WO2022065407A1 - レーザ加工方法およびレーザ加工装置 - Google Patents

レーザ加工方法およびレーザ加工装置 Download PDF

Info

Publication number
WO2022065407A1
WO2022065407A1 PCT/JP2021/034982 JP2021034982W WO2022065407A1 WO 2022065407 A1 WO2022065407 A1 WO 2022065407A1 JP 2021034982 W JP2021034982 W JP 2021034982W WO 2022065407 A1 WO2022065407 A1 WO 2022065407A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light component
time
processing method
pulsed
Prior art date
Application number
PCT/JP2021/034982
Other languages
English (en)
French (fr)
Inventor
篤 荻野
亮祐 田村
孝介 柏木
正和 吉原
敬介 富永
崇 茅原
啓伍 松永
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN202180063911.7A priority Critical patent/CN116323073A/zh
Priority to JP2022552056A priority patent/JP7407964B2/ja
Priority to EP21872536.4A priority patent/EP4219063A1/en
Priority to KR1020237009430A priority patent/KR20230051584A/ko
Publication of WO2022065407A1 publication Critical patent/WO2022065407A1/ja
Priority to US18/185,415 priority patent/US20230219167A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control
    • H01S3/10046Pulse repetition rate control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1022Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • H01S3/1024Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping for pulse generation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094011Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre with bidirectional pumping, i.e. with injection of the pump light from both two ends of the fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094076Pulsed or modulated pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a laser processing method and a laser processing apparatus.
  • a giant pulse is applied to the processing target to raise the temperature of the processing target to increase the absorption rate of the laser beam, and after the generation of the giant pulse, the steady output is generated.
  • Patent Document 1 A method of irradiating a processing target with a laser beam to process the processing target is disclosed.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a laser processing method and a laser processing apparatus suitable for processing a processing target made of a metal foil.
  • one aspect of the present invention is a method of laser processing a processing target made of at least one metal foil, in which pulsed excitation energy is supplied to a laser medium to emit laser light.
  • the step of generating the laser beam and the step of irradiating the surface of the object to be processed with the laser beam include a pulsed light component and a continuous light component that follows the pulsed light component in time.
  • It is a laser processing method including further including a step of limiting the duration of the continuous light component so that the ratio of the energy of the continuous light component to the energy of the pulsed light component is equal to or less than a predetermined value.
  • the ratio may be 40 or less.
  • the ratio may be 5 or less.
  • the time width of the laser beam may be 12 ⁇ s or less.
  • the time width may be 2.3 ⁇ s or less.
  • It may further include a step of supplying pulsed electric power to the excitation light source and generating excitation light as the excitation energy.
  • the power pulse may be rectangular and have a time width of 10 ⁇ s or less.
  • the pulse of the power is rectangular and the time width is set to the shortest on-time or more.
  • the time width is narrower than the shortest on-time, the peak power of the pulsed light component decreases. It may be a value.
  • the repetition frequency of the power pulse may be 5 kHz or higher.
  • the repetition frequency of the power pulse may be 50 kHz or more and less than 300 kHz.
  • It may further include a step of moving the irradiation position of the laser beam on the surface of the processing target relative to the processing target.
  • One aspect of the present invention is a device for laser processing a processing target, which is a laser device that supplies pulsed excitation energy to a laser medium to generate laser light, and irradiates the surface of the processing target with the laser light.
  • An optical head and a control device for controlling the laser device are provided, and the control device includes a pulsed light component generated by the laser light due to relaxation vibration oscillation in the early stage of generation of the laser light.
  • the duration of the continuous light component including the continuous light component that follows the pulsed light component in time, so that the ratio of the energy of the continuous light component to the energy of the pulsed light component is equal to or less than a predetermined value.
  • It is a laser processing device that controls to limit the light.
  • FIG. 1 is a schematic configuration diagram of the laser processing apparatus according to the first embodiment.
  • FIG. 2 is a schematic configuration diagram of the laser apparatus shown in FIG.
  • FIG. 3 is a schematic configuration diagram of the drive unit shown in FIG.
  • FIG. 4 is a diagram showing a waveform of one pulse of laser light.
  • FIG. 5 is an enlarged view of a part of the time range of FIG.
  • FIG. 6 is an explanatory diagram of the time width of the laser beam.
  • FIG. 7 is a diagram showing an example of the relationship between the repetition frequency and the shortest on-time.
  • FIG. 8 is a schematic configuration diagram of the laser processing apparatus according to the second embodiment.
  • FIG. 1 is a schematic configuration diagram of the laser processing apparatus according to the first embodiment.
  • the laser processing device 100 includes a laser device 110, an optical head 120, an optical fiber 130 connecting the laser device 110 and the optical head 120, and a control device 140.
  • the laser processing device 100 is a device that performs laser cutting among laser processing such as welding, drilling, and cutting.
  • the processing target W of the laser processing apparatus 100 is made of a metal material.
  • the metal material is, for example, a copper-based material such as copper or a copper alloy, or an aluminum-based material such as aluminum or an aluminum alloy.
  • the processing target W is composed of at least one metal foil.
  • the processing target W is composed of one metal foil or a plurality of laminated metal foils.
  • the metal foil is, for example, an aluminum-based rolled material having a thickness of 6 ⁇ m to 200 ⁇ m specified in JIS H 4160, but the thickness is not limited to that, and may be, for example, 500 ⁇ m or less or 250 ⁇ m or less. The same applies when the metal foil is made of another metal material.
  • the processing target W may be a battery electrode such as a lithium ion battery.
  • the processing target W may be coated with an active substance such as manganese dioxide or lithium.
  • the processing target W may be coated with a substance different from the active material, or a surface layer such as a plating layer or a coating film may be formed on the entire surface or partially.
  • the laser device 110 is configured to be capable of outputting a single mode laser beam having a power of several kW.
  • the laser device 110 will be described in detail later.
  • the optical fiber 130 guides the laser light output from the laser device 110 to the optical head 120.
  • the optical fiber 130 is configured to propagate the single-mode laser beam.
  • the M2 beam quality of the single mode laser beam is set to 1.2 or less.
  • the optical fiber 130 is configured to propagate the multimode laser light.
  • the optical head 120 is an optical device for irradiating the processing target W with the laser light input from the laser device 110.
  • the optical head 120 includes a collimating lens 121 and a condenser lens 122.
  • the optical head 120 may have optical components other than the collimating lens 121 and the condenser lens 122.
  • the collimating lens 121 collimates the input laser beam.
  • the condenser lens 122 collects the collimated laser light and irradiates the processing target W as the laser light L (output light).
  • the optical head 120 irradiates the surface Wa of the processing target W with the laser beam L in the negative direction of the Z axis.
  • the irradiation position of the laser beam L on the surface of the processing target W is relatively movable with respect to the processing target W.
  • Such relative movement means that the optical head 120 and the processing target W move relatively due to the movement of the optical head 120, the movement of the processing target W, or the movement of both the optical head 120 and the processing target W.
  • the optical head 120 is provided with a moving mechanism that can move in the XY direction, or the machining target W is supported by a stage that can move the machining target in the XY direction.
  • the relative movement as described above is not always necessary, and even in cutting and welding, for example, in the case of spot welding or cutting of thin metal foil, relative movement may not be necessary.
  • the control device 140 controls the operation of the laser device 110 and the operation of the drive mechanism of the stage that supports the optical head 120 or the processing target W.
  • the control device 140 may be composed of, for example, a personal computer and its peripheral devices.
  • FIG. 2 is a schematic configuration diagram of the laser device 110 shown in FIG.
  • the laser device 110 is configured as a CW laser device capable of outputting a continuous wave (CW) laser beam. Therefore, it is not necessary to have a Q-switch mechanism for outputting the pulsed laser beam.
  • CW continuous wave
  • the laser device 110 is an optical fiber laser, and includes a plurality of semiconductor excitation light sources 1, a plurality of optical fibers 2, an optical combiner 3, an optical fiber plug grating (FBG) 4, an optical fiber for amplification 5, and the like. It includes an FBG 7, an optical combiner 8, a plurality of optical fibers 9, a plurality of semiconductor excitation light sources 6, an output optical fiber 11, and a drive unit 20. Each element is appropriately connected by an optical fiber.
  • the output optical fiber 11 is optically coupled to the optical fiber 130 shown in FIG. 1 or is a part (input end) of the optical fiber 130.
  • Each of the semiconductor excitation light sources 1 and 6 is an example of an excitation light source, and is configured as a laser diode module (LDM).
  • LDM laser diode module
  • Each semiconductor excitation light source 1 outputs excitation light supplied to the amplification optical fiber 5.
  • the amplification optical fiber 5 is an example of a laser medium, and the excitation light is an example of excitation energy.
  • the excitation light has a wavelength capable of photoexciting the amplification optical fiber 5, for example, a wavelength of 915 [nm].
  • Each of the plurality of optical fibers 2 propagates the excitation light output from each semiconductor excitation light source 1 and outputs the excitation light to the optical combiner 3.
  • the optical combiner 3 is composed of TFB (Tapered Fiber Bundle) in this embodiment.
  • the optical combiner 3 combines the excitation light input from each optical fiber 2 with the optical fiber of the signal optical port and outputs the excitation light to the amplification optical fiber 5.
  • the amplification optical fiber 5 is a YDF (Ytterbium Doped Fiber) in which ytterbium (Yb) ion, which is an amplifying substance, is added to a core portion made of quartz glass, and the outer periphery of the core portion is made of quartz glass. It is a double clad type optical fiber in which the inner clad layer formed and the outer clad layer made of resin or the like are sequentially formed.
  • the core portion of the amplification optical fiber 5 has an NA of, for example, 0.08, and is configured to propagate Yb ion emission, for example, light having a wavelength of 1070 [nm] in a single mode.
  • the absorption coefficient of the core portion of the amplification optical fiber 5 is, for example, 200 [dB / m] at a wavelength of 915 [nm]. Further, the power conversion efficiency from the excitation light input to the core portion to the laser oscillation light is, for example, 70%. However, the absorption coefficient and power conversion efficiency are not limited to these.
  • the FBG 4 which is the rear end side reflecting means is connected between the optical fiber of the signal optical port of the optical combiner 3 and the optical fiber 5 for amplification.
  • the FBG4 has a center wavelength of, for example, 1070 [nm], a reflectance in a wavelength band having a width of about 2 [nm] in and around the center wavelength of about 100%, and almost all light having a wavelength of 915 [nm] is transmitted. do.
  • the FBG 7 which is an output side reflecting means is connected between the optical fiber of the signal optical port of the optical combiner 8 and the optical fiber 5 for amplification.
  • the FBG7 has a center wavelength of, for example, 1070 [nm], which is substantially the same as that of the FBG4, has a reflectance of about 10% to 30% at the center wavelength, and has a full width at half maximum of the reflection wavelength band of about 1 [nm]. Most of the light having a wavelength of 915 [nm] is transmitted.
  • the FBGs 4 and 7 are arranged for each of both ends of the optical fiber 5 for amplification, and form an optical fiber resonator for light having a wavelength of 1070 [nm].
  • Each semiconductor excitation light source 6 outputs excitation light supplied to the amplification optical fiber 5.
  • the excitation light has a wavelength capable of photoexciting the amplification optical fiber 5, for example, a wavelength of 915 [nm].
  • Each of the plurality of optical fibers 9 propagates the excitation light output from each semiconductor excitation light source 6 and outputs the excitation light to the optical combiner 8.
  • the optical combiner 8 is composed of TFB in this embodiment.
  • the optical combiner 8 combines the excitation light input from each optical fiber 9 with the optical fiber of the signal optical port and outputs the excitation light to the amplification optical fiber 5.
  • Yb ions in the core portion are photoexcited by the excitation light, and light in a band including a wavelength of 1070 [nm] is emitted.
  • the light emission having a wavelength of 1070 [nm] is laser-oscillated by the optical amplification action of the amplification optical fiber 5 and the action of the optical resonator composed of the FBGs 4 and 7.
  • the laser device 110 generates a laser beam.
  • the output optical fiber 11 is arranged on the opposite side of the FBG 7 and is connected to the optical fiber of the signal optical port of the optical combiner 8.
  • the oscillated laser light (laser oscillated light) is output from the output optical fiber 11.
  • the drive unit 20 supplies a drive current to the semiconductor excitation light sources 1 and 6 in response to the indicated voltage signal input from the control device 140.
  • FIG. 3 is a schematic configuration diagram of the drive unit shown in FIG.
  • the drive unit 20 is mainly composed of an analog circuit, and includes a power supply device 21, a field effect transistor (FET) 22, a shunt resistor 23, an operational amplifier 24, and a feedback circuit 25.
  • FET field effect transistor
  • the power supply device 21 is a known DC power supply connected so as to supply a current to each of the semiconductor excitation light sources 1 and 6.
  • each semiconductor excitation light source 1 is connected in series, and each semiconductor excitation light source 6 is connected in series separately from each semiconductor excitation light source 1. Further, each semiconductor excitation light source 1 and each semiconductor excitation light source 6 may be connected in series.
  • the FET 22 is connected to the downstream side of each of the semiconductor excitation light sources 1 and 6 in the power supply line from the power supply device 21 to the ground.
  • the FET 22 adjusts the amount of current supplied from the power supply device 21 to the semiconductor excitation light sources 1 and 6 via the power supply line according to the applied gate voltage.
  • the shunt resistor 23 is connected to the downstream side of the FET 22 in the power supply line.
  • the shunt resistor 23 has a function of extracting information on the amount of current flowing through the power supply line as a voltage value.
  • the indicated voltage signal is input to the non-inverting input, the voltage value of the shunt resistor 23 is input to the inverting input, and the output is connected to the gate of the FET 22.
  • the feedback circuit 25 is configured as an integrating circuit including a capacitor, and constitutes a feedback path from the output of the operational amplifier 24 to the inverting input.
  • the drive unit 20 can execute constant current control for supplying a constant current to each of the semiconductor excitation light sources 1 and 6.
  • the constant current is a current value corresponding to the voltage level of the indicated voltage signal.
  • a step of supplying pulsed excitation energy to the laser medium and generating laser light is executed.
  • the control device 140 executes a step of outputting a pulse-shaped indicated voltage signal having a predetermined repetition period to the drive unit 20 of the laser device 110.
  • the drive unit 20 supplies pulse-like drive power (drive current) to each of the semiconductor excitation light sources 1 and 6, and executes a step of generating pulse-like excitation light as excitation energy.
  • the drive power pulse is, for example, rectangular.
  • the semiconductor excitation light sources 1 and 6 supply pulse-shaped excitation light to the amplification optical fiber 5 to generate pulse-shaped laser light having a predetermined repetition period.
  • the optical head 120 to which the laser beam is input sets the step of irradiating the surface Wa of the processing target W with the laser light L and the irradiation position of the laser light L on the surface Wa of the processing target W relative to the processing target W. Perform the step of moving the target.
  • the step of moving the irradiation position of the laser beam L relative to the processing target W may be executed by the control device 140 driving a stage that supports the processing target W. As a result, laser cutting of the processing target W is executed.
  • the laser beam L includes a pulsed light component generated due to the relaxation oscillating oscillation at the initial stage of the generation of the laser beam L, and a continuous light component following the pulsed light component in time. ..
  • the dross It is possible to perform laser cutting in which the occurrence of discoloration is suppressed.
  • the energy ratio and the time width can be realized by controlling the laser device 110 by the control device 140.
  • the laser device 110 is driven by, for example, using a general-purpose control circuit without providing a Q-switch mechanism by supplying a pulsed excitation energy to the laser medium and executing a step of generating a laser beam.
  • a pulsed light component can be generated by control.
  • the present inventors have found that the pulsed light component can be applied to the processing of a metal foil, which has been difficult in the past, because of the sharp peak generated due to the relaxation vibration.
  • the present inventors have also found that if the power or energy of the continuous light component following the pulsed light component is too strong, the amount of heat input to the metal foil becomes excessive, which is rather inconvenient for processing the metal foil. ..
  • the present inventors adjust the amount of heat input by controlling the duration of the continuous light component so that the ratio of the energy of the continuous light component to the energy of the pulsed light component is equal to or less than a predetermined value.
  • the present inventors have also found that the adjustment of the desired energy ratio can be easily realized by adjusting the pulse width of the pulsed electric power supplied to each of the semiconductor excitation light sources 1 and 6. It is.
  • the energy ratio is 40 or less as an example, and the time width of the laser beam L is 12 ⁇ s or less as an example.
  • the duration of the continuous light component is defined as, for example, the time from time t3 to time t9 in FIGS. 5 and 6 described later, and represents the temporal length in which the continuous light component has power. If it is a definition, it is not particularly limited.
  • FIG. 4 is a diagram showing a waveform of one pulse of the laser beam L.
  • FIG. 5 is an enlarged view of a part of the time range of FIG.
  • the horizontal axis is time [ ⁇ s] and the vertical axis is power [W].
  • the time on the horizontal axis is a time in which a predetermined time before the generation of one pulse of the laser beam L is set to 0 ⁇ s.
  • the laser beam L includes a pulsed light component PC and a continuous light component CC in one pulse.
  • the pulsed excitation light is supplied from each of the semiconductor excitation light sources 1 and 6 to the amplification optical fiber 5, so that the pulsed light component caused by the relaxation vibration oscillation depends on the shape of the rising edge of the excitation light.
  • PC is generated.
  • the pulsed light component PC has a sharp peak shape with high power and short pulse width.
  • a continuous light component CC that is continuous in time is generated after the pulsed light component PC in time, but the power of the continuous light component CC is reduced at an early stage due to the fall of the excitation light.
  • the line L1 indicates the position at time t1 before the pulsed light component PC is generated, and the line L2 indicates the position at time t2 after the continuous light component CC is attenuated, and the light power is 0 W at any time.
  • the line L3 indicates the position of the time t3 at which the minimum value is first taken after the power of the pulsed light component PC reaches the peak in the laser light L.
  • the position of such a minimum value is defined as the boundary between the pulsed light component PC and the continuous light component CC.
  • a vibration component having a power smaller than that of the pulsed light component PC is generated even after the time t3, but this component is also included in the continuous light component CC in the present specification. Therefore, the energy of the pulsed light component PC is obtained by integrating the power of the pulsed light component PC in the range of time t1 to time t3, for example.
  • the unit of energy is, for example, joules.
  • the energy of the continuous light component CC is obtained by integrating the power of the continuous light component CC in the range of time t3 to time t2.
  • the time t1 is not limited to this value if the power of the pulsed light component PC is 0 W
  • the time t2 is not limited to this value if the power of the continuous light component CC is 0 W.
  • the time width of the laser beam L is 12 ⁇ s or less.
  • FIG. 6 is an explanatory diagram of the time width of the laser beam.
  • the line L4 shows the power level of the peak of the pulsed light component PC
  • the line L5 shows the power level of 50% of the peak.
  • the line L6 indicates the power level of the maximum value of the continuous light component CC
  • the line L7 indicates the power level of 50% of the maximum value.
  • the time width TW of the laser beam is set to the maximum value at the falling edge of the continuous light component CC from the time t8 (indicated by the line L8), which is 50% of the peak at the rising edge of the pulsed light component PC. It is defined by the time width up to the time t9 (indicated by the line L9), which is 50%.
  • the energy ratio of the energy of the continuous light component CC to the energy of the pulsed light component PC is set to, for example, 40 or less, and the time width TW of the laser beam L is set to, for example, 12 ⁇ s or less.
  • the energy ratio is 5 or less, or when the time width TW is 2.3 ⁇ s or less, the heat input by the continuous light component CC is further suppressed, so that the occurrence of defects due to the heat input is further suppressed.
  • the energy ratio and the time width TW values may be appropriately set according to, for example, the characteristics of the processing target W, for example, the material and thickness of the metal foil, the number of sheets, and the like.
  • the waveform and power of the laser beam L change depending on the waveform of the pulse of the excitation light output by each of the semiconductor excitation light sources 1 and 6.
  • the waveform of the pulse of the excitation light changes depending on the waveform of the pulse of the drive power from the drive unit 20.
  • the waveform of the drive power pulse can be controlled by the waveform of the pulse of the instruction voltage signal from the control device 140. Therefore, the waveform and power of the laser beam L can be controlled by changing the waveform of the pulse of the indicated voltage signal from the control device 140.
  • the repetition frequency of the drive power pulse is not particularly limited, but is, for example, 5 kHz or more.
  • the repetition frequency is 5 kHz or more, it is easy to obtain a suitable waveform of the laser beam L having the above-mentioned energy ratio of 40 or less and a time width TW of 12 ⁇ s or less.
  • the drive power pulse on time is the time width of the drive power pulse.
  • the pulse time width of the drive power is narrow to some extent, it is suitable for reducing the energy of the continuous light component CC, but according to the diligent studies of the present inventors, if it is too narrow, the peak of the pulse light component PC is reached. Power is reduced. Therefore, in order to efficiently utilize the energy of the pulsed light component PC for laser processing, a narrow time width is preferable so that the peak power of the pulsed light component PC does not decrease. Therefore, in the present specification, the shortest on-time is defined as one of the indexes of the pulse time width of the drive power. The shortest on-time is a value at which the peak power of the pulsed light component decreases when the pulse time width of the drive power is narrower than the shortest on-time. In this case, if the time width of the power pulse is set to the shortest on-time or longer, the energy of the pulsed light component PC can be efficiently utilized for laser processing.
  • FIG. 7 is a diagram showing the relationship between the repetition frequency and the shortest on-time in the laser device having the same configuration as the laser device 110 of the first embodiment.
  • the horizontal axis is the repetition frequency of the drive power pulse, and the vertical axis is the shortest on-time.
  • the numerical values from "104" to "1002" in the legend indicate the value of the average power [W] in the steady state at each indicated value set for the laser device 110.
  • the indicated value is the voltage value of the indicated voltage signal.
  • the laser device 110 is configured so that 1000 W is the rated laser output.
  • the shortest on-time increases as the repetition frequency decreases. Also, the shortest on-time increases as the average power decreases.
  • the on-time of the drive power pulse is about 10 ⁇ s or less. At this time, if the repetition frequency is 5 kHz or more, the on-time can be set to the shortest on-time at various average power values.
  • the laser device 110 is configured as a CW laser device, it can generate a pulsed light component PC having a sharp peak using relaxation vibration oscillation, so that the pulse laser device 110 includes a Q-switch mechanism.
  • the device can be configured more simply and at lower cost.
  • a laser processing device having the same configuration as the laser processing device 100 of the first embodiment was manufactured, and a cutting experiment of a processing target made of a metal foil was performed.
  • the object to be processed was one copper foil with a thickness of 8 ⁇ m.
  • the drive power was set so that the average power in the steady state at each indicated value was 1000 W.
  • the repetition frequency of the drive power pulse was set to various values between less than 5 kHz and 300 kHz. Further, the on-time of the drive power pulse was set to various values between 0.5 ⁇ s and 100 ⁇ s.
  • Table 1 shows the processing results.
  • the processing quality was graded according to a predetermined evaluation standard by checking the appearance with a microscope from the viewpoint of dross and discoloration (due to the formation of oxidized parts, etc.).
  • the size of the dross is large and unacceptable quality is "poor”
  • the size of the dross is small and the size of the oxidized part is large
  • the acceptable quality is "good”
  • the size of the dross is small and the size of the oxidized part is medium.
  • the higher quality class was rated "excellent” and the highest quality class with smaller dross and oxide size was rated "best”.
  • "-" corresponds to the condition that the experiment has not been conducted.
  • the repetition frequency is 50 kHz or more and less than 300 kHz
  • FIG. 8 is a schematic configuration diagram of the laser processing apparatus according to the second embodiment.
  • the optical head 120 has a galvano scanner 126 between the collimating lens 121 and the condenser lens 122.
  • the galvano scanner 126 has two mirrors 126a.
  • the irradiation direction and irradiation position of the laser beam L change due to the change in the postures of these two mirrors 126a. That is, the laser processing apparatus 100A can move the irradiation position of the laser beam L and sweep the laser beam L without moving the optical head 120.
  • the control device 140 can control the operation of the motor 126b corresponding to each mirror 126a so that the angle (posture) of the mirror 126a changes. The same operation and effect as in the first embodiment can be obtained by this embodiment as well.
  • the amplification optical fiber 5 is YDF, but an amplification optical fiber to which other rare earth elements such as erbium and neodymium are added as an amplification medium may be used.
  • the wavelength of the excitation light and the wavelength of the generated laser light are the wavelengths according to the type of the amplification medium.
  • the laser device 110 is an optical fiber laser, but a laser device using another type of laser such as a semiconductor laser or a solid-state laser may be used.
  • the pulse of the driving power has a rectangular shape, but the ratio of the energy of the continuous light component to the energy of the pulsed light component is 40 or less, and the time width of the laser light is 12 ⁇ s or less. As long as it can be generated, it is not limited to a rectangular shape. Similarly, the shape of the pulse of the excitation light is not limited.
  • the present invention is not limited by the above embodiment.
  • the present invention also includes a configuration in which the above-mentioned components are appropriately combined. Further, further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above embodiment, and various modifications can be made.
  • the present invention is suitable for use in a laser processing method and a laser processing apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)

Abstract

少なくとも1枚の金属箔からなる加工対象をレーザ加工する方法であって、レーザ媒質にパルス状の励起エネルギーを供給し、レーザ光を発生させるステップと、前記加工対象の表面に前記レーザ光を照射するステップと、を含み、前記レーザ光は、パルス光成分と、前記パルス光成分よりも時間的に後に続く、連続光成分とを含み、前記パルス光成分のエネルギーに対する前記連続光成分のエネルギーの比が所定値以下になるように、前記連続光成分の持続時間を制限するステップをさらに含む。

Description

レーザ加工方法およびレーザ加工装置
 本発明は、レーザ加工方法およびレーザ加工装置に関する。
 ファイバレーザ装置を用いて加工対象を加工する方法として、ジャイアントパルスを加工対象に照射して、該加工対象の温度を上げてレーザ光の吸収率を上昇させ、ジャイアントパルスの発生後に、定常出力のレーザ光を加工対象に照射して該加工対象を加工する方法が開示されている(特許文献1)。
特許第6347676号公報
 しかしながら、特許文献1に開示された方法では、定常出力のレーザ光を加工対象に照射して該加工対象を加工するため、薄い金属箔からなる加工対象を加工する場合、たとえば加工した部分にドロスや変色などの不具合が発生することがあり、改善の余地があった。
 本発明は、上記に鑑みてなされたものであって、金属箔からなる加工対象の加工に適するレーザ加工方法およびレーザ加工装置を提供することを目的とする。
 上述した目的を達成するために、本発明の一態様は、少なくとも1枚の金属箔からなる加工対象をレーザ加工する方法であって、レーザ媒質にパルス状の励起エネルギーを供給し、レーザ光を発生させるステップと、前記加工対象の表面に前記レーザ光を照射するステップと、を含み、前記レーザ光は、パルス光成分と、前記パルス光成分よりも時間的に後に続く、連続光成分とを含み、前記パルス光成分のエネルギーに対する前記連続光成分のエネルギーの比が所定値以下になるように、前記連続光成分の持続時間を制限するステップをさらに含む、レーザ加工方法である。
 前記比が40以下であるものでもよい。
 前記比が5以下であるものでもよい。
 前記レーザ光の時間幅が12μs以下であるものでもよい。
 前記時間幅が2.3μs以下であるものでもよい。
 励起光源にパルス状の電力を供給し、前記励起エネルギーとして励起光を発生させるステップをさらに含むものでもよい。
 前記電力のパルスは矩形状であって、時間幅が10μs以下であるものでもよい。
 前記電力のパルスは矩形状であって、時間幅が最短オン時間以上に設定され、前記最短オン時間は、前記時間幅が当該最短オン時間よりも狭いと前記パルス光成分のピークパワーが減少する値であるものでもよい。
 前記電力のパルスの繰り返し周波数は5kHz以上であるものでもよい。
 前記電力のパルスの繰り返し周波数は50kHz以上300kHz未満であるものでもよい。
 前記加工対象の表面における前記レーザ光の照射位置を前記加工対象に対して相対的に移動させるステップをさらに含むものでもよい。
 本発明の一態様は、加工対象をレーザ加工する装置であって、レーザ媒質にパルス状の励起エネルギーを供給し、レーザ光を発生させるレーザ装置と、前記加工対象の表面に前記レーザ光を照射する光学ヘッドと、前記レーザ装置を制御する制御装置と、を備え、前記制御装置は、前記レーザ光が、前記レーザ光の発生の初期に、緩和振動発振に起因して発生するパルス光成分と、前記パルス光成分よりも時間的に後に続く連続光成分とを含み、前記パルス光成分のエネルギーに対する前記連続光成分のエネルギーの比が所定値以下になるように、前記連続光成分の持続時間を制限する制御を行う、レーザ加工装置である。
 本発明によれば、金属箔からなる加工対象の加工に適するレーザ加工方法およびレーザ加工装置を実現できる。
図1は、実施形態1に係るレーザ加工装置の模式的な構成図である。 図2は、図1に示すレーザ装置の模式的な構成図である。 図3は、図2に示す駆動部の模式的な構成図である。 図4は、レーザ光の1パルスの波形を示す図である。 図5は、図4の一部の時間範囲の拡大図である。 図6は、レーザ光の時間幅の説明図である。 図7は、繰り返し周波数と最短オン時間との関係の一例を示す図である。 図8は、実施形態2に係るレーザ加工装置の模式的な構成図である。
 以下に、図面を参照して本発明の実施形態を詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、各図面において、同一または対応する要素には適宜同一の符号を付し、重複説明を省略する。また、各図面において、XYZ直交座標系を用いて方向を表す場合がある。
(実施形態1)
<レーザ加工装置>
 図1は、実施形態1に係るレーザ加工装置の模式的な構成図である。このレーザ加工装置100は、レーザ装置110と、光学ヘッド120と、レーザ装置110と光学ヘッド120とを接続する光ファイバ130と、制御装置140と、を備えている。
 レーザ加工装置100は、溶接、穿孔、切断等のレーザ加工のうち、レーザ切断を行う装置である。
 レーザ加工装置100の加工対象Wは、金属材料で構成されている。金属材料は、たとえば、銅や銅合金のような銅系材料や、アルミニウムやアルミニウム合金のようなアルミニウム系材料である。
 また、加工対象Wは、少なくとも1枚の金属箔で構成されている。たとえば、加工対象Wは、1枚の金属箔、または積層された複数枚の金属箔で構成されている。ここで、金属箔は、たとえばJIS H 4160に規定される、厚さが6μmから200μmのアルミニウム系の圧延材であるが、厚さはそれには限定されず、たとえば500μm以下や250μm以下でもよい。金属箔が他の金属材料からなる場合も同様である。
 また、加工対象Wは、リチウムイオン電池のような電池の電極であってもよい。この場合、加工対象Wには、二酸化マンガンやリチウムのような活物質が塗布されていてもよい。また、加工対象Wには活物質とは異なる物質が塗布されていたり、めっき層のような表層や被膜が表面の全面にまたは部分的に形成されていたりしてもよい。
 レーザ装置110は、一例としては、数kWのパワーのシングルモードのレーザ光を出力できるよう構成されている。レーザ装置110については後に詳述する。
 光ファイバ130は、レーザ装置110から出力されたレーザ光を光学ヘッド120に導く。レーザ装置110が、シングルモードレーザ光を出力する場合、光ファイバ130は、シングルモードレーザ光を伝播するよう構成される。この場合、シングルモードレーザ光のMビーム品質は、1.2以下に設定される。また、レーザ装置110が、マルチモードレーザ光を出力する場合、光ファイバ130はマルチモードレーザ光を伝播するよう、構成される。
 光学ヘッド120は、レーザ装置110から入力されたレーザ光を、加工対象Wへ照射するための光学装置である。光学ヘッド120は、コリメートレンズ121と、集光レンズ122と、を有している。なお、光学ヘッド120は、コリメートレンズ121および集光レンズ122以外の光学部品を有してもよい。
 コリメートレンズ121は、入力されたレーザ光をコリメートする。集光レンズ122は、コリメートされたレーザ光を集光し、レーザ光L(出力光)として、加工対象Wに照射する。
 このような構成により、光学ヘッド120は、加工対象Wの表面Waへ、Z軸の負の向きにレーザ光Lを照射する。
 なお、加工対象Wの表面におけるレーザ光Lの照射位置は、加工対象Wに対して相対的に移動可能である。このような相対的な移動は、光学ヘッド120の移動、加工対象Wの移動、または光学ヘッド120および加工対象Wの双方の移動により、光学ヘッド120と加工対象Wとが相対的に移動することによって実現され得る。たとえば、加工対象Wを固定し、光学ヘッド120をX軸の正の向きに移動させれば、加工対象Wの表面におけるレーザ光Lの照射位置は、図1の掃引方向SDに掃引される。このような相対移動を実現するため、光学ヘッド120はXY方向に移動可能な移動機構を備えているか、加工対象Wは加工対象をXY方向に移動させることが可能なステージに支持されている。
 ただし、レーザ加工が穿孔の場合は上記のような相対移動は必ずしも必要ではなく、切断や溶接においても、たとえばスポット溶接や細い金属箔の切断などであれば、相対移動が必要でない場合もある。
 制御装置140は、レーザ装置110の作動や、光学ヘッド120または加工対象Wを支持するステージの駆動機構の作動を制御する。制御装置140は、たとえばパーソナルコンピュータおよびその周辺機器によって構成され得る。
 図2は、図1に示すレーザ装置110の模式的な構成図である。レーザ装置110は、連続波(CW)のレーザ光を出力し得るCWレーザ装置として構成されている。したがって、パルスレーザ光を出力するためのQスイッチ機構を備えていなくてもよい。
 レーザ装置110は、光ファイバレーザであって、複数の半導体励起光源1と、複数の光ファイバ2と、光合波器3と、光ファイバブラッググレーティング(FBG)4と、増幅用光ファイバ5と、FBG7と、光合波器8と、複数の光ファイバ9と、複数の半導体励起光源6と、出力光ファイバ11と、駆動部20とを備えている。各要素は適宜光ファイバで接続されている。出力光ファイバ11は、図1に示される光ファイバ130と光学的に結合されるか、あるいは光ファイバ130の一部(入力端)である。各半導体励起光源1、6は、励起光源の一例であり、レーザダイオードモジュール(LDM)として構成されている。
 各半導体励起光源1は、増幅用光ファイバ5に供給する励起光を出力する。増幅用光ファイバ5はレーザ媒質の一例であり、励起光は励起エネルギーの一例である。励起光は、増幅用光ファイバ5を光励起できる波長、たとえば915[nm]の波長を有している。複数の光ファイバ2は、それぞれ、各半導体励起光源1から出力された励起光を伝搬し、光合波器3に出力する。
 光合波器3は、本実施形態ではTFB(Tapered Fiber Bundle)で構成されている。光合波器3は、各光ファイバ2から入力された励起光を、信号光ポートの光ファイバに合波し、増幅用光ファイバ5へ出力する。
 増幅用光ファイバ5は、石英系ガラスで作られたコア部に増幅物質であるイッテルビウム(Yb)イオンが添加されたYDF(Ytterbium Doped Fiber)であり、コア部の外周には石英系ガラスで作られた内側クラッド層と樹脂等で作られた外側クラッド層とが順次形成されたダブルクラッド型の光ファイバである。なお、増幅用光ファイバ5のコア部はNAがたとえば0.08であり、Ybイオンの発光、たとえば波長1070[nm]の光をシングルモードで伝搬するように構成されている。増幅用光ファイバ5のコア部の吸収係数は、たとえば波長915[nm]において200[dB/m]である。また、コア部に入力された励起光からレーザ発振光へのパワー変換効率はたとえば70%である。ただし、吸収係数やパワー変換効率はこれらに限定されない。
 後端側反射手段であるFBG4は、光合波器3の信号光ポートの光ファイバと増幅用光ファイバ5との間に接続されている。FBG4は、中心波長がたとえば1070[nm]であり、中心波長およびその周辺の約2[nm]の幅の波長帯域における反射率が約100%であり、波長915[nm]の光はほとんど透過する。また、出力側反射手段であるFBG7は、光合波器8の信号光ポートの光ファイバと増幅用光ファイバ5との間に接続されている。FBG7は、中心波長がFBG4と略同じであるたとえば1070[nm]であり、中心波長における反射率が10%~30%程度であり、反射波長帯域の半値全幅が約1[nm]であり、波長915[nm]の光はほとんど透過する。
 FBG4,7は、増幅用光ファイバ5の両端のそれぞれに対して配置され、波長1070[nm]の光に対して光ファイバ共振器を構成する。
 各半導体励起光源6は、増幅用光ファイバ5に供給する励起光を出力する。励起光は、増幅用光ファイバ5を光励起できる波長、たとえば915[nm]の波長を有している。複数の光ファイバ9は、それぞれ、各半導体励起光源6から出力された励起光を伝搬し、光合波器8に出力する。
 光合波器8は、光合波器3と同様に、本実施形態ではTFBで構成されている。光合波器8は、各光ファイバ9から入力された励起光を信号光ポートの光ファイバに合波し、増幅用光ファイバ5へ出力する。
 増幅用光ファイバ5では、励起光によってコア部のYbイオンが光励起され、波長1070[nm]を含む帯域の光を発光する。波長1070[nm]の発光は、増幅用光ファイバ5の光増幅作用とFBG4,7によって構成される光共振器の作用とによってレーザ発振する。これにより、レーザ装置110はレーザ光を発生させる。
 出力光ファイバ11は、FBG7とは反対側に配置され、光合波器8の信号光ポートの光ファイバに接続されている。発振したレーザ光(レーザ発振光)は出力光ファイバ11から出力される。
 駆動部20は、制御装置140から入力された指示電圧信号に応じて、各半導体励起光源1、6に駆動電流を供給する。
 図3は、図2に示す駆動部の模式的な構成図である。駆動部20は、主にアナログ回路で構成されており、電源装置21と、電界効果トランジスタ(FET)22と、シャント抵抗23と、オペアンプ24と、フィードバック回路25とを備えている。
 電源装置21は、各半導体励起光源1、6に電流を供給するように接続された公知の直流電源である。たとえば、各半導体励起光源1は直列接続され、各半導体励起光源6は各半導体励起光源1とは別に直列接続されている。また、各半導体励起光源1と各半導体励起光源6とが全て直列接続されていてもよい。
 FET22は、電源装置21からグラウンドに到る電源ラインにおいて、各半導体励起光源1、6の下流側に接続されている。FET22は、印加されるゲート電圧に応じて、電源装置21から電源ラインを介して各半導体励起光源1、6に供給される電流量を調整する。
 シャント抵抗23は、電源ラインにおいて、FET22の下流側に接続されている。シャント抵抗23は、電源ラインを流れる電流量の情報を電圧値として取り出す機能を有する。
 オペアンプ24は、非反転入力に指示電圧信号が入力され、反転入力にシャント抵抗23の電圧値が入力され、出力はFET22のゲートに接続されている。
 フィードバック回路25は、コンデンサを含んだ積分回路として構成されており、オペアンプ24の出力から反転入力への帰還経路を構成する。
 上記構成によって、駆動部20は、各半導体励起光源1、6に定電流を供給する定電流制御を実行することができる。定電流は、指示電圧信号の電圧レベルに応じた電流値である。
<レーザ加工方法>
 つぎに、レーザ加工装置100を用いたレーザ加工方法の一例を、レーザ切断の場合を例として説明する。
 はじめに、レーザ加工装置100において、レーザ媒質にパルス状の励起エネルギーを供給し、レーザ光を発生させるステップを実行する。具体的には、まず、制御装置140は、レーザ装置110の駆動部20に、所定の繰返し周期を有するパルス状の指示電圧信号を出力するステップを実行する。これにより、駆動部20は、各半導体励起光源1、6にパルス状の駆動電力(駆動電流)を供給し、励起エネルギーとしてパルス状の励起光を発生させるステップを実行する。ここで、駆動電力のパルスはたとえば矩形状である。その後、レーザ装置110では、各半導体励起光源1、6が増幅用光ファイバ5にパルス状の励起光を供給し、所定の繰返し周期を有するパルス状のレーザ光を発生させる。
 その後、レーザ光が入力された光学ヘッド120は、加工対象Wの表面Waにレーザ光Lを照射するステップと、加工対象Wの表面Waにおけるレーザ光Lの照射位置を加工対象Wに対して相対的に移動させるステップを実行する。なお、レーザ光Lの照射位置を加工対象Wに対して相対的に移動させるステップは、制御装置140が、加工対象Wを支持するステージを駆動させることによって実行されてもよい。これにより、加工対象Wのレーザ切断が実行される。
 このとき、レーザ光Lは、レーザ光Lの発生の初期に、緩和振動発振に起因して発生するパルス光成分と、パルス光成分よりも時間的に後に続く、連続光成分とを含んでいる。そして、レーザ光Lにおいて、たとえば、パルス光成分のエネルギーに対する連続光成分のエネルギーの比が所定値以下である場合や、それに加えてレーザ光Lの時間幅が所定値以下である場合に、ドロスや変色の発生が抑制されたレーザ切断を実行することができる。なお、当該エネルギー比と時間幅は、制御装置140がレーザ装置110を制御することによって実現できる。
 このように、レーザ装置110は、レーザ媒質にパルス状の励起エネルギーを供給し、レーザ光を発生させるステップを実行することによって、Qスイッチ機構を備えることなく、たとえば汎用の制御回路を用いた駆動制御にてパルス光成分を発生できる。そして、本発明者らは、そのパルス光成分が緩和振動に起因して発生する先鋭的なピークのため、従来は困難とされていた金属箔の加工に適用できることを見出した。さらに、本発明者らは、このパルス光成分に続く連続光成分のパワーまたはエネルギーが強すぎると、金属箔への入熱量が過剰になり、かえって金属箔の加工に不都合であることも見出した。そこで、本発明者らは、パルス光成分のエネルギーに対する連続光成分のエネルギーの比が所定値以下になるように、連続光成分の持続時間を制限する制御を行うことで、入熱量を調整して好適な金属箔加工を実現するという技術思想を想到したのである。さらに、本発明者らは、所望のエネルギーの比の調整には、各半導体励起光源1、6に供給するパルス状の電力のパルス幅を調整することで容易に実現可能であることも見出したのである。
 エネルギー比は一例として40以下であり、レーザ光Lの時間幅は一例として12μs以下である。また、連続光成分の持続時間とは、一例としては、後述する図5、6における時刻t3から時刻t9までの時間として定義されるが、連続光成分がパワーを有する時間的な長さを表す定義であれば特に限定はされない。
 以下、レーザ光の時間軸における波形と実験例とを用いてより詳細に説明する。図4は、レーザ光Lの1パルスの波形を示す図である。図5は、図4の一部の時間範囲の拡大図である。図4、5において、横軸は時刻[μs]であり、縦軸はパワー[W]である。横軸の時刻は、レーザ光Lの1パルスの発生前の所定時刻を0μsとした時刻である。図4に示すように、レーザ光Lは、1パルスにおいて、パルス光成分PCと連続光成分CCとを含んでいる。
 レーザ装置110では、各半導体励起光源1、6から増幅用光ファイバ5にパルス状の励起光が供給されることによって、励起光の立ち上がりの形状に応じて、緩和振動発振に起因したパルス光成分PCが発生する。パルス光成分PCはパワーが高くパルス幅が短い先鋭的なピーク形状を有する。その後、パルス光成分PCよりも時間的に後に続いて、時間的に連続な連続光成分CCが発生するが、励起光の立ち下がりによって連続光成分CCのパワーは早期に減少する。なお、線L1はパルス光成分PCが発生する前の時刻t1、線L2は連続光成分CCが減衰した後の時刻t2の位置を示しており、いずれの時刻でも光のパワーは0Wである。
 線L3は、レーザ光Lにおいてパルス光成分PCのパワーがピークに達した後に最初に極小値を取る時刻t3の位置を示している。本明細書では、このような極小値の位置をパルス光成分PCと連続光成分CCとの境界と定義する。なお、図4では、時刻t3の後にも、パルス光成分PCよりもパワーが小さい振動成分が発生しているが、本明細書ではこの成分も連続光成分CCに含める。したがって、パルス光成分PCのエネルギーは、パルス光成分PCのパワーをたとえば時刻t1から時刻t3の範囲で時間積分して得られる。エネルギーの単位はたとえばジュールである。また、連続光成分CCのエネルギーは、連続光成分CCのパワーを時刻t3から時刻t2の範囲で時間積分して得られる。なお、時刻t1は、パルス光成分PCのパワーが0Wであればこの値に限定されず、時刻t2は連続光成分CCのパワーが0Wであればこの値に限定されない。
 また、本実施形態では、レーザ光Lの時間幅が12μs以下である。図6は、レーザ光の時間幅の説明図である。線L4は、パルス光成分PCのピークのパワーレベルを示し、線L5は、ピークの50%のパワーレベルを示す。また、線L6は、連続光成分CCの最大値のパワーレベルを示し、線L7は、最大値の50%のパワーレベルを示す。このとき、本明細書では、レーザ光の時間幅TWを、パルス光成分PCの立ち上がりでピークの50%となる時刻t8(線L8で示す)から、連続光成分CCの立下りで最大値の50%となる時刻t9(線L9で示す)までの時間幅で定義する。
 本実施形態では、パルス光成分PCのエネルギーに対する連続光成分CCのエネルギーのエネルギー比を、たとえば40以下とし、レーザ光Lの時間幅TWを、たとえば12μs以下とする。これによって、パワーが高くパルス幅が短いパルス光成分PCを利用して金属箔からなる薄い加工対象Wを加工しつつ、連続光成分CCを適正に少なくして連続光成分CCによる加工対象Wへの過度な入熱を抑制できる。その結果、加工した部分におけるドロスや変色のような不具合が発生を抑制することができる。
 また、エネルギー比が5以下である場合、または、時間幅TWが2.3μs以下である場合は、連続光成分CCによる入熱がさらに抑制されるので、入熱による不具合の発生がさらに抑制される。
 エネルギー比や時間幅TWの値は、たとえば加工対象Wの特性、たとえば金属箔の材質や厚さ、枚数等に応じて適宜設定されてもよい。
 なお、レーザ光Lの波形やパワーは、各半導体励起光源1、6が出力する励起光のパルスの波形に依存して変化する。励起光のパルスの波形は、駆動部20からの駆動電力のパルスの波形に依存して変化する。さらには、駆動電力のパルスの波形は、制御装置140からの指示電圧信号のパルスの波形で制御できる。したがって、レーザ光Lの波形やパワーは、制御装置140からの指示電圧信号のパルスの波形の変更によって制御できる。
 また、駆動電力のパルスの繰り返し周波数は、特に限定されないが、たとえば5kHz以上である。繰り返し周波数が5kHz以上であれば、レーザ光Lの波形として、上述したエネルギー比が40以下、時間幅TWが12μs以下である好適な波形を得やすい。駆動電力のパルスのオン時間は、駆動電力のパルスの時間幅である。
 また、駆動電力のパルスの時間幅は、ある程度狭い方が、連続光成分CCのエネルギーを小さくするのに適するが、本発明者らの鋭意検討によれば、狭すぎるとパルス光成分PCのピークパワーが減少する。そこで、パルス光成分PCのエネルギーをレーザ加工に効率的に活用するためには、パルス光成分PCのピークパワーが減少しない程度に狭い時間幅が好ましい。そこで、本明細書では、駆動電力のパルスの時間幅の指標の一つとして、最短オン時間を規定する。最短オン時間は、駆動電力のパルスの時間幅が当該最短オン時間よりも狭いとパルス光成分のピークパワーが減少する値である。この場合、電力のパルスの時間幅が最短オン時間以上に設定されれば、パルス光成分PCのエネルギーをレーザ加工に効率的に活用することができる。
 図7は、実施形態1のレーザ装置110と同じ構成のレーザ装置における、繰り返し周波数と最短オン時間との関係を示す図である。横軸は駆動電力のパルスの繰り返し周波数であり、縦軸は最短オン時間である。また、凡例における「104」から「1002」までの数値は、レーザ装置110に対して設定される各指示値での定常状態での平均パワー[W]の値を示している。ここで指示値とは指示電圧信号の電圧値のことである。なお、レーザ装置110は1000Wが定格のレーザ出力となるように構成されている。
 図7に示すように、最短オン時間は繰り返し周波数の減少にしたがって増加する。また、最短オン時間は平均パワーの減少にしたがって増加する。レーザ光Lの波形として時間幅TWを12μs以下とするためには、駆動電力のパルスのオン時間は10μs程度以下とすることが好ましい。この時、繰り返し周波数を5kHz以上とすれば、様々な平均パワーの値において、オン時間を最短オン時間に設定することができる。
 なお、レーザ装置110は、CWレーザ装置として構成されておりながらも、緩和振動発振を利用した先鋭的なピークを有するパルス光成分PCを発生させることができるので、Qスイッチ機構を備えるパルスレーザ装置よりも簡易かつ低コストで装置を構成することができる。
(加工実験)
 実施形態1のレーザ加工装置100と同じ構成のレーザ加工装置を作製し、金属箔からなる加工対象の切断実験を行った。加工対象は厚さ8μmの銅箔1枚とした。そして、各指示値での定常状態での平均パワーが1000Wとなるように駆動電力を設定した。駆動電力のパルスの繰り返し周波数は5kHz未満から300kHzまでの間の様々な値に設定した。また、駆動電力のパルスのオン時間は0.5μsから100μsまでの間の様々な値に設定した。
 表1は加工結果を示す。加工品質は、ドロスや変色(酸化部の生成などによる)の観点から顕微鏡による外観確認を行い、所定の評価基準にしたがって階級付けした。ここでは、ドロスのサイズが大きく許容できない品質を「不良」、ドロスのサイズが小さく酸化部のサイズが大きく、許容できる品質を「良」、ドロスのサイズが小さく酸化部のサイズが中程度で、品質がより高い階級を「優良」、ドロスおよび酸化部のサイズが小さく品質が最も高い階級を「最良」と評価した。また、「-」は実験をしていない条件に該当する。表1に示すように、エネルギー比Rが40以下であり、レーザ光の時間幅TWが12μs以下の場合に「良」または「優良」の結果が得られ、エネルギー比Rが5以下であり、レーザ光の時間幅TWが2.3μs以下の場合に「優良」または「最良」の結果が得られた。特に、繰り返し周波数が5kHz以上50kHz未満であると、レーザ光の時間幅TWが2.3μsを超え12μs以下の場合に「良」、0.1μsを超え2.3μs以下の場合に「優良」の結果が得られた。さらに、繰り返し周波数が50kHz以上300kHz未満であると、レーザ光の時間幅TWが2.3μsを超え12μs以下の場合に「優良」、0.1μsを超え2.3μs以下の場合に「最良」の結果が得られた。
Figure JPOXMLDOC01-appb-T000001
(実施形態2)
 図8は、実施形態2に係るレーザ加工装置の模式的な構成図である。本実施形態では、光学ヘッド120は、コリメートレンズ121と集光レンズ122との間に、ガルバノスキャナ126を有している。ガルバノスキャナ126は、二つのミラー126aを有している。これら二つのミラー126aの姿勢の変化により、レーザ光Lの照射方向および照射位置が変化する。すなわち、レーザ加工装置100Aは、光学ヘッド120を移動させることなく、レーザ光Lの照射位置を移動させ、レーザ光Lを掃引することができる。制御装置140は、ミラー126aの角度(姿勢)が変化するよう、各ミラー126aに対応するモータ126bの作動を制御することができる。本実施形態によっても、実施形態1と同様の作用および効果が得られる。
 なお、上記実施形態では、増幅用光ファイバ5はYDFであるが、エルビウム(Erbium)やネオジム(Neodymium)などの他の希土類元素が増幅媒体として添加された増幅用光ファイバでもよい。この場合、励起光の波長や発生するレーザ光の波長は増幅媒体の種類に応じた波長とする。
 また、上記実施形態では、レーザ装置110は光ファイバレーザであるが、半導体レーザや固体レーザなどの他の形式のレーザを用いたレーザ装置でもよい。
 また、上記実施形態では、駆動電力のパルスは矩形状であるが、パルス光成分のエネルギーに対する連続光成分のエネルギーの比が40以下であり、レーザ光の時間幅が12μs以下であるレーザ光を発生できるものであれば、矩形状に限定されない。励起光のパルスの形状についても同様に限定はされない。
 また、上記実施形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施形態に限定されるものではなく、様々な変更が可能である。
 以上のように、本発明は、レーザ加工方法およびレーザ加工装置に利用して好適なものである。
1、6  :半導体励起光源
2、9、130 :光ファイバ
3、8  :光合波器
5    :増幅用光ファイバ
11   :出力光ファイバ
20   :駆動部
21   :電源装置
22   :FET
23   :シャント抵抗
24   :オペアンプ
25   :フィードバック回路
100、100A :レーザ加工装置
110  :レーザ装置
120  :光学ヘッド
121  :コリメートレンズ
122  :集光レンズ
126  :ガルバノスキャナ
126a :ミラー
126b :モータ
140  :制御装置
CC   :連続光成分
L    :レーザ光
PC   :パルス光成分
SD   :掃引方向
TW   :時間幅
W    :加工対象
Wa   :表面

Claims (12)

  1.  少なくとも1枚の金属箔からなる加工対象をレーザ加工する方法であって、
     レーザ媒質にパルス状の励起エネルギーを供給し、レーザ光を発生させるステップと、
     前記加工対象の表面に前記レーザ光を照射するステップと、
     を含み、
     前記レーザ光は、パルス光成分と、前記パルス光成分よりも時間的に後に続く、連続光成分とを含み、
     前記パルス光成分のエネルギーに対する前記連続光成分のエネルギーの比が所定値以下になるように、前記連続光成分の持続時間を制限するステップをさらに含む
     レーザ加工方法。
  2.  前記比が40以下である
     請求項1に記載のレーザ加工方法。
  3.  前記比が5以下である
     請求項2に記載のレーザ加工方法。
  4.  前記レーザ光の時間幅が12μs以下である
     請求項1~3のいずれか一つに記載のレーザ加工方法。
  5.  前記時間幅が2.3μs以下である
     請求項4に記載のレーザ加工方法。
  6.  励起光源にパルス状の電力を供給し、前記励起エネルギーとして励起光を発生させるステップをさらに含む
     請求項1~5のいずれか一つに記載のレーザ加工方法。
  7.  前記電力のパルスは矩形状であって、時間幅が10μs以下である
     請求項6に記載のレーザ加工方法。
  8.  前記電力のパルスは矩形状であって、時間幅が最短オン時間以上に設定され、
     前記最短オン時間は、前記時間幅が当該最短オン時間よりも狭いと前記パルス光成分のピークパワーが減少する値である
     請求項6または7に記載のレーザ加工方法。
  9.  前記電力のパルスの繰り返し周波数は5kHz以上である
     請求項6~8のいずれか一つに記載のレーザ加工方法。
  10.  前記電力のパルスの繰り返し周波数は50kHz以上300kHz未満である
     請求項9に記載のレーザ加工方法。
  11.  前記加工対象の表面における前記レーザ光の照射位置を前記加工対象に対して相対的に移動させるステップをさらに含む
     請求項1~10のいずれか一つに記載のレーザ加工方法。
  12.  加工対象をレーザ加工する装置であって、
     レーザ媒質にパルス状の励起エネルギーを供給し、レーザ光を発生させるレーザ装置と、
     前記加工対象の表面に前記レーザ光を照射する光学ヘッドと、
     前記レーザ装置を制御する制御装置と、
     を備え、
     前記制御装置は、前記レーザ光が、前記レーザ光の発生の初期に、緩和振動発振に起因して発生するパルス光成分と、前記パルス光成分よりも時間的に後に続く連続光成分とを含み、前記パルス光成分のエネルギーに対する前記連続光成分のエネルギーの比が所定値以下になるように、前記連続光成分の持続時間を制限する制御を行う
     レーザ加工装置。
PCT/JP2021/034982 2020-09-25 2021-09-24 レーザ加工方法およびレーザ加工装置 WO2022065407A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180063911.7A CN116323073A (zh) 2020-09-25 2021-09-24 激光加工方法以及激光加工装置
JP2022552056A JP7407964B2 (ja) 2020-09-25 2021-09-24 レーザ加工方法およびレーザ加工装置
EP21872536.4A EP4219063A1 (en) 2020-09-25 2021-09-24 Laser processing method and laser processing apparatus
KR1020237009430A KR20230051584A (ko) 2020-09-25 2021-09-24 레이저 가공 방법 및 레이저 가공 장치
US18/185,415 US20230219167A1 (en) 2020-09-25 2023-03-17 Laser processing method and laser processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020161473 2020-09-25
JP2020-161473 2020-09-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/185,415 Continuation US20230219167A1 (en) 2020-09-25 2023-03-17 Laser processing method and laser processing apparatus

Publications (1)

Publication Number Publication Date
WO2022065407A1 true WO2022065407A1 (ja) 2022-03-31

Family

ID=80846596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034982 WO2022065407A1 (ja) 2020-09-25 2021-09-24 レーザ加工方法およびレーザ加工装置

Country Status (6)

Country Link
US (1) US20230219167A1 (ja)
EP (1) EP4219063A1 (ja)
JP (1) JP7407964B2 (ja)
KR (1) KR20230051584A (ja)
CN (1) CN116323073A (ja)
WO (1) WO2022065407A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085199A1 (ja) * 2022-10-18 2024-04-25 古河電気工業株式会社 金属箔のレーザ切断方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500628A (ja) * 1986-12-16 1990-03-01 ピー・アール・シー・コーポレーション 物のレーザー加工方法
JP2013512111A (ja) * 2009-11-30 2013-04-11 イ−エスアイ−パイロフォトニクス レーザーズ インコーポレイテッド 一連のレーザパルスを用いて薄膜にラインをスクライブするための方法及び装置
JP2014107349A (ja) * 2012-11-26 2014-06-09 Seidensha Electronics Co Ltd 炭酸ガスレーザの励起媒質ガス、炭酸ガスレーザ装置、炭酸ガスレーザを用いたマーキング装置、炭酸ガスレーザ発生方法、炭酸ガスレーザを用いたマーキング方法、及び炭酸ガスレーザ光
JP2015032682A (ja) * 2013-08-02 2015-02-16 住友重機械工業株式会社 ガスレーザ装置、パルスレーザビームの出力方法、及びレーザ加工装置
JP6347676B2 (ja) 2014-06-19 2018-06-27 株式会社フジクラ ファイバレーザ装置及び被加工物の加工方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223577A (ja) 1982-06-21 1983-12-26 株式会社椿本チエイン ドア等の開閉用ロボツトのフインガ
JP2500628B2 (ja) 1993-07-14 1996-05-29 日本電気株式会社 カ―ボンナノチュ―ブ細線およびスイッチ
JP2010081884A (ja) 2008-09-30 2010-04-15 Sony Corp サンプリング装置及びサンプリング方法
JP5338334B2 (ja) 2009-01-21 2013-11-13 オムロン株式会社 レーザ光源装置およびレーザ加工装置
JP5983407B2 (ja) 2010-09-15 2016-08-31 住友電気工業株式会社 レーザ加工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500628A (ja) * 1986-12-16 1990-03-01 ピー・アール・シー・コーポレーション 物のレーザー加工方法
JP2013512111A (ja) * 2009-11-30 2013-04-11 イ−エスアイ−パイロフォトニクス レーザーズ インコーポレイテッド 一連のレーザパルスを用いて薄膜にラインをスクライブするための方法及び装置
JP2014107349A (ja) * 2012-11-26 2014-06-09 Seidensha Electronics Co Ltd 炭酸ガスレーザの励起媒質ガス、炭酸ガスレーザ装置、炭酸ガスレーザを用いたマーキング装置、炭酸ガスレーザ発生方法、炭酸ガスレーザを用いたマーキング方法、及び炭酸ガスレーザ光
JP2015032682A (ja) * 2013-08-02 2015-02-16 住友重機械工業株式会社 ガスレーザ装置、パルスレーザビームの出力方法、及びレーザ加工装置
JP6347676B2 (ja) 2014-06-19 2018-06-27 株式会社フジクラ ファイバレーザ装置及び被加工物の加工方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085199A1 (ja) * 2022-10-18 2024-04-25 古河電気工業株式会社 金属箔のレーザ切断方法

Also Published As

Publication number Publication date
US20230219167A1 (en) 2023-07-13
JP7407964B2 (ja) 2024-01-04
KR20230051584A (ko) 2023-04-18
EP4219063A1 (en) 2023-08-02
CN116323073A (zh) 2023-06-23
JPWO2022065407A1 (ja) 2022-03-31

Similar Documents

Publication Publication Date Title
JP5203573B2 (ja) レーザ加工装置
US7599407B2 (en) Laser control method, laser apparatus, laser treatment method used for the same, laser treatment apparatus
JP5338334B2 (ja) レーザ光源装置およびレーザ加工装置
JP5694711B2 (ja) Mopa方式ファイバレーザ加工装置及び励起用レーザダイオード電源装置
JP5082798B2 (ja) レーザ発振装置及びその制御方法
KR20110103839A (ko) 레이저 가공 장치, 레이저 광원 장치, 및, 레이저 광원 장치의 제어 방법
TWI589080B (zh) 雷射裝置及雷射加工機
JP5260097B2 (ja) レーザ加工装置
US20230219167A1 (en) Laser processing method and laser processing apparatus
TWI499147B (zh) Co2雷射裝置及co2雷射加工裝置
Willis et al. High-energy Q-switched Tm3+-doped polarization maintaining silica fiber laser
US20070237190A1 (en) High-power Er: YAG laser
Shiner Fiber lasers for material processing
JP2000343254A (ja) レーザーラインパターンニング方法
CN102581485A (zh) 激光焊接设备
JP3494517B2 (ja) 固体レーザ装置
JP7328456B2 (ja) 金属箔のレーザ切断方法
JP3862664B2 (ja) レーザ溶接方法およびレーザ溶接装置
US20090219955A1 (en) Laser oscillation method, laser, laser processing method and laser measurement method
Šulc et al. Stable 1318 nm emission from compact Nd: YAG/V: YAG Q-switched laser
CA2781123C (en) Miniaturized laser amplifier arrangement having a pump source
JP7214056B1 (ja) レーザ装置およびレーザ加工機
CN202212693U (zh) 激光焊接设备
JP2012074434A (ja) レーザ装置およびレーザ加工装置
KR20190029416A (ko) 펄스 레이저 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022552056

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237009430

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021872536

Country of ref document: EP

Effective date: 20230425