WO2022065492A1 - Lithium ion secondary battery electrode material manufacturing device, lithium ion secondary battery electrode material manufacturing method, and spent positive electrode active material regeneration method - Google Patents

Lithium ion secondary battery electrode material manufacturing device, lithium ion secondary battery electrode material manufacturing method, and spent positive electrode active material regeneration method Download PDF

Info

Publication number
WO2022065492A1
WO2022065492A1 PCT/JP2021/035412 JP2021035412W WO2022065492A1 WO 2022065492 A1 WO2022065492 A1 WO 2022065492A1 JP 2021035412 W JP2021035412 W JP 2021035412W WO 2022065492 A1 WO2022065492 A1 WO 2022065492A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
lithium
ion secondary
secondary battery
lithium ion
Prior art date
Application number
PCT/JP2021/035412
Other languages
French (fr)
Japanese (ja)
Inventor
英明 堀江
祐一郎 横山
亮介 草野
峻 工藤
勇輔 中嶋
佑弥 田中
祐貴 猫橋
Original Assignee
Apb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020160934A external-priority patent/JP2022053995A/en
Priority claimed from JP2020193627A external-priority patent/JP2022082205A/en
Application filed by Apb株式会社 filed Critical Apb株式会社
Publication of WO2022065492A1 publication Critical patent/WO2022065492A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C19/00Apparatus specially adapted for applying particulate materials to surfaces
    • B05C19/06Storage, supply or control of the application of particulate material; Recovery of excess particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to an electrode material manufacturing apparatus for a lithium ion secondary battery, a method for manufacturing an electrode material for a lithium ion secondary battery, and a method for regenerating a used positive electrode active material.
  • lithium-ion batteries have been used as power sources in various fields such as large stationary power sources, power sources for automobiles, and power sources for small electronic devices such as laptop personal computers and mobile phones.
  • a positive electrode active material layer containing a positive electrode active material, a binder resin and an electrolytic solution and a negative electrode active material layer containing a negative electrode active material, a binder resin and an electrolytic solution are laminated with a separator sandwiched between them. It is configured by being stored in a container (Patent Document 1).
  • the positive electrode active material constituting the lithium ion battery is, for example, in the form of particles, and is composed of a composite oxide of lithium and a transition metal, a transition metal oxide, a transition metal sulfide, a conductive polymer, and the like.
  • an electrode such as a lithium ion secondary battery
  • a pre-doping step of pre-doping the electrode material with lithium ions.
  • a carbon material such as activated carbon used as an electrode material is doped with lithium ions.
  • a carbon material is immersed in a doping tank filled with an electrolytic solution containing lithium ions to dope the carbon material with lithium ions.
  • a powder containing lithium is sprayed onto raw material particles made of a positive electrode active material raw material (electrode raw material).
  • a method for producing positive electrode active material particles in which a lithium thin film is formed on raw material particles has been proposed (Patent Document 2).
  • a coating step of coating an electrode material on the surface of a metal foil constituting a negative electrode plate vacuum vapor deposition, electron beam vapor deposition, sputtering, ion plating, CVD, and plasma CVD.
  • a manufacturing method including a film forming step of forming a lithium film on the surface of the electrode material formed in the coating step by any of the ion injection methods has been proposed (Patent Document 3).
  • the capacitor is left in a storage chamber controlled to a predetermined temperature (for example, room temperature) for a predetermined period (for example, 2 to 4 weeks).
  • the vapor-deposited lithium and the negative electrode active material are in electrical contact with each other, the vapor-deposited lithium is dissolved due to the potential difference between the negative electrode potential and the lithium potential, and the lithium ions are the negative electrode active material (amorphous carbon) of the negative electrode plate. ) Is supposed to be stored.
  • Patent Document 3 it takes more time than lithium spraying to form a lithium film on the surface of the negative electrode active material by sputtering or the like, and lithium ions are occluded in the negative electrode active material. Since it is necessary to leave the capacitor at room temperature for several weeks, it cannot be said that the reduction in manufacturing time is sufficient, and there is still room for improvement.
  • the present disclosure has been made in view of the above-mentioned circumstances, and the energy density is further increased by sufficiently introducing lithium sprayed onto the raw material particles of the positive electrode active material as lithium ions into the raw material particles.
  • Lithium-ion secondary battery electrode material manufacturing equipment, lithium-ion secondary battery electrode material manufacturing method which can improve battery performance, shorten manufacturing time, and further improve productivity. It is an object of the present invention to provide a method for regenerating an electrode material for a used lithium ion secondary battery.
  • the electrode material manufacturing apparatus for a lithium ion secondary battery has a layer forming portion for forming a lithium-containing material layer on the electrode raw material by spraying the molten lithium-containing material on the electrode raw material. It has a heat treatment unit for heating the electrode raw material on which the lithium-containing material layer is formed and introducing lithium contained in the lithium-containing material into the electrode raw material to obtain a positive electrode active material.
  • the layer formation in the layer forming portion may be performed in a dry air environment.
  • the heating temperature in the heat treatment section may be in the range of 400 ° C. or higher and 500 ° C. or lower.
  • the heating time in the heat treatment section may be in the range of 10 minutes or more and 1 hour or less.
  • the heat treatment in the layer forming portion may be performed in an inert gas atmosphere.
  • the electrode material manufacturing apparatus for a lithium ion secondary battery includes a supply device for supplying an electrode composition containing an electrode active material and a non-aqueous electrolytic solution, and the supply device supplied from the supply device. Further comprising a transport stage for transporting the electrode composition and a drive roll for driving the transport stage, the supply device includes a storage chamber for storing the electrode composition and the electrode composition stored in the storage chamber.
  • the rotary belt portion has a rotary belt portion for transporting an object and a supply port for supplying the electrode composition to the outside, and the rotary belt portion is an annular transport belt that rotates in one direction along the surface thereof, and the inside of the supply device.
  • the transport stage It has a supplied portion to which the electrode composition is supplied from the supply device, and the transport stage may be directly supported by the drive roll in the supplied portion.
  • the angle ⁇ formed by the first main surface of the rotating belt portion and the transport stage at the point closest to the second end portion may be 10 to 90 °.
  • the radius of the second end portion may be 1 to 25 mm.
  • the moving speed / moving speed of the transport stage may be 0.5 to 1.0.
  • the moving speed of the transfer stage may be 1 to 50 m / min.
  • the radius of the second end portion may be 0.02 to 5 times the radius of the drive roll.
  • a molten lithium-containing material is sprayed on the electrode raw material to form a lithium-containing material layer on the electrode raw material.
  • the layer forming step may be performed in a dry air environment.
  • the heating temperature in the heat treatment step may be in the range of 400 ° C. or higher and 500 ° C. or lower.
  • the heating time in the heat treatment step may be in the range of 10 minutes or more and 1 hour or less.
  • the heat treatment step may be performed in an inert gas atmosphere.
  • the electrode raw material may be a positive electrode active material raw material recovered from a used lithium ion battery.
  • the present disclosure is a method of manufacturing an electrode material for a lithium ion secondary battery using the above-mentioned electrode material manufacturing apparatus for a lithium ion secondary battery, in which the drive roll is driven to convey the transfer stage.
  • the electrode composition supply step of supplying the electrode composition onto the transport stage from the supply port, and the electrode composition supplied onto the transport stage in the gap between the transport stage and the supply device. It may have an electrode active material layer forming step of adjusting the thickness of the electrode composition by passing the electrode composition to obtain an electrode active material layer made of the electrode composition.
  • the electrode composition supplied on the transport stage is passed through a gap between the transport stage and the second end portion of the rotary belt portion. You may.
  • the energy density can be further increased and the battery performance can be improved, and the battery performance can be improved.
  • the time can be further shortened and the productivity can be further improved.
  • FIG. 1 is a schematic view showing an example of an electrode material manufacturing apparatus for a lithium ion secondary battery according to the first embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view showing an example of the configuration of positive electrode active material particles manufactured by the electrode material manufacturing apparatus for a lithium ion secondary battery of the present disclosure.
  • FIG. 3 is a cross-sectional view schematically showing an example of an electrode material manufacturing apparatus for a lithium ion secondary battery according to the second embodiment of the present disclosure.
  • FIG. 4 is a partially enlarged view of the electrode material manufacturing apparatus for a lithium ion secondary battery shown in FIG.
  • FIG. 5 is a perspective view of a supply device constituting the electrode material manufacturing device for a lithium ion secondary battery shown in FIG. FIG.
  • FIG. 6 is a cross-sectional view schematically showing another example of the supply device.
  • FIG. 7 is a cross-sectional view schematically showing still another example of the supply device.
  • FIG. 8 is a perspective view schematically showing a modified example of the electrode material manufacturing apparatus for a lithium ion secondary battery according to the second embodiment.
  • FIG. 9 is a diagram schematically showing the configuration of the assembled battery according to the third embodiment of the present disclosure.
  • FIG. 10 is a diagram schematically showing the configuration of a battery cell according to the third embodiment.
  • FIG. 11 is a plan view of the frame-shaped member according to the third embodiment as viewed from the thickness direction.
  • FIG. 12 is a diagram illustrating the operation of the frame-shaped member according to the third embodiment.
  • FIG. 13 is an enlarged plan view of a main part of the frame-shaped member according to the fourth embodiment of the present disclosure as viewed from the thickness direction.
  • FIG. 14 is a diagram illustrating the operation of the frame-shaped member according to the fourth embodiment.
  • FIG. 15 is an enlarged plan view of a main part of the frame-shaped member according to the fifth embodiment of the present disclosure as viewed from the thickness direction.
  • FIG. 16 is a diagram illustrating the operation of the frame-shaped member according to the fifth embodiment.
  • the lithium ion battery is a concept including a lithium ion secondary battery.
  • FIG. 1 is a schematic view showing an example of an electrode material manufacturing apparatus for a lithium ion secondary battery according to the first embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view showing an example of the configuration of positive electrode active material particles manufactured by an electrode material manufacturing apparatus for a lithium ion secondary battery.
  • the layer forming portion 1 for forming a lithium-containing material layer on the electrode raw material by spraying the molten lithium-containing material on the electrode raw material, and the lithium. It has a heat treatment unit 2 for heating an electrode raw material on which a contained material layer is formed and introducing lithium contained in the lithium-containing material into the electrode raw material to obtain a positive electrode active material.
  • the layer forming section 1 performs a layer forming step described later, and the heat treatment section 2 performs a heat treatment step described later.
  • the lithium ion secondary battery electrode material manufacturing apparatus is not limited to the layer forming unit 1 and the heat treatment unit 2 described above, and may have other configurations other than these configurations.
  • the lithium ion battery to which the positive electrode active material is applied is not particularly limited, and for example, a lithium ion battery having a liquid electrolyte, an all-solid-state battery having a solid electrolyte, a lithium ion battery having an electrode current collector and terminals made of resin, and the like. Can be mentioned. Of these, from the viewpoint of increasing the charging capacity, reducing the cost, and improving the safety, a lithium ion battery in which the electrode current collector and the terminal are made of resin is preferable.
  • the method for producing a positive electrode active material of the present embodiment includes a layer forming step and a heat treatment step.
  • the method for producing the positive electrode active material is not limited to the above steps, and may have other steps before and after each of the above steps.
  • the molten lithium-containing material 12 is sprayed on the electrode raw material 11 to form the lithium-containing material layer 13 on the electrode raw material 11.
  • the lithium-containing material 12 is sprayed onto the electrode raw material 11 while being melted (spraying step).
  • the present invention is not limited to this, and the lithium-containing material 12 may be melted (melting step), and then the melted lithium-containing material may be sprayed onto the electrode raw material 11 (spraying step).
  • the layer forming step is preferably carried out in a dry gas environment in order to suppress the reaction of active lithium with water.
  • a thermal spraying device 20 can be used as a method of spraying the molten lithium-containing material 12 onto the raw material particles of the electrode raw material 11.
  • the thermal spraying device 20 includes, for example, a lithium-containing powder supply unit 21, a heating gas supply unit 22, and a thermal spray nozzle 23.
  • a treatment room dry room
  • dry air having reduced humidity
  • the lithium-containing powder supply unit 21 constituting the thermal spraying device 20 supplies the lithium-containing powder to the thermal spray nozzle 23.
  • the heating gas supply unit 22 supplies the heating gas to the thermal spray nozzle 23.
  • the heating gas functions as a heat energy source for melting the lithium-containing powder and a carrier for injecting the melted lithium-containing powder.
  • an inert gas that does not react with lithium for example, a rare gas such as argon can be used.
  • the lithium-containing powder supplied from the lithium-containing powder supply unit 21 is mixed with the heating gas supplied from the heating gas supply unit 22 on the upstream side of the thermal spray nozzle 23 or in the thermal spray nozzle 23.
  • the lithium-containing powder is melted by the heating gas, becomes a sprayed liquid, and is sprayed onto the raw material particles of the electrode raw material 11.
  • a lithium-containing material layer 13 is formed on the surface of the raw material particles of the electrode raw material 11 (FIG. 2).
  • the electrode raw material 11 is formed on, for example, the electrode sheet 14 and contains raw material particles of the positive electrode active material.
  • the electrode raw material 11 may be made of raw material particles of the positive electrode active material, and in addition to the raw material particles of the positive electrode active material, a conductive auxiliary agent, an adhesive resin, and a solution-drying type known electrode binder (binding). It may contain one or more of the agent). Further, it may contain an electrolyte, a solvent or the like constituting a non-aqueous electrolytic solution used for manufacturing a lithium ion battery.
  • the electrode sheet 14 may be a positive electrode current collector or may be a base material other than the positive electrode current collector.
  • the positive electrode active material particles are not particularly limited as long as they can be used as the positive electrode active material of the lithium ion battery, and for example, a composite oxide of lithium and a transition metal ⁇ a composite oxide having one type of transition metal.
  • a composite oxide of lithium and a transition metal ⁇ a composite oxide having one type of transition metal LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2 , LiMn 2 O 4 , etc.
  • composite oxides with two transition metal elements eg LiFeMnO 4 , LiNi 1-x Co x O 2 , LiMn 1-y Co) y O 2 , LiNi 1/3 Co 1/3 Al 1/3 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2
  • the lithium-containing transition metal phosphate may be obtained by substituting a part of the transition metal site with another transition metal. Further, one selected from these compounds may be used alone, or two or more thereof may be used in combination.
  • the average particle size of the positive electrode active material particles is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, more preferably 1 ⁇ m or more and 50 ⁇ m or less, and further preferably 2 ⁇ m or more and 20 ⁇ m or less from the viewpoint of the electrical characteristics of the lithium ion battery to be manufactured. preferable.
  • the volume average particle size of the positive electrode active material particles referred to here means the particle size (D v50 ) at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method (also referred to as the microtrack method).
  • the laser diffraction / scattering method is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light.
  • a micro manufactured by Nikkiso Co., Ltd. A truck or the like can be used.
  • the electrode raw material 11 contains transition metal oxides containing no lithium, such as cobalt oxide, nickel oxide, nickel-cobalt oxide, nickel-cobalt-aluminum oxide, vanadium oxide, and transition metal sulfides (for example, MoS 2 and TiS). 2 ) may be used.
  • transition metal oxides containing no lithium such as cobalt oxide, nickel oxide, nickel-cobalt oxide, nickel-cobalt-aluminum oxide, vanadium oxide, and transition metal sulfides (for example, MoS 2 and TiS). 2 ) may be used.
  • the shape of the electrode raw material 11 used in the present embodiment is not particularly limited, and various shapes such as a spherical shape, a plate shape, a rod shape, a needle shape, and an indefinite shape can be applied.
  • the conductive auxiliary agent is not particularly limited, but is limited to metals [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, etc.], Thermal lamp black, etc.)] etc. Further, one selected from these conductive aids may be used alone, or two or more thereof may be used in combination. Moreover, you may use these alloys or metal oxides. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, copper, titanium and mixtures thereof are preferable, silver, aluminum, stainless steel and carbon are more preferable, and carbon is more preferable. Further, these conductive auxiliaries may be those obtained by coating a conductive material (a metal one among the above-mentioned conductive auxiliaries materials) around a particle-based ceramic material or a resin material by plating or the like.
  • a conductive material a metal one among the above-mentioned conductive auxiliaries materials
  • the adhesive resin means a resin having adhesiveness (property of adhering by applying a slight pressure without using water, solvent, heat, etc.).
  • Those described as agents can be preferably used.
  • Binders for electrodes include starch, polyvinylidene fluoride (PVdF), polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), and polyethylene.
  • PVdF polyvinylidene fluoride
  • PVA polyvinyl alcohol
  • CMC carboxymethyl cellulose
  • PVP polyvinylpyrrolidone
  • PTFE polytetrafluoroethylene
  • SBR styrene-butadiene rubber
  • PE polypropylene
  • PE polypropylene
  • lithium salts of inorganic acids such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 and LiClO 4 , LiN (CF 3 SO). 2
  • lithium salts of organic acids such as 2 , LiN (C 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 .
  • LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.
  • those used in known non-aqueous electrolytic solutions can be used, for example, lactone compounds, cyclic or chain carbonates other than the above, chain carboxylic acid esters, cyclic or chain ethers, phosphoric acid esters. , Ester compounds, amide compounds, sulfones, sulfolanes and the like, and mixtures thereof.
  • lithium-containing material 12 to be sprayed for example, a lithium metal powder coated with a phosphorus-containing compound or the like can be used.
  • Such lithium metal powder is extremely stable and easy to handle even in air, and can be melted to obtain lithium by heating at a temperature equal to or higher than the melting point temperature of lithium.
  • such lithium-containing powder is heated with a heating gas to enable lithium spraying on the electrode raw material 11.
  • the thermal spraying process includes the above-mentioned flame spraying, but the present invention is not limited to this, and may be arc spraying, plasma spraying, high-speed flame spraying, electromagnetically accelerated plasma spraying, laser spraying, or the like.
  • the electrode raw material 11 on which the lithium-containing material layer 13 is formed is heated, and lithium contained in the lithium-containing material layer 13 is introduced into the electrode raw material 11 to form positive electrode active material particles 16. do.
  • heat diffusion is used as a method of introducing lithium into the electrode raw material 11. That is, by heating the raw material particles of the electrode raw material 11 having the lithium-containing material layer 13 formed on the surface layer by the heating device 25, the lithium of the lithium-containing material layer 13 is applied to the entire inside (from the surface to the center) of the raw material particles. Heat diffuse. As a result, lithium ions are doped into the entire inside of the raw material particles of the electrode raw material 11 (FIG. 2).
  • lithium ions are coordinated between the crystal lattices of the composite oxide of lithium and the transition metal, and the lithium ion concentration distribution in the raw material particles of the electrode raw material 11 is changed from the initial state to the increased hypersaturated state. be able to.
  • the heating device 25 used in this heat treatment step is not particularly limited, but for example, an infrared heating furnace can be used.
  • the heating temperature is set to a temperature range in which lithium is easily diffused and does not scatter, for example, 400 ° C. or higher and 500 ° C. or lower. By setting the heating temperature to 400 ° C. or higher and 500 ° C. or lower, lithium ions can be doped in a more activated state.
  • the heating time is not particularly limited, but is preferably set to, for example, 10 minutes or more and 1 hour or less from the viewpoint of reliably doping lithium ions to the vicinity of the center of the raw material particles.
  • the heating time can be further extended (for example, depending on the specifications of the positive electrode active material layer containing the regenerated positive electrode active material obtained by reliably doping lithium ions (for example, the thickness and area of the layer)). 2 hours or more and 50 hours or less) may be used.
  • the positive electrode active material particles 16 in which lithium ions are coordinated between the crystal lattices of the composite oxide of lithium and the transition metal can be obtained.
  • the layer forming step to the heat treatment step for example, it is preferable to supply the electrode raw material 11 to a series of conveyors to continuously form the positive electrode active material particles 16, but the present invention is not limited to this and is intermittent by a batch method or the like.
  • the positive electrode active material particles 16 may be formed.
  • a forming step of forming a coating layer on the surface of the obtained positive electrode active material particles 16 may be provided.
  • the entire surface of the positive electrode active material particles 16 is covered with the coating layer, the volume change of the positive electrode is alleviated, and the expansion of the positive electrode can be suppressed.
  • Examples of the resin for coating the positive electrode active material constituting the coating layer include an ester compound (a11) of a monovalent aliphatic alcohol having 4 to 12 carbon atoms and (meth) acrylic acid, and (meth) acrylic acid (a12).
  • the compound (b2) having two or more radically polymerizable groups and the (meth) acrylic acid.
  • the content of the ester compound (a11) is not particularly limited, but is 20% by mass with respect to the total mass of the ester compound (a11) and the (meth) acrylic acid (a12) from the viewpoint of adhesion to the active material and the like. It is 98% by mass or less, preferably 40% by mass or more and 97% by mass or less, and more preferably 60% by mass or more and 95% by mass or less.
  • the coating layer may contain the above-mentioned conductive auxiliary agent, if necessary.
  • the lithium of the lithium-containing material layer formed on the surface of the raw material particles by spraying the lithium-containing material can be diffused to the inside of the raw material particles by heat treatment.
  • the positive electrode active material particles in which lithium ions are coordinated can be obtained in the entire interior from the surface to the center of the positive electrode active material particles, and the energy density of the positive electrode active material particles can be further increased to improve the battery performance. It will be possible.
  • the lithium-containing material layer can be formed in a short time as compared with sputtering or the like by spraying the molten lithium, and the lithium ions can be quickly diffused inside the positive electrode active material particles by the heat treatment. Therefore, it is possible to further shorten the production time of the positive electrode active material and further improve the productivity.
  • the used electrode material 11 in the above-described embodiment not only the unused electrode material but also the used electrode material (positive electrode active material) attached to the lithium ion battery can be used.
  • the used electrode material is the one from which the lithium ions existing in the crystal lattice of the composite oxide of lithium and the transition metal have escaped.
  • lithium ions are introduced into the raw material particles of the electrode material by heat treatment (annealing treatment), and the lithium ions are formed into crystal lattice defects of the composite oxide of lithium and the transition metal. It may be arranged.
  • Lithium ions are activated by replenishing the crystal lattice defects, which makes it possible to regenerate the used positive electrode active material. Therefore, the regenerated positive electrode active material can be easily obtained at low cost, and the recyclability of the positive electrode active material can be improved as compared with the conventional case.
  • the used electrode material When the used electrode material is used as the electrode raw material 11, it may further have a step of removing the coating layer on the surface of the positive electrode active material particles in advance. Further, after the electrode raw material 11 is subjected to a heat treatment step, a forming step of forming a coating layer on the surface of the positive electrode active material particles may be further provided.
  • a physical peeling method As a method for removing the coating layer of the used electrode material, either a physical peeling method or a chemical peeling method may be used.
  • the physical peeling method include a method of peeling with a brush or an abrasive.
  • the chemical stripping method include a method of dissolving and removing the coating layer using a solvent capable of dissolving the coating layer, and a method of decomposing and removing the coating layer using a reaction solution capable of decomposing the coating layer. Be done.
  • the electrodes used in a lithium-ion battery are provided with an active material layer containing an active material on a current collector, and a homogeneous active material layer is formed to exhibit stable battery performance.
  • This active material layer is manufactured by supplying a slurry-like electrode material in which the active material is dispersed in a liquid medium to a current collector, drying the particles, and then compacting the particles. However, the drying process is omitted to save energy.
  • a method for producing at low cost a method using granulated particles obtained by granulating active material particles and a binder is known (see Patent Document 4).
  • a current collector As a method for manufacturing a lithium ion battery capable of obtaining a homogeneous active material layer even with low-fluidity particles such as granulated particles obtained by granulating active material particles and binder, for example, a current collector is conveyed. Conveying means to supply, a supply unit that supplies granulated particles containing active material particles and binder to the surface of the current collector being transported, a squeegee that evens out the supplied granulated particles, and an arrangement on the upstream side of the squeegee.
  • Granulation is performed by a device including an adjusting unit for controlling the storage height of the granulated particles stored on the upstream side of the squeegee, and a rolling roll for rolling the leveled granulated particles to form an active material layer.
  • a method for rolling particles is disclosed (see Patent Document 5).
  • the base material is conveyed vertically downward and the base material is conveyed by a pair of press rolls. Is disclosed as a method for producing an electrode sheet by compacting the powder layer (see Patent Document 6).
  • the granulated particles are not stably supplied from the supply unit, and the surface of the active material is roughened, resulting in variations in the density of the active material layer, resulting in electrical characteristics. It was the cause of the variation and the decrease of the yield.
  • the electrode composition can be stably supplied, and an electrode active material layer having no surface roughness can be obtained. It is an object of the present invention to provide an electrode material manufacturing apparatus for an ion secondary battery and a method for manufacturing an electrode material for a lithium ion secondary battery using the manufacturing apparatus.
  • FIG. 3 is a cross-sectional view schematically showing an example of an electrode material manufacturing apparatus for a lithium ion secondary battery according to the second embodiment of the present disclosure.
  • the electrode material manufacturing apparatus 100 for a lithium ion secondary battery is supplied from a supply device 101 for supplying an electrode composition 150 containing an electrode active material and a non-aqueous electrolytic solution, and a supply device 101.
  • a transport stage 160 for transporting the electrode composition 150 and a drive roll 180 for driving the transport stage 160 are provided.
  • the drive roll 180 rotates clockwise and drives the transport stage 160 in the direction from the lower side of the paper surface to the right side of the paper surface (the direction indicated by the arrow A in FIG. 3).
  • FIG. 4 is a partially enlarged view of the electrode material manufacturing apparatus for a lithium ion secondary battery shown in FIG.
  • the moving direction of the rotary belt portion 120 is the direction indicated by the arrow B.
  • the moving direction of the rotating belt portion 120 is equal to the moving direction of the transport stage 160 (the direction indicated by the arrow A in FIG. 4) at the point facing the rotating belt portion 120 at the shortest distance d.
  • FIG. 5 is a perspective view of a supply device constituting the electrode material manufacturing device for a lithium ion secondary battery shown in FIG.
  • the supply device 101 includes a storage chamber 110 for storing the electrode composition 150, a rotary belt portion 120 for transporting the electrode composition 150 stored in the storage chamber 110, and an electrode composition. It has a supply port 130 for supplying 150 to the outside.
  • the rotary belt portion 120 faces the annular transport belt 121 that rotates in one direction along the surface thereof and the first main surface 120a and the first main surface 120a that come into contact with the electrode composition 150 inside the supply device 101. It has two main surfaces 120b, a first end portion 120c and a second end portion 120d constituting the rotation axis of the annular transfer belt 121.
  • the annular transfer belt 121 is the first of the rotary belt portions 120 forming a part of the supply port 130.
  • the two ends are moving in the direction toward the end 120d (the direction indicated by the arrow a in FIG. 3).
  • the annular transport belt 121 is directed toward the first end portion 120c of the rotary belt portion 120 (in FIG. 3). It is moving in the direction indicated by the arrow b). Therefore, the electrode composition 150 stored in the storage chamber 110 is conveyed to the supply port 130 by the annular transfer belt 121. Therefore, even when the fluidity of the electrode composition is low, the electrode composition can be stably supplied onto the transport stage.
  • the electrode composition 150 is supplied onto the transfer stage 160 through the supply port 130 of the supply device 101, and then passes between the second end portion 120d of the rotary belt portion 120 and the transfer stage 160 to have a predetermined thickness. It is adjusted to become the electrode active material layer 151.
  • the transport stage 160 has a supplied portion 160a to which the electrode composition 150 is supplied from the supply device 101.
  • the transport stage 160 is directly supported by the drive roll 180 in the supplied portion 160a.
  • the transfer stage 160a suppresses the positional deviation of the transfer stage 160 in the thickness direction (vertical direction) and is placed on the transfer stage 160. It is possible to suppress variations in the thickness of the supplied electrode composition 150.
  • the electrode composition is stably supplied onto the transport stage, and the supplied portion of the transport stage to which the electrode composition is supplied is driven by a drive roll. It is directly supported. Therefore, the electrode composition can be stably supplied on the transport stage in which the positional deviation in the thickness direction is suppressed, so that the electrode has no surface roughness even when the fluidity of the electrode composition is low. A composition layer can be obtained, which can contribute to improvement of electrical characteristics and product yield.
  • the fact that the transport stage is directly supported by the drive roll in the supplied portion means that a space is provided between the supplied portion of the transport stage and the drive roll to allow vibration of the supplied portion of the transport stage. Refers to the state where it is not.
  • the supplied portion 160a of the transport stage 160 is in close contact with the drive roll 180.
  • a space that allows vibration of the supplied portion 160a of the transport stage 160 between the supplied portion 160a of the transport stage 160 and the drive roll 180. is not formed.
  • the state in which the supplied portion 160a of the transport stage 160 is in close contact with the surface of the drive roll 180 is a state in which the supplied portion 160a of the transport stage 160 is directly supported by the drive roll 180.
  • the transfer stage is not directly supported by the drive rolls, for example, there is a case where the transfer stages are arranged across a plurality of drive rolls, such as a belt conveyor. In this case, the transport stage is provided with a portion that is not directly supported by the drive roll. In such a place, the position deviation in the thickness direction is likely to occur on the transport stage.
  • the transfer stage 160 is directly supported by the drive roll 180 at the point where the rotary belt portion 120 and the transfer stage 160 face each other at the shortest distance d.
  • the electrode composition 150 passes through a point where the rotating belt portion 120 and the transport stage 160 face each other at the shortest distance d, so that the electrode active material layer 151 has an adjusted thickness. That is, the thickness of the electrode active material layer 151 is determined by the shortest distance d between the rotating belt portion 120 and the transport stage 160. Therefore, when the transport stage 160 is directly supported by the drive roll 180 at the point where the rotary belt portion 120 and the transport stage 160 face each other at the shortest distance d, the shortest distance d between the rotary belt section 120 and the transport stage 160 becomes. It is stable and the variation in the thickness of the electrode active material layer 151 can be reduced.
  • a sheet-like base material that is in close contact with the transfer stage and the drive roll may be arranged between the transfer stage and the transfer roll. In this case, it can be said that the transfer stage is directly supported by the drive roll. In this way, even if another configuration is arranged between the transfer stage and the drive roll, if the transfer stage and the drive roll are in close contact with each other through this configuration, the transfer stage Is considered to be directly supported by the drive roll.
  • the surface roughness of the drive roll is not particularly limited, but it is preferable that the surface roughness Ra measured in accordance with JIS B 0601 is 2 ⁇ m or less.
  • the material constituting the drive roll is not particularly limited, and examples thereof include a high carbon chromium bearing steel material (SUJ2).
  • the drive roll may have a multi-layer structure.
  • An example of the case where the drive roll has a multi-layer structure includes a roll made of high carbon chrome bearing steel with a hard chrome plating (for example, a thickness of 30 to 80 ⁇ m) applied to the surface of the roll.
  • the second end portion 120d of the rotary belt portion 120 constitutes one side of the supply port 130, and the side facing the second end portion 120d is formed by the lower end portion 140a of the wall material 140.
  • the supply port 130 has a substantially rectangular shape, the second end portion 120d of the rotary belt portion 120 constitutes one of the long sides, and the lower end portion 140a of the wall material 140 constitutes the other long side.
  • the angle between the first main surface 120a of the rotary belt portion 120 and the transport stage 160 at the point closest to the second end portion 120d is preferably more than 0 ° and 90 ° or less, preferably 10 ° to 90 °. Is preferable.
  • the radius of the second end of the rotating belt portion is not particularly limited, but is preferably 0.02 to 5 times the radius of the drive roll.
  • the radius of the second end of the rotating belt portion is not particularly limited, but is preferably 1 to 25 mm.
  • the ratio of the moving speeds of the rotary belt and the transport stage facing each other is Although not particularly limited, it is preferably 0.5 to 1.0.
  • the moving speed of the annular transport belt may be appropriately set according to the fluidity of the electrode composition, but is preferably 0.5 to 50 m / min, for example.
  • the material constituting the annular transport belt is not particularly limited, but a material having a non-adhesive surface such as a fluororesin (hereinafter, also referred to as a non-adhesive material) is preferably mentioned.
  • a material having a non-adhesive surface such as a fluororesin (hereinafter, also referred to as a non-adhesive material) is preferably mentioned.
  • the material constituting the annular transfer belt is a non-adhesive material, the electrode composition is less likely to adhere to the surface of the annular transfer belt, and variations in the supply amount of the electrode composition are suppressed.
  • the means for rotating the annular conveyor belt is not particularly limited, and examples thereof include a method of rotating the rotation shaft using a rotating body such as a motor.
  • the material constituting the transport stage is not particularly limited, but a material that functions as a current collector such as a positive electrode current collector or a negative electrode current collector can be preferably used.
  • the transport stage functions as a current collector such as a positive electrode current collector or a negative electrode current collector
  • the electrode material for a lithium ion secondary battery is obtained in a state of being arranged on the current collector.
  • the combination of the current collector and the electrode material for the lithium ion secondary battery arranged on the current collector corresponds to the electrode for the lithium ion secondary battery.
  • the material constituting the positive electrode current collector examples include copper, aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, and conductive glass. Further, as the positive electrode current collector, a resin current collector composed of a conductive agent and a resin may be used.
  • the negative electrode current collector examples include copper, aluminum, titanium, stainless steel, nickel, and metal materials such as alloys thereof. Of these, copper is preferable from the viewpoint of weight reduction, corrosion resistance, and high conductivity.
  • the negative electrode current collector may be a current collector made of calcined carbon, a conductive polymer, conductive glass, or the like, or may be a resin current collector made of a conductive agent and a resin.
  • the resins constituting the resin collector include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), and polytetra. Fluoroethylene (PTFE), Styrene-butadiene rubber (SBR), Polyacrylonitrile (PAN), Polymethylacrylate (PMA), Polymethylmethacrylate (PMMA), Polyfluorinated vinylidene (PVdF), Epoxy resin, Silicone resin or mixtures thereof. And so on.
  • polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferable, and polyethylene (PE), polypropylene (PP) and polymethylpentene are more preferable. (PMP).
  • the transfer stage does not function as a current collector such as a positive electrode current collector or a negative electrode current collector
  • the current collector is placed on the transfer stage or the electrode composition from the surface of the transfer stage. It is preferable to construct the transfer stage with a material that can be easily separated.
  • a material that does not function as a current collector is used as the transport stage, lithium ions are obtained by transferring the electrode active material layer obtained after the electrode active material layer forming step described later from the transport stage to the current collector.
  • Electrodes for secondary batteries can be manufactured.
  • Preferred examples of the material from which the electrode composition can be easily separated from the surface of the transport stage include fluororesin and a resin film having a surface subjected to a non-adhesive treatment such as a mold release treatment.
  • the electrode composition is supplied on the current collector arranged on the transfer stage. Therefore, the electrode active material layer is formed on the current collector.
  • the step of supplying the electrode composition onto the current collector arranged on the transport stage is also included in the electrode active material layer forming step described later. In this case, an electrode composed of a current collector and an electrode active material layer formed on the current collector can be formed on the transport stage.
  • the moving speed of the transport stage is not particularly limited, but is preferably 1 to 50 m / min.
  • the shape and size of the storage chamber are not particularly limited as long as they can store the electrode composition.
  • the inner wall of the storage chamber is preferably made of a non-adhesive material such as fluororesin. When the inner wall of the storage chamber is made of a non-adhesive material, the electrode composition can be stably discharged from the storage chamber. Further, the inner wall of the storage chamber may be a surface of a material (for example, metal) that is not a non-adhesive material coated with the non-adhesive material.
  • the shape of the supply port of the supply device is not particularly limited, but a substantially rectangular shape is preferable.
  • the substantially rectangular shape preferably has a short side length of 1 to 50 mm. Further, it is preferable that one of the long sides of the substantially rectangular shape is formed by the second end portion of the rotating belt portion.
  • the position where the supply port is provided may be the bottom surface of the supply device or the side surface.
  • FIG. 6 is a cross-sectional view schematically showing another example of the supply device.
  • the supply device 102 shown in FIG. 6 has a storage chamber 110, a rotary belt portion 120, and a supply port 130.
  • the moving direction of the annular conveyor belt 121 constituting the rotary belt portion 120 is the same as in FIGS. 3 and 5.
  • the position where the rotary belt portion is arranged is not particularly limited.
  • the rotary belt portion may be provided on the bottom surface inclined toward the supply port of the storage chamber, or may be provided on the side surface of the storage chamber.
  • FIG. 7 is a cross-sectional view schematically showing still another example of the supply device.
  • the supply device 103 shown in FIG. 7 has a storage chamber 110, a rotary belt portion 120, and a supply port 130, and the rotary belt portion 120 is arranged along a wall material 142 constituting a side surface of the storage chamber 110.
  • One side of the supply port 130 is formed by the second end portion 120d of the rotating belt portion 120, and the side facing the supply port 130 is formed by the lower end portion 141a of the wall material 141.
  • the annular transfer belt 121 constitutes one side of the supply port 130 on the first main surface 120a of the rotary belt portion 120 arranged on the surface facing the inside of the storage chamber 110 and in contact with the electrode composition.
  • the electrode composition 150 that is moving toward the second end portion 120d of the rotary belt portion 120 (in the direction indicated by the arrow a) and stored in the storage chamber 110 is conveyed to the supply port 130 by the annular transport belt 121. Ru. Therefore, even when the fluidity of the electrode composition is low, the electrode composition can be stably supplied to the outside.
  • the side surface of the storage chamber may be arranged perpendicular to the moving direction of the transport stage, and the side surface of the storage chamber 110 is inclined from the vertical direction. It may be arranged by.
  • the moving direction of the annular transport belt at the position facing the transport stage and the moving direction of the transport stage may be different.
  • FIG. 8 is a perspective view schematically showing a modified example of the electrode material manufacturing apparatus for a lithium ion secondary battery according to the second embodiment.
  • the electrode material manufacturing apparatus 200 for a lithium ion secondary battery shown in FIG. 8 includes a supply device 101 for supplying the electrode composition 150, a transfer stage 160 for transporting the electrode composition 150 supplied from the supply device 101, and a transfer stage.
  • the point that the drive roll 180 for driving the 160 is provided is the same as that of the electrode material manufacturing apparatus 100 for a lithium ion secondary battery shown in FIG.
  • the difference between the lithium ion secondary battery electrode material manufacturing device 200 and the lithium ion secondary battery electrode material manufacturing device 100 is that the supply device 101 is arranged.
  • the moving direction of the rotary belt portion 120 is the direction indicated by the arrow B.
  • the moving direction of the rotating belt portion is opposite to the moving direction of the transport stage 160 (the direction indicated by the arrow A in FIG. 8) at the point facing the rotating belt portion 120 at the shortest distance d.
  • the method for manufacturing an electrode material for a lithium ion secondary battery of the present disclosure is a method for manufacturing an electrode material for a lithium ion secondary battery using the electrode material manufacturing apparatus for a lithium ion secondary battery of the present disclosure, and is the above-mentioned drive roll.
  • the electrode composition supply step the electrode composition is supplied onto the transfer stage from the supply port while the drive roll is driven to transfer the transfer stage.
  • the electrode composition is stably supplied on the transport stage. Further, since the transfer stage is directly supported by the drive roll in the supplied portion of the transfer stage to which the electrode composition is supplied, it is possible to suppress the fluctuation of the thickness of the electrode composition supplied on the transfer stage. can.
  • the electrode composition may be supplied onto a current collector arranged on the transport stage.
  • the thickness of the electrode composition is adjusted by passing the electrode composition supplied on the transfer stage by the electrode composition supply step through the gap between the transfer stage and the supply device. Then, an electrode active material layer made of the electrode composition is obtained. Since the electrode composition supplied onto the transport stage by the electrode composition supply step has less density unevenness and high thickness uniformity, the electrode active material layer forming step has less surface roughness and density unevenness, and thickness. It is possible to form an electrode active material layer with low variation.
  • the length of the gap between the transport stage and the supply device can be appropriately adjusted according to the thickness of the electrode active material layer to be obtained, and is preferably 0.03 to 2 mm, for example.
  • the moving direction of the annular transfer belt and the transfer stage at the position facing the transfer stage is the same.
  • the transfer stage at the point where the electrode active material layer passes is moved by the drive roll. It is preferably directly supported.
  • the electrode composition used in the electrode composition supply step includes an electrode active material and a non-aqueous electrolyte solution.
  • the electrode active material may be a positive electrode active material or a negative electrode active material. Further, the electrode composition may contain a conductive auxiliary agent, if necessary.
  • the positive electrode active material examples include a composite oxide of lithium and a transition metal ⁇ composite oxide having one type of transition metal (LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2 , LiMn2O 4 , etc.) and a transition metal element.
  • LiFeMnO 4 LiNi 1- x Co x O2, LiMn 1-y Coy O2 , LiNi 1/3 Co 1/3 Al 1/3 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2
  • Examples thereof include metal sulfides (eg MoS 2 and TiS 2 ) and conductive polymers (eg polyaniline, polypyrrole, polythiophene, polyacetylene and poly-p-phenylene and polyvinylcarbazole), and two or more thereof may be used in combination.
  • the lithium-containing transition metal phosphate may be one in which a part of the transition metal site is replaced with another transition metal.
  • the volume average particle size of the positive electrode active material is preferably 0.01 to 100 ⁇ m, more preferably 0.1 to 35 ⁇ m, and even more preferably 2 to 30 ⁇ m from the viewpoint of the electrical characteristics of the battery. ..
  • Examples of the negative electrode active material include carbon-based materials [graphite, refractory carbon, amorphous carbon, fired resin (for example, phenol resin, furan resin, etc. baked and carbonized), cokes (for example, pitch coke, needle). Coke and petroleum coke etc.) and carbon fibers], silicon-based materials [silicon, silicon oxide (SiO x ), silicon-carbon composite (carbon particles whose surface is coated with silicon and / or silicon carbide, silicon particles or Silicon oxide particles whose surface is coated with carbon and / or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloys, silicon-lithium alloys, silicon-nickel alloys, silicon-iron alloys, silicon-titanium alloys, etc.
  • carbon-based materials graphite, refractory carbon, amorphous carbon, fired resin (for example, phenol resin, furan resin, etc. baked and carbonized), cokes (for example, pitch coke, needle). Coke and petroleum coke etc.)
  • conductive polymers eg, polyacetylene and polypyrrole, etc.
  • metals tin, aluminum, zirconium, titanium, etc.
  • metal oxides titanium oxides
  • metal alloys for example, lithium-tin alloys, lithium-aluminum alloys, lithium-aluminum-manganese alloys, etc.
  • carbon-based materials, silicon-based materials and mixtures thereof are preferable from the viewpoint of battery capacity and the like, graphite, non-graphitizable carbon and amorphous carbon are more preferable as carbon-based materials, and silicon-based materials are more preferable. , Silicon oxide and silicon-carbon composites are more preferred.
  • the volume average particle size of the negative electrode active material is preferably 0.01 to 100 ⁇ m, more preferably 0.1 to 20 ⁇ m, and even more preferably 2 to 10 ⁇ m from the viewpoint of the electrical characteristics of the battery.
  • the volume average particle size of the negative electrode active material means the particle size (Dv50) at an integrated value of 50% in the particle size distribution obtained by the microtrack method (laser diffraction / scattering method).
  • the microtrack method is a method for obtaining a particle size distribution by using scattered light obtained by irradiating particles with laser light.
  • a microtrack manufactured by Nikkiso Co., Ltd. can be used for measuring the volume average particle size.
  • the conductive auxiliary agent is selected from materials having conductivity. Specifically, metals [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), etc.), etc. ], And a mixture thereof, etc., but is not limited thereto. These conductive auxiliaries may be used alone or in combination of two or more. Moreover, you may use these alloys or metal oxides. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, copper, titanium and mixtures thereof are preferable, silver, aluminum, stainless steel and carbon are more preferable, and carbon is more preferable. Further, these conductive auxiliaries may be those obtained by coating a conductive material (a metal one among the above-mentioned conductive auxiliaries materials) around a particle-based ceramic material or a resin material by plating or the like.
  • a conductive material a metal one among the above-mentioned
  • the average particle size of the conductive auxiliary agent is not particularly limited, but is preferably 0.01 to 10 ⁇ m, more preferably 0.02 to 5 ⁇ m, and 0, from the viewpoint of the electrical characteristics of the battery. It is more preferably 3.03 to 1 ⁇ m.
  • a "particle diameter" means the maximum distance L among the distances between arbitrary two points on the contour line of a conductive auxiliary agent.
  • the average particle size the average value of the particle size of the particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
  • the shape (form) of the conductive auxiliary agent is not limited to the particle form, and may be a form other than the particle form, or may be a form practically used as a so-called filler-based conductive material such as carbon nanotubes.
  • the conductive auxiliary agent may be a conductive fiber whose shape is fibrous.
  • the conductive fibers include polyacrylonitrile (PAN) -based carbon fibers, pitch-based carbon fibers and other carbon fibers, conductive fibers in which highly conductive metals and graphite are uniformly dispersed in synthetic fibers, and stainless steel. Examples thereof include metal fibers obtained by fiberizing such metals, conductive fibers in which the surface of organic fibers is coated with metal, and conductive fibers in which the surface of organic fibers is coated with a resin containing a conductive substance. Among these conductive fibers, carbon fiber is preferable. Further, as the conductive fiber, a polypropylene resin kneaded with graphene is also preferable.
  • the conductive auxiliary agent is a conductive fiber, the average fiber diameter thereof is preferably 0.1 to 20 ⁇ m.
  • the electrode active material may be a coating active material in which at least a part of the surface thereof is coated with a coating layer containing a polymer compound.
  • a coating layer When the periphery of the electrode active material is covered with a coating layer, the volume change of the electrode active material layer is alleviated, and the expansion of the electrode can be suppressed.
  • the coated active material is referred to as a coated positive electrode active material, and the coated active material layer is also referred to as a coated positive electrode active material layer.
  • the coated active material when the negative electrode active material is used is referred to as a coated negative electrode active material, and the coated active material layer is also referred to as a coated negative electrode active material layer.
  • polymer compound constituting the coating layer those described in JP-A-2017-054703 as a resin for coating a non-aqueous secondary battery active material can be preferably used.
  • the electrode active material may be an electrode active material particle aggregate containing electrode active material particles, a conductive auxiliary agent and a pressure-sensitive adhesive.
  • the electrode active material particle aggregate is a kind of granulated particles obtained by granulating the electrode active material particles.
  • the electrode active material particle aggregate can be obtained, for example, with respect to the first mixing step of dry mixing the electrode active material particles and the conductive auxiliary agent to obtain a mixture and the mixture obtained in the first mixing step under stirring.
  • the pressure-sensitive adhesive exhibits adhesiveness to the surface of the electrode active material particles. Therefore, the electrode active material particles and the pressure-sensitive adhesive can be mixed and stirred to granulate the electrode active material particles, and an electrode active material particle aggregate can be obtained.
  • the adhesive has adhesiveness at room temperature and has the property of adhering to the adherend with a light pressure.
  • the pressure-sensitive adhesive is used in the form of a solution in which the pressure-sensitive adhesive is dissolved in a solvent in the method for producing electrode active material particle aggregates of the present disclosure.
  • the pressure-sensitive adhesive composition described in JP-A-2004-143420 and the acrylic pressure-sensitive adhesive composition described in JP-A-2000-239633 can be used, among which 2-ethylhexyl (2-ethylhexyl) can be used. It preferably contains a polymer containing at least one monomer selected from the group consisting of meta) acrylates, (meth) acrylic acids and butyl (meth) acrylates.
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid
  • (meth) acrylate means acrylate and / or methacrylate.
  • the total weight of 2-ethylhexyl (meth) acrylate and (meth) acrylic acid in the constituent monomers of the copolymer is 10% by weight based on the total weight of the constituent monomers of the copolymer. The above is preferable. Further, the total weight of 2-ethylhexyl (meth) acrylate and (meth) acrylic acid in the constituent monomers of the copolymer is 65% by weight or less based on the total weight of the constituent monomers of the copolymer. Is preferable. When the total weight of 2-ethylhexyl (meth) acrylate and (meth) acrylic acid in the constituent monomers of the copolymer is in this range, the strength of the electrode active material particle aggregate is good, which is preferable.
  • a commercially available adhesive [Polythic series (manufactured by Sanyo Chemical Industries, Ltd.), etc.] may be used.
  • the pressure-sensitive adhesive is a solvent-drying type binder for known lithium ion battery electrodes (starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene, polypropylene and styrene-butadiene). It is a different material from polymer etc.).
  • the electrode active material particle agglomerates obtained by the method for producing electrode active material particle agglomerates of the present disclosure the electrode active material particles and the conductive auxiliary agent are integrated with an adhesive, so that the electrode active material particle agglomerates are formed.
  • the solvent-drying type electrode binder is a material that dries and solidifies by volatilizing the solvent component to firmly fix the electrode active material particles and the electrode active material particles and the current collector, and the solid material thereof. The surface is not sticky.
  • the pressure-sensitive adhesive is a material having a property of having stickiness even when the solvent component is volatilized and dried.
  • the electrode active material particle agglomerates obtained by the method for producing the electrode active material particle agglomerates of the present disclosure preferably have a volume average particle diameter of 20 to 350 ⁇ m.
  • the volume average particle diameter is the particle diameter as an aggregate.
  • the volume average particle size of the electrode active material particle aggregate is the particle size at an integrated value of 50% in the particle size distribution on a volume basis obtained by the microtrack method and the laser diffraction / scattering method described in JISZ8825. It means Dv50).
  • the microtrack method is a method for obtaining a particle size distribution by using scattered light obtained by irradiating particles with laser light.
  • a microtrack manufactured by Nikkiso Co., Ltd. can be used for measuring the volume average particle size.
  • non-aqueous electrolyte solution a known non-aqueous electrolyte solution containing an electrolyte and a non-aqueous solvent used for manufacturing a lithium ion secondary battery can be used.
  • lithium salts of inorganic acids such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (FSO 2 ) 2 and LiClO 4 .
  • examples thereof include lithium salts of organic acids such as LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 , and LiN (FSO 2 ) 2 (also referred to as LiFSI). ) Or LiPF 6 .
  • non-aqueous solvent those used in known non-aqueous electrolytic solutions can be used, and for example, a lactone compound, a cyclic or chain carbonate ester, a chain carboxylic acid ester, a cyclic or chain ether, or a phosphoric acid ester can be used. , Ester compounds, amide compounds, sulfones, sulfolanes and the like, and mixtures thereof can be used.
  • lactone compound examples include a 5-membered ring ( ⁇ -butyrolactone and ⁇ -valerolactone, etc.) and a 6-membered ring lactone compound ( ⁇ -valerolactone, etc.).
  • Examples of the cyclic carbonic acid ester include propylene carbonate, ethylene carbonate and butylene carbonate.
  • Examples of the chain carbonate ester include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, di-n-propyl carbonate and the like.
  • Examples of the chain carboxylic acid ester include methyl acetate, ethyl acetate, propyl acetate, methyl propionate and the like.
  • Examples of the cyclic ether include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4-dioxane and the like.
  • Examples of the chain ether include dimethoxymethane and 1,2-dimethoxyethane.
  • Examples of the phosphoric acid ester include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, and tri (trichloromethyl) phosphate.
  • Examples of the nitrile compound include acetonitrile and the like.
  • Examples of the amide compound include DMF and the like.
  • Examples of the sulfone include dimethyl sulfone and diethyl sulfone.
  • One type of non-aqueous solvent may be used alone, or two or more types may be used in combination.
  • lactone compounds, cyclic carbonate esters, chain carbonate esters and phosphate esters are preferable from the viewpoint of battery output and charge / discharge cycle characteristics, and lactone compounds, cyclic carbonate esters and chains are more preferable.
  • a carbonic acid ester is particularly preferable, and a mixed solution of a cyclic carbonic acid ester and a chain carbonic acid ester is particularly preferable.
  • the most preferable is a mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DMC), or a mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC).
  • the coating active material may be produced, for example, by mixing a polymer compound, an electrode active material, and a conductive agent used if necessary, and when a conductive agent is used for the coating layer, the polymer compound and the conductive agent are mixed.
  • the coating material may be produced by mixing the coating material with the electrode active material, or may be produced by mixing the polymer compound, the conductive agent and the electrode active material.
  • the mixing order is not particularly limited, but after the electrode active material and the polymer compound are mixed, the conductive agent is further added and further mixed. Is preferable.
  • the above method at least a part of the surface of the electrode active material is covered with a coating layer containing a polymer compound and a conductive agent used if necessary.
  • the same conductive agent as the conductive auxiliary agent constituting the electrode composition can be preferably used.
  • the electrode composition may further contain a solution-drying type known electrode binder (carboxymethyl cellulose, SBR latex, polyvinylidene fluoride, etc.), an adhesive resin, or the like.
  • a solution-drying type known electrode binder carboxymethyl cellulose, SBR latex, polyvinylidene fluoride, etc.
  • an adhesive resin instead of a known electrode binder.
  • the electrode composition contains the above-mentioned solution-drying type known electrode binder, it is necessary to integrate the electrode composition by performing a drying step after the electrode active material layer forming step.
  • the electrode composition can be integrated with a slight pressure at room temperature without performing a drying step.
  • the electrode composition does not shrink or crack due to heating, which is preferable.
  • the electrode active material layer is maintained as a non-bound body even after undergoing the electrode active material layer forming step. ..
  • the electrode active material layer can be made thicker, and a high-capacity battery can be obtained, which is preferable.
  • the adhesive resin a small amount of an organic solvent is mixed with a polymer compound constituting the coating layer (such as the resin for coating a non-aqueous secondary battery active material described in Japanese Patent Application Laid-Open No. 2017-054703) and its glass transition. Those whose temperature is adjusted to room temperature or lower and those described as an adhesive in JP-A No.
  • the non-bound body means that the electrode active materials constituting the electrode composition are not bonded to each other, and means that the electrode active materials are fixed to each other irreversibly to the bonding. do.
  • the solution-drying type electrode binder is meant to be dried and solidified by volatilizing the solvent component to firmly bond and fix the active substances to each other.
  • the adhesive resin means a resin having adhesiveness (property of adhering by applying a slight pressure without using water, solvent, heat, etc.). Solution-drying electrode binders and adhesive resins are different materials.
  • the electrode composition is in a pendular state or a funicular state.
  • the ratio of the non-aqueous electrolyte solution in the electrode composition is not particularly limited, but in the case of a positive electrode, the proportion of the non-aqueous electrolyte solution is set to 0.5 to 0.5 for the entire electrode composition in order to bring it into a pendular state or a funicular state. It is desirable that the proportion of the non-aqueous electrolytic solution is 15% by weight, and in the case of the negative electrode, 0.5 to 25% by weight of the entire electrode composition.
  • a general lithium ion secondary battery is formed by stacking a plurality of battery cells.
  • the battery cell is, for example, an electrode composition in which a positive electrode composition layer and a negative electrode composition layer are laminated via a separator, and each electrode composition layer is arranged in an annular shape so as to surround the periphery of the electrode composition.
  • a frame-shaped member for sealing and an electrode current collector for covering the frame-shaped member from both sides in the thickness direction and collecting and extracting current are provided.
  • the positive electrode composition layer and the negative electrode composition layer contain electrode active material particles (see Patent Document 7).
  • the pressure inside the frame-shaped member may temporarily increase depending on the usage environment. For example, when discharged or overcharged with a large current, gas may be generated in the electrode composition and the pressure inside the frame-shaped member may increase. With such an increase in pressure, the battery cell may be damaged.
  • FIG. 9 is a diagram schematically showing the configuration of an assembled battery 600 modularized by combining the battery cells 301 according to the third embodiment of the present disclosure.
  • the assembled battery 600 is a so-called lithium ion secondary battery.
  • the assembled battery 600 is formed by stacking a plurality of flat plate-shaped battery cells 301 in the thickness direction.
  • the thickness direction of the battery cell 301 may be described simply as the thickness direction.
  • the assembled battery 600 has an outer layer film 601 provided so as to cover the periphery of the laminated battery cells 301.
  • a flexible insulating material can be used as the outer layer film 601.
  • the present invention is not limited to this, and for example, a laminated film may be used as the outer layer film 601.
  • a laminated film may be used as the outer layer film 601.
  • the assembled battery 600 is provided with current extraction units 602 at both ends of the battery cell 301 in the stacking direction. Current is supplied to various electric products through the current extraction unit 602.
  • FIG. 10 is a schematic configuration diagram of the battery cell 301.
  • the battery cell 301 includes an electrode composition 302, a frame-shaped member 303 that is annularly arranged so as to surround the outer periphery of the electrode composition 302 excluding both sides in the thickness direction, and a frame-shaped member 303.
  • a positive electrode current collector 304 and a negative electrode current collector 305 that close the opening 303a from both sides in the thickness direction are provided.
  • the battery cell 301 is formed, for example, in a rectangular shape when viewed from the thickness direction.
  • the electrode composition 302 is formed by laminating a positive electrode composition layer 306 containing positive electrode active material particles and a negative electrode composition layer 307 containing negative electrode active material particles via a separator 308. Then, the positive electrode current collector 304 is arranged so as to cover the positive electrode composition layer 306, and the negative electrode current collector 305 is arranged so as to cover the negative electrode composition layer 307.
  • An electrode for a lithium ion battery can be obtained by collecting and extracting the current of the battery cell 301 by the positive electrode current collector 304 and the negative electrode current collector 305 (hereinafter, also referred to as the respective pole current collectors 304 and 305).
  • each of the current collectors 304 and 305 is not particularly limited, but it is the same as the external shape of the frame-shaped member 303 in the plan view in the thickness direction, or is substantially similar to the external shape of the frame-shaped member 303, and is slightly smaller than the frame-shaped member. It is preferable that the shape is as small as possible.
  • the materials constituting the current collectors 304 and 305 include metal materials such as copper, aluminum, titanium, stainless steel, nickel and alloys thereof. Of these, copper is preferable from the viewpoint of weight reduction, corrosion resistance, and high conductivity.
  • the negative electrode current collector may be a current collector made of calcined carbon, a conductive polymer, conductive glass, or the like, or may be a resin current collector made of a conductive agent and a resin.
  • the resins constituting the resin collector include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), and polytetra.
  • PE polyethylene
  • PP polypropylene
  • PMP polymethylpentene
  • PCO polycycloolefin
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • PEN polytetra.
  • polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferable, and polyethylene (PE), polypropylene (PP) and polymethylpentene are more preferable. (PMP).
  • the battery cell 301 has a configuration in which the electrolytic solution is sealed by sealing the outer periphery of the positive electrode composition layer 306 and the negative electrode composition layer 307 with the frame-shaped member 303.
  • the assembled battery 600 is configured by stacking the pole current collectors 305 of the battery cells 301 in the same direction and connecting the battery cells 301 in series.
  • the positive electrode collector 304 in one battery cell 301 and the negative electrode current collector 305 in another battery cell 301 adjacent to the battery cell 301 in the stacking direction are in mutual contact with each other.
  • a plurality of battery cells 301 are stacked, and each battery cell 301 is connected in series.
  • the current collector is formed by laminating the positive electrode current collector 304 and the negative electrode current collector 305.
  • a positive electrode is formed on one surface of the current collector and a negative electrode is formed on the other surface to form a bipolar (bipolar) type electrode, and the bipolar (bipolar) type electrode is laminated with a separator. It can also be expressed as a structure.
  • the assembled battery 600 includes a battery cell 301 in which a plurality of each battery cell 301 is stacked and connected in series, but the planar battery (cell unit) is physically connected to the planar battery (cell unit), although it is not electrically connected. It also includes multiple layers that are in contact with each other. Further, when used as a resin collector for a bipolar electrode having a positive electrode formed on one surface of the current collector and a negative electrode formed on the other surface, the assembled battery 600 is a current collector (resin collector for bipolar electrodes). ) Is formed on one surface and a negative electrode is formed on the other surface to form a bipolar electrode, and the bipolar electrode is laminated with a separator to form a laminated body (bipolar battery). good.
  • the assembled battery 600 includes a battery using a liquid material as an electrolyte and a battery using a solid material as an electrolyte (so-called all-solid-state battery). However, even when a solid material is used for the electrolyte, it is premised that the frame-shaped member 303 is used. Further, the assembled battery 600 includes a bipolar type battery in which an electrode is formed by applying a positive electrode active material, a negative electrode active material, or the like to a positive electrode current collector 304 or a negative electrode current collector 305 using a binder, respectively.
  • a bipolar type having a positive electrode active material or the like coated on one surface of a current collector using a binder and a negative electrode active material or the like coated on the opposite surface using a binder and having a negative electrode layer. Includes those that make up the electrodes.
  • the frame-shaped member 303 fixes the peripheral edge portion of the separator 308, and further seals the positive electrode composition layer 306 and the negative electrode composition layer 307.
  • the side on which the electrode composition 302 surrounded by the frame-shaped member 303 is arranged is referred to as the inside of the frame-shaped member 303, and is referred to as the inside of the frame-shaped member 303.
  • the outer peripheral side of the frame-shaped member 303 on the opposite side as the outside of the frame-shaped member 303.
  • FIG. 11 is a plan view of the frame-shaped member 303 as viewed from the thickness direction.
  • the frame-shaped member 303 forms an outer shell of the battery cell 301, and is formed in a rectangular frame shape (frame shape) when viewed from the thickness direction.
  • the frame-shaped member 303 is formed of, for example, an aramid resin.
  • the molding processing temperature of the frame-shaped member 303 is, for example, 120 ° C to 200 ° C. If this temperature range is exceeded, thermal decomposition will occur.
  • a fragile portion 309 is partially formed on the frame-shaped member 303.
  • the fragile portion 309 is formed on a part of the long side of the frame-shaped member 303.
  • the fragile portion 309 is vulnerable as compared with a portion of the frame-shaped member 303 other than the fragile portion 309 formed.
  • the fragile portion 309 has an outer recess 310a formed on the outside of one side of the frame-shaped member 303 and an inner recess 310b formed on the inside. These recesses 310a and 310b form a thin-walled portion 311 as compared to other parts of the frame-shaped member 303. This thin-walled portion 311 becomes a fragile portion 309.
  • the outer recess 310a and the inner recess 310b are formed, for example, in an arc shape when viewed from the thickness direction.
  • the shapes of the recesses 310a and 310b are not particularly limited.
  • the fragile portion 309 thinned by the recesses 310a and 310b may be formed.
  • the shapes of the recesses 310a and 310b may be triangular when viewed from the thickness direction.
  • the fragile portion 309 thinned in this way is more likely to melt than the portion of the frame-shaped member 303 other than the fragile portion 309.
  • the melting point of the fragile portion 309 is about 75 ° C to 90 ° C.
  • FIG. 12 is a diagram illustrating the operation of the frame-shaped member 303.
  • the frame-shaped member 303 is formed with a fragile portion 309. Therefore, as shown in FIG. 12, when the temperature of the battery cell 301 starts to rise abnormally, the fragile portion 309 melts and the opening portion 312 is formed. The inside and outside of the frame-shaped member 303 are communicated with each other through the opening 312. Since the melting point of the fragile portion 309 is, for example, about 75 ° C to 90 ° C, the inside and outside of the frame-shaped member 303 communicate with each other before the expansion of the battery cell 301 starts or the pressure inside the frame-shaped member 303 rises. Will be done.
  • the inside of the frame-shaped member 303 is depressurized through the fragile portion 309 (opening 312) in which the inside and outside are communicated. That is, the fragile portion 309 functions as a pressure release portion that communicates the inside and outside of the frame-shaped member 303 when the pressure inside the frame-shaped member 303 increases by a certain amount or more.
  • the battery cell 301 described above has a frame-shaped member 303 on which the fragile portion 309 is formed. Therefore, it is possible to suppress an increase in the pressure inside the frame-shaped member 303, and it is possible to reliably prevent damage to the battery cell 301.
  • the fragile portion 309 is formed by forming a thin portion 311 in the frame-shaped member 303 by the outer recess 310a and the inner recess 310b. By forming the thin-walled portion 311 in this way, the fragile portion 309 can be easily provided.
  • the present invention is not limited to this, and a thin portion having a thinner wall than other portions may be formed in a part of the frame-shaped member 303.
  • a thin-walled portion that is thinner in the thickness direction than other portions may be formed in a part of the frame-shaped member 303, and this thin-walled portion may be used as the fragile portion 309.
  • the separator 308 and the polar current collectors 304 and 305 may be formed of aramid resin. Even when the frame-shaped member 303 and the separator 308 and the pole collectors 304 and 305 are made of the same material, the fragile portion 309 is compared with the melting points of the separator 308 and the pole collectors 304 and 305. The melting point becomes lower. Therefore, the same effect as that of the third embodiment described above is obtained.
  • PVdF polyvinylidene fluoride
  • polytetrafluoroethylene polyethylene, polypropylene, polyamide, polyimide, polyamideimide, polyvinyl alcohol, polyacrylic acid, polyacrylic acid, methylpolyacrylic acid, ethyl polyacrylate, poly Hexyl acrylate, polymethacrylic acid, methylpolymethacrylate, ethyl polymethacrylate, hexylpolymethacrylate, vinyl acetate, polyvinylpyrrolidone, polyether, polyether sulfone, polyhexafluoropropylene, styrene butadiene rubber, carboxymethyl cellulose, etc. Can also be used. These materials may be used alone or in combination of two or more.
  • the battery cell 301 is composed of an electrode composition 302, a frame-shaped member 403 arranged in an annular shape so as to surround the outer periphery of the electrode composition 302 excluding both sides in the thickness direction, and a frame-shaped member 403.
  • the basic configuration of the positive electrode current collector 304 and the negative electrode current collector 305 that close the opening 403a from both sides in the thickness direction is the same as that of the third embodiment described above (the following third embodiment). But the same).
  • FIG. 13 is an enlarged plan view of a main part of the frame-shaped member 403 as viewed from the thickness direction.
  • the difference between the third embodiment and the fourth embodiment is the configuration of the fragile portion 309 formed in the frame-shaped member 303 of the third embodiment and the fourth embodiment. It is different from the configuration of the fragile portion 409 provided in the frame-shaped member 403. That is, the fragile portion 409 of the fourth embodiment is a low melting point portion 313 having a melting point lower than the melting point of a portion other than the fragile portion 409 in the frame-shaped member 403.
  • the low melting point portion 313 is formed of, for example, a material having a melting point of about 75 ° C. to 90 ° C.
  • the low melting point portion 313 may be formed separately from the frame-shaped member 403 and then assembled to the frame-shaped member 403. Further, the frame-shaped member 403 and the low melting point portion 313 may be integrally molded. When the frame-shaped member 403 and the low melting point portion 313 are integrally molded, various injection molding methods such as two-color molding, sandwich molding, and ultra-high-speed injection molding can be adopted.
  • a recess 314 is formed in a portion of the frame-shaped member 403 corresponding to the low melting point portion 313.
  • the low melting point portion 313 is formed with a convex portion 315 fitted into the concave portion 314.
  • the concave portion 314 and the convex portion 315 are formed by, for example, fitting a dovetail concave portion and a dovetail convex portion. As a result, the low melting point portion 313 (fragile portion 209) is surely prevented from falling off from the frame-shaped member 403.
  • the frame-shaped member 403 and the low melting point portion 313 are integrally molded by fitting the dovetail concave portion and the dovetail convex portion, an anchor effect is exhibited and the low melting point portion 313 from the frame-shaped member 403 is exhibited. Can be reliably prevented from peeling.
  • the low melting point portion 313 is formed with an opening 316 that penetrates in the thickness direction in most of the center when viewed from the thickness direction. By forming the opening 316, the outer wall thickness and the inner wall thickness of the low melting point portion 313 are reduced.
  • FIG. 14 is a diagram illustrating the operation of the frame-shaped member 403.
  • the frame-shaped member 403 is provided with a low melting point portion 313 (fragile portion 409). Therefore, as shown in FIG. 14, when the temperature of the battery cell 301 starts to rise abnormally, the low melting point portion 313 melts. Since the opening 316 is formed in the low melting point portion 313, the outer opening portion 317 and the inner opening portion 318 are formed when the low melting point portion 313 melts. The inside and outside of the frame-shaped member 403 are communicated with each other through these openings 316, 317, 318.
  • the melting point of the fragile portion 309 is, for example, about 75 ° C to 90 ° C
  • the inside and outside of the frame-shaped member 403 communicate with each other before the expansion of the battery cell 301 starts or the pressure inside the frame-shaped member 303 rises. Will be done. Therefore, the inside of the frame-shaped member 303 is depressurized through the fragile portion 409 (openings 316, 317, 318) in which the inside and outside are communicated. That is, the fragile portion 409 functions as a pressure release portion that communicates the inside and outside of the frame-shaped member 403 when the pressure inside the frame-shaped member 403 increases by a certain amount or more.
  • the same effect as that of the above-mentioned third embodiment is obtained. Further, by forming the opening 316 in the low melting point portion 313, the wall thickness in the inner and outer directions of the low melting point portion 313 can be reduced. As a result, when the temperature of the battery cell 301 rises abnormally, it becomes possible to easily form an opening (outer opening 317, inner opening 318). Therefore, it is possible to more reliably release the pressure inside the frame-shaped member 303.
  • the opening 316 is formed in the low melting point portion 313 .
  • the present invention is not limited to this, and the opening 316 may not be formed as long as the inside and outside of the frame-shaped member 403 can communicate with each other via the low melting point portion 313 when the temperature of the battery cell 301 rises abnormally.
  • FIG. 15 is an enlarged plan view of a main part of the frame-shaped member 503 as viewed from the thickness direction.
  • the frame-shaped member 503 is provided with a plug 319 instead of the fragile portions 309 and 409.
  • This point is different from the above-mentioned third and fourth embodiments. That is, an opening 321 that communicates the inside and outside of the frame-shaped member 503 is formed in a part of the long side of the frame-shaped member 503.
  • An engaging recess 322 is formed on the inner peripheral surface 321a of the opening 321.
  • the plug 319 is fitted so as to close such an opening 321.
  • the plug 319 is made of the same material as, for example, the frame-shaped member 503.
  • the plug 319 is integrally formed with an engaging convex portion 323 that is engaged with the engaging concave portion 322.
  • the strength of the engaging convex portion 323 is such that it is deformed or damaged when a certain external force is applied to the plug 319.
  • the plug 319 functions as a pressure relief portion that communicates the inside and outside of the frame-shaped member 503 when the pressure inside the frame-shaped member 503 rises by a certain amount or more. Therefore, according to the above-mentioned fifth embodiment, the same effects as those of the above-mentioned third and fourth embodiments are obtained.
  • the present invention is not limited to this, and it may be configured so that the inside and outside of the frame-shaped member 503 communicate with each other when the pressure inside the frame-shaped member 503 increases by a certain amount or more.
  • a film-like body that breaks when the pressure inside the frame-shaped member 503 rises by a certain amount or more may be provided in place of the plug 319. When the film state is damaged, the inside and outside of the frame-shaped member 503 are communicated with each other.
  • the present invention is not limited to this, and the fragile portions 309, 409 and the plug 319 may be formed or provided on a part of the frame-shaped members 303, 403, 503.
  • a fragile portion 309,409 may be formed on a part of the short side of the frame-shaped member 303, 403, 503, a plug 319 may be provided, or a fragile portion 309, 409 may be provided on a corner portion of the frame-shaped member 303, 403, 503. It may be formed or a plug 319 may be provided. Further, only one of the frame-shaped members 303, 403, 503 arranged around the positive electrode composition layer 306 or the frame-shaped members 303, 403, 503 arranged around the negative electrode composition layer 307. The fragile portions 309 and 409 may be formed or the plug 319 may be provided.
  • the electrode composition 302 is formed by laminating a positive electrode composition layer 306 containing positive electrode active material particles and a negative electrode composition layer 307 containing negative electrode active material particles via a separator 308.
  • the electrode composition 302 may be composed of one kind of electrode composition layer.
  • the case where the openings 303a and 403a of the frame-shaped members 303, 403 and 403 are closed by the respective current collectors 304 and 305 from both sides in the thickness direction has been described.
  • the present invention is not limited to this, and instead of the respective current collectors 304 and 305, a base material that simply closes the openings 303a and 403a of the frame-shaped members 303, 403 and 503 may be provided.
  • an electrode material manufacturing apparatus for a lithium ion secondary battery and a method for manufacturing an electrode material for a lithium ion secondary battery are particularly lithium ion used in a stationary storage battery, a hybrid vehicle, an electric vehicle, a mobile phone, a personal computer, and the like. It is useful as a manufacturing apparatus and manufacturing method for manufacturing battery electrodes. It is also extremely useful as a method for recycling lithium-ion batteries used in the above devices and the like.
  • the present-disclosed method for manufacturing an electrode material for a lithium ion secondary battery and a method for manufacturing an electrode material for a lithium ion secondary battery are bipolar secondary type used especially for a mobile phone, a personal computer, a hybrid vehicle and an electric vehicle. It is useful as a manufacturing apparatus and manufacturing method for manufacturing electrode materials for batteries and lithium ion secondary batteries.
  • the inside and outside of the frame-shaped member are communicated with each other, so that the pressure inside the frame-shaped member increases. It can be suppressed. Therefore, damage to the battery cell can be prevented.
  • the electrode composition is formed by laminating a positive electrode composition layer and a negative electrode composition layer via a separator.

Abstract

A lithium ion secondary battery electrode material manufacturing device according to the present invention comprises: a layer formation section (1) in which a melted lithium-containing material is sprayed onto an electrode raw material to form a lithium-containing material layer on the electrode raw material; and a heat treatment section (2) in which the electrode raw material having the lithium-containing material layer formed thereon is heated, and the lithium contained in the lithium-containing material is introduced into the electrode raw material to obtain a positive electrode active material.

Description

リチウムイオン二次電池用電極材製造装置、リチウムイオン二次電池用電極材の製造方法、及び使用済み正極活物質の再生方法Lithium-ion secondary battery electrode material manufacturing equipment, lithium-ion secondary battery electrode material manufacturing method, and used positive electrode active material regeneration method
 本開示は、リチウムイオン二次電池用電極材製造装置、リチウムイオン二次電池用電極材の製造方法、及び使用済み正極活物質の再生方法に関する。 The present disclosure relates to an electrode material manufacturing apparatus for a lithium ion secondary battery, a method for manufacturing an electrode material for a lithium ion secondary battery, and a method for regenerating a used positive electrode active material.
 従来、大型定置電源、自動車の動力用電源、或いは、ラップトップ型パソコン、携帯電話等の小型電子機器用電源など、様々な分野の電源としてリチウムイオン電池が用いられている。一般的なリチウムイオン電池は、正極活物質、バインダー樹脂及び電解液を含む正極活物質層と、負極活物質、バインダー樹脂及び電解液を含む負極活物質層とがセパレータを挾んで積層された状態で容器に収納されて構成されている(特許文献1)。 Conventionally, lithium-ion batteries have been used as power sources in various fields such as large stationary power sources, power sources for automobiles, and power sources for small electronic devices such as laptop personal computers and mobile phones. In a general lithium ion battery, a positive electrode active material layer containing a positive electrode active material, a binder resin and an electrolytic solution and a negative electrode active material layer containing a negative electrode active material, a binder resin and an electrolytic solution are laminated with a separator sandwiched between them. It is configured by being stored in a container (Patent Document 1).
 リチウムイオン電池を構成する正極活物質は、例えば粒子状を成し、リチウムと遷移金属との複合酸化物、遷移金属酸化物、遷移金属硫化物、及び導電性高分子などから構成されている。 The positive electrode active material constituting the lithium ion battery is, for example, in the form of particles, and is composed of a composite oxide of lithium and a transition metal, a transition metal oxide, a transition metal sulfide, a conductive polymer, and the like.
 従来、リチウムイオン二次電池などの電極を製造する工程には、電極材料に予めリチウムイオンをドーピングさせるプレドーピング工程がある。例えば、リチウムイオン二次電池の負電極(アノード)を製造する際に、電極材料として用いられる活性炭素などの炭素材料にリチウムイオンをドーピングさせている。このようなリチウムのドーピング工程としては、典型的には、リチウムイオンを含む電解液が満たされたドーピング槽内に、炭素材料を浸すことによってその炭素材料にリチウムイオンをドーピングさせている。しかし、このような湿式のドーピング工程では,炭素材料全体に均一にリチウムイオンがドーピングされるまでに数日間という非常に長い時間がかかり、リチウムイオンキャパシタの生産効率を低下させる大きな要因となっていた。 Conventionally, in the process of manufacturing an electrode such as a lithium ion secondary battery, there is a pre-doping step of pre-doping the electrode material with lithium ions. For example, when manufacturing a negative electrode (anode) of a lithium ion secondary battery, a carbon material such as activated carbon used as an electrode material is doped with lithium ions. In such a lithium doping step, typically, a carbon material is immersed in a doping tank filled with an electrolytic solution containing lithium ions to dope the carbon material with lithium ions. However, in such a wet doping process, it takes a very long time of several days for the entire carbon material to be uniformly doped with lithium ions, which has been a major factor in reducing the production efficiency of lithium ion capacitors. ..
 そこで、電極材料にリチウムイオンをドーピングする時間を短縮するために、例えばリチウムイオンキャパシタの正極の製造方法として、正極活物質原料(電極原料)からなる原料粒子に向けて、リチウムを含む粉末を溶射し、原料粒子にリチウム薄膜を形成した正極活物質粒子を製造する方法が提案されている(特許文献2)。 Therefore, in order to shorten the time for doping the electrode material with lithium ions, for example, as a method for manufacturing a positive electrode of a lithium ion capacitor, a powder containing lithium is sprayed onto raw material particles made of a positive electrode active material raw material (electrode raw material). However, a method for producing positive electrode active material particles in which a lithium thin film is formed on raw material particles has been proposed (Patent Document 2).
 また、リチウムイオンキャパシタの負極の製造方法として、負極板を構成する金属箔の表面に電極材料を塗着する塗着工程と、真空蒸着、電子ビーム蒸着、スパッタリング、イオンプレーティング、CVD、プラズマCVD、イオン注入のうちのいずれかの方法で、該塗着工程で形成された電極材料の表面にリチウム膜を形成する成膜工程とを含む製造方法が提案されている(特許文献3)。本製造方法では、所定温度(例えば、室温)に管理された貯蔵室に所定期間(例えば、2週間~4週間)、キャパシタを放置する。このとき、蒸着リチウムと負極活物質とが電気的に接触しているため、負極電位とリチウム電位との電位差により、蒸着リチウムが溶解し、リチウムイオンが負極板の負極活物質(非晶質炭素)に吸蔵されるとされている。 Further, as a method for manufacturing a negative electrode of a lithium ion capacitor, a coating step of coating an electrode material on the surface of a metal foil constituting a negative electrode plate, vacuum vapor deposition, electron beam vapor deposition, sputtering, ion plating, CVD, and plasma CVD. , A manufacturing method including a film forming step of forming a lithium film on the surface of the electrode material formed in the coating step by any of the ion injection methods has been proposed (Patent Document 3). In this production method, the capacitor is left in a storage chamber controlled to a predetermined temperature (for example, room temperature) for a predetermined period (for example, 2 to 4 weeks). At this time, since the vapor-deposited lithium and the negative electrode active material are in electrical contact with each other, the vapor-deposited lithium is dissolved due to the potential difference between the negative electrode potential and the lithium potential, and the lithium ions are the negative electrode active material (amorphous carbon) of the negative electrode plate. ) Is supposed to be stored.
特開2006-324118号公報Japanese Unexamined Patent Publication No. 2006-324118 特許第6084841号公報Japanese Patent No. 6084441 特開2012-199460号公報Japanese Unexamined Patent Publication No. 2012-199460 特開2014-078497号公報Japanese Unexamined Patent Publication No. 2014-07847 特開2016-119207号公報Japanese Unexamined Patent Publication No. 2016-119207 国際公開第2016/111137号International Publication No. 2016/11137 特開2017-33937号公報Japanese Unexamined Patent Publication No. 2017-33937
 しかしながら、上記特許文献2の製造方法では、得られた正極活物質粒子の表面付近にリチウムが偏在したままであり、粒子内部までリチウムイオンが拡散していない場合がある。このため、リチウムイオン電池の正極活物質として用いた際にエネルギー密度を高めることができず、電池性能を向上することができないという問題がある。 However, in the production method of Patent Document 2, lithium may remain unevenly distributed near the surface of the obtained positive electrode active material particles, and lithium ions may not be diffused into the particles. Therefore, there is a problem that the energy density cannot be increased when the lithium ion battery is used as the positive electrode active material, and the battery performance cannot be improved.
 また、上記特許文献3の製造方法では、負極活物質の表面にスパッタリング等によりリチウム膜を形成するにはリチウム溶射よりも多くの時間を要し、また、リチウムイオンを負極活物質に吸蔵させるためにキャパシタを室温で数週間程度放置する必要があることから、製造時間の短縮が十分とは言えず、未だ改善の余地がある。 Further, in the production method of Patent Document 3, it takes more time than lithium spraying to form a lithium film on the surface of the negative electrode active material by sputtering or the like, and lithium ions are occluded in the negative electrode active material. Since it is necessary to leave the capacitor at room temperature for several weeks, it cannot be said that the reduction in manufacturing time is sufficient, and there is still room for improvement.
 本開示は、前述した事情に鑑みてなされたものであって、正極活物質の原料粒子に吹き付けたリチウムを、リチウムイオンとして原料粒子の内部まで十分に導入することにより、エネルギー密度をより高めて電池性能を向上することができ、且つ製造時間をより短縮して生産性を更に向上することが可能なリチウムイオン二次電池用電極材製造装置、リチウムイオン二次電池用電極材の製造方法、及び使用済みリチウムイオン二次電池用電極材の再生方法を提供することを目的とする。 The present disclosure has been made in view of the above-mentioned circumstances, and the energy density is further increased by sufficiently introducing lithium sprayed onto the raw material particles of the positive electrode active material as lithium ions into the raw material particles. Lithium-ion secondary battery electrode material manufacturing equipment, lithium-ion secondary battery electrode material manufacturing method, which can improve battery performance, shorten manufacturing time, and further improve productivity. It is an object of the present invention to provide a method for regenerating an electrode material for a used lithium ion secondary battery.
 上記の課題を解決するために、リチウムイオン二次電池用電極材製造装置は、電極原料に溶融させたリチウム含有材料を吹き付けて、前記電極原料にリチウム含有材料層を形成する層形成部と、前記リチウム含有材料層が形成された前記電極原料を加熱し、前記リチウム含有材料に含まれるリチウムを前記電極原料の内部に導入して、正極活物質を得る熱処理部と、を有する。 In order to solve the above problems, the electrode material manufacturing apparatus for a lithium ion secondary battery has a layer forming portion for forming a lithium-containing material layer on the electrode raw material by spraying the molten lithium-containing material on the electrode raw material. It has a heat treatment unit for heating the electrode raw material on which the lithium-containing material layer is formed and introducing lithium contained in the lithium-containing material into the electrode raw material to obtain a positive electrode active material.
 本開示では、前記層形成部における層形成は、乾燥空気環境下で行われてもよい。 In the present disclosure, the layer formation in the layer forming portion may be performed in a dry air environment.
 また、本開示では、前記熱処理部における加熱温度は、400℃以上500℃以下の範囲であってもよい。 Further, in the present disclosure, the heating temperature in the heat treatment section may be in the range of 400 ° C. or higher and 500 ° C. or lower.
 また、本開示では、前記熱処理部における加熱時間は、10分以上1時間以下の範囲であってもよい。 Further, in the present disclosure, the heating time in the heat treatment section may be in the range of 10 minutes or more and 1 hour or less.
 また、本開示では、前記層形成部における熱処理は、不活性ガス雰囲気下で行われてもよい。 Further, in the present disclosure, the heat treatment in the layer forming portion may be performed in an inert gas atmosphere.
 また、本開示では、前記リチウムイオン二次電池用電極材製造装置は、電極活物質と非水電解液とを含んでなる電極組成物を供給する供給装置と、前記供給装置から供給された前記電極組成物を搬送する搬送ステージと、前記搬送ステージを駆動する駆動ロールと、を更に備え、前記供給装置は、前記電極組成物を貯留する貯留室と、前記貯留室に貯留された前記電極組成物を搬送する回転ベルト部と、前記電極組成物を外部に供給する供給口とを有し、前記回転ベルト部は、その表面に沿って一方向に回転する環状搬送ベルト、前記供給装置の内部において前記電極組成物と接触する第1主面、並びに、前記環状搬送ベルトの回転軸を構成する第1端部及び第2端部を有し、前記第1主面における前記環状搬送ベルトの移動方向が、前記第1端部を始点として前記第2端部に向かう方向であり、前記回転ベルト部の前記第2端部が、前記供給口の一部を構成しており、前記搬送ステージは、前記供給装置から前記電極組成物が供給される被供給部を有し、前記被供給部において、前記搬送ステージが前記駆動ロールによって直接支持されていてもよい。 Further, in the present disclosure, the electrode material manufacturing apparatus for a lithium ion secondary battery includes a supply device for supplying an electrode composition containing an electrode active material and a non-aqueous electrolytic solution, and the supply device supplied from the supply device. Further comprising a transport stage for transporting the electrode composition and a drive roll for driving the transport stage, the supply device includes a storage chamber for storing the electrode composition and the electrode composition stored in the storage chamber. The rotary belt portion has a rotary belt portion for transporting an object and a supply port for supplying the electrode composition to the outside, and the rotary belt portion is an annular transport belt that rotates in one direction along the surface thereof, and the inside of the supply device. It has a first main surface in contact with the electrode composition, and first and second ends constituting the rotation axis of the annular transfer belt, and the movement of the annular transfer belt on the first main surface. The direction is from the first end portion to the second end portion, the second end portion of the rotating belt portion constitutes a part of the supply port, and the transport stage is It has a supplied portion to which the electrode composition is supplied from the supply device, and the transport stage may be directly supported by the drive roll in the supplied portion.
 また、本開示では、前記回転ベルト部の前記第1主面と、前記第2端部に最も近い地点における前記搬送ステージとのなす角度θが、10~90°であってもよい。 Further, in the present disclosure, the angle θ formed by the first main surface of the rotating belt portion and the transport stage at the point closest to the second end portion may be 10 to 90 °.
 また、本開示では、前記第2端部の半径が、1~25mmであってもよい。 Further, in the present disclosure, the radius of the second end portion may be 1 to 25 mm.
 また、本開示では、前記回転ベルト部の前記第2端部と前記搬送ステージとが最短距離で対向する地点において、互いに対向する前記回転ベルト部と前記搬送ステージの移動速度の比(回転ベルト部の移動速度/搬送ステージの移動速度)が、0.5~1.0であってもよい。 Further, in the present disclosure, the ratio of the moving speeds of the rotary belt portion and the transport stage facing each other (rotary belt portion) at the point where the second end portion of the rotary belt portion and the transfer stage face each other at the shortest distance. The moving speed / moving speed of the transport stage) may be 0.5 to 1.0.
 また、本開示では、前記搬送ステージの移動速度が、1~50m/分であってもよい。 Further, in the present disclosure, the moving speed of the transfer stage may be 1 to 50 m / min.
 また、本開示では、前記第2端部の半径は、前記駆動ロールの半径の0.02~5倍の大きさであってもよい。 Further, in the present disclosure, the radius of the second end portion may be 0.02 to 5 times the radius of the drive roll.
 また、上記の課題を解決するために、本開示のリチウムイオン二次電池用電極材の製造方法は、電極原料に溶融させたリチウム含有材料を吹き付けて、前記電極原料にリチウム含有材料層を形成する層形成工程と、前記リチウム含有材料層が形成された前記電極原料を加熱し、前記リチウム含有材料に含まれるリチウムを前記電極原料の内部に導入して、正極活物質を得る熱処理工程と、を有する。 Further, in order to solve the above-mentioned problems, in the method for producing an electrode material for a lithium ion secondary battery of the present disclosure, a molten lithium-containing material is sprayed on the electrode raw material to form a lithium-containing material layer on the electrode raw material. A layer forming step of heating the electrode raw material on which the lithium-containing material layer is formed, and a heat treatment step of introducing lithium contained in the lithium-containing material into the electrode raw material to obtain a positive electrode active material. Have.
 本開示では、前記層形成工程は、乾燥空気環境下で行われてもよい。 In the present disclosure, the layer forming step may be performed in a dry air environment.
 また、本開示では、前記熱処理工程における加熱温度は、400℃以上500℃以下の範囲であってもよい。 Further, in the present disclosure, the heating temperature in the heat treatment step may be in the range of 400 ° C. or higher and 500 ° C. or lower.
 また、本開示では、前記熱処理工程における加熱時間は、10分以上1時間以下の範囲であってもよい。 Further, in the present disclosure, the heating time in the heat treatment step may be in the range of 10 minutes or more and 1 hour or less.
 また、本開示では、前記熱処理工程は、不活性ガス雰囲気下で行ってもよい。 Further, in the present disclosure, the heat treatment step may be performed in an inert gas atmosphere.
 また、本開示では、前記電極原料は、使用済みリチウムイオン電池から回収された正極活物質原料であってもよい。 Further, in the present disclosure, the electrode raw material may be a positive electrode active material raw material recovered from a used lithium ion battery.
 また、本開示では、上記のリチウムイオン二次電池用電極材製造装置を用いたリチウムイオン二次電池用電極材の製造方法であって、前記駆動ロールを駆動させて前記搬送ステージを搬送しながら、前記電極組成物を前記供給口から前記搬送ステージ上に供給する電極組成物供給工程と、前記搬送ステージと前記供給装置との間の隙間に前記搬送ステージ上に供給された前記電極組成物を通過させることで、前記電極組成物の厚さを調節して、前記電極組成物からなる電極活物質層を得る電極活物質層形成工程と、を有していてもよい。 Further, in the present disclosure, it is a method of manufacturing an electrode material for a lithium ion secondary battery using the above-mentioned electrode material manufacturing apparatus for a lithium ion secondary battery, in which the drive roll is driven to convey the transfer stage. The electrode composition supply step of supplying the electrode composition onto the transport stage from the supply port, and the electrode composition supplied onto the transport stage in the gap between the transport stage and the supply device. It may have an electrode active material layer forming step of adjusting the thickness of the electrode composition by passing the electrode composition to obtain an electrode active material layer made of the electrode composition.
 また、本開示では、前記電極活物質層形成工程において、前記搬送ステージと前記回転ベルト部の前記第2端部との間の隙間に前記搬送ステージ上に供給された前記電極組成物を通過させてもよい。 Further, in the present disclosure, in the electrode active material layer forming step, the electrode composition supplied on the transport stage is passed through a gap between the transport stage and the second end portion of the rotary belt portion. You may.
 本開示によれば、正極活物質の原料粒子に吹き付けたリチウムを、リチウムイオンとして原料粒子の内部まで十分に導入することにより、エネルギー密度をより高めて電池性能を向上することができ、且つ製造時間を更に短縮して生産性を更に向上することができる。 According to the present disclosure, by sufficiently introducing lithium sprayed onto the raw material particles of the positive electrode active material as lithium ions into the raw material particles, the energy density can be further increased and the battery performance can be improved, and the battery performance can be improved. The time can be further shortened and the productivity can be further improved.
図1は、本開示の第1実施形態に係るリチウムイオン二次電池用電極材製造装置の一例を示す模式図である。FIG. 1 is a schematic view showing an example of an electrode material manufacturing apparatus for a lithium ion secondary battery according to the first embodiment of the present disclosure. 図2は、本開示のリチウムイオン二次電池用電極材製造装置によって製造される正極活物質粒子の構成の一例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the configuration of positive electrode active material particles manufactured by the electrode material manufacturing apparatus for a lithium ion secondary battery of the present disclosure. 図3は、本開示の第2実施形態に係るリチウムイオン二次電池用電極材製造装置の一例を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing an example of an electrode material manufacturing apparatus for a lithium ion secondary battery according to the second embodiment of the present disclosure. 図4は、図3に示すリチウムイオン二次電池用電極材製造装置の部分拡大図である。FIG. 4 is a partially enlarged view of the electrode material manufacturing apparatus for a lithium ion secondary battery shown in FIG. 図5は、図3に示すリチウムイオン二次電池用電極材製造装置を構成する供給装置の斜視図である。FIG. 5 is a perspective view of a supply device constituting the electrode material manufacturing device for a lithium ion secondary battery shown in FIG. 図6は、供給装置の別の一例を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing another example of the supply device. 図7は、供給装置のさらに別の一例を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing still another example of the supply device. 図8は、本第2実施形態に係るリチウムイオン二次電池用電極材製造装置の変形例を模式的に示す斜視図である。FIG. 8 is a perspective view schematically showing a modified example of the electrode material manufacturing apparatus for a lithium ion secondary battery according to the second embodiment. 図9は、本開示の第3実施形態に係る組電池の構成を概略的に示す図である。FIG. 9 is a diagram schematically showing the configuration of the assembled battery according to the third embodiment of the present disclosure. 図10は、本第3実施形態に係る電池セルの構成を概略的に示す図である。FIG. 10 is a diagram schematically showing the configuration of a battery cell according to the third embodiment. 図11は、本第3実施形態に係る枠状部材を厚さ方向からみた平面図である。FIG. 11 is a plan view of the frame-shaped member according to the third embodiment as viewed from the thickness direction. 図12は、本第3実施形態に係る枠状部材の作用を説明する図である。FIG. 12 is a diagram illustrating the operation of the frame-shaped member according to the third embodiment. 図13は、本開示の第4実施形態に係る枠状部材を厚さ方向からみた要部の拡大平面図である。FIG. 13 is an enlarged plan view of a main part of the frame-shaped member according to the fourth embodiment of the present disclosure as viewed from the thickness direction. 図14は、本第4実施形態に係る枠状部材の作用を説明する図である。FIG. 14 is a diagram illustrating the operation of the frame-shaped member according to the fourth embodiment. 図15は、本開示の第5実施形態に係る枠状部材を厚さ方向からみた要部の拡大平面図である。FIG. 15 is an enlarged plan view of a main part of the frame-shaped member according to the fifth embodiment of the present disclosure as viewed from the thickness direction. 図16は、本第5実施形態に係る枠状部材の作用を説明する図である。FIG. 16 is a diagram illustrating the operation of the frame-shaped member according to the fifth embodiment.
 以下、図面を参照して、本開示の実施形態を説明する。なお、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本開示を限定するものではない。また、本開示においてリチウムイオン電池は、リチウムイオン二次電池も含む概念とする。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. It should be noted that each of the embodiments shown below is specifically described in order to better understand the gist of the invention, and does not limit the present disclosure unless otherwise specified. Further, in the present disclosure, the lithium ion battery is a concept including a lithium ion secondary battery.
[第1実施形態]
 図1は、本開示の第1実施形態に係るリチウムイオン二次電池用電極材製造装置の一例を示す模式図である。図2は、リチウムイオン二次電池用電極材製造装置によって製造される正極活物質粒子の構成の一例を示す模式断面図である。
[First Embodiment]
FIG. 1 is a schematic view showing an example of an electrode material manufacturing apparatus for a lithium ion secondary battery according to the first embodiment of the present disclosure. FIG. 2 is a schematic cross-sectional view showing an example of the configuration of positive electrode active material particles manufactured by an electrode material manufacturing apparatus for a lithium ion secondary battery.
 本第1実施形態のリチウムイオン二次電池用電極材製造装置は、電極原料に溶融させたリチウム含有材料を吹き付けて、上記電極原料にリチウム含有材料層を形成する層形成部1と、上記リチウム含有材料層が形成された電極原料を加熱し、上記リチウム含有材料に含まれるリチウムを上記電極原料の内部に導入して、正極活物質を得る熱処理部2と、を有する。層形成部1では、後述する層形成工程が行われ、熱処理部2では、後述する熱処理工程が行われる。 In the electrode material manufacturing apparatus for a lithium ion secondary battery of the first embodiment, the layer forming portion 1 for forming a lithium-containing material layer on the electrode raw material by spraying the molten lithium-containing material on the electrode raw material, and the lithium. It has a heat treatment unit 2 for heating an electrode raw material on which a contained material layer is formed and introducing lithium contained in the lithium-containing material into the electrode raw material to obtain a positive electrode active material. The layer forming section 1 performs a layer forming step described later, and the heat treatment section 2 performs a heat treatment step described later.
 リチウムイオン二次電池用電極材製造装置は、上記の層形成部1及び熱処理部2に限らず、これらの構成以外の他の構成を有していてもよい。正極活物質が適用されるリチウムイオン電池としては、特に制限されず、例えば液体電解質を有するリチウムイオン電池、固体電解質を有する全固体電池、電極集電体や端子を樹脂で構成したリチウムイオン電池などが挙げられる。これらのうち、充電容量の増大化、低コスト化、安全性の向上の観点からは、電極集電体や端子を樹脂で構成したリチウムイオン電池が好ましい。 The lithium ion secondary battery electrode material manufacturing apparatus is not limited to the layer forming unit 1 and the heat treatment unit 2 described above, and may have other configurations other than these configurations. The lithium ion battery to which the positive electrode active material is applied is not particularly limited, and for example, a lithium ion battery having a liquid electrolyte, an all-solid-state battery having a solid electrolyte, a lithium ion battery having an electrode current collector and terminals made of resin, and the like. Can be mentioned. Of these, from the viewpoint of increasing the charging capacity, reducing the cost, and improving the safety, a lithium ion battery in which the electrode current collector and the terminal are made of resin is preferable.
 本実施形態の正極活物質の製造方法は、層形成工程と、熱処理工程とを有する。本正極活物質の製造方法は、上記工程に限らず、上記各工程の前後に他の工程を有していてもよい。 The method for producing a positive electrode active material of the present embodiment includes a layer forming step and a heat treatment step. The method for producing the positive electrode active material is not limited to the above steps, and may have other steps before and after each of the above steps.
 先ず、層形成工程では、図1に示すように、電極原料11に溶融させたリチウム含有材料12を吹き付けて、電極原料11にリチウム含有材料層13を形成する。本実施形態では、電極原料11にリチウム含有材料12を溶融させながら吹き付ける(溶射工程)。但し、これに限らず、リチウム含有材料12を溶融させ(溶融工程)、その後、溶融させたリチウム含有材料を電極原料11に吹き付けてもよい(吹き付け工程)。層形成工程は、水分に対して活性なリチウムの反応を抑制するために、乾燥気体環境下で行われるのが好ましい。 First, in the layer forming step, as shown in FIG. 1, the molten lithium-containing material 12 is sprayed on the electrode raw material 11 to form the lithium-containing material layer 13 on the electrode raw material 11. In the present embodiment, the lithium-containing material 12 is sprayed onto the electrode raw material 11 while being melted (spraying step). However, the present invention is not limited to this, and the lithium-containing material 12 may be melted (melting step), and then the melted lithium-containing material may be sprayed onto the electrode raw material 11 (spraying step). The layer forming step is preferably carried out in a dry gas environment in order to suppress the reaction of active lithium with water.
 電極原料11の原料粒子に溶融させたリチウム含有材料12を吹き付ける方法としては、溶射装置20を用いることができる。溶射装置20は、例えば、リチウム含有粉末供給部21、加熱ガス供給部22及び溶射ノズル23を備える。溶射装置20のうち、少なくとも溶射ノズル23は、湿度を低下させた乾燥空気を満たした不図示の処理室(ドライルーム)などに設置されることが好ましい。 A thermal spraying device 20 can be used as a method of spraying the molten lithium-containing material 12 onto the raw material particles of the electrode raw material 11. The thermal spraying device 20 includes, for example, a lithium-containing powder supply unit 21, a heating gas supply unit 22, and a thermal spray nozzle 23. Of the thermal spraying devices 20, at least the thermal spraying nozzle 23 is preferably installed in a treatment room (dry room) (not shown) filled with dry air having reduced humidity.
 溶射装置20を構成するリチウム含有粉末供給部21は、溶射ノズル23にリチウム含有粉末を供給する。加熱ガス供給部22は、溶射ノズル23に加熱ガスを供給する。加熱ガスは、リチウム含有粉末を溶融する熱エネルギー源、および溶融したリチウム含有粉末を噴射するキャリアとして機能する。加熱ガスとしては、リチウムと反応しない不活性ガス、例えばアルゴンなどの希ガスを用いることができる。 The lithium-containing powder supply unit 21 constituting the thermal spraying device 20 supplies the lithium-containing powder to the thermal spray nozzle 23. The heating gas supply unit 22 supplies the heating gas to the thermal spray nozzle 23. The heating gas functions as a heat energy source for melting the lithium-containing powder and a carrier for injecting the melted lithium-containing powder. As the heating gas, an inert gas that does not react with lithium, for example, a rare gas such as argon can be used.
 リチウム含有粉末供給部21から供給されたリチウム含有粉末は、溶射ノズル23の上流側或いは溶射ノズル23内で、加熱ガス供給部22から供給された加熱ガスと混合される。リチウム含有粉末は、加熱ガスによって溶融され、溶射液となって電極原料11の原料粒子に溶射される。このリチウム含有粉末の溶射により、電極原料11の原料粒子の表面にリチウム含有材料層13が形成される(図2)。 The lithium-containing powder supplied from the lithium-containing powder supply unit 21 is mixed with the heating gas supplied from the heating gas supply unit 22 on the upstream side of the thermal spray nozzle 23 or in the thermal spray nozzle 23. The lithium-containing powder is melted by the heating gas, becomes a sprayed liquid, and is sprayed onto the raw material particles of the electrode raw material 11. By spraying the lithium-containing powder, a lithium-containing material layer 13 is formed on the surface of the raw material particles of the electrode raw material 11 (FIG. 2).
 電極原料11は、例えば、電極シート14上に形成され、正極活物質の原料粒子を含んでいる。電極原料11は、正極活物質の原料粒子からなるものであってもよいし、正極活物質の原料粒子以外に、導電助剤、粘着性樹脂、溶液乾燥型の公知の電極用バインダ(結着剤ともいう)の一又は複数を含有していてもよい。また、リチウムイオン電池の製造に用いられる非水電解液を構成する電解質や溶媒等を含有していてもよい。電極シート14は、正極集電体であってもよいし、正極集電体以外の他の基材であってもよい。 The electrode raw material 11 is formed on, for example, the electrode sheet 14 and contains raw material particles of the positive electrode active material. The electrode raw material 11 may be made of raw material particles of the positive electrode active material, and in addition to the raw material particles of the positive electrode active material, a conductive auxiliary agent, an adhesive resin, and a solution-drying type known electrode binder (binding). It may contain one or more of the agent). Further, it may contain an electrolyte, a solvent or the like constituting a non-aqueous electrolytic solution used for manufacturing a lithium ion battery. The electrode sheet 14 may be a positive electrode current collector or may be a base material other than the positive electrode current collector.
 正極活物質粒子としては、リチウムイオン電池の正極活物質として用いることができるものであれば特に制限されないが、例えば、リチウムと遷移金属との複合酸化物{遷移金属が1種である複合酸化物(LiCoO、LiNiO、LiAlMnO、LiMnO及びLiMn等)、遷移金属元素が2種である複合酸化物(例えばLiFeMnO、LiNi1-xCo、LiMn1-yCo、LiNi1/3Co1/3Al1/3及びLiNi0.8Co0.15Al0.05)及び金属元素が3種類以上である複合酸化物[例えばLiMaM’bM’’cO(M、M’及びM’’はそれぞれ異なる遷移金属元素であり、a+b+c=1を満たす。例えばLiNi1/3Mn1/3Co1/3)等]等}、リチウム含有遷移金属リン酸塩(例えばLiFePO、LiCoPO、LiMnPO及びLiNiPO)、遷移金属酸化物(例えばMnO及びV)、遷移金属硫化物(例えばMoS及びTiS)及び導電性高分子(例えばポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン及びポリ-p-フェニレン及びポリビニルカルバゾール)等の粒子が挙げられる。上記リチウム含有遷移金属リン酸塩は、遷移金属サイトの一部を他の遷移金属で置換したものであってもよい。また、これらの化合物のうちから選択される1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The positive electrode active material particles are not particularly limited as long as they can be used as the positive electrode active material of the lithium ion battery, and for example, a composite oxide of lithium and a transition metal {a composite oxide having one type of transition metal. (LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2 , LiMn 2 O 4 , etc.), composite oxides with two transition metal elements (eg LiFeMnO 4 , LiNi 1-x Co x O 2 , LiMn 1-y Co) y O 2 , LiNi 1/3 Co 1/3 Al 1/3 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 ) and composite oxides containing 3 or more metal elements [eg LiMaM'bM''cO 2 (M, M'and M'' are different transition metal elements and satisfy a + b + c = 1. For example, LiNi 1/3 Mn 1/3 Co 1/3 O 2 )], etc.}, Lithium-containing transition metal phosphates (eg LiFePO 4 , LiCoPO 4 , LiMnPO 4 and LiNiPO 4 ), transition metal oxides (eg MnO 2 and V2O 5 ) , transition metal sulfides (eg MoS 2 and TiS 2 ) and Particles such as conductive polymers (eg, polyaniline, polypyrrole, polythiophene, polyacetylene and poly-p-phenylene and polyvinylcarbazole) can be mentioned. The lithium-containing transition metal phosphate may be obtained by substituting a part of the transition metal site with another transition metal. Further, one selected from these compounds may be used alone, or two or more thereof may be used in combination.
 正極活物質粒子の平均粒子径は、製造するリチウムイオン電池の電気特性の観点から0.1μm以上100μm以下が好ましく、1μm以上50μm以下であることがより好ましく、2μm以上20μm以下であることが更に好ましい。 The average particle size of the positive electrode active material particles is preferably 0.1 μm or more and 100 μm or less, more preferably 1 μm or more and 50 μm or less, and further preferably 2 μm or more and 20 μm or less from the viewpoint of the electrical characteristics of the lithium ion battery to be manufactured. preferable.
 ここでいう正極活物質粒子の体積平均粒子径は、レーザー回折・散乱法(マイクロトラック法ともいう)によって求めた粒度分布における積算値50%での粒径(Dv50)を意味する。レーザー回折・散乱法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法であり、体積平均粒子径の測定には、例えば、日機装株式会社製のマイクロトラック等を用いることができる。 The volume average particle size of the positive electrode active material particles referred to here means the particle size (D v50 ) at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method (also referred to as the microtrack method). The laser diffraction / scattering method is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light. For measuring the volume average particle size, for example, a micro manufactured by Nikkiso Co., Ltd. A truck or the like can be used.
 なお、電極原料11は、リチウムを含まない遷移金属酸化物、例えば、酸化コバルト、酸化ニッケル、酸化ニッケル・コバルト、酸化ニッケル・コバルト・アルミニウム、酸化バナジウム、および遷移金属硫化物(例えばMoS及びTiS)であってもよい。 The electrode raw material 11 contains transition metal oxides containing no lithium, such as cobalt oxide, nickel oxide, nickel-cobalt oxide, nickel-cobalt-aluminum oxide, vanadium oxide, and transition metal sulfides (for example, MoS 2 and TiS). 2 ) may be used.
 また、本実施形態で使用される電極原料11の形状は、特に制限されず、球状、板状、棒状、針状、不定形状など、各種形状のものを適用することができる。 Further, the shape of the electrode raw material 11 used in the present embodiment is not particularly limited, and various shapes such as a spherical shape, a plate shape, a rod shape, a needle shape, and an indefinite shape can be applied.
 導電助剤としては、特に制限されないが、金属[ニッケル、アルミニウム、ステンレス(SUS)、銀、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等]が挙げられる。また、これらの導電助剤のうちから選択される1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、これらの合金又は金属酸化物を用いてもよい。電気的安定性の観点からは、好ましくはアルミニウム、ステンレス、カーボン、銀、銅、チタン及びこれらの混合物であり、より好ましくは銀、アルミニウム、ステンレス及びカーボンであり、さらに好ましくはカーボンである。またこれらの導電助剤としては、粒子系セラミック材料や樹脂材料の周りに導電性材料(上記した導電助剤の材料のうち金属のもの)をめっき等でコーティングしたものでもよい。 The conductive auxiliary agent is not particularly limited, but is limited to metals [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, etc.], Thermal lamp black, etc.)] etc. Further, one selected from these conductive aids may be used alone, or two or more thereof may be used in combination. Moreover, you may use these alloys or metal oxides. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, copper, titanium and mixtures thereof are preferable, silver, aluminum, stainless steel and carbon are more preferable, and carbon is more preferable. Further, these conductive auxiliaries may be those obtained by coating a conductive material (a metal one among the above-mentioned conductive auxiliaries materials) around a particle-based ceramic material or a resin material by plating or the like.
 粘着性樹脂は、粘着性(水、溶媒、熱等を使用せずに僅かな圧力を加えることで接着する性質)を有する樹脂を意味する。粘着性樹脂としては、被覆層を構成する上記電極活物質被覆用樹脂に少量の有機溶剤を混合してそのガラス転移温度を室温以下に調整したもの、及び、特開平10-255805公報等に粘着剤として記載されたものを好適に用いることができる。 The adhesive resin means a resin having adhesiveness (property of adhering by applying a slight pressure without using water, solvent, heat, etc.). As the adhesive resin, a resin in which a small amount of an organic solvent is mixed with the resin for coating the electrode active material constituting the coating layer to adjust the glass transition temperature to room temperature or lower, and an adhesive to JP-A No. 10-255805. Those described as agents can be preferably used.
 電極用バインダとしては、デンプン、ポリフッ化ビニリデン(PVdF)、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、ポリビニルピロリドン(PVP)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリエチレン(PE)及びポリプロピレン(PP)等が挙げられる。 Binders for electrodes include starch, polyvinylidene fluoride (PVdF), polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), and polyethylene. (PE), polypropylene (PP) and the like can be mentioned.
 電解質としては、公知の非水電解液に用いられているもの等が使用でき、例えば、LiPF、LiBF、LiSbF、LiAsF及びLiClO等の無機酸のリチウム塩、LiN(CFSO、LiN(CSO及びLiC(CFSO等の有機酸のリチウム塩等が挙げられる。これらのうち、電池出力及び充放電サイクル特性の観点からは、LiPFであるのが好ましい。 As the electrolyte, those used in known non-aqueous electrolytes can be used, for example, lithium salts of inorganic acids such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 and LiClO 4 , LiN (CF 3 SO). 2 ) Examples thereof include lithium salts of organic acids such as 2 , LiN (C 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 . Of these, LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.
 溶媒としては、公知の非水電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、上記以外の環状又は鎖状カーボネート、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物が挙げられる。 As the solvent, those used in known non-aqueous electrolytic solutions can be used, for example, lactone compounds, cyclic or chain carbonates other than the above, chain carboxylic acid esters, cyclic or chain ethers, phosphoric acid esters. , Ester compounds, amide compounds, sulfones, sulfolanes and the like, and mixtures thereof.
 溶射するリチウム含有材料12としては、例えばリン含有化合物などで被覆されたリチウム金属粉末を用いることができる。このようなリチウム金属粉末は、空気中でも極めて安定的で扱いが容易であり、リチウムの融点温度以上で加熱することで溶融してリチウムが得られる。本実施形態では、このようなリチウム含有粉末を加熱ガスで加熱することで、電極原料11へのリチウム溶射を可能とする。 As the lithium-containing material 12 to be sprayed, for example, a lithium metal powder coated with a phosphorus-containing compound or the like can be used. Such lithium metal powder is extremely stable and easy to handle even in air, and can be melted to obtain lithium by heating at a temperature equal to or higher than the melting point temperature of lithium. In the present embodiment, such lithium-containing powder is heated with a heating gas to enable lithium spraying on the electrode raw material 11.
 本実施形態では、溶射プロセスとして上記のようなフレーム溶射が挙げられるが、これに制限されず、アーク溶射、プラズマ溶射、高速フレーム溶射、電磁加速プラズマ溶射又はレーザ溶射等であってもよい。 In the present embodiment, the thermal spraying process includes the above-mentioned flame spraying, but the present invention is not limited to this, and may be arc spraying, plasma spraying, high-speed flame spraying, electromagnetically accelerated plasma spraying, laser spraying, or the like.
 次に、熱処理工程では、リチウム含有材料層13が形成された電極原料11を加熱し、リチウム含有材料層13に含まれるリチウムを電極原料11の内部に導入して、正極活物質粒子16を形成する。
 リチウムを電極原料11の内部に導入する方法としては、熱拡散を用いる。即ち、リチウム含有材料層13が表層に形成された電極原料11の原料粒子を、加熱装置25によって加熱することにより、リチウム含有材料層13のリチウムを原料粒子の内部全体(表面から中心まで)に熱拡散させる。
 これにより、電極原料11の原料粒子の内部全体にリチウムイオンがドーピングされる(図2)。このとき、リチウムと遷移金属との複合酸化物の結晶格子間にリチウムイオンが配位した状態となり、電極原料11の原料粒子におけるリチウムイオン濃度分布を、初期状態から増大させた過飽和状態に変化させることができる。
Next, in the heat treatment step, the electrode raw material 11 on which the lithium-containing material layer 13 is formed is heated, and lithium contained in the lithium-containing material layer 13 is introduced into the electrode raw material 11 to form positive electrode active material particles 16. do.
As a method of introducing lithium into the electrode raw material 11, heat diffusion is used. That is, by heating the raw material particles of the electrode raw material 11 having the lithium-containing material layer 13 formed on the surface layer by the heating device 25, the lithium of the lithium-containing material layer 13 is applied to the entire inside (from the surface to the center) of the raw material particles. Heat diffuse.
As a result, lithium ions are doped into the entire inside of the raw material particles of the electrode raw material 11 (FIG. 2). At this time, lithium ions are coordinated between the crystal lattices of the composite oxide of lithium and the transition metal, and the lithium ion concentration distribution in the raw material particles of the electrode raw material 11 is changed from the initial state to the increased hypersaturated state. be able to.
 本熱処理工程に用いる加熱装置25としては、特に制限されないが、例えば赤外線加熱炉を用いることができる。加熱温度は、リチウムが容易に拡散しかつ飛散しない温度範囲、例えば400℃以上500℃以下に設定される。加熱温度を400℃以上500℃以下とすることにより、リチウムイオンをより活性化した状態でドーピングさせることができる。 The heating device 25 used in this heat treatment step is not particularly limited, but for example, an infrared heating furnace can be used. The heating temperature is set to a temperature range in which lithium is easily diffused and does not scatter, for example, 400 ° C. or higher and 500 ° C. or lower. By setting the heating temperature to 400 ° C. or higher and 500 ° C. or lower, lithium ions can be doped in a more activated state.
 また、加熱時間は、特に制限されないが、原料粒子内の中心付近までリチウムイオンを確実にドーピングさせる観点から、例えば10分以上1時間以下に設定されることが好ましい。この範囲の他、リチウムイオンを確実にドーピングさせ、得られる再生正極活物質を含む正極活物質層の仕様(例えば、層の厚さや面積等)に応じて、加熱時間を更に長時間化(例えば2時間以上50時間以下)しても良い。 The heating time is not particularly limited, but is preferably set to, for example, 10 minutes or more and 1 hour or less from the viewpoint of reliably doping lithium ions to the vicinity of the center of the raw material particles. In addition to this range, the heating time can be further extended (for example, depending on the specifications of the positive electrode active material layer containing the regenerated positive electrode active material obtained by reliably doping lithium ions (for example, the thickness and area of the layer)). 2 hours or more and 50 hours or less) may be used.
 以上のような工程を経て、リチウムと遷移金属との複合酸化物の結晶格子間にリチウムイオンが配位した正極活物質粒子16を得ることができる。
 なお、層形成工程から熱処理工程までは、例えば一連のコンベアに電極原料11を供給して、連続的に正極活物質粒子16を形成することが好ましいが、これに限らず、バッチ式などにより間欠的に正極活物質粒子16を形成してもよい。
Through the above steps, the positive electrode active material particles 16 in which lithium ions are coordinated between the crystal lattices of the composite oxide of lithium and the transition metal can be obtained.
From the layer forming step to the heat treatment step, for example, it is preferable to supply the electrode raw material 11 to a series of conveyors to continuously form the positive electrode active material particles 16, but the present invention is not limited to this and is intermittent by a batch method or the like. The positive electrode active material particles 16 may be formed.
 本製造方法において、上記熱処理工程の後、得られた正極活物質粒子16の表面に被覆層を形成する形成工程を有していてもよい。正極活物質粒子16の表面の全部が被覆層で被覆されていると、正極電極の体積変化が緩和され、正極電極の膨張を抑制することができる。 In the present production method, after the heat treatment step, a forming step of forming a coating layer on the surface of the obtained positive electrode active material particles 16 may be provided. When the entire surface of the positive electrode active material particles 16 is covered with the coating layer, the volume change of the positive electrode is alleviated, and the expansion of the positive electrode can be suppressed.
 被覆層を構成する正極活物質被覆用樹脂としては、例えば、炭素数4~12の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a11)、(メタ)アクリル酸(a12)並びに上記(メタ)アクリル酸(a12)のカルボキシル基と反応しうる基を2つ以上有する化合物(b1)、ラジカル重合性を有する基を2つ以上有する化合物(b2)及び上記(メタ)アクリル酸(a12)のカルボキシル基と反応しうる基とラジカル重合性を有する基をそれぞれ1つ以上有する化合物(b3)からなる群から選ばれる少なくとも1種からなる架橋剤を含んでなる単量体組成物を重合してなるものが挙げられる。 Examples of the resin for coating the positive electrode active material constituting the coating layer include an ester compound (a11) of a monovalent aliphatic alcohol having 4 to 12 carbon atoms and (meth) acrylic acid, and (meth) acrylic acid (a12). In addition, the compound (b1) having two or more groups capable of reacting with the carboxyl group of the (meth) acrylic acid (a12), the compound (b2) having two or more radically polymerizable groups, and the (meth) acrylic acid. A monomer composition containing at least one cross-linking agent selected from the group consisting of the compound (b3) having at least one group capable of reacting with the carboxyl group of (a12) and one having radically polymerizable groups. Examples thereof include those obtained by polymerizing.
 エステル化合物(a11)の含有量は、特に制限されないが、活物質との接着性等の観点からは、エステル化合物(a11)及び(メタ)アクリル酸(a12)の合計質量に対して20質量%以上98質量%以下であり、好ましくは40質量%以上97質量%以下であり、より好ましくは60質量%以上95質量%以下である。 The content of the ester compound (a11) is not particularly limited, but is 20% by mass with respect to the total mass of the ester compound (a11) and the (meth) acrylic acid (a12) from the viewpoint of adhesion to the active material and the like. It is 98% by mass or less, preferably 40% by mass or more and 97% by mass or less, and more preferably 60% by mass or more and 95% by mass or less.
 また、被覆層は、必要に応じて、上述した導電助剤を含んでいてもよい。 Further, the coating layer may contain the above-mentioned conductive auxiliary agent, if necessary.
 上述したように、本実施形態によれば、リチウム含有材料の吹き付けによって原料粒子の表面に形成したリチウム含有材料層のリチウムを、熱処理によって原料粒子の内部まで拡散することができる。これにより、正極活物質粒子の表面から中心に至る内部全体にリチウムイオンが配位した正極活物質粒子を得ることができ、正極活物質粒子のエネルギー密度をより高めて電池性能を向上することが可能となる。また、溶融させたリチウムの吹き付けにより、スパッタリング等と比較して短時間でリチウム含有材料層を形成することができ、また熱処理により正極活物質粒子内部にリチウムイオンを早く拡散させることができる。したがって、正極活物質の製造時間をより短縮して生産性を更に向上することが可能となる。 As described above, according to the present embodiment, the lithium of the lithium-containing material layer formed on the surface of the raw material particles by spraying the lithium-containing material can be diffused to the inside of the raw material particles by heat treatment. As a result, the positive electrode active material particles in which lithium ions are coordinated can be obtained in the entire interior from the surface to the center of the positive electrode active material particles, and the energy density of the positive electrode active material particles can be further increased to improve the battery performance. It will be possible. Further, the lithium-containing material layer can be formed in a short time as compared with sputtering or the like by spraying the molten lithium, and the lithium ions can be quickly diffused inside the positive electrode active material particles by the heat treatment. Therefore, it is possible to further shorten the production time of the positive electrode active material and further improve the productivity.
 なお、上述した実施形態における電極原料11として、未使用の電極材料に限らず、リチウムイオン電池に取り付けられていた使用済みの電極材料(正極活物質)を用いることができる。使用済みの電極材料は、リチウムと遷移金属との複合酸化物の結晶格子中に存在していたリチウムイオンが抜け出たものである。
 こうした使用済みの電極材料を電極原料11として用い、熱処理(アニール処理)によりリチウムイオンを電極材料の原料粒子の内部に導入し、リチウムイオンをリチウムと遷移金属との複合酸化物の結晶格子欠陥に配置させてもよい。リチウムイオンが結晶格子欠陥に補充されることにより活性化し、これにより使用済みの正極活物質を再生することができる。よって再生正極活物質を容易に且つ低コストで得ることができ、従来よりも正極活物質のリサイクル性を向上することが可能となる。
As the electrode raw material 11 in the above-described embodiment, not only the unused electrode material but also the used electrode material (positive electrode active material) attached to the lithium ion battery can be used. The used electrode material is the one from which the lithium ions existing in the crystal lattice of the composite oxide of lithium and the transition metal have escaped.
Using such a used electrode material as the electrode raw material 11, lithium ions are introduced into the raw material particles of the electrode material by heat treatment (annealing treatment), and the lithium ions are formed into crystal lattice defects of the composite oxide of lithium and the transition metal. It may be arranged. Lithium ions are activated by replenishing the crystal lattice defects, which makes it possible to regenerate the used positive electrode active material. Therefore, the regenerated positive electrode active material can be easily obtained at low cost, and the recyclability of the positive electrode active material can be improved as compared with the conventional case.
 使用済みの電極材料を電極原料11として用いる場合、正極活物質粒子の表面にある被覆層を、予め除去する工程を更に有していてもよい。また、電極原料11に熱処理工程を施した後、正極活物質粒子の表面に被覆層を形成する形成工程を更に有していてもよい。 When the used electrode material is used as the electrode raw material 11, it may further have a step of removing the coating layer on the surface of the positive electrode active material particles in advance. Further, after the electrode raw material 11 is subjected to a heat treatment step, a forming step of forming a coating layer on the surface of the positive electrode active material particles may be further provided.
 使用済みの電極材料の被覆層を除去する方法としては、物理的剥離方法、化学的剥離方法の何れを用いてもよい。物理的剥離方法としては、例えば、ブラシや研磨材によって剥離する方法が挙げられる。化学的剥離方法としては、例えば、被覆層を溶解可能な溶媒を用いて、被覆層を溶解除去する方法や、被覆層を分解可能な反応液を用いて、被覆層を分解除去する方法が挙げられる。 As a method for removing the coating layer of the used electrode material, either a physical peeling method or a chemical peeling method may be used. Examples of the physical peeling method include a method of peeling with a brush or an abrasive. Examples of the chemical stripping method include a method of dissolving and removing the coating layer using a solvent capable of dissolving the coating layer, and a method of decomposing and removing the coating layer using a reaction solution capable of decomposing the coating layer. Be done.
[第2実施形態]
 リチウムイオン電池に用いる電極は、集電体上に活物質を含む活物質層を備え、均質な活物質層が形成されることで安定した電池の性能を発揮する。この活物質層は、液状媒体に活物質を分散させたスラリー状の電極材料を集電体に供給し、乾燥させた後、圧密することで製造されるが、乾燥工程を省略して、省エネルギーかつ低コストに製造する方法として活物質粒子とバインダとを造粒した造粒粒子を用いる方法が知られている(特許文献4参照)。
[Second Embodiment]
The electrodes used in a lithium-ion battery are provided with an active material layer containing an active material on a current collector, and a homogeneous active material layer is formed to exhibit stable battery performance. This active material layer is manufactured by supplying a slurry-like electrode material in which the active material is dispersed in a liquid medium to a current collector, drying the particles, and then compacting the particles. However, the drying process is omitted to save energy. Moreover, as a method for producing at low cost, a method using granulated particles obtained by granulating active material particles and a binder is known (see Patent Document 4).
 活物質粒子とバインダとを造粒した造粒粒子等の流動性の低い粒子であっても均質な活物質層を得ることができるリチウムイオン電池を製造する方法としては、例えば集電体を搬送する搬送手段と、搬送されている集電体の表面に活物質粒子とバインダを含む造粒粒子を供給する供給部と、供給された造粒粒子を均すスキージと、スキージの上流側に配置され、スキージの上流側に貯留される造粒粒子の貯留高さを制御する調整部と、均された造粒粒子を圧延して活物質層を形成する圧延ロールとを備える装置によって、造粒粒子を圧延する方法が開示されている(特許文献5参照)。 As a method for manufacturing a lithium ion battery capable of obtaining a homogeneous active material layer even with low-fluidity particles such as granulated particles obtained by granulating active material particles and binder, for example, a current collector is conveyed. Conveying means to supply, a supply unit that supplies granulated particles containing active material particles and binder to the surface of the current collector being transported, a squeegee that evens out the supplied granulated particles, and an arrangement on the upstream side of the squeegee. Granulation is performed by a device including an adjusting unit for controlling the storage height of the granulated particles stored on the upstream side of the squeegee, and a rolling roll for rolling the leveled granulated particles to form an active material layer. A method for rolling particles is disclosed (see Patent Document 5).
 また、基材上に供給された電極活物質を含む粉体をスキージロールによりスキージして粉体層を形成した後、基材を鉛直下方向に搬送しながら、一対のプレス用ロールにより基材を粉体層に圧密して電極シートを製造する方法が開示されている(特許文献6参照)。 Further, after the powder containing the electrode active material supplied on the base material is squeezed by a squeegee roll to form a powder layer, the base material is conveyed vertically downward and the base material is conveyed by a pair of press rolls. Is disclosed as a method for producing an electrode sheet by compacting the powder layer (see Patent Document 6).
 また、特許文献4に記載された方法では、造粒粒子が供給部から安定的に供給されず、活物質の表面が荒れてしまうことで活物質層の密度にばらつきが生じてしまい、電気特性のばらつきや歩留まりの低下の原因となっていた。 Further, in the method described in Patent Document 4, the granulated particles are not stably supplied from the supply unit, and the surface of the active material is roughened, resulting in variations in the density of the active material layer, resulting in electrical characteristics. It was the cause of the variation and the decrease of the yield.
 また、特許文献5及び6はいずれも、粉体を基材上に供給する際に、基材を平面上のステージ(ベルトコンベヤ)で搬送している。このような場合、ベルトコンベヤを搬送する駆動ロールによって基材が間接的に支持されているため、装置の振動やベルトの弾性等によって、基材が振動してしまうことがある。このような基材上に粉体を供給すると、供給面積が大きくなるほど厚さ方向のブレが大きくなるという問題があった。例えば、45cm2の面積に粉体を均一に供給しようとしても、平面上のステージでは100μm程度の厚さのブレが生じてしまう。
 そして、厚みが均一でない状態に供給された粉体に対してロールプレス等の処理を行うと、表面状態が均一にならずに荒れる、といった問題が生じる。
Further, in both Patent Documents 5 and 6, when the powder is supplied onto the base material, the base material is conveyed by a stage (belt conveyor) on a flat surface. In such a case, since the base material is indirectly supported by the drive roll that conveys the belt conveyor, the base material may vibrate due to the vibration of the device, the elasticity of the belt, or the like. When powder is supplied on such a base material, there is a problem that the larger the supply area, the larger the blur in the thickness direction. For example, even if an attempt is made to uniformly supply the powder to an area of 45 cm2, a blur with a thickness of about 100 μm occurs on the stage on a flat surface.
Then, when the powder supplied in a state where the thickness is not uniform is subjected to a treatment such as a roll press, there arises a problem that the surface state is not uniform and becomes rough.
 本開示は、造粒粒子等の流動性の低い電極組成物を用いた場合であっても、安定的に電極組成物を供給でき、表面の荒れがない電極活物質層を得ることができるリチウムイオン二次電池用電極材製造装置、及び該製造装置を用いたリチウムイオン二次電池用電極材の製造方法を提供することを目的とする。 According to the present disclosure, even when an electrode composition having low fluidity such as granulated particles is used, the electrode composition can be stably supplied, and an electrode active material layer having no surface roughness can be obtained. It is an object of the present invention to provide an electrode material manufacturing apparatus for an ion secondary battery and a method for manufacturing an electrode material for a lithium ion secondary battery using the manufacturing apparatus.
 図3は、本開示の第2実施形態に係るリチウムイオン二次電池用電極材製造装置の一例を模式的に示す断面図である。
 図3に示すように、リチウムイオン二次電池用電極材製造装置100は、電極活物質と非水電解液とを含んでなる電極組成物150を供給する供給装置101と、供給装置101から供給された電極組成物150を搬送する搬送ステージ160と、搬送ステージ160を駆動する駆動ロール180とを備える。駆動ロール180は時計回りに回転しており、紙面下側から紙面右側に向かう方向(図3中、矢印Aで示す方向)に搬送ステージ160を駆動している。
FIG. 3 is a cross-sectional view schematically showing an example of an electrode material manufacturing apparatus for a lithium ion secondary battery according to the second embodiment of the present disclosure.
As shown in FIG. 3, the electrode material manufacturing apparatus 100 for a lithium ion secondary battery is supplied from a supply device 101 for supplying an electrode composition 150 containing an electrode active material and a non-aqueous electrolytic solution, and a supply device 101. A transport stage 160 for transporting the electrode composition 150 and a drive roll 180 for driving the transport stage 160 are provided. The drive roll 180 rotates clockwise and drives the transport stage 160 in the direction from the lower side of the paper surface to the right side of the paper surface (the direction indicated by the arrow A in FIG. 3).
 図4は、図3に示すリチウムイオン二次電池用電極材製造装置の部分拡大図である。
 図4に示すように、回転ベルト部120の第2端部120dと搬送ステージ160とが最短距離dで対向する地点において、回転ベルト部120の移動方向は、矢印Bで示される方向である。この回転ベルト部120の移動方向は、回転ベルト部120と最短距離dで対向する地点における搬送ステージ160の移動方向(図4中、矢印Aで示す方向)と等しい。
FIG. 4 is a partially enlarged view of the electrode material manufacturing apparatus for a lithium ion secondary battery shown in FIG.
As shown in FIG. 4, at the point where the second end portion 120d of the rotary belt portion 120 and the transport stage 160 face each other at the shortest distance d, the moving direction of the rotary belt portion 120 is the direction indicated by the arrow B. The moving direction of the rotating belt portion 120 is equal to the moving direction of the transport stage 160 (the direction indicated by the arrow A in FIG. 4) at the point facing the rotating belt portion 120 at the shortest distance d.
 図5は、図3に示すリチウムイオン二次電池用電極材製造装置を構成する供給装置の斜視図である。
 図3及び図5に示すように、供給装置101は、電極組成物150を貯留する貯留室110と、貯留室110に貯留された電極組成物150を搬送する回転ベルト部120と、電極組成物150を外部に供給する供給口130を有する。
 回転ベルト部120は、その表面に沿って一方向に回転する環状搬送ベルト121と、供給装置101の内部において電極組成物150と接触する第1主面120a及び第1主面120aと対向する第2主面120bと、環状搬送ベルト121の回転軸を構成する第1端部120c及び第2端部120dを有する。
FIG. 5 is a perspective view of a supply device constituting the electrode material manufacturing device for a lithium ion secondary battery shown in FIG.
As shown in FIGS. 3 and 5, the supply device 101 includes a storage chamber 110 for storing the electrode composition 150, a rotary belt portion 120 for transporting the electrode composition 150 stored in the storage chamber 110, and an electrode composition. It has a supply port 130 for supplying 150 to the outside.
The rotary belt portion 120 faces the annular transport belt 121 that rotates in one direction along the surface thereof and the first main surface 120a and the first main surface 120a that come into contact with the electrode composition 150 inside the supply device 101. It has two main surfaces 120b, a first end portion 120c and a second end portion 120d constituting the rotation axis of the annular transfer belt 121.
 供給装置101では、電極組成物150と接触する面に配置される回転ベルト部120の第1主面120aにおいて、環状搬送ベルト121が、供給口130の一部を構成する回転ベルト部120の第2端部120dに向かう方向(図3中、矢印aで示す方向)に移動している。また、電極組成物150と接触しない面に配置される回転ベルト部120の第2主面120bにおいて、環状搬送ベルト121が、回転ベルト部120の第1端部120cに向かう方向(図3中、矢印bで示す方向)に移動している。
 従って、貯留室110内に貯留された電極組成物150は、環状搬送ベルト121によって供給口130まで搬送される。
従って、電極組成物の流動性が低い場合であっても、電極組成物を搬送ステージ上に安定的に供給することができる。
In the supply device 101, on the first main surface 120a of the rotary belt portion 120 arranged on the surface in contact with the electrode composition 150, the annular transfer belt 121 is the first of the rotary belt portions 120 forming a part of the supply port 130. The two ends are moving in the direction toward the end 120d (the direction indicated by the arrow a in FIG. 3). Further, in the second main surface 120b of the rotary belt portion 120 arranged on a surface that does not come into contact with the electrode composition 150, the annular transport belt 121 is directed toward the first end portion 120c of the rotary belt portion 120 (in FIG. 3). It is moving in the direction indicated by the arrow b).
Therefore, the electrode composition 150 stored in the storage chamber 110 is conveyed to the supply port 130 by the annular transfer belt 121.
Therefore, even when the fluidity of the electrode composition is low, the electrode composition can be stably supplied onto the transport stage.
 電極組成物150は、供給装置101の供給口130を通じて搬送ステージ160上に供給された後、回転ベルト部120の第2端部120dと搬送ステージ160との間を通過することによって、所定の厚さに調整されて、電極活物質層151となる。 The electrode composition 150 is supplied onto the transfer stage 160 through the supply port 130 of the supply device 101, and then passes between the second end portion 120d of the rotary belt portion 120 and the transfer stage 160 to have a predetermined thickness. It is adjusted to become the electrode active material layer 151.
 搬送ステージ160は、供給装置101から電極組成物150が供給される被供給部160aを有している。搬送ステージ160は、被供給部160aにおいて、駆動ロール180によって直接支持されている。搬送ステージ160が、被供給部160aにおいて駆動ロール180によって直接支持されていると、被供給部160aにおいて、搬送ステージ160の厚さ方向(上下方向)における位置ブレを抑制し、搬送ステージ160上に供給される電極組成物150の厚さのばらつきを抑制することができる。 The transport stage 160 has a supplied portion 160a to which the electrode composition 150 is supplied from the supply device 101. The transport stage 160 is directly supported by the drive roll 180 in the supplied portion 160a. When the transfer stage 160 is directly supported by the drive roll 180 in the supplied portion 160a, the transfer stage 160a suppresses the positional deviation of the transfer stage 160 in the thickness direction (vertical direction) and is placed on the transfer stage 160. It is possible to suppress variations in the thickness of the supplied electrode composition 150.
 本開示のリチウムイオン二次電池用電極材製造装置を用いると、電極組成物を搬送ステージ上に安定的に供給し、かつ、電極組成物が供給される搬送ステージの被供給部が駆動ロールにより直接的に支持されている。そのため、厚さ方向の位置ブレが抑制された搬送ステージ上に電極組成物を安定的に供給することができるため、電極組成物の流動性が低い場合であっても、表面に荒れがない電極組成物層を得ることができ、電気特性および製品歩留まりの向上に寄与することができる。 When the electrode material manufacturing apparatus for a lithium ion secondary battery of the present disclosure is used, the electrode composition is stably supplied onto the transport stage, and the supplied portion of the transport stage to which the electrode composition is supplied is driven by a drive roll. It is directly supported. Therefore, the electrode composition can be stably supplied on the transport stage in which the positional deviation in the thickness direction is suppressed, so that the electrode has no surface roughness even when the fluidity of the electrode composition is low. A composition layer can be obtained, which can contribute to improvement of electrical characteristics and product yield.
 なお、被供給部において、搬送ステージが駆動ロールによって直接支持されているとは、搬送ステージの被供給部と駆動ロールとの間に、搬送ステージの被供給部の振動を許容する空間が設けられていない状態を指す。
 例えば、図3に示すリチウムイオン二次電池用電極材製造装置100では、搬送ステージ160の被供給部160aが、駆動ロール180と密着している。搬送ステージ160の被供給部160aが駆動ロール180に密着していると、搬送ステージ160の被供給部160aと駆動ロール180との間に、搬送ステージ160の被供給部160aの振動を許容する空間が形成されない。従って、搬送ステージ160の被供給部160aが駆動ロール180の表面に密着した状態は、搬送ステージ160の被供給部160aが駆動ロール180により直接支持されている状態であるといえる。
 一方、搬送ステージが駆動ロールによって直接支持されていない場合としては、例えば、ベルトコンベヤのように、搬送ステージが複数の駆動ロールに跨って配置されている場合が挙げられる。この場合、搬送ステージには駆動ロールにより直接支持されていない箇所が設けられることとなる。このような箇所では、搬送ステージに厚さ方向の位置ブレが発生しやすい。
The fact that the transport stage is directly supported by the drive roll in the supplied portion means that a space is provided between the supplied portion of the transport stage and the drive roll to allow vibration of the supplied portion of the transport stage. Refers to the state where it is not.
For example, in the electrode material manufacturing apparatus 100 for a lithium ion secondary battery shown in FIG. 3, the supplied portion 160a of the transport stage 160 is in close contact with the drive roll 180. When the supplied portion 160a of the transport stage 160 is in close contact with the drive roll 180, a space that allows vibration of the supplied portion 160a of the transport stage 160 between the supplied portion 160a of the transport stage 160 and the drive roll 180. Is not formed. Therefore, it can be said that the state in which the supplied portion 160a of the transport stage 160 is in close contact with the surface of the drive roll 180 is a state in which the supplied portion 160a of the transport stage 160 is directly supported by the drive roll 180.
On the other hand, as a case where the transfer stage is not directly supported by the drive rolls, for example, there is a case where the transfer stages are arranged across a plurality of drive rolls, such as a belt conveyor. In this case, the transport stage is provided with a portion that is not directly supported by the drive roll. In such a place, the position deviation in the thickness direction is likely to occur on the transport stage.
 回転ベルト部120と搬送ステージ160とが最短距離dで対向する地点において、搬送ステージ160は、駆動ロール180によって直接支持されていることが好ましい。
 回転ベルト部120と搬送ステージ160とが最短距離dで対向する地点を、電極組成物150が通過することによって、厚みが調整された電極活物質層151となる。すなわち、回転ベルト部120と搬送ステージ160との最短距離dによって、電極活物質層151の厚みが決定される。
 従って、回転ベルト部120と搬送ステージ160とが最短距離dで対向する地点において、搬送ステージ160が駆動ロール180によって直接支持されていると、回転ベルト部120と搬送ステージ160との最短距離dが安定し、電極活物質層151の厚みのばらつきを低減することができる。
It is preferable that the transfer stage 160 is directly supported by the drive roll 180 at the point where the rotary belt portion 120 and the transfer stage 160 face each other at the shortest distance d.
The electrode composition 150 passes through a point where the rotating belt portion 120 and the transport stage 160 face each other at the shortest distance d, so that the electrode active material layer 151 has an adjusted thickness. That is, the thickness of the electrode active material layer 151 is determined by the shortest distance d between the rotating belt portion 120 and the transport stage 160.
Therefore, when the transport stage 160 is directly supported by the drive roll 180 at the point where the rotary belt portion 120 and the transport stage 160 face each other at the shortest distance d, the shortest distance d between the rotary belt section 120 and the transport stage 160 becomes. It is stable and the variation in the thickness of the electrode active material layer 151 can be reduced.
 搬送ステージと搬送ロールとの間には、搬送ステージ及び駆動ロールに密着するシート状の基材が配置されていてもよい。この場合、搬送ステージは駆動ロールによって直接支持されているといえる。
 このように、搬送ステージと駆動ロールとの間に別の構成が配置されている場合であっても、この構成を介して搬送ステージと駆動ロールとが互いに密着しているのであれば、搬送ステージが駆動ロールによって直接支持されているものとみなす。
A sheet-like base material that is in close contact with the transfer stage and the drive roll may be arranged between the transfer stage and the transfer roll. In this case, it can be said that the transfer stage is directly supported by the drive roll.
In this way, even if another configuration is arranged between the transfer stage and the drive roll, if the transfer stage and the drive roll are in close contact with each other through this configuration, the transfer stage Is considered to be directly supported by the drive roll.
 駆動ロールの表面粗さは、特に限定されないが、JIS B 0601に準拠して測定される表面粗さRaが2μm以下であることが好ましい。 The surface roughness of the drive roll is not particularly limited, but it is preferable that the surface roughness Ra measured in accordance with JIS B 0601 is 2 μm or less.
 駆動ロールを構成する材料は、特に限定されないが、例えば、高炭素クロム軸受鋼鋼材(SUJ2)等が挙げられる。
 駆動ロールは、多層構造であってもよい。
 駆動ロールが多層構造である場合の例としては、高炭素クロム軸受鋼鋼材で構成されたロールの表面に硬質クロムメッキ(例えば、厚さ30~80μm)を施したものが挙げられる。
The material constituting the drive roll is not particularly limited, and examples thereof include a high carbon chromium bearing steel material (SUJ2).
The drive roll may have a multi-layer structure.
An example of the case where the drive roll has a multi-layer structure includes a roll made of high carbon chrome bearing steel with a hard chrome plating (for example, a thickness of 30 to 80 μm) applied to the surface of the roll.
 回転ベルト部120の第2端部120dは、供給口130の一辺を構成しており、これと対向する辺は、壁材140の下端部140aで構成されている。
 供給口130は略矩形形状であり、回転ベルト部120の第2端部120dは長辺の一方を構成しており、壁材140の下端部140aは他方の長辺を構成している。
The second end portion 120d of the rotary belt portion 120 constitutes one side of the supply port 130, and the side facing the second end portion 120d is formed by the lower end portion 140a of the wall material 140.
The supply port 130 has a substantially rectangular shape, the second end portion 120d of the rotary belt portion 120 constitutes one of the long sides, and the lower end portion 140a of the wall material 140 constitutes the other long side.
 回転ベルト部120の第1主面120aと、第2端部120dに最も近い地点における搬送ステージ160とのなす角は、0°を超えて90°以下であることが好ましく、10°~90°であることが好ましい。 The angle between the first main surface 120a of the rotary belt portion 120 and the transport stage 160 at the point closest to the second end portion 120d is preferably more than 0 ° and 90 ° or less, preferably 10 ° to 90 °. Is preferable.
 回転ベルト部の第2端部の半径は、特に限定されないが、駆動ロールの半径の0.02~5倍であることが好ましい。 The radius of the second end of the rotating belt portion is not particularly limited, but is preferably 0.02 to 5 times the radius of the drive roll.
 回転ベルト部の第2端部の半径は、特に限定されないが、1~25mmであることが好ましい。 The radius of the second end of the rotating belt portion is not particularly limited, but is preferably 1 to 25 mm.
 回転ベルト部の第2端部と搬送ステージとが最短距離で対向する地点において、互いに対向する回転ベルト部と搬送ステージの移動速度の比(回転ベルト部の移動速度/搬送ステージの移動速度)は、特に限定されないが、0.5~1.0であることが好ましい。 At the point where the second end of the rotary belt and the transport stage face each other at the shortest distance, the ratio of the moving speeds of the rotary belt and the transport stage facing each other (moving speed of the rotating belt / moving speed of the transport stage) is Although not particularly limited, it is preferably 0.5 to 1.0.
 環状搬送ベルトの移動速度は、電極組成物の流動性に応じて適宜設定すればよいが、例えば、0.5~50m/分であることが好ましい。 The moving speed of the annular transport belt may be appropriately set according to the fluidity of the electrode composition, but is preferably 0.5 to 50 m / min, for example.
 環状搬送ベルトを構成する材料は、特に限定されないが、フッ素樹脂等の非付着性表面を有する材料(以下、非付着性材料ともいう)が好ましく挙げられる。
 環状搬送ベルトを構成する材料が非付着性材料であると、環状搬送ベルトの表面に電極組成物が付着しにくく、電極組成物の供給量のばらつきが抑制される。
The material constituting the annular transport belt is not particularly limited, but a material having a non-adhesive surface such as a fluororesin (hereinafter, also referred to as a non-adhesive material) is preferably mentioned.
When the material constituting the annular transfer belt is a non-adhesive material, the electrode composition is less likely to adhere to the surface of the annular transfer belt, and variations in the supply amount of the electrode composition are suppressed.
 環状搬送ベルトを回転させる手段は、特に限定されないが、例えばモータ等の回転体を用いて回転軸を回転させる方法などが挙げられる。 The means for rotating the annular conveyor belt is not particularly limited, and examples thereof include a method of rotating the rotation shaft using a rotating body such as a motor.
 搬送ステージを構成する材料は、特に限定されないが、正極集電体や負極集電体等の集電体として機能するものを好ましく用いることができる。搬送ステージが正極集電体や負極集電体等の集電体として機能するものである場合、リチウムイオン二次電池用電極材が、集電体上に配置された状態で得られる。集電体と、該集電体上に配置されたリチウムイオン二次電池用電極材の組み合わせは、リチウムイオン二次電池用電極に相当する。 The material constituting the transport stage is not particularly limited, but a material that functions as a current collector such as a positive electrode current collector or a negative electrode current collector can be preferably used. When the transport stage functions as a current collector such as a positive electrode current collector or a negative electrode current collector, the electrode material for a lithium ion secondary battery is obtained in a state of being arranged on the current collector. The combination of the current collector and the electrode material for the lithium ion secondary battery arranged on the current collector corresponds to the electrode for the lithium ion secondary battery.
 正極集電体を構成する材料としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子及び導電性ガラス等が挙げられる。また、正極集電体として、導電剤と樹脂からなる樹脂集電体を用いてもよい。 Examples of the material constituting the positive electrode current collector include copper, aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, and conductive glass. Further, as the positive electrode current collector, a resin current collector composed of a conductive agent and a resin may be used.
 負極集電体を構成する材料としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル及びこれらの合金等の金属材料等が挙げられる。なかでも、軽量化、耐食性、高導電性の観点から、好ましくは銅である。負極集電体としては、焼成炭素、導電性高分子及び導電性ガラス等からなる集電体であってもよく、導電剤と樹脂からなる樹脂集電体であってもよい。 Examples of the material constituting the negative electrode current collector include copper, aluminum, titanium, stainless steel, nickel, and metal materials such as alloys thereof. Of these, copper is preferable from the viewpoint of weight reduction, corrosion resistance, and high conductivity. The negative electrode current collector may be a current collector made of calcined carbon, a conductive polymer, conductive glass, or the like, or may be a resin current collector made of a conductive agent and a resin.
 正極集電体、負極集電体とも、樹脂集電体を構成する導電剤としては、電極組成物に含まれる導電助剤と同様のものを好適に用いることができる。
 樹脂集電体を構成する樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂又はこれらの混合物等が挙げられる。
 電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、さらに好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。
As the conductive agent constituting the resin current collector, the same as the conductive auxiliary agent contained in the electrode composition can be preferably used for both the positive electrode current collector and the negative electrode current collector.
The resins constituting the resin collector include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), and polytetra. Fluoroethylene (PTFE), Styrene-butadiene rubber (SBR), Polyacrylonitrile (PAN), Polymethylacrylate (PMA), Polymethylmethacrylate (PMMA), Polyfluorinated vinylidene (PVdF), Epoxy resin, Silicone resin or mixtures thereof. And so on.
From the viewpoint of electrical stability, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferable, and polyethylene (PE), polypropylene (PP) and polymethylpentene are more preferable. (PMP).
 搬送ステージが正極集電体や負極集電体等の集電体として機能しないものである場合には、搬送ステージ上に集電体を配置するか、又は、搬送ステージ表面からの電極組成物の分離が容易である材料で搬送ステージを構成することが好ましい。
 集電体として機能しないものを搬送ステージとして用いた場合には、後述する電極活物質層形成工程の後に得られた電極活物質層を搬送ステージから集電体に移す工程を行うことでリチウムイオン二次電池用電極を製造することができる。
 搬送ステージ表面からの電極組成物の分離が容易である材料としては、フッ素樹脂や、表面に離型処理等の非付着性処理を行った樹脂フィルム等が好ましく挙げられる。
When the transfer stage does not function as a current collector such as a positive electrode current collector or a negative electrode current collector, the current collector is placed on the transfer stage or the electrode composition from the surface of the transfer stage. It is preferable to construct the transfer stage with a material that can be easily separated.
When a material that does not function as a current collector is used as the transport stage, lithium ions are obtained by transferring the electrode active material layer obtained after the electrode active material layer forming step described later from the transport stage to the current collector. Electrodes for secondary batteries can be manufactured.
Preferred examples of the material from which the electrode composition can be easily separated from the surface of the transport stage include fluororesin and a resin film having a surface subjected to a non-adhesive treatment such as a mold release treatment.
 搬送ステージ上に集電体を配置する場合、電極組成物は搬送ステージ上に配置された集電体上に供給される。そのため、電極活物質層は集電体上に形成されることとなる。
 この場合のように、搬送ステージ上に配置された集電体上に電極組成物を供給する工程も、後述する電極活物質層形成工程に含むものとする。
 この場合、集電体と該集電体上に形成された電極活物質層からなる電極を、搬送ステージ上に形成することができる。
When the current collector is arranged on the transfer stage, the electrode composition is supplied on the current collector arranged on the transfer stage. Therefore, the electrode active material layer is formed on the current collector.
As in this case, the step of supplying the electrode composition onto the current collector arranged on the transport stage is also included in the electrode active material layer forming step described later.
In this case, an electrode composed of a current collector and an electrode active material layer formed on the current collector can be formed on the transport stage.
 搬送ステージの移動速度は、特に限定されないが、1~50m/分であることが好ましい。 The moving speed of the transport stage is not particularly limited, but is preferably 1 to 50 m / min.
 貯留室は、電極組成物を貯留できるものであれば、その形状及び大きさは特に限定されない。
 貯留室の内壁は、フッ素樹脂等の非付着性材料で構成されていることが好ましい。
 貯留室の内壁が非付着性材料で構成されていると、貯留室から電極組成物を安定的に排出することができる。
 また、貯留室の内壁は、非付着性材料ではない材料(例えば、金属等)の表面に、非付着性材料がコーティングされたものであってもよい。
The shape and size of the storage chamber are not particularly limited as long as they can store the electrode composition.
The inner wall of the storage chamber is preferably made of a non-adhesive material such as fluororesin.
When the inner wall of the storage chamber is made of a non-adhesive material, the electrode composition can be stably discharged from the storage chamber.
Further, the inner wall of the storage chamber may be a surface of a material (for example, metal) that is not a non-adhesive material coated with the non-adhesive material.
 供給装置の供給口の形状は特に限定されないが、略矩形形状であることが好ましい。略矩形形状は、短辺の長さが1~50mmであることが好ましい。
 また、略矩形形状の長辺の一方が、回転ベルト部の第2端部で構成されていることが好ましい。
The shape of the supply port of the supply device is not particularly limited, but a substantially rectangular shape is preferable. The substantially rectangular shape preferably has a short side length of 1 to 50 mm.
Further, it is preferable that one of the long sides of the substantially rectangular shape is formed by the second end portion of the rotating belt portion.
 供給口が設けられる位置は、供給装置の底面であってもよく、側面であってもよい。 The position where the supply port is provided may be the bottom surface of the supply device or the side surface.
 供給口が供給装置の側面に設けられている場合の一例を、図6を参照しながら説明する。
 図6は、供給装置の別の一例を模式的に示す断面図である。
 図6に示す供給装置102は、貯留室110と、回転ベルト部120と、供給口130を有する。回転ベルト部120を構成する環状搬送ベルト121の移動方向は、図3及び図5と同様である。
An example of the case where the supply port is provided on the side surface of the supply device will be described with reference to FIG.
FIG. 6 is a cross-sectional view schematically showing another example of the supply device.
The supply device 102 shown in FIG. 6 has a storage chamber 110, a rotary belt portion 120, and a supply port 130. The moving direction of the annular conveyor belt 121 constituting the rotary belt portion 120 is the same as in FIGS. 3 and 5.
 供給装置において、回転ベルト部の第2端部が供給口の一部を構成していれば、回転ベルト部が配置される位置は特に限定されない。例えば、回転ベルト部は、貯留室の供給口に向かって傾斜した底面に設けられていてもよく、貯留室の側面に設けられていてもよい。 In the supply device, if the second end of the rotary belt portion constitutes a part of the supply port, the position where the rotary belt portion is arranged is not particularly limited. For example, the rotary belt portion may be provided on the bottom surface inclined toward the supply port of the storage chamber, or may be provided on the side surface of the storage chamber.
 回転ベルト部が貯留室の側面に設けられている場合の一例について、図7を用いて説明する。
 図7は、供給装置のさらに別の一例を模式的に示す断面図である。
 図7に示す供給装置103は、貯留室110、回転ベルト部120及び供給口130を有し、回転ベルト部120が、貯留室110の側面を構成する壁材142に沿って配置されている。供給口130は、一辺が回転ベルト部120の第2端部120dで構成されており、これに対向する辺が壁材141の下端部141aで構成されている。
 供給装置103では、貯留室110の内部に面し電極組成物と接触する面に配置される回転ベルト部120の第1主面120aにおいて、環状搬送ベルト121が、供給口130の一辺を構成する回転ベルト部120の第2端部120dに向かって(矢印aで示す方向に)移動しており、貯留室110内に貯留された電極組成物150が環状搬送ベルト121によって供給口130まで搬送される。そのため、電極組成物の流動性が低い場合であっても、電極組成物を安定的に外部に供給することができる。
 なお、回転ベルト部を貯留室の側面に設ける場合、貯留室の側面が搬送ステージの移動方向に対して垂直に配置されていてもよく、貯留室110の側面が、該垂直方向から傾斜する向きで配置されていてもよい。
An example of the case where the rotating belt portion is provided on the side surface of the storage chamber will be described with reference to FIG. 7.
FIG. 7 is a cross-sectional view schematically showing still another example of the supply device.
The supply device 103 shown in FIG. 7 has a storage chamber 110, a rotary belt portion 120, and a supply port 130, and the rotary belt portion 120 is arranged along a wall material 142 constituting a side surface of the storage chamber 110. One side of the supply port 130 is formed by the second end portion 120d of the rotating belt portion 120, and the side facing the supply port 130 is formed by the lower end portion 141a of the wall material 141.
In the supply device 103, the annular transfer belt 121 constitutes one side of the supply port 130 on the first main surface 120a of the rotary belt portion 120 arranged on the surface facing the inside of the storage chamber 110 and in contact with the electrode composition. The electrode composition 150 that is moving toward the second end portion 120d of the rotary belt portion 120 (in the direction indicated by the arrow a) and stored in the storage chamber 110 is conveyed to the supply port 130 by the annular transport belt 121. Ru. Therefore, even when the fluidity of the electrode composition is low, the electrode composition can be stably supplied to the outside.
When the rotary belt portion is provided on the side surface of the storage chamber, the side surface of the storage chamber may be arranged perpendicular to the moving direction of the transport stage, and the side surface of the storage chamber 110 is inclined from the vertical direction. It may be arranged by.
 本開示のリチウムイオン二次電池用電極材製造装置において、搬送ステージと対向する位置における環状搬送ベルトの移動方向と、搬送ステージの移動方向が異なっていてもよい。 In the electrode material manufacturing apparatus for lithium ion secondary batteries of the present disclosure, the moving direction of the annular transport belt at the position facing the transport stage and the moving direction of the transport stage may be different.
 図8は、本第2実施形態に係るリチウムイオン二次電池用電極材製造装置の変形例を模式的に示す斜視図である。
 図8に示すリチウムイオン二次電池用電極材製造装置200は、電極組成物150を供給する供給装置101と、供給装置101から供給された電極組成物150を搬送する搬送ステージ160と、搬送ステージ160を駆動する駆動ロール180とを備える点は、図3に示すリチウムイオン二次電池用電極材製造装置100と同様である。
 リチウムイオン二次電池用電極材製造装置200のリチウムイオン二次電池用電極材製造装置100との相違点は、供給装置101が配置される向きにある。
 回転ベルト部120が搬送ステージ160とが最短距離dで対向する地点において、回転ベルト部120の移動方向は、矢印Bで示される方向である。この回転ベルト部の移動方向は、回転ベルト部120と最短距離dで対向する地点における搬送ステージ160の移動方向(図8中、矢印Aで示す方向)とは反対である。
FIG. 8 is a perspective view schematically showing a modified example of the electrode material manufacturing apparatus for a lithium ion secondary battery according to the second embodiment.
The electrode material manufacturing apparatus 200 for a lithium ion secondary battery shown in FIG. 8 includes a supply device 101 for supplying the electrode composition 150, a transfer stage 160 for transporting the electrode composition 150 supplied from the supply device 101, and a transfer stage. The point that the drive roll 180 for driving the 160 is provided is the same as that of the electrode material manufacturing apparatus 100 for a lithium ion secondary battery shown in FIG.
The difference between the lithium ion secondary battery electrode material manufacturing device 200 and the lithium ion secondary battery electrode material manufacturing device 100 is that the supply device 101 is arranged.
At the point where the rotary belt portion 120 faces the transport stage 160 at the shortest distance d, the moving direction of the rotary belt portion 120 is the direction indicated by the arrow B. The moving direction of the rotating belt portion is opposite to the moving direction of the transport stage 160 (the direction indicated by the arrow A in FIG. 8) at the point facing the rotating belt portion 120 at the shortest distance d.
[リチウムイオン二次電池用電極材の製造方法]
 本開示のリチウムイオン二次電池用電極材の製造方法は、本開示のリチウムイオン二次電池用電極材製造装置を用いたリチウムイオン二次電池用電極材の製造方法であって、上記駆動ロールを駆動させて上記搬送ステージを搬送しながら、上記電極組成物を上記供給口から上記搬送ステージ上に供給する電極組成物供給工程と、上記搬送ステージと上記供給装置との間の隙間に上記搬送ステージ上に供給された上記電極組成物を通過させることで、上記電極組成物の厚さを調節して、上記電極組成物からなる電極活物質層を得る電極活物質層形成工程と、を有する。
[Manufacturing method of electrode material for lithium ion secondary battery]
The method for manufacturing an electrode material for a lithium ion secondary battery of the present disclosure is a method for manufacturing an electrode material for a lithium ion secondary battery using the electrode material manufacturing apparatus for a lithium ion secondary battery of the present disclosure, and is the above-mentioned drive roll. To the gap between the electrode composition supply step of supplying the electrode composition from the supply port onto the transfer stage and the transfer stage and the supply device while transporting the transfer stage. It has an electrode active material layer forming step of adjusting the thickness of the electrode composition by passing the electrode composition supplied onto the stage to obtain an electrode active material layer made of the electrode composition. ..
[電極組成物供給工程]
 電極組成物供給工程では、駆動ロールを駆動させて搬送ステージを搬送しながら、電極組成物を供給口から搬送ステージ上に供給する。
 本開示のリチウムイオン二次電池用電極材製造装置を構成する供給装置を用いることで、搬送ステージ上に電極組成物が安定的に供給される。さらに、電極組成物が供給される搬送ステージの被供給部において、搬送ステージが駆動ロールによって直接支持されているため、搬送ステージ上に供給される電極組成物の厚さのブレを抑制することができる。
なお、電極組成物供給工程では、搬送ステージ上に配置された集電体上に電極組成物を供給してもよい。
[Electrode composition supply process]
In the electrode composition supply step, the electrode composition is supplied onto the transfer stage from the supply port while the drive roll is driven to transfer the transfer stage.
By using the supply device constituting the electrode material manufacturing device for the lithium ion secondary battery of the present disclosure, the electrode composition is stably supplied on the transport stage. Further, since the transfer stage is directly supported by the drive roll in the supplied portion of the transfer stage to which the electrode composition is supplied, it is possible to suppress the fluctuation of the thickness of the electrode composition supplied on the transfer stage. can.
In the electrode composition supply step, the electrode composition may be supplied onto a current collector arranged on the transport stage.
[電極活物質層形成工程]
 電極活物質層形成工程では、搬送ステージと供給装置との間の隙間に、電極組成物供給工程によって搬送ステージ上に供給された電極組成物を通過させることで、電極組成物の厚さを調節して、電極組成物からなる電極活物質層を得る。
 電極組成物供給工程によって搬送ステージ上に供給された電極組成物は密度ムラが少なく、厚みの均一性が高いため、電極活物質層形成工程によって、表面の荒れ及び密度ムラが少なく、かつ、厚みのばらつきの低い電極活物質層を形成することができる。
[Electrode active material layer forming process]
In the electrode active material layer forming step, the thickness of the electrode composition is adjusted by passing the electrode composition supplied on the transfer stage by the electrode composition supply step through the gap between the transfer stage and the supply device. Then, an electrode active material layer made of the electrode composition is obtained.
Since the electrode composition supplied onto the transport stage by the electrode composition supply step has less density unevenness and high thickness uniformity, the electrode active material layer forming step has less surface roughness and density unevenness, and thickness. It is possible to form an electrode active material layer with low variation.
 搬送ステージと供給装置との間の隙間の長さは、得たい電極活物質層の厚さに合わせて適宜調整することができ、例えば、0.03~2mmであることが好ましい。 The length of the gap between the transport stage and the supply device can be appropriately adjusted according to the thickness of the electrode active material layer to be obtained, and is preferably 0.03 to 2 mm, for example.
 また、電極活物質層形成工程において、搬送ステージと回転ベルト部の第2端部との間に電極活物質層を通過させる場合、搬送ステージと対向する位置における環状搬送ベルトの移動方向と搬送ステージの移動方向とが同じであることが好ましい。
 また、電極活物質層形成工程において、搬送ステージと回転ベルト部の第2端部との間に電極活物質層を通過させる場合、電極活物質層が通過する地点における搬送ステージが、駆動ロールによって直接支持されていることが好ましい。
Further, in the process of forming the electrode active material layer, when the electrode active material layer is passed between the transfer stage and the second end portion of the rotary belt portion, the moving direction of the annular transfer belt and the transfer stage at the position facing the transfer stage. It is preferable that the moving direction of is the same.
Further, in the process of forming the electrode active material layer, when the electrode active material layer is passed between the transfer stage and the second end portion of the rotary belt portion, the transfer stage at the point where the electrode active material layer passes is moved by the drive roll. It is preferably directly supported.
 電極組成物供給工程において用いられる電極組成物は、電極活物質と非水電解液とを含んでなる。 The electrode composition used in the electrode composition supply step includes an electrode active material and a non-aqueous electrolyte solution.
 電極活物質は、正極活物質であっても負極活物質であってもよい。
 また、電極組成物は、必要に応じて、導電助剤を含んでいてもよい。
The electrode active material may be a positive electrode active material or a negative electrode active material.
Further, the electrode composition may contain a conductive auxiliary agent, if necessary.
 正極活物質としては、リチウムと遷移金属との複合酸化物{遷移金属が1種である複合酸化物(LiCoO、LiNiO、LiAlMnO、LiMnO及びLiMn等)、遷移金属元素が2種である複合酸化物(例えばLiFeMnO、LiNi1-
CoO2、LiMn1-yCo、LiNi1/3Co1/3Al1/3及びLiNi0.8Co0.15Al0.05)及び金属元素が3種類以上である複合酸化物[例えばLiMM’M’’(M、M’及びM’’はそれぞれ異なる遷移金属元素であり、a+b+c=1を満たす。例えばLiNi1/3Mn1/3Co1/3)等]等}、リチウム含有遷移金属リン酸塩(例えばLiFePO、LiCoPO、LiMnPO及びLiNiPO)、遷移金属酸化物(例えばMnO及びV2O)、遷移金属硫化物(例えばMoS及びTiS)及び導電性高分子(例えばポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン及びポリ-p-フェニレン及びポリビニルカルバゾール)等が挙げられ、2種以上を併用してもよい。
 なお、リチウム含有遷移金属リン酸塩は、遷移金属サイトの一部を他の遷移金属で置換したものであってもよい。
Examples of the positive electrode active material include a composite oxide of lithium and a transition metal {composite oxide having one type of transition metal (LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2 , LiMn2O 4 , etc.) and a transition metal element. Two types of composite oxides (eg LiFeMnO 4 , LiNi 1-
x Co x O2, LiMn 1-y Coy O2 , LiNi 1/3 Co 1/3 Al 1/3 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 ) and 3 types of metal elements The above composite oxides [for example, LiM a M'b M''c O 2 (M, M'and M'' are different transition metal elements and satisfy a + b + c = 1, for example, LiNi 1/3 Mn 1 / 3 Co 1/3 O 2 ) etc.}, Lithium-containing transition metal phosphates (eg LiFePO 4 , LiCoPO 4 , LiMnPO 4 and LiNiPO 4 ), transition metal oxides (eg MnO 2 and V2O 5 ), transitions. Examples thereof include metal sulfides (eg MoS 2 and TiS 2 ) and conductive polymers (eg polyaniline, polypyrrole, polythiophene, polyacetylene and poly-p-phenylene and polyvinylcarbazole), and two or more thereof may be used in combination.
The lithium-containing transition metal phosphate may be one in which a part of the transition metal site is replaced with another transition metal.
 正極活物質の体積平均粒子径は、電池の電気特性の観点から、0.01~100μmであることが好ましく、0.1~35μmであることがより好ましく、2~30μmであることがさらに好ましい。 The volume average particle size of the positive electrode active material is preferably 0.01 to 100 μm, more preferably 0.1 to 35 μm, and even more preferably 2 to 30 μm from the viewpoint of the electrical characteristics of the battery. ..
 負極活物質としては、炭素系材料[黒鉛、難黒鉛化性炭素、アモルファス炭素、樹脂焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)及び炭素繊維等]、珪素系材料[珪素、酸化珪素(SiO)、珪素-炭素複合体(炭素粒子の表面を珪素及び/又は炭化珪素で被覆したもの、珪素粒子又は酸化珪素粒子の表面を炭素及び/又は炭化珪素で被覆したもの並びに炭化珪素等)及び珪素合金(珪素-アルミニウム合金、珪素-リチウム合金、珪素-ニッケル合金、珪素-鉄合金、珪素-チタン合金、珪素-マンガン合金、珪素-銅合金及び珪素-スズ合金等)等]、導電性高分子(例えばポリアセチレン及びポリピロール等)、金属(スズ、アルミニウム、ジルコニウム及びチタン等)、金属酸化物(チタン酸化物及びリチウム・チタン酸化物等)及び金属合金(例えばリチウム-スズ合金、リチウム-アルミニウム合金及びリチウム-アルミニウム-マンガン合金等)等及びこれらと炭素系材料との混合物等が挙げられる。
 上記負極活物質のうち、内部にリチウム又はリチウムイオンを含まないものについては、予め負極活物質の一部又は全部にリチウム又はリチウムイオンを含ませるプレドープ処理を施してもよい。
Examples of the negative electrode active material include carbon-based materials [graphite, refractory carbon, amorphous carbon, fired resin (for example, phenol resin, furan resin, etc. baked and carbonized), cokes (for example, pitch coke, needle). Coke and petroleum coke etc.) and carbon fibers], silicon-based materials [silicon, silicon oxide (SiO x ), silicon-carbon composite (carbon particles whose surface is coated with silicon and / or silicon carbide, silicon particles or Silicon oxide particles whose surface is coated with carbon and / or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloys, silicon-lithium alloys, silicon-nickel alloys, silicon-iron alloys, silicon-titanium alloys, etc. Silicon-manganese alloys, silicon-copper alloys, silicon-tin alloys, etc.)], conductive polymers (eg, polyacetylene and polypyrrole, etc.), metals (tin, aluminum, zirconium, titanium, etc.), metal oxides (titanium oxides, etc.) And lithium-titanium oxides, etc.), metal alloys (for example, lithium-tin alloys, lithium-aluminum alloys, lithium-aluminum-manganese alloys, etc.) and the like, and mixtures of these with carbon-based materials.
Among the above-mentioned negative electrode active materials, those which do not contain lithium or lithium ions inside may be pre-doped with a part or all of the negative electrode active materials containing lithium or lithium ions in advance.
 これらの中でも、電池容量等の観点から、炭素系材料、珪素系材料及びこれらの混合物が好ましく、炭素系材料としては、黒鉛、難黒鉛化性炭素及びアモルファス炭素がさらに好ましく、珪素系材料としては、酸化珪素及び珪素-炭素複合体がさらに好ましい。 Among these, carbon-based materials, silicon-based materials and mixtures thereof are preferable from the viewpoint of battery capacity and the like, graphite, non-graphitizable carbon and amorphous carbon are more preferable as carbon-based materials, and silicon-based materials are more preferable. , Silicon oxide and silicon-carbon composites are more preferred.
 負極活物質の体積平均粒子径は、電池の電気特性の観点から、0.01~100μmが好ましく、0.1~20μmであることがより好ましく、2~10μmであることがさらに好ましい。 The volume average particle size of the negative electrode active material is preferably 0.01 to 100 μm, more preferably 0.1 to 20 μm, and even more preferably 2 to 10 μm from the viewpoint of the electrical characteristics of the battery.
 本明細書において、負極活物質の体積平均粒子径は、マイクロトラック法(レーザー回折・散乱法)によって求めた粒度分布における積算値50%での粒径(Dv50)を意味する。マイクロトラック法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法である。なお、体積平均粒子径の測定には、日機装(株)製のマイクロトラック等を用いることができる。 In the present specification, the volume average particle size of the negative electrode active material means the particle size (Dv50) at an integrated value of 50% in the particle size distribution obtained by the microtrack method (laser diffraction / scattering method). The microtrack method is a method for obtaining a particle size distribution by using scattered light obtained by irradiating particles with laser light. A microtrack manufactured by Nikkiso Co., Ltd. can be used for measuring the volume average particle size.
 導電助剤は、導電性を有する材料から選択される。
 具体的には、金属[ニッケル、アルミニウム、ステンレス(SUS)、銀、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。
 これらの導電助剤は1種単独で用いてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物を用いてもよい。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、銅、チタン及びこれらの混合物であり、より好ましくは銀、アルミニウム、ステンレス及びカーボンであり、さらに好ましくはカーボンである。
 またこれらの導電助剤としては、粒子系セラミック材料や樹脂材料の周りに導電性材料(上記した導電助剤の材料のうち金属のもの)をめっき等でコーティングしたものでもよい。
The conductive auxiliary agent is selected from materials having conductivity.
Specifically, metals [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), etc.), etc. ], And a mixture thereof, etc., but is not limited thereto.
These conductive auxiliaries may be used alone or in combination of two or more. Moreover, you may use these alloys or metal oxides. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, copper, titanium and mixtures thereof are preferable, silver, aluminum, stainless steel and carbon are more preferable, and carbon is more preferable.
Further, these conductive auxiliaries may be those obtained by coating a conductive material (a metal one among the above-mentioned conductive auxiliaries materials) around a particle-based ceramic material or a resin material by plating or the like.
 導電助剤の平均粒子径は、特に限定されるものではないが、電池の電気特性の観点から、0.01~10μmであることが好ましく、0.02~5μmであることがより好ましく、0.03~1μmであることがさらに好ましい。なお、本明細書において、「粒子径」とは、導電助剤の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)等の観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。 The average particle size of the conductive auxiliary agent is not particularly limited, but is preferably 0.01 to 10 μm, more preferably 0.02 to 5 μm, and 0, from the viewpoint of the electrical characteristics of the battery. It is more preferably 3.03 to 1 μm. In addition, in this specification, a "particle diameter" means the maximum distance L among the distances between arbitrary two points on the contour line of a conductive auxiliary agent. As the value of the "average particle size", the average value of the particle size of the particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
 導電助剤の形状(形態)は、粒子形態に限られず、粒子形態以外の形態であってもよく、カーボンナノチューブ等、いわゆるフィラー系導電性材料として実用化されている形態であってもよい。 The shape (form) of the conductive auxiliary agent is not limited to the particle form, and may be a form other than the particle form, or may be a form practically used as a so-called filler-based conductive material such as carbon nanotubes.
 導電助剤は、その形状が繊維状である導電性繊維であってもよい。
 導電性繊維としては、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維等の炭素繊維、合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、ステンレス鋼のような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物繊維の表面を導電性物質を含む樹脂で被覆した導電性繊維等が挙げられる。これらの導電性繊維の中では炭素繊維が好ましい。また、導電性繊維としては、グラフェンを練りこんだポリプロピレン樹脂も好ましい。
 導電助剤が導電性繊維である場合、その平均繊維径は0.1~20μmであることが好ましい。
The conductive auxiliary agent may be a conductive fiber whose shape is fibrous.
The conductive fibers include polyacrylonitrile (PAN) -based carbon fibers, pitch-based carbon fibers and other carbon fibers, conductive fibers in which highly conductive metals and graphite are uniformly dispersed in synthetic fibers, and stainless steel. Examples thereof include metal fibers obtained by fiberizing such metals, conductive fibers in which the surface of organic fibers is coated with metal, and conductive fibers in which the surface of organic fibers is coated with a resin containing a conductive substance. Among these conductive fibers, carbon fiber is preferable. Further, as the conductive fiber, a polypropylene resin kneaded with graphene is also preferable.
When the conductive auxiliary agent is a conductive fiber, the average fiber diameter thereof is preferably 0.1 to 20 μm.
 電極活物質は、その表面の少なくとも一部が高分子化合物を含む被覆層により被覆された被覆活物質であってもよい。
 電極活物質の周囲が被覆層で被覆されていると、電極活物質層の体積変化が緩和され、電極の膨張を抑制することができる。
 なお、電極活物質として正極活物質を使用した場合の被覆活物質を被覆正極活物質といい、被覆活物質層を被覆正極活物質層ともいう。また電極活物質として負極活物質を使用した場合の被覆活物質を被覆負極活物質といい、被覆活物質層を被覆負極活物質層ともいう。
The electrode active material may be a coating active material in which at least a part of the surface thereof is coated with a coating layer containing a polymer compound.
When the periphery of the electrode active material is covered with a coating layer, the volume change of the electrode active material layer is alleviated, and the expansion of the electrode can be suppressed.
When a positive electrode active material is used as the electrode active material, the coated active material is referred to as a coated positive electrode active material, and the coated active material layer is also referred to as a coated positive electrode active material layer. Further, the coated active material when the negative electrode active material is used is referred to as a coated negative electrode active material, and the coated active material layer is also referred to as a coated negative electrode active material layer.
 被覆層を構成する高分子化合物としては、特開2017-054703号公報に非水系二次電池活物質被覆用樹脂として記載されたものを好適に用いることができる。 As the polymer compound constituting the coating layer, those described in JP-A-2017-054703 as a resin for coating a non-aqueous secondary battery active material can be preferably used.
 電極活物質は、電極活物質粒子、導電助剤及び粘着剤を含む電極活物質粒子凝集体であってもよい。電極活物質粒子凝集体は、電極活物質粒子を造粒した造粒粒子の一種である。電極活物質粒子凝集体は、例えば、電極活物質粒子及び導電助剤を乾式混合して混合物を得る第1混合工程と、上記第1混合工程で得られた混合物に対して、撹拌下で、電極活物質粒子の合計重量に対して0.01~10重量%の粘着剤を溶液の形で加えて混合物を得る第2混合工程と、第2混合工程で得られた混合物を撹拌する撹拌工程と、により製造することができる。 The electrode active material may be an electrode active material particle aggregate containing electrode active material particles, a conductive auxiliary agent and a pressure-sensitive adhesive. The electrode active material particle aggregate is a kind of granulated particles obtained by granulating the electrode active material particles. The electrode active material particle aggregate can be obtained, for example, with respect to the first mixing step of dry mixing the electrode active material particles and the conductive auxiliary agent to obtain a mixture and the mixture obtained in the first mixing step under stirring. A second mixing step of adding 0.01 to 10% by weight of an adhesive in the form of a solution to the total weight of the electrode active material particles to obtain a mixture, and a stirring step of stirring the mixture obtained in the second mixing step. And can be manufactured by.
 粘着剤は、電極活物質粒子の表面に対して粘着性を示す。そのため、電極活物質粒子と粘着剤を混合して攪拌することで電極活物質粒子の造粒を行うことができ、電極活物質粒子凝集体を得ることができる。
 粘着剤は、JIS K6800「接着剤・接着用語」に規定されるように、常温で粘着性を有し、軽い圧力で被着材に接着する性質を有する。
 粘着剤は、本開示の電極活物質粒子凝集体の製造方法において粘着剤を溶剤に溶解した溶液の形で使用される。
The pressure-sensitive adhesive exhibits adhesiveness to the surface of the electrode active material particles. Therefore, the electrode active material particles and the pressure-sensitive adhesive can be mixed and stirred to granulate the electrode active material particles, and an electrode active material particle aggregate can be obtained.
As defined in JIS K6800 "Adhesive / Adhesive Term", the adhesive has adhesiveness at room temperature and has the property of adhering to the adherend with a light pressure.
The pressure-sensitive adhesive is used in the form of a solution in which the pressure-sensitive adhesive is dissolved in a solvent in the method for producing electrode active material particle aggregates of the present disclosure.
 粘着剤は、特開2004―143420号公報に記載の粘着剤組成物及び特開2000-239633号公報等に記載のアクリル系感圧接着剤組成物等を用いることができ、中でも2-エチルヘキシル(メタ)アクリレート、(メタ)アクリル酸、ブチル(メタ)アクリレートからなる群から選択された少なくとも1種の単量体を含む重合体を含むことが好ましい。
 なお本明細書において、(メタ)アクリル酸とは、アクリル酸及び/又はメタクリル酸を示しており、(メタ)アクリレートとは、アクリレート及び/又はメタクリレートを示している。
 特に、少なくとも2-エチルヘキシル(メタ)アクリレートと(メタ)アクリル酸を構成単量体として含む共重合体を含むことが好ましい。
 また、この場合、共重合体の構成単量体中の2-エチルヘキシル(メタ)アクリレートと(メタ)アクリル酸の合計重量が、共重合体の構成単量体の合計重量に基づいて10重量%以上であることが好ましい。
 また、共重合体の構成単量体中の2-エチルヘキシル(メタ)アクリレートと(メタ)アクリル酸の合計重量が、共重合体の構成単量体の合計重量に基づいて65重量%以下であることが好ましい。共重合体の構成単量体中の2-エチルヘキシル(メタ)アクリレートと(メタ)アクリル酸の合計重量がこの範囲であると、電極活物質粒子凝集体の強度が良好となり好ましい。
As the pressure-sensitive adhesive, the pressure-sensitive adhesive composition described in JP-A-2004-143420 and the acrylic pressure-sensitive adhesive composition described in JP-A-2000-239633 can be used, among which 2-ethylhexyl (2-ethylhexyl) can be used. It preferably contains a polymer containing at least one monomer selected from the group consisting of meta) acrylates, (meth) acrylic acids and butyl (meth) acrylates.
In addition, in this specification, (meth) acrylic acid means acrylic acid and / or methacrylic acid, and (meth) acrylate means acrylate and / or methacrylate.
In particular, it is preferable to contain a copolymer containing at least 2-ethylhexyl (meth) acrylate and (meth) acrylic acid as constituent monomers.
Further, in this case, the total weight of 2-ethylhexyl (meth) acrylate and (meth) acrylic acid in the constituent monomers of the copolymer is 10% by weight based on the total weight of the constituent monomers of the copolymer. The above is preferable.
Further, the total weight of 2-ethylhexyl (meth) acrylate and (meth) acrylic acid in the constituent monomers of the copolymer is 65% by weight or less based on the total weight of the constituent monomers of the copolymer. Is preferable. When the total weight of 2-ethylhexyl (meth) acrylate and (meth) acrylic acid in the constituent monomers of the copolymer is in this range, the strength of the electrode active material particle aggregate is good, which is preferable.
 粘着剤としては、市販の粘着剤[ポリシックシリーズ(三洋化成工業株式会社製)等]を用いても良い。 As the adhesive, a commercially available adhesive [Polythic series (manufactured by Sanyo Chemical Industries, Ltd.), etc.] may be used.
 粘着剤は、溶剤乾燥型である公知のリチウムイオン電池電極用バインダー(デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、スチレン-ブタジエンゴム、ポリエチレン、ポリプロピレン及びスチレン-ブタジエン共重合体等)とは異なる材料である。
 本開示の電極活物質粒子凝集体の製造方法で得られた電極活物質粒子凝集体は、電極活物質粒子と導電助剤とを粘着剤で一体にしているため、電極活物質粒子凝集体が変形しても電極活物質粒子と導電助剤とは変形に追従してある程度自由に移動することができる。そのため、電極活物質粒子の膨張・収縮が発生して電極活物質粒子凝集体が変形したとしても、電極活物質粒子凝集体から電極活物質粒子や導電助剤が脱落することを抑制することができる。
 さらに、電極活物質粒子が膨張・収縮によって自壊したとしても粘着剤で纏まっているために電気的に孤立しにくい。
 なお、溶剤乾燥型の電極用バインダーは、溶媒成分を揮発させることで乾燥、固体化して電極活物質粒子同士及び電極活物質粒子と集電体とを強固に固定する材料であり、その固体の表面は粘着性を示さない。一方、粘着剤は、溶媒成分を揮発させて乾燥させても粘着性を有する性質を有する材料である。
The pressure-sensitive adhesive is a solvent-drying type binder for known lithium ion battery electrodes (starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene, polypropylene and styrene-butadiene). It is a different material from polymer etc.).
In the electrode active material particle agglomerates obtained by the method for producing electrode active material particle agglomerates of the present disclosure, the electrode active material particles and the conductive auxiliary agent are integrated with an adhesive, so that the electrode active material particle agglomerates are formed. Even if it is deformed, the electrode active material particles and the conductive auxiliary agent can move freely to some extent following the deformation. Therefore, even if the electrode active material particles expand and contract and the electrode active material particle aggregates are deformed, it is possible to prevent the electrode active material particles and the conductive auxiliary agent from falling off from the electrode active material particle aggregates. can.
Further, even if the electrode active material particles are self-destructed due to expansion / contraction, they are not easily isolated electrically because they are gathered by the adhesive.
The solvent-drying type electrode binder is a material that dries and solidifies by volatilizing the solvent component to firmly fix the electrode active material particles and the electrode active material particles and the current collector, and the solid material thereof. The surface is not sticky. On the other hand, the pressure-sensitive adhesive is a material having a property of having stickiness even when the solvent component is volatilized and dried.
 本開示の電極活物質粒子凝集体の製造方法で得られた電極活物質粒子凝集体は、体積平均粒子径が20~350μmであることが好ましい。
 なお、この体積平均粒子径は凝集体としての粒子径である。
The electrode active material particle agglomerates obtained by the method for producing the electrode active material particle agglomerates of the present disclosure preferably have a volume average particle diameter of 20 to 350 μm.
The volume average particle diameter is the particle diameter as an aggregate.
 本明細書において、電極活物質粒子凝集体の体積平均粒子径は、マイクロトラック法及びJISZ8825に記載のレーザー回折・散乱法によって求めた体積基準での粒度分布における積算値50%での粒径(Dv50)を意味する。マイクロトラック法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法である。なお、体積平均粒子径の測定には、日機装(株)製のマイクロトラック等を用いることができる。 In the present specification, the volume average particle size of the electrode active material particle aggregate is the particle size at an integrated value of 50% in the particle size distribution on a volume basis obtained by the microtrack method and the laser diffraction / scattering method described in JISZ8825. It means Dv50). The microtrack method is a method for obtaining a particle size distribution by using scattered light obtained by irradiating particles with laser light. A microtrack manufactured by Nikkiso Co., Ltd. can be used for measuring the volume average particle size.
 非水電解液としては、リチウムイオン二次電池の製造に用いられる、電解質及び非水溶媒を含有する公知の非水電解液を使用することができる。 As the non-aqueous electrolyte solution, a known non-aqueous electrolyte solution containing an electrolyte and a non-aqueous solvent used for manufacturing a lithium ion secondary battery can be used.
 電解質としては、公知の電解液に用いられているもの等が使用でき、例えば、LiPF、LiBF、LiSbF、LiAsF、LiN(FSO及びLiClO等の無機酸のリチウム塩、LiN(CFSO、LiN(CSO及びLiC(CFSO等の有機酸のリチウム塩等が挙げられ、LiN(FSO(LiFSIともいう)又はLiPFが好ましい。 As the electrolyte, those used in known electrolytic solutions can be used, for example, lithium salts of inorganic acids such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (FSO 2 ) 2 and LiClO 4 . Examples thereof include lithium salts of organic acids such as LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 , and LiN (FSO 2 ) 2 (also referred to as LiFSI). ) Or LiPF 6 .
 非水溶媒としては、公知の非水電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物を用いることができる。 As the non-aqueous solvent, those used in known non-aqueous electrolytic solutions can be used, and for example, a lactone compound, a cyclic or chain carbonate ester, a chain carboxylic acid ester, a cyclic or chain ether, or a phosphoric acid ester can be used. , Ester compounds, amide compounds, sulfones, sulfolanes and the like, and mixtures thereof can be used.
 ラクトン化合物としては、5員環(γ-ブチロラクトン及びγ-バレロラクトン等)及び6員環のラクトン化合物(δ-バレロラクトン等)等を挙げることができる。 Examples of the lactone compound include a 5-membered ring (γ-butyrolactone and γ-valerolactone, etc.) and a 6-membered ring lactone compound (δ-valerolactone, etc.).
 環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート及びブチレンカーボネート等が挙げられる。
 鎖状炭酸エステルとしては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート及びジ-n-プロピルカーボネート等が挙げられる。
Examples of the cyclic carbonic acid ester include propylene carbonate, ethylene carbonate and butylene carbonate.
Examples of the chain carbonate ester include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, di-n-propyl carbonate and the like.
 鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル及びプロピオン酸メチル等が挙げられる。
 環状エーテルとしては、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン及び1,4-ジオキサン等が挙げられる。
 鎖状エーテルとしては、ジメトキシメタン及び1,2-ジメトキシエタン等が挙げられる。
Examples of the chain carboxylic acid ester include methyl acetate, ethyl acetate, propyl acetate, methyl propionate and the like.
Examples of the cyclic ether include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4-dioxane and the like.
Examples of the chain ether include dimethoxymethane and 1,2-dimethoxyethane.
 リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリプロピル、リン酸トリブチル、リン酸トリ(トリフルオロメチル)、リン酸トリ(トリクロロメチル)、リン酸トリ(トリフルオロエチル)、リン酸トリ(トリパーフルオロエチル)、2-エトキシ-1,3,2-ジオキサホスホラン-2-オン、2-トリフルオロエトキシ-1,3,2-ジオキサホスホラン-2-オン及び2-メトキシエトキシ-1,3,2-ジオキサホスホラン-2-オン等が挙げられる。
 ニトリル化合物としては、アセトニトリル等が挙げられる。アミド化合物としては、DMF等が挙げられる。
 スルホンとしては、ジメチルスルホン及びジエチルスルホン等が挙げられる。
 非水溶媒は1種を単独で用いてもよいし、2種以上を併用してもよい。
Examples of the phosphoric acid ester include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, and tri (trichloromethyl) phosphate. Tri (trifluoroethyl) phosphate, Tri (triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphosphoran-2-one, 2-trifluoroethoxy-1,3,2- Examples thereof include dioxaphosphoran-2-one and 2-methoxyethoxy-1,3,2-dioxaphosphoran-2-one.
Examples of the nitrile compound include acetonitrile and the like. Examples of the amide compound include DMF and the like.
Examples of the sulfone include dimethyl sulfone and diethyl sulfone.
One type of non-aqueous solvent may be used alone, or two or more types may be used in combination.
 非水溶媒の内、電池出力及び充放電サイクル特性の観点から好ましいのは、ラクトン化合物、環状炭酸エステル、鎖状炭酸エステル及びリン酸エステルであり、更に好ましいのはラクトン化合物、環状炭酸エステル及び鎖状炭酸エステルであり、特に好ましいのは環状炭酸エステルと鎖状炭酸エステルの混合液である。最も好ましいのはエチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合液、又は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合液である。 Among the non-aqueous solvents, lactone compounds, cyclic carbonate esters, chain carbonate esters and phosphate esters are preferable from the viewpoint of battery output and charge / discharge cycle characteristics, and lactone compounds, cyclic carbonate esters and chains are more preferable. A carbonic acid ester is particularly preferable, and a mixed solution of a cyclic carbonic acid ester and a chain carbonic acid ester is particularly preferable. The most preferable is a mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DMC), or a mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC).
 上述した被覆活物質を製造する方法について説明する。
 被覆活物質は、例えば、高分子化合物及び電極活物質並びに必要により用いる導電剤を混合することによって製造してもよく、被覆層に導電剤を用いる場合には高分子化合物と導電剤とを混合して被覆材を準備したのち、該被覆材と電極活物質とを混合することにより製造してもよく、高分子化合物、導電剤及び電極活物質を混合することによって製造してもよい。
 なお、電極活物質と高分子化合物と導電剤とを混合する場合、混合順序には特に制限はないが、電極活物質と高分子化合物とを混合した後、更に導電剤を加えて更に混合することが好ましい。
 上記方法により、高分子化合物と必要により用いる導電剤を含む被覆層によって電極活物質の表面の少なくとも一部が被覆される。
The method for producing the above-mentioned coating active material will be described.
The coating active material may be produced, for example, by mixing a polymer compound, an electrode active material, and a conductive agent used if necessary, and when a conductive agent is used for the coating layer, the polymer compound and the conductive agent are mixed. After preparing the coating material, the coating material may be produced by mixing the coating material with the electrode active material, or may be produced by mixing the polymer compound, the conductive agent and the electrode active material.
When the electrode active material, the polymer compound, and the conductive agent are mixed, the mixing order is not particularly limited, but after the electrode active material and the polymer compound are mixed, the conductive agent is further added and further mixed. Is preferable.
By the above method, at least a part of the surface of the electrode active material is covered with a coating layer containing a polymer compound and a conductive agent used if necessary.
 被覆材の任意成分である導電剤としては、電極組成物を構成する導電助剤と同様のものを好適に用いることができる。 As the conductive agent which is an optional component of the coating material, the same conductive agent as the conductive auxiliary agent constituting the electrode composition can be preferably used.
 電極組成物には、さらに、溶液乾燥型の公知の電極用バインダ(カルボキシメチルセルロース、SBRラテックス及びポリフッ化ビニリデン等)や粘着性樹脂等が含まれていてもよい。
 ただし、公知の電極用バインダではなく、粘着性樹脂を含むことが望ましい。電極組成物が上記の溶液乾燥型の公知の電極用バインダを含む場合には、電極活物質層形成工程の後に乾燥工程を行うことで電極組成物を一体化する必要があるが、粘着性樹脂を含む場合には、乾燥工程を行うことなく、常温において僅かな圧力で電極組成物を一体化することができる。乾燥工程を行わない場合、加熱による電極組成物の収縮や亀裂の発生がおこらないため好ましい。
 また、電極活物質、非水電解液及び粘着性樹脂を含む電極組成物は、電極活物質層形成工程を経た後であっても、電極活物質層が非結着体のままで維持される。電極活物質層が非結着体であれば、電極活物質層を厚くすることができ、高容量の電池を得ることができ好ましい。
 粘着性樹脂としては、被覆層を構成する高分子化合物(特開2017-054703号公報に記載された非水系二次電池活物質被覆用樹脂等)に少量の有機溶剤を混合してそのガラス転移温度を室温以下に調整したもの、及び、特開平10-255805号公報等に粘着剤として記載されたものを好適に用いることができる。
 ここで、非結着体とは、電極組成物を構成する電極活物質同士が、互いに結合していないことを意味し、結合とは不可逆的に電極活物質同士が固定されていることを意味する。
 なお、溶液乾燥型の電極用バインダは、溶媒成分を揮発させることで乾燥、固体化して活物質同士を強固に接着固定するものを意味する。一方、粘着性樹脂は、粘着性(水、溶剤、熱などを使用せずに僅かな圧力を加えることで接着する性質)を有する樹脂を意味する。
 溶液乾燥型の電極バインダと粘着性樹脂とは異なる材料である。
The electrode composition may further contain a solution-drying type known electrode binder (carboxymethyl cellulose, SBR latex, polyvinylidene fluoride, etc.), an adhesive resin, or the like.
However, it is desirable to contain an adhesive resin instead of a known electrode binder. When the electrode composition contains the above-mentioned solution-drying type known electrode binder, it is necessary to integrate the electrode composition by performing a drying step after the electrode active material layer forming step. When the above is included, the electrode composition can be integrated with a slight pressure at room temperature without performing a drying step. When the drying step is not performed, the electrode composition does not shrink or crack due to heating, which is preferable.
Further, in the electrode composition containing the electrode active material, the non-aqueous electrolytic solution and the adhesive resin, the electrode active material layer is maintained as a non-bound body even after undergoing the electrode active material layer forming step. .. When the electrode active material layer is a non-bound body, the electrode active material layer can be made thicker, and a high-capacity battery can be obtained, which is preferable.
As the adhesive resin, a small amount of an organic solvent is mixed with a polymer compound constituting the coating layer (such as the resin for coating a non-aqueous secondary battery active material described in Japanese Patent Application Laid-Open No. 2017-054703) and its glass transition. Those whose temperature is adjusted to room temperature or lower and those described as an adhesive in JP-A No. 10-255805 can be preferably used.
Here, the non-bound body means that the electrode active materials constituting the electrode composition are not bonded to each other, and means that the electrode active materials are fixed to each other irreversibly to the bonding. do.
The solution-drying type electrode binder is meant to be dried and solidified by volatilizing the solvent component to firmly bond and fix the active substances to each other. On the other hand, the adhesive resin means a resin having adhesiveness (property of adhering by applying a slight pressure without using water, solvent, heat, etc.).
Solution-drying electrode binders and adhesive resins are different materials.
 本開示のリチウムイオン二次電池用電極の製造方法において、電極組成物はペンデュラー状態又はファニキュラー状態であることがより好ましい。 In the method for manufacturing an electrode for a lithium ion secondary battery of the present disclosure, it is more preferable that the electrode composition is in a pendular state or a funicular state.
 電極組成物における非水電解液の割合は、特に限定されないが、ペンデュラー状態又はファニキュラー状態とするためには、正極の場合には非水電解液の割合を電極組成物全体の0.5~15重量%、負極の場合には非水電解液の割合を電極組成物全体の0.5~25重量%とすることが望ましい。 The ratio of the non-aqueous electrolyte solution in the electrode composition is not particularly limited, but in the case of a positive electrode, the proportion of the non-aqueous electrolyte solution is set to 0.5 to 0.5 for the entire electrode composition in order to bring it into a pendular state or a funicular state. It is desirable that the proportion of the non-aqueous electrolytic solution is 15% by weight, and in the case of the negative electrode, 0.5 to 25% by weight of the entire electrode composition.
[第3実施形態]
 リチウムイオン二次電池をはじめとする二次電池は、上述のように高容量で小型軽量な二次電池として、近年様々な用途に多用されている。一般的なリチウムイオン二次電池は、複数の電池セルを積層してなる。電池セルは、例えば正極電極組成物層と負極電極組成物層とをセパレータを介して積層された電極組成物と、この電極組成物の周囲を囲むように環状に配置され各電極組成物層を封止する枠状部材と、枠状部材を厚さ方向両側から覆い電流を集めて取り出すための電極集電体と、を備える。正極電極組成物層や負極電極組成物層は、電極活物質粒子を含む(特許文献7参照)。
[Third Embodiment]
Secondary batteries such as lithium-ion secondary batteries have been widely used in various applications in recent years as high-capacity, compact and lightweight secondary batteries as described above. A general lithium ion secondary battery is formed by stacking a plurality of battery cells. The battery cell is, for example, an electrode composition in which a positive electrode composition layer and a negative electrode composition layer are laminated via a separator, and each electrode composition layer is arranged in an annular shape so as to surround the periphery of the electrode composition. A frame-shaped member for sealing and an electrode current collector for covering the frame-shaped member from both sides in the thickness direction and collecting and extracting current are provided. The positive electrode composition layer and the negative electrode composition layer contain electrode active material particles (see Patent Document 7).
 ところで、特許文献7のような電極組成物層を含む電池セルは、使用環境によって一時的に枠状部材の内側の圧力が上昇する場合がある。例えば、大電流で放電したり過充電したりすると電極組成物でガスが発生して枠状部材の内側の圧力が上昇する場合がある。このような圧力の上昇に伴い、電池セルが損傷してしまう可能性があった。 By the way, in a battery cell containing an electrode composition layer as in Patent Document 7, the pressure inside the frame-shaped member may temporarily increase depending on the usage environment. For example, when discharged or overcharged with a large current, gas may be generated in the electrode composition and the pressure inside the frame-shaped member may increase. With such an increase in pressure, the battery cell may be damaged.
 本開示は、枠状部材の内側の圧力上昇を抑えて損傷を防止できる電池セルを提供することを目的とする。 It is an object of the present disclosure to provide a battery cell capable of suppressing a pressure rise inside a frame-shaped member and preventing damage.
<組電池>
 図9は、本開示の第3実施形態に係る電池セル301を組み合わせてモジュール化した組電池600の構成を概略的に示す図である。
 組電池600は、いわゆるリチウムイオン二次電池である。図1に示すように、組電池600は、平板状の複数の電池セル301を厚さ方向に積層してなる。以下では、電池セル301の厚さ方向を単に厚さ方向と称して説明する場合がある。
<Assembled battery>
FIG. 9 is a diagram schematically showing the configuration of an assembled battery 600 modularized by combining the battery cells 301 according to the third embodiment of the present disclosure.
The assembled battery 600 is a so-called lithium ion secondary battery. As shown in FIG. 1, the assembled battery 600 is formed by stacking a plurality of flat plate-shaped battery cells 301 in the thickness direction. Hereinafter, the thickness direction of the battery cell 301 may be described simply as the thickness direction.
 組電池600は、積層された電池セル301の周囲を覆うように設けられた外層フィルム601を有している。外層フィルム601は、可撓性を有する絶縁材料を用いることができる。しかしながらこれに限られるものではなく、例えば外層フィルム601としてラミネートフィルムを用いてもよい。ラミネートフィルムとしては、外側にナイロンフィルム、中心にアルミニウム箔、内側に変性ポリプロピレン等の接着層を有した3層ラミネートフィルムを好ましく用いることができる。組電池600は、電池セル301の積層方向両端に電流取り出し部602が設けられている。この電流取り出し部602を介してさまざまな電気製品に電流が供給される。 The assembled battery 600 has an outer layer film 601 provided so as to cover the periphery of the laminated battery cells 301. As the outer layer film 601, a flexible insulating material can be used. However, the present invention is not limited to this, and for example, a laminated film may be used as the outer layer film 601. As the laminated film, a three-layer laminated film having an adhesive layer such as a nylon film on the outside, an aluminum foil in the center, and a modified polypropylene on the inside can be preferably used. The assembled battery 600 is provided with current extraction units 602 at both ends of the battery cell 301 in the stacking direction. Current is supplied to various electric products through the current extraction unit 602.
<電池セル>
 図10は、電池セル301の概略構成図である。
 図10に示すように、電池セル301は、電極組成物302と、電極組成物302の厚さ方向両面を除く外周を囲むように環状に配置される枠状部材303と、枠状部材303の開口303aを厚さ方向両側から閉塞する正極集電体304及び負極集電体305と、を備える。電池セル301は、例えば厚さ方向からみて長方形状に形成されている。
<Battery cell>
FIG. 10 is a schematic configuration diagram of the battery cell 301.
As shown in FIG. 10, the battery cell 301 includes an electrode composition 302, a frame-shaped member 303 that is annularly arranged so as to surround the outer periphery of the electrode composition 302 excluding both sides in the thickness direction, and a frame-shaped member 303. A positive electrode current collector 304 and a negative electrode current collector 305 that close the opening 303a from both sides in the thickness direction are provided. The battery cell 301 is formed, for example, in a rectangular shape when viewed from the thickness direction.
 電極組成物302は、正極活物質粒子を含む正極電極組成物層306と負極活物質粒子を含む負極電極組成物層307とをセパレータ308を介して積層してなる。そして、正極電極組成物層306を覆うように正極集電体304が配置され、負極電極組成物層307を覆うように負極集電体305が配置される。正極集電体304,負極集電体305(以下、各極集電体304,305ともいう)により電池セル301の電流を集めて取り出すリチウムイオン電池用電極を得ることができる。 The electrode composition 302 is formed by laminating a positive electrode composition layer 306 containing positive electrode active material particles and a negative electrode composition layer 307 containing negative electrode active material particles via a separator 308. Then, the positive electrode current collector 304 is arranged so as to cover the positive electrode composition layer 306, and the negative electrode current collector 305 is arranged so as to cover the negative electrode composition layer 307. An electrode for a lithium ion battery can be obtained by collecting and extracting the current of the battery cell 301 by the positive electrode current collector 304 and the negative electrode current collector 305 (hereinafter, also referred to as the respective pole current collectors 304 and 305).
 各極集電体304,305の形状は特に限定されないが、枠状部材303の厚さ方向平面視外形形状と同じか、枠状部材303の外形形状と略相似で、枠状部材よりも少しだけ小さい形状であることが好ましい。
 各極集電体304,305を構成する材料としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル及びこれらの合金等の金属材料等が挙げられる。なかでも、軽量化、耐食性、高導電性の観点から、好ましくは銅である。負極集電体としては、焼成炭素、導電性高分子及び導電性ガラス等からなる集電体であってもよく、導電剤と樹脂からなる樹脂集電体であってもよい。
The shape of each of the current collectors 304 and 305 is not particularly limited, but it is the same as the external shape of the frame-shaped member 303 in the plan view in the thickness direction, or is substantially similar to the external shape of the frame-shaped member 303, and is slightly smaller than the frame-shaped member. It is preferable that the shape is as small as possible.
Examples of the materials constituting the current collectors 304 and 305 include metal materials such as copper, aluminum, titanium, stainless steel, nickel and alloys thereof. Of these, copper is preferable from the viewpoint of weight reduction, corrosion resistance, and high conductivity. The negative electrode current collector may be a current collector made of calcined carbon, a conductive polymer, conductive glass, or the like, or may be a resin current collector made of a conductive agent and a resin.
 各極集電体304,305とも樹脂集電体を構成する導電剤としては、電極組成物に含まれる導電助剤と同様のものを好適に用いることができる。樹脂集電体を構成する樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂又はこれらの混合物等が挙げられる。電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、さらに好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。 As the conductive agent constituting the resin current collector for each of the electrode current collectors 304 and 305, the same conductive agent as that contained in the electrode composition can be preferably used. The resins constituting the resin collector include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), and polytetra. Fluoroethylene (PTFE), Styrene-butadiene rubber (SBR), Polyacrylonitrile (PAN), Polymethylacrylate (PMA), Polymethylmethacrylate (PMMA), Polyfluorinated vinylidene (PVdF), Epoxy resin, Silicone resin or mixtures thereof. And so on. From the viewpoint of electrical stability, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferable, and polyethylene (PE), polypropylene (PP) and polymethylpentene are more preferable. (PMP).
 このような樹脂集電体を、例えばバイポーラ電極用樹脂集電体として用いる場合には、樹脂集電体の一方の面に正極を形成し、もう一方の面に負極を形成して双極型電極を構成したものであってもよい。
 このように、電池セル301は、正極電極組成物層306及び負極電極組成物層307の外周を枠状部材303で封止することで電解液が封入された構成である。このような電池セル301の各極集電体305の向きを揃えて積層し、各電池セル301を直列接続することにより、組電池600が構成される。
When such a resin current collector is used, for example, as a resin current collector for a bipolar electrode, a positive electrode is formed on one surface of the resin current collector and a negative electrode is formed on the other surface to form a bipolar electrode. May be configured.
As described above, the battery cell 301 has a configuration in which the electrolytic solution is sealed by sealing the outer periphery of the positive electrode composition layer 306 and the negative electrode composition layer 307 with the frame-shaped member 303. The assembled battery 600 is configured by stacking the pole current collectors 305 of the battery cells 301 in the same direction and connecting the battery cells 301 in series.
 すなわち、組電池600は、1個の電池セル301における正極集電体304と、電池セル301に対して積層方向に隣り合う他の電池セル301における負極集電体305とが相互に接触するように、複数の電池セル301が積層され、各々の電池セル301が直列に接続されている。この積層構造においては、正極集電体304と負極集電体305との積層により集電体が構成される。このような積層構造は、当該集電体の一方の面に正極を形成し、もう一方の面に負極を形成してバイポーラ(双極)型電極とし、当該バイポーラ(双極)型電極をセパレータと積層した構造とも表現することができる。 That is, in the assembled battery 600, the positive electrode collector 304 in one battery cell 301 and the negative electrode current collector 305 in another battery cell 301 adjacent to the battery cell 301 in the stacking direction are in mutual contact with each other. A plurality of battery cells 301 are stacked, and each battery cell 301 is connected in series. In this laminated structure, the current collector is formed by laminating the positive electrode current collector 304 and the negative electrode current collector 305. In such a laminated structure, a positive electrode is formed on one surface of the current collector and a negative electrode is formed on the other surface to form a bipolar (bipolar) type electrode, and the bipolar (bipolar) type electrode is laminated with a separator. It can also be expressed as a structure.
 なお、組電池600は、前述したように、各々の電池セル301が複数積層されて直列接続されるものを含むが、平面状電池(単電池ユニット)を、電気的接続はないが物理的に接触するよう複数積層したものも含まれる。また、集電体の一方の面に正極が形成され他方の面に負極が形成されたバイポーラ電極用樹脂集電体として用いる場合、組電池600は、集電体(バイポーラ電極用樹脂集電体)の一方の面に正極を形成し、もう一方の面に負極を形成して双極型電極とし、当該双極型電極をセパレータと積層してなる積層体(双極型電池)として構成されていてもよい。 As described above, the assembled battery 600 includes a battery cell 301 in which a plurality of each battery cell 301 is stacked and connected in series, but the planar battery (cell unit) is physically connected to the planar battery (cell unit), although it is not electrically connected. It also includes multiple layers that are in contact with each other. Further, when used as a resin collector for a bipolar electrode having a positive electrode formed on one surface of the current collector and a negative electrode formed on the other surface, the assembled battery 600 is a current collector (resin collector for bipolar electrodes). ) Is formed on one surface and a negative electrode is formed on the other surface to form a bipolar electrode, and the bipolar electrode is laminated with a separator to form a laminated body (bipolar battery). good.
 また、組電池600は、電解質に液体材料を使用した電池の他、電解質に固体材料を使用した電池(いわゆる全固体電池)を含む。但し、電解質に固体材料を使用した場合であっても枠状部材303を使用することを前提とする。
 さらに、組電池600は、バインダを用いて正極活物質又は負極活物質等を正極集電体304又は負極集電体305にそれぞれ塗布して電極を構成したものを含み、双極型の電池の場合には、集電体の一方の面にバインダを用いて正極活物質等を塗布して正極層を、反対側の面にバインダを用いて負極活物質等を塗布して負極層を有する双極型電極を構成したものを含む。
Further, the assembled battery 600 includes a battery using a liquid material as an electrolyte and a battery using a solid material as an electrolyte (so-called all-solid-state battery). However, even when a solid material is used for the electrolyte, it is premised that the frame-shaped member 303 is used.
Further, the assembled battery 600 includes a bipolar type battery in which an electrode is formed by applying a positive electrode active material, a negative electrode active material, or the like to a positive electrode current collector 304 or a negative electrode current collector 305 using a binder, respectively. A bipolar type having a positive electrode active material or the like coated on one surface of a current collector using a binder and a negative electrode active material or the like coated on the opposite surface using a binder and having a negative electrode layer. Includes those that make up the electrodes.
<枠状部材>
 次に、図10、図11に基づいて、枠状部材303について詳述する。
 図10に示すように、枠状部材303はセパレータ308の周縁部を固定し、このうえで正極電極組成物層306及び負極電極組成物層307を封止している。なお、以下の説明では、枠状部材303において、この枠状部材303によって取り囲まれた電極組成物302が配置されている側を枠状部材303の内側と称し、この枠状部材303の内側とは反対側の枠状部材303の外周側を枠状部材303の外側と称する。
<Frame-shaped member>
Next, the frame-shaped member 303 will be described in detail with reference to FIGS. 10 and 11.
As shown in FIG. 10, the frame-shaped member 303 fixes the peripheral edge portion of the separator 308, and further seals the positive electrode composition layer 306 and the negative electrode composition layer 307. In the following description, in the frame-shaped member 303, the side on which the electrode composition 302 surrounded by the frame-shaped member 303 is arranged is referred to as the inside of the frame-shaped member 303, and is referred to as the inside of the frame-shaped member 303. Refers to the outer peripheral side of the frame-shaped member 303 on the opposite side as the outside of the frame-shaped member 303.
 図11は、枠状部材303を厚さ方向からみた平面図である。
 図11に示すように、枠状部材303は、電池セル301の外郭をなしており、厚さ方向からみて長方形の枠状(額縁状)に形成されている。
 枠状部材303は、例えばアラミド樹脂により形成されている。枠状部材303の成形加工温度は、例えば120℃から200℃である。この温度範囲を超えると熱分解が発生する。
FIG. 11 is a plan view of the frame-shaped member 303 as viewed from the thickness direction.
As shown in FIG. 11, the frame-shaped member 303 forms an outer shell of the battery cell 301, and is formed in a rectangular frame shape (frame shape) when viewed from the thickness direction.
The frame-shaped member 303 is formed of, for example, an aramid resin. The molding processing temperature of the frame-shaped member 303 is, for example, 120 ° C to 200 ° C. If this temperature range is exceeded, thermal decomposition will occur.
 枠状部材303には、一部に脆弱部309が形成されている。本実施形態では、例えば枠状部材303の長辺の一部に、脆弱部309が形成されている。脆弱部309は、枠状部材303の脆弱部309が形成されている以外の箇所と比較して脆弱である。脆弱部309は、枠状部材303の一辺の外側に形成された外側凹部310aと、内側に形成された内側凹部310bと、を有する。これら凹部310a,310bにより、枠状部材303の他の箇所と比較して薄肉の薄肉部311が形成される。この薄肉部311が脆弱部309となる。 A fragile portion 309 is partially formed on the frame-shaped member 303. In the present embodiment, for example, the fragile portion 309 is formed on a part of the long side of the frame-shaped member 303. The fragile portion 309 is vulnerable as compared with a portion of the frame-shaped member 303 other than the fragile portion 309 formed. The fragile portion 309 has an outer recess 310a formed on the outside of one side of the frame-shaped member 303 and an inner recess 310b formed on the inside. These recesses 310a and 310b form a thin-walled portion 311 as compared to other parts of the frame-shaped member 303. This thin-walled portion 311 becomes a fragile portion 309.
 外側凹部310a及び内側凹部310bは、厚さ方向からみて例えば円弧状に形成されている。しかしながら各凹部310a,310bの形状は特に限定されない。各凹部310a,310bによって薄肉化された脆弱部309が形成されればよい。例えば、各凹部310a,310bの形状を、厚さ方向からみて三角形状としてもよい。このように薄肉化された脆弱部309は、この脆弱部309以外の枠状部材303の箇所と比較して溶けやすくなる。具体的には、脆弱部309の融点は約75℃から90℃程度である。 The outer recess 310a and the inner recess 310b are formed, for example, in an arc shape when viewed from the thickness direction. However, the shapes of the recesses 310a and 310b are not particularly limited. The fragile portion 309 thinned by the recesses 310a and 310b may be formed. For example, the shapes of the recesses 310a and 310b may be triangular when viewed from the thickness direction. The fragile portion 309 thinned in this way is more likely to melt than the portion of the frame-shaped member 303 other than the fragile portion 309. Specifically, the melting point of the fragile portion 309 is about 75 ° C to 90 ° C.
<枠状部材における脆弱部の作用>
 次に、図12に基づいて、脆弱部309の作用について説明する。
 ところで、電池セル301は、例えば、大電流で放電したり過充電したりすると電極組成物302でガスが発生して枠状部材303の内側の圧力が上昇する場合がある。この際、電池セル301の温度も上昇して膨張する。例えば、電池セル301は、160℃付近から膨張が始まる。
<Action of fragile parts on frame-shaped members>
Next, the operation of the fragile portion 309 will be described with reference to FIG.
By the way, when the battery cell 301 is discharged or overcharged with a large current, for example, gas may be generated in the electrode composition 302 and the pressure inside the frame-shaped member 303 may increase. At this time, the temperature of the battery cell 301 also rises and expands. For example, the battery cell 301 starts expanding from around 160 ° C.
 図12は、枠状部材303の作用を説明する図である。
 ここで、枠状部材303には脆弱部309が形成されている。このため、図12に示すように、電池セル301の温度が異常に上昇し始めると脆弱部309が溶けて開口部312が形成される。この開口部312を介し、枠状部材303の内外が連通される。脆弱部309の融点は、例えば約75℃から90℃程度であるから、電池セル301の膨張が始まったり枠状部材303の内側の圧力が上昇したりする前に枠状部材303の内外が連通されることになる。このため、内外が連通された脆弱部309(開口部312)を介して枠状部材303の内側の圧抜きが行われる。すなわち、脆弱部309は、枠状部材303の内側の圧力が一定以上高まった場合に枠状部材303の内外を連通する圧抜き部として機能する。
FIG. 12 is a diagram illustrating the operation of the frame-shaped member 303.
Here, the frame-shaped member 303 is formed with a fragile portion 309. Therefore, as shown in FIG. 12, when the temperature of the battery cell 301 starts to rise abnormally, the fragile portion 309 melts and the opening portion 312 is formed. The inside and outside of the frame-shaped member 303 are communicated with each other through the opening 312. Since the melting point of the fragile portion 309 is, for example, about 75 ° C to 90 ° C, the inside and outside of the frame-shaped member 303 communicate with each other before the expansion of the battery cell 301 starts or the pressure inside the frame-shaped member 303 rises. Will be done. Therefore, the inside of the frame-shaped member 303 is depressurized through the fragile portion 309 (opening 312) in which the inside and outside are communicated. That is, the fragile portion 309 functions as a pressure release portion that communicates the inside and outside of the frame-shaped member 303 when the pressure inside the frame-shaped member 303 increases by a certain amount or more.
 このように、上述の電池セル301は、脆弱部309が形成された枠状部材303を有する。このため、枠状部材303の内側の圧力が上昇してしまうことを抑えることができ、電池セル301の損傷を確実に防止できる。
 脆弱部309は、枠状部材303に外側凹部310aと内側凹部310bとにより薄肉部311を形成してなる。このように、薄肉部311を形成することにより、容易に脆弱部309を設けることができる。
As described above, the battery cell 301 described above has a frame-shaped member 303 on which the fragile portion 309 is formed. Therefore, it is possible to suppress an increase in the pressure inside the frame-shaped member 303, and it is possible to reliably prevent damage to the battery cell 301.
The fragile portion 309 is formed by forming a thin portion 311 in the frame-shaped member 303 by the outer recess 310a and the inner recess 310b. By forming the thin-walled portion 311 in this way, the fragile portion 309 can be easily provided.
 なお、上述の第3実施形態では、枠状部材303に外側凹部310a及び内側凹部310bを形成することにより薄肉部311を形成し、この薄肉部311を脆弱部309とした場合について説明した。しかしながらこれに限られるものではなく、枠状部材303の一部に、他の箇所と比較して薄肉の薄肉部が形成されればよい。例えば、枠状部材303の一部に、他の箇所と比較して厚さ方向に薄い薄肉部を形成し、この薄肉部を脆弱部309としてもよい。 In the above-mentioned third embodiment, the case where the thin-walled portion 311 is formed by forming the outer concave portion 310a and the inner concave portion 310b in the frame-shaped member 303 and the thin-walled portion 311 is used as the fragile portion 309 has been described. However, the present invention is not limited to this, and a thin portion having a thinner wall than other portions may be formed in a part of the frame-shaped member 303. For example, a thin-walled portion that is thinner in the thickness direction than other portions may be formed in a part of the frame-shaped member 303, and this thin-walled portion may be used as the fragile portion 309.
 また、上述の第3実施形態では、セパレータ308や各極集電体304,305をアラミド樹脂で形成してもよい。枠状部材303とセパレータ308や各極集電体304,305とを同じ材料にした場合であっても、これらセパレータ308や各極集電体304,305の融点と比較して脆弱部309の融点が低くなる。このため、上述の第3実施形態と同様の効果を奏する。 Further, in the above-mentioned third embodiment, the separator 308 and the polar current collectors 304 and 305 may be formed of aramid resin. Even when the frame-shaped member 303 and the separator 308 and the pole collectors 304 and 305 are made of the same material, the fragile portion 309 is compared with the melting points of the separator 308 and the pole collectors 304 and 305. The melting point becomes lower. Therefore, the same effect as that of the third embodiment described above is obtained.
 アラミド樹脂に代わって、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリアミド、ポリイミド、ポリアミドイミド、ポリビニルアルコール、ポリアクリロニトリル、ポリアクリル酸、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸ヘキシル、ポリメタクリル酸、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ヘキシル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ポリヘキサフルオロプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース等を使用することもできる。これらの材料を1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Instead of aramid resin, polyvinylidene fluoride (PVdF), polytetrafluoroethylene, polyethylene, polypropylene, polyamide, polyimide, polyamideimide, polyvinyl alcohol, polyacrylic acid, polyacrylic acid, methylpolyacrylic acid, ethyl polyacrylate, poly Hexyl acrylate, polymethacrylic acid, methylpolymethacrylate, ethyl polymethacrylate, hexylpolymethacrylate, vinyl acetate, polyvinylpyrrolidone, polyether, polyether sulfone, polyhexafluoropropylene, styrene butadiene rubber, carboxymethyl cellulose, etc. Can also be used. These materials may be used alone or in combination of two or more.
[第4実施形態]
 次に、図10を援用し、図13、図14に基づいて本開示の第4実施形態について説明する。なお、第3実施形態と同一態様には、同一符号を付して説明を省略する。
 本第4実施形態において、電池セル301は、電極組成物302と、電極組成物302の厚さ方向両面を除く外周を囲むように環状に配置される枠状部材403と、枠状部材403の開口403aを厚さ方向両側から閉塞する正極集電体304及び負極集電体305と、を備える点等の基本的構成は、前述の第3実施形態と同様である(以下の第3実施形態でも同様)。
[Fourth Embodiment]
Next, with reference to FIG. 10, a fourth embodiment of the present disclosure will be described with reference to FIGS. 13 and 14. The same embodiments as those in the third embodiment are designated by the same reference numerals and the description thereof will be omitted.
In the fourth embodiment, the battery cell 301 is composed of an electrode composition 302, a frame-shaped member 403 arranged in an annular shape so as to surround the outer periphery of the electrode composition 302 excluding both sides in the thickness direction, and a frame-shaped member 403. The basic configuration of the positive electrode current collector 304 and the negative electrode current collector 305 that close the opening 403a from both sides in the thickness direction is the same as that of the third embodiment described above (the following third embodiment). But the same).
<枠状部材>
 図13は、枠状部材403を厚さ方向からみた要部の拡大平面図である。
 ここで、図13に示すように、第3実施形態と第4実施形態との相違点は、第3実施形態の枠状部材303に形成されている脆弱部309の構成と、第4実施形態の枠状部材403に設けられている脆弱部409の構成と、が異なる点にある。
 すなわち、第4実施形態の脆弱部409は、枠状部材403における脆弱部409以外の他の箇所の融点よりも融点の低い低融点部313である。低融点部313は、例えば融点が約75℃から90℃程度の材料により形成されている。低融点部313は、枠状部材403と別体に形成した後、枠状部材403に組み付けてもよい。また、枠状部材403と低融点部313とを一体成形してもよい。枠状部材403と低融点部313とを一体成形する場合、二色成形、サンドイッチ成形、及び超高速射出成形等のさまざまな射出成形方法を採用することができる。
<Frame-shaped member>
FIG. 13 is an enlarged plan view of a main part of the frame-shaped member 403 as viewed from the thickness direction.
Here, as shown in FIG. 13, the difference between the third embodiment and the fourth embodiment is the configuration of the fragile portion 309 formed in the frame-shaped member 303 of the third embodiment and the fourth embodiment. It is different from the configuration of the fragile portion 409 provided in the frame-shaped member 403.
That is, the fragile portion 409 of the fourth embodiment is a low melting point portion 313 having a melting point lower than the melting point of a portion other than the fragile portion 409 in the frame-shaped member 403. The low melting point portion 313 is formed of, for example, a material having a melting point of about 75 ° C. to 90 ° C. The low melting point portion 313 may be formed separately from the frame-shaped member 403 and then assembled to the frame-shaped member 403. Further, the frame-shaped member 403 and the low melting point portion 313 may be integrally molded. When the frame-shaped member 403 and the low melting point portion 313 are integrally molded, various injection molding methods such as two-color molding, sandwich molding, and ultra-high-speed injection molding can be adopted.
 枠状部材403の低融点部313に対応する箇所には、凹部314が形成されている。低融点部313には、凹部314に嵌め合わされる凸部315が形成されている。凹部314と凸部315は、例えばダブテール凹部とダブテール凸部との嵌め合わせで構成されている。これにより、枠状部材403からの低融点部313(脆弱部209)の脱落が確実に防止される。また、ダブテール凹部とダブテール凸部との嵌め合わせとすることで、例えば枠状部材403と低融点部313とを一体成形する場合、アンカー効果を発揮して枠状部材403からの低融点部313の剥離を確実に防止できる。 A recess 314 is formed in a portion of the frame-shaped member 403 corresponding to the low melting point portion 313. The low melting point portion 313 is formed with a convex portion 315 fitted into the concave portion 314. The concave portion 314 and the convex portion 315 are formed by, for example, fitting a dovetail concave portion and a dovetail convex portion. As a result, the low melting point portion 313 (fragile portion 209) is surely prevented from falling off from the frame-shaped member 403. Further, for example, when the frame-shaped member 403 and the low melting point portion 313 are integrally molded by fitting the dovetail concave portion and the dovetail convex portion, an anchor effect is exhibited and the low melting point portion 313 from the frame-shaped member 403 is exhibited. Can be reliably prevented from peeling.
 低融点部313には、厚さ方向からみて中央の大部分に厚さ方向に貫通する開口部316が形成されている。開口部316を形成することにより、低融点部313の外側の肉厚、及び内側の肉厚が薄くなる。 The low melting point portion 313 is formed with an opening 316 that penetrates in the thickness direction in most of the center when viewed from the thickness direction. By forming the opening 316, the outer wall thickness and the inner wall thickness of the low melting point portion 313 are reduced.
<枠状部材における脆弱部の作用>
 次に、図14に基づいて、脆弱部409の作用について説明する。
 図14は、枠状部材403の作用を説明する図である。
 ここで、枠状部材403には低融点部313(脆弱部409)が設けられている。このため、図14に示すように、電池セル301の温度が異常に上昇し始めると低融点部313が溶ける。低融点部313には、開口部316が形成されているので、低融点部313が溶けると外側開口部317と内側開口部318とが形成される。これら開口部316,317,318を介し、枠状部材403の内外が連通される。脆弱部309の融点は、例えば約75℃から90℃程度であるから、電池セル301の膨張が始まったり枠状部材303の内側の圧力が上昇したりする前に枠状部材403の内外が連通されることになる。このため、内外が連通された脆弱部409(開口部316,317,318)を介して枠状部材303の内側の圧抜きが行われる。すなわち、脆弱部409は、枠状部材403の内側の圧力が一定以上高まった場合に枠状部材403の内外を連通する圧抜き部として機能する。
<Action of fragile parts on frame-shaped members>
Next, the operation of the fragile portion 409 will be described with reference to FIG.
FIG. 14 is a diagram illustrating the operation of the frame-shaped member 403.
Here, the frame-shaped member 403 is provided with a low melting point portion 313 (fragile portion 409). Therefore, as shown in FIG. 14, when the temperature of the battery cell 301 starts to rise abnormally, the low melting point portion 313 melts. Since the opening 316 is formed in the low melting point portion 313, the outer opening portion 317 and the inner opening portion 318 are formed when the low melting point portion 313 melts. The inside and outside of the frame-shaped member 403 are communicated with each other through these openings 316, 317, 318. Since the melting point of the fragile portion 309 is, for example, about 75 ° C to 90 ° C, the inside and outside of the frame-shaped member 403 communicate with each other before the expansion of the battery cell 301 starts or the pressure inside the frame-shaped member 303 rises. Will be done. Therefore, the inside of the frame-shaped member 303 is depressurized through the fragile portion 409 ( openings 316, 317, 318) in which the inside and outside are communicated. That is, the fragile portion 409 functions as a pressure release portion that communicates the inside and outside of the frame-shaped member 403 when the pressure inside the frame-shaped member 403 increases by a certain amount or more.
 したがって、上述の第4実施形態によれば、前述の第3実施形態と同様の効果を奏する。また、低融点部313に開口部316を形成することにより、低融点部313の内外方向の肉厚を薄肉化できる。この結果、電池セル301の温度が異常に上昇した際、容易に開口部(外側開口部317、内側開口部318)を形成することが可能になる。よって、より確実に枠状部材303の内側の圧抜きを行うことができる。 Therefore, according to the above-mentioned fourth embodiment, the same effect as that of the above-mentioned third embodiment is obtained. Further, by forming the opening 316 in the low melting point portion 313, the wall thickness in the inner and outer directions of the low melting point portion 313 can be reduced. As a result, when the temperature of the battery cell 301 rises abnormally, it becomes possible to easily form an opening (outer opening 317, inner opening 318). Therefore, it is possible to more reliably release the pressure inside the frame-shaped member 303.
 なお、上述の第4実施形態では、低融点部313に開口部316を形成した場合について説明した。しかしながらこれに限られるものではなく、電池セル301の温度が異常に上昇した際に低融点部313を介して枠状部材403の内外を連通できれば、開口部316を形成しなくてもよい。 In the fourth embodiment described above, the case where the opening 316 is formed in the low melting point portion 313 has been described. However, the present invention is not limited to this, and the opening 316 may not be formed as long as the inside and outside of the frame-shaped member 403 can communicate with each other via the low melting point portion 313 when the temperature of the battery cell 301 rises abnormally.
[第5実施形態]
<枠状部材>
 図15は、枠状部材503を厚さ方向からみた要部の拡大平面図である。
 図15に示すように、第5実施形態では、枠状部材503に、脆弱部309,409に代わってプラグ319が設けられている。この点、前述の第3実施形態及び第4実施形態と相違する点である。
 すなわち、枠状部材503の長辺の一部には、枠状部材503の内外を連通する開口部321が形成されている。開口部321の内周面321aには、係合凹部322が形成されている。このような開口部321を閉塞するようにプラグ319が嵌合されている。プラグ319は、例えば枠状部材503と同一材料によって形成されている。プラグ319には、係合凹部322に係合される係合凸部323が一体成形されている。ここで、係合凸部323の強度は、プラグ319に一定の外力が加わると変形、又は欠損する程度の強度である。
[Fifth Embodiment]
<Frame-shaped member>
FIG. 15 is an enlarged plan view of a main part of the frame-shaped member 503 as viewed from the thickness direction.
As shown in FIG. 15, in the fifth embodiment, the frame-shaped member 503 is provided with a plug 319 instead of the fragile portions 309 and 409. This point is different from the above-mentioned third and fourth embodiments.
That is, an opening 321 that communicates the inside and outside of the frame-shaped member 503 is formed in a part of the long side of the frame-shaped member 503. An engaging recess 322 is formed on the inner peripheral surface 321a of the opening 321. The plug 319 is fitted so as to close such an opening 321. The plug 319 is made of the same material as, for example, the frame-shaped member 503. The plug 319 is integrally formed with an engaging convex portion 323 that is engaged with the engaging concave portion 322. Here, the strength of the engaging convex portion 323 is such that it is deformed or damaged when a certain external force is applied to the plug 319.
<枠状部材におけるプラグの作用>
 次に、図16に基づいて、プラグ319の作用について説明する。
 図16に示すように、枠状部材503の内側の圧力が一定以上に上昇すると、枠状部材503の内周面、及びプラグ319の内側端面が外側に向かって押圧される。すると、プラグ319の係合凸部323が変形、又は欠損して、枠状部材503の開口部321からプラグ319が外れる。このため、枠状部材503の開口部321を介して枠状部材503の内外が連通され、枠状部材503の内側の圧抜きが行われる。すなわち、プラグ319は、枠状部材503の内側の圧力が一定以上高まった場合に枠状部材503の内外を連通する圧抜き部として機能する。
 したがって、上述の第5実施形態によれば、前述の第3実施形態及び第4実施形態と同様の効果を奏する。
<Action of plug on frame-shaped member>
Next, the operation of the plug 319 will be described with reference to FIG.
As shown in FIG. 16, when the pressure inside the frame-shaped member 503 rises above a certain level, the inner peripheral surface of the frame-shaped member 503 and the inner end surface of the plug 319 are pressed outward. Then, the engaging convex portion 323 of the plug 319 is deformed or broken, and the plug 319 is disengaged from the opening portion 321 of the frame-shaped member 503. Therefore, the inside and outside of the frame-shaped member 503 are communicated with each other through the opening 321 of the frame-shaped member 503, and the inside of the frame-shaped member 503 is depressurized. That is, the plug 319 functions as a pressure relief portion that communicates the inside and outside of the frame-shaped member 503 when the pressure inside the frame-shaped member 503 rises by a certain amount or more.
Therefore, according to the above-mentioned fifth embodiment, the same effects as those of the above-mentioned third and fourth embodiments are obtained.
 なお、上述の第5実施形態では、枠状部材503にプラグ319を設け、枠状部材503の内側の圧力が一定以上高まった場合にプラグ319が外れる場合について説明した。しかしながらこれに限られるものではなく、枠状部材503の内側の圧力が一定以上高まった場合に枠状部材503の内外が連通されるように構成されていればよい。例えば、枠状部材503の内側の圧力が一定以上高まった場合に破損する膜状体をプラグ319に代わって設けてもよい。膜状態が破損することにより、枠状部材503の内外が連通される。 In the fifth embodiment described above, the case where the plug 319 is provided on the frame-shaped member 503 and the plug 319 is disengaged when the pressure inside the frame-shaped member 503 rises by a certain amount or more has been described. However, the present invention is not limited to this, and it may be configured so that the inside and outside of the frame-shaped member 503 communicate with each other when the pressure inside the frame-shaped member 503 increases by a certain amount or more. For example, a film-like body that breaks when the pressure inside the frame-shaped member 503 rises by a certain amount or more may be provided in place of the plug 319. When the film state is damaged, the inside and outside of the frame-shaped member 503 are communicated with each other.
 また、本開示は上述の実施形態に限られるものではなく、本開示の趣旨を逸脱しない範囲において、上述の実施形態に種々の変更を加えたものを含む。 Further, the present disclosure is not limited to the above-described embodiment, and includes various modifications to the above-mentioned embodiment without departing from the spirit of the present disclosure.
 例えば、上述の第3実施形態及び第4実施形態では、枠状部材303,403の長辺の一部に脆弱部309,409を形成した場合について説明した。上述の第5実施形態では、枠状部材503の長辺の一部にプラグ319を設けた場合について説明した。しかしながらこれに限られるものではなく、枠状部材303,403,503の一部に脆弱部309,409やプラグ319が形成されたり設けられたりすればよい。例えば、枠状部材303,403,503の短辺の一部に脆弱部309,409を形成したりプラグ319を設けたり、枠状部材303,403,503の角部に脆弱部309,409を形成したりやプラグ319を設けたりしてよい。さらに、正極電極組成物層306の周囲に配置された枠状部材303,403,503又は負極電極組成物層307の周囲に配置された枠状部材303,403,503のいずれか一方のみに、脆弱部309,409を形成したりやプラグ319を設けたりしてもよい。 For example, in the third embodiment and the fourth embodiment described above, the case where the fragile portions 309 and 409 are formed on a part of the long sides of the frame-shaped members 303 and 403 has been described. In the fifth embodiment described above, the case where the plug 319 is provided on a part of the long side of the frame-shaped member 503 has been described. However, the present invention is not limited to this, and the fragile portions 309, 409 and the plug 319 may be formed or provided on a part of the frame-shaped members 303, 403, 503. For example, a fragile portion 309,409 may be formed on a part of the short side of the frame-shaped member 303, 403, 503, a plug 319 may be provided, or a fragile portion 309, 409 may be provided on a corner portion of the frame-shaped member 303, 403, 503. It may be formed or a plug 319 may be provided. Further, only one of the frame-shaped members 303, 403, 503 arranged around the positive electrode composition layer 306 or the frame-shaped members 303, 403, 503 arranged around the negative electrode composition layer 307. The fragile portions 309 and 409 may be formed or the plug 319 may be provided.
 また、上述の実施形態では、電極組成物302は、正極活物質粒子を含む正極電極組成物層306と負極活物質粒子を含む負極電極組成物層307とをセパレータ308を介して積層してなる場合について説明した。しかしながらこれに限られるものではなく、電極組成物302は、1種類の電極組成物層で構成されていてもよい。
 また、上述の実施形態では、枠状部材303,403,403の開口303a,403aを厚さ方向両側から各極集電体304,305で閉塞する場合について説明した。しかしながらこれに限られるものではなく、各極集電体304,305に代わって単に枠状部材303,403,503の開口303a,403aを閉塞する基材を設けてもよい。
Further, in the above-described embodiment, the electrode composition 302 is formed by laminating a positive electrode composition layer 306 containing positive electrode active material particles and a negative electrode composition layer 307 containing negative electrode active material particles via a separator 308. The case was explained. However, the present invention is not limited to this, and the electrode composition 302 may be composed of one kind of electrode composition layer.
Further, in the above-described embodiment, the case where the openings 303a and 403a of the frame-shaped members 303, 403 and 403 are closed by the respective current collectors 304 and 305 from both sides in the thickness direction has been described. However, the present invention is not limited to this, and instead of the respective current collectors 304 and 305, a base material that simply closes the openings 303a and 403a of the frame-shaped members 303, 403 and 503 may be provided.
 本開示のリチウムイオン二次電池用電極材製造装置及びリチウムイオン二次電池用電極材の製造方法は、特に、定置用蓄電池、ハイブリッド自動車、電気自動車、携帯電話及びパーソナルコンピューター等に用いられるリチウムイオン電池用電極を製造する製造装置及び製造方法として有用である。また、上記装置等に用いられるリチウムイオン電池をリサイクルする方法として極めて有用である。 The present disclosure of an electrode material manufacturing apparatus for a lithium ion secondary battery and a method for manufacturing an electrode material for a lithium ion secondary battery are particularly lithium ion used in a stationary storage battery, a hybrid vehicle, an electric vehicle, a mobile phone, a personal computer, and the like. It is useful as a manufacturing apparatus and manufacturing method for manufacturing battery electrodes. It is also extremely useful as a method for recycling lithium-ion batteries used in the above devices and the like.
 また、本開示のリチウムイオン二次電池用電極材製造装置及びリチウムイオン二次電池用電極材の製造方法は、特に、携帯電話、パーソナルコンピューター、ハイブリッド自動車及び電気自動車用に用いられる双極型二次電池用及びリチウムイオン二次電池用等の電極材を製造する製造装置及び製造方法として有用である。 Further, the present-disclosed method for manufacturing an electrode material for a lithium ion secondary battery and a method for manufacturing an electrode material for a lithium ion secondary battery are bipolar secondary type used especially for a mobile phone, a personal computer, a hybrid vehicle and an electric vehicle. It is useful as a manufacturing apparatus and manufacturing method for manufacturing electrode materials for batteries and lithium ion secondary batteries.
 また、本開示の電池セルは、圧抜き部によって枠状部材の内側の圧力が一定以上高まった場合に枠状部材の内外が連通されるので、枠状部材の内側の圧力が上昇してしまうことを抑えることができる。このため、電池セルの損傷を防止できる。 Further, in the battery cell of the present disclosure, when the pressure inside the frame-shaped member is increased by a pressure relief portion by a certain amount or more, the inside and outside of the frame-shaped member are communicated with each other, so that the pressure inside the frame-shaped member increases. It can be suppressed. Therefore, damage to the battery cell can be prevented.
 また、本開示の他の実施態様を以下に付記する。
[1]電極活物質粒子を含む電極組成物と、
 前記電極組成物の周囲を囲むように環状に配置される枠状部材と、
 前記枠状部材の開口を厚さ方向両側から閉塞する基材と、
を備え、
 前記枠状部材は、前記枠状部材の内側の圧力が一定以上高まった場合に前記枠状部材の内外を連通する圧抜き部を有する
電池セル。
In addition, other embodiments of the present disclosure will be added below.
[1] An electrode composition containing electrode active material particles and
A frame-shaped member arranged in an annular shape so as to surround the periphery of the electrode composition, and
A base material that closes the opening of the frame-shaped member from both sides in the thickness direction,
Equipped with
The frame-shaped member is a battery cell having a pressure relief portion that communicates inside and outside the frame-shaped member when the pressure inside the frame-shaped member increases by a certain amount or more.
[2]前記圧抜き部は、前記枠状部材の一部に設けられ前記枠状部材の前記一部を除く他の部位よりも脆弱な脆弱部である
上記[1]に記載の電池セル。
[2] The battery cell according to the above [1], wherein the pressure release portion is a fragile portion provided in a part of the frame-shaped member and more vulnerable than other parts excluding the part of the frame-shaped member.
[3]前記脆弱部は、前記枠状部材の前記他の部位よりも薄肉に形成された薄肉部である
上記[2]に記載の電池セル。
[3] The battery cell according to the above [2], wherein the fragile portion is a thin portion formed to be thinner than the other portion of the frame-shaped member.
[4]前記脆弱部は、前記枠状部材の前記他の部位よりも融点の低い低融点部である
上記[2]又は[3]に記載の電池セル。
[4] The battery cell according to the above [2] or [3], wherein the fragile portion is a low melting point portion having a melting point lower than that of the other portion of the frame-shaped member.
[5]前記電極組成物は、正極電極組成物層と負極電極組成物層とをセパレータを介して積層されてなり、
 前記基材は、電極集電体である
上記[1]から[4]のいずれかに記載の電池セル。
[5] The electrode composition is formed by laminating a positive electrode composition layer and a negative electrode composition layer via a separator.
The battery cell according to any one of the above [1] to [4], wherein the base material is an electrode current collector.
1 層形成部
2 熱処理部
11 電極原料
12 リチウム含有材料
13 リチウム含有材料層
14 電極シート
16 正極活物質粒子
20 溶射装置
21 リチウム含有粉末供給部
22 加熱ガス供給部
23 溶射ノズル
25 加熱装置
101、102、103 供給装置
110 貯留室
120 回転ベルト部
120a 第1主面
120b 第2主面
120c 第1端部
120d 第2端部
121 環状搬送ベルト
130 供給口
140、141、142 壁材
140a、141a 壁材の下端部
150 電極組成物
151 電極活物質層
160 搬送ステージ
160a 搬送ステージの被供給部
180 駆動ロール
100、200 リチウムイオン二次電池用電極材製造装置
301…電池セル
302…電極組成物
303,403,503…枠状部材
303a,403a…開口
304…正極集電体、
305…負極集電体、
306…正極電極組成物層
307…負極電極組成物層
308…セパレータ
309,409…脆弱部(圧抜き部)
310a…外側凹部
310b…内側凹部
311…薄肉部
312,316,321…開口部
313…低融点部
314…凹部
315…凸部
317…内側開口部
318…外側開口部
319…プラグ(圧抜き部)
321a…内周面
322…係合凹部
600…組電池
601…外層フィルム
602…電流取り出し部
1 Layer forming part 2 Heat treatment part 11 Electrode raw material 12 Lithium-containing material 13 Lithium-containing material layer 14 Electrode sheet 16 Positive electrode active material particles 20 Injection device 21 Lithium-containing powder supply unit 22 Heating gas supply unit 23 Injection nozzle 25 Heating equipment 101, 102 , 103 Supply device 110 Storage chamber 120 Rotating belt part 120a First main surface 120b Second main surface 120c First end 120d Second end 121 Circular transport belt 130 Supply port 140, 141, 142 Wall material 140a, 141a Wall material Lower end 150 Electrode composition 151 Electrode active material layer 160 Transfer stage 160a Supply part of transfer stage 180 Drive roll 100, 200 Electrode material manufacturing device for lithium ion secondary battery 301 ... Battery cell 302 ... Electrode composition 303, 403 , 503 ... Frame-shaped member 303a, 403a ... Opening 304 ... Positive electrode current collector,
305 ... Negative current collector,
306 ... Positive electrode composition layer 307 ... Negative electrode composition layer 308 ... Separator 309, 409 ... Fragile portion (pressure relief portion)
310a ... Outer recess 310b ... Inner recess 311 ... Thin- walled portion 312, 316, 321 ... Opening 313 ... Low melting point 314 ... Recess 315 ... Convex 317 ... Inner opening 318 ... Outer opening 319 ... Plug (pressure relief)
321a ... Inner peripheral surface 322 ... Engagement recess 600 ... Assembly battery 601 ... Outer layer film 602 ... Current extraction unit

Claims (19)

  1.  電極原料に溶融させたリチウム含有材料を吹き付けて、前記電極原料にリチウム含有材料層を形成する層形成部と、
     前記リチウム含有材料層が形成された前記電極原料を加熱し、前記リチウム含有材料に含まれるリチウムを前記電極原料の内部に導入して、正極活物質を得る熱処理部と、
     を有する、リチウムイオン二次電池用電極材製造装置。
    A layer forming portion that forms a lithium-containing material layer on the electrode raw material by spraying the molten lithium-containing material onto the electrode raw material, and a layer forming portion.
    A heat treatment unit for heating the electrode raw material on which the lithium-containing material layer is formed and introducing lithium contained in the lithium-containing material into the electrode raw material to obtain a positive electrode active material.
    A device for manufacturing electrode materials for lithium-ion secondary batteries.
  2.  前記層形成部における層形成は、乾燥空気環境下で行われる、請求項1に記載のリチウムイオン二次電池用電極材製造装置。 The electrode material manufacturing apparatus for a lithium ion secondary battery according to claim 1, wherein the layer formation in the layer forming portion is performed in a dry air environment.
  3.  前記熱処理部における加熱温度は、400℃以上500℃以下の範囲である、請求項1に記載のリチウムイオン二次電池用電極材製造装置。 The electrode material manufacturing apparatus for a lithium ion secondary battery according to claim 1, wherein the heating temperature in the heat treatment section is in the range of 400 ° C. or higher and 500 ° C. or lower.
  4.  前記熱処理部における加熱時間は、10分以上1時間以下の範囲である、請求項3に記載のリチウムイオン二次電池用電極材製造装置。 The electrode material manufacturing apparatus for a lithium ion secondary battery according to claim 3, wherein the heating time in the heat treatment section is in the range of 10 minutes or more and 1 hour or less.
  5.  前記層形成部における熱処理は、不活性ガス雰囲気下で行われる、請求項1~4のいずれか1項に記載のリチウムイオン二次電池用電極材製造装置。 The electrode material manufacturing apparatus for a lithium ion secondary battery according to any one of claims 1 to 4, wherein the heat treatment in the layer forming portion is performed in an inert gas atmosphere.
  6.  電極活物質と非水電解液とを含んでなる電極組成物を供給する供給装置と、前記供給装置から供給された前記電極組成物を搬送する搬送ステージと、前記搬送ステージを駆動する駆動ロールと、を更に備え、
     前記供給装置は、前記電極組成物を貯留する貯留室と、前記貯留室に貯留された前記電極組成物を搬送する回転ベルト部と、前記電極組成物を外部に供給する供給口とを有し、
     前記回転ベルト部は、その表面に沿って一方向に回転する環状搬送ベルト、前記供給装置の内部において前記電極組成物と接触する第1主面、並びに、前記環状搬送ベルトの回転軸を構成する第1端部及び第2端部を有し、
     前記第1主面における前記環状搬送ベルトの移動方向が、前記第1端部を始点として前記第2端部に向かう方向であり、
     前記回転ベルト部の前記第2端部が、前記供給口の一部を構成しており、
     前記搬送ステージは、前記供給装置から前記電極組成物が供給される被供給部を有し、
     前記被供給部において、前記搬送ステージが前記駆動ロールによって直接支持されている、請求項1に記載のリチウムイオン二次電池用電極材製造装置。
    A supply device for supplying an electrode composition containing an electrode active material and a non-aqueous electrolyte solution, a transfer stage for transporting the electrode composition supplied from the supply device, and a drive roll for driving the transfer stage. , Further prepared,
    The supply device has a storage chamber for storing the electrode composition, a rotating belt portion for transporting the electrode composition stored in the storage chamber, and a supply port for supplying the electrode composition to the outside. ,
    The rotary belt portion constitutes an annular conveyor belt that rotates in one direction along the surface thereof, a first main surface that contacts the electrode composition inside the supply device, and a rotation shaft of the annular conveyor belt. It has a first end and a second end,
    The moving direction of the annular transport belt on the first main surface is the direction from the first end to the second end.
    The second end portion of the rotary belt portion constitutes a part of the supply port.
    The transport stage has a supplied portion to which the electrode composition is supplied from the supply device.
    The electrode material manufacturing apparatus for a lithium ion secondary battery according to claim 1, wherein the transport stage is directly supported by the drive roll in the supplied portion.
  7.  前記回転ベルト部の前記第1主面と、前記第2端部に最も近い地点における前記搬送ステージとのなす角度θが、10~90°である、請求項6に記載のリチウムイオン二次電池用電極材製造装置。 The lithium ion secondary battery according to claim 6, wherein the angle θ between the first main surface of the rotating belt portion and the transport stage at a point closest to the second end portion is 10 to 90 °. Electrode material manufacturing equipment.
  8.  前記第2端部の半径が、1~25mmである、請求項6又は7に記載のリチウムイオン二次電池用電極材製造装置。 The electrode material manufacturing apparatus for a lithium ion secondary battery according to claim 6 or 7, wherein the radius of the second end portion is 1 to 25 mm.
  9.  前記回転ベルト部の前記第2端部と前記搬送ステージとが最短距離で対向する地点において、互いに対向する前記回転ベルト部と前記搬送ステージの移動速度の比(回転ベルト部の移動速度/搬送ステージの移動速度)が、0.5~1.0である、請求項6~8のいずれか1項に記載のリチウムイオン二次電池用電極材製造装置。 At the point where the second end of the rotary belt portion and the transport stage face each other at the shortest distance, the ratio of the moving speeds of the rotary belt section and the transport stage facing each other (moving speed of the rotary belt section / transport stage). The electrode material manufacturing apparatus for a lithium ion secondary battery according to any one of claims 6 to 8, wherein the moving speed of the lithium ion secondary battery is 0.5 to 1.0.
  10.  前記搬送ステージの移動速度が、1~50m/分である、請求項6~9のいずれか1項に記載のリチウムイオン二次電池用電極材製造装置。 The electrode material manufacturing apparatus for a lithium ion secondary battery according to any one of claims 6 to 9, wherein the moving speed of the transfer stage is 1 to 50 m / min.
  11.  前記第2端部の半径は、前記駆動ロールの半径の0.02~5倍の大きさである、請求項6~10のいずれか1項に記載のリチウムイオン二次電池用電極材製造装置。 The electrode material manufacturing apparatus for a lithium ion secondary battery according to any one of claims 6 to 10, wherein the radius of the second end is 0.02 to 5 times the radius of the drive roll. ..
  12.  電極原料に溶融させたリチウム含有材料を吹き付けて、前記電極原料にリチウム含有材料層を形成する層形成工程と、
     前記リチウム含有材料層が形成された前記電極原料を加熱し、前記リチウム含有材料に含まれるリチウムを前記電極原料の内部に導入して、正極活物質を得る熱処理工程と、
     を有することを特徴とする、リチウムイオン二次電池用電極材の製造方法。
    A layer forming step of spraying a molten lithium-containing material onto the electrode raw material to form a lithium-containing material layer on the electrode raw material.
    A heat treatment step of heating the electrode material on which the lithium-containing material layer is formed and introducing lithium contained in the lithium-containing material into the electrode material to obtain a positive electrode active material.
    A method for manufacturing an electrode material for a lithium ion secondary battery, which comprises the above.
  13.  前記層形成は、乾燥空気環境下で行われる、請求項12に記載のリチウムイオン二次電池用電極材の製造方法。 The method for manufacturing an electrode material for a lithium ion secondary battery according to claim 12, wherein the layer formation is performed in a dry air environment.
  14.  前記熱処理工程における加熱温度は、400℃以上500℃以下の範囲である、請求項12に記載のリチウムイオン二次電池用電極材の製造方法。 The method for manufacturing an electrode material for a lithium ion secondary battery according to claim 12, wherein the heating temperature in the heat treatment step is in the range of 400 ° C. or higher and 500 ° C. or lower.
  15.  前記熱処理工程における加熱時間は、10分以上1時間以下の範囲である、請求項14に記載のリチウムイオン二次電池用電極材の製造方法。 The method for manufacturing an electrode material for a lithium ion secondary battery according to claim 14, wherein the heating time in the heat treatment step is in the range of 10 minutes or more and 1 hour or less.
  16.  前記熱処理工程は、不活性ガス雰囲気下で行う、請求項12~15のいずれか1項に記載のリチウムイオン二次電池用電極材の製造方法。 The method for manufacturing an electrode material for a lithium ion secondary battery according to any one of claims 12 to 15, wherein the heat treatment step is performed in an inert gas atmosphere.
  17.  請求項12~16のいずれか1項に記載のリチウムイオン二次電池用電極材の製造方法を用いて使用済みの正極活物質を再生する、使用済み正極活物質の再生方法。 A method for regenerating a used positive electrode active material, wherein the used positive electrode active material is regenerated by using the method for producing an electrode material for a lithium ion secondary battery according to any one of claims 12 to 16.
  18.  請求項6~11のいずれか1項に記載のリチウムイオン二次電池用電極材製造装置を用いたリチウムイオン二次電池用電極材の製造方法であって、
     前記駆動ロールを駆動させて前記搬送ステージを搬送しながら、前記電極組成物を前記供給口から前記搬送ステージ上に供給する電極組成物供給工程と、
     前記搬送ステージと前記供給装置との間の隙間に前記搬送ステージ上に供給された前記電極組成物を通過させることで、前記電極組成物の厚さを調節して、前記電極組成物からなる電極活物質層を得る電極活物質層形成工程と、を有する、リチウムイオン二次電池用電極材の製造方法。
    A method for manufacturing an electrode material for a lithium ion secondary battery using the electrode material manufacturing apparatus for a lithium ion secondary battery according to any one of claims 6 to 11.
    An electrode composition supply step of supplying the electrode composition onto the transport stage from the supply port while driving the drive roll to transport the transport stage.
    By passing the electrode composition supplied onto the transfer stage through the gap between the transfer stage and the supply device, the thickness of the electrode composition is adjusted, and the electrode made of the electrode composition is formed. A method for manufacturing an electrode material for a lithium ion secondary battery, comprising an electrode active material layer forming step for obtaining an active material layer.
  19.  前記電極活物質層形成工程において、前記搬送ステージと前記回転ベルト部の前記第2端部との間の隙間に前記搬送ステージ上に供給された前記電極組成物を通過させる、請求項18に記載のリチウムイオン二次電池用電極材の製造方法。 18. The 18. Method for manufacturing electrode materials for lithium-ion secondary batteries.
PCT/JP2021/035412 2020-09-25 2021-09-27 Lithium ion secondary battery electrode material manufacturing device, lithium ion secondary battery electrode material manufacturing method, and spent positive electrode active material regeneration method WO2022065492A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020160934A JP2022053995A (en) 2020-09-25 2020-09-25 Lithium-ion secondary battery electrode material manufacturing device and lithium-ion secondary battery electrode material manufacturing method
JP2020-160934 2020-09-25
JP2020-193627 2020-11-20
JP2020193627A JP2022082205A (en) 2020-11-20 2020-11-20 Manufacturing method for cathode active material, and regeneration method for used cathode active material

Publications (1)

Publication Number Publication Date
WO2022065492A1 true WO2022065492A1 (en) 2022-03-31

Family

ID=80845638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035412 WO2022065492A1 (en) 2020-09-25 2021-09-27 Lithium ion secondary battery electrode material manufacturing device, lithium ion secondary battery electrode material manufacturing method, and spent positive electrode active material regeneration method

Country Status (1)

Country Link
WO (1) WO2022065492A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317230A (en) * 1998-02-10 1999-11-16 Samsung Display Devices Co Ltd Positive active material for lithium secondary battery and production of the same
JP2003331845A (en) * 2002-05-13 2003-11-21 Samsung Sdi Co Ltd Method for manufacturing positive active material for lithium secondary battery
JP2008234843A (en) * 2007-03-16 2008-10-02 Idemitsu Kosan Co Ltd Electrode and member for all-solid secondary battery
JP2009117365A (en) * 2007-11-07 2009-05-28 Korea Inst Of Science & Technology Manufacturing method of electrode active material, and lithium cell containing electrode active material manufactured by the method
JP2012209195A (en) * 2011-03-30 2012-10-25 Tdk Corp Method for producing active material, electrode and lithium ion secondary battery
JP5527670B2 (en) * 2009-07-14 2014-06-18 川崎重工業株式会社 Electric storage device including fiber electrode and method for manufacturing the same
JP2015530721A (en) * 2013-08-29 2015-10-15 エルジー・ケム・リミテッド Lithium transition metal composite particles, production method thereof, and positive electrode active material including the same
JP2018028998A (en) * 2016-08-16 2018-02-22 株式会社クラレ Method for manufacturing carbonaceous material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317230A (en) * 1998-02-10 1999-11-16 Samsung Display Devices Co Ltd Positive active material for lithium secondary battery and production of the same
JP2003331845A (en) * 2002-05-13 2003-11-21 Samsung Sdi Co Ltd Method for manufacturing positive active material for lithium secondary battery
JP2008234843A (en) * 2007-03-16 2008-10-02 Idemitsu Kosan Co Ltd Electrode and member for all-solid secondary battery
JP2009117365A (en) * 2007-11-07 2009-05-28 Korea Inst Of Science & Technology Manufacturing method of electrode active material, and lithium cell containing electrode active material manufactured by the method
JP5527670B2 (en) * 2009-07-14 2014-06-18 川崎重工業株式会社 Electric storage device including fiber electrode and method for manufacturing the same
JP2012209195A (en) * 2011-03-30 2012-10-25 Tdk Corp Method for producing active material, electrode and lithium ion secondary battery
JP2015530721A (en) * 2013-08-29 2015-10-15 エルジー・ケム・リミテッド Lithium transition metal composite particles, production method thereof, and positive electrode active material including the same
JP2018028998A (en) * 2016-08-16 2018-02-22 株式会社クラレ Method for manufacturing carbonaceous material

Similar Documents

Publication Publication Date Title
JP5760593B2 (en) Method for producing active material, electrode and lithium ion secondary battery
JP7022539B2 (en) Method for manufacturing electrodes for lithium-ion batteries and equipment for manufacturing electrodes for lithium-ion batteries
CN110495024B (en) Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery
CN111656587B (en) Organic sulfur electrode active material
WO2018155207A1 (en) Secondary battery and production method therefor
JP7272839B2 (en) Feeding device and method for manufacturing electrode for lithium ion battery
CN110785876B (en) Positive electrode for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
WO2021025072A1 (en) Method for manufacturing lithium ion cell
JP7242120B2 (en) Lithium secondary battery and manufacturing method thereof
JP2012022858A (en) Method for manufacturing electrode
WO2019230912A1 (en) Method for manufacturing lithium ion cell
JP2013175396A (en) Composite particle, manufacturing method thereof, manufacturing method of electrode and electrochemical element
WO2018180372A1 (en) Secondary battery and manufacturing method thereof
JP7265966B2 (en) Equipment for manufacturing electrodes for lithium-ion batteries
WO2022065492A1 (en) Lithium ion secondary battery electrode material manufacturing device, lithium ion secondary battery electrode material manufacturing method, and spent positive electrode active material regeneration method
CN109075311B (en) Electrode for battery, battery provided with the same, and method for manufacturing the same
JP2019212464A (en) Manufacturing method of lithium ion battery
JP2021044152A (en) Manufacturing method of lithium ion battery
JP2022053995A (en) Lithium-ion secondary battery electrode material manufacturing device and lithium-ion secondary battery electrode material manufacturing method
WO2018180145A1 (en) Secondary battery and manufacturing method thereof
JP2022082205A (en) Manufacturing method for cathode active material, and regeneration method for used cathode active material
WO2022158607A1 (en) Discharge control method for lithium-ion secondary battery and lithium-ion secondary battery system
JP2019169391A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2018147882A (en) Solvent for coating positive electrode active material of secondary cell, positive electrode active material slurry containing the same, and secondary cell manufactured therefrom
WO2023163193A1 (en) Powder supply device, device for manufacturing electrode for lithium-ion battery, method for manufacturing electrode for lithium-ion battery, method for manufacturing electrode material for lithium-ion battery, device for manufacturing electrode material for lithium-ion battery, electrode for lithium-ion battery, and lithium-ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872618

Country of ref document: EP

Kind code of ref document: A1