WO2022068379A1 - 掩膜板,掩膜板组件及其制造方法 - Google Patents

掩膜板,掩膜板组件及其制造方法 Download PDF

Info

Publication number
WO2022068379A1
WO2022068379A1 PCT/CN2021/110585 CN2021110585W WO2022068379A1 WO 2022068379 A1 WO2022068379 A1 WO 2022068379A1 CN 2021110585 W CN2021110585 W CN 2021110585W WO 2022068379 A1 WO2022068379 A1 WO 2022068379A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
area
welding
effective
fine metal
Prior art date
Application number
PCT/CN2021/110585
Other languages
English (en)
French (fr)
Inventor
刘月
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/788,980 priority Critical patent/US20230031990A1/en
Publication of WO2022068379A1 publication Critical patent/WO2022068379A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present disclosure relates to the technical field of photolithography masks, and in particular, to a mask plate, a mask plate assembly and a manufacturing method thereof.
  • the mask used for vacuum evaporation is a crucial component, and the quality of the mask directly affects the production cost and product quality.
  • the fine metal mask (Fine Metal Mask, FMM) is one of the most critical equipment. FMM is used for vapor deposition of light-emitting layer materials to form pixel patterns on the backplane.
  • Some embodiments of the present disclosure provide a mask plate, the mask plate includes: an effective mask area located in the middle of the mask plate, the effective mask area has a plurality of first through holes arranged in an array ; and a bonding area, configured to be welded to the mask frame, on opposite sides of the effective mask area, the bonding area having a plurality of second through holes arranged in an array.
  • the mask plate further includes: a stress buffer area located on a side of the bonding area away from the effective mask area, the stress buffer area has a plurality of third through holes arranged in an array, The stress buffer zone is configured to buffer the stress on the mask plate when the mask plate is stretched.
  • the mask plate further includes: a clamping area, which is configured to be clamped by a clamp of a web stretching machine when the mask plate is stretched, located at a portion of the stress buffer zone away from the welding area. side.
  • the bonding area includes a first bonding area and a second bonding area, the first bonding area and the second bonding area are respectively located on opposite sides of the effective mask area; the stress buffer area including a first stress buffer area and a second stress buffer area, the first stress buffer area is located on the side of the first bonding area away from the effective mask area, and the second stress buffer area is located on the second bonding area
  • the clamping area includes a first clamping area and a second clamping area, and the first clamping area is located in the first stress buffer area away from the first welding area
  • the second clamping area is located on the side of the second stress buffer zone away from the second welding area.
  • the distribution density of the first through holes, the distribution density of the second through holes, and the distribution density of the third through holes are the same or different.
  • the material of the mask is a metal or metal alloy material with a low expansion coefficient.
  • the material of the mask is Invar alloy or SUS alloy.
  • the shape of the first through hole is a circle or a polygon.
  • the distance between adjacent first through holes is 10-300 ⁇ m.
  • Some embodiments of the present disclosure provide a mask assembly comprising: a mask frame including a plurality of frames and an opening area surrounded by the plurality of frames; and at least one of the above-described embodiments The mask plate, wherein the welding area of the mask plate is welded to two opposite borders of the mask plate frame.
  • the orthographic projection of the effective mask area of the reticle on the reticle frame falls into the opening area.
  • the at least one mask plate includes a plurality of mask plates, and the plurality of mask plates are sequentially arranged along the extending direction of the two opposite frames.
  • the material of the mask frame is a metal or metal alloy material with a low coefficient of expansion.
  • Some embodiments of the present disclosure provide a method for manufacturing a mask assembly, the manufacturing method comprising: stretching the mask described in the foregoing embodiments along an extending direction of the mask by using a net stretcher to make all the mask components stretched.
  • the mask plate is in a stretched state; the mask plate in the stretched state is aligned and closely attached to the mask plate frame, so that the welding area of the mask plate is close to the mask plate frame two opposite frames; and welding the welding area to the two frames.
  • the welding of the welding area to the two frames includes: disposing a welding sheet at the welding area, the welding sheet is located on the side of the welding area away from the mask frame, and using a welding sheet The welding area is welded to the two frames.
  • the manufacturing method further includes: cutting the mask plate on a side of the bonding area away from the effective mask area.
  • FIG. 1 is a schematic structural diagram of a fine metal mask according to some embodiments of the present disclosure
  • FIG. 2 is a schematic structural diagram of a mask assembly according to some embodiments of the present disclosure.
  • FIG. 3 is a structural diagram of the second through hole of the welding area of the fine metal mask after welding according to some embodiments of the present disclosure
  • FIG. 4 is a flowchart of a method for manufacturing a mask assembly according to some embodiments of the present disclosure
  • FIG. 5 is a comparison diagram of a fine metal mask in the related art and a fine metal mask according to some embodiments of the present disclosure
  • FIG. 6 is a drawing cloud diagram of the fine metal mask in the related art when performing drawing simulation
  • FIG. 7 shows a stretch cloud diagram of a fine metal mask in stretch simulation according to some embodiments of the present disclosure
  • FIG. 8 is a comparison diagram of tensile folds of a fine metal mask in the related art and a fine metal mask according to some embodiments of the present disclosure
  • FIG. 9 is a comparison diagram of tensile sag of a fine metal mask in the related art and a fine metal mask according to some embodiments of the present disclosure.
  • the expressions “located on the same layer” and “disposed on the same layer” generally mean that the first part and the second part may use the same material and may be formed by the same patterning process.
  • the expressions “located on different layers”, “disposed of different layers” generally mean that the first part and the second part are formed by different patterning processes.
  • FMM Fe Matrix Organic Light Emitting Display
  • the fine metal mask is the core component in the evaporation process. Its main function is to deposit RGB organic light-emitting materials to the corresponding positions of the substrate during the AMOLED production process to form patterns on the substrate. Since the thickness of the FMM is very thin, wrinkles are easily generated during the stretching process of the net, and its flatness directly affects the evaporation effect. The larger the size of the panel and the higher the resolution, the larger and finer the size of the FMM required. The flatness of the FMM is required to be higher.
  • the mask refers to a fine metal mask, ie, FMM.
  • the present disclosure provides a mask plate, the mask plate includes: an effective mask area located in the middle of the mask plate, the effective mask area has a plurality of first through holes arranged in an array; and welding A region configured to be soldered to the mask frame is located on opposite sides of the effective mask region, and the solder region has a plurality of second through holes arranged in an array.
  • the present disclosure by arranging through holes in the welding area of the fine metal mask, the stretched wrinkle of the fine metal mask is reduced, and the flatness of the web of the fine metal mask is improved.
  • the mask assembly using the fine metal mask can obtain better evaporation effect in the AMOLED manufacturing process.
  • FIG. 1 is a schematic structural diagram of a fine metal mask according to some embodiments of the present disclosure.
  • the fine metal mask 10 includes an effective mask area 11 located in the middle of the fine metal mask; a welding area 12 is located on opposite sides of the effective mask area 11; and a stress buffer area 13 is located in the welding area 12 is located away from the side of the effective mask area 11 ; and the clamping area 14 is located at the side of the stress buffer area 13 away from the bonding area 12 .
  • the effective mask area 11 has a plurality of first through holes 110 arranged in an array.
  • the effective mask area 11 corresponds to the pixel display area of the AMOLED.
  • a through hole 110 is vapor-deposited for the light-emitting layer of each pixel of the AMOLED.
  • the welding area 12 is configured to be welded to the mask frame, that is, after the fine metal mask 10 is stretched and stretched by the screen stretcher, the welding area 12 is welded to the mask frame, thereby forming a mask assembly.
  • the bonding area 12 includes a first bonding area 121 and a second bonding area 122.
  • the first bonding area 121 and the second bonding area 122 are respectively located on opposite sides of the effective mask area 11. For example, as shown in FIG. 1, in the first direction On X, the first bonding area 121 and the second bonding area 122 are respectively located on opposite sides of the effective mask area 11 .
  • the bonding pad 12 has the second through holes 120 arranged in an array.
  • the stress buffer zone 13 is configured to buffer the stress on the fine metal mask 10 when the fine metal mask 10 is stretched and stretched by the screen stretcher.
  • the stress buffer area 13 includes a first stress buffer area 131 and a second stress buffer area 132 .
  • the first stress buffer area 131 is located on the side of the first bonding area 121 away from the effective mask area 11
  • the second stress buffer area 132 is located on the side of the second bonding area 122 away from the effective mask area 11 .
  • the stress buffer zone 13 has third through holes 130 arranged in an array.
  • the clamping area 14 is configured to be clamped by the included angle of the screen stretcher when the fine metal mask 10 is stretched, and is used to stretch the fine metal mask 10 . At this time, a pretension is applied to the fine metal mask 10 .
  • the clamping area 14 includes a first clamping area 141 and a second clamping area 142 .
  • the first clamping area 141 and the second clamping area 142 are located at opposite ends of the fine metal mask 10 , respectively.
  • the first clamping area 141 is located on the side of the first stress buffer area 131 away from the first bonding area 121
  • the second clamping area 142 is located at the side of the second stress buffer area 132 away from the second bonding area 122 .
  • first clamping area 141 and the second clamping area 142 shown in FIG. 1 only have one notch, those skilled in the art will understand that FIG. 1 is only a schematic diagram, the first clamping area 141 and the second clamping area 141 Each of the gripping areas 142 may have a plurality of notches to facilitate gripping by the web tensioner.
  • the fine metal mask 10 is in the shape of a long strip extending along the first direction X as a whole.
  • the fine metal mask 10 is, for example, a wide fine metal mask, and its width in the second direction Y may be 200-300 mm, for example, 238 mm.
  • the fine metal mask 10 is substantially axisymmetric, and the first bonding area 121 and the second bonding area 122 are substantially along the second direction Y with respect to the effective mask area 11
  • the first stress buffer area 131 and the second stress buffer area 132 are substantially symmetrically arranged along the center line in the second direction Y with respect to the effective mask area 11, and the first clamping area 141 and the second clamping area
  • the regions 142 are substantially symmetrically arranged along the centerline in the second direction Y with respect to the effective mask region 11 .
  • the effective mask area 11 , the bonding area 12 and the stress buffer area 13 all have through holes.
  • the through holes are only formed in the effective mask area and the stress buffer area 13 but not in the bonding area.
  • the through-hole scheme reduces the stretching wrinkles of the fine metal mask during the stretching process of the mesh, and improves the flatness of the mesh of the fine metal mask, thereby reducing defects in the evaporation process and improving production. Yield.
  • the shape, size and distribution density of the first vias 110 in the effective mask area 11 are determined by the pixel structure and distribution of the tape-fabricated AMOLED.
  • the shape of the first through hole 110 in the effective mask area 11 may be a circle or a polygon, for example, the shape of the first through hole 110 in the effective mask area 11 is a square, a hexagon, or the like.
  • the size of the first through hole 110 in the effective mask area 11 is, for example, 20-300 ⁇ m, for example, when the first through-hole 110 is circular, the diameter thereof is 20-300 ⁇ m, such as 150 ⁇ m, 200 ⁇ m .
  • the side length thereof is 20-300 ⁇ m, for example, 150 ⁇ m and 200 ⁇ m.
  • the distance between two adjacent first through holes may be 20-300 ⁇ m, for example, in the first direction X or the second direction Y, the distance between two adjacent first through holes may be 20-300 ⁇ m , for example, 50 ⁇ m, 80 ⁇ m.
  • the shape, size and/or distribution density of the second vias 120 in the bonding area 12 and the third vias 130 in the stress buffer area 13 may be the same as the first vias in the effective mask area 11 .
  • 110 is the same, and may also be different from the first through hole 110 in the effective mask area 11 . Specific conditions can be designed according to actual needs.
  • the shape, size and spacing of the third through holes 130 in the stress buffer zone 13 can be consistent with the first through holes 110 in the effective mask area 11 , which can reduce the time required for the fabrication of the fine metal mask 10
  • the design of the third through hole 130 of the stress buffer 13 can also be adjusted. Creation of wrinkles in the effective mask area 11.
  • the shape, size and spacing of the second through holes 120 in the bonding area 12 may be the same as those in the effective mask area 11 .
  • the first through holes 110 are kept the same.
  • the distribution density of the second through holes 120 in the bonding area 12 will also be appropriately adjusted. The distribution density of pores is small.
  • the fine metal mask 10 is made of metal or metal alloy with a low expansion coefficient
  • the fine metal mask 10 may be made of Invar alloy or SUS alloy.
  • the fine metal mask 10 supported by these materials has a low expansion coefficient, and can still maintain the original appearance under the high temperature state of the evaporation process, which is beneficial to the fine evaporation of the light emitting layer of the AMOLED.
  • FIG. 1 shows the demarcation of the weld zone and the stress buffer zone, it is only for the convenience of illustration, the weld zone and the stress buffer zone are functionally defined, and there may be no explicit between them.
  • the boundary, even, the pad can be understood as a portion of the stress buffer area close to the effective mask area.
  • FIG. 2 is a schematic structural diagram of a mask assembly according to some embodiments of the present disclosure.
  • the mask assembly 10 includes: a mask frame 20 and a plurality of fine metal masks 10 described in the foregoing embodiments, the mask frame 20 includes a plurality of frames and a plurality of The opening area 23 surrounded by a frame.
  • the mask frame 20 is a rectangular frame, and includes two frames opposite to each other in the first direction X, that is, a first frame 21 and a second frame 22 .
  • the welding area 12 of the fine metal mask 10 is welded to the frame of the mask frame 20 by a welding process, so that the fine metal mask 10 welded on the mask frame 20 is kept open.
  • the bending caused by gravity is minimized, and the flatness of the mesh of the metal mask plate 10 is guaranteed.
  • the welding area 12 of the fine metal mask 10 after the mesh can be welded to the mask frame 20 by a laser welding process. Since the welding area 12 has the second through holes 120, the fine metal mask is In the process of 10 meshes, in order to ensure that it can be fixed on the mask frame 20, a welding sheet 30 needs to be provided on the top, and the welding sheet 30 is a thin sheet of solid material.
  • the frame of the mask frame 20, the welding area 12 of the fine metal mask 10 and the welding sheet 30 are stacked in sequence and then welded together by a process such as laser welding.
  • first frame 21 of the mask frame 20, the first welding area 121 of the fine metal mask 10, and the upper welding sheet 30 are welded together by a laser welding process, and the mask frame is welded together by a laser welding process.
  • the second frame 22 of the 20 , the second welding area 122 of the fine metal mask 10 and the welding pad 30 on the lower side are welded together.
  • a plurality of fine metal masks 10 are arranged side by side along the second direction Y, and are welded to the same mask frame 20 to form a mask assembly. As shown in FIG. 2 , four fine metal masks 10 are welded to the same mask frame 20 side by side.
  • the first welding areas 121 of the four fine metal masks 10 can be covered by the same long welding sheet 30 to be welded to the first frame 21 of the mask frame 20, or can be covered by a plurality of welding sheets 30 respectively.
  • the bonding is performed on the first bonding pads 121 of the four fine metal masks 10 .
  • the second welding areas 122 of the four fine metal masks 10 can be covered by the same long welding sheet 30 to be welded to the second frame 22 of the mask frame 20, or can be covered by a plurality of welding sheets 30 respectively. Bonding is performed on the second bonding pads 122 of the four fine metal masks 10 .
  • FIG. 3 shows a structural diagram of the second through hole in the welding area of the fine metal mask according to some embodiments of the present disclosure.
  • the welding area 12 and the frame of the mask frame 20 are welded more firmly to avoid false welding.
  • the material of the mask frame 20 and the bonding pads 30 is the same as that of the fine metal mask 10 , and both are made of a metal or metal alloy with a low coefficient of expansion, such as Invar alloy or SUS alloy.
  • FIG. 4 shows a flowchart of a method for manufacturing a mask assembly according to some embodiments of the present disclosure.
  • a method for manufacturing a mask assembly includes the following steps:
  • S10 uses a net stretcher to stretch the fine metal mask along the direction in which the fine metal mask extends (the first direction X) so that the fine metal mask is in a stretched state;
  • step S10 tension is applied to the fine metal mask along the extending direction of the fine metal mask by the screen tensioner, so that the fine metal mask is in a substantially flat stretched state to ensure fine
  • the first through holes in the effective mask area on the metal mask are substantially at predetermined positions in a plane, that is, corresponding to predetermined design positions of pixels of the AMOLED.
  • a welding sheet is arranged at the welding area, and the welding sheet is located on the side of the welding area away from the mask frame, and the welding sheet, the welding area and the two frames are welded, for example, by using a laser welding process.
  • the welding sheet, the first welding area and the first frame are welded together by a laser welding process
  • the welding sheet, the second welding area and the second frame are welded together by a laser welding process.
  • the manufacturing method of the mask assembly further includes the following steps:
  • S40 cuts the fine metal mask on the side of the bonding area away from the effective mask area.
  • step S40 at least a part of the clamping area of the fine metal mask and the stress buffer area are removed, thereby forming a mask assembly for the evaporation process.
  • FIG. 5 is a comparison diagram of a fine metal mask in the related art and a fine metal mask according to some embodiments of the present disclosure.
  • (A) is a schematic structural diagram of a fine metal mask in the related art
  • (B) is a comparison diagram of a fine metal mask according to some embodiments of the present disclosure.
  • the structure of the fine metal mask 10 ′ in (A) is basically the same as that of the fine metal mask 10 in (B), and both include an effective mask area 11 , a welding area 12 , a stress buffer area 13 and a clamping area 14, and their size and relative positional relationship are basically the same.
  • the difference between the fine metal mask 10 in (B) and the fine metal mask 10 ′ in (A) is only that a through hole is added in the bonding area 12 , that is, the second through hole 120 , while the fine metal mask 120 in (A)
  • the welding area 12 of the metal mask 10' is a solid material area, and no through holes are provided.
  • FIG. 6 shows the stretch cloud diagram of the fine metal mask in the related art when the stretch simulation is performed.
  • A shows the total strain cloud diagram of the fine metal mask in the related art when the tensile simulation is performed
  • B shows the tensile simulation of the fine metal mask in the related art.
  • the stress cloud map of the time shows a drawing contour of a fine metal mask during drawing simulation according to some embodiments of the present disclosure. As shown in FIG.
  • (A) shows the total strain cloud diagram of the fine metal mask according to some embodiments of the present disclosure when performing tensile simulation
  • (B) shows the fine metal mask according to some embodiments of the present disclosure. Stress contours of the membrane during tensile simulation.
  • the above-mentioned total strain contour map and stress contour map are obtained when the fine metal mask is stretched so that the first through holes in the effective mask area 11 are substantially at predetermined positions in a plane. Comparing FIG. 6 and FIG. 7 , it can be seen that the fine metal mask 10 ′ in the related art has many wrinkles in the welding area 12 and extends toward both sides of the welding area 12 along the stretching direction, and the stress of the welding area 12 is concentrated. , the stretching of the fine metal mask according to some embodiments of the present disclosure is substantially free of wrinkles, and the tensile stress is uniform.
  • FIG. 8 is a comparison diagram of stretch folds of a fine metal mask in the related art and a fine metal mask according to some embodiments of the present disclosure.
  • FIG. 8 shows the deformation of the fine metal mask 10 ′ (marked as FMM 10 ′ in FIG. 8 ) in the related art along AA' in FIG. Cross-sectional deformation of BB' in (A), and shows the fine metal mask 10 (labeled as FMM 10 in FIG. 8 ) according to some embodiments of the present disclosure along A- in (B) of FIG. 5
  • the BB' section is located near the centerline of the effective mask area 11 along the second direction Y of the effective mask area 11 in the fine metal mask 10/10'.
  • the effective mask area 11 near the welding area 12 has obvious wrinkles. This will increase the shadow of the actual evaporation, resulting in a higher risk of defects such as color mixing.
  • the tensile wrinkle of the fine metal mask 10 according to some embodiments of the present disclosure is smaller at both the AA' section and the BB' section. Compared with the fine metal mask 10' in the related art, it can be Reduce evaporation shadow and improve production yield.
  • FIG. 9 is a comparison diagram of tensile sag of a fine metal mask in the related art and a fine metal mask according to some embodiments of the present disclosure.
  • FIG. 9 shows the sag of the fine metal mask 10 ′ (marked as FMM 10 ′ in FIG. 9 ) in the related art along the cross section of CC’ in FIG. 5(A), the cross-section of D-D' sags, and shows the fine metal mask 10 (labeled as FMM 10 in FIG. 9 ) according to some embodiments of the present disclosure along C-D in FIG. 5(B)
  • the sagging condition of the cross-section of C' is the sagging condition of the cross-section along D-D' in FIG. 5(B).
  • the CC' section is located at the center of the effective mask area 11 in the fine metal mask 10/10' along the first direction X, and the D-D' section is located in the fine metal mask 10/10' At the edge of the effective mask area 11 away from the center line of the effective mask area 11 along the first direction X.
  • the sagging amplitude of the fine metal mask 10 is smaller than that of the fine metal mask 10 ′ in the related art, that is, compared with the fine metal mask in the related art
  • the membrane plate 10 ′ according to some embodiments of the present disclosure, the fine metal mask plate 10 is flatter when the mesh is opened, which can reduce the shadow of evaporation and improve the production yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

一种掩膜板,掩膜板组件及其制造方法,所述掩膜板包括:有效掩膜区,位于所述掩膜板的中部,所述有效掩膜区具有阵列排布的多个第一通孔;以及焊接区,配置为焊接至掩膜板框架,位于所述有效掩膜区相对的两侧,所述焊接区具有阵列排布的多个第二通孔。

Description

掩膜板,掩膜板组件及其制造方法 技术领域
本公开涉及光刻掩膜技术领域,尤其涉及一种掩膜板,掩膜板组件及其制造方法。
背景技术
在OLED(Organic Light Emitting Display,有机电致发光二极管)制造技术中,真空蒸镀用的掩膜板是至关重要的部件,掩膜板的质量直接影响着生产制造成本和产品质量。OLED蒸镀过程用的掩膜板中,精细金属掩膜板(Fine Metal Mask,简称:FMM)是其中最关键的装备之一。FMM用于蒸镀发光层材料,在背板上形成像素图形。
公开内容
本公开一些实施例提供一种掩膜板,所述掩膜板包括:有效掩膜区,位于所述掩膜板的中部,所述有效掩膜区具有阵列排布的多个第一通孔;以及焊接区,配置为焊接至掩膜板框架,位于所述有效掩膜区相对的两侧,所述焊接区具有阵列排布的多个第二通孔。
在一些实施例中,所述掩膜板还包括:应力缓冲区,位于所述焊接区远离所述有效掩膜区一侧,所述应力缓冲区具有阵列排布的多个第三通孔,所述应力缓冲区配置为所述掩膜板张网时缓冲所述掩膜板上的应力。
在一些实施例中,所述掩膜板还包括:夹持区,配置为所述掩膜板张网时被张网机的夹具夹持,位于所述应力缓冲区远离所述焊接区的一侧。
在一些实施例中,所述焊接区包括第一焊接区和第二焊接区,所述第一焊接区和第二焊接区分别位于所述有效掩膜区相对的两侧;所述应力缓冲区包括第一应力缓冲区和第二应力缓冲区,所述第一应力缓冲区位于所述第一焊接区远离所述有效掩膜区一侧,所述第二应力缓冲区位于所述第二焊接区远离所述有效掩膜区一侧;所述夹持区包括第一夹持区和第二夹持区,所述第一夹持区位于所述第一应力缓冲区远离所述第一焊接区的一侧,所述第二夹持区位于所述第二应力缓冲区远离所述第二焊接区的一侧。
在一些实施例中,所述第一通孔的分布密度、第二通孔的分布密度以及第三通孔的分布密度相同或不同。
在一些实施例中,所述掩膜板的材料为低膨胀系数的金属或金属合金材料。
在一些实施例中,所述掩膜板的材料为Invar合金或SUS合金。
在一些实施例中,所述第一通孔的形状为圆形或多边形。
在一些实施例中,相邻所述第一通孔的间距为10~300μm。
本公开一些实施例提供一种掩膜板组件,所述掩膜板组件包括:掩膜板框架,包括多个边框以及由所述多个边框围绕的开口区;以及至少一个根据前述实施例所述的掩膜板,其中,所述掩膜板的焊接区焊接至所述掩膜板框架的相对的两边框。
在一些实施例中,所述掩膜板的有效掩膜区在所述掩膜板框架上的正投影落入所述开口区中。
在一些实施例中,所述至少一个掩膜板包括多个掩膜板,所述多个掩膜板沿所述相对的两边框的延伸的方向依次排列。
在一些实施例中,所掩膜板框架的材料为低膨胀系数的金属或金属合金材料。
本公开一些实施例提供一种掩膜板组件的制造方法,所述制造方法包括:采用张网机对前述实施例所述的掩膜板沿所述掩膜板的延伸方向进行拉伸使得所述掩膜板处于拉伸状态;将所述处于拉伸状态的掩膜板与所述掩膜板框架对准并紧贴,使得所述掩膜板的焊接区紧贴所述掩膜板框架相对的两边框;以及焊接所述焊接区至所述两边框。
在一些实施例中,焊接所述焊接区至所述两边框包括:在所述焊接区处设置焊接片,所述焊接片位于所述焊接区远离所述掩膜板框架一侧,采用焊接片将所述焊接区焊接至所述两边框。
在一些实施例中,所述制造方法还包括:在所述焊接区远离所述有效掩膜区一侧切割所述掩膜板。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本公开的其它特征、目的和优点将会变得更明显:
图1为根据本公开一些实施例的精细金属掩膜板的结构示意图;
图2为根据本公开一些实施例的掩膜板组件的结构示意图;
图3为根据本公开一些实施例的精细金属掩膜板的焊接区的第二通孔处经焊接后的结构图;
图4为根据本公开一些实施例的一种掩膜板组件的制造方法的流程图;
图5为相关技术中的精细金属掩膜板和根据本公开一些实施例的精细金属掩膜板的对比图;
图6为相关技术中的精细金属掩膜板进行拉伸模拟时的拉伸云图;
图7示出了根据本公开一些实施例的精细金属掩膜板进行拉伸模拟时的拉伸云图;
图8为相关技术中的精细金属掩膜板和根据本公开一些实施例的精细金属掩膜板的拉伸褶皱的对比图;
图9为相关技术中的精细金属掩膜板和根据本公开一些实施例的精细金属掩膜板的拉伸下垂的对比图。
具体实施方式
下面结合附图和实施例对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。
应该理解的是,尽管在这里可使用术语第一、第二等来描述不同的元件,但是这些元件不应受这些术语的限制。这些术语仅是用来将一个元件与另一个元件区分开来。例如,在不脱离示例实施例的范围的情况下,第一元件可以被命名为第二元件,类似地,第二元件可以被命名为第一元件。如在这里使用的术语“和/或”包括一个或多个相关所列的项目的任意组合和所有组合。
应该理解的是,当元件或层被称作“形成在”另一元件或层“上”时,该元件或层可以直接地或间接地形成在另一元件或层上。也就是,例如,可以存在中间元件或中间层。相反,当元件或层被称作“直接形成在”另一元 件或层“上”时,不存在中间元件或中间层。应当以类似的方式来解释其它用于描述元件或层之间的关系的词语(例如,“在...之间”与“直接在...之间”、“相邻的”与“直接相邻的”等)。
本文中使用的术语仅是为了描述特定实施例的目的,而不意图限制实施例。如本文中所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式。还将理解的是,当在此使用术语“包含”和/或“包括”时,说明存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或附加一个或多个其它特征、整体、步骤、操作、元件、组件和/或它们的组合。
在本文中,如无特别说明,表述“位于同一层”、“同层设置”一般表示的是:第一部件和第二部件可以使用相同的材料并且可以通过同一构图工艺形成。表述“位于不同层”、“不同层设置”一般表示的是:第一部件和第二部件通过不同构图工艺形成。
目前,AMOLED(Active Matrix Organic Light Emitting Display有源矩阵有机电致发光二极管)面板量产的主流方法是真空蒸镀,而真空蒸镀必须用到FMM(Fine Metal Mask)蒸镀技术,FMM全称为精细金属掩膜板,是蒸镀工艺中的核心零部件,其主要作用是在AMOLED生产过程中沉积RGB有机发光材料至基板相应位置,在基板上形成图案。由于FMM厚度很薄,张网拉伸过程中极易产生褶皱,其平坦度直接影响蒸镀效果,面板的尺寸越大,分辨率越高,所需的FMM的尺寸就越大且越精细,对FMM的平坦度要求更高。
在本文中,没有特别指明的情况下,掩膜板指的是精细金属掩膜板,即FMM。
本公开提供一种掩膜板,所述掩膜板包括:有效掩膜区,位于所述掩膜板的中部,所述有效掩膜区具有阵列排布的多个第一通孔;以及焊接区,配置为焊接至掩膜板框架,位于所述有效掩膜区相对的两侧,所述焊接区具有阵列排布的多个第二通孔。本公开通过在精细金属掩膜板的焊接区设置通孔,降低了精细金属掩膜板的拉伸褶皱,提高了精细金属掩膜板的张网平坦度。采用了该种精细金属掩膜板的掩膜板组件可以在AMOLED制造过程中获得更好的蒸镀效果。
本公开一些实施例提供一种精细金属掩膜板,图1为根据本公开一些实施例的精细金属掩膜板的结构示意图。如图1所示,精细金属掩膜板10包括位于精细金属掩膜板中部的有效掩膜区11;焊接区12,位于有效掩膜区11相对的两侧;应力缓冲区13,位于焊接区12远离有效掩膜区11的一侧;以及夹持区14位于应力缓冲区13远离焊接区12的一侧。
具体地,有效掩膜区11具有多个阵列排布的第一通孔110,在AMOLED蒸镀工艺中,有效掩膜区11对应于AMOLED的像素显示区,例如利用有效掩膜区11的第一通孔110蒸镀处AMOLED每个像素的发光层。
焊接区12配置为焊接至掩膜板框架,即精细金属掩膜板10经过张网机拉伸张网后,其焊接区12焊接至掩膜板框架,进而制成掩膜板组件。焊接区12包括第一焊接区121和第二焊接区122,第一焊接区121和第二焊接区122分别位于有效掩膜区11相对的两侧,例如如图1所示,在第一方向X上,第一焊接区121和第二焊接区122分别位于有效掩膜区11相对的两侧。焊接区12具有阵列排布的第二通孔120。
应力缓冲区13配置为精细金属掩膜板10经过张网机拉伸张网时缓冲精细金属掩膜板10上的应力。应力缓冲区13包括第一应力缓冲区131和第二应力缓冲区132。第一应力缓冲区131位于第一焊接区121远离有效掩膜区11的一侧,第二应力缓冲区132位于第二焊接区122远离有效掩膜区11的一侧。应力缓冲区13具有阵列排布的第三通孔130。
夹持区14配置为精细金属掩膜板10张网时被张网机的夹角夹持,用于拉伸精细金属掩膜板10,此时对精细金属掩膜板10施加预张力。夹持区14包括第一夹持区141和第二夹持区142。第一夹持区141和第二夹持区142分别位于精细金属掩膜板10相对的两端部处。第一夹持区141位于第一应力缓冲区131远离第一焊接区121的一侧,第二夹持区142位于第二应力缓冲区132远离第二焊接区122的一侧。
尽管图1中所示的第一夹持区141和第二夹持区142仅具有一个凹口部,本领域技术人员理解的是,图1仅为示意图,第一夹持区141和第二夹持区142中每一个可以具有多个凹口部,方便张网机夹持。
在一些实施例中,如图1所示,精细金属掩膜板10整体上沿呈沿第 一方向X延伸的长条状。精细金属掩膜板10例如为宽幅的精细金属掩膜板,其在第二方向Y上的宽度可以为200~300mm,例如为238mm。
在一些实施例中,如图1所示,精细金属掩膜板10基本上为轴对称图形,第一焊接区121和第二焊接区122基本上相对于有效掩膜区11沿第二方向Y上的中心对称设置,第一应力缓冲区131和第二应力缓冲区132基本上相对于有效掩膜区11沿第二方向Y上的中线对称设置,第一夹持区141和第二夹持区142基本上相对于有效掩膜区11沿第二方向Y上的中线对称设置。
该些实施例中,有效掩膜区11、焊接区12以及应力缓冲区13均具有通孔,相对于相关技术中仅在有效掩膜区和应力缓冲区13区形成通孔而不在焊接区形成通孔的方案,降低了精细金属掩膜板在张网拉伸过程中的拉伸褶皱,提高了精细金属掩膜板的张网平坦度,进而可以减小蒸镀工艺中的不良,提高生产良率。
在一些实施例中,有效掩膜区11中的第一通孔110的形状、尺寸及分布密度是由带制造的AMOLED的像素结构及分布决定的。有效掩膜区11中的第一通孔110的形状可以为圆形或多边形,例如有效掩膜区11中的第一通孔110的形状为方形、六边形等。在一些实施例中,有效掩膜区11中的第一通孔110的尺寸例如为20~300μm,例如当第一通孔110为圆形时,其直径为20~300μm,例如为150μm、200μm。例如当第一通孔110为方形时,其边长为20~300μm,例如为150μm、200μm。在一些实施例中,相邻两个第一通孔的间距可以为20~300μm,例如在第一方向X或第二方向Y上,相邻两个第一通孔的间距可以为20~300μm,例如为50μm,80μm。
在一些实施例中,焊接区12中的第二通孔120和应力缓冲区13中的第三通孔130的形状、尺寸和/或分布密度可以与有效掩膜区11中的第一通孔110相同,也可以与有效掩膜区11中的第一通孔110不相同。具体情况可以根据实际需要设计。
在一些实施例中,应力缓冲区13的第三通孔130的形状、尺寸及间距可以与有效掩膜区11中的第一通孔110保持一致,这样可以降低精细金属掩膜板10制作时的难度,但对于不同设计需求的项目,应力缓冲区 13的第三通孔130的设计也可做调整,其设计的主要目的仅是为了均匀精细金属掩膜板10拉伸时的应力,减少有效掩膜区11褶皱的产生。
在一些实施例中,为保证精细金属掩膜板10拉伸时有效掩膜区11应力分布均匀,焊接区12的第二通孔120的形状、尺寸及间距可以与有效掩膜区11中的第一通孔110保持一致,在实际生产中为了提高焊接区12的强度,也会对焊接区12的第二通孔120的分布密度进行适当调整,例如较有效掩膜区11的第一通孔的分布密度小。
在一些实施例中,精细金属掩膜板10采用具有低膨胀系数的金属或金属合金制成,例如精细金属掩膜板10的材质可以为Invar合金或SUS合金。采用该些材料支撑的精细金属掩膜板10膨胀系数低,在蒸镀工艺的高温状态下依然可以保持原有形貌,有利于AMOLED的发光层的精细蒸镀。
在一些实施例中,尽管图1中示出了焊接区和应力缓冲区的分界,但其仅仅为方便说明,焊接区和应力缓冲区是从功能上定义的,它们之间可以不存在明确的界限,甚至,焊接区可以理解为应力缓冲区靠近有效掩膜区的一部分。
本公开一些实施例一种掩膜板组件,图2为根据本公开一些实施例的掩膜板组件的结构示意图。如图2所示,所述掩膜板组件10包括:掩膜板框架20以及多个前述实施例所述的精细金属掩膜板10,掩膜板框架20包括多个边框以及由所述多个边框围绕的开口区23。如图2所示,掩膜板框架20为长方形框架,包括在第一方向X上相对于两个边框,即第一边框21和第二边框22。精细金属掩膜板10经张网机张网后,其焊接区12采用焊接工艺焊接至掩膜板框架20的边框上,使得焊接在掩膜板框架20上的精细金属掩膜板10保持张网状态,尽量减少由于重力原因造成的弯曲,保障金属掩膜板10的张网平坦度。
具体地,可以采用激光焊接工艺将张网后的精细金属掩膜板10的焊接区12焊接至掩膜板框架20上,由于焊接区12上具有第二通孔120,在精细金属掩膜板10张网过程中,为保证其能固定在掩膜板框架20上,需要在上设置焊接片30,焊接片30为实材薄片。掩膜板框架20的边框、精细金属掩膜板10的焊接区12以及焊接片30依次顺序叠置后采用激光焊 接等工艺将他们焊接在一起。例如,采用激光焊接工艺将掩膜板框架20的第一边框21、精细金属掩膜板10的第一焊接区121以及上侧的焊接片30焊接在一起,采用激光焊接工艺将掩膜板框架20的第二边框22、精细金属掩膜板10的第二焊接区122以及下侧的焊接片30焊接在一起。
在一些实施例中,多个精细金属掩膜板10沿第二方向Y并排设置,均焊接至同一掩膜板框架20上以形成掩膜板组件。如图2所示,4个精细金属掩膜板10并排焊接至同一掩膜板框架20上。4个精细金属掩膜板10的第一焊接区121可以被同一长条状的焊接片30覆盖来焊接至掩膜板框架20的第一边框21上,也可以采用多个焊接片30分别覆盖在4个精细金属掩膜板10的第一焊接区121上来进行焊接。4个精细金属掩膜板10的第二焊接区122可以被同一长条状的焊接片30覆盖来焊接至掩膜板框架20的第二边框22上,也可以采用多个焊接片30分别覆盖在4个精细金属掩膜板10的第二焊接区122上来进行焊接。
图3示出了根据本公开一些实施例的精细金属掩膜板的焊接区的第二通孔处经焊接后的结构图,可见,由于设置了焊接片30,使得精细金属掩膜板10的焊接区12与掩膜板框架20的边框焊接更加牢固,避免出现虚焊。
在一些实施例中,掩膜板框架20和焊接片30的材料与精细金属掩膜板10相同,均为具有低膨胀系数的金属或金属合金制成,例如为Invar合金或SUS合金。
本公开一些实施例提供一种掩膜板组件的制造方法,图4示出了根据本公开一些实施例的一种掩膜板组件的制造方法的流程图。如图4所示,一种掩膜板组件的制造方法包括以下步骤:
S10采用张网机对精细金属掩膜板沿精细金属掩膜板延伸的方向(第一方向X)进行拉伸使得精细金属掩膜板处于拉伸状态;
S20将所述处于拉伸状态的精细金属掩膜板与掩膜板框架对准并紧贴,使得精细金属掩膜板的焊接区紧贴掩膜板框架相对的两边框;
S30焊接所述焊接区至所述两边框。
在一些实施例中,在步骤S10中,通过张网机向精细金属掩膜板施加沿精细金属掩膜板延伸的方向的张力,使得精细金属掩膜板处于基本平坦 的拉伸状态,保障精细金属掩膜板上的有效掩膜区中的第一通孔在一平面内基本上处于预定的位置,即对应AMOLED的像素的预定设计位置。
在步骤S30中,在焊接区处设置焊接片,焊接片位于焊接区远离所述掩膜板框架一侧,将焊接片、焊接区以及所述两边框焊接,例如采用激光焊接工艺进行焊接。具体地,采用激光焊接工艺将焊接片、第一焊接区以及第一边框焊接在一起,采用激光焊接工艺将焊接片、第二焊接区以及第二边框焊接在一起。
在一些实施例中,掩膜板组件的制造方法还包括以下步骤:
S40在焊接区远离有效掩膜区一侧切割精细金属掩膜板。
在步骤S40中,去除精细金属掩膜板的夹持区以及应力缓冲区的至少一部分,由此形成用于蒸镀工艺的掩膜板组件。
以下通过对本公开提供的精细金属掩膜板以及相关技术中的精细金属掩膜板来进行拉伸模拟对比,以体现本公开提供的精细金属掩膜板的优势。
图5为相关技术中的精细金属掩膜板和根据本公开一些实施例的精细金属掩膜板的对比图。图5中,(A)表示相关技术中的精细金属掩膜板的结构示意图;(B)表示根据本公开一些实施例的精细金属掩膜板的对比图。(A)中的精细金属掩膜板10’与(B)中的精细金属掩膜板10的结构基本上一致,均包括有效掩膜区11,焊接区12,应力缓冲区13以及夹持区14,且它们的尺寸及相对位置关系也基本上一致。(B)中精细金属掩膜板10与(A)中的精细金属掩膜板10’的区别仅在于焊接区12中增加了通孔,即第二通孔120,而(A)中的精细金属掩膜板10’的焊接区12为实材区,不设置通孔。
在一些实施例中,对相关技术中的精细金属掩膜板和根据本公开一些实施例的精细金属掩膜板进行拉伸模拟。图6示出了相关技术中的精细金属掩膜板进行拉伸模拟时的拉伸云图。如图6所示,(A)示出了相关技术中的精细金属掩膜板进行拉伸模拟时的总应变云图,(B)示出了相关技术中的精细金属掩膜板进行拉伸模拟时的应力云图。图7示出了根据本公开一些实施例的精细金属掩膜板进行拉伸模拟时的拉伸云图。如图7所示,(A)示出了根据本公开一些实施例的精细金属掩膜板进行拉伸模拟时的 总应变云图,(B)示出了根据本公开一些实施例的精细金属掩膜板进行拉伸模拟时的应力云图。
上述总应变云图和应力云图是在精细金属掩膜板被拉伸使得有效掩膜区11中的第一通孔在一平面内基本上处于预定的位置时获得的。比较图6和图7可知,相关技术中的精细金属掩膜板10’在焊接区12产生很多褶皱,并沿着拉伸方向朝向焊接区12两侧延伸,同时焊接区12的应力出现集中现象,根据本公开一些实施例的精细金属掩膜板的拉伸基本上未出现褶皱,且拉伸应力均匀。
图8为相关技术中的精细金属掩膜板和根据本公开一些实施例的精细金属掩膜板的拉伸褶皱的对比图。具体地,图8示出了相关技术中的精细金属掩膜板10’(图8中标示为FMM10’)沿图5中(A)的A-A’的截面变形情况,及其沿图5中(A)的B-B’的截面变形情况,并且示出了根据本公开一些实施例的精细金属掩膜板10((图8中标示为FMM10)沿图5中(B)的A-A’的截面变形情况,及其沿图5中(B)的B-B’的截面变形情况。其中A-A’截面位于精细金属掩膜板10/10’中的有效掩膜区11的靠近焊接区12处,B-B’截面位于精细金属掩膜板10/10’中的有效掩膜区11的靠近有效掩膜区11沿第二方向Y的中线处。
如图8所示,相关技术中的精细金属掩膜板10’中的有效掩膜区11的靠近焊接区12处,褶皱比较明显。如此会增加实际蒸镀的阴影,导致混色等不良的风险较高。而根据本公开一些实施例的精细金属掩膜板10的拉伸褶皱在A-A’截面和B-B’截面处均较小,相对于相关技术中的精细金属掩膜板10’,可减小蒸镀阴影,提高生产良率。
图9为相关技术中的精细金属掩膜板和根据本公开一些实施例的精细金属掩膜板的拉伸下垂的对比图。具体地,图9示出了相关技术中的精细金属掩膜板10’(图9中标示为FMM10’)沿图5中(A)的C-C’的截面的下垂情况,及其沿图5中(A)的D-D’的截面下垂情况,并且示出了根据本公开一些实施例的精细金属掩膜板10(图9中标示为FMM10)沿图5中(B)的C-C’的截面下垂情况,沿图5中(B)的D-D’的截面下垂情况。其中C-C’截面位于精细金属掩膜板10/10’中的有效掩膜区11的沿第一方向X的中心处,D-D’截面位于精细金属掩膜板10/10’中的有效掩膜 区11的远离有效掩膜区11沿第一方向X的中线的边缘处。
如图9所示,根据本公开一些实施例的精细金属掩膜板10的下垂幅度较相关技术中的精细金属掩膜板10’的下垂幅度更小,即相对于相关技术中的精细金属掩膜板10’,根据本公开一些实施例的精细金属掩膜板10在张网时更加平坦,可减小蒸镀阴影,提高生产良率。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (16)

  1. 一种掩膜板,其特征在于,所述掩膜板包括:
    有效掩膜区,位于所述掩膜板的中部,所述有效掩膜区具有阵列排布的多个第一通孔;以及
    焊接区,配置为焊接至掩膜板框架,位于所述有效掩膜区相对的两侧,所述焊接区具有阵列排布的多个第二通孔。
  2. 根据权利要求1所述掩膜板,还包括:
    应力缓冲区,位于所述焊接区远离所述有效掩膜区一侧,所述应力缓冲区具有阵列排布的多个第三通孔,所述应力缓冲区配置为所述掩膜板张网时缓冲所述掩膜板上的应力。
  3. 根据权利要求2所述的掩膜板,还包括:
    夹持区,配置为所述掩膜板张网时被张网机的夹具夹持,位于所述应力缓冲区远离所述焊接区的一侧。
  4. 根据权利要求3所述的掩膜板,其中,
    所述焊接区包括第一焊接区和第二焊接区,所述第一焊接区和第二焊接区分别位于所述有效掩膜区相对的两侧;
    所述应力缓冲区包括第一应力缓冲区和第二应力缓冲区,所述第一应力缓冲区位于所述第一焊接区远离所述有效掩膜区一侧,所述第二应力缓冲区位于所述第二焊接区远离所述有效掩膜区一侧;
    所述夹持区包括第一夹持区和第二夹持区,所述第一夹持区位于所述第一应力缓冲区远离所述第一焊接区的一侧,所述第二夹持区位于所述第二应力缓冲区远离所述第二焊接区的一侧。
  5. 根据权利要求2所述的掩膜板,其中,所述第一通孔的分布密度、第二通孔的分布密度以及第三通孔的分布密度相同或不同。
  6. 根据权利要求1-5中任一项所述的掩膜板,其中,所述掩膜板的材料为低膨胀系数的金属或金属合金材料。
  7. 根据权利要求6所述的掩膜板,其中,所述掩膜板的材料为Invar合金或SUS合金。
  8. 根据权利要求1-5中任一项所述的掩膜板,其中,所述第一通孔的形状为圆形或多边形。
  9. 根据权利要求1-5中任一项所述的掩膜板,其中,相邻所述第一通孔的间距为10~300μm。
  10. 一种掩膜板组件,其特征在于,所述掩膜板组件包括:
    掩膜板框架,包括多个边框以及由所述多个边框围绕的开口区;以及
    至少一个根据权利要求1-5中任一项所述的掩膜板,
    其中,所述掩膜板的焊接区焊接至所述掩膜板框架的相对的两边框。
  11. 根据权利要求10所述的掩膜板组件,其中,所述掩膜板的有效掩膜区在所述掩膜板框架上的正投影落入所述开口区中。
  12. 根据权利要求10或11所述的掩膜板组件,其中,所述至少一个掩膜板包括多个掩膜板,所述多个掩膜板沿所述相对的两边框的延伸的方向依次排列。
  13. 根据权利要求10或11所述的掩膜板组件,其中,所掩膜板框架的材料为低膨胀系数的金属或金属合金材料。
  14. 一种掩膜板组件的制造方法,所述制造方法包括:
    采用张网机对所述权利要求1-5中任一项所述的掩膜板沿所述掩膜板的延伸方向进行拉伸使得所述掩膜板处于拉伸状态;
    将所述处于拉伸状态的掩膜板与所述掩膜板框架对准并紧贴,使得所述掩膜板的焊接区紧贴所述掩膜板框架相对的两边框;以及
    焊接所述焊接区至所述两边框。
  15. 根据权利要求14所述的制造方法,其中焊接所述焊接区至所述两边框包括:
    在所述焊接区处设置焊接片,所述焊接片位于所述焊接区远离所述掩膜板框架一侧,采用焊接片将所述焊接区焊接至所述两边框。
  16. 根据权利要求14或15所述的制造方法,还包括:
    在所述焊接区远离所述有效掩膜区一侧切割所述掩膜板。
PCT/CN2021/110585 2020-09-29 2021-08-04 掩膜板,掩膜板组件及其制造方法 WO2022068379A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/788,980 US20230031990A1 (en) 2020-09-29 2021-08-04 Mask, mask assembly, and method for manufacturing mask assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011054111.2 2020-09-29
CN202011054111.2A CN112126893B (zh) 2020-09-29 2020-09-29 掩膜板,掩膜板组件及其制造方法

Publications (1)

Publication Number Publication Date
WO2022068379A1 true WO2022068379A1 (zh) 2022-04-07

Family

ID=73843168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110585 WO2022068379A1 (zh) 2020-09-29 2021-08-04 掩膜板,掩膜板组件及其制造方法

Country Status (3)

Country Link
US (1) US20230031990A1 (zh)
CN (1) CN112126893B (zh)
WO (1) WO2022068379A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112126893B (zh) * 2020-09-29 2023-05-12 京东方科技集团股份有限公司 掩膜板,掩膜板组件及其制造方法
CN113005399A (zh) * 2021-02-23 2021-06-22 合肥鑫晟光电科技有限公司 掩膜板的制作方法及掩膜板
CN113025957A (zh) * 2021-03-08 2021-06-25 昆山国显光电有限公司 金属掩膜板及显示面板
KR20230010121A (ko) * 2021-07-09 2023-01-18 삼성디스플레이 주식회사 마스크 조립체를 포함한 증착 설비 및 마스크 조립체 리페어 방법
CN115261785B (zh) * 2022-08-04 2024-04-19 常州高光半导体材料有限公司 一种掩膜版及掩膜版组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218749A (ja) * 2013-01-08 2014-11-20 大日本印刷株式会社 蒸着マスクの製造方法および蒸着マスク
CN108559947A (zh) * 2018-05-14 2018-09-21 昆山国显光电有限公司 掩膜板、掩膜组件及掩膜板制作方法
CN108642441A (zh) * 2018-05-14 2018-10-12 昆山国显光电有限公司 掩膜板、掩膜组件及掩膜板制作方法
CN111455314A (zh) * 2020-06-08 2020-07-28 京东方科技集团股份有限公司 精密金属掩膜板及具有其的掩膜板组件
CN112126893A (zh) * 2020-09-29 2020-12-25 京东方科技集团股份有限公司 掩膜板,掩膜板组件及其制造方法
CN112281113A (zh) * 2020-10-28 2021-01-29 京东方科技集团股份有限公司 掩膜板与掩膜板组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218749A (ja) * 2013-01-08 2014-11-20 大日本印刷株式会社 蒸着マスクの製造方法および蒸着マスク
CN108559947A (zh) * 2018-05-14 2018-09-21 昆山国显光电有限公司 掩膜板、掩膜组件及掩膜板制作方法
CN108642441A (zh) * 2018-05-14 2018-10-12 昆山国显光电有限公司 掩膜板、掩膜组件及掩膜板制作方法
CN111455314A (zh) * 2020-06-08 2020-07-28 京东方科技集团股份有限公司 精密金属掩膜板及具有其的掩膜板组件
CN112126893A (zh) * 2020-09-29 2020-12-25 京东方科技集团股份有限公司 掩膜板,掩膜板组件及其制造方法
CN112281113A (zh) * 2020-10-28 2021-01-29 京东方科技集团股份有限公司 掩膜板与掩膜板组件

Also Published As

Publication number Publication date
CN112126893B (zh) 2023-05-12
CN112126893A (zh) 2020-12-25
US20230031990A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
WO2022068379A1 (zh) 掩膜板,掩膜板组件及其制造方法
US20210388479A1 (en) Full-size mask assembly and manufacturing method thereof
WO2018024040A1 (zh) 掩模板、包含该掩模板的掩模板组件及其制造方法
KR101659948B1 (ko) 살대형 서포트 시트, 이를 이용한 파인 메탈 마스크 조립체 제조 방법, 제조 장치 및 파인 메탈 마스크 조립체
WO2017117999A1 (zh) 金属掩模板及其制作方法
US9570715B2 (en) Mask and mask assembly
US11214858B2 (en) Mask plate and mask sheet
US11066738B2 (en) Mask plates and display panels
WO2018218932A1 (zh) 掩膜板、掩膜装置及其制造方法和掩膜制造设备
WO2021147705A1 (zh) 掩模板及其制备方法、掩模板组件
CN115323321B (zh) 蒸镀掩模的制造方法、蒸镀掩模装置的制造方法、蒸镀方法
JP2005339858A (ja) マスク構造体及びその製造方法
WO2021027794A1 (zh) 掩膜板组件
KR20200010856A (ko) Oled 화소 형성용 마스크 및 프레임 일체형 마스크의 제조 방법
KR102427523B1 (ko) 단차가 최소화된 대면적 oled 증착용 마스크 조립체
KR20200009616A (ko) 프레임 일체형 마스크의 제조 방법
KR102138800B1 (ko) 마스크 및 프레임 일체형 마스크
KR102466835B1 (ko) 풀 사이즈 마스크 조립체와 그 제조방법
JP2005339861A (ja) マスク構造体及びその製造方法
KR102236540B1 (ko) 마스크의 이송 시스템 및 프레임 일체형 마스크의 제조 방법
KR20180042933A (ko) 텐션마스크 프레임 어셈블리의 제조장치
KR102471659B1 (ko) 마스크 제조 방법과 이에 의해 제조된 마스크 및 제조된 마스크를 포함하는 오픈 마스크 조립체의 제조 방법
KR102492133B1 (ko) 오픈 마스크 조립체의 제조 방법
KR20200006350A (ko) 프레임 일체형 마스크의 제조 방법
TWI730784B (zh) 遮罩組件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21874041

Country of ref document: EP

Kind code of ref document: A1