
  • the cross-sectional area of the notch of the groove is smaller than the cross-sectional area of the rest of the groove.
  • Common layers of the vapor-deposited OLED device are disconnected at the isolation structure 02, forming a first portion on the side of the isolation structure 02 close to the deep hole 01, and on the side of the isolation structure 02 away from the deep hole
  • the second part on the 01 side, the second part includes the common layer of the OLED device in the pixel area, so that the water and oxygen in the first part will not invade the second part, so as to achieve the purpose of blocking the water and oxygen intrusion channel.
  • This The solution needs to introduce a new isolation structure preparation process and a corresponding mask, and the isolation structure also occupies space, reduces the pixel density, and affects the display effect.
  • Embodiments of the present disclosure provide a display substrate including a stretchable region.
  • FIG. 2a shows the structure of a partial region of the stretchable region, which can be regarded as a repeating unit of the stretchable region.
  • the stretchable region includes a plurality of pixel island regions 100 spaced apart from each other, a plurality of hole regions 300, and a connection bridge region 200 between the pixel island region 100 and the hole region 300; each pixel island The area 100 may be surrounded by a plurality of hole areas 300, the connection bridge areas 200 are located between adjacent hole areas 300, the connection bridge areas 200 are connected with the adjacent pixel island areas 100, and the light emitting devices of the plurality of pixel island areas 100 pass through The connection lines connecting the bridge regions 200 are connected for signal communication.
  • Each hole region 300 is provided with one or more openings, the openings penetrating or not penetrating the base of the display substrate.
  • the base of the display substrate can be a flexible substrate, so that the stretchable area of the display substrate can be stretched, the pixel island area 100 is set to display an image, the hole area 300 is set to provide deformation space during stretching, and the connection bridge area 200 is set to walk. line (to connect signals between adjacent pixel island regions 100 ) and transmit tensile force.
  • Each pixel island region 100 may include a plurality of pixel units, and each pixel unit includes a plurality of sub-pixels that emit light of different colors.
  • each pixel unit includes three sub-pixels, which are the first sub-pixel 110 and the second sub-pixel 120 And the third sub-pixel 130, the first sub-pixel 110, the second sub-pixel 120 and the third sub-pixel 130 may be configured to emit red light, green light and blue light, respectively.
  • the corresponding pixel unit can basically display any desired color.
  • Each sub-pixel of the pixel island region 100 includes a light-emitting device, and each light-emitting device may be an OLED device, including a stacked anode, an organic light-emitting layer and a cathode, and the organic light-emitting layer emits light under the voltage between the anode and the cathode.
  • the stretchable region is stretched under the action of an external force, the deformation mainly occurs in the connecting bridge region 200, and the light emitting device in the pixel island region 100 basically maintains its shape and will not be damaged.
  • each pixel island region in a plane parallel to the display substrate, the shape of each pixel island region may be a rectangle, a circle, or the like.
  • the shape of the hole area can be rectangle, arc, T-shape, L-shape, "I" shape and so on.
  • the shape of the hole area 300 is a rectangle, and each hole area 300 can be regarded as an opening (ie, the opening 301 in the following), and the shape of the opening is a rectangle.
  • the width of the rectangular opening may be 5 to 20 microns, and the length may be 50 to 800 microns, for example, 400 microns.
  • Fig. 2b Fig.
  • the shape of the hole area 300 is an arc, and each hole area 300 can be regarded as an opening, and the shape of the opening is an arc.
  • the diameter of the arc opening can be 50 microns to 500 microns, eg 200 microns.
  • a display substrate of an embodiment of the present disclosure includes stretchable regions, and the stretchable regions include spaced apart A plurality of pixel island regions 100, a plurality of hole regions 300, and a connection bridge region 200 between the pixel island regions 100 and the hole region 300; the hole region 300 is provided with one or more openings 301,
  • the hole area 300 includes a composite structure layer stacked on the substrate 10 , the opening 301 penetrates the composite structure layer and a part of the opening 301 is set in the substrate 10 , and the opening 301 penetrates through the composite structure layer.
  • the hole wall of the opening 301 is provided with a partition groove (in some examples, the partition groove includes a first partition slot 302A, a second partition slot 302B and a third partition slot 302C);
  • the hole area 300 further includes a functional film layer disposed on the composite structure layer and disposed on the hole wall of the opening 301 , and the functional film layer is cut off at the cut-off groove.
  • the partition groove is arranged on the hole wall of the opening 301 of the hole region 300, and the functional film layer is disconnected at the partition groove on the hole wall of the opening 301, that is, the partition groove is located near the substrate.
  • the functional film layer on the back side of the substrate 10 that is, the surface of the substrate 10 away from the display side
  • this part of the functional film layer is called the first part
  • the functional film layer on the side of the isolation groove away from the back side of the substrate 10 this part of the functional film layer is called the first part.
  • the film layer is called the second part) is no longer connected, and the second part includes the functional film layer located in the pixel island region 100, so that after the functional film layer is cut off by the partition groove, the water and oxygen in the first part will not invade into the second part, Therefore, the partition groove can block the path of external water and oxygen entering the interior of the display substrate along the functional film layer, so as to ensure the packaging effect.
  • the partition groove is arranged on the hole wall of the opening 301, the stretching function of the stretchable area can be ensured, and the partition groove will not occupy the extra space outside the opening 301, and will not reduce the pixel density, and in the In the process of forming the partition groove, no mask is needed, which can effectively reduce the production cost and improve the production efficiency.
  • the stretchable area may be located in an area of the display substrate near the edge, or may be located in a middle area of the display substrate.
  • the display substrate is a rectangle, and the stretchable regions can be set at the four corners of the rectangular display substrate or at positions close to the four sides. Stretchable function of local area.
  • the substrate includes a stacked flexible layer and a barrier layer, and the insulating groove is formed on the flexible layer.
  • the substrate may be provided with one flexible layer, or multiple flexible layers.
  • the substrate includes a plurality of flexible layers and a plurality of barrier layers, the flexible layers and the barrier layers are alternately arranged, and the isolation groove is provided on at least one of the flexible layers.
  • the substrate 10 includes a first flexible layer 10A, a first barrier layer 10B, a second flexible layer 10C, a second barrier layer 10D, a third flexible layer 10E and a third flexible layer 10A stacked in sequence.
  • the barrier layer 10F, the composite structure layer is provided on the third barrier layer 10F, the third flexible layer 10E is provided with a first partition groove 302A, the second flexible layer 10C is provided with a second partition groove 302B, The first flexible layer 10A is provided with a third blocking groove 302C.
  • the materials of the first flexible layer 10A, the second flexible layer 10C and the third flexible layer 10E may be polyimide (PI) or polyethylene terephthalate (PET), or the like.
  • the first barrier layer 10B, the second barrier layer 10D and the third barrier layer 10F may be made of inorganic materials, such as silicon nitride (SiNx) or silicon oxide (SiOx).
  • the substrate 10 may further include a first amorphous silicon (a-si) layer disposed between the first barrier layer 10B and the second flexible layer 10C, and a first amorphous silicon (a-si) layer disposed between the second barrier layer 10D and the third flexible layer 10E. the second amorphous silicon layer in between.
  • the amorphous silicon layer can increase the bonding force between the barrier layer and the flexible layer, so that after the flexible layer is formed on the barrier layer, the flexible layer can be firmly attached to the barrier layer.
  • the blocking groove may be disposed along the circumference of the opening 301 , the blocking groove is in a closed annular structure, and the shape of the blocking groove may be the same as that of the opening 301 .
  • the cross-sectional shape of the partition groove in the direction perpendicular to the base 10 may be a rectangle, a trapezoid, a semi-ellipse, or other irregular shapes.
  • the first groove surface 3021 of the partition groove may be a curved surface (such as an arc surface) or an inclined surface.
  • the depth of the partition groove in the direction parallel to the substrate 10 may gradually increase in the direction away from the substrate 10 .
  • the depth of the isolation groove in the direction parallel to the substrate 10 and the width in the direction perpendicular to the substrate 10 can be designed as required, as long as the organic functional layer 22 can be disconnected at the isolation groove.
  • the shape of the opening 301 is a rectangle, the width of the opening 301 is 5 micrometers to 20 micrometers, and the length is 50 micrometers to 800 micrometers. In other examples, the shape of the opening 301 is an arc, and the diameter of the opening 301 is 50 to 500 micrometers.
  • the depth of the blocking groove in a direction parallel to the substrate 10 is greater than or equal to 0.5 microns.
  • Each of the flexible layers has a thickness of 5 to 12 microns.
  • FIG. 11 b shows a schematic structural diagram in which the functional film layer of the hole region 300 is formed in the opening 301 .
  • the inner surface of the blocking groove (in this example, the first blocking groove 302A, the second blocking groove 302B and the third blocking groove 302C are shown) includes a first groove surface 3021 facing the opening 301 and facing the base.
  • the first groove surface 3021 , the second groove surface 3022 and the third groove surface 3023 are all formed by a flexible layer where the partition groove is located.
  • the first isolation groove 302A is formed in the third flexible layer 10E
  • the second isolation groove 302B is formed in the second flexible layer 10C
  • the third isolation groove 302C is formed in the first flexible layer 10A.
  • the third flexible layer 10E forms the first groove surface 3021 , the second groove surface 3022 and the third groove surface 3023 of the first isolation groove 302A
  • the second flexible layer 10C forms the first groove surface of the second isolation groove 302B 3021, the second groove surface 3022 and the third groove surface 3023
  • the first flexible layer 10A forms the first groove surface 3021, the second groove surface 3022 and the third groove surface of the third partition groove 302C 3023.
  • the first groove surface is formed by a flexible layer in which the isolation groove is located;
  • the second groove surface is jointly formed by the flexible layer where the partition groove is located, and the film layer provided on the side of the flexible layer away from the back side of the substrate, or the second groove surface is formed by the flexible layer provided on the back side of the substrate. forming a film layer on the side of the flexible layer where the partition groove is located away from the back side of the substrate;
  • the third groove surface is formed by the flexible layer where the partition groove is located, and the film layer provided on the side of the flexible layer facing the back side of the substrate, or the third groove surface is formed by the flexible layer provided on the back side of the substrate.
  • a film layer is formed on the side of the flexible layer where the partition groove is located, which faces the back side of the substrate.
  • the functional film layer 303 is further disposed on the first groove surface 3021 , the second groove surface 3022 and the third groove surface 3023 of the partition groove, the functional film layer 303
  • the film layer 303 is disconnected at the intersection of the first groove surface 3021 and the second groove surface 3022 (positions indicated by P1 and P2 in FIG. 11b ).
  • the thickness of the functional film layer 303 becomes thinner near the intersection of the first groove surface 3021 and the second groove surface 3022 .
  • the functional film layer 303 may be formed by an evaporation process during the preparation process.
  • the pixel island region 100 includes a driving structure layer provided on the substrate 10 and a plurality of light emitting devices provided on the driving structure layer, and the driving structure layer includes a pixel driving circuit , the light-emitting device includes a stacked anode 20, an organic functional layer 22 and a cathode 23, the organic functional layer 22 includes an organic light-emitting layer; the functional film layer includes a stacked first functional film layer and a second functional film The material of the first functional film layer is the same as that of one of the organic functional layers 22 of any one of the light-emitting devices, and the material of the second functional film layer is the same as that of the cathode 23 .
  • the pixel driving circuit includes a plurality of thin film transistors and storage capacitors, and the anode 20 of the light emitting device is connected to the drain electrode of one of the thin film transistors.
  • the light-emitting device may be an OLED device, and the organic functional layer 22 includes an organic light-emitting layer, and may also include a hole injection layer, a hole transport layer, and an electron blocking layer stacked between the organic light-emitting layer and the anode 20, and a layer stacked on the organic light-emitting layer.
  • a hole blocking layer, an electron transport layer, and an electron injection layer between the light-emitting layer and the cathode 23 The organic light-emitting layer emits light at the voltage between the anode 20 and the cathode 23 .
  • each pixel island 100 may include a plurality of pixel units, and each pixel unit includes a plurality of sub-pixels that emit light of different colors, for example, each pixel unit includes a red sub-pixel, a green sub-pixel and a blue subpixel.
  • each pixel unit includes a red sub-pixel, a green sub-pixel and a blue subpixel.
  • the corresponding pixel unit can basically display any desired color.
  • Each sub-pixel of the pixel island region 100 includes a light emitting device, and the pixel island region 100 includes a plurality of sub-pixels arranged in an array.
  • all sub-pixels of the pixel island region 100 have one or more common film layers, each of which is an integral structure and can cover the pixel island region 100 , the connection bridge region 200 and the hole region 300 .
  • the common film layer can be any one or more film layers in the organic functional layer 22 in one of the light-emitting devices, and the cathode 23 in the light-emitting device, as shown in FIG. 2c, which shows a light-emitting device of one sub-pixel , the organic functional layer 22 and the cathode 23 of the light-emitting device of the sub-pixel are the common film layers of all sub-pixels in the pixel island region 100 .
  • the common film layer After the common film layer is evaporated into the opening 301 of the hole region 300 , it is formed on the hole wall of the opening 301 and is disconnected at the partition groove on the hole wall of the opening 301 .
  • the common film layer can be formed into two parts after being cut off by the isolation groove (for example, in the example in which the isolation groove is one), the first part is located on the side of the isolation groove close to the back of the substrate 10 (that is, the surface of the base away from the display side); The two parts are located on the side of the partition groove away from the back side of the substrate 10 , the second part includes the part of the shared film layer located in the pixel island region 100 , the water and oxygen in the first part will not invade the second part, and thus, the second part is located in the pixel island region 100 .
  • the common film layer will not be attacked by water and oxygen.
  • the film layer structure of the functional film layer in the hole region 300 may be related to the type and number of common film layers in the organic functional layers of the multiple light emitting devices in the pixel island region 100 .
  • all the film layers in the organic functional layer 22 of a light-emitting device R are common film layers
  • the cathode 23 of the light-emitting device R is also a common film layer
  • the functional film layers of the hole region 300 may be It includes all the film layers of the organic functional layer 22 of the stacked light-emitting device R and the cathode 23 .
  • the composite structure layer includes an inorganic composite insulating layer 305 provided on the substrate 10 and an organic composite layer 304 provided on the inorganic composite insulating layer 305 , in a direction parallel to the substrate 10 , the side of the inorganic composite insulating layer 305 facing the opening 301 protrudes from the side of the organic composite layer 304 facing the opening 301 .
  • the organic composite layer 304 includes a first organic layer (such as the flat layer 19 ) disposed on the inorganic composite insulating layer 305 , and a first organic layer (such as the flat layer 19 ) disposed on the inorganic composite insulating layer 305 .
  • a first organic layer such as the flat layer 19
  • a first organic layer such as the flat layer 19
  • the second organic layer eg, the pixel defining layer 21
  • the side of the inorganic composite insulating layer 305 facing the opening 301 is flush and disposed in a direction parallel to the substrate 10 .
  • the side of the first organic layer facing the opening 301 protrudes from the side facing the opening 301 of the second organic layer, and the side facing the opening 301 of the inorganic composite insulating layer 305 is convex From the side of the first organic layer facing the opening 301 .
  • the structure of the display substrate of the present disclosure will be described below through an example of a preparation process of the display substrate.
  • the "patterning process” referred to in the present disclosure includes processes such as depositing film layers, coating photoresist, mask exposure, developing, etching and stripping photoresist.
  • Deposition can be selected from any one or more of sputtering, evaporation and chemical vapor deposition, coating can be selected from any one or more of spray coating and spin coating, and etching can be selected from dry etching. and any one or more of wet engraving.
  • “Film” refers to a thin film made of a material on a substrate by a deposition or coating process.
  • the "film” can also be referred to as a "layer”.
  • the "film” before the patterning process it is called a "film” before the patterning process, and a “layer” after the patterning process.
  • the “layer” after the patterning process contains at least one "pattern”.
  • “A and B are arranged in the same layer” means that A and B are simultaneously formed through the same patterning process.
  • the orthographic projection of A includes the orthographic projection of B” means that the orthographic projection of B falls within the range of the orthographic projection of A, or the orthographic projection of A covers the orthographic projection of B.
  • the manufacturing process of the display substrate of FIG. 2c may include the following steps:
  • the flexible substrate 10 is prepared on the carrier plate 1 .
  • the flexible substrate 10 may adopt a three-layer flexible layer structure, and the flexible substrate 10 includes a first flexible material layer, a first inorganic A material layer, a second flexible material layer, a second inorganic material layer, a third flexible material layer, and a third inorganic material layer.
  • the materials of the first flexible material layer, the second flexible material layer and the third flexible material layer can be polyimide (PI), polyethylene terephthalate (PET) or surface-treated soft polymer film, etc.
  • the materials of the first inorganic material layer, the second inorganic material layer and the third inorganic material layer can be silicon nitride (SiNx) or silicon oxide (SiOx), etc., to improve the water and oxygen resistance of the substrate, the first inorganic material
  • the layer, the second inorganic material layer and the third inorganic material layer are called barrier layers.
  • the flexible substrate 10 may further include a first semiconductor layer disposed between the first inorganic material layer and the second flexible material layer, and a second semiconductor layer disposed between the second inorganic material layer and the third flexible material layer.
  • the material of the first semiconductor layer and the second semiconductor layer can be amorphous silicon (a-si).
  • the semiconductor layer can increase the bonding force between the inorganic material layer and the flexible material.
  • the preparation process of the flexible substrate 10 may include: firstly coating a layer of polyimide on the carrier 1, After curing into a film, a first flexible (PI1) layer 10A is formed; then a barrier film is deposited on the first flexible layer 10A to form a first barrier (Barrier1) layer 10B covering the first flexible layer 10A; A layer of polyimide is coated on the layer 10B, and a second flexible (PI2) layer 10C is formed after curing into a film; then a barrier film is deposited on the second flexible layer 10C to form a first layer covering the second flexible layer 10C.
  • a barrier film is layered to form a third barrier (Barrier 3) layer 10F covering the third flexible layer 10E to complete the preparation of the flexible substrate 10 , as shown in FIG. 3 .
  • the pixel island region 100 , the connection bridge region 200 and the hole region 300 all include the flexible substrate 10 .
  • the flexible substrate 10 may adopt a one-layer flexible layer structure, a two-layer flexible layer structure, or a three-layer or more flexible layer structure.
  • the greater the number of layers of the flexible layer the deeper the depth of the finally formed opening 301, and the better the stretchability of the stretchable region.
  • a driving structure layer and a connection line pattern are prepared on the flexible substrate 10 , the driving structure layer is formed in the pixel island region 100 , and the connection line is formed in the connection bridge region 200 .
  • the driving structure layer includes a plurality of gate lines and a plurality of data lines, and the vertical intersection of the plurality of gate lines and the plurality of data lines defines a plurality of sub-pixels arranged in a matrix, and each sub-pixel is provided with a thin film transistor, as shown in FIG. 4 .
  • the preparation process of this step can include:
  • a first insulating film and an active layer film are sequentially deposited on the flexible substrate 10 , and the active layer film is patterned through a patterning process to form a first insulating layer 11 covering the entire flexible substrate 10 and disposed on the first insulating layer 11
  • the active layer pattern is formed in the pixel island region 100 and includes at least the active layer 12 .
  • the connection bridge region 200 and the hole region 300 include the first insulating layer 11 disposed on the flexible substrate 10 .
  • the first gate metal layer pattern includes a gate electrode 14A, a first capacitor electrode 14B and a gate line (not shown) formed in the pixel island region 100, and a gate connection line (not shown) formed in the connection bridge region 200. not shown).
  • the hole region 300 includes the first insulating layer 11 and the second insulating layer 13 stacked on the flexible substrate 10 .
  • a third insulating film and a second metal film are sequentially deposited, and the second metal film is patterned through a patterning process to form a third insulating layer 15 covering the first gate metal layer, and a third insulating layer 15 disposed on the third insulating layer 15.
  • the second gate metal layer pattern includes a second capacitor electrode 16 formed in the pixel island region 100 , and the position of the second capacitor electrode 16 corresponds to the position of the first capacitor electrode 14B.
  • the connection bridge region 200 and the hole region 300 include the first insulating layer 11 , the second insulating layer 13 and the third insulating layer 15 stacked on the flexible substrate 10 .
  • a fourth insulating film is deposited, and the fourth inorganic insulating film is patterned through a patterning process to form a pattern of a fourth insulating layer 17 covering the second gate metal layer.
  • the fourth insulating layer 17 is provided with two via holes, and the two The fourth insulating layer 17 , the third insulating layer 15 and the second insulating layer 13 in each via hole are etched away, exposing the surface of the active layer 12 .
  • the connecting bridge region 200 and the hole region 300 include the first insulating layer 11 , the second insulating layer 13 , the third insulating layer 15 and the fourth insulating layer 17 stacked on the substrate 10 .
  • a third metal film is deposited, the third metal film is patterned through a patterning process, and a third metal layer pattern is formed on the fourth insulating layer 17 , and the third metal layer pattern includes the source electrode 18A located in the pixel island region 100, the leakage current The pole 18B and the data line (not shown), and the data connection line 18C located in the connection bridge region 200 .
  • the source electrode 18A is connected to the surface of the active layer 12 away from the substrate 10 through a via hole penetrating the fourth insulating layer 17, the third insulating layer 15 and the second insulating layer 13, and the drain electrode 18B is connected to the surface of the active layer 12 away from the substrate 10 through the fourth insulating layer 17, Another via of the third insulating layer 15 and the second insulating layer 13 is connected to the surface of the active layer 12 facing away from the substrate 10 . After this patterning process, the film structure of the hole region 300 does not change.
  • the driving structure layer of the pixel island region 100 and the connection lines connecting the bridge region 200 are prepared on the flexible substrate 10 .
  • the active layer 12, the gate electrode 14A, the source electrode 18A and the drain electrode 18B constitute a thin film transistor 101, and the thin film transistor 101 may be a driving transistor in a pixel driving circuit.
  • the pole 18B is connected to the anode in the light emitting device.
  • the first capacitor electrode 14B and the second capacitor electrode 16 constitute the storage capacitor 102 .
  • connection bridge area 200 and the hole area 300 include an inorganic composite insulating layer 305 disposed on the flexible substrate 10, and the inorganic composite insulating layer 305 includes a stacked first insulating layer 11, a second insulating layer 13, a third insulating layer 15 and a first insulating layer 15. Four insulating layers 17 .
  • the connection bridge region 200 further includes a gate connection line arranged on the second insulating layer 13, and a data connection line 18C arranged on the inorganic composite insulating layer 305.
  • the gate connection line connects the gate lines in the adjacent pixel island regions 100, and the data
  • the connection lines 18C may connect data lines in adjacent pixel island regions 100 for signal communication between adjacent pixel island regions 100 .
  • the first insulating film, the second insulating film, the third insulating film, and the fourth insulating film may adopt one of silicon oxide (SiOx), silicon nitride (SiNx), and silicon oxynitride (SiON). Any one or more of them may be a single layer, multiple layers or composite layers.
  • the first insulating layer 11 is called a buffer layer, which is used to improve the water and oxygen resistance of the flexible substrate 10
  • the second insulating layer 13 and the third insulating layer 15 are called a gate insulating (GI) layer
  • the fourth insulating layer 17 It is called an interlayer insulating (ILD) layer.
  • the first metal thin film, the second metal thin film, and the third metal thin film can be made of metal materials, such as any one of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), and molybdenum (Mo). More, or alloy materials of the above metals, such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb), can be a single-layer structure, or a multi-layer composite structure, such as Ti/Al/Ti and the like.
  • metal materials such as any one of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), and molybdenum (Mo). More, or alloy materials of the above metals, such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb), can be a single-layer structure, or a multi-layer composite structure, such as Ti/Al/Ti and the like.
  • the active layer film can be made of amorphous indium gallium zinc oxide (a-IGZO), zinc oxynitride (ZnON), indium zinc tin oxide (IZTO), amorphous silicon (a-Si), polycrystalline silicon (p-Si) , hexathiophene or polythiophene and other materials, that is, the present disclosure is applicable to transistors fabricated based on oxide technology, silicon technology or organic technology.
  • a-IGZO amorphous indium gallium zinc oxide
  • ZnON zinc oxynitride
  • IZTO indium zinc tin oxide
  • a-Si amorphous silicon
  • p-Si polycrystalline silicon
  • hexathiophene or polythiophene and other materials that is, the present disclosure is applicable to transistors fabricated based on oxide technology, silicon technology or organic technology.
  • a flat layer 19, an anode 20, and a pixel defining layer 21 are formed on the flexible substrate 10 formed with the aforementioned pattern, as shown in FIG. 5.
  • the preparation process of this step may include:
  • a flat film of organic material is coated on the flexible substrate 10 formed with the aforementioned pattern to form a flat (PLN) layer 19 covering the entire flexible substrate 10 , and the flat layer 19 of the pixel island region 100 is formed by masking, exposing and developing processes.
  • a via hole is formed, and the flat layer 19 in the via hole is developed away, exposing the surface of the drain electrode 18B of the thin film transistor 101 .
  • both the connection bridge region 200 and the hole region 300 include the flat layer 19 disposed on the fourth insulating layer 17 .
  • a transparent conductive film is deposited on the flexible substrate 10 formed with the aforementioned pattern, and the transparent conductive film is patterned through a patterning process to form a pattern of an anode 20 .
  • the anode 20 is formed on the flat layer 19 of the pixel island region 100 and passes through the The via hole is connected to the drain electrode 18B of the thin film transistor 101 .
  • the material of the transparent conductive film may be indium tin oxide (ITO) or indium zinc oxide (IZO).
  • a pixel-defining film is coated on the flexible substrate 10 formed with the aforementioned pattern, and a pattern of a pixel-defining (PDL) layer 21 is formed by masking, exposing, and developing processes.
  • a pixel opening is provided on the pixel defining layer 21 of the pixel island region 100 , and the pixel defining layer 21 in the pixel opening is developed to expose the surface of the anode 20 .
  • the pixel defining layer 21 of the hole region 300 is provided with a first via hole 310 , and the first via hole 310 exposes the surface of the flat layer 19 .
  • a second via hole 320 is formed on the portion of the flat layer 19 exposed by the first via hole 310 , and the flat layer 19 in the second via hole 320 is developed to expose the surface of the fourth insulating layer 17 .
  • the orthographic projection of the first via hole 310 on the flexible substrate 10 may include the orthographic projection of the second via hole 320 on the flexible substrate 10 .
  • the side surface of the planarization layer 19 facing the second via hole 320 protrudes from the side surface of the pixel defining layer 21 facing the first via hole 310 .
  • the first via hole 310 and the second via hole 320 are collectively referred to as a first opening.
  • a third via hole 330 is formed on the portion of the fourth insulating layer 17 in the hole region 300 exposed by the second via hole 320 , and the third via hole 330 penetrates through the fourth insulating layer 17 , the third insulating layer 15 , the Two insulating layers 13 , a first insulating layer 11 and a third barrier layer 10F of the flexible substrate 10 .
  • the fourth insulating layer 17 , the third insulating layer 15 , the second insulating layer 13 , the first insulating layer 11 and the third barrier layer 10F of the flexible substrate 10 in the third via hole 330 are etched away, and the third via hole 330 The surface of the third flexible layer 10E is exposed.
  • the orthographic projection of the second via hole 320 on the flexible substrate 10 may include the orthographic projection of the third via hole 330 on the flexible substrate 10 , as shown in FIG. 6 .
  • the fourth insulating layer 17 , the third insulating layer 15 , the second insulating layer 13 , the first insulating layer 11 , and the third barrier layer 10F of the flexible substrate 10 face the side of the third via hole 330 (It can be regarded as the hole wall of the third via hole 330 ) which is flush and protrudes from the side of the flat layer 19 facing the second via hole 320 .
  • the third via hole 330 is referred to as a second opening.
  • a fourth via hole 340A and a first isolation groove 302A are formed on the third flexible layer 10E of the hole area 300 , as shown in FIG. 7 a .
  • the portion of the third flexible layer 10E exposed by the third via hole 330 is completely etched away to form the fourth via hole 340A.
  • the orthographic projection of the fourth via 340A on the flexible substrate 10 may overlap with the orthographic projection of the third via 330 on the flexible substrate 10 , or the orthographic projection of the fourth via 340A on the flexible substrate 10 may include the third via 330 Orthographic projection on flexible substrate 10 .
  • a first blocking groove 302A is formed on the side of the third flexible layer 10E facing the fourth via hole 340A, and the notch of the first blocking groove 302A faces the fourth via hole 340A and communicates with the fourth via hole 340A.
  • the third flexible layer 10E inside the first blocking groove 302A is etched away, and the inner surface of the first blocking groove 302A is formed by the third flexible layer 10E.
  • the inner surface of the first isolation groove 302A includes a first groove surface 3021 facing the fourth via hole 340A, a second groove surface 3022 facing the back side of the flexible substrate 10 and a third groove surface 3023 facing away from the back side of the flexible substrate 10 .
  • the groove surface 3023 is opposite to the second groove surface 3022 , and in a direction parallel to the substrate 10 , the hole wall of the third via hole 330 protrudes from the first groove surface 3021 .
  • the first groove surface 3021 , the second groove surface 3022 and the third groove surface 3023 of the first partition groove 302A are all formed by the third flexible layer 10E.
  • the fourth via hole 340A and the first blocking groove 302A are collectively referred to as the third opening.
  • a fourth via hole 340B is formed on the third flexible layer 10E, and the orthographic projection of the fourth via hole 340B on the flexible substrate 10 includes the orthographic projection of the third via hole 330 on the flexible substrate 10 .
  • the three flexible layers 10E are completely etched away. In a direction parallel to the substrate 10 , the hole wall of the third via hole 330 protrudes from the hole wall of the fourth via hole 340B.
  • the fourth via hole 340B is referred to as a third opening.
  • the material of the third flexible layer 10E is PI, and the process of forming the third opening on the third flexible layer 10E may use an etching method.
  • a mixed gas of carbon tetrafluoride and oxygen (CF 4 /O 2 ) can be used as the etching gas.
  • CF 4 /O 2 By adjusting the ratio of CF 4 /O 2 , the blocking effect of the second barrier layer 10D on the etching gas can be added (for the etching gas).
  • the etching gas etched by the third flexible layer 10E is not effective for the second barrier layer 10D), lateral etching is realized, and the structure of the third opening that meets the requirements is etched, that is, the fourth via hole 340A and the first isolation groove are etched.
  • the aforementioned first opening, second opening and third opening may form the opening 301 , and the opening 301 may or may not penetrate the substrate 10 .
  • the substrate 10 may adopt a one-layer flexible structure, or a multi-layer flexible layer structure.
  • a fifth via hole 350 is formed on the second barrier layer 10D of the hole region 300, as shown in FIG. 8a.
  • the orthographic projection of the fifth via hole 350 on the flexible substrate 10 and the orthographic projection of the third via hole 330 on the flexible substrate 10 may overlap.
  • the hole wall of the fifth via hole 350 may be flush with the hole wall of the third via hole 330 in a direction parallel to the substrate 10 .
  • a first isolation groove 302A is formed on the third flexible layer 10E.
  • fifth vias 350 are formed on the second barrier layer 10D of the hole region 300 .
  • the fourth vias 340B formed on the third flexible layer 10E are on the flexible substrate 10
  • the projection includes orthographic projections of the third via hole 330 and the fifth via hole 350 on the flexible substrate 10 .
  • the hole wall of the fifth via hole 350 is flush with the hole wall of the third via hole 330 in the direction parallel to the substrate 10 , and both protrude from the hole wall of the fourth via hole 340B , the part of the third barrier layer 10F protruding from the hole wall of the fourth via hole 340B is the first protrusion, and the part of the second barrier layer 10D protruding from the hole wall of the fourth via hole 340B is the second protrusion out.
  • the surface of the first protruding portion facing the substrate 10, the surface of the second protruding portion facing away from the substrate 10, and the hole wall of the fourth via hole 340B form the inner surface of the first blocking groove 302A.
  • the first groove surface 3021 of the first partition groove 302A is formed by the third flexible layer 10E
  • the second groove surface 3022 is formed by the surface of the first protrusion facing the substrate 10
  • the third groove surface 3023 is formed by the third flexible layer 10E. Two protrusions are formed on the surface facing away from the substrate 10 .
  • the first groove surface 3021 of the first partition groove 302A is formed by the third flexible layer 10E
  • the second groove surface 3022 may be jointly formed by the third flexible layer 10E and the third barrier layer 10F
  • the third groove surface 3023 It may be jointly formed of the third flexible layer 10E and the second barrier layer 10D.
  • the sixth via hole 360 and the second blocking groove 302B are formed on the second flexible layer 10C.
  • the method of forming the sixth via hole 360 and the second isolation groove 302B in this step may be the same as the method of forming the fourth via hole 340A (or the fourth via hole 340B) and the first isolation groove 302A on the third flexible layer 10E,
  • the structure of the second blocking groove 302B may be the same as that of the first blocking groove 302A.
  • FIG. 9 shows a structure in which a second isolation groove 302B is formed on the second flexible layer 10C.
  • the seventh via hole 370 is formed on the first barrier layer 10B.
  • the method of forming the seventh via hole 370 on the first barrier layer 10B in this step may be the same as the method of forming the fifth via hole 350 on the second barrier layer 10D.
  • the structure of the seventh via hole 370 is the same as that of the fifth via hole 350 The structure can be the same, as shown in Figure 10a.
  • a groove 380A and a third isolation groove 302C are formed on the first flexible layer 10A, as shown in FIG. 10 a , exemplarily, the orthographic projection of the groove 380A on the substrate 10 includes the seventh via hole 370 on the substrate 10 orthographic projection on .
  • the orthographic projection of the notch of the groove 380A on the substrate 10 may overlap with the orthographic projection of the seventh via 370 on the substrate 10 , or the orthographic projection of the notch of the groove 380A on the substrate 10 includes the seventh via 370 Orthographic projection on substrate 10 .
  • the groove 380A forms a third blocking groove 302C compared to the inwardly enlarged portion of the hole wall of the seventh via hole 370 .
  • the inner surface of the third blocking groove 302C may be formed by the first flexible layer 10A, or the inner surface of the third blocking groove 302C may be jointly formed by the portion of the first flexible layer 10A and the first barrier layer 10B facing the interior of the third blocking groove 302C .
  • the opening 301 finally formed in the hole region 300 does not penetrate the substrate 10 .
  • the eighth via hole 380B and the third isolation groove 302C are formed on the first flexible layer 10A. As shown in FIG. 10b , the eighth via hole 380B penetrates through the first flexible layer 10A.
  • the method of forming the eighth via hole 380B and the third isolation groove 302C may be the same as the method of forming the fourth via hole 340A (or the fourth via hole 340B) and the first isolation groove 302A on the third flexible layer 10E
  • the structure of the third blocking groove 302C may be the same as the structure of the first blocking groove 302A.
  • openings 301 and isolation grooves are formed in the hole region 300 .
  • the first via 310 , the second via 320 , the third via 330 , the fourth via 340A (or the fourth via 340B), the fifth via 350 , the sixth via 360 , and the seventh via 370 and the groove 380A (or the eighth via hole 380B) form the opening hole 301
  • the opening hole 301 penetrates the substrate 10 or does not penetrate the substrate 10 .
  • three isolation grooves are provided on the hole wall of the opening 301 along the direction perpendicular to the substrate 10, which are the first isolation groove 302A, the second isolation groove 302B and the third isolation groove 302C, the structure of the three isolation grooves.
  • Three isolation grooves are respectively provided on the third flexible layer 10E, the second flexible layer 10C and the first flexible layer 10A of the flexible substrate 10 , and each flexible layer is provided with one isolation groove.
  • the number of partition grooves provided on the hole wall of the opening 301 may be equal to or smaller than the number of flexible layers of the flexible substrate 10 . In other examples, the number of flexible layers of flexible substrate 10 may be one, two, or more than three.
  • the cross-sectional shapes of the first blocking groove 302A, the second blocking groove 302B and the third blocking groove 302C may be rectangular, trapezoidal, semi-elliptical, or irregular.
  • An organic functional layer 22 and a cathode 23 are sequentially formed on the flexible substrate 10 formed with the aforementioned pattern, as shown in FIG. 11a.
  • both the organic functional layer 22 and the cathode 23 may be formed on the pixel island region 100 , the connection bridge region 200 and the hole region 300 using an evaporation process.
  • the pixel island region 100 and the organic functional layer 22 connecting the bridge region 200 cover the pixel defining layer 21
  • the organic functional layer 22 of the pixel island region 100 is connected to the anode 20 exposed by the pixel opening of the pixel defining layer 21 .
  • the organic functional layer 22 of the hole region 300 covers the hole walls of the openings 301 and the isolation grooves (for example, including the first isolation grooves 302A, the second isolation grooves 302B and the third isolation grooves 302C).
  • the cathode 23 is formed on the organic functional layer 22, and the anode 20, the organic functional layer 22 and the cathode 23 of the pixel island region 100 form a light-emitting device.
  • the material of the cathode 23 can be any one or more of magnesium (Mg), silver (Ag), aluminum (Al), copper (Cu) and lithium (Li), or any one or more of the above metals. made of alloys.
  • the organic functional layer 22 formed by evaporation is disconnected at the isolation groove.
  • the inner surface of the isolation groove includes a first groove surface 3021 facing the opening 301 and a second groove surface 3022 facing the back side of the substrate 10. and a third groove surface 3023 opposite to the second groove surface 3022 .
  • the organic functional layer 22 is disconnected at the intersection of the first groove surface 3021 and the second groove surface 3022, and the thickness of the organic functional layer 22 near the intersection of the first groove surface 3021 and the second groove surface 3022 becomes thinner 11b
  • FIG. 11b is a partial enlarged view of A in FIG.
  • the disconnection position of the organic functional layer 22 in the cross-sectional view is the position indicated by P1 and P2.
  • the organic functional layer 22 is also disconnected at the corresponding positions of the second blocking groove 302B and the third blocking groove 302C.
  • the depth of the partition groove in the direction parallel to the substrate 10 and the width in the direction perpendicular to the substrate 10 can be designed as required, as long as the organic functional layer 22 can be disconnected at the partition groove.
  • the cathode 23 is formed on the organic functional layer 22, and the position where the cathode 23 is disconnected at the isolation groove corresponds to the position where the organic functional layer 22 is disconnected at the isolation groove.
  • the organic functional layer 22 and the cathode 23 can be cut off at the multiple isolation grooves, that is, the organic functional layer 22 and the cathode 23 are cut off at multiple positions, increasing multiple isolation guarantees.
  • the partition groove since the partition groove is arranged on the hole wall of the opening 301, the partition groove will not occupy the extra space outside the opening 301, and the pixel density will not be reduced, and in the process of forming the partition groove, no mask is required ,cut costs.
  • An encapsulation structure layer is formed on the flexible substrate 10 on which the aforementioned pattern is formed.
  • the encapsulation structure layer may include a stacked first inorganic encapsulation layer 24 , an organic encapsulation layer 25 and a second inorganic encapsulation layer 26 .
  • the first inorganic encapsulation layer 24 covers the cathode 23
  • the organic encapsulation layer 25 is disposed in the pixel island region 100
  • the second inorganic encapsulation layer 26 covers the first inorganic encapsulation layer 24 and the organic encapsulation layer 25 .
  • the hole area 300 includes a stacked first inorganic encapsulation layer 24 and a second inorganic encapsulation layer 26, the first inorganic encapsulation layer 24 and the second inorganic encapsulation layer 26 cover the cathode 23 of the hole area 300, and the organic functional layer 22 and the second inorganic encapsulation layer 26 are covered.
  • the cathode 23 is packaged as shown in Figure 2c.
  • the first inorganic encapsulation layer 24, the organic encapsulation layer 25 and the second inorganic encapsulation layer 26 can be fabricated by chemical vapor deposition (CVD) or sputtering and other coating methods.
  • the organic functional layer 22 is in contact with the cathode 23 .
  • the flexible substrate 10 prepared with all the film layers is peeled off from the carrier plate 1 to obtain a display substrate.
  • an embodiment of the present disclosure further provides a method for preparing a display substrate, the display substrate includes a stretchable region, and the stretchable region includes a plurality of pixel island regions and a plurality of hole regions separated from each other, and a connecting bridge area between the pixel island area and the hole area, the hole area is provided with one or more openings, the openings penetrate or do not penetrate the substrate, and the preparation method includes:
  • a composite structure layer is formed on the base of the hole area, the base comprises a laminated flexible layer and a barrier layer, the composite structure layer comprises an inorganic composite insulating layer provided on the barrier layer, and a composite structure is provided on the barrier layer. an organic composite layer on an inorganic composite insulating layer;
  • the first opening exposes the surface of the inorganic composite insulating layer
  • the second opening forming a second opening on the portion of the inorganic composite insulating layer exposed by the first opening, the second opening penetrates the barrier layer, and the second opening exposes the surface of the flexible layer;
  • a third opening is formed on the flexible layer, the third opening passes through or does not pass through the flexible layer, and an orthographic projection of the third opening on the substrate includes an orthographic projection of the second opening on the substrate
  • the first opening, the second opening and the third opening form the opening, and in a direction parallel to the substrate, the third opening is relatively inside the second opening
  • the enlarged part forms a partition groove, and the partition groove is arranged on the hole wall of the opening;
  • a functional film layer is formed on the composite structure layer, the functional film layer is arranged on the hole wall of the opening, and is cut off at the cut-off groove.
  • An embodiment of the present disclosure further provides a display device including the display substrate described in any of the foregoing embodiments.
  • the display device can be any product or component with a display function, such as a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, or a navigator.
  • connection means a fixed connection or a detachable connection, or integrally connected;
  • installed may be direct connection, or indirect connection through an intermediary, or internal communication between two elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示基板及其制备方法、显示装置,所述显示基板包括可拉伸区域,所述可拉伸区域包括彼此隔开的多个像素岛区、多个孔区,以及位于所述像素岛区与所述孔区之间的连接桥区;所述孔区设有一个或多个开孔,所述孔区包括叠设在基底上的复合结构层,所述开孔贯穿所述复合结构层且所述开孔的一部分设于所述基底内,所述开孔贯穿或不贯穿所述基底,所述开孔的孔壁上设有隔断槽;所述孔区还包括设于所述复合结构层上、并设置在所述开孔的孔壁上的功能膜层,所述功能膜层在所述隔断槽处被隔断。

Description

显示基板及其制备方法、显示装置
本申请要求于2020年9月30日提交中国专利局、申请号为202011065609.9、发明名称为“一种显示基板及其制备方法、显示装置”的中国专利申请的优先权,其内容应理解为通过引用的方式并入本公开中。
技术领域
本公开实施例涉及但不限于显示技术领域,尤其涉及一种显示基板及其制备方法、显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)显示技术因具有可视角度大,亮度高,响应快,功耗低、可弯曲等特性近年来迅速崛起,被认为是最具潜力的显示技术。随着社会发展与技术的进步,人们对电子产品的屏占比要求越来越高,全面屏更是大势所趋。然而,要实现真正全面屏,屏幕四角区需要做成局部可拉伸结构以应对后续模组的贴合工艺。OLED柔性基板的深孔设计可实现局部拉伸功能,是实现全面屏技术的重要方向之一。
OLED柔性基板开深孔设计中,OLED器件的共有层在蒸镀至深孔后容易从外界吸水导致发光材料失效,从而造成局部显示失效。一些技术中,在深孔周边设置隔离结构,以隔断OLED器件的共有层,从而达到阻断水氧入侵通道目的,在实现局部拉伸功能的同时保证了封装效果,但是,该方案需要引入新的隔离结构制备工艺及相应的掩膜版(Mask),且隔离结构还会占据空间,降低像素密度,影响显示效果。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供一种显示基板,包括可拉伸区域,所述可拉伸区域包括彼此隔开的多个像素岛区、多个孔区,以及位于所述像素岛区与所述孔区之间的连接桥区;所述孔区设有一个或多个开孔,所述孔区包括叠设在基底 上的复合结构层,所述开孔贯穿所述复合结构层且所述开孔的一部分设于所述基底内,所述开孔贯穿或不贯穿所述基底,所述开孔的孔壁上设有隔断槽;所述孔区还包括设于所述复合结构层上、并设置在所述开孔的孔壁上的功能膜层,所述功能膜层在所述隔断槽处被隔断。
本公开实施例还提供一种显示装置,包括所述的显示基板。
本公开实施例还提供一种显示基板的制备方法,所述显示基板包括可拉伸区域,所述可拉伸区域包括彼此隔开的多个像素岛区、多个孔区,以及位于所述像素岛区与所述孔区之间的连接桥区,所述孔区设有一个或多个开孔,所述开孔贯穿或不贯穿基底,所述制备方法包括:
在所述孔区的基底上形成复合结构层,所述基底包括叠设的柔性层和阻挡层,所述复合结构层包括设置在所述阻挡层上的无机复合绝缘层,以及设于所述无机复合绝缘层上的有机复合层;
在所述有机复合层上形成第一开口,所述第一开口暴露出所述无机复合绝缘层的表面;
在所述无机复合绝缘层的被所述第一开口暴露的部分上形成第二开口,所述第二开口贯穿所述阻挡层,所述第二开口暴露出所述柔性层的表面;
在所述柔性层上形成第三开口,所述第三开口贯穿或不贯穿所述柔性层,所述第三开口在所述基底上的正投影包含所述第二开口在所述基底上的正投影,所述第一开口、所述第二开口和所述第三开口形成所述开孔,在平行于所述基底的方向上,所述第三开口相较于所述第二开口内扩的部分形成隔断槽,所述隔断槽设置在所述开孔的孔壁上;
在所述复合结构层上形成功能膜层,所述功能膜层设置在所述开孔的孔壁上,并在所述隔断槽处被隔断。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方 案的限制。
图1为一些显示基板的孔区的深孔和隔离结构的示意图;
图2a为本公开实施例的一种显示基板的可拉伸区域的平面结构示意图;
图2b为本公开实施例的另一种显示基板的可拉伸区域的平面结构示意图;
图2c为图2a中A-A位置的剖面结构示意图;
图3为在一些示例性实施例中形成显示基板的基底后的结构示意图;
图4为在一些示例性实施例中形成显示基板的像素岛区的驱动结构层,及孔区的无机复合绝缘层后的结构示意图;
图5为在一些示例性实施例中形成显示基板的像素岛区的平坦层、阳极和像素界定层,以及形成孔区的有机复合层并在有机复合层上形成第一过孔和第二过孔后的结构示意图;
图6为在一些示例性实施例中在孔区的无机复合绝缘层上形成贯穿基底的第三阻挡层的第三过孔后的结构示意图;
图7a为在一些示例性实施例中在孔区的基底的第三柔性层上形成第四过孔及第一隔断槽后的结构示意图;
图7b为在另一些示例性实施例中在孔区的基底的第三柔性层上形成第四过孔及第一隔断槽后的结构示意图;
图8a为在一些示例性实施例中在孔区的基底的第二阻挡层上形成第五过孔后的结构示意图;
图8b为在另一些示例性实施例中在孔区的基底的第二阻挡层上形成第五过孔后的结构示意图;
图9为在一些示例性实施例中在孔区的基底的第二柔性层上形成第六过孔及第二隔断槽后的结构示意图;
图10a为在一些示例性实施例中在孔区的基底的第一阻挡层上形成第七过孔、在第一柔性层上形成凹槽及第三隔断槽后的结构示意图;
图10b为在另一些示例性实施例中在孔区的基底的第一阻挡层上形成第 七过孔、在第一柔性层上形成第八过孔及第三隔断槽后的结构示意图;
图11a为在一些示例性实施例中形成有机功能层和阴极后的结构示意图;
图11b为图11a中A处的局部放大结构图。
具体实施方式
本领域的普通技术人员应当理解,可以对本公开实施例的技术方案进行修改或者等同替换,而不脱离本公开实施例技术方案的精神和范围,均应涵盖在本公开的权利要求范围当中。
一些技术中,如图1所示,OLED显示基板的可拉伸区域设置有深孔01,深孔01贯穿或者不贯穿柔性基底,在深孔01周边设有隔离结构02,隔离结构02为凹槽结构,该凹槽的槽口的横截面积小于凹槽其余部分的横截面积。蒸镀的OLED器件的共有层(比如有机发光层和阴极)会在隔离结构02处断开,形成位于隔离结构02的靠近深孔01一侧的第一部分,以及位于隔离结构02的远离深孔01一侧的第二部分,第二部分包括像素区域的OLED器件的共有层,由此,第一部分的水氧不会入侵到第二部分,从而达到阻断水氧入侵通道目的,但是,该方案需要引入新的隔离结构制备工艺及相应的掩膜版(Mask),且隔离结构还会占据空间,降低像素密度,影响显示效果。
本公开实施例提供一种显示基板,所述显示基板包括可拉伸区域。在一些示例性实施例中,如图2a所示,图2a示出了可拉伸区域的部分区域的结构,可看作是可拉伸区域的重复单元。所述可拉伸区域包括彼此隔开的多个像素岛区100、多个孔区300,以及位于所述像素岛区100与所述孔区300之间的连接桥区200;每个像素岛区100的周围可以围绕多个孔区300,连接桥区200位于相邻的孔区300之间,连接桥区200与相邻的像素岛区100连接,多个像素岛区100的发光器件通过连接桥区200的连接线进行信号连通。每个孔区300设有一个或多个开孔,所述开孔贯穿或不贯穿显示基板的基底。显示基板的基底可以为柔性基底,使显示基板的可拉伸区域能够拉伸,像素岛区100设置为显示图像,孔区300设置为在拉伸时提供变形空间,连接桥区200设置为走线(使相邻像素岛区100之间信号连通)和传递拉力。每个像素岛区100可以包括多个像素单元,每个像素单元包括多个发不同颜色光 的子像素,比如每个像素单元包括三个子像素,为第一子像素110、第二子像素120和第三子像素130,第一子像素110、第二子像素120和第三子像素130可以配置为分别发红色光、绿色光和蓝色光。通过调节每个像素单元的多个子像素的发光亮度,可使得相应像素单元基本能够显示所需的任意颜色。像素岛区100的每个子像素包括一个发光器件,每个发光器件可为OLED器件,包括叠设的阳极、有机发光层和阴极,有机发光层在阳极和阴极之间的电压下发光。可拉伸区域在外力作用下拉伸时,形变主要发生在连接桥区200,像素岛区100的发光器件基本保持形状,不会受到破坏。
在一些示例性实施例中,在平行于显示基板的平面,每个像素岛区的形状可以是矩形、圆形等。孔区的形状可以是矩形、弧形、T形、L形、“工”字型等。在一些示例中,如图2a所示,孔区300的形状为矩形,每个孔区300可看作是一个开孔(即后文中的开孔301),开孔形状为矩形,在平行于显示基板的平面,矩形开孔的宽度可以为5微米至20微米,长度可以为50微米至800微米,例如400微米。在另一些示例中,如图2b所示,图2b示出了可拉伸区域的部分区域的另一种结构,可看作是可拉伸区域的重复单元。图2b中,孔区300的形状为弧形,每个孔区300可看作是一个开孔,开孔形状为弧形,在平行于显示基板的平面,弧形开孔的直径可以为50微米至500微米,例如200微米。
在一些示例性实施例中,如图2c所示,图2c为图2a中A-A位置的剖面图,本公开实施例的显示基板包括可拉伸区域,所述可拉伸区域包括彼此隔开的多个像素岛区100、多个孔区300,以及位于所述像素岛区100与所述孔区300之间的连接桥区200;所述孔区300设有一个或多个开孔301,所述孔区300包括叠设在基底10上的复合结构层,所述开孔301贯穿所述复合结构层且所述开孔301的一部分设于所述基底10内,所述开孔301贯穿或不贯穿所述基底10,所述开孔301的孔壁上设有隔断槽(在一些示例中,隔断槽包括第一隔断槽302A、第二隔断槽302B和第三隔断槽302C);所述孔区300还包括设于所述复合结构层上、并设置在所述开孔301的孔壁上的功能膜层,所述功能膜层在所述隔断槽处被隔断。
本公开实施例的显示基板,将隔断槽设置在孔区300的开孔301的孔壁 上,功能膜层在开孔301的孔壁上的隔断槽处断开,即位于隔断槽的靠近基底10背面(即基底10的背离显示侧的表面)一侧的功能膜层(该部分功能膜层称为第一部分),与位于隔断槽的远离基底10背面一侧的功能膜层(该部分功能膜层称为第二部分)不再连接,第二部分包括位于像素岛区100的功能膜层,这样,功能膜层被隔断槽隔断后,第一部分的水氧不会侵入到第二部分,从而隔断槽可以阻断外界水氧沿功能膜层进入显示基板内部的路径,保证封装效果。此外,由于隔断槽是设置在开孔301的孔壁上,因而可以保证可拉伸区域的拉伸功能,而且隔断槽不会占据开孔301外的额外空间,不会降低像素密度,并且在隔断槽的形成过程中,不需要掩膜版,能有效降低生产成本,提高生产效率。
在一些示例性实施例中,所述可拉伸区域可以位于所述显示基板的靠近边缘的区域,或者可以位于显示基板的中间区域。本实施例的一个示例中,所述显示基板为矩形,矩形显示基板的四个角位置或者靠近四个侧边的位置均可以设置所述可拉伸区域,由此,可以实现显示基板的相应局部区域的可拉伸功能。
在一些示例性实施例中,所述基底包括叠设的柔性层和阻挡层,所述柔性层上设有所述隔断槽。所述基底可以设有一个柔性层,或者多个柔性层。本实施例的一个示例中,所述基底包括多个柔性层和多个阻挡层,所述柔性层和所述阻挡层交替设置,至少一个所述柔性层上设有所述隔断槽。示例性,如图2c所示,所述基底10包括依次叠设的第一柔性层10A、第一阻挡层10B、第二柔性层10C、第二阻挡层10D、第三柔性层10E和第三阻挡层10F,所述复合结构层设于所述第三阻挡层10F上,所述第三柔性层10E设有第一隔断槽302A,所述第二柔性层10C设有第二隔断槽302B,所述第一柔性层10A设有第三隔断槽302C。
本示例中,第一柔性层10A、第二柔性层10C和第三柔性层10E的材料可以采用聚酰亚胺(PI)或聚对苯二甲酸乙二酯(PET)等。第一阻挡层10B、第二阻挡层10D和第三阻挡层10F可以采用无机材料,比如氮化硅(SiNx)或氧化硅(SiOx)等。所述基底10还可以包括设置在第一阻挡层10B和第二柔性层10C之间的第一非晶硅(a-si)层,以及设置在第二阻挡层10D和 第三柔性层10E之间的第二非晶硅层。非晶硅层可以增加阻挡层与柔性层之间的结合力,使得在阻挡层上形成柔性层后,可保证柔性层牢靠附着在阻挡层上。
在一些示例性实施例中,所述隔断槽可以沿所述开孔301的周向设置,所述隔断槽呈闭合环状结构,隔断槽的形状可以与开孔301的形状相同。如图2c所示。所述隔断槽在垂直于基底10方向上的截面形状可以为矩形、梯形、半椭圆形或者其他不规则图形等。隔断槽的第一槽面3021可以为曲面(比如弧面)或者斜面等。隔断槽在平行于基底10方向上的深度可以沿远离基底10的方向逐渐增大。隔断槽在平行于基底10的方向上的深度,以及在垂直于基底10的方向上的宽度可根据需要设计,只要保证有机功能层22能在隔断槽处断开即可。
在一些示例性实施例中,所述开孔301的形状为矩形,所述开孔301的宽度为5微米至20微米,长度为50微米至800微米。在另一些示例中,所述开孔301的形状为弧形,所述开孔301的直径为50微米至500微米。
在一些示例性实施例中,所述隔断槽在平行于所述基底10的方向上的深度大于等于0.5微米。每个所述柔性层的厚度为5微米至12微米。
在一些示例性实施例中,如图11b所示,图11b示出了孔区300的功能膜层形成在开孔301内的结构示意图。所述隔断槽(本示例中示出了第一隔断槽302A、第二隔断槽302B和第三隔断槽302C)的内表面包括朝向所述开孔301的第一槽面3021、朝向所述基底10背侧(即基底10的背离显示侧的一侧)的第二槽面3022,以及与所述第二槽面3022相对的第三槽面3023。
在一些示例性实施例中,如图11b所示,所述第一槽面3021、所述第二槽面3022和所述第三槽面3023均由所述隔断槽所在的柔性层形成。图11b中,第一隔断槽302A形成在所述第三柔性层10E,第二隔断槽302B形成在所述第二柔性层10C,第三隔断槽302C形成在所述第一柔性层10A。第三柔性层10E形成第一隔断槽302A的第一槽面3021、所述第二槽面3022和所述第三槽面3023,第二柔性层10C形成第二隔断槽302B的第一槽面3021、所述第二槽面3022和所述第三槽面3023,第一柔性层10A形成第三隔断槽302C的第一槽面3021、所述第二槽面3022和所述第三槽面3023。
在一些示例性实施例中,所述第一槽面由所述隔断槽所在的柔性层形成;
所述第二槽面由所述隔断槽所在的柔性层,以及设于该柔性层的远离所述基底背侧的侧面上的膜层共同形成,或者,所述第二槽面由设于所述隔断槽所在的柔性层的远离所述基底背侧的侧面上的膜层形成;
所述第三槽面由所述隔断槽所在的柔性层,以及设于该柔性层的朝向所述基底背侧的侧面上的膜层共同形成,或者,所述第三槽面由设于所述隔断槽所在的柔性层的朝向所述基底背侧的侧面上的膜层形成。
在一些示例性实施例中,如图11b所示,所述功能膜层303还设置在所述隔断槽的第一槽面3021、第二槽面3022和第三槽面3023上,所述功能膜层303在所述第一槽面3021和第二槽面3022的相交处(图11b中P1和P2所示的位置)断开。功能膜层303在第一槽面3021和第二槽面3022的相交处附近的厚度变薄。功能膜层303在制备过程中可以采用蒸镀工艺形成。
在一些示例性实施例中,所述像素岛区100包括设于所述基底10上的驱动结构层和设于所述驱动结构层上的多个发光器件,所述驱动结构层包括像素驱动电路,所述发光器件包括叠设的阳极20、有机功能层22和阴极23,所述有机功能层22包括有机发光层;所述功能膜层包括叠设的第一功能膜层和第二功能膜层,所述第一功能膜层与任一个所述发光器件的所述有机功能层22中的一个膜层的材质相同,所述第二功能膜层与所述阴极23的材质相同。
本实施例的一个示例中,像素驱动电路包括多个薄膜晶体管和存储电容,发光器件的阳极20与其中一个薄膜晶体管的漏电极连接。发光器件可以为OLED器件,有机功能层22包括有机发光层,还可以包括叠设在有机发光层和阳极20之间的空穴注入层、空穴传输层和电子阻挡层,以及叠设在有机发光层和阴极23之间的空穴阻挡层、电子传输层和电子注入层。有机发光层在阳极20和阴极23之间的电压下发光。
本实施例的一个示例中,每个像素岛区100可以包括多个像素单元,每个像素单元包括多个发不同颜色光的子像素,比如每个像素单元包括红色子像素、绿色子像素和蓝色子像素。通过调节每个像素单元的多个子像素的发光亮度,可使得相应像素单元基本能够显示所需的任意颜色。像素岛区100 的每个子像素包括一个发光器件,像素岛区100包括阵列排布的多个子像素。在一些示例中,像素岛区100的所有子像素具有一个或多个共用膜层,每个共用膜层均为一体结构,并可以覆盖像素岛区100、连接桥区200和孔区300。共用膜层可以是其中一个发光器件中的有机功能层22中的任意一个或多个膜层,以及发光器件中的阴极23,如图2c所示,图2c示出了一个子像素的发光器件,该子像素的发光器件的有机功能层22和阴极23为像素岛区100的所有子像素的共用膜层。所述共用膜层在蒸镀至孔区300的开孔301内后,形成在开孔301的孔壁上并在开孔301的孔壁上的隔断槽处断开。所述共用膜层被隔断槽隔断后可以形成两个部分(比如隔断槽为一个的示例中),第一部分位于隔断槽的靠近基底10背面(即基底的背离显示侧的表面)一侧,第二部分位于隔断槽的远离基底10背面一侧,第二部分包括共用膜层的位于像素岛区100的部分,第一部分的水氧不会侵入到第二部分,由此,位于像素岛区100的共用膜层不会受到水氧侵蚀。
本实施例的一个示例中,孔区300的功能膜层的膜层结构可以与像素岛区100中多个发光器件的有机功能层中共用膜层的种类和数量有关。比如,在一些示例中,一个发光器件R的有机功能层22中的所有膜层均为共用膜层,该发光器件R的阴极23也为共用膜层,则,孔区300的功能膜层可以包括叠设的发光器件R的有机功能层22的全部膜层和阴极23。
在一些示例性实施例中,如图2c所示,所述复合结构层包括设置在所述基底10上的无机复合绝缘层305,以及设于所述无机复合绝缘层305上的有机复合层304,在平行于所述基底10的方向上,所述无机复合绝缘层305的朝向所述开孔301的侧面凸出于所述有机复合层304的朝向所述开孔301的侧面。
在一些示例性实施例中,如图2c所示,所述有机复合层304包括设于所述无机复合绝缘层305上的第一有机层(比如为平坦层19),以及设于所述第一有机层上的第二有机层(比如为像素界定层21),所述无机复合绝缘层305的朝向所述开孔301的侧面平齐设置,在平行于所述基底10的方向上,所述第一有机层的朝向所述开孔301的侧面凸出于所述第二有机层的朝向所述开孔301的侧面,所述无机复合绝缘层305的朝向所述开孔301的侧面凸 出于所述第一有机层的朝向所述开孔301的侧面。
下面通过显示基板的制备过程的示例说明本公开显示基板的结构。本公开所说的“构图工艺”包括沉积膜层、涂覆光刻胶、掩模曝光、显影、刻蚀和剥离光刻胶等处理。沉积可以采用选自溅射、蒸镀和化学气相沉积中的任意一种或多种,涂覆可以采用选自喷涂和旋涂中的任意一种或多种,刻蚀可以采用选自干刻和湿刻中的任意一种或多种。“薄膜”是指将某一种材料在基底上利用沉积或涂覆工艺制作出的一层薄膜。若在整个制作过程当中该“薄膜”无需构图工艺,则该“薄膜”还可以称为“层”。当在整个制作过程当中该“薄膜”还需构图工艺,则在构图工艺前称为“薄膜”,构图工艺后称为“层”。经过构图工艺后的“层”中包含至少一个“图案”。本公开中所说的“A和B同层设置”是指,A和B通过同一次构图工艺同时形成。“A的正投影包含B的正投影”是指,B的正投影落入A的正投影范围内,或者A的正投影覆盖B的正投影。
在一些示例性实施例中,图2c的显示基板的制备过程可以包括如下步骤:
(1)在载板1上制备柔性基底10。
本公开实施例的一个示例中,柔性基底10可以采用三层柔性层结构,柔性基底10包括在载板(可以但不限于玻璃材质)1上依次叠设的第一柔性材料层、第一无机材料层、第二柔性材料层、第二无机材料层、第三柔性材料层和第三无机材料层。第一柔性材料层、第二柔性材料层和第三柔性材料层的材料可以采用聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)或经表面处理的聚合物软膜等,第一无机材料层、第二无机材料层和第三无机材料层的材料可以采用氮化硅(SiNx)或氧化硅(SiOx)等,用于提高基底的抗水氧能力,第一无机材料层、第二无机材料层和第三无机材料层称为阻挡(Barrier)层。柔性基底10还可以包括设置在第一无机材料层和第二柔性材料层之间的第一半导体层,以及设置在第二无机材料层和第三柔性材料层之间的第二半导体层。第一半导体层和第二半导体层的材料可以采用非晶硅(a-si)。半导体层可以增加无机材料层与柔性材料之间的结合力。
在一示例性实施方式中,以叠层结构PI1/Barrier1/PI2/Barrier2/PI3/Barrier3为例,柔性基底10的制备过程可以包括:先在载板1上涂布一 层聚酰亚胺,固化成膜后形成第一柔性(PI1)层10A;随后在第一柔性层10A上沉积一层阻挡薄膜,形成覆盖第一柔性层10A的第一阻挡(Barrier1)层10B;然后在第一阻挡层10B上再涂布一层聚酰亚胺,固化成膜后形成第二柔性(PI2)层10C;然后在第二柔性层10C上沉积一层阻挡薄膜,形成覆盖第二柔性层10C的第二阻挡(Barrier2)层10D;然后在第二阻挡层10D上再涂布一层聚酰亚胺,固化成膜后形成第三柔性(PI3)层10E,然后在第三柔性层10E上沉积一层阻挡薄膜,形成覆盖第三柔性层10E的第三阻挡(Barrier3)层10F,完成柔性基底10的制备,如图3所示。本次工艺后,像素岛区100、连接桥区200和孔区300均包括柔性基底10。
在其他示例中,柔性基底10可以采用一层柔性层结构、两层柔性层结构,或者三层以上的柔性层结构。柔性层的层数越多,最终形成的开孔301的深度越深,可拉伸区域的拉伸性能越好。
(2)在柔性基底10上制备驱动结构层和连接线图案,驱动结构层形成在像素岛区100,连接线形成在连接桥区200。驱动结构层包括多条栅线和多条数据线,多条栅线和多条数据线垂直交叉限定出多个矩阵排布的子像素,每个子像素设置有薄膜晶体管,如图4所示。本步骤的制备过程可以包括:
在柔性基底10上依次沉积第一绝缘薄膜和有源层薄膜,通过构图工艺对有源层薄膜进行构图,形成覆盖整个柔性基底10的第一绝缘层11,以及设置在第一绝缘层11上的有源层图案,有源层图案形成在像素岛区100,至少包括有源层12。本次构图工艺后,连接桥区200和孔区300包括设置在柔性基底10上的第一绝缘层11。
随后,依次沉积第二绝缘薄膜和第一金属薄膜,通过构图工艺对第一金属薄膜进行构图,形成覆盖有源层图案的第二绝缘层13,以及设置在第二绝缘层13上的第一栅金属层图案,第一栅金属层图案包括形成在像素岛区100的栅电极14A、第一电容电极14B和栅线(图未示),以及形成在连接桥区200的栅连接线(图未示)。本次构图工艺后,孔区300包括在柔性基底10叠设的第一绝缘层11和第二绝缘层13。
随后,依次沉积第三绝缘薄膜和第二金属薄膜,通过构图工艺对第二金属薄膜进行构图,形成覆盖第一栅金属层的第三绝缘层15,以及设置在第三 绝缘层15上的第二栅金属层图案,第二栅金属层图案包括形成在像素岛区100的第二电容电极16,第二电容电极16的位置与第一电容电极14B的位置相对应。本次构图工艺后,连接桥区200和孔区300包括在柔性基底10上叠设的第一绝缘层11、第二绝缘层13和第三绝缘层15。
随后,沉积第四绝缘薄膜,通过构图工艺对第四无机绝缘薄膜进行构图,形成覆盖第二栅金属层的第四绝缘层17图案,第四绝缘层17上开设有两个过孔,该两个过孔内的第四绝缘层17、第三绝缘层15和第二绝缘层13被刻蚀掉,暴露出有源层12的表面。本次构图工艺后,连接桥区200和孔区300包括在基底10上叠设的第一绝缘层11、第二绝缘层13、第三绝缘层15和第四绝缘层17。
随后,沉积第三金属薄膜,通过构图工艺对第三金属薄膜进行构图,在第四绝缘层17上形成第三金属层图案,第三金属层图案包括位于像素岛区100的源电极18A、漏电极18B和数据线(图未示),以及位于连接桥区200的数据连接线18C。源电极18A通过贯穿第四绝缘层17、第三绝缘层15和第二绝缘层13的一个过孔与有源层12的背离基底10的表面连接,漏电极18B通过贯穿第四绝缘层17、第三绝缘层15和第二绝缘层13的另一个过孔与有源层12的背离基底10的表面连接。本次构图工艺后,孔区300的膜层结构未发生变化。
至此,在柔性基底10上制备完成像素岛区100的驱动结构层和连接桥区200的连接线。像素岛区100的驱动结构层中,有源层12、栅电极14A、源电极18A和漏电极18B组成薄膜晶体管101,该薄膜晶体管101可以是像素驱动电路中的驱动晶体管,该驱动晶体管的漏电极18B与发光器件中的阳极连接。第一电容电极14B和第二电容电极16组成存储电容102。连接桥区200和孔区300包括设置在柔性基底10上的无机复合绝缘层305,无机复合绝缘层305包括叠设的第一绝缘层11、第二绝缘层13、第三绝缘层15和第四绝缘层17。连接桥区200还包括设置在第二绝缘层13上的栅连接线,以及设置在无机复合绝缘层305上的数据连接线18C,栅连接线连接相邻像素岛区100中的栅线,数据连接线18C可以连接相邻像素岛区100中的数据线,用于相邻像素岛区100之间的信号连通。
在示例性实施方式中,第一绝缘薄膜、第二绝缘薄膜、第三绝缘薄膜和第四绝缘薄膜可以采用硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或更多种,可以是单层、多层或复合层。第一绝缘层11称为缓冲(Buffer)层,用于提高柔性基底10的抗水氧能力,第二绝缘层13和第三绝缘层15称为栅绝缘(GI)层,第四绝缘层17称为层间绝缘(ILD)层。第一金属薄膜、第二金属薄膜、第三金属薄膜可以采用金属材料,如银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或更多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Ti/Al/Ti等。有源层薄膜可以采用非晶态氧化铟镓锌材料(a-IGZO)、氮氧化锌(ZnON)、氧化铟锌锡(IZTO)、非晶硅(a-Si)、多晶硅(p-Si)、六噻吩或聚噻吩等材料,即本公开适用于基于氧化物Oxide技术、硅技术或有机物技术制造的晶体管。
(3)在形成前述图案的柔性基底10上形成平坦层19,以及阳极20、像素界定层21,如图5所示,在一些示例性实施例中,本步骤的制备过程可以包括:
在形成前述图案的柔性基底10上涂覆有机材料的平坦薄膜,形成覆盖整个柔性基底10的平坦(PLN)层19,通过掩膜、曝光、显影工艺,在像素岛区100的平坦层19上形成过孔,该过孔内的平坦层19被显影掉,暴露出薄膜晶体管101的漏电极18B的表面。本次构图工艺后,连接桥区200和孔区300均包括设置在第四绝缘层17上的平坦层19。
在形成前述图案的柔性基底10上沉积透明导电薄膜,通过构图工艺对透明导电薄膜进行构图,形成阳极20图案,阳极20形成在像素岛区100的平坦层19上,并通过平坦层19上的过孔与薄膜晶体管101的漏电极18B连接。在示例性实施方式中,透明导电薄膜的材料可以采用氧化铟锡(ITO)或氧化铟锌(IZO)。
在形成前述图案的柔性基底10上涂覆像素界定薄膜,通过掩膜、曝光、显影工艺,形成像素界定(PDL)层21图案。像素岛区100的像素界定层21上设有像素开口,像素开口内的像素界定层21被显影掉,暴露出阳极20的表面。孔区300的像素界定层21上设有第一过孔310,第一过孔310暴露 出平坦层19的表面。
在平坦层19的被第一过孔310暴露的部分上形成第二过孔320,第二过孔320内的平坦层19被显影掉,暴露出第四绝缘层17的表面。第一过孔310在柔性基底10上的正投影可以包含第二过孔320在柔性基底10上的正投影。在平行于基底10的方向上,平坦层19的朝向第二过孔320的侧面凸出于像素界定层21的朝向第一过孔310的侧面。其中,第一过孔310和第二过孔320共同称为第一开口。
(4)在孔区300的第四绝缘层17的被第二过孔320暴露的部分上形成第三过孔330,第三过孔330贯穿第四绝缘层17、第三绝缘层15、第二绝缘层13、第一绝缘层11和柔性基底10的第三阻挡层10F。第三过孔330内的第四绝缘层17、第三绝缘层15、第二绝缘层13、第一绝缘层11和柔性基底10的第三阻挡层10F被刻蚀掉,第三过孔330暴露出第三柔性层10E的表面。第二过孔320在柔性基底10上的正投影可以包含第三过孔330在柔性基底10上的正投影,如图6所示。
在平行于基底10的方向上,第四绝缘层17、第三绝缘层15、第二绝缘层13、第一绝缘层11和柔性基底10的第三阻挡层10F朝向第三过孔330的侧面(可看作是第三过孔330的孔壁)平齐,并凸出于平坦层19的朝向第二过孔320的侧面。第三过孔330称为第二开口。
(5)在孔区300的第三柔性层10E上形成第四过孔340A和第一隔断槽302A,如图7a所示。第三柔性层10E的被第三过孔330暴露的部分被完全刻蚀掉,形成第四过孔340A。第四过孔340A在柔性基底10上的正投影可以与第三过孔330在柔性基底10上的正投影重叠,或者第四过孔340A在柔性基底10上的正投影包含第三过孔330在柔性基底10上的正投影。第三柔性层10E的朝向第四过孔340A侧面形成第一隔断槽302A,第一隔断槽302A的槽口朝向第四过孔340A并与第四过孔340A连通。第一隔断槽302A内部的第三柔性层10E被刻蚀掉,第一隔断槽302A的内表面由第三柔性层10E形成。第一隔断槽302A的内表面包括朝向第四过孔340A的第一槽面3021、朝向柔性基底10背侧的第二槽面3022和背离柔性基底10背侧的第三槽面3023,第三槽面3023与第二槽面3022相对,在平行于基底10的方向上,第 三过孔330的孔壁凸出于第一槽面3021。本示例中,第一隔断槽302A的第一槽面3021、第二槽面3022和第三槽面3023均由第三柔性层10E形成。本示例中,第四过孔340A和第一隔断槽302A共同称为第三开口。
在另一些示例性实施例中,如图7b所示。在第三柔性层10E上形成第四过孔340B,第四过孔340B在柔性基底10上的正投影包含第三过孔330在柔性基底10上的正投影,第四过孔340B内的第三柔性层10E被完全刻蚀掉。在平行于基底10的方向上,第三过孔330的孔壁凸出于第四过孔340B的孔壁。本示例中,第四过孔340B称为第三开口。
本步骤中,第三柔性层10E的材料为PI,在第三柔性层10E上形成所述第三开口的过程可采用刻蚀的方法。可采用四氟化碳和氧气的混合气体(CF 4/O 2)为刻蚀气体,可通过调整CF 4/O 2的比例,加上第二阻挡层10D对刻蚀气体的阻挡作用(对第三柔性层10E刻蚀的刻蚀气体对第二阻挡层10D无效),实现横向刻蚀,刻蚀出满足要求的第三开口的结构,即刻蚀出第四过孔340A和第一隔断槽302A的结构,或者第四过孔340B的结构。
在一些示例中,前文所述的第一开口、第二开口和第三开口可以形成所述开孔301,开孔301贯穿或不贯穿所述基底10。基底10可以采用一层柔性性结构,或者采用多层柔性层结构。
(6)在孔区300的第二阻挡层10D上形成第五过孔350,如图8a所示。第五过孔350在柔性基底10上的正投影与第三过孔330在柔性基底10上的正投影可以重叠。第五过孔350的孔壁与第三过孔330的孔壁在平行于基底10的方向上可以平齐。第三柔性层10E上形成第一隔断槽302A。
在另一些示例中,在孔区300的第二阻挡层10D上形成第五过孔350,如图8b所示,第三柔性层10E上形成的第四过孔340B在柔性基底10上的正投影包含第三过孔330和第五过孔350在柔性基底10上的正投影。在平行于基底10的方向上,第五过孔350的孔壁与第三过孔330的孔壁在平行于基底10的方向上平齐,并均凸出于第四过孔340B的孔壁,第三阻挡层10F的凸出于第四过孔340B的孔壁的部分为第一凸出部,第二阻挡层10D的凸出于第四过孔340B的孔壁的部分为第二凸出部。第一凸出部的朝向基底10的表面、第二凸出部的背离基底10的表面,以及第四过孔340B的孔壁形成第 一隔断槽302A的内表面。即本示例中,第一隔断槽302A的第一槽面3021由第三柔性层10E形成,第二槽面3022由第一凸出部的朝向基底10的表面形成,第三槽面3023由第二凸出部的背离基底10的表面形成。
在其他示例中,第一隔断槽302A的第一槽面3021由第三柔性层10E形成,第二槽面3022可以由第三柔性层10E和第三阻挡层10F共同形成,第三槽面3023可以由第三柔性层10E和第二阻挡层10D共同形成。
(7)在第二柔性层10C上形成第六过孔360和第二隔断槽302B。本步骤形成第六过孔360和第二隔断槽302B的方法,与在第三柔性层10E上形成第四过孔340A(或者第四过孔340B)和第一隔断槽302A的方法可以相同,第二隔断槽302B的结构与第一隔断槽302A的结构可以相同。如图9所示,图9示出了一种在第二柔性层10C上形成第二隔断槽302B的结构。
(8)在第一阻挡层10B上形成第七过孔370。本步骤在第一阻挡层10B上形成第七过孔370的方法,与在第二阻挡层10D上形成第五过孔350的方法可以相同,第七过孔370的结构与第五过孔350的结构可以相同,如图10a所示。
(9)在第一柔性层10A上形成凹槽380A和第三隔断槽302C,如图10a所示,示例性地,凹槽380A在基底10上的正投影包含第七过孔370在基底10上的正投影。凹槽380A的槽口在基底10上的正投影可以与第七过孔370在基底10上的正投影重叠,或者,凹槽380A的槽口在基底10上的正投影包含第七过孔370在基底10上的正投影。
在平行于基底10的方向上,凹槽380A相较于第七过孔370的孔壁内扩的部分形成第三隔断槽302C。第三隔断槽302C的内表面可以由第一柔性层10A形成,或者第三隔断槽302C的内表面由第一柔性层10A和第一阻挡层10B的朝向第三隔断槽302C内部的部分共同形成。本示例中,由于凹槽380A不贯穿第一柔性层10A,因此,孔区300最终形成的开孔301不贯穿基底10。
在另一些示例中,在第一柔性层10A上形成第八过孔380B和第三隔断槽302C,如图10b所示,第八过孔380B贯穿第一柔性层10A。本示例中,形成第八过孔380B和第三隔断槽302C的方法,可以与在第三柔性层10E 上形成第四过孔340A(或者第四过孔340B)和第一隔断槽302A的方法相同,第三隔断槽302C的结构与第一隔断槽302A的结构可以相同。
在一些示例中,至此,在孔区300形成开孔301和隔断槽。其中,第一过孔310、第二过孔320、第三过孔330、第四过孔340A(或第四过孔340B)、第五过孔350、第六过孔360、第七过孔370和凹槽380A(或第八过孔380B)形成所述开孔301,开孔301贯穿基底10或不贯穿基底10。前文示例中,在开孔301的孔壁上沿垂直于基底10的方向设置有三个隔断槽,为第一隔断槽302A、第二隔断槽302B和第三隔断槽302C,三个隔断槽的结构可以相同。三个隔断槽分别设置在柔性基底10的第三柔性层10E、第二柔性层10C和第一柔性层10A,每个柔性层设置一个隔断槽。开孔301的孔壁上设置的隔断槽的数目可以等于或者小于柔性基底10的柔性层的数目。在其他示例中,柔性基底10的柔性层的数目可以是一个、两个,或者三个以上。在垂直于基底10的方向上,第一隔断槽302A、第二隔断槽302B和第三隔断槽302C的截面形状可以为矩形、梯形、半椭圆形,或者为不规则形状。
(10)在形成前述图案的柔性基底10上依次形成有机功能层22和阴极23,如图11a所示。
在一些示例性实施例中,有机功能层22和阴极23均可以采用蒸镀工艺形成在像素岛区100、连接桥区200和孔区300。像素岛区100和连接桥区200的有机功能层22覆盖在像素界定层21上,且像素岛区100的有机功能层22与像素界定层21的像素开口所暴露出的阳极20连接。孔区300的有机功能层22覆盖在开孔301的孔壁上,以及隔断槽(例如包括第一隔断槽302A、第二隔断槽302B和第三隔断槽302C)内。阴极23形成在有机功能层22上,像素岛区100的阳极20、有机功能层22和阴极23形成发光器件。阴极23的材料可以采用镁(Mg)、银(Ag)、铝(Al)、铜(Cu)和锂(Li)中的任意一种或更多种,或采用上述金属中任意一种或多种制成的合金。
由于隔断槽的存在,蒸镀形成的有机功能层22在隔断槽处断开,隔断槽的内表面包括朝向开孔301的第一槽面3021、朝向基底10背侧的第二槽面3022,以及与所述第二槽面3022相对的第三槽面3023。一般地,有机功能层22会在第一槽面3021与第二槽面3022的相交处断开,有机功能层22在 第一槽面3021与第二槽面3022的相交处附近的厚度变薄,如图11b所示,图11b为图11a中A处的局部放大图,以第一隔断槽302A为例,剖面图中有机功能层22的断开位置为P1和P2所示的位置。有机功能层22还在第二隔断槽302B和第三隔断槽302C的相应位置断开。其中,隔断槽在平行于基底10的方向上的深度,以及在垂直于基底10的方向上的宽度可根据需要设计,只要保证有机功能层22能在隔断槽处断开即可。同理,阴极23形成在有机功能层22上,阴极23在隔断槽处断开的位置与有机功能层22在隔断槽处断开的位置相对应。由于有机功能层22和阴极23均在隔断槽处断开,因此阻断了水氧的入侵路径,水氧不会入侵到像素岛区100的有机功能层22和阴极23内,保证了封装效果。设置多个隔断槽结构,可以使有机功能层22和阴极23在多个隔断槽处均被隔断,即有机功能层22和阴极23在多个位置被隔断,增加多重隔断保障。此外,由于隔断槽是设置在开孔301的孔壁上,因而隔断槽不会占据开孔301外的额外空间,不会降低像素密度,并且在隔断槽的形成过程中,不需要掩膜版,节省成本。
(11)在形成前述图案的柔性基底10上形成封装结构层。封装结构层可以包括叠设的第一无机封装层24、有机封装层25和第二无机封装层26。第一无机封装层24覆盖阴极23,有机封装层25设置在像素岛区100,第二无机封装层26覆盖第一无机封装层24和有机封装层25。孔区300包括叠设的第一无机封装层24和第二无机封装层26,第一无机封装层24和第二无机封装层26覆盖在孔区300的阴极23上,将有机功能层22和阴极23封装,如图2c所示。第一无机封装层24、有机封装层25和第二无机封装层26可以采用化学气相沉积(CVD)或者溅镀等镀膜方式制作,封装结构层起到隔绝水氧的作用,能够有效防止空气与有机功能层22和阴极23接触。最后,将制备完成所有膜层的柔性基底10从载板1上剥离下来,得到显示基板。
基于前文内容,本公开实施例还提供一种显示基板的制备方法,所述显示基板包括可拉伸区域,所述可拉伸区域包括彼此隔开的多个像素岛区、多个孔区,以及位于所述像素岛区与所述孔区之间的连接桥区,所述孔区设有一个或多个开孔,所述开孔贯穿或不贯穿基底,所述制备方法包括:
在所述孔区的基底上形成复合结构层,所述基底包括叠设的柔性层和阻 挡层,所述复合结构层包括设置在所述阻挡层上的无机复合绝缘层,以及设于所述无机复合绝缘层上的有机复合层;
在所述有机复合层上形成第一开口,所述第一开口暴露出所述无机复合绝缘层的表面;
在所述无机复合绝缘层的被所述第一开口暴露的部分上形成第二开口,所述第二开口贯穿所述阻挡层,所述第二开口暴露出所述柔性层的表面;
在所述柔性层上形成第三开口,所述第三开口贯穿或不贯穿所述柔性层,所述第三开口在所述基底上的正投影包含所述第二开口在所述基底上的正投影,所述第一开口、所述第二开口和所述第三开口形成所述开孔,在平行于所述基底的方向上,所述第三开口相较于所述第二开口内扩的部分形成隔断槽,所述隔断槽设置在所述开孔的孔壁上;
在所述复合结构层上形成功能膜层,所述功能膜层设置在所述开孔的孔壁上,并在所述隔断槽处被隔断。
本公开实施例还提供一种显示装置,包括前文任一实施例所述的显示基板。显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框或导航仪等任何具有显示功能的产品或部件。
在本文的描述中,术语“上”、“下”、“左”、“右”、“顶”、“内”、“外”、“轴向”、“四角”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开实施例的简化描述,而不是指示或暗示所指的结构具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本文的描述中,除非另有明确的规定和限定,术语“连接”、“固定连接”、“安装”、“装配”应做广义理解,例如,可以是固定连接,或者是可拆卸连接,或一体地连接;术语“安装”、“连接”、“固定连接”可以是直接相连,或是通过中间媒介间接相连,或是两个元件内部的连通。对于本领域的普通技术人员而言,可以理解上述术语在本文中的含义。

Claims (18)

  1. 一种显示基板,包括可拉伸区域,所述可拉伸区域包括彼此隔开的多个像素岛区、多个孔区,以及位于所述像素岛区与所述孔区之间的连接桥区;所述孔区设有一个或多个开孔,所述孔区包括叠设在基底上的复合结构层,所述开孔贯穿所述复合结构层且所述开孔的一部分设于所述基底内,所述开孔贯穿或不贯穿所述基底,所述开孔的孔壁上设有隔断槽;所述孔区还包括设于所述复合结构层上、并设置在所述开孔的孔壁上的功能膜层,所述功能膜层在所述隔断槽处被隔断。
  2. 如权利要求1所述的显示基板,其中:所述基底包括叠设的柔性层和阻挡层,所述柔性层上设有所述隔断槽。
  3. 如权利要求2所述的显示基板,其中:所述基底包括多个柔性层和多个阻挡层,所述柔性层和所述阻挡层交替设置,至少一个所述柔性层上设有所述隔断槽。
  4. 如权利要求3所述的显示基板,其中:所述基底包括依次叠设的第一柔性层、第一阻挡层、第二柔性层、第二阻挡层、第三柔性层和第三阻挡层,所述复合结构层设于所述第三阻挡层上,所述第三柔性层设有第一隔断槽,所述第二柔性层设有第二隔断槽,所述第一柔性层设有第三隔断槽。
  5. 如权利要求2或3所述的显示基板,其中:所述隔断槽的内表面包括朝向所述开孔的第一槽面、朝向所述基底背侧的第二槽面,以及与所述第二槽面相对的第三槽面。
  6. 如权利要求5所述的显示基板,其中:所述第一槽面、所述第二槽面和所述第三槽面均由所述隔断槽所在的柔性层形成。
  7. 如权利要求5所述的显示基板,其中:所述第一槽面由所述隔断槽所在的柔性层形成;
    所述第二槽面由所述隔断槽所在的柔性层,以及设于该柔性层的远离所述基底背侧的侧面上的膜层共同形成,或者,所述第二槽面由设于所述隔断槽所在的柔性层的远离所述基底背侧的侧面上的膜层形成;
    所述第三槽面由所述隔断槽所在的柔性层,以及设于该柔性层的朝向所 述基底背侧的侧面上的膜层共同形成,或者,所述第三槽面由设于所述隔断槽所在的柔性层的朝向所述基底背侧的侧面上的膜层形成。
  8. 如权利要求5所述的显示基板,其中:所述功能膜层还设置在所述隔断槽的第一槽面、第二槽面和第三槽面上,所述功能膜层在所述第一槽面和第二槽面的相交处断开。
  9. 如权利要求1所述的显示基板,其中:所述隔断槽沿所述开孔的周向设置,所述隔断槽呈闭合环状结构。
  10. 如权利要求1所述的显示基板,其中:所述像素岛区包括设于所述基底上的驱动结构层和设于所述驱动结构层上的多个发光器件,所述驱动结构层包括像素驱动电路,所述发光器件包括叠设的阳极、有机功能层和阴极,所述有机功能层包括有机发光层;所述功能膜层包括叠设的第一功能膜层和第二功能膜层,所述第一功能膜层与任一个所述发光器件的所述有机功能层中的一个膜层的材质相同,所述第二功能膜层与所述阴极的材质相同。
  11. 如权利要求1所述的显示基板,其中:所述复合结构层包括设置在所述基底上的无机复合绝缘层,以及设于所述无机复合绝缘层上的有机复合层,在平行于所述基底的方向上,所述无机复合绝缘层的朝向所述开孔的侧面凸出于所述有机复合层的朝向所述开孔的侧面。
  12. 如权利要求11所述的显示基板,其中:所述有机复合层包括设于所述无机复合绝缘层上的第一有机层,以及设于所述第一有机层上的第二有机层,所述无机复合绝缘层的朝向所述开孔的侧面平齐设置,在平行于所述基底的方向上,所述第一有机层的朝向所述开孔的侧面凸出于所述第二有机层的朝向所述开孔的侧面,所述无机复合绝缘层的朝向所述开孔的侧面凸出于所述第一有机层的朝向所述开孔的侧面。
  13. 如权利要求1所述的显示基板,其中:所述开孔的形状为矩形,所述开孔的宽度为5微米至20微米,长度为50微米至800微米;
    或者,所述开孔的形状为弧形,所述开孔的直径为50微米至500微米。
  14. 如权利要求1所述的显示基板,其中:所述隔断槽在平行于所述基底的方向上的深度大于等于0.5微米。
  15. 如权利要求2所述的显示基板,其中:所述柔性层的厚度为5微米至12微米。
  16. 一种显示装置,包括权利要求1至15任一项所述的显示基板。
  17. 一种显示基板的制备方法,所述显示基板包括可拉伸区域,所述可拉伸区域包括彼此隔开的多个像素岛区、多个孔区,以及位于所述像素岛区与所述孔区之间的连接桥区,所述孔区设有一个或多个开孔,所述开孔贯穿或不贯穿基底,所述制备方法包括:
    在所述孔区的基底上形成复合结构层,所述基底包括叠设的柔性层和阻挡层,所述复合结构层包括设置在所述阻挡层上的无机复合绝缘层,以及设于所述无机复合绝缘层上的有机复合层;
    在所述有机复合层上形成第一开口,所述第一开口暴露出所述无机复合绝缘层的表面;
    在所述无机复合绝缘层的被所述第一开口暴露的部分上形成第二开口,所述第二开口贯穿所述阻挡层,所述第二开口暴露出所述柔性层的表面;
    在所述柔性层上形成第三开口,所述第三开口贯穿或不贯穿所述柔性层,所述第三开口在所述基底上的正投影包含所述第二开口在所述基底上的正投影,所述第一开口、所述第二开口和所述第三开口形成所述开孔,在平行于所述基底的方向上,所述第三开口相较于所述第二开口内扩的部分形成隔断槽,所述隔断槽设置在所述开孔的孔壁上;
    在所述复合结构层上形成功能膜层,所述功能膜层设置在所述开孔的孔壁上,并在所述隔断槽处被隔断。
  18. 如权利要求17所述的显示基板的制备方法,其中:所述基底包括多个柔性层和多个阻挡层,所述柔性层和所述阻挡层交替设置,至少一个所述柔性层上设有所述隔断槽。
PCT/CN2021/111722 2020-09-30 2021-08-10 显示基板及其制备方法、显示装置 WO2022068409A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/789,168 US20230056754A1 (en) 2020-09-30 2021-08-10 Display substrate and manufacturing method therefor, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011065609.9 2020-09-30
CN202011065609.9A CN112186023B (zh) 2020-09-30 2020-09-30 一种显示基板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2022068409A1 true WO2022068409A1 (zh) 2022-04-07

Family

ID=73948360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111722 WO2022068409A1 (zh) 2020-09-30 2021-08-10 显示基板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20230056754A1 (zh)
CN (1) CN112186023B (zh)
WO (1) WO2022068409A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112186023B (zh) * 2020-09-30 2022-07-12 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN113161394A (zh) * 2021-01-22 2021-07-23 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN112968136B (zh) * 2021-02-04 2023-09-26 京东方科技集团股份有限公司 一种显示面板及其制备方法
CN113066367B (zh) * 2021-03-16 2023-05-16 京东方科技集团股份有限公司 显示基板、显示装置及其制造方法
CN113690289B (zh) * 2021-08-25 2024-05-14 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
GB2618467A (en) * 2021-09-27 2023-11-08 Boe Technology Group Co Ltd Display substrate and preparation method therefor, and display apparatus
CN114203734B (zh) * 2021-12-11 2023-08-22 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
KR20230101112A (ko) * 2021-12-29 2023-07-06 엘지디스플레이 주식회사 표시 장치
CN117016054A (zh) * 2022-03-02 2023-11-07 京东方科技集团股份有限公司 可拉伸显示面板及其制造方法、显示装置
CN115275052B (zh) * 2022-07-26 2023-09-26 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN115275053B (zh) * 2022-07-26 2023-09-26 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224006A (zh) * 2019-05-13 2019-09-10 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法
CN110311057A (zh) * 2019-07-29 2019-10-08 云谷(固安)科技有限公司 显示面板及其制备方法和显示装置
US20200235179A1 (en) * 2017-08-16 2020-07-23 Lg Display Co., Ltd. Organic Light Emitting Display Device, Head Mounted Display Including the Same and Method of Fabricating the Same
CN111490071A (zh) * 2019-05-08 2020-08-04 广东聚华印刷显示技术有限公司 显示基板及其制备方法和显示面板
CN111564482A (zh) * 2020-05-21 2020-08-21 京东方科技集团股份有限公司 显示基板及制备方法、显示装置
CN111653595A (zh) * 2020-06-15 2020-09-11 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示面板
CN112186023A (zh) * 2020-09-30 2021-01-05 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102612769B1 (ko) * 2018-11-09 2023-12-11 엘지디스플레이 주식회사 표시장치 및 이의 제조방법
CN111293235B (zh) * 2020-02-17 2023-04-07 京东方科技集团股份有限公司 一种显示基板的制备方法、显示基板及显示装置
CN111341210A (zh) * 2020-04-09 2020-06-26 京东方科技集团股份有限公司 显示面板、显示装置以及显示面板的制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200235179A1 (en) * 2017-08-16 2020-07-23 Lg Display Co., Ltd. Organic Light Emitting Display Device, Head Mounted Display Including the Same and Method of Fabricating the Same
CN111490071A (zh) * 2019-05-08 2020-08-04 广东聚华印刷显示技术有限公司 显示基板及其制备方法和显示面板
CN110224006A (zh) * 2019-05-13 2019-09-10 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法
CN110311057A (zh) * 2019-07-29 2019-10-08 云谷(固安)科技有限公司 显示面板及其制备方法和显示装置
CN111564482A (zh) * 2020-05-21 2020-08-21 京东方科技集团股份有限公司 显示基板及制备方法、显示装置
CN111653595A (zh) * 2020-06-15 2020-09-11 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示面板
CN112186023A (zh) * 2020-09-30 2021-01-05 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN112186023B (zh) 2022-07-12
CN112186023A (zh) 2021-01-05
US20230056754A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
WO2022068409A1 (zh) 显示基板及其制备方法、显示装置
CN109935730B (zh) 显示基板及其制备方法、显示装置
US11844239B2 (en) Display substrate and preparation method thereof, and display apparatus
US11903234B2 (en) Display substrate, preparation method thereof and display device
US20230040100A1 (en) Display substrate, preparation method therefor, and display apparatus
WO2022111094A1 (zh) 显示基板及其制备方法、显示装置
US11785821B2 (en) Display substrate and related device
TW202203454A (zh) 有機發光顯示裝置之畫素排列結構
CN114628405B (zh) 显示基板及其制作方法、以及显示装置
CN115988922B (zh) 显示基板及显示装置
JP2023531333A (ja) 表示基板及びその製造方法、表示装置
CN114628451A (zh) 显示基板和显示装置
WO2023098292A1 (zh) 显示基板及其制作方法、以及显示装置
CN216749902U (zh) 显示基板和显示装置
WO2023098285A1 (zh) 显示基板以及显示装置
US11974482B2 (en) Display substrate and related devices
WO2023143311A1 (zh) 显示基板及显示装置
CN213042915U (zh) 显示基板和显示装置
CN114156325A (zh) 一种显示基板、显示装置及显示基板的制备方法
WO2023097529A1 (zh) 显示基板及其制作方法、显示装置
WO2023098298A9 (zh) 显示基板和显示装置
US20240237463A1 (en) Display substrate and related devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874071

Country of ref document: EP

Kind code of ref document: A1