WO2022067488A1 - 信道选择方法、电子设备及存储介质 - Google Patents

信道选择方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2022067488A1
WO2022067488A1 PCT/CN2020/118783 CN2020118783W WO2022067488A1 WO 2022067488 A1 WO2022067488 A1 WO 2022067488A1 CN 2020118783 W CN2020118783 W CN 2020118783W WO 2022067488 A1 WO2022067488 A1 WO 2022067488A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
quality
switching factor
optimal
channel quality
Prior art date
Application number
PCT/CN2020/118783
Other languages
English (en)
French (fr)
Inventor
张志鹏
孟凡淦
尹小俊
马宁
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/118783 priority Critical patent/WO2022067488A1/zh
Publication of WO2022067488A1 publication Critical patent/WO2022067488A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a channel selection method, an electronic device, and a storage medium.
  • Wireless communication technology propagates electromagnetic waves through free space.
  • the International Telecommunication Union has scientifically allocated frequency bands applicable to various communication systems, so that various communication systems can communicate within their applicable frequency bands; further, each frequency band is Divided into several channels, various communication systems can select appropriate channels for communication.
  • the IEEE 802.11 working group has divided multiple independent frequency bands for WiFi communication, such as 2.4GHz and 4.9/5.8GHz. Each frequency band is divided into several channels. For example, China's 2.4GHz frequency band is 2.412-2.472GHz, and this frequency band is divided into 13 channels.
  • the communication system needs to reselect a channel with better channel quality and perform communication based on the selected channel to ensure good communication quality.
  • a scheme based on a signal quality difference threshold is usually used for channel selection, and when the channel quality of the target channel is higher than a preset threshold value than the currently used channel, the target channel is selected for communication.
  • the preset threshold value is set too low, it is easy to switch back and forth between multiple channels, resulting in ping-pong switching phenomenon, resulting in poor communication quality; if the preset threshold value is set too high, in weak signal scenarios, it may be Other channels are slightly better than the currently used channel, but the difference between the currently used channel and other channels cannot be selected because the preset threshold value cannot be reached, resulting in poor communication quality.
  • one of the objectives of the present application is to provide a channel selection method, an electronic device and a storage medium.
  • an embodiment of the present application provides a channel selection method, including:
  • an embodiment of the present application provides an electronic device, the electronic device has a wireless communication function; the electronic device includes: a processor and a memory for storing instructions executable by the processor;
  • the processor executes the executable instructions, it is configured to:
  • embodiments of the present application provide a computer-readable storage medium on which computer instructions are stored, characterized in that, when the instructions are executed by a processor, the method described in the first aspect is implemented.
  • the target channel is selected as the currently used channel.
  • the evaluation is performed according to the cumulative results of the difference between the channel qualities in multiple periods, so that a more accurate evaluation result can be obtained, and in the case of a small difference in the channel quality, a better channel than the currently used channel can be selected.
  • the target channel is determined based on the accumulated results in multiple cycles, the determination time is long, and ping-pong handover can be effectively avoided.
  • FIG. 1 is a schematic diagram of a scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a first channel selection method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a second channel selection method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a third channel selection method provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the communication system needs to reselect a channel with better channel quality and perform communication based on the selected channel to ensure good communication quality.
  • a scheme based on a signal quality difference threshold is usually used for channel selection, and when the channel quality of the target channel is higher than a preset threshold value than the currently used channel, the target channel is selected for communication.
  • the preset threshold value is set too low, it is easy to switch back and forth between multiple channels, resulting in a ping-pong switching phenomenon, resulting in poor communication quality; if the preset threshold value is set too high, in weak signal scenarios, it may be Other channels are slightly better than the currently used channel, but the difference between the currently used channel and other channels cannot be selected because the preset threshold value cannot be reached, resulting in poor communication quality. For example, if the preset threshold is set to 3dB, there are often channels with a channel quality that is about 2dB higher than the currently used channel, but the channel selection cannot be triggered. When the signal is strong or the signal quality is very good, it has little effect, but it has little effect on weak signals. For example, when the distance is pulled or the scene is blocked, an increase of 2dB can choose a higher MCS channel capacity, which may double, or have fewer wrong packets to obtain a more stable experience, which greatly improves the transmission quality.
  • an embodiment of the present application provides a channel selection method, after acquiring the first channel quality of the currently used channel and the second channel quality of multiple other channels to be selected, according to the first channel quality in multiple periods
  • a target channel is determined by accumulating the difference between the quality and the quality of the second channel, and finally the target channel is selected as the currently used channel.
  • the evaluation is performed according to the cumulative results of the difference between the channel qualities in multiple periods, so that a more accurate evaluation result can be obtained, and in the case of a small difference in the channel quality, a better channel than the currently used channel can be selected.
  • the target channel is determined based on the accumulated results in multiple cycles, the determination time is long, and ping-pong handover can be effectively avoided.
  • the channel selection method of the embodiment of the present application can be applied to any wireless communication system.
  • the wireless communication system selects an appropriate channel for communication based on the channel selection method of the embodiment of the present application, and can also be used when the channel quality difference is small. It is realized to select a better channel than the currently used channel, so that a better communication experience than the currently used channel can be obtained even in a weak signal scenario.
  • the wireless communication system includes an unmanned aerial vehicle 10 and a remote controller 20, and the unmanned aerial vehicle 10 and the remote controller 20 are communicatively connected, and the channel selection method can be applied to an unmanned aerial vehicle 10 and a remote controller 20.
  • the UAV 10 or the remote controller 20 is described by taking the UAV 10 executing the channel selection method as an example.
  • the UAV 10 can obtain the first channel quality of the currently used channel and the second channel quality of the other channels to be selected.
  • the channel quality, or the remote controller 20 can acquire the first channel quality of the currently used channel and the second channel quality of the other multiple channels to be selected and then transmit them to the UAV 10, and then the UAV 10 according to the multiple
  • the cumulative result of the difference between the quality of the first channel and the quality of the second channel within a period of time determines the target channel, and finally selects the target channel to communicate with the remote controller 20; In a small case, a better channel than the currently used channel can also be selected, so that a better communication experience can be obtained than the currently used channel in a weak signal scenario; It takes a long time to determine the target channel, which can effectively avoid ping-pong handover.
  • the wireless communication system includes a server 30 and a plurality of terminals 40 , the server 30 is connected to each terminal 40 in communication, and the channel selection method can be applied to the server 30 Alternatively, each terminal 40 is described by taking the server 30 executing the channel selection method as an example, and each terminal 40 can acquire the first channel quality of the currently used channel and the second channel quality of a plurality of other channels to be selected and then transmit them to the server. 30.
  • the server 30 may determine a target channel according to a cumulative result of the difference between the quality of the first channel and the quality of the second channel in multiple cycles, and then select the target channel to perform communication with the terminal 40. communication.
  • the target channel is determined by accumulating results in a period of time, and the determination time is long, which can effectively avoid ping-pong handover.
  • an embodiment of the present application provides a channel selection method.
  • the channel selection method can be performed by an electronic device with a wireless communication function, and the method includes:
  • step S101 the first channel quality of the currently used channel and the second channel quality of the other multiple channels to be selected are acquired.
  • a target channel is determined according to a cumulative result of the difference between the first channel quality and the second channel quality in multiple periods.
  • step S103 the target channel is selected as the currently used channel.
  • the first channel quality of the currently used channel and the second channel quality of other multiple channels to be selected may be acquired by the electronic device, or the current The first channel quality of the channel and the second channel quality of the other multiple channels to be selected are used and transmitted to the electronic device.
  • the first channel quality or the second channel quality is determined according to at least one of the following channel parameters of each channel: signal strength, noise strength, signal-to-noise ratio or channel capacity.
  • the channel parameters may be acquired by the electronic device, or the channel parameters may be acquired by other devices communicatively connected to the electronic device and then transmitted to the electronic device, and then the electronic device based on the channel parameters
  • the channel parameter determines the first channel quality or the second channel quality; or the first channel quality or the second channel quality is determined based on the channel parameter of the corresponding channel after acquiring the channel parameter by another device communicatively connected to the electronic device. Two-channel quality and transmitted to the electronic device.
  • the electronic device in each cycle, obtains the first channel quality of the currently used channel and the second channel quality of the other multiple channels to be selected, and then according to the first channel quality and the first channel quality Based on the accumulated results of the difference between the two channel qualities in multiple cycles, the target channel is determined, and finally the target channel is selected as the currently used channel; Evaluation, more accurate evaluation results can be obtained, and a channel better than the currently used channel can be selected even when the channel quality difference is small, so that in a weak signal scenario, a better channel than the currently used channel can be obtained. Communication experience; and, because the target channel is determined based on the accumulated results in multiple cycles, the determination time is long, and ping-pong handover can be effectively avoided.
  • the electronic device acquires the first channel quality of the currently used channel and the second channel quality of the other multiple channels to be selected, and then determines the other multiple channels to be selected
  • the optimal second channel quality in the second channel quality if the optimal second channel quality is greater than or equal to the first channel quality, and the difference between the two is greater than or equal to the preset threshold, directly
  • the channel to be selected corresponding to the optimal second channel quality is the target channel, so that a better channel can be directly determined when the channel difference is large, which is beneficial to improve the selection efficiency; If the difference between the quality of the first channel is less than the preset threshold value, then according to the cumulative result of the difference between the quality of the first channel and the quality of the second channel in multiple cycles, the target channel is determined,
  • the interval length of the period may be set according to an actual application scenario, which is not limited in this embodiment of the present application.
  • the interval period of the period may be 0s, 10s, or 1min.
  • the electronic device may determine the second channel from the plurality of channels to be selected A target channel whose quality is consistently better than the quality of the first channel for the plurality of periods.
  • the channel quality difference is small, a better channel than the currently used channel can be selected, which is beneficial to improve the communication experience; and continuous evaluation needs to be performed in multiple cycles, which can effectively avoid ping-pong handover.
  • the electronic device may determine the channel to be selected corresponding to the optimal second channel quality as target channel.
  • the channel quality difference is small, a better channel than the currently used channel can be selected, which is beneficial to improve the communication experience; and continuous evaluation needs to be performed in multiple periods, which can effectively avoid ping-pong handover.
  • an embodiment of the present application provides a second channel selection method.
  • the channel selection method can be performed by an electronic device with a wireless communication function, and the method includes:
  • step S201 the first channel quality of the currently used channel and the second channel quality of the other multiple channels to be selected are acquired. Similar to step S101, details are not repeated here.
  • step S202 from the plurality of channels to be selected, a target channel whose quality of the second channel is continuously better than the quality of the first channel for multiple periods is determined.
  • step S203 the target channel is selected as the currently used channel. Similar to step S102, details are not repeated here.
  • the electronic device acquires the first channel quality of the currently used channel and the second channel quality of other multiple channels to be selected; then for each channel to be selected, according to the second channel quality and the The difference between the first channel qualities determines the first channel switching factor of the to-be-selected channel, and the first channel-switching factor is used to indicate that the second channel quality of the to-be-selected channel is different from the first channel quality in a plurality of cycles.
  • a cumulative result of the difference between the channel qualities then, according to the first channel switching factor of the plurality of channels to be selected, it is determined from the plurality of channels to be selected that the quality of the second channel continues to be optimal in the plurality of periods the target channel at the first channel quality.
  • a channel that is better than the currently used channel can be selected even when the channel quality difference is small, which is beneficial to improve the communication experience; Continuous evaluation within the system can effectively avoid ping-pong handovers.
  • the to-be-selected channel is in The first channel switching factor of the current cycle is increasing; if the second channel quality of the to-be-selected channel is lower than the first channel quality, it indicates that the to-be-selected channel is worse than the currently used channel in the current cycle, and the to-be-selected channel is worse than the currently used channel.
  • the first channel switching factor of the channel in the current cycle increases negatively.
  • the first channel switching factor of any channel to be selected is greater than or equal to a specified threshold, it indicates that the quality of the second channel of the channel to be selected continues to be better than the quality of the first channel within the multiple periods, and the The channel to be selected is the target channel. If the first channel switching factor of any to-be-selected channel is less than the specified threshold, indicating that there is no target channel that meets the conditions in this period, channel selection and switching will not be performed in this period.
  • the electronic device may obtain the first cumulative factor of the current cycle according to the difference between the second channel quality and the first channel quality ; Then, according to the first accumulation coefficient and the first channel switching factor of the previous cycle, determine the first channel switching factor of the to-be-selected channel in the current cycle.
  • the difference between the second channel quality and the first channel quality has a positive correlation with the first accumulation coefficient; the greater the difference between the second channel quality and the first channel quality is small, indicating that the channel to be selected corresponding to the quality of the second channel is equivalent to the currently used channel, and the first cumulative coefficient determined according to the difference between the quality of the second channel and the quality of the first channel is also smaller.
  • the smaller the influence on the first channel switching factor of the channel to be selected that is, the smaller the influence on the final determination of the target channel, which is beneficial to ensure that the channel quality difference can also be achieved even when the difference in channel quality is small.
  • a channel that is better than the currently used channel is selected; correspondingly, the larger the difference between the second channel quality and the first channel quality is, the greater the quality of the second channel indicates that the channel to be selected corresponding to the second channel quality is better than
  • the channel is currently in use, the larger the first cumulative coefficient determined according to the difference between the second channel quality and the first channel quality, further, the first channel switching factor of the channel to be selected is The greater the impact is, that is, the greater the impact on the final determination of the target channel, which is beneficial to ensure that a channel better than the currently used channel can be selected even when the channel quality difference is small.
  • the first accumulation coefficient may be determined by a power function, for example, an exponentiation operation may be performed on the difference between the second channel quality and the first channel quality, so that the second channel quality The smaller the difference with the first channel quality, the smaller the first accumulation coefficient; the larger the difference between the second channel quality and the first channel quality, the smaller the larger the coefficient.
  • the first accumulation coefficient may be determined according to a difference between the second channel quality and the first channel quality and a preset weight, the preset weight and the difference positive correlation.
  • the first accumulation coefficient may be the product of the difference between the second channel quality and the first channel quality and a preset weight, and the difference between the second channel quality and the first channel quality The smaller the difference is, the smaller the preset weight is, so that the first cumulative coefficient is smaller; the larger the difference between the second channel quality and the first channel quality, the larger the preset weight is. is larger, so that the first accumulation coefficient is larger.
  • the to-be-selected channel is in The first channel switching factor of the current cycle is the sum of the first cumulative coefficient and the first channel switching factor of the previous cycle, so that the first channel switching factor of the to-be-selected channel in the current cycle increases;
  • the second channel quality of the selected channel is lower than the first channel quality, indicating that the to-be-selected channel is worse than the currently used channel in the current cycle, and the first channel switching factor of the to-be-selected channel in the current cycle is the previous cycle
  • the difference between the first channel switching factor of , and the first accumulation coefficient makes the first channel switching factor of the channel to be selected in the current cycle negatively increase.
  • the first channel switching factor of the to-be-selected channel continues to increase negatively. In this case, the to-be-selected channel The first channel switching factor of the channel itself is reduced a lot. If the second channel quality of the channel to be selected continues to be greater than or equal to the quality of the first channel in the next multiple cycles, the first channel quality of the channel to be selected will continue to be greater than or equal to the first channel quality.
  • the value range of the first channel switching factor in this embodiment is a preset range, and the preset range includes a preset upper limit value and a preset lower limit value.
  • the first channel switching factor of the channel to be selected is greater than the preset upper limit value, and the first channel switching factor of the channel to be selected is set to the preset upper limit value;
  • the first channel switching factor of the channel is smaller than the preset lower limit value, and the first channel switching factor of the to-be-selected channel is set to the preset lower limit value, thereby effectively avoiding the excessive influence of negative growth.
  • the initial value of the first channel switching factor of the channel to be selected may be set to the preset lower limit value, and the first channel switching factor corresponding to the target channel is the preset value.
  • the upper limit value when the first channel switching factor of the channel to be selected is gradually accumulated from the initial value to the preset upper limit value, it is determined that the channel to be selected is the target channel, and the electronic device selects the target channel The channel is the currently used channel.
  • the value range of the first channel switching factor is [0, 1]. If the first channel switching factor of the to-be-selected channel in the current cycle is greater than 1, the first channel of the to-be-selected channel is set to The switching factor is set to 1; if the first channel switching factor of the channel to be selected in the current cycle is less than 0, the first channel switching factor of the channel to be selected is set to 0. The initial value of the first channel switching factor of the channel to be selected is 0, and the first channel switching factor corresponding to the target channel is 1. When the first channel switching factor of the channel to be selected is gradually accumulated from 0 to all When the above 1 is selected, it is determined that the to-be-selected channel is the target channel, and the electronic device selects the target channel as the currently used channel.
  • the electronic device may communicate with other devices based on the selected target channel. Furthermore, the electronic device may set the first channel switching factor of each of the channels to be selected to an initial value in response to the selection of the target channel as the currently used channel.
  • the first channel quality of the currently used channel is Q 0
  • the second channel qualities of the other multiple channels to be selected are respectively Q 1 , Q 2 , ... Q M
  • M is greater than 0 the integer.
  • the channel to be switched corresponding to max is the target channel, and the target channel is selected as the currently used channel; if Q max -Q 0 ⁇ A, then for each channel to be selected, the first channel switching factor posf of the channel to be selected is determined ;
  • the electronic device can determine the first accumulation coefficient according to the ratio of the difference between the second channel quality and the first channel quality and the preset threshold value, and the first accumulation coefficient is obtained by exponentiation; then according to the The first cumulative coefficient and the first channel switching factor of the previous cycle are used to determine the first channel switching factor of the to-be-selected channel in the current cycle ; represents the second channel quality of any channel to be selected, and uses posf m to represent the first channel switching factor of any channel to be selected.
  • the first channel switching factor posf m of the channel to be selected in the current cycle can be expressed as:
  • the difference between the second channel quality and the first channel quality and the first accumulation coefficient A positive correlation the index N is a natural number greater than 1, and the specific value can be set according to the actual application scenario.
  • the value range of the first channel switching factor posf m is [0, 1]
  • the initial value of the first channel switching factor posf m is 0, and when the first channel switching factor posf m is accumulated to 1, it indicates that the first channel switching factor posf m
  • the to-be-selected channel indicated by the switching factor posf m continues to be better than the currently used channel for multiple periods, determining the to-be-selected channel corresponding to the first channel switching factor posf m as the target channel, and then selecting the target channel as the currently used channel .
  • the electronic device sets the first channel switching factor of each channel to be selected to an initial value, and starts accumulating the first channel switching factor of each channel again.
  • the first channel switching factors of all channels to be selected are continuously monitored, and the first channel switching factors are used to determine the target channel whose quality of the second channel is continuously better than that of the first channel.
  • the channel quality difference is small It is also possible to select a better channel than the currently used channel, which is conducive to improving the communication experience; and continuous evaluation is required in multiple cycles, which can effectively avoid ping-pong handover.
  • an embodiment of the present application further provides a third channel switching method.
  • the channel selection method may be performed by an electronic device with a wireless communication function, and the method includes:
  • step S301 the first channel quality of the currently used channel and the second channel quality of the other multiple channels to be selected are acquired. Similar to step S101, details are not repeated here.
  • step S302 determine the optimal second channel quality among the second channel qualities of the other multiple channels to be selected, if the first channel quality continues to be worse than the optimal second channel quality for multiple periods Channel quality, determining the channel to be selected corresponding to the optimal second channel quality as the target channel.
  • step S303 the target channel is selected as the currently used channel. Similar to step S102, details are not repeated here.
  • the electronic device acquires the first channel quality of the currently used channel and the second channel quality of the other multiple channels to be selected, and determines the optimal second channel quality of the multiple other channels to be selected.
  • second channel quality determines a second channel switching factor of the currently used channel according to the difference between the optimal second channel quality and the first channel quality, where the second channel switching factor is used to indicate The cumulative result of the difference between the optimal second channel quality and the first channel quality in multiple periods; if the first channel quality is determined according to the second channel switching factor of the currently used channel at If the quality of the second channel is continuously worse than the optimal second channel quality in the multiple periods, the channel to be selected corresponding to the quality of the second optimal channel is determined as the target channel.
  • a channel that is better than the currently used channel can be selected, which is beneficial to Improve communication experience; and need to perform continuous evaluation in multiple cycles, which can effectively avoid ping-pong switching; and only need to continuously monitor the second channel switching factor of the currently used channel, which is conducive to reducing computing resources and storage resources.
  • the optimal second channel quality is greater than or equal to the first channel quality, it indicates that the channel to be selected corresponding to the optimal second channel quality in the current period is better than the currently used channel , the second channel switching factor of the currently used channel in the current cycle increases negatively; if the optimal second channel quality is less than the first channel quality, it indicates that the optimal second channel quality in the current cycle The corresponding channel to be selected is worse than the currently used channel, and the second channel switching factor of the currently used channel in the current cycle is increasing.
  • the second channel switching factor is less than or equal to a specified threshold, it indicates that the quality of the first channel is continuously worse than the quality of the second optimal channel for the multiple periods, and the currently used channel is If the channel is not the optimal channel continuously for multiple periods, the channel to be selected corresponding to the optimal second channel quality is determined as the target channel. If the second channel switching factor is greater than the specified threshold, indicating that there is no target channel that meets the conditions in this period, channel selection and switching will not be performed in this period.
  • the electronic device may obtain the second channel switching factor of the current period according to the difference between the optimal second channel quality and the first channel quality Accumulation coefficient; then, according to the second accumulation coefficient and the second channel switching factor of the previous cycle, determine the second channel switching factor of the currently used channel in the current cycle.
  • the difference between the optimal second channel quality and the first channel quality has a positive correlation with the second accumulation coefficient; the optimal second channel quality and the first channel quality The smaller the difference between the two, it indicates that the channel to be selected corresponding to the optimal second channel quality is equivalent to the currently used channel, then according to the difference between the optimal second channel quality and the first channel quality
  • the first cumulative coefficient determined by the difference is smaller, and further, the smaller the influence on the second channel switching factor of the currently used channel, that is, the smaller the influence on the final determination of the target channel, which is conducive to ensuring
  • the channel quality difference is small, a better channel than the currently used channel can also be selected; accordingly, the greater the difference between the optimal second channel quality and the first channel quality, It indicates that the channel to be selected corresponding to the optimal second channel quality is better than the currently used channel, then the first cumulative coefficient determined according to the difference between the second channel quality and the first channel quality is also The larger the value, further, the greater the impact on the second channel switching factor of the currently used channel, that is, the greater
  • the second accumulation coefficient may be determined by a power function, for example, an exponentiation operation may be performed on the difference between the optimal second channel quality and the first channel quality, so that the optimal The smaller the difference between the optimal second channel quality and the first channel quality, the smaller the second cumulative coefficient; the difference between the optimal second channel quality and the first channel quality The larger the value, the larger the second accumulation coefficient.
  • the second accumulation coefficient may be determined according to the difference between the optimal second channel quality and the first channel quality, and a preset weight, the preset weight being the same as the preset weight.
  • the difference is positively correlated.
  • the second accumulation coefficient may be the product of the difference between the optimal second channel quality and the first channel quality and a preset weight, and the optimal second channel quality and the first channel quality The smaller the difference between a channel quality, the smaller the preset weight, so that the second cumulative coefficient is smaller; the difference between the optimal second channel quality and the first channel quality The larger the preset weight is, the larger the second accumulation coefficient is.
  • the second channel switching factor of the currently used channel in the current cycle is the difference between the second channel switching factor of the previous cycle and the second cumulative coefficient, so that the second channel switching factor of the currently used channel in the current cycle Negative growth; if the optimal second channel quality is less than the first channel quality, it indicates that the channel to be selected corresponding to the optimal second channel quality in the current cycle is worse than the currently used channel, and the currently used channel
  • the second channel switching factor in the current cycle is the sum of the second accumulation coefficient and the second channel switching factor of the previous cycle, so that the second channel switching factor of the currently used channel in the current cycle increases positively.
  • the second channel switching factor of the currently used channel continues to increase positively. In this case, the currently used channel The second channel switching factor of the channel itself is increased a lot. If the optimal second channel quality continues to be greater than or equal to the first channel quality in the next multiple cycles, the second channel switching factor of the currently used channel is switched. The factor continues to grow negatively, but if the negative growth part cannot offset the previous positive growth part, the channel to be selected corresponding to the optimal second channel quality will not be able to offset even if it continues to be better than the currently used channel for multiple periods Due to the excessive influence of positive growth, channel selection cannot be performed based on the second channel switching factor.
  • the value range of the second channel switching factor in this embodiment is a preset range, and the preset range includes a preset upper limit value and a preset lower limit value. If In the current cycle, the second channel switching factor of the currently used channel is greater than the preset upper limit value, and the second channel switching factor is set to the preset upper limit value; if the currently used channel in the current cycle The second channel switching factor is less than the preset lower limit value, and the second channel switching factor is set to the preset lower limit value, thereby effectively avoiding the excessive influence of positive growth.
  • the initial value of the second channel switching factor of the currently used channel may be set to the preset upper limit value, and when the second channel switching factor is reduced to the preset lower limit value
  • the electronic device selects the target channel as the currently used channel.
  • the value range of the second channel switching factor is [0, 1]. If the second channel switching factor in the current cycle is greater than 1, the second channel switching factor is set to 1; Periodically, the second channel switching factor is less than 0, and the second channel switching factor is set to 0. The initial value of the second channel switching factor of the currently used channel is 1. When the second channel switching factor is reduced to 0, the channel to be selected corresponding to the optimal second channel quality is determined as the target channel, then The electronic device selects the target channel as the currently used channel.
  • the electronic device may communicate with other devices based on the selected target channel. Also, the electronic device may set the second channel switching factor of the currently used channel to an initial value in response to the selection of the target channel as the currently used channel.
  • the first channel quality of the currently used channel is Q 0
  • the second channel qualities of the other multiple channels to be selected are respectively Q 1 , Q 2 , ... Q M , and M is greater than 0 the integer.
  • the channel to be switched corresponding to max is the target channel, and the target channel is selected as the currently used channel; if Q max -Q 0 ⁇ A, then for the currently used channel, the second channel switching factor posn of the currently used channel is determined;
  • the electronic device can determine the second accumulation coefficient according to the ratio of the difference between the optimal second channel quality and the first channel quality and the preset threshold value, and the second accumulation coefficient is obtained by exponentiation; and then according to The second cumulative coefficient and the second channel switching factor of the previous cycle determine the second channel switching factor of the currently used channel in the current cycle; specifically, the second channel switching factor posn of the currently used channel in the current cycle It can be expressed as: Wherein, the difference between the optimal second channel quality and the first channel quality and the second accumulation coefficient A positive correlation, the index N is a natural number greater than 1, and the specific value can be set according to the actual application scenario.
  • the second cumulative coefficient smaller.
  • the value range of the second channel switching factor posn is [0, 1], and the initial value of the second channel switching factor posn is 1.
  • the second channel switching factor posn is reduced to 0, it indicates that the currently used channel is in multiple If the channel is not the optimal channel continuously in the period, the to-be-selected channel corresponding to the optimal second channel quality is determined as the target channel, and then the target channel is selected as the currently used channel. and in response to the selection of the target channel as the currently used channel, the electronic device sets the second channel switching factor of each of the currently used channels to an initial value, and restarts accumulating the second channel switching factor of the currently used channel. .
  • the second channel switching factor of the currently used channel is used to determine whether the currently used channel continues to be worse than the worst in multiple periods.
  • the optimal channel to be selected can be selected even when the channel quality difference is small, which is conducive to improving the communication experience; and continuous evaluation is required in multiple cycles, which can effectively avoid ping-pong switch.
  • an embodiment of the present application further provides an electronic device, the electronic device has a wireless communication function, and the electronic device includes: a processor 41 and a memory for storing executable instructions of the processor 41 42;
  • processor 41 executes the executable instructions, it is used for:
  • the processor 41 executes the executable instructions included in the memory 42, and the processor 41 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors) Processor, DSP), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU Central Processing Unit
  • DSP Digital Signal Processors
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 42 stores executable instructions of the channel selection method
  • the memory 42 may include at least one type of storage medium, and the storage medium includes a flash memory, a hard disk, a multimedia card, a card-type memory (for example, SD or DX memory, etc. etc.), random access memory (RAM), static random access memory (SRAM), read only memory (ROM), electrically erasable programmable read only memory (EEPROM), programmable read only memory (PROM), magnetic memory, Disks, CDs, etc.
  • the device may cooperate with a network storage device that performs the storage function of the memory through a network connection.
  • the memory 42 may be an internal storage unit of the device 40 , such as a hard disk or a memory of the device 40 .
  • the memory 42 can also be an external storage device of the device 40, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, and a flash memory card (Flash Card) equipped on the device 40. Wait. Further, the memory 42 may also include both an internal storage unit of the device 40 and an external storage device. Memory 42 is used to store executable instructions and other programs and data required by the device. The memory 42 may also be used to temporarily store data that has been or will be output.
  • a plug-in hard disk such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, and a flash memory card (Flash Card) equipped on the device 40. Wait. Further, the memory 42 may also include both an internal storage unit of the device 40 and an external storage device. Memory 42 is used to store executable instructions and other programs and data required by the device. The memory 42 may also be used to temporarily store data that has
  • the various embodiments described herein can be implemented using computer readable media such as computer software, hardware, or any combination thereof.
  • the embodiments described herein can be implemented using application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays ( FPGA), processors, controllers, microcontrollers, microprocessors, electronic units designed to perform the functions described herein are implemented.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, electronic units designed to perform the functions described herein are implemented.
  • embodiments such as procedures or functions may be implemented with separate software modules that allow the performance of at least one function or operation.
  • the software codes may be implemented by a software application (or program) written in any suitable programming language, which may be stored in
  • the electronic device includes at least one of the following: an unmanned aerial vehicle, an unmanned vehicle, a mobile robot, an unmanned vessel, a remote control device, a mobile terminal, or a smart wearable device.
  • the processor 41 when determining the target channel, is configured to: from the plurality of channels to be selected, determine that the quality of the second channel is continuously better than that of the first channel in the plurality of cycles A channel quality target channel.
  • the processor 41 when determining the target channel, is configured to: determine the optimal second channel quality among the second channel qualities of the other multiple channels to be selected; if the first channel quality is If the quality of the second channel is continuously worse than the optimal second channel quality for a plurality of cycles, the channel to be selected corresponding to the quality of the second optimal channel is determined as the target channel.
  • the processor 41 is further configured to: in each cycle, if the optimal second channel quality is greater than or equal to the first channel quality, and the difference between the two is greater than or equal to a preset value The threshold value is determined, and the to-be-selected channel corresponding to the optimal second channel quality is determined as the target channel.
  • the processor 41 is further configured to: if the difference between the optimal second channel quality and the first channel quality is lower than a preset threshold value, select from the plurality of channels to be selected. A target channel for which the quality of the second channel is continuously better than the quality of the first channel for the plurality of periods is determined.
  • the processor 41 is further configured to:
  • a first channel switching factor of the channel to be selected is determined according to the difference between the quality of the second channel and the quality of the first channel, the first channel switching The factor is used to indicate the cumulative result of the difference between the second channel quality of the channel to be selected and the first channel quality;
  • a target channel whose quality of the second channel is continuously better than the quality of the first channel in the plurality of periods is determined from the plurality of channels to be selected.
  • the first channel switching factor of the to-be-selected channel in the current cycle increases positively;
  • the first channel switching factor of the channel to be selected in the current cycle increases negatively.
  • the processor 41 is further configured to: obtain a first cumulative coefficient of the current period according to the resignation between the second channel quality and the first channel quality; according to the first cumulative coefficient and The first channel switching factor of the previous cycle is used to determine the first channel switching factor of the to-be-selected channel in the current cycle.
  • the difference between the second channel quality and the first channel quality has a positive correlation with the first accumulation coefficient.
  • the first accumulation coefficient is determined by a power function; or, the first accumulation coefficient is determined according to the difference between the second channel quality and the first channel quality and a preset weight, The preset weight is positively correlated with the difference.
  • the first accumulation coefficient is determined according to a ratio of a difference between the second channel quality and the first channel quality and a preset threshold value.
  • the first channel switching factor of the to-be-selected channel in the current cycle is the first cumulative coefficient and the upper The sum of the first channel switching factors of a cycle; if the second channel quality of the channel to be selected is less than the first channel quality, the first channel switching factor of the channel to be selected in the current cycle is the first channel switching factor of the previous cycle. The difference between a channel switching factor and the first accumulation coefficient.
  • the value range of the first channel switching factor is a preset range, and the preset range includes a preset upper limit value and a preset lower limit value; the first channel switching of the to-be-selected channel The initial value of the factor is the preset lower limit value, and the first channel switching factor corresponding to the target channel is the preset upper limit value.
  • the first channel switching factor of the channel to be selected in the current cycle is greater than the preset upper limit value
  • the first channel switching factor of the channel to be selected is set to the preset upper limit value ; if the first channel switching factor of the channel to be selected in the current cycle is less than the preset lower limit value, set the first channel switching factor of the channel to be selected as the preset lower limit value.
  • the value range of the first channel switching factor is [0, 1]; the initial value of the first channel switching factor of the channel to be selected is 0, and the first channel switching factor corresponding to the target channel is 0.
  • the channel switching factor is 1.
  • the first channel switching factor of the channel to be selected in the current cycle is greater than 1, the first channel switching factor of the channel to be selected is set to 1; if the first channel switching factor of the channel to be selected in the current cycle is 1 If the channel switching factor is less than 0, the first channel switching factor of the to-be-selected channel is set to 0.
  • the processor 41 is further configured to: in response to the selection of the target channel as the currently used channel, to set the first channel switching factor of each of the channels to be selected to an initial value.
  • the first channel quality or the second channel quality is determined according to at least one of the following channel parameters of each channel: signal strength, noise strength, signal-to-noise ratio or channel capacity.
  • the processor 41 is further configured to: if the difference between the optimal second channel quality and the first channel quality is less than a preset threshold, and the first channel quality is within the If the quality of the second channel is continuously worse than the optimal second channel quality for multiple periods, the channel to be selected corresponding to the optimal second channel quality is determined as the target channel.
  • the processor 41 is further configured to: in each cycle, determine the first channel quality of the currently used channel according to the difference between the optimal second channel quality and the first channel quality.
  • Two channel switching factors the second channel switching factor is used to indicate the cumulative result of the difference between the optimal second channel quality and the first channel quality; if the second channel is based on the currently used channel
  • the switching factor determines that the quality of the first channel is continuously worse than the quality of the second optimal channel in the multiple periods, and determines the channel to be selected corresponding to the quality of the second optimal channel as the target channel.
  • the second channel switching factor of the currently used channel in the current cycle increases negatively; if the optimal second channel quality is The channel quality is lower than the first channel quality, and the second channel switching factor of the currently used channel in the current cycle is increasing.
  • the processor 41 is further configured to: obtain a second accumulation coefficient of the current cycle according to the difference between the optimal second channel quality and the first channel quality; Two cumulative coefficients and the second channel switching factor of the previous cycle are used to determine the second channel switching factor of the currently used channel in the current cycle.
  • the difference between the optimal second channel quality and the first channel quality has a positive correlation with the second accumulation coefficient.
  • the second accumulation coefficient is determined by a power function; or, the second accumulation coefficient is determined according to the difference between the optimal second channel quality and the first channel quality and a preset value.
  • the weight is determined, and the preset weight has a positive correlation with the difference.
  • the second accumulation coefficient is determined according to a ratio of the difference between the optimal second channel quality and the first channel quality to a preset threshold value.
  • the second channel switching factor of the currently used channel in the current cycle is the second channel switching factor of the previous cycle The difference between the second accumulation coefficient and the second accumulation coefficient; if the optimal second channel quality is less than the first channel quality, the second channel switching factor of the currently used channel in the current cycle is the second accumulation coefficient and The sum of the second channel switching factors of the previous cycle.
  • the value range of the second channel switching factor is a preset range, and the preset range includes a preset upper limit value and a preset lower limit value; the second channel switching of the currently used channel The initial value of the factor is the preset upper limit value; when the second channel switching factor is reduced to the preset lower limit value, the to-be-selected channel corresponding to the optimal second channel quality is determined as the target channel .
  • the second channel switching factor of the currently used channel in the current period is greater than the preset upper limit value, the second channel switching factor is set to the preset upper limit value; The second channel switching factor of the currently used channel in the current period is smaller than the preset lower limit value, and the second channel switching factor is set to the preset lower limit value.
  • the value range of the second channel switching factor is [0, 1]; the initial value of the second channel switching factor of the currently used channel is 1; when the second channel switching factor decreases When it is 0, the to-be-selected channel corresponding to the optimal second channel quality is determined as the target channel.
  • the second channel switching factor in the current cycle is greater than 1, the second channel switching factor is set to 1; if the second channel switching factor in the current cycle is less than 0, the second channel switching factor is set to 1. The switching factor is set to 0.
  • the processor 41 is further configured to: in response to selecting the target channel as the currently used channel, set the second channel switching factor of the currently used channel to an initial value.
  • non-transitory computer-readable storage medium such as a memory including instructions, executable by a processor of an apparatus to perform the above-described method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • a non-transitory computer-readable storage medium when the instructions in the storage medium are executed by a processor of the device, enable the device to perform the above method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信道选择方法、电子设备及存储介质,所述方法包括:获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量;根据在多个周期内所述第一信道质量与所述第二信道质量之间的差异的累积结果,确定目标信道;选择所述目标信道为当前使用信道。本实施例在信道质量差异较小的情况下也可以实现选择到比当前使用信道更优的信道,使得在弱信号场景下也能获得比当前使用信道更佳的通信体验。

Description

信道选择方法、电子设备及存储介质 技术领域
本申请涉及通信技术领域,具体而言,涉及一种信道选择方法、电子设备及存储介质。
背景技术
无线通信技术通过自由空间传播电磁波。为了使各个地区各种通信不会互相干扰,国际电信联盟科学地分配了各种通信***所适用的频段,使得各种通信***在其适用的频段内进行通信;进一步地,每个频段又被划分成若干个信道,各种通信***可以选择合适的信道进行通信。比如IEEE 802.11工作组为WiFi通信划分了多个独立的频段,例如:2.4GHz和4.9/5.8GHz等。每个频段又划分了若干个信道。如中国的2.4GHz频段为2.412-2.472GHz,该频段又划分为13个信道。
在信道质量不佳的情况下,通信***需要重新选择信道质量更好的信道并基于选择的信道进行通信,以保证良好的通信质量。相关技术中,通常采用基于信号质量差值门限的方案进行信道选择,在目标信道的信道质量比当前使用信道高于预设门限值的情况下,选择目标信道进行通信。但是,如果预设门限值设置过低,容易在多个信道之间来回切换,导致乒乓切换现象,导致通信质量不佳;如果预设门限值设置过高,在弱信号场景下,可能其他信道略优于当前使用信道,但当前使用信道与其他信道之间的差值因达不到预设门限值而无法选择,导致通信质量不佳。
发明内容
有鉴于此,本申请的目的之一是提供一种信道选择方法、电子设备及存储介质。
第一方面,本申请实施例提供了一种信道选择方法,包括:
获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量;
根据在多个周期内所述第一信道质量与所述第二信道质量之间的差异的累积结果, 确定目标信道;
选择所述目标信道为当前使用信道。
第二方面,本申请实施例提供了一种电子设备,所述电子设备具有无线通信功能;所述电子设备包括:处理器以及用于存储处理器可执行指令的存储器;
其中,所述处理器执行所述可执行指令时被配置为用于:
获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量;
根据在多个周期内所述第一信道质量与所述第二信道质量之间的差异的累积结果,确定目标信道;
选择所述目标信道为当前使用信道。
第三方面,本申请实施例提供了一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现第一方面所述的方法。
本申请实施例所提供的一种信道选择方法、电子设备及存储介质,在获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量之后,根据在多个周期内所述第一信道质量与所述第二信道质量之间的差异的累积结果来确定目标信道,最后选择所述目标信道为当前使用信道。本实施例根据信道质量之间的差异在多个周期内的累积结果进行评估,可以获取更为准确的评估结果,在信道质量差异较小的情况下也可以实现选择到比当前使用信道更优的信道,使得在弱信号场景下也能获得比当前使用信道更佳的通信体验;而且,因为基于多个周期内的累积结果来确定目标信道,确定时间较长,可以有效避免乒乓切换。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的一种场景示意图;
图2是本申请一个实施例提供的另一种场景示意图;
图3是本申请一个实施例提供的第一种信道选择方法的流程示意图;
图4是本申请一个实施例提供的第二种信道选择方法的流程示意图;
图5是本申请一个实施例提供的第三种信道选择方法的流程示意图;
图6是本申请一个实施例提供的一种电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在信道质量不佳的情况下,通信***需要重新选择信道质量更好的信道并基于选择的信道进行通信,以保证良好的通信质量。相关技术中,通常采用基于信号质量差值门限的方案进行信道选择,在目标信道的信道质量比当前使用信道高于预设门限值的情况下,选择目标信道进行通信。但是,如果预设门限值设置过低,容易在多个信道之间来回切换,产生乒乓切换现象,导致通信质量不佳;如果预设门限值设置过高,在弱信号场景下,可能其他信道略优于当前使用信道,但当前使用信道与其他信道之间的差值因达不到预设门限值而无法选择,导致通信质量不佳。比如设置预设门限值为3dB,则经常出现有比当前使用信道的信道质量高2dB左右的信道但是无法触发信道选择,在强信号或信号质量很好的时候影响不大,但是对弱信号如拉距时的场景或受遮挡时的场景,提升2dB可以选择更高的MCS信道容量可能翻倍,或者有更少的错包获取更稳定的体验,这些对传输质量都有很大改善。
基于此,本申请实施例提供了一种信道选择方法,在获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量之后,根据在多个周期内所述第一信道质量与所述第二信道质量之间的差异的累积结果来确定目标信道,最后选择所述目标信道为当前使用信道。本实施例根据信道质量之间的差异在多个周期内的累积结果进行评估,可以获取更为准确的评估结果,在信道质量差异较小的情况下也可以实现选择到比当前使用信道更优的信道,使得在弱信号场景下也能获得比当前使用信道更佳的通信体验;而且,因为基于多个周期内的累积结果来确定目标信道,确定时间较长,可以有效避免乒乓切换。
本申请实施例的信道选择方法可以应用于任意的无线通信***中,所述无线通信***基于本申请实施例的信道选择方法选择合适的信道进行通信,在信道质量差异较小的情况下也可以实现选择到比当前使用信道更优的信道,使得在弱信号场景下也能获得比当前使用信道更佳的通信体验。
在一示例性的实施例中,请参阅图1,无线通信***包括有无人飞行器10和遥控 器20,所述无人飞行器10和遥控器20通信连接,所述信道选择方法可以应用于无人飞行器10或者遥控器20,以无人飞行器10执行所述信道选择方法为例进行说明,所述无人飞行器10可以获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量,或者可以由遥控器20获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量之后传输给所述无人飞行器10,然后所述无人飞行器10根据在多个周期内所述第一信道质量与所述第二信道质量之间的差异的累积结果,确定目标信道,最后选择所述目标信道与所述遥控器20进行通信;本实施例在信道质量差异较小的情况下也可以实现选择到比当前使用信道更优的信道,使得在弱信号场景下也能获得比当前使用信道更佳的通信体验;而且,因为基于多个周期内的累积结果来确定目标信道,确定时间较长,可以有效避免乒乓切换。
在另一示例性的实施例中,请参阅图2,无线通信***包括有服务器30以及多个终端40,所述服务器30分别与各个终端40通信连接,所述信道选择方法可以应用于服务器30或者各个终端40,以服务器30执行所述信道选择方法为例进行说明,各个终端40可以获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量之后传输给所述服务器30,所述服务器30可以根据在多个周期内所述第一信道质量与所述第二信道质量之间的差异的累积结果,确定目标信道,然后选择所述目标信道与所述终端40进行通信。本实施例在信道质量差异较小的情况下也可以实现选择到比当前使用信道更优的信道,使得在弱信号场景下也能获得比当前使用信道更佳的通信体验;而且,因为基于多个周期内的累积结果来确定目标信道,确定时间较长,可以有效避免乒乓切换。
请参阅图3,本申请实施例提供了一种信道选择方法,所述信道选择方法可以由具有无线通信功能的电子设备来执行,所述方法包括:
在步骤S101中,获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量。
在步骤S102中,根据在多个周期内所述第一信道质量与所述第二信道质量之间的差异的累积结果,确定目标信道。
在步骤S103中,选择所述目标信道为当前使用信道。
在一些实施例中,可以由所述电子设备来获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量,也可以由与所述电子设备通信连接的其他设备获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量并传输给所述电子设备。
所述第一信道质量或所述第二信道质量根据各信道的以下至少一种信道参数确定:信号强度、噪声强度、信噪比或者信道容量。其中,可以由所述电子设备获取所述信道参数,也可以由与所述电子设备通信连接的其他设备获取所述信道参数后传输给所述电子设备,然后由所述电子设备基于各信道的信道参数确定所述第一信道质量或者第二信道质量;或者由与所述电子设备通信连接的其他设备在获取所述信道参数后,基于对应信道的信道参数确定所述第一信道质量或者第二信道质量并传输给所述电子设备。
在一些实施例中,在每个周期内,所述电子设备获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量,然后根据所述第一信道质量与所述第二信道质量之间的差异在多个周期内的累积结果,确定目标信道,最后选择所述目标信道为当前使用信道;本实施例根据在多个周期内信道质量之间的差异的累积结果进行评估,可以获取更为准确的评估结果,在信道质量差异较小的情况下也可以实现选择到比当前使用信道更优的信道,使得在弱信号场景下也能获得比当前使用信道更佳的通信体验;而且,因为基于多个周期内的累积结果来确定目标信道,确定时间较长,可以有效避免乒乓切换。
考虑到在第二信道质量优于第二信道质量,且第一信道质量与所述第二信道质量差异较大的情况下,可以毫无疑义确定第二信道质量对应的待选择信道更优,因此,在一些实施例中,在每个周期内,所述电子设备获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量,然后确定所述其他多个待选择信道的第二信道质量中最优的第二信道质量;如果最优的第二信道质量大于或等于所述第一信道质量,且两者的差值大于或等于预设门限值,则直接确定所述最优的第二信道质量对应的待选择信道为目标信道,实现在信道差异较大的情况下直接确定更优的信道,有利于提高选择效率;如果最优的第二信道质量与所述第一信道质量的差值小于预设门限值,则根据所述第一信道质量与所述第二信道质量之间的差异在多个周期内的累积结果,确定目标信道,实现在信道质量差异较小的情况下也可以实现选择到比当前使用信道更优的信道,有利于提高通信体验。
可以理解的是,可以根据实际应用场景设置周期的间隔时长,本申请实施例对此不做任何限制,例如周期的间隔时长可以是0s、10s或者1min等。
在一种实现方式中,如果最优的第二信道质量与所述第一信道质量的差值小于预设门限值,所述电子设备可以从所述多个待选择信道中确定第二信道质量在所述多个周期内持续优于所述第一信道质量的目标信道。本实施例在信道质量差异较小的情况 下也可以实现选择到比当前使用信道更优的信道,有利于提高通信体验;而且需要在多个周期内进行持续评估,能够有效避免乒乓切换。
在另一种实现方式中,如果最优的第二信道质量与所述第一信道质量的差值小于预设门限值,且所述第一信道质量在所述多个周期内持续差于最优的第二信道质量,即所述第一信道质量在所述多个周期内持续不是最优信道,所述电子设备可以将所述最优的第二信道质量对应的待选择信道确定为目标信道。本实施例在信道质量差异较小的情况下也可以实现选择到比当前使用信道更优的信道,有利于提高通信体验;而且需要在多个周期内进行持续评估,能够有效避免乒乓切换。
请参阅图4,本申请实施例提供了第二种信道选择方法,所述信道选择方法可以由具有无线通信功能的电子设备来执行,所述方法包括:
在步骤S201中,获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量。与步骤S101类似,此处不再赘述。
在步骤S202中,从所述多个待选择信道中,确定所述第二信道质量在多个周期内持续优于所述第一信道质量的目标信道。
在步骤S203中,选择所述目标信道为当前使用信道。与步骤S102类似,此处不再赘述。
在每个周期内,所述电子设备获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量;然后对于每一个待选择信道,根据所述第二信道质量以及所述第一信道质量之间的差异确定所述待选择信道的第一信道切换因子,所述第一信道切换因子用于指示在多个周期内所述待选择信道的第二信道质量与所述第一信道质量之间的差异的累积结果;然后根据所述多个待选择信道的第一信道切换因子,从所述多个待选择信道中确定第二信道质量在所述多个周期内持续优于所述第一信道质量的目标信道。本实施例通过对信道质量之间的差异进行累计评估,在信道质量差异较小的情况下也可以实现选择到比当前使用信道更优的信道,有利于提高通信体验;而且需要在多个周期内进行持续评估,能够有效避免乒乓切换。
在一些实施例中,如果所述待选择信道的第二信道质量大于或等于所述第一信道质量,表明在当前周期内所述待选择信道优于当前使用信道,则所述待选择信道在当前周期的第一信道切换因子正增长;如果所述待选择信道的第二信道质量小于所述第一信道质量,表明在当前周期内所述待选择信道差于当前使用信道,所述待选择信道在当前周期的第一信道切换因子负增长。
作为例子,若任意一个待选择信道的第一信道切换因子大于或等于指定阈值,表明该待选择信道的第二信道质量在所述多个周期内持续优于所述第一信道质量,确定该待选择信道为目标信道。若任意一个待选择信道的第一信道切换因子小于指定阈值,表明本周期内没有符合条件的目标信道,则本周期内不进行信道选择与切换。
在确定当前周期内所述待选择信道的第一信道切换因子时,所述电子设备可以根据所述第二信道质量与所述第一信道质量之间的差值获取当前周期的第一累积系数;然后根据所述第一累积系数以及上一周期的第一信道切换因子,确定当前周期所述待选择信道的第一信道切换因子。
其中,所述第二信道质量与所述第一信道质量之间的差值与所述第一累积系数成正相关关系;所述第二信道质量与所述第一信道质量之间的差值越小,表明所述第二信道质量对应的待选择信道跟当前使用信道相当,则根据所述第二信道质量与所述第一信道质量之间的差值确定的第一累积系数也就越小,进一步地,对所述待选择信道的第一信道切换因子的影响也就越小,即对最终确定目标信道的影响越小,从而有利于保证在信道质量差异较小的情况下也可以实现选择到比当前使用信道更优的信道;相应地,所述第二信道质量与所述第一信道质量之间的差值越大,表明所述第二信道质量对应的待选择信道更优于当前使用信道,则根据所述第二信道质量与所述第一信道质量之间的差值确定的第一累积系数也就越大,进一步地,对所述待选择信道的第一信道切换因子的影响也就越大,即对最终确定目标信道的影响越大,从而有利于保证在信道质量差异较小的情况下也可以实现选择到比当前使用信道更优的信道。
在一种实现方式中,所述第一累积系数可以通过幂函数确定,比如可以对所述第二信道质量与所述第一信道质量之间的差值进行求幂运算,使得第二信道质量与所述第一信道质量之间的差值越小,所述第一累积系数越小;所述第二信道质量与所述第一信道质量之间的差值越大,所述第一累积系数越大。
在另一种实现方式中,所述第一累积系数可以根据所述第二信道质量以及所述第一信道质量之间的差值和预设权重确定,所述预设权重与所述差值成正相关关系。比如所述第一累积系数可以是所述第二信道质量以及所述第一信道质量之间的差值和预设权重之积,所述第二信道质量与所述第一信道质量之间的差值越小,所述预设权重越小,使得所述第一累积系数越小;所述第二信道质量与所述第一信道质量之间的差值越大,所述预设权重越大,使得所述第一累积系数越大。
在一些实施例中,如果所述待选择信道的第二信道质量大于或等于所述第一信道质量,表明在当前周期内所述待选择信道优于当前使用信道,则所述待选择信道在当 前周期的第一信道切换因子为所述第一累积系数与上一周期的第一信道切换因子之和,使得所述待选择信道在当前周期的第一信道切换因子正增长;如果所述待选择信道的第二信道质量小于所述第一信道质量,表明在当前周期内所述待选择信道差于当前使用信道,则所述待选择信道在当前周期的第一信道切换因子为上一周期的第一信道切换因子与所述第一累积系数之差,使得所述待选择信道在当前周期的第一信道切换因子负增长。
如果多个周期内,所述待选择信道的第二信道质量持续小于所述第一信道质量,则所述待选择信道的第一信道切换因子持续负增长,在这种情况下,所述待选择信道的第一信道切换因子本身被降低了很多,如果在接下来的多个周期内所述待选择信道的第二信道质量持续大于或者等于所述第一信道质量,所述待选择信道的第一信道切换因子持续正增长,但如果正增长的部分无法抵消之前负增长降低的部分,会使得所述待选择信道即使在多个周期内持续优于当前使用信道,因此负增长部分的过度影响也无法基于所述第一信道切换因子进行信道选择。因此,为了避免持续负增长的过度影响,本实施例中所述第一信道切换因子的取值范围为预设范围,所述预设范围包括预设上限值和预设下限值,如果当前周期所述待选择信道的第一信道切换因子大于所述预设上限值,将所述待选择信道的第一信道切换因子置为所述预设上限值;如果当前周期所述待选择信道的第一信道切换因子小于所述预设下限值,将所述待选择信道的第一信道切换因子置为所述预设下限值,从而有效避免负增长的过度影响。
进一步地,本实施例中,可以设置所述待选择信道的第一信道切换因子的初始值为所述预设下限值,且所述目标信道对应的第一信道切换因子为所述预设上限值,当所述待选择信道的第一信道切换因子从初始值逐渐累积到所述预设上限值时,确定所述待选择信道为目标信道,则所述电子设备选择所述目标信道为当前使用信道。
在一个例子中,所述第一信道切换因子的取值范围为[0,1],如果当前周期所述待选择信道的第一信道切换因子大于1,将所述待选择信道的第一信道切换因子置为1;如果当前周期所述待选择信道的第一信道切换因子小于0,将所述待选择信道的第一信道切换因子置为0。所述待选择信道的第一信道切换因子的初始值为0,且所述目标信道对应的第一信道切换因子为1,当所述待选择信道的第一信道切换因子从0逐渐累积到所述1时,确定所述待选择信道为目标信道,则所述电子设备选择所述目标信道为当前使用信道。
在选择所述目标信道为当前使用信道之后,所述电子设备可以基于选择的目标信道与其他设备进行通信。而且,所述电子设备可以响应于所述选择所述目标信道为当 前使用信道,将每个所述待选择信道的第一信道切换因子设置为初始值。
在一个示例性的实施例中,设当前使用信道的第一信道质量为Q 0,其他多个待选择信道的第二信道质量分别为Q 1、Q 2、……Q M,M为大于0的整数。在每个周期内,从Q 1、Q 2、……Q M中确定最优的第二信道质量Q max,设预设门限值为A,如果Q max-Q 0≥A,则确定Q max对应的待切换信道为目标信道,选择所述目标信道为当前使用信道;如果Q max-Q 0<A,则对于每一个待选择信道,确定所述待选择信道的第一信道切换因子posf;所述电子设备可以根据所述第二信道质量与所述第一信道质量的差值与预设门限值的比值确定第一累积系数,第一累积系数通过求幂运算得到;然后根据所述第一累积系数以及上一周期的第一信道切换因子,确定当前周期所述待选择信道的第一信道切换因子;具体来说,假设用m来表示任意一个待选择信道,用Q m来表示任意一个待选择信道的第二信道质量,用posf m来表示任意一个待选择信道的第一信道切换因子,当前周期所述待选择信道的第一信道切换因子posf m可以表示为:
Figure PCTCN2020118783-appb-000001
其中,所述第二信道质量与所述第一信道质量之间的差值与所述第一累积系数
Figure PCTCN2020118783-appb-000002
成正相关关系,指数N为大于1的自然数,具体取值可依据实际应用场景进行具体设置。通过幂函数的形式,使得所述第二信道质量与所述第一信道质量之间的差值越小,第一累积系数
Figure PCTCN2020118783-appb-000003
越小。其中,第一信道切换因子posf m的取值范围为[0,1],第一信道切换因子posf m的初始值为0,当第一信道切换因子posf m累积到1时,表明第一信道切换因子posf m指示的待选择信道在多个周期内持续优于所述当前使用信道,确定第一信道切换因子posf m对应的待选择信道为目标信道,然后选择所述目标信道为当前使用信道。并且所述电子设备响应于所述选择所述目标信道为当前使用信道,将每个所述待选择信道的第一信道切换因子设置为初始值,重新开始累积各个信道的第一信道切换因子。本实施例中对所有待选择信道的第一信道切换因子进行持续监测,通过第一信道切换因子来确定第二信道质量持续优于第一信道质量的目标信道,在信道质量差异较小的情况下也可以实现选择到比当前使用信道更优的信道,有利于提高通信体验;而且需要在多个周期内进行持续评估,能够有效避免乒乓切换。
相应的,请参阅图5,本申请实施例还提供了第三种信道切换方法,所述信道选择方法可以由具有无线通信功能的电子设备来执行,所述方法包括:
在步骤S301中,获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量。与步骤S101类似,此处不再赘述。
在步骤S302中,确定所述其他多个待选择信道的第二信道质量中最优的第二信道质量,如果所述第一信道质量在多个周期内持续差于所述最优的第二信道质量,将所述最优的第二信道质量对应的待选择信道确定为目标信道。
在步骤S303中,选择所述目标信道为当前使用信道。与步骤S102类似,此处不再赘述。
在每个周期内,所述电子设备获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量,确定所述其他多个待选择信道的第二信道质量中最优的第二信道质量;然后根据所述最优的第二信道质量以及所述第一信道质量之间的差异确定所述当前使用信道的第二信道切换因子,所述第二信道切换因子用于指示在多个周期内所述最优的第二信道质量与所述第一信道质量之间的差异的累积结果;如果根据所述当前使用信道的第二信道切换因子确定所述第一信道质量在所述多个周期内持续差于所述最优的第二信道质量,将所述最优的第二信道质量对应的待选择信道确定为目标信道。本实施例通过将第一信道质量与最优的第二信道质量之间的差异进行累计评估,在信道质量差异较小的情况下也可以实现选择到比当前使用信道更优的信道,有利于提高通信体验;而且需要在多个周期内进行持续评估,能够有效避免乒乓切换;而且只需对当前使用信道的第二信道切换因子进行持续监测,有利于减少计算资源和存储资源。
在一些实施例中,如果所述最优的第二信道质量大于或等于所述第一信道质量,表明在当前周期内所述最优的第二信道质量对应的待选择信道优于当前使用信道,则所述当前使用信道在当前周期的第二信道切换因子负增长;如果所述最优的第二信道质量小于所述第一信道质量,表明在当前周期内所述最优的第二信道质量对应的待选择信道差于当前使用信道,所述当前使用信道在当前周期的第二信道切换因子正增长。
作为例子,若所述第二信道切换因子小于或者等于指定阈值,表明所述第一信道质量在所述多个周期内持续差于所述最优的第二信道质量,所述当前使用信道在多个周期内持续不是最优信道,则确定所述最优的第二信道质量对应的待选择信道为目标信道。若所述第二信道切换因子大于指定阈值,表明本周期内没有符合条件的目标信道,则本周期内不进行信道选择与切换。
在确定当前周期所述当前使用信道的第二信道切换因子时,所述电子设备可以根据所述最优的第二信道质量与所述第一信道质量之间的差值获取当前周期的第二累积 系数;然后根据所述第二累积系数以及上一周期的第二信道切换因子,确定当前周期所述当前使用信道的第二信道切换因子。
其中,所述最优的第二信道质量以及所述第一信道质量之间的差值与所述第二累积系数成正相关关系;所述最优的第二信道质量与所述第一信道质量之间的差值越小,表明所述最优的第二信道质量对应的待选择信道跟当前使用信道相当,则根据所述最优的第二信道质量与所述第一信道质量之间的差值确定的第一累积系数也就越小,进一步地,对所述当前使用信道的第二信道切换因子的影响也就越小,即对最终确定目标信道的影响越小,从而有利于保证在信道质量差异较小的情况下也可以实现选择到比当前使用信道更优的信道;相应地,所述最优的第二信道质量与所述第一信道质量之间的差值越大,表明所述最优的第二信道质量对应的待选择信道更优于当前使用信道,则根据所述第二信道质量与所述第一信道质量之间的差值确定的第一累积系数也就越大,进一步地,对所述当前使用信道的第二信道切换因子的影响也就越大,即对最终确定目标信道的影响越大,从而有利于保证在信道质量差异较小的情况下也可以实现选择到比当前使用信道更优的信道。
在一种实现方式中,所述第二累积系数可以通过幂函数确定,比如可以对所述最优的第二信道质量与所述第一信道质量之间的差值进行求幂运算,使得最优的第二信道质量与所述第一信道质量之间的差值越小,所述第二累积系数越小;所述最优的第二信道质量与所述第一信道质量之间的差值越大,所述第二累积系数越大。
在另一种实现方式中,所述第二累积系数可以根据所述最优的第二信道质量以及所述第一信道质量之间的差值和预设权重确定,所述预设权重与所述差值成正相关关系。比如所述第二累积系数可以是所述最优的第二信道质量以及所述第一信道质量之间的差值和预设权重之积,所述最优的第二信道质量与所述第一信道质量之间的差值越小,所述预设权重越小,使得所述第二累积系数越小;所述最优的第二信道质量与所述第一信道质量之间的差值越大,所述预设权重越大,使得所述第二累积系数越大。
在一些实施例中,如果所述最优的第二信道质量大于或等于所述第一信道质量,表明在当前周期内所述最优的第二信道质量对应的待选择信道优于当前使用信道,所述当前使用信道在当前周期的第二信道切换因子为上一周期的第二信道切换因子与所述第二累积系数之差,使得所述当前使用信道在当前周期的第二信道切换因子负增长;如果所述最优的第二信道质量小于所述第一信道质量,表明在当前周期内所述最优的第二信道质量对应的待选择信道差于当前使用信道,所述当前使用信道在当前周期的第二信道切换因子为所述第二累积系数与上一周期的第二信道切换因子之和,使得所 述当前使用信道在当前周期的第二信道切换因子正增长。
如果多个周期内,所述最优的第二信道质量持续小于所述第一信道质量,则所述当前使用信道的第二信道切换因子持续正增长,在这种情况下,所述当前使用信道的第二信道切换因子本身被增加了很多,如果在接下来的多个周期内最优的第二信道质量持续大于或者等于所述第一信道质量,所述当前使用信道的第二信道切换因子持续负增长,但如果负增长的部分无法抵消之前正增长增加的部分,会使得所述最优的第二信道质量对应的待选择信道即使在多个周期内持续优于当前使用信道,也无法抵消正增长的过度影响,无法基于所述第二信道切换因子进行信道选择。因此,为了避免持续正增长的过度影响,本实施例中所述第二信道切换因子的取值范围为预设范围,所述预设范围包括预设上限值和预设下限值,如果在当前周期所述当前使用信道的第二信道切换因子大于所述预设上限值,将所述第二信道切换因子置为所述预设上限值;如果在当前周期所述当前使用信道的第二信道切换因子小于所述预设下限值,将所述第二信道切换因子置为所述预设下限值,从而有效避免正增长的过度影响。
进一步地,本实施例中,可以设置所述当前使用信道的第二信道切换因子的初始值为所述预设上限值,当所述第二信道切换因子降低为所述预设下限值时将所述最优的第二信道质量对应的待选择信道确定为目标信道,则所述电子设备选择所述目标信道为当前使用信道。
在一个例子中,所述第二信道切换因子的取值范围为[0,1],如果当前周期所述第二信道切换因子大于1,将所述第二信道切换因子置为1;如果当前周期所述第二信道切换因子小于0,将所述第二信道切换因子置为0。所述当前使用信道的第二信道切换因子的初始值为1,当所述第二信道切换因子降低为0时将所述最优的第二信道质量对应的待选择信道确定为目标信道,则所述电子设备选择所述目标信道为当前使用信道。
在选择所述目标信道为当前使用信道之后,所述电子设备可以基于选择的目标信道与其他设备进行通信。而且,所述电子设备可以响应于所述选择所述目标信道为当前使用信道,将当前使用信道的第二信道切换因子设置为初始值。
在一个示例性的实施例中,设当前使用信道的第一信道质量为Q 0,其他多个待选择信道的第二信道质量分别为Q 1、Q 2、……Q M,M为大于0的整数。在每个周期内,从Q 1、Q 2、……Q M中确定最优的第二信道质量Q max,设预设门限值为A,如果Q max-Q 0≥A,则确定Q max对应的待切换信道为目标信道,选择所述目标信道为当前使用信道;如果Q max-Q 0<A,则对于当前使用信道,确定所述当前使用信道的第二信道切换因子posn; 所述电子设备可以根据所述最优的第二信道质量与所述第一信道质量的差值与预设门限值的比值确定第二累积系数,第二累积系数通过求幂运算得到;然后根据所述第二累积系数以及上一周期的第二信道切换因子,确定当前周期所述当前使用信道的第二信道切换因子;具体来说,当前周期所述当前使用信道的第二信道切换因子posn可以表示为:
Figure PCTCN2020118783-appb-000004
其中,所述最优的第二信道质量与所述第一信道质量之间的差值与所述第二累积系数
Figure PCTCN2020118783-appb-000005
成正相关关系,指数N为大于1的自然数,具体取值可依据实际应用场景进行具体设置。通过幂函数的形式,使得所述最优的第二信道质量与所述第一信道质量之间的差值越小,第二累积系数
Figure PCTCN2020118783-appb-000006
越小。其中,第二信道切换因子posn的取值范围为[0,1],第二信道切换因子posn的初始值为1,当第二信道切换因子posn降低到0时,表明当前使用信道在多个周期内持续不是最优信道,则确定最优的第二信道质量对应的待选择信道为目标信道,然后选择所述目标信道为当前使用信道。并且所述电子设备响应于所述选择所述目标信道为当前使用信道,将每个所述当前使用信道的第二信道切换因子设置为初始值,重新开始累积当前使用信道的第二信道切换因子。本实施例中只需要对当前使用信道的第二信道切换因子进行持续监测,有利于节省计算资源和存储资源,通过第二信道切换因子来确定当前使用信道在多个周期内是否持续差于最优的待选择信道,在信道质量差异较小的情况下也可以实现选择到比当前使用信道更优的信道,有利于提高通信体验;而且需要在多个周期内进行持续评估,能够有效避免乒乓切换。
相应地,请参阅图6,本申请实施例还提供了一种电子设备,所述电子设备具有无线通信功能,所述电子设备包括:处理器41以及用于存储处理器41可执行指令的存储器42;
其中,所述处理器41执行所述可执行指令时用于:
获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量;
根据在多个周期内所述第一信道质量与所述第二信道质量之间的差异的累积结果,确定目标信道;
选择所述目标信道为当前使用信道。
所述处理器41执行所述存储器42中包括的可执行指令,所述处理器41可以是中 央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器42存储所述信道选择方法的可执行指令,所述存储器42可以包括至少一种类型的存储介质,存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等等。而且,设备可以与通过网络连接执行存储器的存储功能的网络存储装置协作。存储器42可以是设备40的内部存储单元,例如设备40的硬盘或内存。存储器42也可以是设备40的外部存储设备,例如设备40上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器42还可以既包括设备40的内部存储单元也包括外部存储设备。存储器42用于存储的可执行指令以及设备所需的其他程序和数据。存储器42还可以用于暂时地存储已经输出或者将要输出的数据。
这里描述的各种实施方式可以使用例如计算机软件、硬件或其任何组合的计算机可读介质来实施。对于硬件实施,这里描述的实施方式可以通过使用特定用途集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理装置(DSPD)、可编程逻辑装置(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、被设计为执行这里描述的功能的电子单元中的至少一种来实施。对于软件实施,诸如过程或功能的实施方式可以与允许执行至少一种功能或操作的单独的软件模块来实施。软件代码可以由以任何适当的编程语言编写的软件应用程序(或程序)来实施,软件代码可以存储在存储器中并且由控制器执行。
在一实施例中,所述电子设备包括以下至少一项:无人飞行器、无人驾驶车辆、移动机器人、无人驾驶船只、遥控设备、移动终端或者智能穿戴设备。
在一实施例中,在确定目标信道时,所述处理器41用于:从所述多个待选择信道中,确定所述第二信道质量在所述多个周期内持续优于所述第一信道质量的目标信道。
在一实施例中,在确定目标信道时,所述处理器41用于:确定所述其他多个待选择信道的第二信道质量中最优的第二信道质量;如果所述第一信道质量在多个周期内持续差于所述最优的第二信道质量,将所述最优的第二信道质量对应的待选择信道确 定为目标信道。
在一实施例中,所述处理器41还用于:在每个周期内,如果最优的第二信道质量大于或等于所述第一信道质量,且两者的差值大于或等于预设门限值,确定所述最优的第二信道质量对应的待选择信道为目标信道。
在一实施例中,所述处理器41还用于:如果最优的第二信道质量比所述第一信道质量的差值低于预设门限值,从所述多个待选择信道中确定第二信道质量在所述多个周期内持续优于所述第一信道质量的目标信道。
在一实施例中,所述处理器41还用于:
在每个周期内,对于每一个待选择信道,根据所述第二信道质量以及所述第一信道质量之间的差异确定所述待选择信道的第一信道切换因子,所述第一信道切换因子用于指示所述待选择信道的第二信道质量与所述第一信道质量之间的差异的累积结果;
根据所述多个待选择信道的第一信道切换因子,从所述多个待选择信道中确定第二信道质量在所述多个周期内持续优于所述第一信道质量的目标信道。
在一实施例中,如果所述待选择信道的第二信道质量大于或等于所述第一信道质量,所述待选择信道在当前周期的第一信道切换因子正增长;
如果所述待选择信道的第二信道质量小于所述第一信道质量,所述待选择信道在当前周期的第一信道切换因子负增长。
在一实施例中,所述处理器41还用于:根据所述第二信道质量与所述第一信道质量之间的撤职获取当前周期的第一累积系数;根据所述第一累积系数以及上一周期的第一信道切换因子,确定当前周期所述待选择信道的第一信道切换因子。
在一实施例中,所述第二信道质量与所述第一信道质量之间的差值与所述第一累积系数成正相关关系。
在一实施例中,所述第一累积系数通过幂函数确定;或者,所述第一累积系数根据所述第二信道质量以及所述第一信道质量之间的差值和预设权重确定,所述预设权重与所述差值成正相关关系。
在一实施例中,所述第一累积系数根据所述第二信道质量与所述第一信道质量的差值与预设门限值的比值确定。
在一实施例中,如果所述待选择信道的第二信道质量大于或等于所述第一信道质量,所述待选择信道在当前周期的第一信道切换因子为所述第一累积系数与上一周期的第一信道切换因子之和;如果所述待选择信道的第二信道质量小于所述第一信道质量,所述待选择信道在当前周期的第一信道切换因子为上一周期的第一信道切换因子 与所述第一累积系数之差。
在一实施例中,所述第一信道切换因子的取值范围为预设范围,所述预设范围包括预设上限值和预设下限值;所述待选择信道的第一信道切换因子的初始值为所述预设下限值,且所述目标信道对应的第一信道切换因子为所述预设上限值。
在一实施例中,如果当前周期所述待选择信道的第一信道切换因子大于所述预设上限值,将所述待选择信道的第一信道切换因子置为所述预设上限值;如果当前周期所述待选择信道的第一信道切换因子小于所述预设下限值,将所述待选择信道的第一信道切换因子置为所述预设下限值。
在一实施例中,所述第一信道切换因子的取值范围为[0,1];所述待选择信道的第一信道切换因子的初始值为0,且所述目标信道对应的第一信道切换因子为1。
在一实施例中,如果当前周期所述待选择信道的第一信道切换因子大于1,将所述待选择信道的第一信道切换因子置为1;如果当前周期所述待选择信道的第一信道切换因子小于0,将所述待选择信道的第一信道切换因子置为0。
在一实施例中,所述处理器41还用于:响应于所述选择所述目标信道为当前使用信道,将每个所述待选择信道的第一信道切换因子设置为初始值。
在一实施例中,所述第一信道质量或所述第二信道质量根据各信道的以下至少一种信道参数确定:信号强度、噪声强度、信噪比或者信道容量。
在一实施例中,所述处理器41还用于:如果最优的第二信道质量与所述第一信道质量的差值小于预设门限值,且所述第一信道质量在所述多个周期内持续差于所述最优的第二信道质量,将所述最优的第二信道质量对应的待选择信道确定为目标信道。
在一实施例中,所述处理器41还用于:在每个周期内,根据所述最优的第二信道质量以及所述第一信道质量之间的差异确定所述当前使用信道的第二信道切换因子,所述第二信道切换因子用于指示所述最优的第二信道质量与所述第一信道质量之间的差异的累积结果;如果根据所述当前使用信道的第二信道切换因子确定所述第一信道质量在所述多个周期内持续差于所述最优的第二信道质量,将所述最优的第二信道质量对应的待选择信道确定为目标信道。
在一实施例中,如果所述最优的第二信道质量大于或等于所述第一信道质量,所述当前使用信道在当前周期的第二信道切换因子负增长;如果所述最优的第二信道质量小于所述第一信道质量,所述当前使用信道在当前周期的第二信道切换因子正增长。
在一实施例中,所述处理器41还用于:根据所述最优的第二信道质量与所述第一信道质量之间的差值获取当前周期的第二累积系数;根据所述第二累积系数以及上一 周期的第二信道切换因子,确定当前周期所述当前使用信道的第二信道切换因子。
在一实施例中,所述最优的第二信道质量以及所述第一信道质量之间的差值与所述第二累积系数成正相关关系。
在一实施例中,所述第二累积系数通过幂函数确定;或者,所述第二累积系数根据所述最优的第二信道质量以及所述第一信道质量之间的差值和预设权重确定,所述预设权重与所述差值成正相关关系。
在一实施例中,所述第二累积系数根据所述最优的第二信道质量与所述第一信道质量的差值与预设门限值的比值确定。
在一实施例中,如果所述最优的第二信道质量大于或等于所述第一信道质量,所述当前使用信道在当前周期的第二信道切换因子为上一周期的第二信道切换因子与所述第二累积系数之差;如果所述最优的第二信道质量小于所述第一信道质量,所述当前使用信道在当前周期的第二信道切换因子为所述第二累积系数与上一周期的第二信道切换因子之和。
在一实施例中,所述第二信道切换因子的取值范围为预设范围,所述预设范围包括预设上限值和预设下限值;所述当前使用信道的第二信道切换因子的初始值为所述预设上限值;当所述第二信道切换因子降低为所述预设下限值时将所述最优的第二信道质量对应的待选择信道确定为目标信道。
在一实施例中,如果在当前周期所述当前使用信道的第二信道切换因子大于所述预设上限值,将所述第二信道切换因子置为所述预设上限值;如果在当前周期所述当前使用信道的第二信道切换因子小于所述预设下限值,将所述第二信道切换因子置为所述预设下限值。
在一实施例中,所述第二信道切换因子的取值范围为[0,1];所述当前使用信道的第二信道切换因子的初始值为1;当所述第二信道切换因子降低为0时将所述最优的第二信道质量对应的待选择信道确定为目标信道。
在一实施例中,如果当前周期所述第二信道切换因子大于1,将所述第二信道切换因子置为1;如果当前周期所述第二信道切换因子小于0,将所述第二信道切换因子置为0。
在一实施例中,所述处理器41还用于:响应于选择所述目标信道为当前使用信道,将当前使用信道的第二信道切换因子设置为初始值。
上述设备中各个单元的功能和作用的实现过程具体详见上述方法中对应步骤的实现过程,在此不再赘述。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由装置的处理器执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当存储介质中的指令由设备的处理器执行时,使得设备能够执行上述方法。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (64)

  1. 一种信道选择方法,其特征在于,包括:
    获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量;
    根据在多个周期内所述第一信道质量与所述第二信道质量之间的差异的累积结果,确定目标信道;
    选择所述目标信道为当前使用信道。
  2. 根据权利要求1所述的方法,其特征在于,所述根据在多个周期内所述第一信道质量与所述第二信道质量之间的差异的累积结果,确定目标信道,包括:
    从所述多个待选择信道中,确定所述第二信道质量在所述多个周期内持续优于所述第一信道质量的目标信道。
  3. 根据权利要求1所述的方法,其特征在于,还包括:确定所述其他多个待选择信道的第二信道质量中最优的第二信道质量;
    所述根据在多个周期内所述第一信道质量与所述第二信道质量之间的差异的累积结果,确定目标信道,包括:
    如果所述第一信道质量在多个周期内持续差于所述最优的第二信道质量,将所述最优的第二信道质量对应的待选择信道确定为目标信道。
  4. 根据权利要求1所述的方法,其特征在于,还包括:
    在每个周期内,如果最优的第二信道质量大于或等于所述第一信道质量,且两者的差值大于或等于预设门限值,确定所述最优的第二信道质量对应的待选择信道为目标信道。
  5. 根据权利要求2所述的方法,其特征在于,所述从所述多个待选择信道中,确定第二信道质量在所述多个周期内持续优于所述第一信道质量的目标信道,包括:
    如果最优的第二信道质量与所述第一信道质量的差值小于预设门限值,从所述多个待选择信道中确定第二信道质量在所述多个周期内持续优于所述第一信道质量的目标信道。
  6. 根据权利要求2所述的方法,其特征在于,所述从所述多个待选择信道中,确定第二信道质量在所述多个周期内持续优于所述第一信道质量的目标信道,包括:
    在每个周期内,对于每一个待选择信道,根据所述第二信道质量以及所述第一信道质量之间的差异确定所述待选择信道的第一信道切换因子,所述第一信道切换因子用于指示所述待选择信道的第二信道质量与所述第一信道质量之间的差异的累积结果;
    根据所述多个待选择信道的第一信道切换因子,从所述多个待选择信道中确定第 二信道质量在所述多个周期内持续优于所述第一信道质量的目标信道。
  7. 根据权利要求6所述的方法,其特征在于,如果所述待选择信道的第二信道质量大于或等于所述第一信道质量,所述待选择信道在当前周期的第一信道切换因子正增长;
    如果所述待选择信道的第二信道质量小于所述第一信道质量,所述待选择信道在当前周期的第一信道切换因子负增长。
  8. 根据权利要求6所述的方法,其特征在于,所述根据第二信道质量以及所述第一信道质量之间的差异确定所述待选择信道的第一信道切换因子,包括:
    根据所述第二信道质量与所述第一信道质量之间的差值获取当前周期的第一累积系数;
    根据所述第一累积系数以及上一周期的第一信道切换因子,确定当前周期所述待选择信道的第一信道切换因子。
  9. 根据权利要求8所述的方法,其特征在于,所述第二信道质量与所述第一信道质量之间的差值与所述第一累积系数成正相关关系。
  10. 根据权利要求9所述的方法,其特征在于,所述第一累积系数通过幂函数确定;
    或者,所述第一累积系数根据所述第二信道质量以及所述第一信道质量之间的差值和预设权重确定,所述预设权重与所述差值成正相关关系。
  11. 根据权利要求9所述的方法,其特征在于,所述第一累积系数根据所述第二信道质量与所述第一信道质量的差值与预设门限值的比值确定。
  12. 根据权利要求9所述的方法,其特征在于,如果所述待选择信道的第二信道质量大于或等于所述第一信道质量,所述待选择信道在当前周期的第一信道切换因子为所述第一累积系数与上一周期的第一信道切换因子之和;
    如果所述待选择信道的第二信道质量小于所述第一信道质量,所述待选择信道在当前周期的第一信道切换因子为上一周期的第一信道切换因子与所述第一累积系数之差。
  13. 根据权利要求6所述的方法,其特征在于,所述第一信道切换因子的取值范围为预设范围,所述预设范围包括预设上限值和预设下限值;
    所述待选择信道的第一信道切换因子的初始值为所述预设下限值,且所述目标信道对应的第一信道切换因子为所述预设上限值。
  14. 根据权利要求13所述的方法,其特征在于,如果当前周期所述待选择信道的 第一信道切换因子大于所述预设上限值,将所述待选择信道的第一信道切换因子置为所述预设上限值;
    如果当前周期所述待选择信道的第一信道切换因子小于所述预设下限值,将所述待选择信道的第一信道切换因子置为所述预设下限值。
  15. 根据权利要求13所述的方法,其特征在于,所述第一信道切换因子的取值范围为[0,1];
    所述待选择信道的第一信道切换因子的初始值为0,且所述目标信道对应的第一信道切换因子为1。
  16. 根据权利要求15所述的方法,其特征在于,如果当前周期所述待选择信道的第一信道切换因子大于1,将所述待选择信道的第一信道切换因子置为1;
    如果当前周期所述待选择信道的第一信道切换因子小于0,将所述待选择信道的第一信道切换因子置为0。
  17. 根据权利要求6所述的方法,其特征在于,还包括:响应于所述选择所述目标信道为当前使用信道,将每个所述待选择信道的第一信道切换因子设置为初始值。
  18. 根据权利要求1所述的方法,其特征在于,所述第一信道质量或所述第二信道质量根据各信道的以下至少一种信道参数确定:信号强度、噪声强度、信噪比或者信道容量。
  19. 根据权利要求3所述的方法,其特征在于,所述如果所述第一信道质量在所述多个周期内持续差于所述最优的第二信道质量,将所述最优的第二信道质量对应的待选择信道确定为目标信道,包括:
    如果最优的第二信道质量与所述第一信道质量的差值小于预设门限值,且所述第一信道质量在所述多个周期内持续差于所述最优的第二信道质量,将所述最优的第二信道质量对应的待选择信道确定为目标信道。
  20. 根据权利要求3所述的方法,其特征在于,所述如果所述第一信道质量在所述多个周期内持续差于所述最优的第二信道质量,将所述最优的第二信道质量对应的待选择信道确定为目标信道,包括:
    在每个周期内,根据所述最优的第二信道质量与所述第一信道质量之间的差值确定所述当前使用信道的第二信道切换因子,所述第二信道切换因子用于指示所述最优的第二信道质量与所述第一信道质量之间的差异的累积结果;
    如果根据所述当前使用信道的第二信道切换因子确定所述第一信道质量在所述多个周期内持续差于所述最优的第二信道质量,将所述最优的第二信道质量对应的待选 择信道确定为目标信道。
  21. 根据权利要求20所述的方法,其特征在于,如果所述最优的第二信道质量大于或等于所述第一信道质量,所述当前使用信道在当前周期的第二信道切换因子负增长;
    如果所述最优的第二信道质量小于所述第一信道质量,所述当前使用信道在当前周期的第二信道切换因子正增长。
  22. 根据权利要求20所述的方法,其特征在于,所述根据所述最优的第二信道质量以及所述第一信道质量之间的差异确定所述当前使用信道的第二信道切换因子,包括:
    根据所述最优的第二信道质量以及所述第一信道质量之间的差异获取当前周期的第二累积系数;
    根据所述第二累积系数以及上一周期的第二信道切换因子,确定当前周期所述当前使用信道的第二信道切换因子。
  23. 根据权利要求22所述的方法,其特征在于,所述最优的第二信道质量以及所述第一信道质量之间的差值与所述第二累积系数成正相关关系。
  24. 根据权利要求23所述的方法,其特征在于,所述第二累积系数通过幂函数确定;或者,所述第二累积系数根据所述最优的第二信道质量以及所述第一信道质量之间的差值和预设权重确定,所述预设权重与所述差值成正相关关系。
  25. 根据权利要求22所述的方法,其特征在于,所述第二累积系数根据所述最优的第二信道质量与所述第一信道质量的差值与预设门限值的比值确定。
  26. 根据权利要求22所述的方法,其特征在于,如果所述最优的第二信道质量大于或等于所述第一信道质量,所述当前使用信道在当前周期的第二信道切换因子为上一周期的第二信道切换因子与所述第二累积系数之差;
    如果所述最优的第二信道质量小于所述第一信道质量,所述当前使用信道在当前周期的第二信道切换因子为所述第二累积系数与上一周期的第二信道切换因子之和。
  27. 根据权利要求20所述的方法,其特征在于,所述第二信道切换因子的取值范围为预设范围,所述预设范围包括预设上限值和预设下限值;
    所述当前使用信道的第二信道切换因子的初始值为所述预设上限值;
    当所述第二信道切换因子降低为所述预设下限值时将所述最优的第二信道质量对应的待选择信道确定为目标信道。
  28. 根据权利要求27所述的方法,其特征在于,如果在当前周期所述当前使用信 道的第二信道切换因子大于所述预设上限值,将所述第二信道切换因子置为所述预设上限值;
    如果在当前周期所述当前使用信道的第二信道切换因子小于所述预设下限值,将所述第二信道切换因子置为所述预设下限值。
  29. 根据权利要求27所述的方法,其特征在于,所述第二信道切换因子的取值范围为[0,1];
    所述当前使用信道的第二信道切换因子的初始值为1;
    当所述第二信道切换因子降低为0时将所述最优的第二信道质量对应的待选择信道确定为目标信道。
  30. 根据权利要求29所述的方法,其特征在于,如果当前周期所述第二信道切换因子大于1,将所述第二信道切换因子置为1;
    如果当前周期所述第二信道切换因子小于0,将所述第二信道切换因子置为0。
  31. 根据权利要求20所述的方法,其特征在于,还包括:响应于选择所述目标信道为当前使用信道,将当前使用信道的第二信道切换因子设置为初始值。
  32. 一种电子设备,其特征在于,所述电子设备具有无线通信功能;所述电子设备包括:处理器以及用于存储处理器可执行指令的存储器;
    其中,所述处理器执行所述可执行指令时用于:
    获取当前使用信道的第一信道质量以及其他多个待选择信道的第二信道质量;
    根据在多个周期内所述第一信道质量与所述第二信道质量之间的差异的累积结果,确定目标信道;
    选择所述目标信道为当前使用信道。
  33. 根据权利要求32所述的电子设备,其特征在于,所述电子设备包括以下至少一项:无人飞行器、无人驾驶车辆、移动机器人、无人驾驶船只、遥控设备、移动终端或者智能穿戴设备。
  34. 根据权利要求32所述的电子设备,其特征在于,在确定目标信道时,所述处理器用于:从所述多个待选择信道中,确定所述第二信道质量在所述多个周期内持续优于所述第一信道质量的目标信道。
  35. 根据权利要求32所述的电子设备,其特征在于,在确定目标信道时,所述处理器用于:确定所述其他多个待选择信道的第二信道质量中最优的第二信道质量;如果所述第一信道质量在多个周期内持续差于所述最优的第二信道质量,将所述最优的 第二信道质量对应的待选择信道确定为目标信道。
  36. 根据权利要求32所述的电子设备,其特征在于,所述处理器还用于:在每个周期内,如果最优的第二信道质量大于或等于所述第一信道质量,且两者的差值大于或等于预设门限值,确定所述最优的第二信道质量对应的待选择信道为目标信道。
  37. 根据权利要求34所述的电子设备,其特征在于,所述处理器还用于:如果最优的第二信道质量比所述第一信道质量的差值低于预设门限值,从所述多个待选择信道中确定第二信道质量在所述多个周期内持续优于所述第一信道质量的目标信道。
  38. 根据权利要求34所述的电子设备,其特征在于,所述处理器还用于:
    在每个周期内,对于每一个待选择信道,根据所述第二信道质量以及所述第一信道质量之间的差异确定所述待选择信道的第一信道切换因子,所述第一信道切换因子用于指示所述待选择信道的第二信道质量与所述第一信道质量之间的差异的累积结果;
    根据所述多个待选择信道的第一信道切换因子,从所述多个待选择信道中确定第二信道质量在所述多个周期内持续优于所述第一信道质量的目标信道。
  39. 根据权利要求38所述的电子设备,其特征在于,如果所述待选择信道的第二信道质量大于或等于所述第一信道质量,所述待选择信道在当前周期的第一信道切换因子正增长;
    如果所述待选择信道的第二信道质量小于所述第一信道质量,所述待选择信道在当前周期的第一信道切换因子负增长。
  40. 根据权利要求38所述的电子设备,其特征在于,所述处理器还用于:
    根据所述第二信道质量与所述第一信道质量之间的撤职获取当前周期的第一累积系数;
    根据所述第一累积系数以及上一周期的第一信道切换因子,确定当前周期所述待选择信道的第一信道切换因子。
  41. 根据权利要求40所述的电子设备,其特征在于,所述第二信道质量与所述第一信道质量之间的差值与所述第一累积系数成正相关关系。
  42. 根据权利要求41所述的电子设备,其特征在于,所述第一累积系数通过幂函数确定;或者,所述第一累积系数根据所述第二信道质量以及所述第一信道质量之间的差值和预设权重确定,所述预设权重与所述差值成正相关关系。
  43. 根据权利要求41所述的电子设备,其特征在于,所述第一累积系数根据所述第二信道质量与所述第一信道质量的差值与预设门限值的比值确定。
  44. 根据权利要求41所述的电子设备,其特征在于,如果所述待选择信道的第二 信道质量大于或等于所述第一信道质量,所述待选择信道在当前周期的第一信道切换因子为所述第一累积系数与上一周期的第一信道切换因子之和;
    如果所述待选择信道的第二信道质量小于所述第一信道质量,所述待选择信道在当前周期的第一信道切换因子为上一周期的第一信道切换因子与所述第一累积系数之差。
  45. 根据权利要求38所述的电子设备,其特征在于,所述第一信道切换因子的取值范围为预设范围,所述预设范围包括预设上限值和预设下限值;
    所述待选择信道的第一信道切换因子的初始值为所述预设下限值,且所述目标信道对应的第一信道切换因子为所述预设上限值。
  46. 根据权利要求45所述的电子设备,其特征在于,如果当前周期所述待选择信道的第一信道切换因子大于所述预设上限值,将所述待选择信道的第一信道切换因子置为所述预设上限值;
    如果当前周期所述待选择信道的第一信道切换因子小于所述预设下限值,将所述待选择信道的第一信道切换因子置为所述预设下限值。
  47. 根据权利要求45所述的电子设备,其特征在于,所述第一信道切换因子的取值范围为[0,1];
    所述待选择信道的第一信道切换因子的初始值为0,且所述目标信道对应的第一信道切换因子为1。
  48. 根据权利要求47所述的电子设备,其特征在于,如果当前周期所述待选择信道的第一信道切换因子大于1,将所述待选择信道的第一信道切换因子置为1;
    如果当前周期所述待选择信道的第一信道切换因子小于0,将所述待选择信道的第一信道切换因子置为0。
  49. 根据权利要求38所述的电子设备,其特征在于,所述处理器还用于:响应于所述选择所述目标信道为当前使用信道,将每个所述待选择信道的第一信道切换因子设置为初始值。
  50. 根据权利要求32所述的电子设备,其特征在于,所述第一信道质量或所述第二信道质量根据各信道的以下至少一种信道参数确定:信号强度、噪声强度、信噪比或者信道容量。
  51. 根据权利要求35所述的电子设备,其特征在于,所述处理器还用于:如果最优的第二信道质量与所述第一信道质量的差值小于预设门限值,且所述第一信道质量在所述多个周期内持续差于所述最优的第二信道质量,将所述最优的第二信道质量对 应的待选择信道确定为目标信道。
  52. 根据权利要求35所述的电子设备,其特征在于,所述处理器还用于:
    在每个周期内,根据所述最优的第二信道质量以及所述第一信道质量之间的差异确定所述当前使用信道的第二信道切换因子,所述第二信道切换因子用于指示所述最优的第二信道质量与所述第一信道质量之间的差异的累积结果;
    如果根据所述当前使用信道的第二信道切换因子确定所述第一信道质量在所述多个周期内持续差于所述最优的第二信道质量,将所述最优的第二信道质量对应的待选择信道确定为目标信道。
  53. 根据权利要求52所述的电子设备,其特征在于,如果所述最优的第二信道质量大于或等于所述第一信道质量,所述当前使用信道在当前周期的第二信道切换因子负增长;
    如果所述最优的第二信道质量小于所述第一信道质量,所述当前使用信道在当前周期的第二信道切换因子正增长。
  54. 根据权利要求52所述的电子设备,其特征在于,所述处理器还用于:
    根据所述最优的第二信道质量与所述第一信道质量之间的差值获取当前周期的第二累积系数;
    根据所述第二累积系数以及上一周期的第二信道切换因子,确定当前周期所述当前使用信道的第二信道切换因子。
  55. 根据权利要求54所述的电子设备,其特征在于,所述最优的第二信道质量以及所述第一信道质量之间的差值与所述第二累积系数成正相关关系。
  56. 根据权利要求55所述的电子设备,其特征在于,所述第二累积系数通过幂函数确定;或者,所述第二累积系数根据所述最优的第二信道质量以及所述第一信道质量之间的差值和预设权重确定,所述预设权重与所述差值成正相关关系。
  57. 根据权利要求54所述的电子设备,其特征在于,所述第二累积系数根据所述最优的第二信道质量与所述第一信道质量的差值与预设门限值的比值确定。
  58. 根据权利要求54所述的电子设备,其特征在于,如果所述最优的第二信道质量大于或等于所述第一信道质量,所述当前使用信道在当前周期的第二信道切换因子为上一周期的第二信道切换因子与所述第二累积系数之差;
    如果所述最优的第二信道质量小于所述第一信道质量,所述当前使用信道在当前周期的第二信道切换因子为所述第二累积系数与上一周期的第二信道切换因子之和。
  59. 根据权利要求52所述的电子设备,其特征在于,所述第二信道切换因子的取 值范围为预设范围,所述预设范围包括预设上限值和预设下限值;
    所述当前使用信道的第二信道切换因子的初始值为所述预设上限值;
    当所述第二信道切换因子降低为所述预设下限值时将所述最优的第二信道质量对应的待选择信道确定为目标信道。
  60. 根据权利要求59所述的电子设备,其特征在于,如果在当前周期所述当前使用信道的第二信道切换因子大于所述预设上限值,将所述第二信道切换因子置为所述预设上限值;
    如果在当前周期所述当前使用信道的第二信道切换因子小于所述预设下限值,将所述第二信道切换因子置为所述预设下限值。
  61. 根据权利要求59所述的电子设备,其特征在于,所述第二信道切换因子的取值范围为[0,1];
    所述当前使用信道的第二信道切换因子的初始值为1;
    当所述第二信道切换因子降低为0时将所述最优的第二信道质量对应的待选择信道确定为目标信道。
  62. 根据权利要求61所述的电子设备,其特征在于,如果当前周期所述第二信道切换因子大于1,将所述第二信道切换因子置为1;
    如果当前周期所述第二信道切换因子小于0,将所述第二信道切换因子置为0。
  63. 根据权利要求52所述的电子设备,其特征在于,所述处理器还用于:响应于选择所述目标信道为当前使用信道,将当前使用信道的第二信道切换因子设置为初始值。
  64. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求1至31任一所述方法的步骤。
PCT/CN2020/118783 2020-09-29 2020-09-29 信道选择方法、电子设备及存储介质 WO2022067488A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118783 WO2022067488A1 (zh) 2020-09-29 2020-09-29 信道选择方法、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118783 WO2022067488A1 (zh) 2020-09-29 2020-09-29 信道选择方法、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022067488A1 true WO2022067488A1 (zh) 2022-04-07

Family

ID=80949288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118783 WO2022067488A1 (zh) 2020-09-29 2020-09-29 信道选择方法、电子设备及存储介质

Country Status (1)

Country Link
WO (1) WO2022067488A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080075147A1 (en) * 2006-09-26 2008-03-27 Nathaniel Lev Grossman Dynamic demodulator selection based on channel quality
US20080102845A1 (en) * 2006-10-26 2008-05-01 Hitachi, Ltd. System and method for dynamic channel selection in IEEE 802.11 WLANs
CN101637045A (zh) * 2007-03-19 2010-01-27 高通股份有限公司 用于移动切换的信道相关信任累积
CN108200615A (zh) * 2017-12-28 2018-06-22 生迪智慧科技有限公司 无线路由器的控制方法、装置和led照明装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080075147A1 (en) * 2006-09-26 2008-03-27 Nathaniel Lev Grossman Dynamic demodulator selection based on channel quality
US20080102845A1 (en) * 2006-10-26 2008-05-01 Hitachi, Ltd. System and method for dynamic channel selection in IEEE 802.11 WLANs
CN101637045A (zh) * 2007-03-19 2010-01-27 高通股份有限公司 用于移动切换的信道相关信任累积
CN108200615A (zh) * 2017-12-28 2018-06-22 生迪智慧科技有限公司 无线路由器的控制方法、装置和led照明装置

Similar Documents

Publication Publication Date Title
CN110677873B (zh) 一种业务数据的传输方法和装置
KR102201123B1 (ko) 셀룰러 네트워크에서의 신호 인지 데이터 전송
US20170118699A1 (en) Systems and methods for obtaining available channels for fast channel switching
CN108055687B (zh) 无线网络连接方法、装置及终端设备
JP2012521104A (ja) 伝送モードを決定する方法、装置、および端末
WO2022183878A1 (zh) 频段调度方法、通信节点及计算机可读存储介质
WO2016161606A1 (zh) 消息发送/接收方法、覆盖增强等级确定/获取方法及相关设备
US11889354B2 (en) Method for load imbalance optimization under same network coverage, apparatus, device, and storage medium
JP6065463B2 (ja) 移動端末
CN111050387B (zh) 基于能效估计的基站休眠方法、装置、电子设备及介质
CN113316227B (zh) 一种搜网方法及终端、存储介质
US9253793B2 (en) Channel aware job scheduling
WO2022067488A1 (zh) 信道选择方法、电子设备及存储介质
WO2024056083A1 (zh) 频谱感知方法及装置
CN111278070B (zh) 邻区的测量方法、***、电子设备和存储介质
CN110557341A (zh) 数据限流的方法和装置
CN106028399B (zh) 针对功率和性能优化设备中的应用行为
US20150181456A1 (en) Frame transmission method and apparatus for controlling one-way delay
US20230171649A1 (en) Adaptive wireless connections in multi-mode devices
WO2016184003A1 (zh) 一种网络模式切换方法、装置、***及存储介质
CN106919461B (zh) 广播接收者队列调整方法、装置和终端设备
US9565621B2 (en) Information processing device, communication control method, and mobile communication system
US20220240125A1 (en) Wireless bandwidth adjustment method and apparatus, terminal and storage medium
US11870483B2 (en) Smart antenna switching method, electronic device and computer readable storage medium
CN115022206B (zh) 网络稳定性确定方法、装置、计算机设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955515

Country of ref document: EP

Kind code of ref document: A1