WO2022065496A1 - Adhesive film for circuit connection, composition containing inorganic filler, circuit connection structure and method of manufacturing same - Google Patents

Adhesive film for circuit connection, composition containing inorganic filler, circuit connection structure and method of manufacturing same Download PDF

Info

Publication number
WO2022065496A1
WO2022065496A1 PCT/JP2021/035445 JP2021035445W WO2022065496A1 WO 2022065496 A1 WO2022065496 A1 WO 2022065496A1 JP 2021035445 W JP2021035445 W JP 2021035445W WO 2022065496 A1 WO2022065496 A1 WO 2022065496A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
component
circuit connection
inorganic filler
circuit
Prior art date
Application number
PCT/JP2021/035445
Other languages
French (fr)
Japanese (ja)
Inventor
孝 中澤
剛幸 市村
将人 福井
和也 成冨
翔太 鈴木
群基 高山
敏光 森谷
亮太 小林
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to KR1020237013293A priority Critical patent/KR20230075473A/en
Priority to CN202180065940.7A priority patent/CN116348563A/en
Priority to JP2022552108A priority patent/JPWO2022065496A1/ja
Publication of WO2022065496A1 publication Critical patent/WO2022065496A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/208Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being constituted by at least two or more adjacent or superposed adhesive layers, e.g. multilayer adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/21Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being formed by alternating adhesive areas of different nature

Definitions

  • the present disclosure relates to an adhesive film for circuit connection, an inorganic filler-containing composition, a circuit connection structure, and a method for manufacturing the same.
  • a glass substrate is used as a substrate, and as a circuit material formed on the glass substrate, a metal such as aluminum is used for the circuit of the base layer, and ITO (Indium Tin Oxide) or the like is used for the electrode of the surface layer.
  • a metal such as aluminum
  • ITO Indium Tin Oxide
  • a flexible plastic substrate such as a polyimide substrate is used as the substrate, and plastic is used. It is becoming mainstream that Ti is used as a circuit material formed on a substrate.
  • a pressure-sensitive adhesive layer and a flexible member such as a polyethylene terephthalate (PET) substrate are usually arranged for the purpose of imparting flexibility (see, for example, Patent Document 1).
  • COG chip on glass
  • various electronic components such as drive ICs are mounted directly on the glass substrate of a display panel from the viewpoint of fine pitch, light weight and thinness.
  • COG mounting method for example, a circuit connection is made by thermocompression bonding a liquid crystal drive IC onto a glass substrate via a circuit connection adhesive film having anisotropic conductivity in which conductive particles are dispersed in an adhesive. A method of obtaining a structure is used.
  • the low pressure mounting has an advantage that the selectivity of the connecting member and the peripheral member can be enhanced. For example, it can be expected that the connection structure will be made thinner by being able to be mounted on a thinned glass substrate.
  • the mounting body manufactured under such a low pressure condition tends to have a high connection resistance between the opposing electrodes, and it tends to be difficult to obtain sufficient conduction characteristics. Therefore, the present inventors have studied to enhance the fluidity of the adhesive existing between the conductive particles and the electrode during thermocompression bonding of the adhesive film.
  • an adhesive with high flow rate it is considered effective to add an inorganic filler such as a silica filler having a relatively large primary particle size.
  • an inorganic filler such as a silica filler having a relatively large primary particle size.
  • it has been clarified that the addition of a normally available silica filler may cause a problem of defect determination in an automatic visual inspection apparatus. In order to improve production efficiency, it is desirable to reduce the occurrence of defect judgment.
  • one aspect of the present disclosure is an adhesive film for circuit connection containing conductive particles, and the adhesive film includes a region A containing an inorganic filler in the thickness direction of the film.
  • the particle size D50 at the time of 50% accumulation is 0.5 to 1.0 ⁇ m and the particle size D95 at the time of 95% accumulation is 0.9 to 2.0 ⁇ m in the volume-based particle size distribution.
  • an adhesive film for circuit connection formed from a thermosetting composition containing.
  • the region A contains the inorganic filler having the specific particle size distribution, thereby limiting the inclusion of the inorganic filler that causes a large indentation in the film. It is possible to secure high fluidity, and even when the circuit members are connected to each other at low pressure, sufficient continuity can be ensured between the opposing electrodes of the circuit connection structure, and defects due to the automatic visual inspection device are obtained. It is possible to sufficiently suppress the generation of large indentations that are a factor in the determination.
  • the circuit connection adhesive film on the side surface may include a region S containing no conductive particles in the thickness direction of the film, and the region A may be provided in at least a part of the region S. In this case, it becomes easy to prevent bridging by conductive particles between the circuit electrodes of the adherend (for example, the circuit member) in contact with the region A side of the adhesive film.
  • the inorganic filler may be a silica filler.
  • a circuit comprising an inorganic filler-containing composition containing an inorganic filler having an hourly particle size D50 of 0.5 to 1.0 ⁇ m and a 95% cumulative particle size D95 of 0.9 to 2.0 ⁇ m.
  • an adhesive film for connection is provided.
  • the adhesive film for circuit connection on the other side surface even when the circuit members are connected to each other at low pressure, the conduction between the facing electrodes of the circuit connection structure can be sufficiently ensured, and the automatic appearance can be obtained. It is possible to sufficiently suppress the generation of large indentations, which is a factor in determining defects by the inspection device. Further, according to this adhesive film for circuit connection, the flow of conductive particles at the time of circuit connection can be suppressed by the photocured material, so that the conductive particles can be efficiently captured on the electrode, and high connection reliability is achieved. It will be easier to obtain.
  • the inorganic filler may be a silica filler.
  • the circuit-connecting adhesive film on the other side thereof is a third adhesive containing a third thermosetting resin component laminated on the side opposite to the second adhesive layer of the first adhesive layer.
  • a further agent layer may be provided.
  • the adhesive film for circuit connection on the other side thereof can easily secure the transferability and the characteristics in various reliability tests, and can easily improve the margin of the product.
  • compositions used to form an inorganic filler-containing region in a circuit connecting member containing conductive particles and an inorganic filler which is a 50% cumulative grain in a volume-based particle size distribution.
  • an inorganic filler-containing composition containing an inorganic filler having a diameter D50 of 0.5 to 1.0 ⁇ m and a particle size D95 at a time of 95% accumulation of 0.9 to 2.0 ⁇ m.
  • the composition containing the inorganic filler on the other side surface the region A in the circuit connection adhesive film on the one side surface, the second adhesive layer in the circuit connection adhesive film on the other side surface, and the like.
  • An inorganic filler-containing region can be formed.
  • the composition containing the inorganic filler on the other side thereof is less likely to cause poor coating even when a thin layer is formed by coating, and the coating yield can be increased.
  • the inorganic filler-containing layer formed by the inorganic filler-containing composition on the other side thereof may have sufficiently few appearance defects such as scratches.
  • the inorganic filler may be a silica filler.
  • the inorganic filler-containing composition on the other side thereof can further contain a thermoplastic resin.
  • the inorganic filler-containing composition on the other side can be used to form an adhesive layer having a thickness of 10 ⁇ m or less.
  • Another aspect of the present disclosure is to interpose the above-mentioned circuit connection adhesive film between the first circuit member having the first electrode and the second circuit member having the second electrode.
  • a method for manufacturing a circuit connection structure including a step of thermally crimping a circuit member 1 and a second circuit member to electrically connect the first electrode and the second electrode to each other.
  • one of the first circuit member and the second circuit member may be an IC chip, and the other may be a plastic substrate having an electrode containing Ti. ..
  • Another aspect of the present disclosure is disposed between a first circuit member having a first electrode, a second circuit member having a second electrode, and a first circuit member and a second circuit member.
  • one of the first circuit member and the second circuit member may be an IC chip, and the other may be a plastic substrate having an electrode containing Ti.
  • the present disclosure even when the circuit members are connected to each other at a low pressure, sufficient continuity can be ensured between the facing electrodes of the circuit connection structure, and it becomes a factor of defect determination by the automatic visual inspection device. It is possible to provide an adhesive film for circuit connection capable of sufficiently suppressing the generation of large indentations and an inorganic filler-containing composition suitable for producing such a member for circuit connection. Further, according to the present disclosure, it is possible to provide a method for manufacturing a circuit connection structure and a circuit connection structure using the above-mentioned adhesive film for circuit connection.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an adhesive film for circuit connection.
  • FIG. 2 is a schematic cross-sectional view showing a method of manufacturing an adhesive film for circuit connection.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of a circuit connection structure.
  • FIG. 4 is a schematic cross-sectional view showing an embodiment of a manufacturing process of a circuit connection structure.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • the upper limit value and the lower limit value described individually can be arbitrarily combined.
  • the term "(meth) acrylate” means at least one of acrylate and the corresponding methacrylate.
  • each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • the circuit connection adhesive film of the present embodiment contains conductive particles and contains a region A containing an inorganic filler in the thickness direction of the film, and the region A is a particle at 50% accumulation in the volume-based particle size distribution.
  • the thermosetting composition forming the region A can contain a polymerizable compound and a thermal polymerization initiator.
  • the circuit connection adhesive film of the present embodiment includes a region S that does not contain conductive particles in the thickness direction of the film, and the region A may be provided in at least a part of the region S.
  • the ratio of the region A in the region S is 60% or more, 80% or more, or 100% with respect to the range in the thickness direction of the film from the viewpoint of facilitating the continuity between the facing electrodes even in low-voltage mounting. There may be.
  • the circuit connection adhesive film of the present embodiment contains a region P further containing a cured product of a photocurable resin component in the thickness direction of the film, and conductive particles may be dispersed in the region P.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the adhesive film for circuit connection of the present embodiment.
  • the circuit connection adhesive film 1a (hereinafter, may be simply referred to as “adhesive film 1a”) shown in FIG. 1 (a) includes the conductive particles 4, the cured product of the photocurable resin component, and ( A first adhesive layer 2 containing an adhesive component 5 containing a first) thermocurable resin component, and a (second) thermocurable resin component provided on the first adhesive layer 2.
  • a second adhesive layer 3 containing the above-mentioned material is provided.
  • the circuit connection adhesive film 1b (hereinafter, may be simply referred to as “adhesive film 1b”) shown in FIG. 1 (b) is the second adhesive layer of the first adhesive layer 2. It has the same structure as the adhesive film 1a except that a third adhesive layer containing a (third) thermosetting resin component is laminated on the opposite side to the third.
  • circuit connection adhesive film of the present embodiment will be described with reference to FIG.
  • the adhesive films 1a and 1b the conductive particles 4 are dispersed in the first adhesive layer 2. Therefore, the adhesive films 1a and 1b can be a circuit-connecting adhesive film (anisotropic adhesive film) having anisotropic conductivity.
  • the adhesive films 1a and 1b are interposed between the first circuit member having the first electrode and the second circuit member having the second electrode, and the first circuit member and the second circuit member are interposed. May be used to electrically connect the first electrode and the second electrode to each other by thermocompression bonding.
  • the first adhesive layer 2 is a curing of conductive particles 4 (hereinafter, may be referred to as "(A) component”) and a photocurable resin component (hereinafter, may be referred to as “(B) component”). It contains a substance and a thermosetting resin component (hereinafter, may be referred to as "(C) component”).
  • a composition layer composed of a composition containing the component (A), the component (B), and the component (C) is irradiated with light energy, and the component (B) is subjected to light energy. It can be obtained by polymerizing the contained components and curing the component (B).
  • the first adhesive layer 2 contains the component (A), the cured product of the component (B), and the adhesive component 5 containing the component (C).
  • the cured product of the component (B) may be a cured product obtained by completely curing the component (B), or may be a cured product obtained by curing a part of the component (B).
  • the component (C) is a component that can flow when connected to a circuit, and is, for example, an uncured curable resin component.
  • Component (A) Conductive particles
  • the component (A) is not particularly limited as long as it is a particle having conductivity, and is a metal particle composed of a metal such as Au, Ag, Pd, Ni, Cu, or solder, or conductive carbon. It may be conductive carbon particles composed of.
  • the component (A) may be a coated conductive particle containing a nucleus containing non-conductive glass, ceramic, plastic (polystyrene, etc.) and the like, and a coating layer containing the metal or conductive carbon and covering the nucleus. good.
  • the component (A) preferably contains metal particles formed of a heat-meltable metal or a core containing plastic, and contains a metal or conductive carbon and has a coating layer covering the core.
  • Such coated conductive particles can easily deform the cured product of the thermosetting resin component by heating or pressurizing, when the electrodes are electrically connected to each other, the electrode and the component (A) are connected to each other.
  • the contact area can be increased and the conductivity between the electrodes can be further improved.
  • conductive particles those having palladium plating can be used from the viewpoint of facilitating the development of low resistance to the circuit having the Ti surface.
  • palladium plating can be provided on the outermost surface of the conductive particles.
  • conductive particles in which the surface of the plastic core is Ni-plated and the outermost surface is substituted-plated with Pd can be used, and such conductive particles can be used from the viewpoint of preventing short circuits between the conductive particles.
  • Those in which insulating fine particles are supported on the surface thereof may be used.
  • a ceramic core material having a diameter of 100 nm to 200 nm is incorporated into the plating, and then Pd plating is performed to support insulating fine particles as necessary. May be good.
  • the component (A) may be an insulating coated conductive particle containing the above-mentioned metal particles, conductive carbon particles, or coated conductive particles and an insulating material such as a resin and having an insulating layer covering the surface of the particles. good.
  • the component (A) is an insulating coated conductive particle, even when the content of the component (A) is large, the insulating layer is provided on the surface of the particle, so that the component (A) is short-circuited due to contact with each other. The generation can be suppressed, and the insulation between adjacent electrode circuits can be improved.
  • one of the above-mentioned various conductive particles may be used alone or in combination of two or more.
  • the maximum particle size of the component (A) needs to be smaller than the minimum distance between the electrodes (the shortest distance between adjacent electrodes).
  • the maximum particle size of the component (A) may be 1.0 ⁇ m or more, 2.0 ⁇ m or more, or 2.5 ⁇ m or more from the viewpoint of excellent dispersibility and conductivity.
  • the maximum particle size of the component (A) may be 20 ⁇ m or less, 10 ⁇ m or less, or 5 ⁇ m or less from the viewpoint of excellent dispersibility and conductivity.
  • the particle size of any 300 conductive particles (pcs) is measured by observation using a scanning electron microscope (SEM), and the largest value obtained is the maximum particle size of the component (A).
  • SEM scanning electron microscope
  • the particle size of the component (A) is the diameter of a circle circumscribing the conductive particles in the SEM image.
  • the average particle size of the component (A) may be 1.0 ⁇ m or more, 2.0 ⁇ m or more, or 2.5 ⁇ m or more from the viewpoint of excellent dispersibility and conductivity.
  • the average particle size of the component (A) may be 20 ⁇ m or less, 10 ⁇ m or less, or 5 ⁇ m or less from the viewpoint of excellent dispersibility and conductivity.
  • the particle size of any 300 conductive particles (pcs) is measured by observation using a scanning electron microscope (SEM), and the average value of the obtained particle sizes is taken as the average particle size.
  • the component (A) is preferably uniformly dispersed.
  • the particle density of the component (A) in the adhesive films 1a and 1b is 100 / mm 2 or more, 1000 / mm 2 or more, 3000 / mm 2 or more, or 5000 from the viewpoint of obtaining stable connection resistance. It may be / mm 2 or more.
  • the particle density of the component (A) in the adhesive films 1a and 1b is 100,000 pieces / mm 2 or less, 70,000 pieces / mm 2 or less, 50,000 pieces / mm 2 or less, from the viewpoint of improving the insulating property between adjacent electrodes. Alternatively, it may be 30,000 pieces / mm 2 or less.
  • the content of the component (A) is 1% by mass or more, 5% by mass or more, or 10% by mass or more based on the total mass of the first adhesive layer from the viewpoint of further improving the conductivity. It may be there.
  • the content of the component (A) may be 60% by mass or less, 50% by mass or less, or 40% by mass or less based on the total mass of the first adhesive layer from the viewpoint of easily suppressing a short circuit.
  • the effect of the present invention tends to be remarkably exhibited.
  • the content of the component (A) in the composition or the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
  • Component (B) Photocurable resin component
  • the component (B) is not particularly limited as long as it is a resin component that is cured by light irradiation, but may be a resin component having radical curability from the viewpoint of better connection resistance. ..
  • the component (B) contains, for example, a radically polymerizable compound (hereinafter, may be referred to as “(B1) component”) and a photoradical polymerization initiator (hereinafter, may be referred to as “(B2) component”). You may be.
  • the component (B) can be a component composed of the component (B1) and the component (B2).
  • Component (B1) Radical Polymerizable Compound
  • the component (B1) is a compound polymerized by radicals generated from the component (B2) by irradiation with light (for example, ultraviolet light).
  • the component (B1) may be either a monomer or a polymer (or oligomer) obtained by polymerizing one or more kinds of monomers.
  • the component (B1) may be used alone or in combination of two or more.
  • the component (B1) is a compound having a radically polymerizable group that reacts with a radical.
  • the radically polymerizable group include a (meth) acryloyl group, a vinyl group, an allyl group, a styryl group, an alkenyl group, an alkenylene group, a maleimide group and the like.
  • the number of radically polymerizable groups (number of functional groups) of the component (B1) is 2 or more from the viewpoint that the desired melt viscosity can be easily obtained after polymerization, the effect of reducing the connection resistance is further improved, and the connection reliability is superior. It may be 10 or less from the viewpoint of suppressing curing shrinkage during polymerization. Further, in order to balance the crosslink density and the curing shrinkage, in addition to the compound having the number of radically polymerizable groups within the above range, a compound having the number of radically polymerizable groups outside the above range may be used. good.
  • the component (B1) may contain, for example, a polyfunctional (bifunctional or higher) (meth) acrylate from the viewpoint of suppressing the flow of conductive particles.
  • the polyfunctional (bifunctional or higher) (meth) acrylate may be a bifunctional (meth) acrylate, and the bifunctional (meth) acrylate may be a bifunctional aromatic (meth) acrylate.
  • polyfunctional (meth) acrylate examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate.
  • the content of the polyfunctional (bifunctional or higher) (meth) acrylate is, for example, 40 to 100, based on the total mass of the component (B1), from the viewpoint of achieving both the effect of reducing the connection resistance and the suppression of particle flow. It may be% by mass, 50 to 100% by mass, or 60 to 100% by mass.
  • the component (B1) may further contain a monofunctional (meth) acrylate in addition to the polyfunctional (bifunctional or higher) (meth) acrylate.
  • a monofunctional (meth) acrylate examples include (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and tert-butyl (meth) acrylate.
  • (Meta) acrylates having an alicyclic epoxy group such as, ( Examples thereof include (meth) acrylate having an oxetanyl group such as 3-ethyloxetane-3-yl) methyl (meth) acrylate.
  • the content of the monofunctional (meth) acrylate may be, for example, 0 to 60% by mass, 0 to 50% by mass, or 0 to 40% by mass based on the total mass of the component (B1).
  • the cured product of the component (B) may have, for example, a polymerizable group that reacts with a substance other than a radical.
  • the polymerizable group that reacts with a non-radical substance may be, for example, a cationically polymerizable group that reacts with a cation.
  • the cationically polymerizable group include an epoxy group such as a glycidyl group, an alicyclic epoxy group such as an epoxycyclohexylmethyl group, and an oxetanyl group such as an ethyloxetanylmethyl group.
  • the cured product of the component (B) having a polymerizable group that reacts by other than radicals is, for example, a (meth) acrylate having an epoxy group, a (meth) acrylate having an alicyclic epoxy group, and a (meth) acrylate having an oxetanyl group. It can be introduced by using a (meth) acrylate having a polymerizable group that reacts with a non-radical substance such as (B) as a component (B).
  • (B1) Mass ratio of (meth) acrylate having a polymerizable group that reacts with other than radicals to the total mass of the component (mass of (meth) acrylate having a polymerizable group that reacts with other than radicals (charged amount) / (B1)
  • the total mass (charged amount) of the components may be, for example, 0 to 0.7, 0 to 0.5, or 0 to 0.3 from the viewpoint of improving reliability.
  • the component (B1) may contain other radically polymerizable compounds in addition to polyfunctional (bifunctional or higher) and monofunctional (meth) acrylates.
  • examples of other radically polymerizable compounds include maleimide compounds, vinyl ether compounds, allyl compounds, styrene derivatives, acrylamide derivatives, nadiimide derivatives and the like.
  • the content of the other radically polymerizable compound may be, for example, 0 to 40% by mass based on the total mass of the component (B1).
  • Component (B2) Photoradical Polymerization Initiator
  • the component (B2) comprises light containing a wavelength in the range of 150 to 750 nm, preferably light containing a wavelength in the range of 254 to 405 nm, and more preferably a wavelength in the range of 365 nm. It is a photopolymerization initiator that generates radicals by irradiation with light (for example, ultraviolet light).
  • the component (B2) one type may be used alone, or a plurality of them may be used in combination.
  • the component (B2) is decomposed by light to generate free radicals. That is, the component (B2) is a compound that generates radicals by applying light energy from the outside.
  • the component (B2) includes an oxime ester structure, a bisimidazole structure, an acridine structure, an ⁇ -aminoalkylphenone structure, an aminobenzophenone structure, an N-phenylglycine structure, an acylphosphine oxide structure, a benzyldimethylketal structure, and an ⁇ -hydroxyalkylphenone structure. It may be a compound having a structure such as. As the component (B2), one type may be used alone, or a plurality of them may be used in combination.
  • the component (B2) is selected from the group consisting of an oxime ester structure, an ⁇ -aminoalkylphenone structure, and an acylphosphine oxide structure from the viewpoint that the desired melt viscosity can be easily obtained and the effect of reducing the connection resistance is superior. It may be a compound having at least one structure.
  • the compound having an oxime ester structure examples include 1-phenyl-1,2-butandion-2- (o-methoxycarbonyl) oxime and 1-phenyl-1,2-propanedione-2- (o-methoxycarbonyl).
  • the compound having an ⁇ -aminoalkylphenone structure include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one and 2-benzyl-2-dimethylamino-1. -Morphorinophenyl) -butanone-1 and the like.
  • the compound having an acylphosphine oxide structure include bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide and bis (2,4,6, -trimethylbenzoyl) -phenylphosphine.
  • examples thereof include oxides, 2,4,6-trimethylbenzoyl-diphenylphosphine oxides and the like.
  • the content of the component (B2) is, for example, 0.1 to 10 parts by mass, 0.3 to 7 parts by mass, or 0 with respect to 100 parts by mass of the component (B1) from the viewpoint of suppressing the flow of conductive particles. It may be 5 to 5 parts by mass.
  • the content of the cured product of the component (B) is 1% by mass or more, 5% by mass or more, or 10% by mass or more, based on the total mass of the first adhesive layer, from the viewpoint of suppressing the flow of conductive particles. May be.
  • the content of the cured product of the component (B) is 50% by mass or less, 40% by mass or less, or 30% by mass based on the total mass of the first adhesive layer from the viewpoint of developing low resistance in low-pressure mounting. It may be as follows.
  • the content of the component (B) in the composition or the composition layer for forming the first adhesive layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
  • Thermosetting resin component is, for example, a cationically polymerizable compound (hereinafter, may be referred to as “(C1) component”) and a thermally cationic polymerization initiator (hereinafter, “(C2)). It may be referred to as "ingredient").
  • the component (C) can be a component composed of the component (C1) and the component (C2).
  • the first thermosetting resin component and the second thermosetting resin component mean the thermosetting resin components contained in the first adhesive layer and the second adhesive layer, respectively.
  • the types, combinations, and contents of the first thermosetting resin component and the components contained in the second thermosetting resin component are the same as each other. May be different.
  • Component (C1) Cationicly polymerizable compound
  • the component (C1) is a compound that crosslinks by reacting with the component (C2) by heat.
  • the component (C1) means a compound having no radically polymerizable group that reacts with a radical, and the component (C1) is not included in the component (B1).
  • the component (C1) may be a compound having one or more ring-opening polymerizable cyclic ether groups in the molecule from the viewpoint of further improving the effect of reducing the connection resistance and improving the connection reliability.
  • the component (C1) may be used alone or in combination of two or more.
  • the compound having one or more ring-opening polymerizable cyclic ether groups in the molecule may be, for example, at least one selected from the group consisting of an oxetane compound and an alicyclic epoxy compound.
  • the component (C1) preferably contains at least one oxetane compound and at least one alicyclic epoxy compound from the viewpoint that the desired melt viscosity can be easily obtained.
  • the oxetane compound as the component (C1) can be used without particular limitation as long as it is a compound having an oxetane group and no radically polymerizable group.
  • Commercially available oxetane compounds include, for example, ETERNCOLL OXBP (trade name, manufactured by Ube Industries, Ltd.), OXSQ, OXT-121, OXT-221, OXT-101, OXT-212 (trade name, manufactured by Toagosei Co., Ltd.). And so on. These may use one kind of compound alone or may use a plurality of compounds in combination.
  • the alicyclic epoxy compound as the component (C1) can be used without particular limitation as long as it is a compound having an alicyclic epoxy group (for example, an epoxycyclohexyl group) and no radical polymerizable group.
  • Examples of commercially available alicyclic epoxy compounds include EHPE3150, EHPE3150CE, seroxide 8010, seroxide 2021P, and seroxide 2081 (trade name, manufactured by Daicel Corporation). These may use one kind of compound alone or may use a plurality of compounds in combination.
  • Component (C2) Thermal Cationic Polymerization Initiator
  • the component (C2) is a thermal polymerization initiator that generates an acid or the like by heating to initiate polymerization.
  • the component (C2) may be a salt compound composed of a cation and an anion.
  • the component (C2) is, for example, BF 4- , BR 4- ( R indicates a phenyl group substituted with 2 or more fluorine atoms or 2 or more trifluoromethyl groups) , PF 6- , SbF 6- . , AsF 6 ⁇ and the like, sulfonium salt, phosphonium salt, ammonium salt, diazonium salt, iodonium salt, onium salt such as anilinium salt and the like. These may be used individually by 1 type, and may be used in combination of a plurality of types.
  • the component (C2) is, for example, an anion containing boron as a constituent element, that is, BF 4- or BR 4- ( R is two or more fluorine atoms or two or more trifluoromethyl groups. It may be a salt compound having a substituted phenyl group.).
  • the anion containing boron as a constituent element may be BR 4- , and more specifically, tetrakis (pentafluorophenyl) borate.
  • the onium salt as the component (C2) may be, for example, an anilinium salt because it has resistance to a substance that can inhibit curing against cationic curing.
  • anilinium salt compound examples include N, N-dialkylanilinium salts such as N, N-dimethylanilinium salt and N, N-diethylanilinium salt.
  • the component (C2) may be an anilinium salt having an anion containing boron as a constituent element.
  • anilinium salt compounds include CXC-1821 (trade name, manufactured by King Industries) and the like.
  • the content of the component (C2) is, for example, 0 with respect to 100 parts by mass of the component (C1) from the viewpoint of ensuring the formability and curability of the adhesive film for forming the first adhesive layer. It may be 1 to 25 parts by mass, 1 to 20 parts by mass, 3 to 18 parts by mass, or 5 to 15 parts by mass.
  • the content of the component (C) is 5% by mass or more based on the total mass of the first adhesive layer from the viewpoint of ensuring the curability of the adhesive film for forming the first adhesive layer. It may be 10% by mass or more, 15% by mass or more, or 20% by mass or more.
  • the content of the component (C) is 70% by mass or less based on the total mass of the first adhesive layer from the viewpoint of ensuring the formability of the adhesive film for forming the first adhesive layer. It may be 60% by mass or less, 50% by mass or less, or 40% by mass or less.
  • the content of the component (C) in the composition or the composition layer for forming the first adhesive layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
  • the first adhesive layer 2 may further contain other components in addition to the component (A), the cured product of the component (B), and the component (C).
  • other components include a thermoplastic resin (hereinafter, may be referred to as “(D) component”), a coupling agent (hereinafter, may be referred to as “(E) component”), and a filler. (Hereinafter, it may be referred to as "(F) component”.) And the like.
  • a resin that functions as a film-forming component can be used, and for example, a phenoxy resin, a polyester resin, a polyamide resin, a polyurethane resin, a polyester urethane resin, an acrylic rubber, an epoxy resin (solid at 25 ° C.) and the like can be used. Can be mentioned. These may be used individually by 1 type, and may be used in combination of a plurality of types.
  • the composition layer further, the first adhesive layer 2 from the composition. Can be easily formed.
  • the component (D) may be, for example, a phenoxy resin.
  • the weight average molecular weight (Mw) of the component (D) may be, for example, 5000 to 200,000, 10000 to 100,000, 20000 to 80,000, or 40,000 to 60,000 from the viewpoint of resin exclusion during mounting.
  • Mw means a value measured by gel permeation chromatography (GPC) and converted using the calibration curve by standard polystyrene.
  • the content of the component (D) may be 1% by mass or more, 5% by mass or more, 10% by mass or more, or 20% by mass or more, 70% by mass, based on the total mass of the first adhesive layer. Hereinafter, it may be 60% by mass or less, 50% by mass or less, or 40% by mass or less.
  • the content of the component (D) in the composition or the composition layer for forming the first adhesive layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
  • the component (E) examples include a silane coupling agent having an organic functional group such as a (meth) acryloyl group, a mercapto group, an amino group, an imidazole group and an epoxy group, a silane compound such as tetraalkoxysilane, and a tetraalkoxy titanate derivative. , Polydialkyl titanate derivatives and the like. These may be used individually by 1 type, and may be used in combination of a plurality of types. When the first adhesive layer 2 contains the component (E), the adhesiveness can be further improved.
  • the component (E) may be, for example, a silane coupling agent.
  • the content of the component (E) may be 0.1 to 10% by mass based on the total mass of the first adhesive layer.
  • the content of the component (E) in the composition or the composition layer for forming the first adhesive layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
  • the component (F) include non-conductive fillers (for example, non-conductive particles).
  • the component (F) may be either an inorganic filler or an organic filler.
  • the inorganic filler include metal oxide fine particles such as silica fine particles, alumina fine particles, silica-alumina fine particles, titania fine particles, and zirconia fine particles; and inorganic fine particles such as metal nitride fine particles.
  • the organic filler include organic fine particles such as silicone fine particles, methacrylate / butadiene / styrene fine particles, acrylic / silicone fine particles, polyamide fine particles, and polyimide fine particles. These may be used individually by 1 type, and may be used in combination of a plurality of types.
  • the component (F) can be appropriately blended as long as the effect of the present invention is not impaired, and the content of the component (F) in the composition or composition layer for forming the first adhesive layer. (Based on the total mass of the composition or the composition layer) can also be appropriately set as long as the effect of the present invention is not impaired.
  • the first adhesive layer 2 may further contain other additives such as a softener, an accelerator, a deterioration inhibitor, a colorant, a flame retardant, and a thixotropic agent.
  • the content of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the first adhesive layer.
  • the content of the composition for forming the first adhesive layer or other additives in the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
  • the thickness d1 of the first adhesive layer 2 is 0.1 times or more the average particle size of the conductive particles 4 from the viewpoint that the conductive particles 4 are easily captured between the facing electrodes and the connection resistance can be further reduced. It may be present, 0.2 times or more, and may be 0.3 times or more. The thickness d1 of the first adhesive layer 2 makes it easier for the conductive particles to collapse when the conductive particles are sandwiched between the facing electrodes during thermocompression bonding, and the conductive particles 4 can further reduce the connection resistance.
  • the average particle size of the particles may be 0.8 times or less, and may be 0.7 times or less.
  • the thickness d1 of the first adhesive layer 2 may be 0.1 to 0.8 times, and 0.2 to 0.8 times, the average particle size of the conductive particles 4. It may be 0.3 to 0.7 times.
  • the thickness d1 of the first adhesive layer 2 refers to the thickness of the first adhesive layer located at the separated portion of the adjacent conductive particles 4 and 4.
  • the conductive particles in the first adhesive layer 2 A part of 4 may protrude from the first adhesive layer 2 toward the second adhesive layer 3.
  • the boundary S between the first adhesive layer 2 and the second adhesive layer 3 is located at the separated portion of the adjacent conductive particles 4 and 4. Due to the presence of the boundary S on the conductive particles along the surface of the conductive particles, the conductive particles 4 in the first adhesive layer 2 are moved from the first adhesive layer 2 to the second adhesive layer 3 side.
  • the above relationship may be satisfied without protruding.
  • the conductive particles 4 may not be exposed on the surface 2a of the first adhesive layer 2 opposite to the side of the second adhesive layer 3, and the surface 2a on the opposite side may be a flat surface.
  • the relationship between the thickness d1 of the first adhesive layer 2 and the maximum particle size of the conductive particles 4 may be the same as described above.
  • the thickness d1 of the first adhesive layer 2 may be 0.1 to 0.8 times, 0.2 to 0.8 times, the maximum particle size of the conductive particles 4, and may be 0. It may be 3 to 0.7 times.
  • the thickness d1 of the first adhesive layer 2 may be, for example, 5.0 ⁇ m or less.
  • the thickness d1 of the first adhesive layer 2 may be 4.5 ⁇ m or less or 4.0 ⁇ m or less.
  • the thickness d1 of the first adhesive layer 2 may be, for example, 0.1 ⁇ m or more, 0.5 ⁇ m or more, or 0.7 ⁇ m or more.
  • the thickness d1 of the first adhesive layer 2 is determined by, for example, sandwiching an adhesive film between two sheets of glass (thickness: about 1 mm) and bisphenol A type epoxy resin (trade name: JER811, Mitsubishi Chemical Co., Ltd.). After casting with a resin composition consisting of 100 g of diethylenetriamine (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and 10 g of diethylenetriamine, cross-sectional polishing is performed using a polishing machine, and a scanning electron microscope (SEM, trade name: SE-8010,) It can be obtained by measuring using Hitachi High-Tech Science Co., Ltd.). Further, as shown in FIG.
  • the first The first adhesive layer 2 and the second adhesive layer 3 located at the separated portions of the adjacent conductive particles 4 and 4 from the surface 2a of the adhesive layer 2 opposite to the second adhesive layer 3 side.
  • the distance to the boundary S with and (the distance indicated by d1 in FIG. 1) is the thickness of the first adhesive layer 2, and the exposed portion of the conductive particles 4 is included in the thickness of the first adhesive layer 2. I can't.
  • the length of the exposed portion of the conductive particles 4 may be, for example, 0.1 ⁇ m or more, and may be 5.0 ⁇ m or less.
  • the second adhesive layer 3 can contain the component (C) and the component (F).
  • the component (C1) and the component (C2) used in the component (C) in the second adhesive layer 3 are (C) in the first adhesive layer 2. Since it is the same as the component (C1) and the component (C2) used in the component (that is, the first thermosetting resin component), detailed description thereof will be omitted here.
  • the second thermosetting resin component may be the same as or different from the first thermosetting resin component.
  • the content of the component (C) is 5% by mass or more, 10% by mass or more, 15% by mass or more, or 20% by mass or more based on the total mass of the second adhesive layer from the viewpoint of maintaining reliability. May be.
  • the content of the component (C) is 70% by mass or less and 60% by mass or less based on the total mass of the second adhesive layer from the viewpoint of preventing the resin seepage problem in the reel, which is one aspect of the supply form. , 50% by mass or less, or 40% by mass or less.
  • the second adhesive layer 3 can contain an inorganic filler as the component (F). Even when the circuit members are connected to each other at low pressure, sufficient continuity can be ensured between the facing electrodes of the circuit connection structure, and large indentations that cause defect determination of the automatic visual inspection device are sufficiently generated. From the viewpoint of suppression, the second adhesive layer 3 has a particle size D50 at 50% cumulative size of 0.5 to 1.0 ⁇ m in a volume-based particle size distribution, and a particle size D95 at 95% cumulative size is 0. It can be formed from a thermosetting composition containing an inorganic filler having a size of 9 to 2.0 ⁇ m.
  • a silica filler such as silica fine particles can be used from the viewpoint of improving reliability.
  • the content of silica in the silica filler may be 99% by mass or more, or 100% by mass, based on the total amount of the silica filler.
  • the inorganic filler having the above-mentioned volume-based particle size distribution is, for example, an inorganic filler containing inorganic particles having a primary particle size of 0.3 to 0.7 ⁇ m, or an inorganic filler having a volume average particle size of 1.0 to 2.0 ⁇ m.
  • the D50 of the inorganic filler may be 0.5 to 1.0 ⁇ m, 0.6 to 0.9 ⁇ m, or 0.7 to 0.8 ⁇ m. There may be. Further, from the viewpoint of suppressing the generation of large indentations, the D95 of the inorganic filler may be 0.9 to 2.0 ⁇ m, 1.0 to 1.8 ⁇ m, or 1.1 to 1. It may be 6 ⁇ m.
  • the content of the filler may be 10 to 70% by mass, 20 to 60% by mass, or 30 to 50% based on the total mass of the second adhesive layer or the thermosetting composition. It may be% by mass.
  • the second adhesive layer 3 may further contain other components and other additives in the first adhesive layer 2. Preferred embodiments of the other components and other additives are the same as the preferred embodiments of the first adhesive layer 2.
  • the content of the component (D) may be 1% by mass or more, 5% by mass or more, or 10% by mass or more, and is 80% by mass or less and 60% by mass, based on the total mass of the second adhesive layer. It may be less than or equal to 40% by mass or less.
  • the content of the component (E) may be 0.1 to 10% by mass based on the total mass of the second adhesive layer.
  • the content of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the second adhesive layer.
  • the thickness d2 of the second adhesive layer 3 may be appropriately set according to the height of the electrodes of the circuit member to be adhered.
  • the thickness d2 of the second adhesive layer 3 is 5 ⁇ m or more or 7 ⁇ m or more from the viewpoint that the space between the electrodes can be sufficiently filled to seal the electrodes and better connection reliability can be obtained. It may be 15 ⁇ m or less or 11 ⁇ m or less.
  • the thickness d2 of the second adhesive layer 3 can be obtained, for example, by the same method as the method for measuring the thickness d1 of the first adhesive layer 2.
  • the first in the second adhesive layer 3 The distance from the surface 3a on the side opposite to the adhesive layer 2 side to the boundary S between the first adhesive layer 2 and the second adhesive layer 3 located at the separated portions of the adjacent conductive particles 4 and 4 ( The distance (d2) in FIG. 1 is the thickness of the second adhesive layer 3.
  • the third adhesive layer 6 can contain the component (C).
  • the component (C1) and the component (C2) used in the component (C) in the third adhesive layer (that is, the third thermosetting resin component) are the component (C) in the first adhesive layer 2. Since it is the same as the component (C1) and the component (C2) used in (that is, the first thermosetting resin component), detailed description thereof will be omitted here.
  • the third thermosetting resin component may be the same as or different from the first thermosetting resin component.
  • the third thermosetting resin component may be the same as or different from the second thermosetting resin component.
  • the content of the component (C) is 5% by mass or more, 10% by mass or more, and 15% by mass or more based on the total mass of the third adhesive layer from the viewpoint of imparting good transferability and peeling resistance. , Or 20% by mass or more.
  • the content of the component (C) is 70% by mass or less based on the total mass of the third adhesive layer from the viewpoint of imparting good half-cut property and blocking resistance (suppression of resin seepage of the reel). It may be 60% by mass or less, 50% by mass or less, or 40% by mass or less.
  • the third adhesive layer may further contain other components and other additives in the first adhesive layer 2.
  • the content of the component (D) may be 10% by mass or more, 20% by mass or more, or 30% by mass or more, and is 80% by mass or less and 70% by mass, based on the total mass of the third adhesive layer. It may be less than or equal to 60% by mass or less.
  • the content of the component (E) may be 0.1 to 10% by mass based on the total mass of the third adhesive layer.
  • the content of the component (F) can be appropriately set as long as the effect of the present invention is not impaired.
  • the content of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the third adhesive layer.
  • the thickness of the third adhesive layer may be appropriately set according to the minimum melt viscosity of the adhesive film, the height of the electrodes of the circuit members to be adhered, and the like.
  • the thickness of the third adhesive layer is preferably smaller than the thickness d2 of the second adhesive layer 3.
  • the thickness of the third adhesive layer may be 0.2 ⁇ m or more from the viewpoint that the space between the electrodes can be sufficiently filled to seal the electrodes and better connection reliability can be obtained. , 3.0 ⁇ m or less.
  • the thickness of the third adhesive layer can be obtained, for example, by the same method as the method for measuring the thickness d1 of the first adhesive layer 2.
  • the thicknesses of the adhesive films 1a and 1b (the total thickness of all the layers constituting the adhesive films 1a and 1b, in FIG. 1A, the thicknesses d1 and the first of the first adhesive layers 2). 2 is the total thickness d2 of the adhesive layer 3, and in FIG. 1B, the total thickness of the third adhesive layer) may be, for example, 5 ⁇ m or more or 8 ⁇ m or more. , 30 ⁇ m or less or 20 ⁇ m or less.
  • the first adhesive layer may be the above-mentioned region P.
  • the range of the region P in the thickness direction of the film can be the same as the thickness d1 of the first adhesive layer 2 described above.
  • the region P can be formed by a composition obtained by removing conductive particles from the composition for forming the first adhesive layer described above.
  • the second adhesive layer may be the above-mentioned region A.
  • the range of the region A in the thickness direction of the film can be the same as the thickness d2 of the second adhesive layer 3 described above.
  • the region A can be formed by the composition for forming the second adhesive layer described above.
  • the second adhesive layer, or the second adhesive layer and the third adhesive layer may be a region S that does not contain conductive particles.
  • the region S can be formed by the composition for forming the second adhesive layer and the composition for forming the third adhesive layer described above.
  • the particle size D50 at 50% cumulative size is 0.5 to 1.0 ⁇ m and the particle size D95 at 95% cumulative size is 0.9 to 2.0 ⁇ m in the volume-based particle size distribution.
  • the inorganic filler is contained in the second adhesive layer, and may not be contained in the first adhesive layer and the third adhesive layer.
  • the minimum melt viscosity of the adhesive films 1a and 1b is 450 to 1600 Pa ⁇ s.
  • the minimum melt viscosity of the adhesive films 1a and 1b may be 500 Pa ⁇ s or more, 600 Pa ⁇ s or more, 700 Pa ⁇ s or more, or 800 Pa ⁇ s or more.
  • the minimum melt viscosity of the adhesive films 1a and 1b is 450 Pa ⁇ s or more, it is possible to suppress the deformation of the plastic substrate during thermocompression bonding and prevent the occurrence of circuit disconnection.
  • the minimum melt viscosity of the adhesive films 1a and 1b may be 1500 Pa ⁇ s or less, 1400 Pa ⁇ s or less, 1300 Pa ⁇ s or less, 1200 Pa ⁇ s or less, 1100 Pa ⁇ s or less, or 1000 Pa ⁇ s or less.
  • the minimum melt viscosity of the adhesive films 1a and 1b is 1600 Pa ⁇ s or less, it is possible to suppress the deterioration of the resin exclusion property at the time of circuit connection, so that the connection resistance between the facing electrodes of the circuit connection structure is reduced. It is possible to ensure good conduction characteristics.
  • the minimum melt viscosity of the adhesive film can be obtained, for example, by the following method.
  • Each adhesive film is laminated with a laminator so as to have a thickness of 200 ⁇ m or more to obtain a laminated body.
  • the release-treated PET is peeled off from the obtained laminate and cut into 10.0 mm ⁇ 10.0 mm to obtain a measurement sample.
  • the minimum melt viscosity of the obtained measurement sample is measured using a viscoelasticity measuring device (trade name: ARES-G2, manufactured by TA Instruments, Inc., heating rate: 10 ° C./min).
  • the second adhesive layer 3 is usually thicker than the first adhesive layer 2. Therefore, the minimum melt viscosity of the adhesive films 1a and 1b tends to fluctuate depending on the second adhesive layer 3.
  • the minimum melt viscosity of the adhesive films 1a and 1b can be adjusted, for example, by adjusting the type and content of the constituent components (particularly, the component (D)) contained in the second adhesive layer 3. Further, the minimum melt viscosity of the adhesive films 1a and 1b can also be adjusted, for example, by blending the above-mentioned inorganic filler A as the component (F). By blending the inorganic filler A in the second adhesive layer 3, the minimum melt viscosity can be reduced while sufficiently suppressing the generation of large indentations.
  • the adhesive films 1a and 1b are anisotropically conductive adhesive films having anisotropic conductivity.
  • the adhesive films 1a and 1b are interposed between the first circuit member having the first electrode and the second circuit member having the second electrode, and the first circuit member and the second circuit member are interposed. Is thermally crimped and used to electrically connect the first electrode and the second electrode to each other.
  • the adhesive films 1a and 1b by setting the second adhesive layer 3 as the region A, even when the circuit members are connected to each other at low pressure, between the facing electrodes of the circuit connection structure. Continuity can be ensured, and the generation of large indentations that cause defect determination by the automatic visual inspection device can be sufficiently suppressed.
  • the circuit connection adhesive film of this embodiment can be suitably used for COP mounting. More specifically, it can be suitably used for connecting a plastic substrate on which a circuit electrode (for example, an electrode containing Ti) is formed in an organic EL display to an IC chip such as a drive IC.
  • a circuit electrode for example, an electrode containing Ti
  • the method for producing an adhesive film for circuit connection is, for example, a component (A), a component (B), and a component (C) (first thermosetting resin component), and if necessary, other components.
  • the component (C) (third thermosetting resin component), and if necessary, the inorganic filler A and others are placed on the opposite side of the first adhesive layer from the second adhesive layer.
  • a step of laminating a third adhesive layer containing the above components (third step) may be further provided.
  • the second step may be performed first, or the third step may be performed first.
  • the third adhesive layer is laminated on the side opposite to the side where the second adhesive layer of the first adhesive layer is to be laminated.
  • FIG. 2 is a schematic cross-sectional view showing a manufacturing method including the above steps.
  • a composition containing the component (A), the component (B), and the component (C), and an additive added as needed is stirred and mixed in an organic solvent.
  • a varnish composition (a varnish-like first adhesive composition) is prepared by dissolving or dispersing by kneading or the like. Then, the varnish composition is applied onto the mold-released substrate using a knife coater, roll coater, applicator, comma coater, die coater, etc., and then the organic solvent is volatilized by heating to form the substrate. Form a composition layer composed of the composition. At this time, the thickness of the finally obtained first adhesive layer (first adhesive film) can be adjusted by adjusting the coating amount of the varnish composition.
  • the composition layer made of the composition is irradiated with light to cure the component (B) in the composition layer, and a first adhesive layer is formed on the substrate.
  • the first adhesive layer can be said to be the first adhesive film.
  • the organic solvent used in the preparation of the varnish composition is not particularly limited as long as it has the property of uniformly dissolving or dispersing each component.
  • examples of such an organic solvent include toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate and the like. These organic solvents can be used alone or in combination of two or more.
  • Stirring and mixing or kneading in the preparation of the varnish composition can be carried out by using, for example, a stirrer, a raider, a three-roll, a ball mill, a bead mill, a homodisper or the like.
  • the base material is not particularly limited as long as it has heat resistance that can withstand the heating conditions when volatilizing the organic solvent.
  • a substrate examples include stretched polypropylene (OPP), polyethylene terephthalate (PET), polyethylene naphthalate, polyethylene isophthalate, polyvinylidene terephthalate, polyolefin, polyacetate, polycarbonate, polyphenylene sulfide, polyamide, polyimide, cellulose, and the like.
  • a substrate (for example, a film) made of an ethylene / vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, a synthetic rubber system, a liquid crystal polymer or the like can be used.
  • the heating conditions for volatilizing the organic solvent from the varnish composition applied to the base material can be appropriately set according to the organic solvent to be used and the like.
  • the heating conditions may be, for example, 40 to 120 ° C. for 0.1 to 10 minutes.
  • a part of the solvent may remain in the first adhesive layer without being removed.
  • the content of the solvent in the first adhesive layer may be, for example, 10% by mass or less based on the total mass of the first adhesive layer.
  • the content of the component (B) in the varnish composition may be 10% by mass or more and less than 60% by mass based on the total of the components (A) and the components other than the organic solvent of the varnish composition.
  • the effect of suppressing the flow of the conductive particles can be easily obtained, and the coating can be easily performed while maintaining a good appearance.
  • irradiation light for example, ultraviolet light
  • Light irradiation can be performed using, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a metal halide lamp, an LED light source, or the like.
  • the integrated light amount of light irradiation can be appropriately set, but may be, for example, 500 to 3000 mJ / cm 2 .
  • the second step is a step of laminating the second adhesive layer on the first adhesive layer.
  • the second adhesive is applied onto the substrate in the same manner as in the first step, except that the component (C) and the inorganic filler A are used and no light irradiation is performed.
  • a layer is formed to obtain a second adhesive film.
  • the second adhesive layer 3 provided on the base material 20 as shown in FIG. 2A can be prepared.
  • the second adhesive layer can be laminated on the first adhesive layer by adhering the first adhesive film and the second adhesive film (FIGS. 2A and 2). b)).
  • a varnish composition obtained by using the component (C), the inorganic filler A, and other additives added as needed on the first adhesive layer.
  • the second adhesive layer can also be laminated on the first adhesive layer by applying the second adhesive composition in the form) and volatilizing the organic solvent.
  • Examples of the method of adhering the first adhesive film and the second adhesive film include a method of heat pressing, roll laminating, vacuum laminating and the like. Lamination can be performed, for example, under temperature conditions of 0 to 80 ° C.
  • a part of the solvent may remain on the second adhesive layer without being removed.
  • the content of the solvent in the second adhesive layer may be, for example, 10% by mass or less based on the total mass of the second adhesive layer.
  • the third step is a step of laminating the third adhesive layer on the side of the first adhesive layer opposite to the second adhesive layer.
  • a third adhesive layer is formed on the substrate to obtain a third adhesive film.
  • the third adhesive layer 6 provided on the base material 24 as shown in FIG. 2 (c) can be prepared.
  • the side of the first adhesive layer opposite to the second adhesive layer A third adhesive layer can be laminated on top (see (c) in FIG. 2).
  • the varnish composition (the varnish-like third adhesion) is placed on the opposite side of the first adhesive layer from the second adhesive layer.
  • the third adhesive layer can also be laminated on the first adhesive layer by applying the agent composition) and volatilizing the organic solvent. The method of bonding and the conditions thereof are the same as in the second step.
  • a part of the solvent may remain on the third adhesive layer without being removed.
  • the content of the solvent in the third adhesive layer may be, for example, 10% by mass or less based on the total mass of the third adhesive layer.
  • composition containing inorganic filler In the composition containing an inorganic filler of the present embodiment, the particle size D50 at 50% cumulative size is 0.5 to 1.0 ⁇ m and the particle size D95 at 95% cumulative size is 0.9 to 2 in the volume-based particle size distribution. Contains an inorganic filler that is 0.0 ⁇ m. As the inorganic filler, the same as the above-mentioned inorganic filler A can be used.
  • the inorganic filler-containing composition of the present embodiment can be used to form an inorganic filler-containing region in a circuit connection member containing conductive particles and an inorganic filler.
  • the circuit connection member include the above-mentioned circuit connection adhesive film.
  • the above-mentioned region A and the second adhesive layer can be formed as the inorganic filler-containing region.
  • composition of the inorganic filler-containing composition of the present embodiment can be set in the same manner as the composition of the second adhesive layer described above.
  • the composition may further contain a thermoplastic resin.
  • the inorganic filler-containing composition of the present embodiment may be a varnish composition containing the above-mentioned organic solvent (varnish-like inorganic filler-containing composition).
  • the inorganic filler-containing composition of the present embodiment can be used to form an adhesive layer having a thickness of 10 ⁇ m or less, 9 to 4 ⁇ m, or 8 to 5 ⁇ m. According to the composition containing an inorganic filler of the present embodiment, even when coating with such a design thickness, appearance defects such as scratches are unlikely to occur, and a high coating yield can be obtained.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of a circuit connection structure.
  • the circuit connection structure 10 includes a first circuit member 13 having a first electrode 12 formed on a main surface 11a of the first circuit board 11 and the first circuit board 11.
  • a second circuit member 16 having a second electrode 15 formed on the main surface 14a of the second circuit board 14 and the second circuit board 14, and the first circuit member 13 and the second circuit member. It is arranged between 16 and includes a circuit connection portion 17 that electrically connects the first electrode 12 and the second electrode 15 to each other.
  • the first circuit member 13 and the second circuit member 16 may be the same or different from each other.
  • the first circuit member 13 and the second circuit member 16 are a glass substrate or a plastic substrate on which a circuit electrode is formed; a printed wiring board; a ceramic wiring board; a flexible wiring board; an IC chip such as a drive IC, or the like. It's okay.
  • the first circuit board 11 and the second circuit board 14 may be formed of an inorganic substance such as semiconductor, glass, or ceramic, an organic substance such as polyimide or polycarbonate, or a composite such as glass / epoxy.
  • the first circuit board 11 may be a plastic substrate.
  • the first circuit member 13 may be, for example, a plastic substrate on which a circuit electrode is formed (a plastic substrate made of an organic substance such as polyimide, polycarbonate, polyethylene terephthalate, or cycloolefin polymer), and the second circuit member 16 may be.
  • a plastic substrate on which a circuit electrode is formed a plastic substrate made of an organic substance such as polyimide, polycarbonate, polyethylene terephthalate, or cycloolefin polymer
  • the second circuit member 16 may be.
  • it may be an IC chip such as a drive IC.
  • a display region is formed by regularly arranging a pixel drive circuit such as an organic TFT or a plurality of organic EL elements R, G, and B on the plastic substrate in a matrix. It may be a plastic one.
  • the first electrode 12 and the second electrode 15 are gold, silver, tin, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, aluminum, molybdenum, titanium and other metals, indium tin oxide (ITO), and the like.
  • the electrode may be an electrode containing an oxide such as indium tin oxide (IZO) or indium gallium zinc oxide (IGZO).
  • the first electrode 12 and the second electrode 15 may be electrodes formed by laminating two or more of these metals, oxides, and the like.
  • the electrode formed by stacking two or more types may have two or more layers, and may have three or more layers.
  • the first electrode 12 When the first circuit member 13 is a plastic substrate, the first electrode 12 may be an electrode containing Ti, and more specifically, an electrode having a titanium layer on the outermost surface.
  • the first electrode 12 and the second electrode 15 may be circuit electrodes or bump electrodes. At least one of the first electrode 12 and the second electrode 15 may be a bump electrode. In FIG. 3, the first electrode 12 is a circuit electrode and the second electrode 15 is a bump electrode.
  • the circuit connection portion 17 contains the cured product of the adhesive film 1a described above.
  • the circuit connection portion 17 may be made of the cured product of the adhesive film 1a described above.
  • the circuit connection portion 17 is located, for example, on the side of the first circuit member 13 in the direction in which the first circuit member 13 and the second circuit member 16 face each other (hereinafter referred to as “opposite direction”), and the above-mentioned first circuit member 17 is located. It is located on the side of the first region 18 composed of the cured product of the component (B) and the cured product of the component (C) other than the conductive particles 4 in the adhesive layer of No. 1 and the second circuit member 16 in the opposite direction.
  • the first electrode 12 and the first electrode 12 are interposed between the second region 19 made of a cured product such as the component (C) in the second adhesive layer and at least the first electrode 12 and the second electrode 15. It has conductive particles 4 that electrically connect the second electrodes 15 to each other. As shown in FIG. 3, the circuit connection portion 17 does not have to have two distinct regions between the first region 18 and the second region 19, and the first adhesive layer The cured product derived from the above and the cured product derived from the second adhesive layer may be mixed to form one region.
  • the circuit connection structure may be a plastic substrate in which one of the first circuit member and the second circuit member is an IC chip and the other has an electrode containing Ti.
  • the circuit connection structure is, for example, a flexible organic electric field light emitting color display (organic EL display) in which a plastic substrate in which organic EL elements are regularly arranged and a drive circuit element which is a driver for displaying an image are connected. Examples thereof include a touch panel in which a plastic substrate on which organic EL elements are regularly arranged and a position input element such as a touch pad are connected.
  • the circuit connection structure can be applied to various monitors such as smart phones, tablets, televisions, vehicle navigation systems, wearable terminals, furniture; home appliances; daily necessities and the like.
  • FIG. 4 is a schematic cross-sectional view showing an embodiment of a method for manufacturing a circuit connection structure.
  • FIG. 4A and FIG. 4B are schematic cross-sectional views showing each step.
  • a method of manufacturing the circuit connection structure 10 is performed between a first circuit member 13 having a first electrode 12 and a second circuit member 16 having a second electrode 15.
  • a first electrode 12 having a first electrode 12 formed on a main surface 11a of the first circuit board 11 and the first circuit board 11 is provided.
  • a circuit member 13 and a second circuit member 16 provided with a second electrode 15 formed on the main surface 14a of the second circuit board 14 and the second circuit board 14 are prepared.
  • the first circuit member 13 and the second circuit member 16 are arranged so that the first electrode 12 and the second electrode 15 face each other, and the first circuit member 13 and the second circuit member 12 are arranged.
  • the adhesive film 1a is placed between the 16 and 16.
  • the adhesive film 1a is placed on the first circuit member 13 so that the first adhesive layer 2 side faces the main surface 11a of the first circuit board 11. Laminate.
  • the adhesive film 1a is laminated so that the first electrode 12 on the first circuit board 11 and the second electrode 15 on the second circuit board 14 face each other.
  • the second circuit member 16 is arranged on the circuit member 13.
  • the first circuit member 13 and the second circuit member 16 are heated while heating the first circuit member 13, the adhesive film 1a, and the second circuit member 16.
  • the first circuit member 13 and the second circuit member 16 are thermocompression bonded to each other.
  • the second adhesive layer 3 has a flowable uncured thermosetting component
  • the second electrodes 15 are connected to each other. It flows so as to fill the voids of the above, and is cured by the above heating.
  • the first electrode 12 and the second electrode 15 are electrically connected to each other via the conductive particles 4, and the first circuit member 13 and the second circuit member 16 are adhered to each other.
  • the circuit connection structure 10 shown in 3 can be obtained.
  • a part of the first adhesive layer 2 is cured by light irradiation, so that the conductive particles in the first adhesive layer 2 flow. It is suppressed, the first adhesive layer 2 hardly flows during the thermal pressure bonding, and the conductive particles are efficiently captured between the facing electrodes. Therefore, between the facing first electrodes 12 and the second electrodes 15. Connection resistance is reduced. Further, when the thickness of the first adhesive layer is 5 ⁇ m or less, the conductive particles at the time of circuit connection tend to be captured more efficiently.
  • the heating temperature for thermocompression bonding can be set as appropriate, but may be, for example, 50 to 190 ° C.
  • the pressurization is not particularly limited as long as it does not damage the adherend, but in the case of COP mounting, for example, the area conversion pressure at the bump electrode may be 0.1 to 50 MPa, and may be 40 MPa or less. It may be 0.1 to 40 MPa. Further, in the case of COG mounting, for example, the area conversion pressure at the bump electrode may be 10 to 100 MPa.
  • (B) component Photocurable resin component (B1) component: Radical polymerizable compound B1-1: NK ester A-BPEF70T (ethoxylated fluorene type di (meth) acrylate (bifunctional), manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) ), Diluted with toluene to 70% by mass of non-volatile content B1-2: Lipoxy VR-90 (bisphenol A type epoxy (meth) acrylate (bifunctional) (vinyl ester resin), manufactured by Showa Denko Co., Ltd.)
  • Photoradical Polymerization Initiator B2-1 Acetyl OXE-02 (Etanon, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1-( 0-Acetyl oxime), manufactured by BASF), MEK diluted to 10% by mass of non-volatile content
  • C component Thermosetting resin component (C1) component: Cationic polymerizable compound
  • C1-1 ETERNACOLL OXBP (3-ethyl-3-hydroxymethyloxetane, manufactured by Ube Industries, Ltd.)
  • C1-2 EHPE3150 (1,2-epoxy-4- (2-oxylanyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol, manufactured by Daicel Corporation)
  • C1-3 Celoxide 2021P (3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, manufactured by Daicel Corporation)
  • C1-4 OXSQ-TX100 (poly ( ⁇ 3-[(3-ethyl-3-oxetanyl) methoxy] propyl ⁇ silsesquioxane) derivative, manufactured by Toagosei Corporation)
  • C1-5 Celoxide 8010 (B-7-oxavicyclo
  • Epoxy resin D-1 Phenototo YP-50S (bisphenol A type phenoxy resin, weight average molecular weight: 60,000, glass transition temperature: 84 ° C., manufactured by Nittetsu Chemical & Materials Co., Ltd.), MEK D-2: TOPR-300 (high Tg type epoxy resin, epoxy equivalent: 900-1,000, softening point: 120 ° C, manufactured by Nittetsu Chemical & Materials Co., Ltd.) D-3: Phenototo FX-293 (fluorene skeleton-containing phenoxy resin, weight average molecular weight: 45,000, glass transition temperature: 158 ° C, Nittetsu Chemical & Materials Made by MEK, diluted to 60% by mass of non-volatile content D-4: Phenototo ZX-1356-2 (bisphenol A type and bisphenol F type copolymer phenoxy resin, weight average molecular weight: 70000, Glass transition temperature: 71 ° C, manufactured
  • F Component: Filler (F1)
  • F-3 Admanano YA050C (silica filler, stock) (Manufactured by Admatex), use MEK diluted to 50% by mass of non-volatile content
  • the particle size D50 at the time of 50% accumulation (particle size of the cumulative distribution 50% by volume) and the particle size D95 at the time of 95% accumulation (particle size of the cumulative distribution 95% by volume) were measured. ..
  • Microtorac MT3300EXII manufactured by Nikkiso Co., Ltd. was used as a measuring device, and methyl ethyl ketone was used as a measuring solvent.
  • a PET (polyethylene terephthalate) film obtained by mixing the materials shown in Table 2 with the composition ratio (mass ratio) shown in Table 2 (the numerical values in Table 2 mean the non-volatile content) and then performing a mold release treatment.
  • a composition layer composed of a composition containing each component was obtained by applying the coating on the above while applying a magnetic field and drying the organic solvent or the like at 70 ° C. for 5 minutes with hot air. The composition layer was coated so that the thickness after drying was 3 to 4 ⁇ m, respectively.
  • a first adhesive layer in which conductive particles were dispersed was prepared.
  • the thickness was measured using a contact thickness gauge.
  • the thickness of the layer made of the first adhesive composition or the adhesive layer is smaller than the thickness (diameter) of the conductive particles
  • the thickness of the layer is measured using a contact type thickness gauge, and the conductive particles are measured.
  • the thickness of the region where the conductive particles are present is measured. Therefore, after producing a two-layer adhesive film in which a first adhesive layer and a second adhesive layer are laminated, an adhesive particle having adjacent conductive particles is used by a scanning electron microscope by a method described later. The thickness of the first adhesive layer located at the separated portion was measured.
  • a second adhesive layer composed of a composition containing each component was prepared by coating on the above and drying an organic solvent or the like at 70 ° C. for 5 minutes with hot air. The adhesive layer was coated so that the thickness after drying was 8 to 9 ⁇ m, respectively. The thickness here was measured using a contact thickness gauge.
  • the ratio Y (%) at which white lines and scratches did not occur was determined and evaluated according to the following criteria.
  • a third adhesive layer made of a composition containing each component was prepared by coating on the above and drying an organic solvent or the like at 70 ° C. for 5 minutes with hot air. The adhesive layer was coated so that the thickness after drying was 0.5 to 1.5 ⁇ m, respectively. The thickness here was measured using a contact thickness gauge.
  • Example 1 (Examples 1 to 5 and Comparative Examples 1 to 5) [Preparation of adhesive film]
  • an adhesive film having the constitution shown in Table 6 was prepared.
  • the first adhesive layer formed by the composition P-1 is heated to a temperature of 50 to 60 ° C. on the second adhesive layer formed by the composition S1-1.
  • the PET film on the first adhesive layer side was peeled off.
  • the third adhesive layer formed by the composition S2-1 was bonded to the exposed first adhesive layer while applying a temperature of 50 to 60 ° C. to obtain the adhesive film of Example 1. ..
  • the peeling force between the second adhesive layer and the PET film is the first adhesion.
  • Each PET film was selected so as to be larger than the peeling force between the agent layer and the PET film and the peeling force between the third adhesive layer and the PET film.
  • Example 2 to 4 and Comparative Examples 1 to 4 the adhesive films having the configurations shown in Table 6 were prepared in the same manner as in Example 1.
  • Example 5 and Comparative Example 5 an adhesive film having the constitution shown in Table 6 was prepared in the same manner as in Example 1 except that the third adhesive layer was not bonded.
  • the thickness of the first adhesive layer of the produced adhesive film for circuit connection was measured by the following method. First, an adhesive film for circuit connection is sandwiched between two sheets of glass (thickness: about 1 mm), and 100 g of bisphenol A type epoxy resin (trade name: JER811, manufactured by Mitsubishi Chemical Industry Co., Ltd.) and diethylenetriamine (manufactured by Tokyo Chemical Industry Co., Ltd.). ) was cast with a resin composition consisting of 10 g. After that, the cross section is polished using a polishing machine, and a scanning electron microscope (SEM, trade name: SE-8010, manufactured by Hitachi High-Tech Science Co., Ltd.) is used to perform the first section located at the separated portion of the adjacent conductive particles. The thickness of the adhesive layer was measured. The thickness of the first adhesive layer was 1.8 ⁇ m.
  • circuit connection structure-1 As the first circuit member, an IC chip (0.9 mm ⁇ 20.3 mm, thickness: 0.3 mm, bump electrode size: 70 ⁇ m ⁇ 12 ⁇ m, space between bump electrodes) in which bump electrodes are arranged in two rows in a staggered pattern. : 12 ⁇ m, bump electrode thickness: 9 ⁇ m) was prepared. Further, as a second circuit member, a wiring pattern (pattern width) of Ti: 50 nm / Al: 400 nm is provided on the surface of a polyimide substrate (manufactured by Toray DuPont Co., Ltd., 200H) (38 mm ⁇ 28 mm, thickness: 0.05 mm). : 19 ⁇ m, space between electrodes: 5 ⁇ m) was prepared.
  • a polyimide substrate manufactured by Toray DuPont Co., Ltd., 200H
  • Circuit connection structures were produced using the adhesive films of Examples 1 to 5 and Comparative Examples 1 to 5.
  • the adhesive film is cut into a width of 2.0 mm, and the adhesive film is in contact with the third adhesive layer (second adhesive layer in the case of Example 5 and Comparative Example 5) and the first circuit member.
  • a thermocompression bonding device consisting of a stage consisting of a ceramic heater and a tool (8 mm ⁇ 50 mm
  • heating and pressurization were performed for 2 seconds at 70 ° C. and 0.98 MPa (10 kgf / cm 2 ), and the first step was performed.
  • An adhesive film was attached to the circuit member, and the release film on the side opposite to the first circuit member of the adhesive film was peeled off.
  • a heat tool was used at 8 mm ⁇ 45 mm, and Teflon (registered trademark) having a thickness of 50 ⁇ m was used as a cushioning material.
  • Teflon registered trademark
  • the first adhesive layer of the adhesive film is attached to the second circuit member by heating and pressurizing the adhesive film for 5 seconds under the conditions of the actual measured maximum reached temperature of 170 ° C. and the area conversion pressure of 30 MPa at the bump electrode. Then, the circuit connection structure-1 was manufactured.
  • an IC chip (0.9 mm ⁇ 20.3 mm, thickness: 0.3 mm, bump electrode size: 70 ⁇ m ⁇ 12 ⁇ m, space between bump electrodes) in which bump electrodes are arranged in two rows in a staggered pattern. : 12 ⁇ m, bump electrode thickness: 5 ⁇ m) was prepared.
  • a glass substrate (25 mm ⁇ 35 mm, thickness: 0.2 mm) having an Al / Nd film having a thickness of 150 nm was prepared on the surface of the glass substrate (25 mm ⁇ 35 mm, thickness: 0.2 mm).
  • the adhesive films of Examples 1 to 5 and Comparative Examples 1 to 5 were used in the same manner as in the production of the circuit connection structure-1 except that the first circuit member and the second circuit member were used.
  • the circuit connection structure-2 was manufactured.
  • connection resistance (conduction resistance) of the produced circuit connection structure-1 was measured by the 4-terminal method. A multimeter MLR21 manufactured by Kusumoto Kasei Co., Ltd. was used for the measurement. The potential difference was measured at any 14 points, and the average value was obtained. The average value of the potential difference was converted into the connection resistance value and evaluated according to the following criteria. The results are shown in Table 6.
  • C Connection resistance value is 1.0 ⁇ or more
  • a PET (polyethylene terephthalate) film obtained by mixing the materials shown in Table 7 with the composition ratio (mass ratio) shown in Table 7 (the numerical values in Table 7 mean the non-volatile content) and then performing a mold release treatment.
  • a composition layer composed of a composition containing each component was obtained by coating on the above and drying an organic solvent or the like at 70 ° C. for 5 minutes with hot air. The composition layer was coated so as to have a thickness of 5 ⁇ m after drying to prepare a first adhesive layer-B. The thickness here was measured using a contact thickness gauge.
  • a second adhesive layer-B made of a composition containing each component was prepared by coating on the above and drying an organic solvent or the like at 70 ° C. for 5 minutes with hot air. The adhesive layer was coated so that the thickness after drying was 11 ⁇ m each. The thickness here was measured using a contact thickness gauge.
  • the ratio Y (%) at which white lines and scratches did not occur was determined and evaluated according to the following criteria.
  • Example 6 and Comparative Examples 6 to 8 [Preparation of adhesive film] Using the first adhesive layer-B and the second adhesive layer-B prepared above, an adhesive film having the constitution shown in Table 9 was prepared.
  • the adhesive film of Example 6 50 to 60 first adhesive layers-B formed by the composition P-2 are added to the second adhesive layer-B formed by the composition S1-9.
  • the adhesive film of Example 6 was obtained by laminating while applying a temperature of ° C.
  • an IC chip (0.9 mm ⁇ 20.3 mm, thickness: 0.3 mm, bump electrode size: 70 ⁇ m ⁇ 12 ⁇ m, space between bump electrodes) in which bump electrodes are arranged in two rows in a staggered pattern. : 12 ⁇ m, bump electrode thickness: 5 ⁇ m) was prepared.
  • a glass substrate (25 mm ⁇ 35 mm, thickness: 0.2 mm) having a Ti / Al / Ti film having a thickness of 150 nm was prepared on the surface of the glass substrate (25 mm ⁇ 35 mm, thickness: 0.2 mm).
  • a circuit connection structure was produced using each of the adhesive films of Examples 6 and Comparative Examples 6 to 8.
  • the adhesive film was cut out to a width of 2.0 mm, and the adhesive film was placed on the first circuit member so that the second adhesive layer-B and the first circuit member were in contact with each other.
  • a thermocompression bonding device consisting of a stage consisting of a ceramic heater and a tool (8 mm ⁇ 50 mm)
  • heating and pressurization were performed for 2 seconds at 70 ° C. and 0.98 MPa (10 kgf / cm 2 ), and the first step was performed.
  • An adhesive film was attached to the circuit member, and the release film on the side opposite to the first circuit member of the adhesive film was peeled off.
  • a heat tool was used at 8 mm ⁇ 45 mm, and Teflon (registered trademark) having a thickness of 50 ⁇ m was used as a cushioning material.
  • Teflon registered trademark
  • the first adhesive layer of the adhesive film is attached to the second circuit member by heating and pressurizing for 5 seconds under the conditions of the measured maximum reached temperature of the adhesive film of 145 ° C. and the area conversion pressure of 30 MPa at the bump electrode. Then, the circuit connection structure-3 was manufactured.
  • connection resistance (Evaluation of connection resistance) The initial connection resistance (conduction resistance) of the produced circuit connection structure-3 was measured by the 4-terminal method. A multimeter MLR21 manufactured by Kusumoto Kasei Co., Ltd. was used for the measurement. The potential difference was measured at any 14 points, and the average value was obtained. The average value of the potential difference was converted into the connection resistance value and evaluated according to the following criteria. The results are shown in Table 9. A: Connection resistance value is less than 5 ⁇ B: Connection resistance value is 5 ⁇ or more and less than 10 ⁇ C: Connection resistance value is 10 ⁇ or more

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

This adhesive film for circuit connection, which is an adhesive film containing conductive particles, includes, in the thickness direction of the film, a region A containing an inorganic filler, wherein the region A is formed of a thermosetting composition that contains the inorganic filler, said inorganic filler having a particle diameter D50 at 50% accumulation in a particle size distribution on a volume basis of 0.5-1.0 μm and a particle diameter D95 at 95% accumulation therein of 0.9-2.0 μm.

Description

回路接続用接着剤フィルム、無機フィラー含有組成物、並びに、回路接続構造体及びその製造方法Adhesive film for circuit connection, composition containing inorganic filler, circuit connection structure and method for manufacturing the same.
 本開示は、回路接続用接着剤フィルム、無機フィラー含有組成物、並びに、回路接続構造体及びその製造方法に関する。 The present disclosure relates to an adhesive film for circuit connection, an inorganic filler-containing composition, a circuit connection structure, and a method for manufacturing the same.
 近年、ディスプレイ業界では、表示手段のモジュールにおいて、液晶ディスプレイから有機LED(Light Emitting Diode)へのパラダイムシフトが起こっており、それに伴い、パネルの構成材料に変化が起きている。 In recent years, in the display industry, a paradigm shift from liquid crystal displays to organic LEDs (Light Emitting Diodes) has occurred in modules of display means, and along with this, changes have occurred in the constituent materials of panels.
 従来の液晶ディスプレイでは、基板としてガラス基板が用いられ、ガラス基板上に形成される回路材料として下地層の回路にはアルミニウム等の金属及び表層の電極にはITO(Indium Tin Oxide)等が用いられている。一方、有機LEDでは、ガラス基板も存在しているが、意匠の多様性(曲面ディスプレイ、折り畳みディスプレイなど)を向上させるため、基板としてポリイミド基板等の可撓性を有するプラスチック基板が用いられ、プラスチック基板上に形成される回路材料としてTiが用いられることが主流となりつつある。また、ポリイミド基板の下面には通常、柔軟性付与の目的で、粘着剤層とポリエチレンテレフタレート(PET)基板等の柔軟部材が配置されている(例えば、特許文献1を参照)。 In a conventional liquid crystal display, a glass substrate is used as a substrate, and as a circuit material formed on the glass substrate, a metal such as aluminum is used for the circuit of the base layer, and ITO (Indium Tin Oxide) or the like is used for the electrode of the surface layer. ing. On the other hand, in organic LEDs, a glass substrate also exists, but in order to improve the variety of designs (curved display, foldable display, etc.), a flexible plastic substrate such as a polyimide substrate is used as the substrate, and plastic is used. It is becoming mainstream that Ti is used as a circuit material formed on a substrate. Further, on the lower surface of the polyimide substrate, a pressure-sensitive adhesive layer and a flexible member such as a polyethylene terephthalate (PET) substrate are usually arranged for the purpose of imparting flexibility (see, for example, Patent Document 1).
 ところで、液晶ディスプレイにおいては、ファインピッチ化、軽量薄型化等の観点から、駆動用IC等の各種電子部品を直接表示パネルのガラス基板上に実装するいわゆるCOG(chip on glass)実装が採用されている。また、COG実装方式として、例えば、接着剤中に導電粒子が分散された異方導電性を有する回路接続用接着剤フィルムを介して液晶駆動用ICをガラス基板上に熱圧着することにより回路接続構造体を得る方法が利用されている。 By the way, in liquid crystal displays, so-called COG (chip on glass) mounting is adopted, in which various electronic components such as drive ICs are mounted directly on the glass substrate of a display panel from the viewpoint of fine pitch, light weight and thinness. There is. Further, as a COG mounting method, for example, a circuit connection is made by thermocompression bonding a liquid crystal drive IC onto a glass substrate via a circuit connection adhesive film having anisotropic conductivity in which conductive particles are dispersed in an adhesive. A method of obtaining a structure is used.
特開2016-054288号公報Japanese Unexamined Patent Publication No. 2016-0542888
 有機LEDにおいても、駆動用IC等を直接プラスチック基板に実装するCOP(chip on plastic)実装が採用されつつある。しかし、プラスチック基板に過剰な圧力がかかると、プラスチック基板の変形に伴う不具合として、例えば、プラスチック基板上に設けられたTi回路が変形し、ひび割れが生じ、断線するという問題が生じる場合がある。そのため、回路接続用接着剤フィルムを用いるCOG実装では、ICチップのバンプ電極での面積換算圧力50~100MPaの圧力を掛けることが通常であるが、有機LEDにおけるCOP実装では、回路の断線を防ぐ為に、例えば、40MPa以下の低圧力による実装が好ましいとされている。また、COG実装においても、低圧実装には、接続部材及び周辺部材の選択性を高められるというメリットがある。例えば、薄膜化したガラス基板への実装が可能になることで、接続構造の薄型化を図ることが期待できる。 Also in organic LEDs, COP (chip on plastic) mounting, in which drive ICs and the like are mounted directly on a plastic substrate, is being adopted. However, when excessive pressure is applied to the plastic substrate, there may be a problem that, for example, the Ti circuit provided on the plastic substrate is deformed, cracked, and disconnected as a defect due to the deformation of the plastic substrate. Therefore, in COG mounting using an adhesive film for circuit connection, it is usual to apply a pressure of 50 to 100 MPa in area conversion pressure at the bump electrode of the IC chip, but in COP mounting in an organic LED, disconnection of the circuit is prevented. Therefore, for example, mounting with a low pressure of 40 MPa or less is said to be preferable. Further, also in the COG mounting, the low pressure mounting has an advantage that the selectivity of the connecting member and the peripheral member can be enhanced. For example, it can be expected that the connection structure will be made thinner by being able to be mounted on a thinned glass substrate.
 しかしながら、このような低圧力の条件で作製される実装体は、対向する電極間の接続抵抗が高くなり、充分な導通特性が得られにくくなる傾向にある。そこで、本発明者らは、接着剤フィルムの熱圧着時において、導電粒子と電極との間に存在する接着剤の流動性を高めることを検討した。接着剤を高流動に設計する場合、一次粒子径が比較的大きいシリカフィラー等の無機フィラーを配合することが有効であると考えられている。しかし、本発明者らの検討によると、通常入手可能なシリカフィラーを配合すると、自動外観検査装置における不良判定の問題が発生する場合があることが明らかとなった。生産効率の向上を図るうえで、不良判定の発生を低減することが望ましい。そこで、この問題が発生する要因を検討したところ、導電粒子によって生じる圧痕よりも視覚的に目立つ強い圧痕(以下、大圧痕ともいう。)が回路接続構造体の実装エリアの配線部に生じることが判明した。 However, the mounting body manufactured under such a low pressure condition tends to have a high connection resistance between the opposing electrodes, and it tends to be difficult to obtain sufficient conduction characteristics. Therefore, the present inventors have studied to enhance the fluidity of the adhesive existing between the conductive particles and the electrode during thermocompression bonding of the adhesive film. When designing an adhesive with high flow rate, it is considered effective to add an inorganic filler such as a silica filler having a relatively large primary particle size. However, according to the studies by the present inventors, it has been clarified that the addition of a normally available silica filler may cause a problem of defect determination in an automatic visual inspection apparatus. In order to improve production efficiency, it is desirable to reduce the occurrence of defect judgment. Therefore, as a result of investigating the factors that cause this problem, strong indentations (hereinafter, also referred to as large indentations) that are visually more noticeable than the indentations generated by the conductive particles may occur in the wiring portion of the mounting area of the circuit connection structure. found.
 そこで、本開示は、回路部材同士を低圧力で接続する場合であっても、回路接続構造体の対向する電極間の導通を充分に確保できるとともに、自動外観検査装置による不良判定の要因となる大圧痕の発生を充分抑制することが可能な回路接続用接着剤フィルム及びこのような回路接続用部材の作製に好適な無機フィラー含有組成物を提供することを目的とする。また、本開示は、上記の回路接続用接着剤フィルムを用いた回路接続構造体の製造方法及び回路接続構造体を提供することを目的とする。 Therefore, in the present disclosure, even when the circuit members are connected to each other at a low pressure, the continuity between the facing electrodes of the circuit connection structure can be sufficiently ensured, and it becomes a factor of defect determination by the automatic visual inspection device. It is an object of the present invention to provide an adhesive film for circuit connection capable of sufficiently suppressing the generation of large indentations and an inorganic filler-containing composition suitable for producing such a member for circuit connection. Another object of the present disclosure is to provide a method for manufacturing a circuit connection structure using the above-mentioned adhesive film for circuit connection and a circuit connection structure.
 上記課題を解決するために、本開示の一側面は、導電粒子を含む回路接続用接着剤フィルムであって、接着剤フィルムは、フィルムの厚さ方向において、無機フィラーを含有する領域Aを含み、領域Aは、体積基準の粒度分布における50%累積時の粒径D50が0.5~1.0μmであり、95%累積時の粒径D95が0.9~2.0μmである無機フィラーを含有する熱硬化性組成物から形成されている回路接続用接着剤フィルムを提供する。 In order to solve the above problems, one aspect of the present disclosure is an adhesive film for circuit connection containing conductive particles, and the adhesive film includes a region A containing an inorganic filler in the thickness direction of the film. In the region A, the particle size D50 at the time of 50% accumulation is 0.5 to 1.0 μm and the particle size D95 at the time of 95% accumulation is 0.9 to 2.0 μm in the volume-based particle size distribution. Provided is an adhesive film for circuit connection formed from a thermosetting composition containing.
 上記側面の回路接続用接着剤フィルムによれば、上記領域Aが上記特定の粒度分布を有する無機フィラーを含有することにより、フィルム内に大圧痕を生じさせる無機フィラーが含まれることを制限しながら高い流動性を確保することが可能となり、回路部材同士を低圧力で接続する場合であっても、回路接続構造体の対向する電極間の導通を充分に確保できるとともに、自動外観検査装置による不良判定の要因となる大圧痕の発生を充分抑制することができる。 According to the circuit connection adhesive film on the side surface, the region A contains the inorganic filler having the specific particle size distribution, thereby limiting the inclusion of the inorganic filler that causes a large indentation in the film. It is possible to secure high fluidity, and even when the circuit members are connected to each other at low pressure, sufficient continuity can be ensured between the opposing electrodes of the circuit connection structure, and defects due to the automatic visual inspection device are obtained. It is possible to sufficiently suppress the generation of large indentations that are a factor in the determination.
 上記側面の回路接続用接着剤フィルムは、フィルムの厚さ方向において、導電粒子を含まない領域Sを含み、領域Aが領域Sの少なくとも一部に設けられていてもよい。この場合、接着剤フィルムの領域A側で接する被着体(例えば、回路部材)の回路電極間における導電粒子による橋掛けを防止しやすくなる。 The circuit connection adhesive film on the side surface may include a region S containing no conductive particles in the thickness direction of the film, and the region A may be provided in at least a part of the region S. In this case, it becomes easy to prevent bridging by conductive particles between the circuit electrodes of the adherend (for example, the circuit member) in contact with the region A side of the adhesive film.
 上記側面の回路接続用接着剤フィルムにおいて、無機フィラーはシリカフィラーであってもよい。 In the circuit connection adhesive film on the above side surface, the inorganic filler may be a silica filler.
 本開示の別の側面は、導電粒子、光硬化性樹脂成分の硬化物、及び第1の熱硬化性樹脂成分を含有する第1の接着剤層と、第1の接着剤層上に設けられた、第2の熱硬化性樹脂成分を含有する第2の接着剤層とを備え、第2の接着剤層は、第2の熱硬化性樹脂成分と、体積基準の粒度分布における50%累積時の粒径D50が0.5~1.0μmであり、95%累積時の粒径D95が0.9~2.0μmである無機フィラーと、を含有する無機フィラー含有組成物からなる、回路接続用接着剤フィルムを提供する。 Another aspect of the present disclosure is provided on a first adhesive layer containing conductive particles, a cured product of a photocurable resin component, and a first thermosetting resin component, and on the first adhesive layer. In addition, a second adhesive layer containing a second thermosetting resin component is provided, and the second adhesive layer is 50% cumulative in the volume-based particle size distribution with the second thermosetting resin component. A circuit comprising an inorganic filler-containing composition containing an inorganic filler having an hourly particle size D50 of 0.5 to 1.0 μm and a 95% cumulative particle size D95 of 0.9 to 2.0 μm. Provided is an adhesive film for connection.
 上記別の側面の回路接続用接着剤フィルムによれば、回路部材同士を低圧力で接続する場合であっても、回路接続構造体の対向する電極間の導通を充分に確保できるとともに、自動外観検査装置による不良判定の要因となる大圧痕の発生を充分抑制することができる。また、この回路接続用接着剤フィルムによれば、回路接続時に導電粒子が流動することを光硬化物によって抑制できることから、電極上に効率良く導電粒子を捕捉させることができ、高い接続信頼性が得られやすくなる。 According to the adhesive film for circuit connection on the other side surface, even when the circuit members are connected to each other at low pressure, the conduction between the facing electrodes of the circuit connection structure can be sufficiently ensured, and the automatic appearance can be obtained. It is possible to sufficiently suppress the generation of large indentations, which is a factor in determining defects by the inspection device. Further, according to this adhesive film for circuit connection, the flow of conductive particles at the time of circuit connection can be suppressed by the photocured material, so that the conductive particles can be efficiently captured on the electrode, and high connection reliability is achieved. It will be easier to obtain.
 上記別の側面の回路接続用接着剤フィルムにおいて、無機フィラーはシリカフィラーであってもよい。 In the circuit connection adhesive film on the other side surface, the inorganic filler may be a silica filler.
 上記別の側面の回路接続用接着剤フィルムは、第1の接着剤層の第2の接着剤層とは反対側上に積層された、第3の熱硬化性樹脂成分を含む第3の接着剤層を更に備えていてもよい。 The circuit-connecting adhesive film on the other side thereof is a third adhesive containing a third thermosetting resin component laminated on the side opposite to the second adhesive layer of the first adhesive layer. A further agent layer may be provided.
 上記別の側面の回路接続用接着剤フィルムは、上記第3の接着剤層を備えることにより、転写性や種々の信頼性試験における特性を確保しやすくなり、製品のマージンを向上しやすくなる。 By providing the third adhesive layer, the adhesive film for circuit connection on the other side thereof can easily secure the transferability and the characteristics in various reliability tests, and can easily improve the margin of the product.
 本開示の別の側面は、導電粒子及び無機フィラーを含有する回路接続用部材における無機フィラー含有領域を形成するために用いられる組成物であって、体積基準の粒度分布における50%累積時の粒径D50が0.5~1.0μmであり、95%累積時の粒径D95が0.9~2.0μmである無機フィラーを含有する、無機フィラー含有組成物を提供する。 Another aspect of the present disclosure is a composition used to form an inorganic filler-containing region in a circuit connecting member containing conductive particles and an inorganic filler, which is a 50% cumulative grain in a volume-based particle size distribution. Provided are an inorganic filler-containing composition containing an inorganic filler having a diameter D50 of 0.5 to 1.0 μm and a particle size D95 at a time of 95% accumulation of 0.9 to 2.0 μm.
 上記別の側面の無機フィラー含有組成物によれば、上記一側面の回路接続用接着剤フィルムにおける領域A、並びに、上記別の側面の回路接続用接着剤フィルムにおける第2の接着剤層などの無機フィラー含有領域を形成することができる。また、上記別の側面の無機フィラー含有組成物は、塗工によって薄い層を形成する場合であっても、塗工不良が発生しにくく、塗工歩留まりを高めることができる。更に、上記別の側面の無機フィラー含有組成物によって形成される無機フィラー含有層は、スクラッチなどの外観不良が充分少ないものになり得る。 According to the composition containing the inorganic filler on the other side surface, the region A in the circuit connection adhesive film on the one side surface, the second adhesive layer in the circuit connection adhesive film on the other side surface, and the like. An inorganic filler-containing region can be formed. Further, the composition containing the inorganic filler on the other side thereof is less likely to cause poor coating even when a thin layer is formed by coating, and the coating yield can be increased. Further, the inorganic filler-containing layer formed by the inorganic filler-containing composition on the other side thereof may have sufficiently few appearance defects such as scratches.
 上記別の側面の無機フィラー含有組成物において、無機フィラーはシリカフィラーであってもよい。 In the above-mentioned composition containing an inorganic filler on another side, the inorganic filler may be a silica filler.
 上記別の側面の無機フィラー含有組成物は、熱可塑性樹脂を更に含有することができる。 The inorganic filler-containing composition on the other side thereof can further contain a thermoplastic resin.
 上記別の側面の無機フィラー含有組成物は、厚みが10μm以下の接着剤層を形成するために用いることができる。 The inorganic filler-containing composition on the other side can be used to form an adhesive layer having a thickness of 10 μm or less.
 本開示の別の側面は、第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材との間に、上記の回路接続用接着剤フィルムを介在させ、第1の回路部材及び第2の回路部材を熱圧着して、第1の電極及び第2の電極を互いに電気的に接続する工程を備える回路接続構造体の製造方法を提供する。 Another aspect of the present disclosure is to interpose the above-mentioned circuit connection adhesive film between the first circuit member having the first electrode and the second circuit member having the second electrode. Provided is a method for manufacturing a circuit connection structure including a step of thermally crimping a circuit member 1 and a second circuit member to electrically connect the first electrode and the second electrode to each other.
 上記別の側面の回路接続構造体の製造方法において、第1の回路部材及び第2の回路部材のうちの一方がICチップであり、他方がTiを含む電極を有するプラスチック基板であってもよい。 In the method for manufacturing a circuit connection structure on another side thereof, one of the first circuit member and the second circuit member may be an IC chip, and the other may be a plastic substrate having an electrode containing Ti. ..
 本開示の別の側面は、第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材と、第1の回路部材及び第2の回路部材の間に配置され、第1の電極及び第2の電極を互いに電気的に接続する回路接続部と、を備え、回路接続部が、上記の回路接続用接着剤フィルムの硬化物を含む回路接続構造体を提供する。 Another aspect of the present disclosure is disposed between a first circuit member having a first electrode, a second circuit member having a second electrode, and a first circuit member and a second circuit member. Provides a circuit connection portion that electrically connects the first electrode and the second electrode to each other, and the circuit connection portion provides a circuit connection structure containing a cured product of the above-mentioned circuit connection adhesive film. ..
 上記別の側面の回路接続構造体において、第1の回路部材及び第2の回路部材のうちの一方がICチップであり、他方がTiを含む電極を有するプラスチック基板であってもよい。 In the circuit connection structure on the other side thereof, one of the first circuit member and the second circuit member may be an IC chip, and the other may be a plastic substrate having an electrode containing Ti.
 本開示によれば、回路部材同士を低圧力で接続する場合であっても、回路接続構造体の対向する電極間の導通を充分に確保できるとともに、自動外観検査装置による不良判定の要因となる大圧痕の発生を充分抑制することが可能な回路接続用接着剤フィルム及びこのような回路接続用部材の作製に好適な無機フィラー含有組成物を提供することができる。また、本開示によれば、上記の回路接続用接着剤フィルムを用いた回路接続構造体の製造方法及び回路接続構造体を提供することができる。 According to the present disclosure, even when the circuit members are connected to each other at a low pressure, sufficient continuity can be ensured between the facing electrodes of the circuit connection structure, and it becomes a factor of defect determination by the automatic visual inspection device. It is possible to provide an adhesive film for circuit connection capable of sufficiently suppressing the generation of large indentations and an inorganic filler-containing composition suitable for producing such a member for circuit connection. Further, according to the present disclosure, it is possible to provide a method for manufacturing a circuit connection structure and a circuit connection structure using the above-mentioned adhesive film for circuit connection.
図1は、回路接続用接着剤フィルムの実施形態を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing an embodiment of an adhesive film for circuit connection. 図2は、回路接続用接着剤フィルムの製造方法を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing a method of manufacturing an adhesive film for circuit connection. 図3は、回路接続構造体の一実施形態を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing an embodiment of a circuit connection structure. 図4は、回路接続構造体の製造工程の一実施形態を示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing an embodiment of a manufacturing process of a circuit connection structure.
 本明細書中、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、個別に記載した上限値及び下限値は任意に組み合わせ可能である。また、本明細書において、「(メタ)アクリレート」とは、アクリレート、及び、それに対応するメタクリレートの少なくとも一方を意味する。「(メタ)アクリロイル」等の他の類似の表現においても同様である。また、「(ポリ)」とは「ポリ」の接頭語がある場合とない場合の双方を意味する。また、「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。また、以下で例示する材料は、特に断らない限り、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 In the present specification, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step. Further, in the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. In addition, the upper limit value and the lower limit value described individually can be arbitrarily combined. Further, as used herein, the term "(meth) acrylate" means at least one of acrylate and the corresponding methacrylate. The same applies to other similar expressions such as "(meth) acryloyl". Further, "(poly)" means both with and without the prefix of "poly". Further, "A or B" may include either A or B, and may include both. Further, unless otherwise specified, the materials exemplified below may be used alone or in combination of two or more. The content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
 以下、場合により図面を参照しつつ、本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as the case may be. However, the present invention is not limited to the following embodiments.
<回路接続用接着剤フィルム>
 本実施形態の回路接続用接着剤フィルムは、導電粒子を含み、フィルムの厚さ方向において、無機フィラーを含有する領域Aを含み、領域Aは、体積基準の粒度分布における50%累積時の粒径D50が0.5~1.0μmであり、95%累積時の粒径D95が0.9~2.0μmである無機フィラー(以下、「無機フィラーA」という場合がある。)を含有する熱硬化性組成物から形成されている。領域Aを形成する熱硬化性組成物は、重合性化合物と、熱重合開始剤とを含むことができる。
<Adhesive film for circuit connection>
The circuit connection adhesive film of the present embodiment contains conductive particles and contains a region A containing an inorganic filler in the thickness direction of the film, and the region A is a particle at 50% accumulation in the volume-based particle size distribution. Contains an inorganic filler having a diameter D50 of 0.5 to 1.0 μm and a particle size D95 at 95% accumulation of 0.9 to 2.0 μm (hereinafter, may be referred to as “inorganic filler A”). It is formed from a thermosetting composition. The thermosetting composition forming the region A can contain a polymerizable compound and a thermal polymerization initiator.
 本実施形態の回路接続用接着剤フィルムは、フィルムの厚さ方向において、導電粒子を含まない領域Sを含み、領域Aが領域Sの少なくとも一部に設けられていてもよい。低圧実装においても対向する電極間の導通を確保しやすくする観点から、領域Sにおける領域Aの割合は、フィルムの厚さ方向における範囲を基準として、60%以上、80%以上、又は100%であってもよい。 The circuit connection adhesive film of the present embodiment includes a region S that does not contain conductive particles in the thickness direction of the film, and the region A may be provided in at least a part of the region S. The ratio of the region A in the region S is 60% or more, 80% or more, or 100% with respect to the range in the thickness direction of the film from the viewpoint of facilitating the continuity between the facing electrodes even in low-voltage mounting. There may be.
 本実施形態の回路接続用接着剤フィルムは、フィルムの厚さ方向において、光硬化性樹脂成分の硬化物を更に含有する領域Pを含み、当該領域Pに導電粒子が分散していてもよい。 The circuit connection adhesive film of the present embodiment contains a region P further containing a cured product of a photocurable resin component in the thickness direction of the film, and conductive particles may be dispersed in the region P.
 図1は、本実施形態の回路接続用接着剤フィルムの実施形態を示す模式断面図である。図1の(a)に示される回路接続用接着剤フィルム1a(以下、単に「接着剤フィルム1a」という場合がある。)は、導電粒子4、並びに、光硬化性樹脂成分の硬化物及び(第1の)熱硬化性樹脂成分を含む接着剤成分5を含有する第1の接着剤層2と、第1の接着剤層2上に設けられた、(第2の)熱硬化性樹脂成分を含有する第2の接着剤層3とを備える。また、図1の(b)に示される回路接続用接着剤フィルム1b(以下、単に「接着剤フィルム1b」という場合がある。)は、第1の接着剤層2の第2の接着剤層3とは反対側に(第3の)熱硬化性樹脂成分を含有する第3の接着剤層が積層されていること以外は、接着剤フィルム1aと同様の構成を有する。 FIG. 1 is a schematic cross-sectional view showing an embodiment of the adhesive film for circuit connection of the present embodiment. The circuit connection adhesive film 1a (hereinafter, may be simply referred to as “adhesive film 1a”) shown in FIG. 1 (a) includes the conductive particles 4, the cured product of the photocurable resin component, and ( A first adhesive layer 2 containing an adhesive component 5 containing a first) thermocurable resin component, and a (second) thermocurable resin component provided on the first adhesive layer 2. A second adhesive layer 3 containing the above-mentioned material is provided. Further, the circuit connection adhesive film 1b (hereinafter, may be simply referred to as “adhesive film 1b”) shown in FIG. 1 (b) is the second adhesive layer of the first adhesive layer 2. It has the same structure as the adhesive film 1a except that a third adhesive layer containing a (third) thermosetting resin component is laminated on the opposite side to the third.
 以下、図1を参照しつつ本実施形態の回路接続用接着剤フィルムについて説明する。 Hereinafter, the circuit connection adhesive film of the present embodiment will be described with reference to FIG.
 接着剤フィルム1a,1bは、導電粒子4が第1の接着剤層2中に分散されている。そのため、接着剤フィルム1a,1bは、異方導電性を有する回路接続用接着剤フィルム(異方導電性接着剤フィルム)であり得る。接着剤フィルム1a,1bは、第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材との間に介在させ、第1の回路部材及び第2の回路部材を熱圧着して、第1の電極及び第2の電極を互いに電気的に接続するために用いられるものであってよい。 In the adhesive films 1a and 1b, the conductive particles 4 are dispersed in the first adhesive layer 2. Therefore, the adhesive films 1a and 1b can be a circuit-connecting adhesive film (anisotropic adhesive film) having anisotropic conductivity. The adhesive films 1a and 1b are interposed between the first circuit member having the first electrode and the second circuit member having the second electrode, and the first circuit member and the second circuit member are interposed. May be used to electrically connect the first electrode and the second electrode to each other by thermocompression bonding.
<第1の接着剤層>
 第1の接着剤層2は、導電粒子4(以下、「(A)成分」という場合がある。)、光硬化性樹脂成分(以下、「(B)成分」という場合がある。)の硬化物、及び熱硬化性樹脂成分(以下、「(C)成分」という場合がある。)を含有する。第1の接着剤層2は、例えば、(A)成分、(B)成分、及び(C)成分を含有する組成物からなる組成物層に対して光エネルギーを照射し、(B)成分に含まれる成分を重合させ、(B)成分を硬化させることによって得ることができる。第1の接着剤層2は、(A)成分と、(B)成分の硬化物及び(C)成分を含む接着剤成分5とを含有する。(B)成分の硬化物は、(B)成分を完全に硬化させた硬化物であってもよく、(B)成分の一部を硬化させた硬化物であってもよい。(C)成分は、回路接続時に流動可能な成分であり、例えば、未硬化の硬化性樹脂成分である。
<First adhesive layer>
The first adhesive layer 2 is a curing of conductive particles 4 (hereinafter, may be referred to as "(A) component") and a photocurable resin component (hereinafter, may be referred to as "(B) component"). It contains a substance and a thermosetting resin component (hereinafter, may be referred to as "(C) component"). In the first adhesive layer 2, for example, a composition layer composed of a composition containing the component (A), the component (B), and the component (C) is irradiated with light energy, and the component (B) is subjected to light energy. It can be obtained by polymerizing the contained components and curing the component (B). The first adhesive layer 2 contains the component (A), the cured product of the component (B), and the adhesive component 5 containing the component (C). The cured product of the component (B) may be a cured product obtained by completely curing the component (B), or may be a cured product obtained by curing a part of the component (B). The component (C) is a component that can flow when connected to a circuit, and is, for example, an uncured curable resin component.
(A)成分:導電粒子
 (A)成分は、導電性を有する粒子であれば特に制限されず、Au、Ag、Pd、Ni、Cu、はんだ等の金属で構成された金属粒子、導電性カーボンで構成された導電性カーボン粒子などであってよい。(A)成分は、非導電性のガラス、セラミック、プラスチック(ポリスチレン等)などを含む核と、上記金属又は導電性カーボンを含み、核を被覆する被覆層とを備える被覆導電粒子であってもよい。これらの中でも、(A)成分は、好ましくは熱溶融性の金属で形成された金属粒子、又はプラスチックを含む核と、金属又は導電性カーボンを含み、核を被覆する被覆層とを備える被覆導電粒子である。このような被覆導電粒子は、熱硬化性樹脂成分の硬化物を加熱又は加圧により変形させることが容易であるため、電極同士を電気的に接続する際に、電極と(A)成分との接触面積を増加させ、電極間の導電性をより向上させることができる。
Component (A): Conductive particles The component (A) is not particularly limited as long as it is a particle having conductivity, and is a metal particle composed of a metal such as Au, Ag, Pd, Ni, Cu, or solder, or conductive carbon. It may be conductive carbon particles composed of. The component (A) may be a coated conductive particle containing a nucleus containing non-conductive glass, ceramic, plastic (polystyrene, etc.) and the like, and a coating layer containing the metal or conductive carbon and covering the nucleus. good. Among these, the component (A) preferably contains metal particles formed of a heat-meltable metal or a core containing plastic, and contains a metal or conductive carbon and has a coating layer covering the core. It is a particle. Since such coated conductive particles can easily deform the cured product of the thermosetting resin component by heating or pressurizing, when the electrodes are electrically connected to each other, the electrode and the component (A) are connected to each other. The contact area can be increased and the conductivity between the electrodes can be further improved.
 導電粒子は、Ti表面を有する回路に対して低抵抗を発現しやすくする観点から、パラジウムめっきを有するものを用いることができる。この場合、導電粒子の最表面にパラジウムめっきを設けることができる。具体的には、プラスチック核体の表面にNiめっきを施し、最表面をPdで置換めっきを施した導電粒子を用いることができ、このような導電粒子は、導電粒子間の短絡防止の観点から、その表面に絶縁性微粒子が担持されたものを用いてもよい。更に低抵抗を発現しやすくする観点から、Niめっきを施す過程において、100nm~200nmのセラミック芯材をめっき中に取り込ませ、その後、Pdめっきを施し、必要に応じて絶縁性微粒子を担持させてもよい。 As the conductive particles, those having palladium plating can be used from the viewpoint of facilitating the development of low resistance to the circuit having the Ti surface. In this case, palladium plating can be provided on the outermost surface of the conductive particles. Specifically, conductive particles in which the surface of the plastic core is Ni-plated and the outermost surface is substituted-plated with Pd can be used, and such conductive particles can be used from the viewpoint of preventing short circuits between the conductive particles. , Those in which insulating fine particles are supported on the surface thereof may be used. From the viewpoint of facilitating the development of low resistance, in the process of Ni plating, a ceramic core material having a diameter of 100 nm to 200 nm is incorporated into the plating, and then Pd plating is performed to support insulating fine particles as necessary. May be good.
 (A)成分は、上記の金属粒子、導電性カーボン粒子、又は被覆導電粒子と、樹脂等の絶縁材料を含み、該粒子の表面を被覆する絶縁層とを備える絶縁被覆導電粒子であってもよい。(A)成分が絶縁被覆導電粒子であると、(A)成分の含有量が多い場合であっても、粒子の表面に絶縁層を備えているため、(A)成分同士の接触による短絡の発生を抑制でき、また、隣り合う電極回路間の絶縁性を向上させることもできる。(A)成分は、上述の各種導電粒子の1種を単独で又は2種以上を組み合わせて用いられる。 The component (A) may be an insulating coated conductive particle containing the above-mentioned metal particles, conductive carbon particles, or coated conductive particles and an insulating material such as a resin and having an insulating layer covering the surface of the particles. good. When the component (A) is an insulating coated conductive particle, even when the content of the component (A) is large, the insulating layer is provided on the surface of the particle, so that the component (A) is short-circuited due to contact with each other. The generation can be suppressed, and the insulation between adjacent electrode circuits can be improved. As the component (A), one of the above-mentioned various conductive particles may be used alone or in combination of two or more.
 (A)成分の最大粒径は、電極の最小間隔(隣り合う電極間の最短距離)よりも小さいことが必要である。(A)成分の最大粒径は、分散性及び導電性に優れる観点から、1.0μm以上、2.0μm以上、又は2.5μm以上であってよい。(A)成分の最大粒径は、分散性及び導電性に優れる観点から、20μm以下、10μm以下、又は5μm以下であってよい。本明細書では、任意の導電粒子300個(pcs)について、走査型電子顕微鏡(SEM)を用いた観察により粒径の測定を行い、得られた最も大きい値を(A)成分の最大粒径とする。なお、(A)成分が突起を有する場合等、(A)成分が球形ではない場合、(A)成分の粒径は、SEMの画像における導電粒子に外接する円の直径とする。 The maximum particle size of the component (A) needs to be smaller than the minimum distance between the electrodes (the shortest distance between adjacent electrodes). The maximum particle size of the component (A) may be 1.0 μm or more, 2.0 μm or more, or 2.5 μm or more from the viewpoint of excellent dispersibility and conductivity. The maximum particle size of the component (A) may be 20 μm or less, 10 μm or less, or 5 μm or less from the viewpoint of excellent dispersibility and conductivity. In the present specification, the particle size of any 300 conductive particles (pcs) is measured by observation using a scanning electron microscope (SEM), and the largest value obtained is the maximum particle size of the component (A). And. When the component (A) is not spherical, such as when the component (A) has protrusions, the particle size of the component (A) is the diameter of a circle circumscribing the conductive particles in the SEM image.
 (A)成分の平均粒径は、分散性及び導電性に優れる観点から、1.0μm以上、2.0μm以上、又は2.5μm以上であってよい。(A)成分の平均粒径は、分散性及び導電性に優れる観点から、20μm以下、10μm以下、又は5μm以下であってよい。本明細書では、任意の導電粒子300個(pcs)について、走査型電子顕微鏡(SEM)を用いた観察により粒径の測定を行い、得られた粒径の平均値を平均粒径とする。 The average particle size of the component (A) may be 1.0 μm or more, 2.0 μm or more, or 2.5 μm or more from the viewpoint of excellent dispersibility and conductivity. The average particle size of the component (A) may be 20 μm or less, 10 μm or less, or 5 μm or less from the viewpoint of excellent dispersibility and conductivity. In the present specification, the particle size of any 300 conductive particles (pcs) is measured by observation using a scanning electron microscope (SEM), and the average value of the obtained particle sizes is taken as the average particle size.
 第1の接着剤層2において、(A)成分は均一に分散されていることが好ましい。接着剤フィルム1a,1bにおける(A)成分の粒子密度は、安定した接続抵抗が得られる観点から、100個/mm以上、1000個/mm以上、3000個/mm以上、又は5000個/mm以上であってよい。接着剤フィルム1a,1bにおける(A)成分の粒子密度は、隣り合う電極間の絶縁性を向上する観点から、100000個/mm以下、70000個/mm以下、50000個/mm以下、又は30000個/mm以下であってよい。 In the first adhesive layer 2, the component (A) is preferably uniformly dispersed. The particle density of the component (A) in the adhesive films 1a and 1b is 100 / mm 2 or more, 1000 / mm 2 or more, 3000 / mm 2 or more, or 5000 from the viewpoint of obtaining stable connection resistance. It may be / mm 2 or more. The particle density of the component (A) in the adhesive films 1a and 1b is 100,000 pieces / mm 2 or less, 70,000 pieces / mm 2 or less, 50,000 pieces / mm 2 or less, from the viewpoint of improving the insulating property between adjacent electrodes. Alternatively, it may be 30,000 pieces / mm 2 or less.
 (A)成分の含有量は、導電性をより向上させることができる観点から、第1の接着剤層の全質量を基準として、1質量%以上、5質量%以上、又は10質量%以上であってよい。(A)成分の含有量は、短絡を抑制し易い観点から、第1の接着剤層の全質量を基準として、60質量%以下、50質量%以下、又は40質量%以下であってよい。(A)成分の含有量が上記範囲であると、本発明の効果が顕著に奏される傾向にある。なお、組成物又は組成物層中の(A)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。 The content of the component (A) is 1% by mass or more, 5% by mass or more, or 10% by mass or more based on the total mass of the first adhesive layer from the viewpoint of further improving the conductivity. It may be there. The content of the component (A) may be 60% by mass or less, 50% by mass or less, or 40% by mass or less based on the total mass of the first adhesive layer from the viewpoint of easily suppressing a short circuit. When the content of the component (A) is in the above range, the effect of the present invention tends to be remarkably exhibited. The content of the component (A) in the composition or the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
(B)成分:光硬化性樹脂成分
 (B)成分は、光照射によって硬化する樹脂成分であれば特に制限されないが、接続抵抗がより優れる観点から、ラジカル硬化性を有する樹脂成分であってよい。(B)成分は、例えば、ラジカル重合性化合物(以下、「(B1)成分」という場合がある。)及び光ラジカル重合開始剤(以下、「(B2)成分」という場合がある。)を含んでいてもよい。(B)成分は、(B1)成分及び(B2)成分からなる成分であり得る。
Component (B): Photocurable resin component The component (B) is not particularly limited as long as it is a resin component that is cured by light irradiation, but may be a resin component having radical curability from the viewpoint of better connection resistance. .. The component (B) contains, for example, a radically polymerizable compound (hereinafter, may be referred to as “(B1) component”) and a photoradical polymerization initiator (hereinafter, may be referred to as “(B2) component”). You may be. The component (B) can be a component composed of the component (B1) and the component (B2).
(B1)成分:ラジカル重合性化合物
 (B1)成分は、光(例えば、紫外光)の照射によって(B2)成分から発生したラジカルによって重合する化合物である。(B1)成分は、モノマー、又は、1種若しくは2種以上のモノマーが重合してなるポリマー(又はオリゴマー)のいずれであってもよい。(B1)成分は、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。
Component (B1): Radical Polymerizable Compound The component (B1) is a compound polymerized by radicals generated from the component (B2) by irradiation with light (for example, ultraviolet light). The component (B1) may be either a monomer or a polymer (or oligomer) obtained by polymerizing one or more kinds of monomers. The component (B1) may be used alone or in combination of two or more.
 (B1)成分は、ラジカルによって反応するラジカル重合性基を有する化合物である。ラジカル重合性基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基、スチリル基、アルケニル基、アルケニレン基、マレイミド基等が挙げられる。(B1)成分が有するラジカル重合性基の数(官能基数)は、重合後、所望の溶融粘度が得られ易く、接続抵抗の低減効果がより向上し、接続信頼性により優れる観点から、2以上であってよく、重合時の硬化収縮を抑制する観点から、10以下であってよい。また、架橋密度と硬化収縮とのバランスをとるために、ラジカル重合性基の数が上記範囲内にある化合物に加えて、ラジカル重合性基の数が上記範囲外にある化合物を使用してもよい。 The component (B1) is a compound having a radically polymerizable group that reacts with a radical. Examples of the radically polymerizable group include a (meth) acryloyl group, a vinyl group, an allyl group, a styryl group, an alkenyl group, an alkenylene group, a maleimide group and the like. The number of radically polymerizable groups (number of functional groups) of the component (B1) is 2 or more from the viewpoint that the desired melt viscosity can be easily obtained after polymerization, the effect of reducing the connection resistance is further improved, and the connection reliability is superior. It may be 10 or less from the viewpoint of suppressing curing shrinkage during polymerization. Further, in order to balance the crosslink density and the curing shrinkage, in addition to the compound having the number of radically polymerizable groups within the above range, a compound having the number of radically polymerizable groups outside the above range may be used. good.
 (B1)成分は、導電粒子の流動を抑制する観点から、例えば、多官能(2官能以上)の(メタ)アクリレートを含んでいてもよい。多官能(2官能以上)の(メタ)アクリレートは、2官能の(メタ)アクリレートであってよく、2官能の(メタ)アクリレートは、2官能の芳香族(メタ)アクリレートであってよい。 The component (B1) may contain, for example, a polyfunctional (bifunctional or higher) (meth) acrylate from the viewpoint of suppressing the flow of conductive particles. The polyfunctional (bifunctional or higher) (meth) acrylate may be a bifunctional (meth) acrylate, and the bifunctional (meth) acrylate may be a bifunctional aromatic (meth) acrylate.
 多官能の(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化2-メチル-1,3-プロパンジオールジ(メタ)アクリレート等の脂肪族(メタ)アクリレート;エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、エトキシ化ビスフェノールF型ジ(メタ)アクリレート、プロポキシ化ビスフェノールF型ジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールF型ジ(メタ)アクリレート、エトキシ化フルオレン型ジ(メタ)アクリレート、プロポキシ化フルオレン型ジ(メタ)アクリレート、エトキシ化プロポキシ化フルオレン型ジ(メタ)アクリレート等の芳香族(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の脂肪族(メタ)アクリレート;ビスフェノール型エポキシ(メタ)アクリレート、フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート等の芳香族エポキシ(メタ)アクリレートなどが挙げられる。 Examples of the polyfunctional (meth) acrylate include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate. ) Acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, ethoxylated polypropylene glycol Di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 3-methyl-1,5-pentanediol di (Meta) acrylate, 1,6-hexanediol di (meth) acrylate, 2-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1 , 10-Decandiol di (meth) acrylate, glycerin di (meth) acrylate, tricyclodecanedimethanol (meth) acrylate, ethoxylated 2-methyl-1,3-propanediol di (meth) acrylate and other aliphatic (. Meta) acrylate; ethoxylated bisphenol A type di (meth) acrylate, propoxylated bisphenol A type di (meth) acrylate, ethoxylated propoxylated bisphenol A type di (meth) acrylate, ethoxylated bisphenol F type di (meth) acrylate, Propoxified bisphenol F type di (meth) acrylate, ethoxylated propoxylated bisphenol F type di (meth) acrylate, ethoxylated fluorene type di (meth) acrylate, propoxylated fluorene type di (meth) acrylate, ethoxylated propoxylated fluorene type Aromatic (meth) acrylates such as di (meth) acrylates, trimetylolpropanthry (meth) acrylates, ethoxylated trimetylolpropanetri (meth) acrylates, propoxylated trimethylolpropanetri (meth) acrylates, ethoxylated propoxylated tris. Methylol propantri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated pentaerythritolt Li (meth) acrylate, propoxylated pentaerythritol tri (meth) acrylate, ethoxylated propoxylated pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, propoxylated pentaerythritol Fat group (meth) acrylates such as tetra (meth) acrylate, ethoxylated propoxylated pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol hexa (meth) acrylate; bisphenol type epoxy (meth) acrylate, phenol. Examples thereof include aromatic epoxy (meth) acrylates such as novolak type epoxy (meth) acrylate and cresol novolak type epoxy (meth) acrylate.
 多官能(2官能以上)の(メタ)アクリレートの含有量は、接続抵抗の低減効果と粒子流動の抑制とを両立させる観点から、(B1)成分の全質量を基準として、例えば、40~100質量%、50~100質量%、又は60~100質量%であってよい。 The content of the polyfunctional (bifunctional or higher) (meth) acrylate is, for example, 40 to 100, based on the total mass of the component (B1), from the viewpoint of achieving both the effect of reducing the connection resistance and the suppression of particle flow. It may be% by mass, 50 to 100% by mass, or 60 to 100% by mass.
 (B1)成分は、多官能(2官能以上)の(メタ)アクリレートに加えて、単官能の(メタ)アクリレートを更に含んでいてもよい。単官能の(メタ)アクリレートとしては、例えば、(メタ)アクリル酸;メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチルヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、モノ(2-(メタ)アクリロイロキシエチル)スクシネート等の脂肪族(メタ)アクリレート;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、o-ビフェニル(メタ)アクリレート、1-ナフチル(メタ)アクリレート、2-ナフチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、p-クミルフェノキシエチル(メタ)アクリレート、o-フェニルフェノキシエチル(メタ)アクリレート、1-ナフトキシエチル(メタ)アクリレート、2-ナフトキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(1-ナフトキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(2-ナフトキシ)プロピル(メタ)アクリレート等の芳香族(メタ)アクリレート;グリシジル(メタ)アクリレート等のエポキシ基を有する(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート等の脂環式エポキシ基を有する(メタ)アクリレート、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレート等のオキセタニル基を有する(メタ)アクリレートなどが挙げられる。 The component (B1) may further contain a monofunctional (meth) acrylate in addition to the polyfunctional (bifunctional or higher) (meth) acrylate. Examples of the monofunctional (meth) acrylate include (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and tert-butyl (meth) acrylate. Butoxyethyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, octylheptyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) Acrylate 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, ethoxy Acrylate (meth) acrylates such as polyethylene glycol (meth) acrylates, methoxypolypropylene glycol (meth) acrylates, ethoxypolypropylene glycol (meth) acrylates, and mono (2- (meth) acryloyloxyethyl) succinates; benzyl (meth) acrylates. , Phenyl (meth) acrylate, o-biphenyl (meth) acrylate, 1-naphthyl (meth) acrylate, 2-naphthyl (meth) acrylate, phenoxyethyl (meth) acrylate, p-cumylphenoxyethyl (meth) acrylate, o -Phenylphenoxyethyl (meth) acrylate, 1-naphthoxyethyl (meth) acrylate, 2-naphthoxyethyl (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, phenoxypolypropylene glycol (meth) acrylate, 2-Hydroxy-3-phenoxypropyl (meth) acrylate, 2-hydroxy-3- (o-phenylphenoxy) propyl (meth) acrylate, 2-hydroxy-3- (1-naphthoxy) propyl (meth) acrylate, 2- Aromatic (meth) acrylates such as hydroxy-3- (2-naphthoxy) propyl (meth) acrylates; (meth) acrylates having an epoxy group such as glycidyl (meth) acrylates, 3,4-epoxycyclohexylmethyl (meth) acrylates. (Meta) acrylates having an alicyclic epoxy group such as, ( Examples thereof include (meth) acrylate having an oxetanyl group such as 3-ethyloxetane-3-yl) methyl (meth) acrylate.
 単官能の(メタ)アクリレートの含有量は、(B1)成分の全質量を基準として、例えば、0~60質量%、0~50質量%、又は0~40質量%であってよい。 The content of the monofunctional (meth) acrylate may be, for example, 0 to 60% by mass, 0 to 50% by mass, or 0 to 40% by mass based on the total mass of the component (B1).
 (B)成分の硬化物は、例えば、ラジカル以外によって反応する重合性基を有していてもよい。ラジカル以外によって反応する重合性基は、例えば、カチオンによって反応するカチオン重合性基であってよい。カチオン重合性基としては、例えば、グリシジル基等のエポキシ基、エポキシシクロヘキシルメチル基等の脂環式エポキシ基、エチルオキセタニルメチル基等のオキセタニル基等が挙げられる。ラジカル以外によって反応する重合性基を有する(B)成分の硬化物は、例えば、エポキシ基を有する(メタ)アクリレート、脂環式エポキシ基を有する(メタ)アクリレート、オキセタニル基を有する(メタ)アクリレート等のラジカル以外によって反応する重合性基を有する(メタ)アクリレートを(B)成分として使用することによって導入することができる。(B1)成分の全質量に対するラジカル以外によって反応する重合性基を有する(メタ)アクリレートの質量比(ラジカル以外によって反応する重合性基を有する(メタ)アクリレートの質量(仕込み量)/(B1)成分の全質量(仕込み量))は、信頼性向上の観点から、例えば、0~0.7、0~0.5、又は0~0.3であってよい。 The cured product of the component (B) may have, for example, a polymerizable group that reacts with a substance other than a radical. The polymerizable group that reacts with a non-radical substance may be, for example, a cationically polymerizable group that reacts with a cation. Examples of the cationically polymerizable group include an epoxy group such as a glycidyl group, an alicyclic epoxy group such as an epoxycyclohexylmethyl group, and an oxetanyl group such as an ethyloxetanylmethyl group. The cured product of the component (B) having a polymerizable group that reacts by other than radicals is, for example, a (meth) acrylate having an epoxy group, a (meth) acrylate having an alicyclic epoxy group, and a (meth) acrylate having an oxetanyl group. It can be introduced by using a (meth) acrylate having a polymerizable group that reacts with a non-radical substance such as (B) as a component (B). (B1) Mass ratio of (meth) acrylate having a polymerizable group that reacts with other than radicals to the total mass of the component (mass of (meth) acrylate having a polymerizable group that reacts with other than radicals (charged amount) / (B1) The total mass (charged amount) of the components may be, for example, 0 to 0.7, 0 to 0.5, or 0 to 0.3 from the viewpoint of improving reliability.
 (B1)成分は、多官能(2官能以上)及び単官能の(メタ)アクリレートに加えて、その他のラジカル重合性化合物を含んでいてもよい。その他のラジカル重合性化合物としては、例えば、マレイミド化合物、ビニルエーテル化合物、アリル化合物、スチレン誘導体、アクリルアミド誘導体、ナジイミド誘導体等が挙げられる。その他のラジカル重合性化合物の含有量は、(B1)成分の全質量を基準として、例えば、0~40質量%であってよい。 The component (B1) may contain other radically polymerizable compounds in addition to polyfunctional (bifunctional or higher) and monofunctional (meth) acrylates. Examples of other radically polymerizable compounds include maleimide compounds, vinyl ether compounds, allyl compounds, styrene derivatives, acrylamide derivatives, nadiimide derivatives and the like. The content of the other radically polymerizable compound may be, for example, 0 to 40% by mass based on the total mass of the component (B1).
(B2)成分:光ラジカル重合開始剤
 (B2)成分は、150~750nmの範囲内の波長を含む光、好ましくは254~405nmの範囲内の波長を含む光、更に好ましくは365nmの波長を含む光(例えば紫外光)の照射によってラジカルを発生する光重合開始剤である。(B2)成分は、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。
Component (B2): Photoradical Polymerization Initiator The component (B2) comprises light containing a wavelength in the range of 150 to 750 nm, preferably light containing a wavelength in the range of 254 to 405 nm, and more preferably a wavelength in the range of 365 nm. It is a photopolymerization initiator that generates radicals by irradiation with light (for example, ultraviolet light). As the component (B2), one type may be used alone, or a plurality of them may be used in combination.
 (B2)成分は、光により分解して遊離ラジカルを発生する。つまり、(B2)成分は、外部からの光エネルギーの付与によりラジカルを発生する化合物である。(B2)成分は、オキシムエステル構造、ビスイミダゾール構造、アクリジン構造、α-アミノアルキルフェノン構造、アミノベンゾフェノン構造、N-フェニルグリシン構造、アシルホスフィンオキサイド構造、ベンジルジメチルケタール構造、α-ヒドロキシアルキルフェノン構造等の構造を有する化合物であってよい。(B2)成分は、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。(B2)成分は、所望の溶融粘度が得られ易い観点、及び、接続抵抗の低減効果により優れる観点から、オキシムエステル構造、α-アミノアルキルフェノン構造、及びアシルホスフィンオキサイド構造からなる群より選択される少なくとも1種の構造を有する化合物であってもよい。 The component (B2) is decomposed by light to generate free radicals. That is, the component (B2) is a compound that generates radicals by applying light energy from the outside. The component (B2) includes an oxime ester structure, a bisimidazole structure, an acridine structure, an α-aminoalkylphenone structure, an aminobenzophenone structure, an N-phenylglycine structure, an acylphosphine oxide structure, a benzyldimethylketal structure, and an α-hydroxyalkylphenone structure. It may be a compound having a structure such as. As the component (B2), one type may be used alone, or a plurality of them may be used in combination. The component (B2) is selected from the group consisting of an oxime ester structure, an α-aminoalkylphenone structure, and an acylphosphine oxide structure from the viewpoint that the desired melt viscosity can be easily obtained and the effect of reducing the connection resistance is superior. It may be a compound having at least one structure.
 オキシムエステル構造を有する化合物の具体例としては、1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-o-ベンゾイルオキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシプロパントリオン-2-(o-ベンゾイル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル-,2-(o-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)等が挙げられる。 Specific examples of the compound having an oxime ester structure include 1-phenyl-1,2-butandion-2- (o-methoxycarbonyl) oxime and 1-phenyl-1,2-propanedione-2- (o-methoxycarbonyl). ) Oxime, 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2-o-benzoyloxime, 1,3-diphenylpropantrione- 2- (o-ethoxycarbonyl) oxime, 1-phenyl-3-ethoxypropanetrione-2- (o-benzoyl) oxime, 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2-( o-benzoyloxime)], etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1- (o-acetyloxime) and the like.
 α-アミノアルキルフェノン構造を有する化合物の具体例としては、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-モルフォリノフェニル)-ブタノン-1等が挙げられる。 Specific examples of the compound having an α-aminoalkylphenone structure include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one and 2-benzyl-2-dimethylamino-1. -Morphorinophenyl) -butanone-1 and the like.
 アシルホスフィンオキサイド構造を有する化合物の具体例としては、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド、ビス(2,4,6,-トリメチルベンゾイル)-フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド等が挙げられる。 Specific examples of the compound having an acylphosphine oxide structure include bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide and bis (2,4,6, -trimethylbenzoyl) -phenylphosphine. Examples thereof include oxides, 2,4,6-trimethylbenzoyl-diphenylphosphine oxides and the like.
 (B2)成分の含有量は、導電粒子の流動抑制の観点から、(B1)成分の100質量部に対して、例えば、0.1~10質量部、0.3~7質量部、又は0.5~5質量部であってよい。 The content of the component (B2) is, for example, 0.1 to 10 parts by mass, 0.3 to 7 parts by mass, or 0 with respect to 100 parts by mass of the component (B1) from the viewpoint of suppressing the flow of conductive particles. It may be 5 to 5 parts by mass.
 (B)成分の硬化物の含有量は、導電粒子の流動を抑制する観点から、第1の接着剤層の全質量を基準として、1質量%以上、5質量%以上、又は10質量%以上であってよい。(B)成分の硬化物の含有量は、低圧実装において低抵抗を発現させる観点から、第1の接着剤層の全質量を基準として、50質量%以下、40質量%以下、又は30質量%以下であってよい。なお、第1の接着剤層を形成するための組成物又は組成物層中の(B)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。 The content of the cured product of the component (B) is 1% by mass or more, 5% by mass or more, or 10% by mass or more, based on the total mass of the first adhesive layer, from the viewpoint of suppressing the flow of conductive particles. May be. The content of the cured product of the component (B) is 50% by mass or less, 40% by mass or less, or 30% by mass based on the total mass of the first adhesive layer from the viewpoint of developing low resistance in low-pressure mounting. It may be as follows. The content of the component (B) in the composition or the composition layer for forming the first adhesive layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
(C)成分:熱硬化性樹脂成分
 (C)成分は、例えば、カチオン重合性化合物(以下、「(C1)成分」という場合がある。)及び熱カチオン重合開始剤(以下、「(C2)成分」という場合がある。)を含んでいてもよい。(C)成分は、(C1)成分及び(C2)成分からなる成分であり得る。なお、第1の熱硬化性樹脂成分及び第2の熱硬化性樹脂成分は、それぞれ第1の接着剤層及び第2の接着剤層に含有される熱硬化性樹脂成分を意味する。第1の熱硬化性樹脂成分及び第2の熱硬化性樹脂成分に含まれる成分(例えば、(C1)成分、(C2)成分等)の種類、組み合わせ、及び含有量は、互いに同一であってもよく、異なっていてもよい。
Component (C): Thermosetting resin component The component (C) is, for example, a cationically polymerizable compound (hereinafter, may be referred to as “(C1) component”) and a thermally cationic polymerization initiator (hereinafter, “(C2)). It may be referred to as "ingredient"). The component (C) can be a component composed of the component (C1) and the component (C2). The first thermosetting resin component and the second thermosetting resin component mean the thermosetting resin components contained in the first adhesive layer and the second adhesive layer, respectively. The types, combinations, and contents of the first thermosetting resin component and the components contained in the second thermosetting resin component (for example, (C1) component, (C2) component, etc.) are the same as each other. May be different.
(C1)成分:カチオン重合性化合物
 (C1)成分は、熱によって(C2)成分と反応することによって架橋する化合物である。なお、(C1)成分は、ラジカルによって反応するラジカル重合性基を有しない化合物を意味し、(C1)成分は、(B1)成分に包含されない。(C1)成分は、接続抵抗の低減効果が更に向上し、接続信頼性により優れる観点から、分子中に開環重合性の環状エーテル基を1個以上有する化合物であってよい。(C1)成分は、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。分子中に開環重合性の環状エーテル基を1個以上有する化合物としては、例えば、オキセタン化合物及び脂環式エポキシ化合物からなる群より選ばれる少なくとも1種であってよい。(C1)成分は、所望の溶融粘度が得られ易い観点から、オキセタン化合物の少なくとも1種及び脂環式エポキシ化合物の少なくとも1種の両方を含むことが好ましい。
Component (C1): Cationicly polymerizable compound The component (C1) is a compound that crosslinks by reacting with the component (C2) by heat. The component (C1) means a compound having no radically polymerizable group that reacts with a radical, and the component (C1) is not included in the component (B1). The component (C1) may be a compound having one or more ring-opening polymerizable cyclic ether groups in the molecule from the viewpoint of further improving the effect of reducing the connection resistance and improving the connection reliability. The component (C1) may be used alone or in combination of two or more. The compound having one or more ring-opening polymerizable cyclic ether groups in the molecule may be, for example, at least one selected from the group consisting of an oxetane compound and an alicyclic epoxy compound. The component (C1) preferably contains at least one oxetane compound and at least one alicyclic epoxy compound from the viewpoint that the desired melt viscosity can be easily obtained.
 (C1)成分としてのオキセタン化合物は、オキセタニル基を有し、かつラジカル重合性基を有しない化合物であれば特に制限なく使用することができる。オキセタン化合物の市販品としては、例えば、ETERNACOLL OXBP(商品名、宇部興産株式会社製)、OXSQ、OXT-121、OXT-221、OXT-101、OXT-212(商品名、東亜合成株式会社製)等が挙げられる。これらは、1種の化合物を単独で用いてもよく、複数を組み合わせて用いてもよい。 The oxetane compound as the component (C1) can be used without particular limitation as long as it is a compound having an oxetane group and no radically polymerizable group. Commercially available oxetane compounds include, for example, ETERNCOLL OXBP (trade name, manufactured by Ube Industries, Ltd.), OXSQ, OXT-121, OXT-221, OXT-101, OXT-212 (trade name, manufactured by Toagosei Co., Ltd.). And so on. These may use one kind of compound alone or may use a plurality of compounds in combination.
 (C1)成分としての脂環式エポキシ化合物は、脂環式エポキシ基(例えば、エポキシシクロヘキシル基)を有し、かつラジカル重合性基を有しない化合物であれば特に制限なく使用することができる。脂環式エポキシ化合物の市販品としては、例えば、EHPE3150、EHPE3150CE、セロキサイド8010、セロキサイド2021P、セロキサイド2081(商品名、株式会社ダイセル製)等が挙げられる。これらは、1種の化合物を単独で用いてもよく、複数を組み合わせて用いてもよい。 The alicyclic epoxy compound as the component (C1) can be used without particular limitation as long as it is a compound having an alicyclic epoxy group (for example, an epoxycyclohexyl group) and no radical polymerizable group. Examples of commercially available alicyclic epoxy compounds include EHPE3150, EHPE3150CE, seroxide 8010, seroxide 2021P, and seroxide 2081 (trade name, manufactured by Daicel Corporation). These may use one kind of compound alone or may use a plurality of compounds in combination.
(C2)成分:熱カチオン重合開始剤
 (C2)成分は、加熱により酸等を発生して重合を開始する熱重合開始剤である。(C2)成分はカチオンとアニオンとから構成される塩化合物であってよい。(C2)成分は、例えば、BF 、BR (Rは、2以上のフッ素原子又は2以上のトリフルオロメチル基で置換されたフェニル基を示す。)、PF 、SbF 、AsF 等のアニオンを有する、スルホニウム塩、ホスホニウム塩、アンモニウム塩、ジアゾニウム塩、ヨードニウム塩、アニリニウム塩等のオニウム塩などが挙げられる。これらは、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。
Component (C2): Thermal Cationic Polymerization Initiator The component (C2) is a thermal polymerization initiator that generates an acid or the like by heating to initiate polymerization. The component (C2) may be a salt compound composed of a cation and an anion. The component (C2) is, for example, BF 4- , BR 4- ( R indicates a phenyl group substituted with 2 or more fluorine atoms or 2 or more trifluoromethyl groups) , PF 6- , SbF 6- . , AsF 6 − and the like, sulfonium salt, phosphonium salt, ammonium salt, diazonium salt, iodonium salt, onium salt such as anilinium salt and the like. These may be used individually by 1 type, and may be used in combination of a plurality of types.
 (C2)成分は、保存安定性の観点から、例えば、構成元素としてホウ素を含むアニオン、すなわち、BF 又はBR (Rは、2以上のフッ素原子又は2以上のトリフルオロメチル基で置換されたフェニル基を示す。)を有する塩化合物であってよい。構成元素としてホウ素を含むアニオンは、BR であってよく、より具体的には、テトラキス(ペンタフルオロフェニル)ボレートであってもよい。 From the viewpoint of storage stability, the component (C2) is, for example, an anion containing boron as a constituent element, that is, BF 4- or BR 4- ( R is two or more fluorine atoms or two or more trifluoromethyl groups. It may be a salt compound having a substituted phenyl group.). The anion containing boron as a constituent element may be BR 4- , and more specifically, tetrakis (pentafluorophenyl) borate.
 (C2)成分としてのオニウム塩は、カチオン硬化に対する硬化阻害を起こし得る物質に対する耐性を有することから、例えば、アニリニウム塩であってよい。アニリニウム塩化合物としては、例えば、N,N-ジメチルアニリニウム塩、N,N-ジエチルアニリニウム塩等のN,N-ジアルキルアニリニウム塩などが挙げられる。 The onium salt as the component (C2) may be, for example, an anilinium salt because it has resistance to a substance that can inhibit curing against cationic curing. Examples of the anilinium salt compound include N, N-dialkylanilinium salts such as N, N-dimethylanilinium salt and N, N-diethylanilinium salt.
 (C2)成分は、構成元素としてホウ素を含むアニオンを有するアニリニウム塩であってよい。このような塩化合物の市販品としては、例えば、CXC-1821(商品名、King Industries社製)等が挙げられる。 The component (C2) may be an anilinium salt having an anion containing boron as a constituent element. Examples of commercially available products of such salt compounds include CXC-1821 (trade name, manufactured by King Industries) and the like.
 (C2)成分の含有量は、第1の接着剤層を形成するための接着剤フィルムの形成性及び硬化性を担保する観点から、(C1)成分の100質量部に対して、例えば、0.1~25質量部、1~20質量部、3~18質量部、又は5~15質量部であってよい。 The content of the component (C2) is, for example, 0 with respect to 100 parts by mass of the component (C1) from the viewpoint of ensuring the formability and curability of the adhesive film for forming the first adhesive layer. It may be 1 to 25 parts by mass, 1 to 20 parts by mass, 3 to 18 parts by mass, or 5 to 15 parts by mass.
 (C)成分の含有量は、第1の接着剤層を形成するための接着剤フィルムの硬化性を担保する観点から、第1の接着剤層の全質量を基準として、5質量%以上、10質量%以上、15質量%以上、又は20質量%以上であってよい。(C)成分の含有量は、第1の接着剤層を形成するための接着剤フィルムの形成性を担保する観点から、第1の接着剤層の全質量を基準として、70質量%以下、60質量%以下、50質量%以下、又は40質量%以下であってよい。なお、第1の接着剤層を形成するための組成物又は組成物層中の(C)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。 The content of the component (C) is 5% by mass or more based on the total mass of the first adhesive layer from the viewpoint of ensuring the curability of the adhesive film for forming the first adhesive layer. It may be 10% by mass or more, 15% by mass or more, or 20% by mass or more. The content of the component (C) is 70% by mass or less based on the total mass of the first adhesive layer from the viewpoint of ensuring the formability of the adhesive film for forming the first adhesive layer. It may be 60% by mass or less, 50% by mass or less, or 40% by mass or less. The content of the component (C) in the composition or the composition layer for forming the first adhesive layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
[その他の成分]
 第1の接着剤層2は、(A)成分、(B)成分の硬化物、及び(C)成分以外にその他の成分を更に含有していてもよい。その他の成分としては、例えば、熱可塑性樹脂(以下、「(D)成分」という場合がある。)、カップリング剤(以下、「(E)成分」という場合がある。)、及び、充填材(以下、「(F)成分」という場合がある。)等が挙げられる。
[Other ingredients]
The first adhesive layer 2 may further contain other components in addition to the component (A), the cured product of the component (B), and the component (C). Examples of other components include a thermoplastic resin (hereinafter, may be referred to as “(D) component”), a coupling agent (hereinafter, may be referred to as “(E) component”), and a filler. (Hereinafter, it may be referred to as "(F) component".) And the like.
 (D)成分としては、フィルム形成成分として機能する樹脂を用いることができ、例えば、フェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、アクリルゴム、エポキシ樹脂(25℃で固形)等が挙げられる。これらは、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。(A)成分、(B)成分、及び(C)成分を含有する組成物が(D)成分を更に含有することによって、当該組成物から組成物層(更には第1の接着剤層2)を容易に形成することができる。これらの中でも、(D)成分は、例えば、フェノキシ樹脂であってよい。 As the component (D), a resin that functions as a film-forming component can be used, and for example, a phenoxy resin, a polyester resin, a polyamide resin, a polyurethane resin, a polyester urethane resin, an acrylic rubber, an epoxy resin (solid at 25 ° C.) and the like can be used. Can be mentioned. These may be used individually by 1 type, and may be used in combination of a plurality of types. By further containing the component (D) in the composition containing the component (A), the component (B), and the component (C), the composition layer (further, the first adhesive layer 2) from the composition. Can be easily formed. Among these, the component (D) may be, for example, a phenoxy resin.
 (D)成分の重量平均分子量(Mw)は、実装時の樹脂排除性の観点から、例えば、5000~200000、10000~100000、20000~80000、又は40000~60000であってよい。なお、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンによる検量線を用いて換算した値を意味する。 The weight average molecular weight (Mw) of the component (D) may be, for example, 5000 to 200,000, 10000 to 100,000, 20000 to 80,000, or 40,000 to 60,000 from the viewpoint of resin exclusion during mounting. In addition, Mw means a value measured by gel permeation chromatography (GPC) and converted using the calibration curve by standard polystyrene.
 (D)成分の含有量は、第1の接着剤層の全質量を基準として、1質量%以上、5質量%以上、10質量%以上、又は20質量%以上であってよく、70質量%以下、60質量%以下、50質量%以下、又は40質量%以下であってよい。なお、第1の接着剤層を形成するための組成物又は組成物層中の(D)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。 The content of the component (D) may be 1% by mass or more, 5% by mass or more, 10% by mass or more, or 20% by mass or more, 70% by mass, based on the total mass of the first adhesive layer. Hereinafter, it may be 60% by mass or less, 50% by mass or less, or 40% by mass or less. The content of the component (D) in the composition or the composition layer for forming the first adhesive layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
 (E)成分としては、例えば、(メタ)アクリロイル基、メルカプト基、アミノ基、イミダゾール基、エポキシ基等の有機官能基を有するシランカップリング剤、テトラアルコキシシラン等のシラン化合物、テトラアルコキシチタネート誘導体、ポリジアルキルチタネート誘導体などが挙げられる。これらは、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。第1の接着剤層2が(E)成分を含有することによって、接着性を更に向上させることができる。(E)成分は、例えば、シランカップリング剤であってよい。(E)成分の含有量は、第1の接着剤層の全質量を基準として、0.1~10質量%であってよい。なお、第1の接着剤層を形成するための組成物又は組成物層中の(E)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。 Examples of the component (E) include a silane coupling agent having an organic functional group such as a (meth) acryloyl group, a mercapto group, an amino group, an imidazole group and an epoxy group, a silane compound such as tetraalkoxysilane, and a tetraalkoxy titanate derivative. , Polydialkyl titanate derivatives and the like. These may be used individually by 1 type, and may be used in combination of a plurality of types. When the first adhesive layer 2 contains the component (E), the adhesiveness can be further improved. The component (E) may be, for example, a silane coupling agent. The content of the component (E) may be 0.1 to 10% by mass based on the total mass of the first adhesive layer. The content of the component (E) in the composition or the composition layer for forming the first adhesive layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
 (F)成分としては、例えば、非導電性のフィラー(例えば、非導電粒子)が挙げられる。(F)成分は、無機フィラー及び有機フィラーのいずれであってもよい。無機フィラーとしては、例えば、シリカ微粒子、アルミナ微粒子、シリカ-アルミナ微粒子、チタニア微粒子、ジルコニア微粒子等の金属酸化物微粒子;金属窒化物微粒子などの無機微粒子が挙げられる。有機フィラーとしては、例えば、シリコーン微粒子、メタアクリレート・ブタジエン・スチレン微粒子、アクリル・シリコーン微粒子、ポリアミド微粒子、ポリイミド微粒子等の有機微粒子が挙げられる。これらは、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。(F)成分は、本発明の効果が損なわれない範囲において、適宜配合することができ、第1の接着剤層を形成するための組成物又は組成物層中の(F)成分の含有量(組成物又は組成物層の全質量基準)についても本発明の効果が損なわれない範囲において、適宜設定することができる。 Examples of the component (F) include non-conductive fillers (for example, non-conductive particles). The component (F) may be either an inorganic filler or an organic filler. Examples of the inorganic filler include metal oxide fine particles such as silica fine particles, alumina fine particles, silica-alumina fine particles, titania fine particles, and zirconia fine particles; and inorganic fine particles such as metal nitride fine particles. Examples of the organic filler include organic fine particles such as silicone fine particles, methacrylate / butadiene / styrene fine particles, acrylic / silicone fine particles, polyamide fine particles, and polyimide fine particles. These may be used individually by 1 type, and may be used in combination of a plurality of types. The component (F) can be appropriately blended as long as the effect of the present invention is not impaired, and the content of the component (F) in the composition or composition layer for forming the first adhesive layer. (Based on the total mass of the composition or the composition layer) can also be appropriately set as long as the effect of the present invention is not impaired.
[その他の添加剤]
 第1の接着剤層2は、軟化剤、促進剤、劣化防止剤、着色剤、難燃化剤、チキソトロピック剤等のその他の添加剤を更に含有していてもよい。その他の添加剤の含有量は、第1の接着剤層の全質量を基準として、例えば、0.1~10質量%であってよい。なお、第1の接着剤層を形成するための組成物又は組成物層中のその他の添加剤の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。
[Other additives]
The first adhesive layer 2 may further contain other additives such as a softener, an accelerator, a deterioration inhibitor, a colorant, a flame retardant, and a thixotropic agent. The content of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the first adhesive layer. The content of the composition for forming the first adhesive layer or other additives in the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
 第1の接着剤層2の厚さd1は、導電粒子4が対向する電極間で捕捉されやすくなり、接続抵抗を一層低減できる観点では、導電粒子4の平均粒径の0.1倍以上であってよく、0.2倍以上であってよく、0.3倍以上であってよい。第1の接着剤層2の厚さd1は、熱圧着時に導電粒子が対向する電極間ではさまれた際に、より導電粒子が潰れやすくなり、接続抵抗を一層低減できる観点では、導電粒子4の平均粒径の0.8倍以下であってよく、0.7倍以下であってよい。これらの観点から、第1の接着剤層2の厚さd1は、導電粒子4の平均粒径の0.1~0.8倍であってよく、0.2~0.8倍であってよく、0.3~0.7倍であってよい。なお、第1の接着剤層2の厚さd1は、隣り合う導電粒子4,4の離間部分に位置する第1の接着剤層の厚さをいう。 The thickness d1 of the first adhesive layer 2 is 0.1 times or more the average particle size of the conductive particles 4 from the viewpoint that the conductive particles 4 are easily captured between the facing electrodes and the connection resistance can be further reduced. It may be present, 0.2 times or more, and may be 0.3 times or more. The thickness d1 of the first adhesive layer 2 makes it easier for the conductive particles to collapse when the conductive particles are sandwiched between the facing electrodes during thermocompression bonding, and the conductive particles 4 can further reduce the connection resistance. The average particle size of the particles may be 0.8 times or less, and may be 0.7 times or less. From these viewpoints, the thickness d1 of the first adhesive layer 2 may be 0.1 to 0.8 times, and 0.2 to 0.8 times, the average particle size of the conductive particles 4. It may be 0.3 to 0.7 times. The thickness d1 of the first adhesive layer 2 refers to the thickness of the first adhesive layer located at the separated portion of the adjacent conductive particles 4 and 4.
 第1の接着剤層2の厚さd1と導電粒子4の平均粒径とが上記のような関係を満たす場合、例えば、図1に示すように、第1の接着剤層2中の導電粒子4の一部が、第1の接着剤層2から第2の接着剤層3側に突出していてよい。この場合、隣り合う導電粒子4,4の離間部分には、第1の接着剤層2と第2の接着剤層3との境界Sが位置している。導電粒子の表面を沿うように導電粒子上に境界Sが存在することにより、第1の接着剤層2中の導電粒子4が第1の接着剤層2から第2の接着剤層3側に突出することなく、上記の関係を満たしていてもよい。導電粒子4は、第1の接着剤層2における第2の接着剤層3側とは反対側の面2aには露出しておらず、反対側の面2aは平坦面となっていてよい。 When the thickness d1 of the first adhesive layer 2 and the average particle size of the conductive particles 4 satisfy the above relationship, for example, as shown in FIG. 1, the conductive particles in the first adhesive layer 2 A part of 4 may protrude from the first adhesive layer 2 toward the second adhesive layer 3. In this case, the boundary S between the first adhesive layer 2 and the second adhesive layer 3 is located at the separated portion of the adjacent conductive particles 4 and 4. Due to the presence of the boundary S on the conductive particles along the surface of the conductive particles, the conductive particles 4 in the first adhesive layer 2 are moved from the first adhesive layer 2 to the second adhesive layer 3 side. The above relationship may be satisfied without protruding. The conductive particles 4 may not be exposed on the surface 2a of the first adhesive layer 2 opposite to the side of the second adhesive layer 3, and the surface 2a on the opposite side may be a flat surface.
 第1の接着剤層2の厚さd1と導電粒子4の最大粒径との関係は、上記と同様であってよい。例えば、第1の接着剤層2の厚さd1は、導電粒子4の最大粒径の0.1~0.8倍であってよく、0.2~0.8倍であってよく、0.3~0.7倍であってよい。 The relationship between the thickness d1 of the first adhesive layer 2 and the maximum particle size of the conductive particles 4 may be the same as described above. For example, the thickness d1 of the first adhesive layer 2 may be 0.1 to 0.8 times, 0.2 to 0.8 times, the maximum particle size of the conductive particles 4, and may be 0. It may be 3 to 0.7 times.
 第1の接着剤層2の厚さd1は、例えば、5.0μm以下であってよい。第1の接着剤層2の厚さd1は、4.5μm以下又は4.0μm以下であってもよい。第1の接着剤層2の厚さd1が5.0μm以下であることによって、回路接続時の導電粒子をより一層効率的に捕捉することができる。第1の接着剤層2の厚さd1は、例えば、0.1μm以上、0.5μm以上、又は0.7μm以上であってよい。なお、第1の接着剤層2の厚さd1は、例えば、接着剤フィルムを2枚のガラス(厚さ:1mm程度)で挟み込み、ビスフェノールA型エポキシ樹脂(商品名:JER811、三菱ケミカル株式会社製)100gと、ジエチレントリアミン(東京化成工業株式会社製)10gとからなる樹脂組成物で注型後に、研磨機を用いて断面研磨を行い、走査型電子顕微鏡(SEM、商品名:SE-8010、株式会社日立ハイテクサイエンス製)を用いて測定することによって求めることができる。また、図1に示されるように、導電粒子4の一部が第1の接着剤層2の表面から露出(例えば、第2の接着剤層3側に突出)している場合、第1の接着剤層2における第2の接着剤層3側とは反対側の面2aから、隣り合う導電粒子4,4の離間部分に位置する第1の接着剤層2と第2の接着剤層3との境界Sまでの距離(図1においてd1で示す距離)が第1の接着剤層2の厚さであり、導電粒子4の露出部分は第1の接着剤層2の厚さには含まれない。導電粒子4の露出部分の長さは、例えば、0.1μm以上であってよく、5.0μm以下であってよい。 The thickness d1 of the first adhesive layer 2 may be, for example, 5.0 μm or less. The thickness d1 of the first adhesive layer 2 may be 4.5 μm or less or 4.0 μm or less. When the thickness d1 of the first adhesive layer 2 is 5.0 μm or less, conductive particles at the time of circuit connection can be captured more efficiently. The thickness d1 of the first adhesive layer 2 may be, for example, 0.1 μm or more, 0.5 μm or more, or 0.7 μm or more. The thickness d1 of the first adhesive layer 2 is determined by, for example, sandwiching an adhesive film between two sheets of glass (thickness: about 1 mm) and bisphenol A type epoxy resin (trade name: JER811, Mitsubishi Chemical Co., Ltd.). After casting with a resin composition consisting of 100 g of diethylenetriamine (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and 10 g of diethylenetriamine, cross-sectional polishing is performed using a polishing machine, and a scanning electron microscope (SEM, trade name: SE-8010,) It can be obtained by measuring using Hitachi High-Tech Science Co., Ltd.). Further, as shown in FIG. 1, when a part of the conductive particles 4 is exposed from the surface of the first adhesive layer 2 (for example, protruding toward the second adhesive layer 3), the first The first adhesive layer 2 and the second adhesive layer 3 located at the separated portions of the adjacent conductive particles 4 and 4 from the surface 2a of the adhesive layer 2 opposite to the second adhesive layer 3 side. The distance to the boundary S with and (the distance indicated by d1 in FIG. 1) is the thickness of the first adhesive layer 2, and the exposed portion of the conductive particles 4 is included in the thickness of the first adhesive layer 2. I can't. The length of the exposed portion of the conductive particles 4 may be, for example, 0.1 μm or more, and may be 5.0 μm or less.
<第2の接着剤層>
 第2の接着剤層3は、(C)成分及び(F)成分を含有することができる。第2の接着剤層3における(C)成分(すなわち、第2の熱硬化性樹脂成分)で使用される(C1)成分及び(C2)成分は、第1の接着剤層2における(C)成分(すなわち、第1の熱硬化性樹脂成分)で使用される(C1)成分及び(C2)成分と同様であることから、ここでは詳細な説明は省略する。第2の熱硬化性樹脂成分は、第1の熱硬化性樹脂成分と同一であっても、異なっていてもよい。
<Second adhesive layer>
The second adhesive layer 3 can contain the component (C) and the component (F). The component (C1) and the component (C2) used in the component (C) in the second adhesive layer 3 (that is, the second thermosetting resin component) are (C) in the first adhesive layer 2. Since it is the same as the component (C1) and the component (C2) used in the component (that is, the first thermosetting resin component), detailed description thereof will be omitted here. The second thermosetting resin component may be the same as or different from the first thermosetting resin component.
 (C)成分の含有量は、信頼性を維持する観点から、第2の接着剤層の全質量を基準として、5質量%以上、10質量%以上、15質量%以上、又は20質量%以上であってよい。(C)成分の含有量は、供給形態の一態様であるリールにおける樹脂染み出し不具合を防止する観点から、第2の接着剤層の全質量を基準として、70質量%以下、60質量%以下、50質量%以下、又は40質量%以下であってよい。 The content of the component (C) is 5% by mass or more, 10% by mass or more, 15% by mass or more, or 20% by mass or more based on the total mass of the second adhesive layer from the viewpoint of maintaining reliability. May be. The content of the component (C) is 70% by mass or less and 60% by mass or less based on the total mass of the second adhesive layer from the viewpoint of preventing the resin seepage problem in the reel, which is one aspect of the supply form. , 50% by mass or less, or 40% by mass or less.
 第2の接着剤層3は、(F)成分として、無機フィラーを含有することができる。回路部材同士を低圧力で接続する場合であっても、回路接続構造体の対向する電極間の導通を充分に確保できるとともに、自動外観検査装置の不良判定の要因となる大圧痕の発生を充分抑制する観点から、第2の接着剤層3は、体積基準の粒度分布における50%累積時の粒径D50が0.5~1.0μmであり、95%累積時の粒径D95が0.9~2.0μmである無機フィラーを含有する熱硬化性組成物から形成することができる。 The second adhesive layer 3 can contain an inorganic filler as the component (F). Even when the circuit members are connected to each other at low pressure, sufficient continuity can be ensured between the facing electrodes of the circuit connection structure, and large indentations that cause defect determination of the automatic visual inspection device are sufficiently generated. From the viewpoint of suppression, the second adhesive layer 3 has a particle size D50 at 50% cumulative size of 0.5 to 1.0 μm in a volume-based particle size distribution, and a particle size D95 at 95% cumulative size is 0. It can be formed from a thermosetting composition containing an inorganic filler having a size of 9 to 2.0 μm.
 無機フィラーとしては、信頼性向上の観点から、シリカ微粒子等のシリカフィラーを用いることができる。シリカフィラーにおけるシリカの含有量はシリカフィラー全量を基準として99質量%以上であってもよく、100質量%であってもよい。 As the inorganic filler, a silica filler such as silica fine particles can be used from the viewpoint of improving reliability. The content of silica in the silica filler may be 99% by mass or more, or 100% by mass, based on the total amount of the silica filler.
 上記の体積基準の粒度分布を有する無機フィラーは、例えば、一次粒径が0.3~0.7μmの無機粒子を含む無機フィラー、又は体積平均粒径が1.0~2.0μmの無機フィラーを用意し、風力分級、ろ紙又はカプセルフィルターを用いたろ過等の公知の分級手段によって、粒径が2.0μm以上の無機粒子を除去するなどの方法によって得ることができる。 The inorganic filler having the above-mentioned volume-based particle size distribution is, for example, an inorganic filler containing inorganic particles having a primary particle size of 0.3 to 0.7 μm, or an inorganic filler having a volume average particle size of 1.0 to 2.0 μm. Can be obtained by a method such as removing inorganic particles having a particle size of 2.0 μm or more by a known classification means such as wind classification, filtration using a filter paper or a capsule filter.
 流動性を確保しやすくする観点から、無機フィラーのD50は、0.5~1.0μmであってもよく、0.6~0.9μmであってもよく、0.7~0.8μmであってもよい。また、大圧痕の発生を抑制する観点から、無機フィラーのD95は、0.9~2.0μmであってもよく、1.0~1.8μmであってもよく、1.1~1.6μmであってもよい。 From the viewpoint of facilitating the securing of fluidity, the D50 of the inorganic filler may be 0.5 to 1.0 μm, 0.6 to 0.9 μm, or 0.7 to 0.8 μm. There may be. Further, from the viewpoint of suppressing the generation of large indentations, the D95 of the inorganic filler may be 0.9 to 2.0 μm, 1.0 to 1.8 μm, or 1.1 to 1. It may be 6 μm.
 低圧実装においても対向する電極間の導通を確保しやすくするともに、テープ状製品としてのフィルム性を担保する観点から、第2の接着剤層3又はこれを形成する熱硬化性組成物における上記無機フィラーの含有量は、第2の接着剤層又は熱硬化性組成物の全質量を基準として、10~70質量%であってもよく、20~60質量%であってもよく、30~50質量%であってもよい。 The inorganic substance in the second adhesive layer 3 or the thermosetting composition forming the second adhesive layer 3 or the thermosetting composition for forming the second adhesive layer 3 from the viewpoint of facilitating the continuity between the facing electrodes even in low-pressure mounting and ensuring the film property as a tape-shaped product. The content of the filler may be 10 to 70% by mass, 20 to 60% by mass, or 30 to 50% based on the total mass of the second adhesive layer or the thermosetting composition. It may be% by mass.
 第2の接着剤層3は、第1の接着剤層2におけるその他の成分及びその他の添加剤を更に含有していてもよい。その他の成分及びその他の添加剤の好ましい態様は、第1の接着剤層2の好ましい態様と同様である。 The second adhesive layer 3 may further contain other components and other additives in the first adhesive layer 2. Preferred embodiments of the other components and other additives are the same as the preferred embodiments of the first adhesive layer 2.
 (D)成分の含有量は、第2の接着剤層の全質量を基準として、1質量%以上、5質量%以上、又は10質量%以上であってよく、80質量%以下、60質量%以下、又は40質量%以下であってよい。 The content of the component (D) may be 1% by mass or more, 5% by mass or more, or 10% by mass or more, and is 80% by mass or less and 60% by mass, based on the total mass of the second adhesive layer. It may be less than or equal to 40% by mass or less.
 (E)成分の含有量は、第2の接着剤層の全質量を基準として、0.1~10質量%であってよい。 The content of the component (E) may be 0.1 to 10% by mass based on the total mass of the second adhesive layer.
 その他の添加剤の含有量は、第2の接着剤層の全質量を基準として、例えば、0.1~10質量%であってよい。 The content of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the second adhesive layer.
 第2の接着剤層3の厚さd2は、接着する回路部材の電極の高さ等に応じて適宜設定してよい。第2の接着剤層3の厚さd2は、電極間のスペースを充分に充填して電極を封止することができ、より良好な接続信頼性が得られる観点から、5μm以上又は7μm以上であってよく、15μm以下又は11μm以下であってよい。なお、第2の接着剤層3の厚さd2は、例えば、第1の接着剤層2の厚さd1の測定方法と同様の方法で求めることができる。また、導電粒子4の一部が第1の接着剤層2の表面から露出(例えば、第2の接着剤層3側に突出)している場合、第2の接着剤層3における第1の接着剤層2側とは反対側の面3aから、隣り合う導電粒子4,4の離間部分に位置する第1の接着剤層2と第2の接着剤層3との境界Sまでの距離(図1においてd2で示す距離)が第2の接着剤層3の厚さである。 The thickness d2 of the second adhesive layer 3 may be appropriately set according to the height of the electrodes of the circuit member to be adhered. The thickness d2 of the second adhesive layer 3 is 5 μm or more or 7 μm or more from the viewpoint that the space between the electrodes can be sufficiently filled to seal the electrodes and better connection reliability can be obtained. It may be 15 μm or less or 11 μm or less. The thickness d2 of the second adhesive layer 3 can be obtained, for example, by the same method as the method for measuring the thickness d1 of the first adhesive layer 2. Further, when a part of the conductive particles 4 is exposed from the surface of the first adhesive layer 2 (for example, protruding toward the second adhesive layer 3), the first in the second adhesive layer 3 The distance from the surface 3a on the side opposite to the adhesive layer 2 side to the boundary S between the first adhesive layer 2 and the second adhesive layer 3 located at the separated portions of the adjacent conductive particles 4 and 4 ( The distance (d2) in FIG. 1 is the thickness of the second adhesive layer 3.
 第3の接着剤層6は、(C)成分を含有することができる。第3の接着剤層における(C)成分(すなわち、第3の熱硬化性樹脂成分)で使用される(C1)成分及び(C2)成分は、第1の接着剤層2における(C)成分(すなわち、第1の熱硬化性樹脂成分)で使用される(C1)成分及び(C2)成分と同様であることから、ここでは詳細な説明は省略する。第3の熱硬化性樹脂成分は、第1の熱硬化性樹脂成分と同一であっても、異なっていてもよい。第3の熱硬化性樹脂成分は、第2の熱硬化性樹脂成分と同一であっても、異なっていてもよい。 The third adhesive layer 6 can contain the component (C). The component (C1) and the component (C2) used in the component (C) in the third adhesive layer (that is, the third thermosetting resin component) are the component (C) in the first adhesive layer 2. Since it is the same as the component (C1) and the component (C2) used in (that is, the first thermosetting resin component), detailed description thereof will be omitted here. The third thermosetting resin component may be the same as or different from the first thermosetting resin component. The third thermosetting resin component may be the same as or different from the second thermosetting resin component.
 (C)成分の含有量は、良好な転写性及び耐剥離性を付与する観点から、第3の接着剤層の全質量を基準として、5質量%以上、10質量%以上、15質量%以上、又は20質量%以上であってよい。(C)成分の含有量は、良好なハーフカット性及び耐ブロッキング性(リールの樹脂染み出し抑制)を付与する観点から、第3の接着剤層の全質量を基準として、70質量%以下、60質量%以下、50質量%以下、又は40質量%以下であってよい。 The content of the component (C) is 5% by mass or more, 10% by mass or more, and 15% by mass or more based on the total mass of the third adhesive layer from the viewpoint of imparting good transferability and peeling resistance. , Or 20% by mass or more. The content of the component (C) is 70% by mass or less based on the total mass of the third adhesive layer from the viewpoint of imparting good half-cut property and blocking resistance (suppression of resin seepage of the reel). It may be 60% by mass or less, 50% by mass or less, or 40% by mass or less.
 第3の接着剤層は、第1の接着剤層2におけるその他の成分及びその他の添加剤を更に含有していてもよい。 The third adhesive layer may further contain other components and other additives in the first adhesive layer 2.
 (D)成分の含有量は、第3の接着剤層の全質量を基準として、10質量%以上、20質量%以上、又は30質量%以上であってよく、80質量%以下、70質量%以下、又は60質量%以下であってよい。 The content of the component (D) may be 10% by mass or more, 20% by mass or more, or 30% by mass or more, and is 80% by mass or less and 70% by mass, based on the total mass of the third adhesive layer. It may be less than or equal to 60% by mass or less.
 (E)成分の含有量は、第3の接着剤層の全質量を基準として、0.1~10質量%であってよい。 The content of the component (E) may be 0.1 to 10% by mass based on the total mass of the third adhesive layer.
 (F)成分の含有量は、本発明の効果を損なわない範囲で適宜設定することができる。 The content of the component (F) can be appropriately set as long as the effect of the present invention is not impaired.
 その他の添加剤の含有量は、第3の接着剤層の全質量を基準として、例えば、0.1~10質量%であってよい。 The content of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the third adhesive layer.
 第3の接着剤層の厚さは、接着剤フィルムの最低溶融粘度、接着する回路部材の電極の高さ等に応じて適宜設定してよい。第3の接着剤層の厚さは、第2の接着剤層3の厚さd2よりも小さいことが好ましい。第3の接着剤層の厚さは、電極間のスペースを充分に充填して電極を封止することができ、より良好な接続信頼性が得られる観点から、0.2μm以上であってよく、3.0μm以下であってよい。なお、第3の接着剤層の厚さは、例えば、第1の接着剤層2の厚さd1の測定方法と同様の方法で求めることができる。 The thickness of the third adhesive layer may be appropriately set according to the minimum melt viscosity of the adhesive film, the height of the electrodes of the circuit members to be adhered, and the like. The thickness of the third adhesive layer is preferably smaller than the thickness d2 of the second adhesive layer 3. The thickness of the third adhesive layer may be 0.2 μm or more from the viewpoint that the space between the electrodes can be sufficiently filled to seal the electrodes and better connection reliability can be obtained. , 3.0 μm or less. The thickness of the third adhesive layer can be obtained, for example, by the same method as the method for measuring the thickness d1 of the first adhesive layer 2.
 接着剤フィルム1a,1bの厚さ(接着剤フィルム1a,1bを構成するすべての層の厚さの合計、図1の(a)においては、第1の接着剤層2の厚さd1及び第2の接着剤層3の厚さd2の合計であり、図1の(b)においては、更に第3の接着剤層の厚さとの合計)は、例えば、5μm以上又は8μm以上であってよく、30μm以下又は20μm以下であってよい。 The thicknesses of the adhesive films 1a and 1b (the total thickness of all the layers constituting the adhesive films 1a and 1b, in FIG. 1A, the thicknesses d1 and the first of the first adhesive layers 2). 2 is the total thickness d2 of the adhesive layer 3, and in FIG. 1B, the total thickness of the third adhesive layer) may be, for example, 5 μm or more or 8 μm or more. , 30 μm or less or 20 μm or less.
 接着剤フィルム1a,1bにおいては、例えば、第1の接着剤層が上記の領域Pであってもよい。この場合、領域Pのフィルムの厚み方向における範囲は上述した第1の接着剤層2の厚さd1と同様にすることができる。領域Pは、上述した第1の接着剤層を形成するための組成物から導電粒子を除いた組成物によって形成することができる。 In the adhesive films 1a and 1b, for example, the first adhesive layer may be the above-mentioned region P. In this case, the range of the region P in the thickness direction of the film can be the same as the thickness d1 of the first adhesive layer 2 described above. The region P can be formed by a composition obtained by removing conductive particles from the composition for forming the first adhesive layer described above.
 接着剤フィルム1a,1bにおいては、例えば、第2の接着剤層が上記の領域Aであってもよい。 In the adhesive films 1a and 1b, for example, the second adhesive layer may be the above-mentioned region A.
 第2の接着剤層が領域Aである場合、領域Aのフィルムの厚み方向における範囲は上述した第2の接着剤層3の厚さd2と同様にすることができる。領域Aは、上述した第2の接着剤層を形成するための組成物によって形成することができる。 When the second adhesive layer is the region A, the range of the region A in the thickness direction of the film can be the same as the thickness d2 of the second adhesive layer 3 described above. The region A can be formed by the composition for forming the second adhesive layer described above.
 接着剤フィルム1a,1bにおいては、第2の接着剤層、又は、第2の接着剤層及び第3の接着剤層が、導電粒子を含まない領域Sであってもよい。領域Sは、上述した第2の接着剤層を形成するための組成物、第3の接着剤層を形成するための組成物によって形成することができる。 In the adhesive films 1a and 1b, the second adhesive layer, or the second adhesive layer and the third adhesive layer may be a region S that does not contain conductive particles. The region S can be formed by the composition for forming the second adhesive layer and the composition for forming the third adhesive layer described above.
 接着剤フィルム1a,1bにおいては、体積基準の粒度分布における50%累積時の粒径D50が0.5~1.0μmであり、95%累積時の粒径D95が0.9~2.0μmである無機フィラーが、第2の接着剤層に含まれており、第1の接着剤層及び第3の接着剤層には含まれていなくてもよい。 In the adhesive films 1a and 1b, the particle size D50 at 50% cumulative size is 0.5 to 1.0 μm and the particle size D95 at 95% cumulative size is 0.9 to 2.0 μm in the volume-based particle size distribution. The inorganic filler is contained in the second adhesive layer, and may not be contained in the first adhesive layer and the third adhesive layer.
 接着剤フィルム1a,1bの最低溶融粘度は、450~1600Pa・sである。接着剤フィルム1a,1bの最低溶融粘度は、500Pa・s以上、600Pa・s以上、700Pa・s以上、又は800Pa・s以上であってもよい。接着剤フィルム1a,1bの最低溶融粘度が450Pa・s以上であると、熱圧着時におけるプラスチック基板の変形を抑制し、回路断線の発生を防ぐことが可能となる。接着剤フィルム1a,1bの最低溶融粘度は、1500Pa・s以下、1400Pa・s以下、1300Pa・s以下、1200Pa・s以下、1100Pa・s以下、又は1000Pa・s以下であってもよい。接着剤フィルム1a,1bの最低溶融粘度が1600Pa・s以下であると、回路接続時の樹脂の排除性の低下を抑えることができることから、回路接続構造体の対向する電極間の接続抵抗を低減することができ、良好な導通特性を確保することが可能となる。なお、接着剤フィルムの最低溶融粘度は、例えば、下記の方法によって求めることができる。
(最低溶融粘度の測定方法)
 各接着剤フィルムを厚さが200μm以上となるようにラミネータで積層して積層体を得る。得られた積層体から離型処理されたPETを剥離し、10.0mm×10.0mmに切り出して測定試料を得る。得られた測定試料を粘弾性測定装置(商品名:ARES-G2、TAインスツルメンツ社製、昇温速度:10℃/min)を用いて最低溶融粘度を測定する。
The minimum melt viscosity of the adhesive films 1a and 1b is 450 to 1600 Pa · s. The minimum melt viscosity of the adhesive films 1a and 1b may be 500 Pa · s or more, 600 Pa · s or more, 700 Pa · s or more, or 800 Pa · s or more. When the minimum melt viscosity of the adhesive films 1a and 1b is 450 Pa · s or more, it is possible to suppress the deformation of the plastic substrate during thermocompression bonding and prevent the occurrence of circuit disconnection. The minimum melt viscosity of the adhesive films 1a and 1b may be 1500 Pa · s or less, 1400 Pa · s or less, 1300 Pa · s or less, 1200 Pa · s or less, 1100 Pa · s or less, or 1000 Pa · s or less. When the minimum melt viscosity of the adhesive films 1a and 1b is 1600 Pa · s or less, it is possible to suppress the deterioration of the resin exclusion property at the time of circuit connection, so that the connection resistance between the facing electrodes of the circuit connection structure is reduced. It is possible to ensure good conduction characteristics. The minimum melt viscosity of the adhesive film can be obtained, for example, by the following method.
(Measurement method of minimum melt viscosity)
Each adhesive film is laminated with a laminator so as to have a thickness of 200 μm or more to obtain a laminated body. The release-treated PET is peeled off from the obtained laminate and cut into 10.0 mm × 10.0 mm to obtain a measurement sample. The minimum melt viscosity of the obtained measurement sample is measured using a viscoelasticity measuring device (trade name: ARES-G2, manufactured by TA Instruments, Inc., heating rate: 10 ° C./min).
 接着剤フィルム1a,1bにおいて、第2の接着剤層3は、通常、第1の接着剤層2より厚みを有している。そのため、接着剤フィルム1a,1bの最低溶融粘度は、第2の接着剤層3に依存して変動する傾向にある。接着剤フィルム1a,1bの最低溶融粘度の調整は、例えば、第2の接着剤層3に含まれる構成成分(特に、(D)成分)の種類、含有量等の調整によって行うことができる。また、接着剤フィルム1a,1bの最低溶融粘度は、例えば、(F)成分として、上述した無機フィラーAを配合することによっても調整することができる。無機フィラーAを、第2の接着剤層3に配合することにより、大圧痕の発生を充分抑制しつつ最低溶融粘度を低減することができる。 In the adhesive films 1a and 1b, the second adhesive layer 3 is usually thicker than the first adhesive layer 2. Therefore, the minimum melt viscosity of the adhesive films 1a and 1b tends to fluctuate depending on the second adhesive layer 3. The minimum melt viscosity of the adhesive films 1a and 1b can be adjusted, for example, by adjusting the type and content of the constituent components (particularly, the component (D)) contained in the second adhesive layer 3. Further, the minimum melt viscosity of the adhesive films 1a and 1b can also be adjusted, for example, by blending the above-mentioned inorganic filler A as the component (F). By blending the inorganic filler A in the second adhesive layer 3, the minimum melt viscosity can be reduced while sufficiently suppressing the generation of large indentations.
 接着剤フィルム1a,1bでは、導電粒子4が第1の接着剤層2中に分散されている。そのため、接着剤フィルム1a,1bは、異方導電性を有する異方導電性接着剤フィルムである。接着剤フィルム1a,1bは、第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材との間に介在させ、第1の回路部材及び第2の回路部材を熱圧着して、第1の電極及び第2の電極を互いに電気的に接続するために用いられる。 In the adhesive films 1a and 1b, the conductive particles 4 are dispersed in the first adhesive layer 2. Therefore, the adhesive films 1a and 1b are anisotropically conductive adhesive films having anisotropic conductivity. The adhesive films 1a and 1b are interposed between the first circuit member having the first electrode and the second circuit member having the second electrode, and the first circuit member and the second circuit member are interposed. Is thermally crimped and used to electrically connect the first electrode and the second electrode to each other.
 接着剤フィルム1a,1bによれば、第2の接着剤層3を領域Aとすることで、回路部材同士を低圧力で接続する場合であっても、回路接続構造体の対向する電極間の導通を確保することができるとともに、自動外観検査装置による不良判定の要因となる大圧痕の発生を充分抑制することができる。 According to the adhesive films 1a and 1b, by setting the second adhesive layer 3 as the region A, even when the circuit members are connected to each other at low pressure, between the facing electrodes of the circuit connection structure. Continuity can be ensured, and the generation of large indentations that cause defect determination by the automatic visual inspection device can be sufficiently suppressed.
 本実施形態の回路接続用接着剤フィルムは、COP実装に好適に用いることができる。より具体的には、有機ELディスプレイにおける回路電極(例えばTiを含む電極)が形成されているプラスチック基板と駆動用IC等のICチップとの接続に好適に用いることができる。 The circuit connection adhesive film of this embodiment can be suitably used for COP mounting. More specifically, it can be suitably used for connecting a plastic substrate on which a circuit electrode (for example, an electrode containing Ti) is formed in an organic EL display to an IC chip such as a drive IC.
<回路接続用接着剤フィルムの製造方法>
 一実施形態の回路接続用接着剤フィルムの製造方法は、例えば、(A)成分、(B)成分、及び(C)成分(第1の熱硬化性樹脂成分)、並びに必要に応じてその他の成分を含有する組成物からなる組成物層に対して光を照射し、第1の接着剤層を形成する工程(第1の工程)と、第1の接着剤層上に、(C)成分(第2の熱硬化性樹脂成分)、及び無機フィラーA、並びに必要に応じてその他の成分を含有する第2の接着剤層を積層する工程(第2の工程)とを備えていてもよい。当該製造方法は、第1の接着剤層の第2の接着剤層とは反対側上に、(C)成分(第3の熱硬化性樹脂成分)、並びに必要に応じて無機フィラーA及びその他の成分を含有する第3の接着剤層を積層する工程(第3の工程)を更に備えていてもよい。この場合、第2の工程を先に行ってもよく、第3の工程を先に行ってもよい。第3の工程を先に行う場合、第1の接着剤層の第2の接着剤層が積層される予定の側とは反対側に第3の接着剤層が積層される。図2は、上記の工程を備える製造方法を示す模式断面図である。
<Manufacturing method of adhesive film for circuit connection>
The method for producing an adhesive film for circuit connection according to one embodiment is, for example, a component (A), a component (B), and a component (C) (first thermosetting resin component), and if necessary, other components. A step of irradiating a composition layer made of a composition containing a component with light to form a first adhesive layer (first step), and a step of forming the component (C) on the first adhesive layer. It may include (second step) of laminating (second thermosetting resin component) and a second adhesive layer containing an inorganic filler A and, if necessary, other components. .. In the manufacturing method, the component (C) (third thermosetting resin component), and if necessary, the inorganic filler A and others are placed on the opposite side of the first adhesive layer from the second adhesive layer. A step of laminating a third adhesive layer containing the above components (third step) may be further provided. In this case, the second step may be performed first, or the third step may be performed first. When the third step is performed first, the third adhesive layer is laminated on the side opposite to the side where the second adhesive layer of the first adhesive layer is to be laminated. FIG. 2 is a schematic cross-sectional view showing a manufacturing method including the above steps.
 第1の工程では、例えば、まず、(A)成分、(B)成分、及び(C)成分、並びに必要に応じて添加される添加剤を含有する組成物を、有機溶媒中で撹拌混合、混錬等を行うことによって、溶解又は分散させ、ワニス組成物(ワニス状の第1の接着剤組成物)を調製する。その後、離型処理を施した基材上に、ワニス組成物をナイフコーター、ロールコーター、アプリケーター、コンマコーター、ダイコーター等を用いて塗布した後、加熱によって有機溶媒を揮発させて、基材上に組成物からなる組成物層を形成する。このとき、ワニス組成物の塗布量を調整することによって、最終的に得られる第1の接着剤層(第1の接着剤フィルム)の厚さを調整することができる。続いて、組成物からなる組成物層に対して光を照射し、組成物層中の(B)成分を硬化させ、基材上に第1の接着剤層を形成する。第1の接着剤層は、第1の接着剤フィルムということができる。第1の工程によって、図2の(a)に示される、基材22上に設けられた第1の接着剤層2を用意することができる。 In the first step, for example, first, a composition containing the component (A), the component (B), and the component (C), and an additive added as needed is stirred and mixed in an organic solvent. A varnish composition (a varnish-like first adhesive composition) is prepared by dissolving or dispersing by kneading or the like. Then, the varnish composition is applied onto the mold-released substrate using a knife coater, roll coater, applicator, comma coater, die coater, etc., and then the organic solvent is volatilized by heating to form the substrate. Form a composition layer composed of the composition. At this time, the thickness of the finally obtained first adhesive layer (first adhesive film) can be adjusted by adjusting the coating amount of the varnish composition. Subsequently, the composition layer made of the composition is irradiated with light to cure the component (B) in the composition layer, and a first adhesive layer is formed on the substrate. The first adhesive layer can be said to be the first adhesive film. By the first step, the first adhesive layer 2 provided on the base material 22 shown in FIG. 2A can be prepared.
 ワニス組成物の調製において使用される有機溶媒は、各成分を均一に溶解又は分散し得る特性を有するものであれば特に制限されない。このような有機溶媒としては、例えば、トルエン、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。これらの有機溶媒は、単独で又は2種以上を組み合わせて使用することができる。ワニス組成物の調製の際の撹拌混合又は混錬は、例えば、撹拌機、らいかい機、3本ロール、ボールミル、ビーズミル、ホモディスパー等を用いて行うことができる。 The organic solvent used in the preparation of the varnish composition is not particularly limited as long as it has the property of uniformly dissolving or dispersing each component. Examples of such an organic solvent include toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate and the like. These organic solvents can be used alone or in combination of two or more. Stirring and mixing or kneading in the preparation of the varnish composition can be carried out by using, for example, a stirrer, a raider, a three-roll, a ball mill, a bead mill, a homodisper or the like.
 基材は、有機溶媒を揮発させる際の加熱条件に耐え得る耐熱性を有するものであれば特に制限されない。このような基材としては、例えば、延伸ポリプロピレン(OPP)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリオレフィン、ポリアセテート、ポリカーボネート、ポリフェニレンサルファイド、ポリアミド、ポリイミド、セルロース、エチレン・酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、合成ゴム系、液晶ポリマー等からなる基材(例えば、フィルム)を用いることができる。 The base material is not particularly limited as long as it has heat resistance that can withstand the heating conditions when volatilizing the organic solvent. Examples of such a substrate include stretched polypropylene (OPP), polyethylene terephthalate (PET), polyethylene naphthalate, polyethylene isophthalate, polyvinylidene terephthalate, polyolefin, polyacetate, polycarbonate, polyphenylene sulfide, polyamide, polyimide, cellulose, and the like. A substrate (for example, a film) made of an ethylene / vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, a synthetic rubber system, a liquid crystal polymer or the like can be used.
 基材へ塗布したワニス組成物から有機溶媒を揮発させる際の加熱条件は、使用する有機溶媒等に合わせて適宜設定することができる。加熱条件は、例えば、40~120℃で0.1~10分間であってよい。 The heating conditions for volatilizing the organic solvent from the varnish composition applied to the base material can be appropriately set according to the organic solvent to be used and the like. The heating conditions may be, for example, 40 to 120 ° C. for 0.1 to 10 minutes.
 第1の接着剤層には、溶剤の一部が除去されずに残っていてもよい。第1の接着剤層における溶剤の含有量は、例えば、第1の接着剤層の全質量を基準として、10質量%以下であってよい。 A part of the solvent may remain in the first adhesive layer without being removed. The content of the solvent in the first adhesive layer may be, for example, 10% by mass or less based on the total mass of the first adhesive layer.
 また、ワニス組成物における(B)成分の含有量は、ワニス組成物の(A)成分及び有機溶媒以外の成分の合計を基準として、10質量%以上60質量%未満であってもよい。この場合、導電粒子の流動を抑制する効果が得られやすくなるとともに、良好な外観を保持しての塗工がしやすくなる。 Further, the content of the component (B) in the varnish composition may be 10% by mass or more and less than 60% by mass based on the total of the components (A) and the components other than the organic solvent of the varnish composition. In this case, the effect of suppressing the flow of the conductive particles can be easily obtained, and the coating can be easily performed while maintaining a good appearance.
 硬化工程における光照射には、150~750nmの範囲内の波長を含む照射光(例えば、紫外光)を用いることが好ましい。光の照射は、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、メタルハライドランプ、LED光源等を使用して行うことができる。光照射の積算光量は、適宜設定することができるが、例えば、500~3000mJ/cmであってよい。 For light irradiation in the curing step, it is preferable to use irradiation light (for example, ultraviolet light) having a wavelength in the range of 150 to 750 nm. Light irradiation can be performed using, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a metal halide lamp, an LED light source, or the like. The integrated light amount of light irradiation can be appropriately set, but may be, for example, 500 to 3000 mJ / cm 2 .
 第2の工程は、第1の接着剤層上に第2の接着剤層を積層する工程である。第2の工程では、例えば、まず、(C)成分、並びに無機フィラーAを用いること及び光照射を行わないこと以外は、第1の工程と同様にして、基材上に第2の接着剤層を形成し、第2の接着剤フィルムを得る。例えば、図2の(a)に示される、基材20上に設けられた第2の接着剤層3を用意することができる。次いで、第1の接着剤フィルムと第2の接着剤フィルムとを貼り合わせることによって第1の接着剤層上に第2の接着剤層を積層することができる(図2の(a)及び(b)を参照)。また、第2の工程では、例えば、第1の接着剤層上に、(C)成分、無機フィラーA、並びに必要に応じて添加されるその他の添加剤を用いて得られるワニス組成物(ワニス状の第2の接着剤組成物)を塗布し、有機溶媒を揮発させることによっても、第1の接着剤層上に第2の接着剤層を積層することができる。 The second step is a step of laminating the second adhesive layer on the first adhesive layer. In the second step, for example, the second adhesive is applied onto the substrate in the same manner as in the first step, except that the component (C) and the inorganic filler A are used and no light irradiation is performed. A layer is formed to obtain a second adhesive film. For example, the second adhesive layer 3 provided on the base material 20 as shown in FIG. 2A can be prepared. Next, the second adhesive layer can be laminated on the first adhesive layer by adhering the first adhesive film and the second adhesive film (FIGS. 2A and 2). b)). Further, in the second step, for example, a varnish composition (varnish) obtained by using the component (C), the inorganic filler A, and other additives added as needed on the first adhesive layer. The second adhesive layer can also be laminated on the first adhesive layer by applying the second adhesive composition in the form) and volatilizing the organic solvent.
 第1の接着剤フィルムと第2の接着剤フィルムとを貼り合わせる方法としては、例えば、加熱プレス、ロールラミネート、真空ラミネート等の方法が挙げられる。ラミネートは、例えば、0~80℃の温度条件下で行うことができる。 Examples of the method of adhering the first adhesive film and the second adhesive film include a method of heat pressing, roll laminating, vacuum laminating and the like. Lamination can be performed, for example, under temperature conditions of 0 to 80 ° C.
 第2の接着剤層には、溶剤の一部が除去されずに残っていてもよい。第2の接着剤層における溶剤の含有量は、例えば、第2の接着剤層の全質量を基準として、10質量%以下であってよい。 A part of the solvent may remain on the second adhesive layer without being removed. The content of the solvent in the second adhesive layer may be, for example, 10% by mass or less based on the total mass of the second adhesive layer.
 第3の工程は、第1の接着剤層の第2の接着剤層とは反対側上に、第3の接着剤層を積層する工程である。第3の工程では、例えば、まず、第2の工程と同様にして、基材上に第3の接着剤層を形成し、第3の接着剤フィルムを得る。例えば、図2の(c)に示される、基材24上に設けられた第3の接着剤層6を用意することができる。次いで、第1の接着剤フィルムの第2の接着剤フィルムとは反対側に、第3の接着剤フィルムを貼り合わせることによって、第1の接着剤層の第2の接着剤層とは反対側上に第3の接着剤層を積層することができる(図2の(c)を参照)。また、第3の工程では、例えば、第2の工程と同様にして、第1の接着剤層の第2の接着剤層とは反対側上に、ワニス組成物(ワニス状の第3の接着剤組成物)を塗布し、有機溶媒を揮発させることによっても、第1の接着剤層上に第3の接着剤層を積層することができる。貼り合わせる方法及びその条件は、第2の工程と同様である。 The third step is a step of laminating the third adhesive layer on the side of the first adhesive layer opposite to the second adhesive layer. In the third step, for example, first, in the same manner as in the second step, a third adhesive layer is formed on the substrate to obtain a third adhesive film. For example, the third adhesive layer 6 provided on the base material 24 as shown in FIG. 2 (c) can be prepared. Next, by adhering the third adhesive film to the side of the first adhesive film opposite to the second adhesive film, the side of the first adhesive layer opposite to the second adhesive layer A third adhesive layer can be laminated on top (see (c) in FIG. 2). Further, in the third step, for example, in the same manner as in the second step, the varnish composition (the varnish-like third adhesion) is placed on the opposite side of the first adhesive layer from the second adhesive layer. The third adhesive layer can also be laminated on the first adhesive layer by applying the agent composition) and volatilizing the organic solvent. The method of bonding and the conditions thereof are the same as in the second step.
 第3の接着剤層には、溶剤の一部が除去されずに残っていてもよい。第3の接着剤層における溶剤の含有量は、例えば、第3の接着剤層の全質量を基準として、10質量%以下であってよい。 A part of the solvent may remain on the third adhesive layer without being removed. The content of the solvent in the third adhesive layer may be, for example, 10% by mass or less based on the total mass of the third adhesive layer.
<無機フィラー含有組成物>
 本実施形態の無機フィラー含有組成物は、体積基準の粒度分布における50%累積時の粒径D50が0.5~1.0μmであり、95%累積時の粒径D95が0.9~2.0μmである無機フィラーを含有する。無機フィラーは、上述した無機フィラーAと同様のものを用いることができる。
<Composition containing inorganic filler>
In the composition containing an inorganic filler of the present embodiment, the particle size D50 at 50% cumulative size is 0.5 to 1.0 μm and the particle size D95 at 95% cumulative size is 0.9 to 2 in the volume-based particle size distribution. Contains an inorganic filler that is 0.0 μm. As the inorganic filler, the same as the above-mentioned inorganic filler A can be used.
 本実施形態の無機フィラー含有組成物は、導電粒子及び無機フィラーを含有する回路接続用部材における無機フィラー含有領域を形成するために用いることができる。回路接続用部材としては、上述した回路接続用接着剤フィルムが挙げられる。本実施形態の無機フィラー含有組成物によれば、無機フィラー含有領域として、上述した領域A、及び第2の接着剤層を形成することができる。 The inorganic filler-containing composition of the present embodiment can be used to form an inorganic filler-containing region in a circuit connection member containing conductive particles and an inorganic filler. Examples of the circuit connection member include the above-mentioned circuit connection adhesive film. According to the inorganic filler-containing composition of the present embodiment, the above-mentioned region A and the second adhesive layer can be formed as the inorganic filler-containing region.
 本実施形態の無機フィラー含有組成物の組成は、上述した第2の接着剤層における組成と同様に設定することができる。例えば、組成物は熱可塑性樹脂を更に含有していてもよい。 The composition of the inorganic filler-containing composition of the present embodiment can be set in the same manner as the composition of the second adhesive layer described above. For example, the composition may further contain a thermoplastic resin.
 本実施形態の無機フィラー含有組成物は、上述した有機溶媒を含むワニス組成物(ワニス状無機フィラー含有組成物)であってもよい。 The inorganic filler-containing composition of the present embodiment may be a varnish composition containing the above-mentioned organic solvent (varnish-like inorganic filler-containing composition).
 本実施形態の無機フィラー含有組成物は、厚みが10μm以下、9~4μm、又は8~5μmの接着剤層を形成するために用いることができる。本実施形態の無機フィラー含有組成物によれば、このような設計厚みで塗工する場合であっても、スクラッチなどの外観不良が発生しにくく、高い塗工歩留まりを得ることができる。 The inorganic filler-containing composition of the present embodiment can be used to form an adhesive layer having a thickness of 10 μm or less, 9 to 4 μm, or 8 to 5 μm. According to the composition containing an inorganic filler of the present embodiment, even when coating with such a design thickness, appearance defects such as scratches are unlikely to occur, and a high coating yield can be obtained.
<回路接続構造体及びその製造方法>
 以下、回路接続材料として上述の回路接続用接着剤フィルム1aを用いた回路接続構造体及びその製造方法について説明する。
<Circuit connection structure and its manufacturing method>
Hereinafter, a circuit connection structure using the above-mentioned adhesive film 1a for circuit connection as a circuit connection material and a method for manufacturing the same will be described.
 図3は、回路接続構造体の一実施形態を示す模式断面図である。図3に示すように、回路接続構造体10は、第1の回路基板11及び第1の回路基板11の主面11a上に形成された第1の電極12を有する第1の回路部材13と、第2の回路基板14及び第2の回路基板14の主面14a上に形成された第2の電極15を有する第2の回路部材16と、第1の回路部材13及び第2の回路部材16の間に配置され、第1の電極12及び第2の電極15を互いに電気的に接続する回路接続部17とを備えている。 FIG. 3 is a schematic cross-sectional view showing an embodiment of a circuit connection structure. As shown in FIG. 3, the circuit connection structure 10 includes a first circuit member 13 having a first electrode 12 formed on a main surface 11a of the first circuit board 11 and the first circuit board 11. , A second circuit member 16 having a second electrode 15 formed on the main surface 14a of the second circuit board 14 and the second circuit board 14, and the first circuit member 13 and the second circuit member. It is arranged between 16 and includes a circuit connection portion 17 that electrically connects the first electrode 12 and the second electrode 15 to each other.
 第1の回路部材13及び第2の回路部材16は、互いに同じであっても異なっていてもよい。第1の回路部材13及び第2の回路部材16は、回路電極が形成されているガラス基板又はプラスチック基板;プリント配線板;セラミック配線板;フレキシブル配線板;駆動用IC等のICチップなどであってよい。第1の回路基板11及び第2の回路基板14は、半導体、ガラス、セラミック等の無機物、ポリイミド、ポリカーボネート等の有機物、ガラス/エポキシ等の複合物などで形成されていてよい。第1の回路基板11は、プラスチック基板であってよい。第1の回路部材13は、例えば、回路電極が形成されているプラスチック基板(ポリイミド、ポリカーボネート、ポリエチレンテレフタレート、シクロオレフィンポリマー等の有機物からなるプラスチック基板)であってよく、第2の回路部材16は、例えば、駆動用IC等のICチップであってよい。電極が形成されているプラスチック基板は、プラスチック基板上に、例えば、有機TFT等の画素駆動回路又は複数の有機EL素子R、G、Bがマトリクス状に規則配列されることによって表示領域が形成されたものであってもよい。 The first circuit member 13 and the second circuit member 16 may be the same or different from each other. The first circuit member 13 and the second circuit member 16 are a glass substrate or a plastic substrate on which a circuit electrode is formed; a printed wiring board; a ceramic wiring board; a flexible wiring board; an IC chip such as a drive IC, or the like. It's okay. The first circuit board 11 and the second circuit board 14 may be formed of an inorganic substance such as semiconductor, glass, or ceramic, an organic substance such as polyimide or polycarbonate, or a composite such as glass / epoxy. The first circuit board 11 may be a plastic substrate. The first circuit member 13 may be, for example, a plastic substrate on which a circuit electrode is formed (a plastic substrate made of an organic substance such as polyimide, polycarbonate, polyethylene terephthalate, or cycloolefin polymer), and the second circuit member 16 may be. For example, it may be an IC chip such as a drive IC. In the plastic substrate on which the electrodes are formed, a display region is formed by regularly arranging a pixel drive circuit such as an organic TFT or a plurality of organic EL elements R, G, and B on the plastic substrate in a matrix. It may be a plastic one.
 第1の電極12及び第2の電極15は、金、銀、錫、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、銅、アルミ、モリブデン、チタン等の金属、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、インジウムガリウム亜鉛酸化物(IGZO)等の酸化物などを含む電極であってよい。第1の電極12及び第2の電極15は、これら金属、酸化物等の2種以上を積層してなる電極であってもよい。2種以上を積層してなる電極は、2層以上であってよく、3層以上であってよい。第1の回路部材13がプラスチック基板である場合、第1の電極12は、Tiを含む電極であってよく、より具体的には最表面にチタン層を有する電極であってよい。第1の電極12及び第2の電極15は回路電極であってよく、バンプ電極であってもよい。第1の電極12及び第2の電極15の少なくとも一方は、バンプ電極であってよい。図3では、第1の電極12が回路電極であり、第2の電極15がバンプ電極である態様である。 The first electrode 12 and the second electrode 15 are gold, silver, tin, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, aluminum, molybdenum, titanium and other metals, indium tin oxide (ITO), and the like. The electrode may be an electrode containing an oxide such as indium tin oxide (IZO) or indium gallium zinc oxide (IGZO). The first electrode 12 and the second electrode 15 may be electrodes formed by laminating two or more of these metals, oxides, and the like. The electrode formed by stacking two or more types may have two or more layers, and may have three or more layers. When the first circuit member 13 is a plastic substrate, the first electrode 12 may be an electrode containing Ti, and more specifically, an electrode having a titanium layer on the outermost surface. The first electrode 12 and the second electrode 15 may be circuit electrodes or bump electrodes. At least one of the first electrode 12 and the second electrode 15 may be a bump electrode. In FIG. 3, the first electrode 12 is a circuit electrode and the second electrode 15 is a bump electrode.
 回路接続部17は、上述の接着剤フィルム1aの硬化物を含む。回路接続部17は、上述の接着剤フィルム1aの硬化物からなっていてもよい。回路接続部17は、例えば、第1の回路部材13と第2の回路部材16とが互いに対向する方向(以下「対向方向」)における第1の回路部材13側に位置し、上述の第1の接着剤層における導電粒子4以外の、(B)成分の硬化物及び(C)成分等の硬化物からなる第1の領域18と、対向方向における第2の回路部材16側に位置し、上述の第2の接着剤層における(C)成分等の硬化物からなる第2の領域19と、少なくとも第1の電極12及び第2の電極15の間に介在して第1の電極12及び第2の電極15を互いに電気的に接続する導電粒子4とを有している。回路接続部17は、図3に示されるように、第1の領域18と第2の領域19との間に、2つの明確な領域を有していなくてもよく、第1の接着剤層に由来する硬化物と第2の接着剤層に由来する硬化物とが混在して1つの領域を形成していてもよい。 The circuit connection portion 17 contains the cured product of the adhesive film 1a described above. The circuit connection portion 17 may be made of the cured product of the adhesive film 1a described above. The circuit connection portion 17 is located, for example, on the side of the first circuit member 13 in the direction in which the first circuit member 13 and the second circuit member 16 face each other (hereinafter referred to as “opposite direction”), and the above-mentioned first circuit member 17 is located. It is located on the side of the first region 18 composed of the cured product of the component (B) and the cured product of the component (C) other than the conductive particles 4 in the adhesive layer of No. 1 and the second circuit member 16 in the opposite direction. The first electrode 12 and the first electrode 12 are interposed between the second region 19 made of a cured product such as the component (C) in the second adhesive layer and at least the first electrode 12 and the second electrode 15. It has conductive particles 4 that electrically connect the second electrodes 15 to each other. As shown in FIG. 3, the circuit connection portion 17 does not have to have two distinct regions between the first region 18 and the second region 19, and the first adhesive layer The cured product derived from the above and the cured product derived from the second adhesive layer may be mixed to form one region.
 回路接続構造体は、第1の回路部材及び第2の回路部材のうちの一方がICチップであり、他方がTiを含む電極を有するプラスチック基板であってもよい。回路接続構造体は、例えば、有機EL素子が規則的に配置されたプラスチック基板と、映像表示用のドライバーである駆動回路素子とが接続されたフレキシブルな有機電界発光カラーディスプレイ(有機ELディスプレイ)、有機EL素子が規則的に配置されたプラスチック基板と、タッチパッド等の位置入力素子とが接続されたタッチパネルなどが挙げられる。回路接続構造体は、スマートホン、タブレット、テレビ、乗り物のナビゲーションシステム、ウェアラブル端末等の各種モニタ;家具;家電;日用品などに適用することができる。 The circuit connection structure may be a plastic substrate in which one of the first circuit member and the second circuit member is an IC chip and the other has an electrode containing Ti. The circuit connection structure is, for example, a flexible organic electric field light emitting color display (organic EL display) in which a plastic substrate in which organic EL elements are regularly arranged and a drive circuit element which is a driver for displaying an image are connected. Examples thereof include a touch panel in which a plastic substrate on which organic EL elements are regularly arranged and a position input element such as a touch pad are connected. The circuit connection structure can be applied to various monitors such as smart phones, tablets, televisions, vehicle navigation systems, wearable terminals, furniture; home appliances; daily necessities and the like.
 図4は、回路接続構造体の製造方法の一実施形態を示す模式断面図である。図4の(a)及び図4の(b)は、各工程を示す模式断面図である。図4に示すように、回路接続構造体10の製造方法は、第1の電極12を有する第1の回路部材13と、第2の電極15を有する第2の回路部材16との間に、上述の接着剤フィルム1aを介在させ、第1の回路部材13及び第2の回路部材16を熱圧着して、第1の電極12及び第2の電極15を互いに電気的に接続する工程を備える。 FIG. 4 is a schematic cross-sectional view showing an embodiment of a method for manufacturing a circuit connection structure. FIG. 4A and FIG. 4B are schematic cross-sectional views showing each step. As shown in FIG. 4, a method of manufacturing the circuit connection structure 10 is performed between a first circuit member 13 having a first electrode 12 and a second circuit member 16 having a second electrode 15. A step of electrically connecting the first electrode 12 and the second electrode 15 to each other by thermally crimping the first circuit member 13 and the second circuit member 16 with the above-mentioned adhesive film 1a interposed therebetween. ..
 具体的には、図4の(a)に示すように、まず、第1の回路基板11及び第1の回路基板11の主面11a上に形成された第1の電極12を備える第1の回路部材13と、第2の回路基板14及び第2の回路基板14の主面14a上に形成された第2の電極15を備える第2の回路部材16とを準備する。 Specifically, as shown in FIG. 4A, first, a first electrode 12 having a first electrode 12 formed on a main surface 11a of the first circuit board 11 and the first circuit board 11 is provided. A circuit member 13 and a second circuit member 16 provided with a second electrode 15 formed on the main surface 14a of the second circuit board 14 and the second circuit board 14 are prepared.
 次に、第1の回路部材13及び第2の回路部材16を、第1の電極12及び第2の電極15が互いに対向するように配置し、第1の回路部材13と第2の回路部材16との間に接着剤フィルム1aを配置する。例えば、図4の(a)に示すように、第1の接着剤層2側が第1の回路基板11の主面11aと対向するようにして接着剤フィルム1aを第1の回路部材13上にラミネートする。次に、第1の回路基板11上の第1の電極12と、第2の回路基板14上の第2の電極15とが互いに対向するように、接着剤フィルム1aがラミネートされた第1の回路部材13上に第2の回路部材16を配置する。 Next, the first circuit member 13 and the second circuit member 16 are arranged so that the first electrode 12 and the second electrode 15 face each other, and the first circuit member 13 and the second circuit member 12 are arranged. The adhesive film 1a is placed between the 16 and 16. For example, as shown in FIG. 4A, the adhesive film 1a is placed on the first circuit member 13 so that the first adhesive layer 2 side faces the main surface 11a of the first circuit board 11. Laminate. Next, the adhesive film 1a is laminated so that the first electrode 12 on the first circuit board 11 and the second electrode 15 on the second circuit board 14 face each other. The second circuit member 16 is arranged on the circuit member 13.
 そして、図4の(b)に示すように、第1の回路部材13、接着剤フィルム1a、及び第2の回路部材16を加熱しながら、第1の回路部材13と第2の回路部材16とを厚さ方向に加圧することで、第1の回路部材13と第2の回路部材16とを互いに熱圧着する。この際、図4の(b)において矢印で示すように、第2の接着剤層3は、流動可能な未硬化の熱硬化性成分を有していることから、第2の電極15間同士の空隙を埋めるように流動すると共に、上記加熱によって硬化する。これにより、第1の電極12及び第2の電極15が導電粒子4を介して互いに電気的に接続され、また、第1の回路部材13及び第2の回路部材16が互いに接着されて、図3に示す回路接続構造体10を得ることができる。本実施形態の回路接続構造体10の製造方法では、光照射によって第1の接着剤層2の一部が硬化された層といえるため、第1の接着剤層2中の導電粒子は流動を抑制され、第1の接着剤層2が上記熱圧着時にほとんど流動せず、導電粒子が効率的に対向する電極間で捕捉されるため、対向する第1の電極12及び第2の電極15間の接続抵抗が低減される。また、第1の接着剤層の厚さが5μm以下であると、回路接続時の導電粒子をより一層効率的に捕捉することができる傾向にある。 Then, as shown in FIG. 4B, the first circuit member 13 and the second circuit member 16 are heated while heating the first circuit member 13, the adhesive film 1a, and the second circuit member 16. By pressurizing and in the thickness direction, the first circuit member 13 and the second circuit member 16 are thermocompression bonded to each other. At this time, as shown by an arrow in FIG. 4B, since the second adhesive layer 3 has a flowable uncured thermosetting component, the second electrodes 15 are connected to each other. It flows so as to fill the voids of the above, and is cured by the above heating. As a result, the first electrode 12 and the second electrode 15 are electrically connected to each other via the conductive particles 4, and the first circuit member 13 and the second circuit member 16 are adhered to each other. The circuit connection structure 10 shown in 3 can be obtained. In the method for manufacturing the circuit connection structure 10 of the present embodiment, it can be said that a part of the first adhesive layer 2 is cured by light irradiation, so that the conductive particles in the first adhesive layer 2 flow. It is suppressed, the first adhesive layer 2 hardly flows during the thermal pressure bonding, and the conductive particles are efficiently captured between the facing electrodes. Therefore, between the facing first electrodes 12 and the second electrodes 15. Connection resistance is reduced. Further, when the thickness of the first adhesive layer is 5 μm or less, the conductive particles at the time of circuit connection tend to be captured more efficiently.
 また、第2の接着剤層3が上述した無機フィラーAを含有することにより、高い流動性を得て、対向する第1の電極12及び第2の電極15間の接続抵抗が低減されるとともに、大圧痕が発生することを充分抑制することができる。 Further, by containing the above-mentioned inorganic filler A in the second adhesive layer 3, high fluidity is obtained, and the connection resistance between the first electrode 12 and the second electrode 15 facing each other is reduced. , It is possible to sufficiently suppress the generation of large indentations.
 熱圧着する場合の加熱温度は、適宜設定することができるが、例えば、50~190℃あってよい。加圧は、被着体に損傷を与えない範囲であれば特に制限されないが、COP実装の場合、例えば、バンプ電極での面積換算圧力0.1~50MPaであってよく、40MPa以下であってよく、0.1~40MPaであってよい。また、COG実装の場合は、例えば、バンプ電極での面積換算圧力10~100MPaであってよい。これらの加熱及び加圧の時間は、0.5~120秒間の範囲であってよい。 The heating temperature for thermocompression bonding can be set as appropriate, but may be, for example, 50 to 190 ° C. The pressurization is not particularly limited as long as it does not damage the adherend, but in the case of COP mounting, for example, the area conversion pressure at the bump electrode may be 0.1 to 50 MPa, and may be 40 MPa or less. It may be 0.1 to 40 MPa. Further, in the case of COG mounting, for example, the area conversion pressure at the bump electrode may be 10 to 100 MPa. These heating and pressurizing times may be in the range of 0.5 to 120 seconds.
 以下、本発明について実施例を挙げてより具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[第1の接着剤層、第2の接着剤層及び第3の接着剤層の作製]
 第1の接着剤層、第2の接着剤層及び第3の接着剤層の作製においては、下記に示す材料を用いた。
[Preparation of First Adhesive Layer, Second Adhesive Layer and Third Adhesive Layer]
In the preparation of the first adhesive layer, the second adhesive layer and the third adhesive layer, the materials shown below were used.
<導電粒子の作製>
 3μmのプラスチック核体の表面に80nmのNiめっきを施し、最表面20nmをPdで置換めっきを施した。このようにして、平均粒径3.2μmの導電粒子を得た。
<Manufacturing of conductive particles>
The surface of a 3 μm plastic nucleus was plated with Ni at 80 nm, and the outermost surface of 20 nm was replaced with Pd. In this way, conductive particles having an average particle size of 3.2 μm were obtained.
(A)成分:導電粒子
 A-1:上述のとおり作製した導電粒子
(A) Component: Conductive particles A-1: Conductive particles prepared as described above
(B)成分:光硬化性樹脂成分
(B1)成分:ラジカル重合性化合物
 B1-1:NKエステル A-BPEF70T(エトキシ化フルオレン型ジ(メタ)アクリレート(2官能)、新中村化学工業株式会社製)、トルエンで不揮発分70質量%に希釈したものを使用
 B1-2:リポキシ VR-90(ビスフェノールA型エポキシ(メタ)アクリレート(2官能)(ビニルエステル樹脂)、昭和電工株式会社製)
(B) component: Photocurable resin component (B1) component: Radical polymerizable compound B1-1: NK ester A-BPEF70T (ethoxylated fluorene type di (meth) acrylate (bifunctional), manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) ), Diluted with toluene to 70% by mass of non-volatile content B1-2: Lipoxy VR-90 (bisphenol A type epoxy (meth) acrylate (bifunctional) (vinyl ester resin), manufactured by Showa Denko Co., Ltd.)
(B2)成分:光ラジカル重合開始剤
 B2-1:Irgacure OXE-02(エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、BASF社製)、MEKで不揮発分10質量%に希釈したものを使用
(B2) Ingredients: Photoradical Polymerization Initiator B2-1: Acetyl OXE-02 (Etanon, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1-( 0-Acetyl oxime), manufactured by BASF), MEK diluted to 10% by mass of non-volatile content
(C)成分:熱硬化性樹脂成分
(C1)成分:カチオン重合性化合物
 C1-1:ETERNACOLL OXBP(3-エチル-3-ヒドロキシメチルオキセタン、宇部興産株式会社製)
 C1-2:EHPE3150(2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、株式会社ダイセル製)
 C1-3:セロキサイド2021P(3,4-エポキシシクロヘキシルメチル(3, 4-エポキシ)シクロヘキサンカロボキシレート、株式会社ダイセル製)
 C1-4:OXSQ-TX100(ポリ({3-[(3-エチル-3-オキセタニル)メトキシ]プロピル}シルセスキオキサン)誘導体、東亜合成株式会社製)
 C1-5:セロキサイド8010(ビ-7-オキサビシクロ[4.1.0]ヘプタン、株式会社ダイセル製)
(C) component: Thermosetting resin component (C1) component: Cationic polymerizable compound C1-1: ETERNACOLL OXBP (3-ethyl-3-hydroxymethyloxetane, manufactured by Ube Industries, Ltd.)
C1-2: EHPE3150 (1,2-epoxy-4- (2-oxylanyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol, manufactured by Daicel Corporation)
C1-3: Celoxide 2021P (3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, manufactured by Daicel Corporation)
C1-4: OXSQ-TX100 (poly ({3-[(3-ethyl-3-oxetanyl) methoxy] propyl} silsesquioxane) derivative, manufactured by Toagosei Corporation)
C1-5: Celoxide 8010 (B-7-oxavicyclo [4.1.0] heptane, manufactured by Daicel Corporation)
(C2)成分:熱カチオン重合開始剤
 C2-1:CXC-1821(King Industries社製)
(C2) Ingredient: Thermal Cationic Polymerization Initiator C2-1: CXC-1821 (manufactured by King Industries)
(D)成分:熱可塑性樹脂
 D-1:フェノトート YP-50S(ビスフェノールA型フェノキシ樹脂、重量平均分子量:60,000、ガラス転移温度:84℃、日鉄ケミカル&マテリアル株式会社製)、MEKで不揮発分40質量%に希釈したものを使用
 D-2:TOPR-300(高Tgタイプエポキシ樹脂、エポキシ当量:900~1,000、軟化点:120℃、日鉄ケミカル&マテリアル株式会社製)、MEKで不揮発分60質量%に希釈したものを使用
 D-3:フェノトート FX-293(フルオレン骨格含有フェノキシ樹脂、重量平均分子量:45,000、ガラス転移温度:158℃、日鉄ケミカル&マテリアル株式会社製)、MEKで不揮発分60質量%に希釈したものを使用
 D-4:フェノトート ZX-1356-2(ビスフェノールA型及びビスフェノールF型の共重合型フェノキシ樹脂、重量平均分子量:70000、ガラス転移温度:71℃、日鉄ケミカル&マテリアル株式会社製)、MEKで不揮発分40質量%に希釈したものを使用
(D) Ingredients: Epoxy resin D-1: Phenototo YP-50S (bisphenol A type phenoxy resin, weight average molecular weight: 60,000, glass transition temperature: 84 ° C., manufactured by Nittetsu Chemical & Materials Co., Ltd.), MEK D-2: TOPR-300 (high Tg type epoxy resin, epoxy equivalent: 900-1,000, softening point: 120 ° C, manufactured by Nittetsu Chemical & Materials Co., Ltd.) D-3: Phenototo FX-293 (fluorene skeleton-containing phenoxy resin, weight average molecular weight: 45,000, glass transition temperature: 158 ° C, Nittetsu Chemical & Materials Made by MEK, diluted to 60% by mass of non-volatile content D-4: Phenototo ZX-1356-2 (bisphenol A type and bisphenol F type copolymer phenoxy resin, weight average molecular weight: 70000, Glass transition temperature: 71 ° C, manufactured by Nittetsu Chemical & Materials Co., Ltd.), using MEK diluted to 40% by mass of non-volatile content
(E)成分:カップリング剤
 E-1:SH-6040(3-グリシドキシプロピルトリメトキシシラン、東レ・ダウコーニング株式会社製)
(E) Ingredient: Coupling agent E-1: SH-6040 (3-glycidoxypropyltrimethoxysilane, manufactured by Toray Dow Corning Co., Ltd.)
(F)成分:充填材
(F1)成分:無機フィラー
 F-1:アドマファインSE2050(シリカフィラー、株式会社アドマテックス製)、風力分級によって1μm以上の粒子をできるだけカットした後、MEKで不揮発分70質量%に希釈したものを使用
 F-2:アドマファインSE2050(シリカフィラー、株式会社アドマテックス製)、MEKで不揮発分70質量%に希釈したものを使用
 F-3:アドマナノYA050C(シリカフィラー、株式会社アドマテックス製)、MEKで不揮発分50質量%に希釈したものを使用
 F-4:アエロジルR805(シリカフィラー、Evonik Industries AG製)、MEKで不揮発分10質量%に希釈したものを使用
(F) Component: Filler (F1) Component: Inorganic filler F-1: Admafine SE2050 (silica filler, manufactured by Admatex Co., Ltd.), after cutting particles of 1 μm or more as much as possible by wind classification, non-volatile content 70 with MEK F-2: Admafine SE2050 (silica filler, manufactured by Admatex Co., Ltd.), diluted to 70% by mass of non-volatile content with MEK F-3: Admanano YA050C (silica filler, stock) (Manufactured by Admatex), use MEK diluted to 50% by mass of non-volatile content F-4: Aerosil R805 (silica filler, manufactured by Evonik Industries AG), use MEK diluted to 10% by mass of non-volatile content
<無機フィラーの粒度分布の測定-1>
 上記無機フィラーの体積基準の粒度分布における50%累積時の粒径D50(累積分布50体積%の粒径)及び95%累積時の粒径D95(累積分布95体積%の粒径)を測定した。測定には、測定装置として日機装株式会社製のMicrotorac MT3300EXIIを用い、測定溶媒としてメチルエチルケトンを用いた。
<Measurement of particle size distribution of inorganic filler-1>
In the volume-based particle size distribution of the inorganic filler, the particle size D50 at the time of 50% accumulation (particle size of the cumulative distribution 50% by volume) and the particle size D95 at the time of 95% accumulation (particle size of the cumulative distribution 95% by volume) were measured. .. For the measurement, Microtorac MT3300EXII manufactured by Nikkiso Co., Ltd. was used as a measuring device, and methyl ethyl ketone was used as a measuring solvent.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<第1の接着剤層の作製>
 表2に示す材料を表2に示す組成比(質量比)(表2の数値は不揮発分量を意味する。)で混合した組成物を得た後、離型処理されたPET(ポリエチレンテレフタレート)フィルムの上に磁場を掛けながら塗工し、有機溶媒等を70℃で5分間熱風乾燥することによって、各成分を含有する組成物からなる組成物層をそれぞれ得た。組成物層は、乾燥後の厚さがそれぞれ3~4μmとなるように塗工した。その後、組成物層に対してそれぞれ光照射することによって(UV照射:メタルハライドランプ、積算光量:2100mJ/cm)、導電粒子が分散した第1の接着剤層を作製した。ここでの厚さは接触式厚み計を用いて測定した。
<Preparation of the first adhesive layer>
A PET (polyethylene terephthalate) film obtained by mixing the materials shown in Table 2 with the composition ratio (mass ratio) shown in Table 2 (the numerical values in Table 2 mean the non-volatile content) and then performing a mold release treatment. A composition layer composed of a composition containing each component was obtained by applying the coating on the above while applying a magnetic field and drying the organic solvent or the like at 70 ° C. for 5 minutes with hot air. The composition layer was coated so that the thickness after drying was 3 to 4 μm, respectively. Then, by irradiating each of the composition layers with light (UV irradiation: metal halide lamp, integrated light amount: 2100 mJ / cm 2 ), a first adhesive layer in which conductive particles were dispersed was prepared. The thickness here was measured using a contact thickness gauge.
 なお、第1の接着剤組成物からなる層又は接着剤層の厚さが、導電粒子の厚さ(直径)より小さい場合、接触式厚み計を用いて層の厚さを測定すると、導電粒子の厚さが反映され、導電粒子が存在する領域の厚さが測定される。そのため、第1の接着剤層と第2の接着剤層とが積層された二層構成の接着剤フィルムを作製した後に、後述の方法により、走査型電子顕微鏡を用いて、隣り合う導電粒子の離間部分に位置する第1の接着剤層の厚さを測定した。 When the thickness of the layer made of the first adhesive composition or the adhesive layer is smaller than the thickness (diameter) of the conductive particles, the thickness of the layer is measured using a contact type thickness gauge, and the conductive particles are measured. The thickness of the region where the conductive particles are present is measured. Therefore, after producing a two-layer adhesive film in which a first adhesive layer and a second adhesive layer are laminated, an adhesive particle having adjacent conductive particles is used by a scanning electron microscope by a method described later. The thickness of the first adhesive layer located at the separated portion was measured.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<第2の接着剤層の作製>
 表3に示す材料を表3に示す組成比(質量比)(表3の数値は不揮発分量を意味する。)で混合した組成物を得た後、離型処理されたPET(ポリエチレンテレフタレート)フィルムの上に塗工し、有機溶媒等を70℃で5分間熱風乾燥することによって、各成分を含有する組成物からなる第2の接着剤層をそれぞれ作製した。接着剤層は、乾燥後の厚さがそれぞれ8~9μmとなるように塗工した。ここでの厚さは接触式厚み計を用いて測定した。
<Preparation of second adhesive layer>
A PET (polyethylene terephthalate) film obtained by mixing the materials shown in Table 3 with the composition ratio (mass ratio) shown in Table 3 (the numerical values in Table 3 mean the non-volatile content) and then performing a mold release treatment. A second adhesive layer composed of a composition containing each component was prepared by coating on the above and drying an organic solvent or the like at 70 ° C. for 5 minutes with hot air. The adhesive layer was coated so that the thickness after drying was 8 to 9 μm, respectively. The thickness here was measured using a contact thickness gauge.
(塗工歩留まり)
 第2の接着剤層を形成する際の塗工歩留まりについて、白線及びスクラッチが発生しない割合Y(%)を求め、下記の基準で評価した。
A+:Yが95%以上である
A:Yが90%以上95%未満である
B:Yが80%以上90%未満である
C:Yが80%未満である
(Coating yield)
Regarding the coating yield when forming the second adhesive layer, the ratio Y (%) at which white lines and scratches did not occur was determined and evaluated according to the following criteria.
A +: Y is 95% or more A: Y is 90% or more and less than 95% B: Y is 80% or more and less than 90% C: Y is less than 80%
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<無機フィラーの粒度分布の測定-2>
 組成物S1-4に含まれる無機フィラー(80質量部のF-1及び5質量部のF-3の混合物)について、上記と同様にして体積基準の粒度分布における50%累積時の粒径D50(累積分布50体積%の粒径)及び95%累積時の粒径D95(累積分布95体積%の粒径)を測定した。
<Measurement of particle size distribution of inorganic filler-2>
For the inorganic filler (a mixture of 80 parts by mass F-1 and 5 parts by mass F-3) contained in the composition S1-4, the particle size D50 at the time of 50% accumulation in the volume-based particle size distribution in the same manner as above. (Particulate particle size of cumulative distribution 50% by volume) and particle size D95 at the time of 95% accumulation (particle size of cumulative distribution 95% by volume) were measured.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<第3の接着剤層の作製>
 表5に示す材料を表5に示す組成比(質量比)(表5の数値は不揮発分量を意味する。)で混合した組成物を得た後、離型処理されたPET(ポリエチレンテレフタレート)フィルムの上に塗工し、有機溶媒等を70℃で5分間熱風乾燥することによって、各成分を含有する組成物からなる第3の接着剤層を製した。接着剤層は、乾燥後の厚さがそれぞれ0.5~1.5μmとなるように塗工した。ここでの厚さは接触式厚み計を用いて測定した。
<Preparation of third adhesive layer>
A PET (polyethylene terephthalate) film obtained by mixing the materials shown in Table 5 with the composition ratio (mass ratio) shown in Table 5 (the numerical values in Table 5 mean the non-volatile content) and then performing a mold release treatment. A third adhesive layer made of a composition containing each component was prepared by coating on the above and drying an organic solvent or the like at 70 ° C. for 5 minutes with hot air. The adhesive layer was coated so that the thickness after drying was 0.5 to 1.5 μm, respectively. The thickness here was measured using a contact thickness gauge.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例1~5及び比較例1~5)
[接着剤フィルムの作製]
 上記で作製した第1の接着剤層、第2の接着剤層及び第3の接着剤層を用いて、表6に示す構成の接着剤フィルムを作製した。例えば、実施例1の接着剤フィルムにおいては、組成物S1-1によって形成した第2の接着剤層に、組成物P-1によって形成した第1の接着剤層を50~60℃の温度をかけながら張り合わせ、第1の接着剤層側のPETフィルムを剥がした。次に、露出した第1の接着剤層に、組成物S2-1によって形成した第3の接着剤層を50~60℃の温度をかけながら張り合わせて、実施例1の接着剤フィルムを得た。なお、これらの一連の工程において剥離するPETフィルム及び回路接続の際に剥離するPETフィルムを剥がしやすくするために、第2の接着剤層とPETフィルムとの間の剥離力が、第1の接着剤層とPETフィルムとの間の剥離力及び第3の接着剤層とPETフィルムとの間の剥離力よりも大きくなるように、各PETフィルムを選定した。
(Examples 1 to 5 and Comparative Examples 1 to 5)
[Preparation of adhesive film]
Using the first adhesive layer, the second adhesive layer, and the third adhesive layer prepared above, an adhesive film having the constitution shown in Table 6 was prepared. For example, in the adhesive film of Example 1, the first adhesive layer formed by the composition P-1 is heated to a temperature of 50 to 60 ° C. on the second adhesive layer formed by the composition S1-1. The PET film on the first adhesive layer side was peeled off. Next, the third adhesive layer formed by the composition S2-1 was bonded to the exposed first adhesive layer while applying a temperature of 50 to 60 ° C. to obtain the adhesive film of Example 1. .. In order to facilitate the peeling of the PET film that is peeled off in these series of steps and the PET film that is peeled off at the time of circuit connection, the peeling force between the second adhesive layer and the PET film is the first adhesion. Each PET film was selected so as to be larger than the peeling force between the agent layer and the PET film and the peeling force between the third adhesive layer and the PET film.
 実施例2~4及び比較例1~4の接着剤フィルムについては、実施例1と同様にして、表6に示す構成の接着剤フィルムを作製した。実施例5及び比較例5については、第3の接着剤層を張り合わせないこと以外は、実施例1と同様にして、表6に示す構成の接着剤フィルムを作製した。 For the adhesive films of Examples 2 to 4 and Comparative Examples 1 to 4, the adhesive films having the configurations shown in Table 6 were prepared in the same manner as in Example 1. For Example 5 and Comparative Example 5, an adhesive film having the constitution shown in Table 6 was prepared in the same manner as in Example 1 except that the third adhesive layer was not bonded.
 作製した回路接続用接着剤フィルムの第1の接着剤層の厚さを以下の方法で測定した。まず、回路接続用接着剤フィルムを2枚のガラス(厚み:1mm程度)で挟み込み、ビスフェノールA型エポキシ樹脂(商品名:JER811、三菱ケミカル株式会社製)100gと、ジエチレントリアミン(東京化成工業株式会社製)10gとからなる樹脂組成物で注型した。その後、研磨機を用いて断面研磨を行い、走査型電子顕微鏡(SEM、商品名:SE-8010、株式会社日立ハイテクサイエンス製)を用いて、隣り合う導電粒子の離間部分に位置する第1の接着剤層の厚さを測定した。第1の接着剤層の厚さは1.8μmであった。 The thickness of the first adhesive layer of the produced adhesive film for circuit connection was measured by the following method. First, an adhesive film for circuit connection is sandwiched between two sheets of glass (thickness: about 1 mm), and 100 g of bisphenol A type epoxy resin (trade name: JER811, manufactured by Mitsubishi Chemical Industry Co., Ltd.) and diethylenetriamine (manufactured by Tokyo Chemical Industry Co., Ltd.). ) Was cast with a resin composition consisting of 10 g. After that, the cross section is polished using a polishing machine, and a scanning electron microscope (SEM, trade name: SE-8010, manufactured by Hitachi High-Tech Science Co., Ltd.) is used to perform the first section located at the separated portion of the adjacent conductive particles. The thickness of the adhesive layer was measured. The thickness of the first adhesive layer was 1.8 μm.
 実施例1~5及び比較例1~5で得られた接着剤フィルムについて、投影の粒子密度を計測したところ、いずれも約18000個/mmであった。 When the particle densities of the projections of the adhesive films obtained in Examples 1 to 5 and Comparative Examples 1 to 5 were measured, they were all about 18,000 / mm 2 .
[回路接続構造体の評価]
<回路接続構造体-1の作製>
 第1の回路部材として、バンプ電極を2列で千鳥状に配列したICチップ(0.9mm×20.3mm、厚さ:0.3mm、バンプ電極の大きさ:70μm×12μm、バンプ電極間スペース:12μm、バンプ電極厚さ:9μm)を準備した。また、第2の回路部材として、ポリイミド基板(東レ・デュポン株式会社製、200H)(38mm×28mm、厚さ:0.05mm)の表面に、Ti:50nm/Al:400nmの配線パターン(パターン幅:19μm、電極間スペース:5μm)を形成したものを準備した。
[Evaluation of circuit connection structure]
<Manufacturing of circuit connection structure-1>
As the first circuit member, an IC chip (0.9 mm × 20.3 mm, thickness: 0.3 mm, bump electrode size: 70 μm × 12 μm, space between bump electrodes) in which bump electrodes are arranged in two rows in a staggered pattern. : 12 μm, bump electrode thickness: 9 μm) was prepared. Further, as a second circuit member, a wiring pattern (pattern width) of Ti: 50 nm / Al: 400 nm is provided on the surface of a polyimide substrate (manufactured by Toray DuPont Co., Ltd., 200H) (38 mm × 28 mm, thickness: 0.05 mm). : 19 μm, space between electrodes: 5 μm) was prepared.
 実施例1~5及び比較例1~5の各接着剤フィルムを用いて回路接続構造体の作製を行った。接着剤フィルムを2.0mm幅に切り出し、第3の接着剤層(実施例5及び比較例5の場合は第2の接着剤層)と第1の回路部材とが接するように、接着剤フィルムを第1の回路部材上に配置した。セラミックヒータからなるステージとツール(8mm×50mm)とから構成される熱圧着装置を用いて、70℃、0.98MPa(10kgf/cm)の条件で2秒間加熱及び加圧して、第1の回路部材に接着剤フィルムを貼り付け、接着剤フィルムの第1の回路部材とは反対側の離型フィルムを剥離した。次いで、第1の回路部材のバンプ電極と第2の回路部材の配線パターンとの位置合わせを行った後、ヒートツールを8mm×45mmで用い、緩衝材として厚さ50μmのテフロン(登録商標)を介し、接着剤フィルムの実測最高到達温度170℃、バンプ電極での面積換算圧力30MPaの条件で5秒間加熱及び加圧して、接着剤フィルムの第1の接着剤層を第2の回路部材に貼り付けて、回路接続構造体-1をそれぞれ作製した。 Circuit connection structures were produced using the adhesive films of Examples 1 to 5 and Comparative Examples 1 to 5. The adhesive film is cut into a width of 2.0 mm, and the adhesive film is in contact with the third adhesive layer (second adhesive layer in the case of Example 5 and Comparative Example 5) and the first circuit member. Was placed on the first circuit member. Using a thermocompression bonding device consisting of a stage consisting of a ceramic heater and a tool (8 mm × 50 mm), heating and pressurization were performed for 2 seconds at 70 ° C. and 0.98 MPa (10 kgf / cm 2 ), and the first step was performed. An adhesive film was attached to the circuit member, and the release film on the side opposite to the first circuit member of the adhesive film was peeled off. Next, after aligning the bump electrode of the first circuit member with the wiring pattern of the second circuit member, a heat tool was used at 8 mm × 45 mm, and Teflon (registered trademark) having a thickness of 50 μm was used as a cushioning material. The first adhesive layer of the adhesive film is attached to the second circuit member by heating and pressurizing the adhesive film for 5 seconds under the conditions of the actual measured maximum reached temperature of 170 ° C. and the area conversion pressure of 30 MPa at the bump electrode. Then, the circuit connection structure-1 was manufactured.
<回路接続構造体-2の作製>
 第1の回路部材として、バンプ電極を2列で千鳥状に配列したICチップ(0.9mm×20.3mm、厚さ:0.3mm、バンプ電極の大きさ:70μm×12μm、バンプ電極間スペース:12μm、バンプ電極厚さ:5μm)を準備した。また、第2の回路部材として、ガラス基板(25mm×35mm、厚さ:0.2mm)の表面に、150nm厚みのAl/Ndを成膜したものを準備した。
<Manufacturing of circuit connection structure-2>
As the first circuit member, an IC chip (0.9 mm × 20.3 mm, thickness: 0.3 mm, bump electrode size: 70 μm × 12 μm, space between bump electrodes) in which bump electrodes are arranged in two rows in a staggered pattern. : 12 μm, bump electrode thickness: 5 μm) was prepared. Further, as a second circuit member, a glass substrate (25 mm × 35 mm, thickness: 0.2 mm) having an Al / Nd film having a thickness of 150 nm was prepared on the surface of the glass substrate (25 mm × 35 mm, thickness: 0.2 mm).
 上記の第1の回路部材及び第2の回路部材を用いたこと以外は回路接続構造体-1の作製と同様にして、実施例1~5及び比較例1~5の各接着剤フィルムを用いて回路接続構造体-2をそれぞれ作製した。 The adhesive films of Examples 1 to 5 and Comparative Examples 1 to 5 were used in the same manner as in the production of the circuit connection structure-1 except that the first circuit member and the second circuit member were used. The circuit connection structure-2 was manufactured.
(接続抵抗の評価)
 作製した回路接続構造体-1について、初期の接続抵抗(導通抵抗)を4端子法によって測定した。測定には、楠本化成株式会社製のマルチメータMLR21を用いた。電位差を任意の14点で測定し、その平均値を求めた。電位差の平均値を接続抵抗値に換算し、下記の基準で評価した。結果を表6に示す。
 A:接続抵抗値が0.6Ω未満
 B:接続抵抗値が0.6Ω以上1.0Ω未満
 C:接続抵抗値が1.0Ω以上
(Evaluation of connection resistance)
The initial connection resistance (conduction resistance) of the produced circuit connection structure-1 was measured by the 4-terminal method. A multimeter MLR21 manufactured by Kusumoto Kasei Co., Ltd. was used for the measurement. The potential difference was measured at any 14 points, and the average value was obtained. The average value of the potential difference was converted into the connection resistance value and evaluated according to the following criteria. The results are shown in Table 6.
A: Connection resistance value is less than 0.6Ω B: Connection resistance value is 0.6Ω or more and less than 1.0Ω C: Connection resistance value is 1.0Ω or more
(大圧痕の評価)
 作製した回路接続構造体-2を、微分干渉顕微鏡を用いてガラス基板側から観察することにより、導電粒子の圧痕よりも明らかに強い(視覚的に目立つ)圧痕(大圧痕)の有無を確認し、このような大圧痕が見られない場合を「A」、見られる場合を「B」として評価した。
(Evaluation of large indentations)
By observing the produced circuit connection structure-2 from the glass substrate side using a differential interference microscope, it was confirmed whether or not there were indentations (large indentations) that were clearly stronger (visually conspicuous) than the indentations of the conductive particles. , The case where such a large indentation was not seen was evaluated as "A", and the case where such a large indentation was seen was evaluated as "B".
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<第1の接着剤層-Bの作製>
 表7に示す材料を表7に示す組成比(質量比)(表7の数値は不揮発分量を意味する。)で混合した組成物を得た後、離型処理されたPET(ポリエチレンテレフタレート)フィルムの上に塗工し、有機溶媒等を70℃で5分間熱風乾燥することによって、各成分を含有する組成物からなる組成物層をそれぞれ得た。組成物層は、乾燥後の厚さが5μmとなるように塗工し、第1の接着剤層-Bを作製した。ここでの厚さは接触式厚み計を用いて測定した。
<Preparation of the first adhesive layer-B>
A PET (polyethylene terephthalate) film obtained by mixing the materials shown in Table 7 with the composition ratio (mass ratio) shown in Table 7 (the numerical values in Table 7 mean the non-volatile content) and then performing a mold release treatment. A composition layer composed of a composition containing each component was obtained by coating on the above and drying an organic solvent or the like at 70 ° C. for 5 minutes with hot air. The composition layer was coated so as to have a thickness of 5 μm after drying to prepare a first adhesive layer-B. The thickness here was measured using a contact thickness gauge.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<第2の接着剤層-Bの作製>
 表8に示す材料を表8に示す組成比(質量比)(表8の数値は不揮発分量を意味する。)で混合した組成物を得た後、離型処理されたPET(ポリエチレンテレフタレート)フィルムの上に塗工し、有機溶媒等を70℃で5分間熱風乾燥することによって、各成分を含有する組成物からなる第2の接着剤層-Bをそれぞれ作製した。接着剤層は、乾燥後の厚さがそれぞれ11μmとなるように塗工した。ここでの厚さは接触式厚み計を用いて測定した。
<Preparation of the second adhesive layer-B>
A PET (polyethylene terephthalate) film obtained by mixing the materials shown in Table 8 with the composition ratio (mass ratio) shown in Table 8 (the numerical values in Table 8 mean the non-volatile content) and then performing a mold release treatment. A second adhesive layer-B made of a composition containing each component was prepared by coating on the above and drying an organic solvent or the like at 70 ° C. for 5 minutes with hot air. The adhesive layer was coated so that the thickness after drying was 11 μm each. The thickness here was measured using a contact thickness gauge.
(塗工歩留まり)
 第2の接着剤層-Bを形成する際の塗工歩留まりについて、白線及びスクラッチが発生しない割合Y(%)を求め、下記の基準で評価した。
A+:Yが95%以上である
A:Yが90%以上95%未満である
B:Yが80%以上90%未満である
C:Yが80%未満である
(Coating yield)
Regarding the coating yield when forming the second adhesive layer-B, the ratio Y (%) at which white lines and scratches did not occur was determined and evaluated according to the following criteria.
A +: Y is 95% or more A: Y is 90% or more and less than 95% B: Y is 80% or more and less than 90% C: Y is less than 80%
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(実施例6及び比較例6~8)
[接着剤フィルムの作製]
 上記で作製した第1の接着剤層-B及び第2の接着剤層-Bを用いて、表9に示す構成の接着剤フィルムを作製した。例えば、実施例6の接着剤フィルムにおいては、組成物S1-9によって形成した第2の接着剤層-Bに、組成物P-2によって形成した第1の接着剤層-Bを50~60℃の温度をかけながら張り合わせ、実施例6の接着剤フィルムを得た。
(Example 6 and Comparative Examples 6 to 8)
[Preparation of adhesive film]
Using the first adhesive layer-B and the second adhesive layer-B prepared above, an adhesive film having the constitution shown in Table 9 was prepared. For example, in the adhesive film of Example 6, 50 to 60 first adhesive layers-B formed by the composition P-2 are added to the second adhesive layer-B formed by the composition S1-9. The adhesive film of Example 6 was obtained by laminating while applying a temperature of ° C.
 比較例6~8の接着剤フィルムについては、実施例6と同様にして、表9に示す構成の接着剤フィルムを作製した。 For the adhesive films of Comparative Examples 6 to 8, the adhesive films having the configurations shown in Table 9 were prepared in the same manner as in Example 6.
<回路接続構造体-3の作製>
 第1の回路部材として、バンプ電極を2列で千鳥状に配列したICチップ(0.9mm×20.3mm、厚さ:0.3mm、バンプ電極の大きさ:70μm×12μm、バンプ電極間スペース:12μm、バンプ電極厚さ:5μm)を準備した。また、第2の回路部材として、ガラス基板(25mm×35mm、厚さ:0.2mm)の表面に、150nm厚みのTi/Al/Tiを成膜したものを準備した。
<Manufacturing of circuit connection structure-3>
As the first circuit member, an IC chip (0.9 mm × 20.3 mm, thickness: 0.3 mm, bump electrode size: 70 μm × 12 μm, space between bump electrodes) in which bump electrodes are arranged in two rows in a staggered pattern. : 12 μm, bump electrode thickness: 5 μm) was prepared. Further, as a second circuit member, a glass substrate (25 mm × 35 mm, thickness: 0.2 mm) having a Ti / Al / Ti film having a thickness of 150 nm was prepared on the surface of the glass substrate (25 mm × 35 mm, thickness: 0.2 mm).
 実施例6及び比較例6~8の各接着剤フィルムを用いて回路接続構造体の作製を行った。接着剤フィルムを2.0mm幅に切り出し、第2の接着剤層-Bと第1の回路部材とが接するように、接着剤フィルムを第1の回路部材上に配置した。セラミックヒータからなるステージとツール(8mm×50mm)とから構成される熱圧着装置を用いて、70℃、0.98MPa(10kgf/cm)の条件で2秒間加熱及び加圧して、第1の回路部材に接着剤フィルムを貼り付け、接着剤フィルムの第1の回路部材とは反対側の離型フィルムを剥離した。次いで、第1の回路部材のバンプ電極と第2の回路部材の配線パターンとの位置合わせを行った後、ヒートツールを8mm×45mmで用い、緩衝材として厚さ50μmのテフロン(登録商標)を介し、接着剤フィルムの実測最高到達温度145℃、バンプ電極での面積換算圧力30MPaの条件で5秒間加熱及び加圧して、接着剤フィルムの第1の接着剤層を第2の回路部材に貼り付けて、回路接続構造体-3をそれぞれ作製した。 A circuit connection structure was produced using each of the adhesive films of Examples 6 and Comparative Examples 6 to 8. The adhesive film was cut out to a width of 2.0 mm, and the adhesive film was placed on the first circuit member so that the second adhesive layer-B and the first circuit member were in contact with each other. Using a thermocompression bonding device consisting of a stage consisting of a ceramic heater and a tool (8 mm × 50 mm), heating and pressurization were performed for 2 seconds at 70 ° C. and 0.98 MPa (10 kgf / cm 2 ), and the first step was performed. An adhesive film was attached to the circuit member, and the release film on the side opposite to the first circuit member of the adhesive film was peeled off. Next, after aligning the bump electrode of the first circuit member with the wiring pattern of the second circuit member, a heat tool was used at 8 mm × 45 mm, and Teflon (registered trademark) having a thickness of 50 μm was used as a cushioning material. The first adhesive layer of the adhesive film is attached to the second circuit member by heating and pressurizing for 5 seconds under the conditions of the measured maximum reached temperature of the adhesive film of 145 ° C. and the area conversion pressure of 30 MPa at the bump electrode. Then, the circuit connection structure-3 was manufactured.
(接続抵抗の評価)
 作製した回路接続構造体-3について、初期の接続抵抗(導通抵抗)を4端子法によって測定した。測定には、楠本化成株式会社製のマルチメータMLR21を用いた。電位差を任意の14点で測定し、その平均値を求めた。電位差の平均値を接続抵抗値に換算し、下記の基準で評価した。結果を表9に示す。
 A:接続抵抗値が5Ω未満
 B:接続抵抗値が5Ω以上10Ω未満
 C:接続抵抗値が10Ω以上
(Evaluation of connection resistance)
The initial connection resistance (conduction resistance) of the produced circuit connection structure-3 was measured by the 4-terminal method. A multimeter MLR21 manufactured by Kusumoto Kasei Co., Ltd. was used for the measurement. The potential difference was measured at any 14 points, and the average value was obtained. The average value of the potential difference was converted into the connection resistance value and evaluated according to the following criteria. The results are shown in Table 9.
A: Connection resistance value is less than 5Ω B: Connection resistance value is 5Ω or more and less than 10Ω C: Connection resistance value is 10Ω or more
(大圧痕の評価)
 作製した回路接続構造体-3を、微分干渉顕微鏡を用いてガラス基板側から観察することにより、導電粒子の圧痕よりも明らかに強い(視覚的に目立つ)圧痕(大圧痕)の有無を確認し、このような大圧痕が見られない場合を「A」、見られる場合を「B」として評価した。
(Evaluation of large indentations)
By observing the produced circuit connection structure-3 from the glass substrate side using a differential interference microscope, it was confirmed whether or not there were indentations (large indentations) that were clearly stronger (visually conspicuous) than the indentations of the conductive particles. , The case where such a large indentation was not seen was evaluated as "A", and the case where such a large indentation was seen was evaluated as "B".
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 1a,1b…回路接続用接着剤フィルム、2…第1の接着剤層、3…第2の接着剤層、4…導電粒子、6…第3の接着剤層、10…回路接続構造体、12…回路電極(第1の電極)、13…第1の回路部材、15…バンプ電極(第2の電極)、16…第2の回路部材、20,22,24…基材。 1a, 1b ... Circuit connection adhesive film, 2 ... First adhesive layer, 3 ... Second adhesive layer, 4 ... Conductive particles, 6 ... Third adhesive layer, 10 ... Circuit connection structure, 12 ... circuit electrode (first electrode), 13 ... first circuit member, 15 ... bump electrode (second electrode), 16 ... second circuit member, 20, 22, 24 ... base material.

Claims (14)

  1.  導電粒子を含む回路接続用接着剤フィルムであって、
     前記接着剤フィルムは、フィルムの厚さ方向において、無機フィラーを含有する領域Aを含み、
     前記領域Aは、体積基準の粒度分布における50%累積時の粒径D50が0.5~1.0μmであり、95%累積時の粒径D95が0.9~2.0μmである無機フィラーを含有する熱硬化性組成物から形成されている、回路接続用接着剤フィルム。
    An adhesive film for circuit connection containing conductive particles.
    The adhesive film contains a region A containing an inorganic filler in the thickness direction of the film.
    In the region A, the particle size D50 at the time of 50% accumulation is 0.5 to 1.0 μm and the particle size D95 at the time of 95% accumulation is 0.9 to 2.0 μm in the volume-based particle size distribution. An adhesive film for circuit connection, which is formed from a thermosetting composition containing.
  2.  前記接着剤フィルムが、フィルムの厚さ方向において、導電粒子を含まない領域Sを含み、
     前記領域Aが前記領域Sの少なくとも一部に設けられている、請求項1に記載の回路接続用接着剤フィルム。
    The adhesive film contains a region S that does not contain conductive particles in the thickness direction of the film.
    The circuit connection adhesive film according to claim 1, wherein the region A is provided in at least a part of the region S.
  3.  前記無機フィラーが、シリカフィラーである、請求項1又は2に記載の回路接続用接着剤フィルム。 The circuit connection adhesive film according to claim 1 or 2, wherein the inorganic filler is a silica filler.
  4.  導電粒子、光硬化性樹脂成分の硬化物、及び第1の熱硬化性樹脂成分を含有する第1の接着剤層と、第1の接着剤層上に設けられた、第2の熱硬化性樹脂成分を含有する第2の接着剤層とを備え、
     前記第2の接着剤層は、前記第2の熱硬化性樹脂成分と、体積基準の粒度分布における50%累積時の粒径D50が0.5~1.0μmであり、95%累積時の粒径D95が0.9~2.0μmである無機フィラーと、を含有する無機フィラー含有組成物からなる、回路接続用接着剤フィルム。
    A first adhesive layer containing conductive particles, a cured product of a photocurable resin component, and a first thermosetting resin component, and a second thermosetting layer provided on the first adhesive layer. With a second adhesive layer containing a resin component,
    The second adhesive layer has a particle size D50 of the second thermosetting resin component and a particle size D50 at 50% cumulative in a volume-based particle size distribution of 0.5 to 1.0 μm, and has a particle size D50 at 95% cumulative. An adhesive film for circuit connection comprising an inorganic filler having a particle size D95 of 0.9 to 2.0 μm and an inorganic filler-containing composition containing the inorganic filler.
  5.  前記無機フィラーが、シリカフィラーである、請求項4に記載の回路接続用接着剤フィルム。 The circuit connection adhesive film according to claim 4, wherein the inorganic filler is a silica filler.
  6.  前記第1の接着剤層の前記第2の接着剤層とは反対側上に積層された、第3の熱硬化性樹脂成分を含む第3の接着剤層を更に備える、請求項4又は5に記載の回路接続用接着剤フィルム。 4 or 5 further comprising a third adhesive layer containing a third thermosetting resin component laminated on the opposite side of the first adhesive layer from the second adhesive layer. Adhesive film for circuit connection described in.
  7.  導電粒子及び無機フィラーを含有する回路接続用部材における無機フィラー含有領域を形成するために用いられる組成物であって、
     体積基準の粒度分布における50%累積時の粒径D50が0.5~1.0μmであり、95%累積時の粒径D95が0.9~2.0μmである無機フィラーを含有する、無機フィラー含有組成物。
    A composition used for forming an inorganic filler-containing region in a circuit connection member containing conductive particles and an inorganic filler.
    Inorganic filler containing an inorganic filler having a 50% cumulative particle size D50 of 0.5 to 1.0 μm and a 95% cumulative particle size D95 of 0.9 to 2.0 μm in a volume-based particle size distribution. Filler-containing composition.
  8.  前記無機フィラーが、シリカフィラーである、請求項7に記載の無機フィラー含有組成物。 The inorganic filler-containing composition according to claim 7, wherein the inorganic filler is a silica filler.
  9.  熱可塑性樹脂を更に含有する、請求項7又は8に記載の無機フィラー含有組成物。 The inorganic filler-containing composition according to claim 7 or 8, further containing a thermoplastic resin.
  10.  厚みが10μm以下の接着剤層を形成するために用いられる、請求項7~9のいずれか一項に記載の無機フィラー含有組成物。 The inorganic filler-containing composition according to any one of claims 7 to 9, which is used for forming an adhesive layer having a thickness of 10 μm or less.
  11.  第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材との間に、請求項1~6のいずれか一項に記載の回路接続用接着剤フィルムを介在させ、前記第1の回路部材及び前記第2の回路部材を熱圧着して、前記第1の電極及び前記第2の電極を互いに電気的に接続する工程を備える、回路接続構造体の製造方法。 The circuit connection adhesive film according to any one of claims 1 to 6 is interposed between a first circuit member having a first electrode and a second circuit member having a second electrode. A method for manufacturing a circuit connection structure, comprising a step of thermally crimping the first circuit member and the second circuit member to electrically connect the first electrode and the second electrode to each other. ..
  12.  前記第1の回路部材及び前記第2の回路部材のうちの一方がICチップであり、他方がTiを含む電極を有するプラスチック基板である、請求項11に記載の回路接続構造体の製造方法。 The method for manufacturing a circuit connection structure according to claim 11, wherein one of the first circuit member and the second circuit member is an IC chip and the other is a plastic substrate having an electrode containing Ti.
  13.  第1の電極を有する第1の回路部材と、
     第2の電極を有する第2の回路部材と、
     前記第1の回路部材及び前記第2の回路部材の間に配置され、前記第1の電極及び前記第2の電極を互いに電気的に接続する回路接続部と、
    を備え、
     前記回路接続部が、請求項1~6のいずれか一項に記載の回路接続用接着剤フィルムの硬化物を含む、回路接続構造体。
    A first circuit member having a first electrode and
    A second circuit member having a second electrode and
    A circuit connection portion that is arranged between the first circuit member and the second circuit member and electrically connects the first electrode and the second electrode to each other.
    Equipped with
    A circuit connection structure in which the circuit connection portion contains a cured product of the adhesive film for circuit connection according to any one of claims 1 to 6.
  14.  前記第1の回路部材及び前記第2の回路部材のうちの一方がICチップであり、他方がTiを含む電極を有するプラスチック基板である、請求項13に記載の回路接続構造体。 The circuit connection structure according to claim 13, wherein one of the first circuit member and the second circuit member is an IC chip and the other is a plastic substrate having an electrode containing Ti.
PCT/JP2021/035445 2020-09-28 2021-09-27 Adhesive film for circuit connection, composition containing inorganic filler, circuit connection structure and method of manufacturing same WO2022065496A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237013293A KR20230075473A (en) 2020-09-28 2021-09-27 Adhesive film for circuit connection, inorganic filler-containing composition, circuit connection structure, and manufacturing method thereof
CN202180065940.7A CN116348563A (en) 2020-09-28 2021-09-27 Adhesive film for circuit connection, inorganic filler-containing composition, circuit connection structure, and method for producing same
JP2022552108A JPWO2022065496A1 (en) 2020-09-28 2021-09-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020161830 2020-09-28
JP2020-161830 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022065496A1 true WO2022065496A1 (en) 2022-03-31

Family

ID=80845431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035445 WO2022065496A1 (en) 2020-09-28 2021-09-27 Adhesive film for circuit connection, composition containing inorganic filler, circuit connection structure and method of manufacturing same

Country Status (5)

Country Link
JP (1) JPWO2022065496A1 (en)
KR (1) KR20230075473A (en)
CN (1) CN116348563A (en)
TW (1) TW202212519A (en)
WO (1) WO2022065496A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060601A (en) * 1999-08-19 2001-03-06 Sony Chem Corp Bonding material and connection of circuit
JP2011080033A (en) * 2009-05-29 2011-04-21 Hitachi Chem Co Ltd Adhesive composition, adhesive sheet, and method of manufacturing semiconductor device
WO2014046128A1 (en) * 2012-09-24 2014-03-27 積水化学工業株式会社 Adhesive for electronic components and method for producing semiconductor chip mounter
JP2015003935A (en) * 2011-10-20 2015-01-08 日立化成株式会社 Adhesive composition, connection structure and method of producing the structure
WO2015151514A1 (en) * 2014-03-31 2015-10-08 ナガセケムテックス株式会社 Circuit member having hollow section, mounting structure, and mounting structure manufacturing method
WO2018034234A1 (en) * 2016-08-19 2018-02-22 住友ベークライト株式会社 Die attach paste and semiconductor device
WO2019050006A1 (en) * 2017-09-11 2019-03-14 日立化成株式会社 Adhesive film for circuit connection and method for manufacturing same, method for manufacturing circuit connection structure, and adhesive tape-containing set
JP2020107511A (en) * 2018-12-27 2020-07-09 ククド ケミカル カンパニー リミテッド Anisotropic conductive film, cured product thereof and production method of anisotropic conductive film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054288A (en) 2014-09-02 2016-04-14 デクセリアルズ株式会社 Connection body, manufacturing method therefor, electronic component connection method and electronic component

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060601A (en) * 1999-08-19 2001-03-06 Sony Chem Corp Bonding material and connection of circuit
JP2011080033A (en) * 2009-05-29 2011-04-21 Hitachi Chem Co Ltd Adhesive composition, adhesive sheet, and method of manufacturing semiconductor device
JP2015003935A (en) * 2011-10-20 2015-01-08 日立化成株式会社 Adhesive composition, connection structure and method of producing the structure
WO2014046128A1 (en) * 2012-09-24 2014-03-27 積水化学工業株式会社 Adhesive for electronic components and method for producing semiconductor chip mounter
WO2015151514A1 (en) * 2014-03-31 2015-10-08 ナガセケムテックス株式会社 Circuit member having hollow section, mounting structure, and mounting structure manufacturing method
WO2018034234A1 (en) * 2016-08-19 2018-02-22 住友ベークライト株式会社 Die attach paste and semiconductor device
WO2019050006A1 (en) * 2017-09-11 2019-03-14 日立化成株式会社 Adhesive film for circuit connection and method for manufacturing same, method for manufacturing circuit connection structure, and adhesive tape-containing set
JP2020107511A (en) * 2018-12-27 2020-07-09 ククド ケミカル カンパニー リミテッド Anisotropic conductive film, cured product thereof and production method of anisotropic conductive film

Also Published As

Publication number Publication date
KR20230075473A (en) 2023-05-31
CN116348563A (en) 2023-06-27
JPWO2022065496A1 (en) 2022-03-31
TW202212519A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
TW200810243A (en) Conducting particles placement sheet and anisotropic conductive film
WO2022009846A1 (en) Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
CN107079589B (en) Method for manufacturing connected body, method for connecting electronic component, and connected body
WO2021251386A1 (en) Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
WO2022102573A1 (en) Circuit-connection adhesive film and method for producing same, and circuit connection structure and method for producing same
KR20210141953A (en) Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film accommodation set
WO2022102672A1 (en) Adhesive film for circuit connection, method for manufacturing same, connection structure body, and method for manufacturing same
WO2022025207A1 (en) Adhesive film for circuit connection, adhesive composition for circuit connection, and circuit connection structure and method for manufacturing same
WO2022065496A1 (en) Adhesive film for circuit connection, composition containing inorganic filler, circuit connection structure and method of manufacturing same
WO2022107800A1 (en) Adhesive film for circuit connection, and connection structure and method for manufacturing same
KR20200052287A (en) Circuit connecting adhesive film and its manufacturing method, circuit connecting structure manufacturing method, and adhesive film accommodation set
WO2022075370A1 (en) Adhesive film for circuit connection, material for circuit connection, circuit connection structure, and method for manufacturing circuit connection structure
WO2022138747A1 (en) Adhesive film for circuit connection, and circuit connection structure and method for manufacturing same
WO2023106410A1 (en) Adhesive film for circuit connection, and circuit connection structure and method for producing same
TWI627639B (en) Electrical connecting material and manufacturing method thereof, and connecting body
WO2023106400A1 (en) Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
JP2022061623A (en) Adhesive film for circuit connection as well as circuit connection structure and manufacturing method thereof
JP2023086476A (en) Adhesive film for circuit connection, and circuit connection structure and method for manufacturing the same
WO2024042720A1 (en) Adhesive film for circuit connection, connection structure, and methods for producing same
WO2024034464A1 (en) Adhesive film for circuit connection, circuit connection structure, and manufacturing method therefor
JP2022158554A (en) Adhesive film for circuit connection, and circuit connection structure and method for producing the same
TW201834858A (en) Anisotropic conductive connection structure body, method for manufacturing the same, anisotropic conductive film, and anisotropic conductive paste
JP6900741B2 (en) Growing method of anisotropic conductive film, connection structure and connection structure
JP2020186327A (en) Adhesive film production method, adhesive film, and connected body production method
KR20150113418A (en) Anisotropic conductive films, a method for preparing the same, and semiconductive devices comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022552108

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237013293

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872621

Country of ref document: EP

Kind code of ref document: A1