WO2022064927A1 - Lens device, imaging device, and control method - Google Patents

Lens device, imaging device, and control method Download PDF

Info

Publication number
WO2022064927A1
WO2022064927A1 PCT/JP2021/030836 JP2021030836W WO2022064927A1 WO 2022064927 A1 WO2022064927 A1 WO 2022064927A1 JP 2021030836 W JP2021030836 W JP 2021030836W WO 2022064927 A1 WO2022064927 A1 WO 2022064927A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
lens
unit
control unit
rotation
Prior art date
Application number
PCT/JP2021/030836
Other languages
French (fr)
Japanese (ja)
Inventor
英紀 上林
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2022551208A priority Critical patent/JPWO2022064927A1/ja
Publication of WO2022064927A1 publication Critical patent/WO2022064927A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens

Definitions

  • This technology relates to a lens device, an image pickup device, and a control method, and particularly to a control technology related to ring operation.
  • Patent Document 1 discloses an image pickup device capable of changing the weight applied to the ring operation.
  • the ring when the ring is manually operated to drive a driven portion such as a zoom lens, the user manually rotates the ring at a constant speed in order to drive the driven portion (for example, a zoom lens) at a constant speed.
  • the operation may cause uneven zoom speed and camera shake.
  • it is relatively difficult and skillful to smoothly change the zoom and focus by operating the ring. Therefore, in the present disclosure, we propose a technique that enables stable driving of a driven portion such as a zoom lens even by a ring operation.
  • the lens device includes a ring that can be rotated by manual operation, a ring portion that includes a motor that drives the ring to rotate, a lens system that includes a lens or an iris as a driven portion, and the driven portion.
  • the lens system drive unit to be driven and the lens system drive unit are controlled to drive the driven unit in response to the rotation of the ring by manual operation, and the motor is used to rotate the ring.
  • It is provided with a control unit that controls to generate a restoration torque that rotates in the direction opposite to the direction. That is, when the lens barrel or the like is provided with a ring for manual operation such as zoom, iris, focus, etc., the driven portion such as the zoom lens, iris, focus lens, etc. is driven when the ring is operated. At the same time, a torque (restoration torque) in the direction opposite to the operation direction is applied to the ring.
  • the image pickup device is an image pickup device having such a configuration.
  • the control unit when the ring is manually rotated, the control unit gives a drive instruction to the lens system drive unit according to the rotation amount of the ring, and at the same time, the motor. Therefore, it is conceivable to perform control to generate the restoration torque for returning the ring to the rotation origin position.
  • the amount of rotation of the ring should be reflected in the driving speed and position change of the lens and iris.
  • the control unit controls the ring so that the motor gives the restoration torque obtained based on the conversion information according to the amount of rotation by manual operation. It is possible to do it.
  • the drive speed and restoration torque in the direction opposite to the rotation direction of the ring by the motor are controlled by the speed and torque according to the conversion information according to the amount of rotation of the ring by the operation.
  • the converted information is, for example, a table or a calculation formula that derives the driving speed and torque by the motor from the rotation angle of the ring.
  • the conversion information is updated according to the setting information. That is, it is assumed that the relationship between the rotation angle of the ring and the motor drive control is programmable.
  • the control unit has information on the drive speed or the drive position obtained from the lens system drive unit based on the conversion information according to the amount of rotation by the manual operation of the ring. It is conceivable to perform control so as to give.
  • the drive of the driven portion of the lens system is controlled by the speed and position obtained by the conversion information according to the amount of rotation of the ring by the operation according to the rotation operation of the ring.
  • the converted information is, for example, a table or an arithmetic expression that derives the driving speed and the driving position of the driven portion from the rotation angle of the ring.
  • the conversion information is updated according to the setting information. That is, it is assumed that the relationship between the rotation angle of the ring and the drive control of the lens system is programmable.
  • the control unit can variably set the speed trajectory for returning to the origin position from the time when the manual operation of the ring is completed for the lens system drive unit. It is possible that there is.
  • the time when the manual operation of the ring is completed is, for example, the time when the user releases the ring so that the rotation angle of the ring is not maintained, that is, the time when the motor starts returning to the origin position. ..
  • control unit controls the rotation amount of the ring and the driving speed of the driven unit by the lens system driving unit so as to have a linear relationship.
  • the rotation angle of the ring and the driving speed of the driven portion such as a zoom lens are set to have a proportional relationship that can be expressed by a linear function.
  • control unit controls the rotation amount of the ring and the drive speed of the driven unit by the lens system drive unit so as to have a non-linear relationship.
  • the relationship between the rotation angle of the ring and the driving speed of the driven portion such as a zoom lens cannot be expressed by a linear function.
  • control unit controls the rotation amount of the ring and the restoration torque by the motor so as to have a linear relationship.
  • the relationship between the rotation angle of the ring and the restoration torque of the motor can be expressed by a linear function.
  • control unit controls the rotation amount of the ring and the restoration torque by the motor so as to have a non-linear relationship.
  • the relationship between the rotation angle of the ring and the restoration torque of the motor cannot be expressed by a linear function.
  • control unit controls the motor to generate the restoration torque that prevents further rotation in response to the rotation amount of the ring becoming a predetermined value. It is conceivable to do. Make it difficult to rotate the ring beyond a predetermined range.
  • control unit controls the restoration torque by the motor so as to generate a click feeling when the ring is rotated. For example, by periodically changing the restoration torque according to the rotation of the ring, the click feeling is transmitted to the user.
  • the control unit switches between a zoom lens, a focus lens, and an iris as the driven unit according to the manual operation of the ring.
  • one ring can be arbitrarily switched between manual zoom operation, manual focus lens operation, and manual iris operation.
  • the control method includes a ring that can be rotated by manual operation, a ring portion that includes a motor that drives the ring to rotate, a lens system that includes a lens or an iris as a driven portion, and the driven portion.
  • the lens system drive unit is controlled to drive the driven unit in response to the rotation of the ring by manual operation.
  • the motor controls the ring to generate a restoring torque that rotates in the direction opposite to the rotation operation direction.
  • FIG. 1 is a perspective view from the front of the image pickup apparatus 1 of the embodiment, and FIG. 2 is a rear view.
  • the image pickup apparatus 1 is a so-called digital still camera, and by switching the image pickup mode, both still image image pickup and moving image image pickup can be performed.
  • the image pickup device 1 is not limited to the digital still camera, and may be a video camera mainly used for moving image imaging, a camera capable of only still image imaging, or a camera capable of only moving image imaging. It may be.
  • the lens barrel 2 is arranged on the front side of the main body housing 100 constituting the camera main body.
  • the lens barrel 2 is attached to and detached from the main body housing 100, and the lens can be exchanged. Further, the lens barrel 2 may not be attached to or detached from the main body housing 100.
  • a configuration example in which the lens barrel 2 is fixed to the main body housing 100, or a state in which the lens barrel 2 is retracted and stored in front of the main body housing 100 as a retractable type and a state in which the lens barrel 2 is projected and usable is changed.
  • any of the above configurations may be used, but it is assumed that the lens barrel 2 is provided with the ring 50.
  • one ring 50 is provided on the lens barrel 2, and the user can perform a rotation operation.
  • the ring 50 is assigned to, for example, a zoom operation, an iris operation, or a focus operation according to the user's setting.
  • the ring 50 may be a ring 50 that is fixedly assigned to the operation and cannot be changed, for example, exclusively for the zoom operation.
  • the ring 50 may be provided with two or three rings instead of one.
  • a zoom operation, an iris operation, and a focus operation may be fixedly assigned to each, or the user may be able to set which operation is assigned to which ring 50. ..
  • a display panel 101 using a display device such as a liquid crystal display (LCD) or an organic EL (Electro-Luminescence) display is provided on the back side (user side) of the image pickup apparatus 1.
  • a display panel 101 using a display device such as a liquid crystal display (LCD) or an organic EL (Electro-Luminescence) display is provided.
  • the viewfinder 102 a display unit formed by using an LCD, an organic EL display, or the like is also provided.
  • the view finder 102 is not limited to the electronic finder (EVF: Electronic View Finder), but may be an optical finder (OVF: Optical View Finder).
  • the image pickup apparatus 1 is provided with both the display panel 101 and the viewfinder 102, but the present invention is not limited to this, and a configuration in which only one of the display panel 101 and the viewfinder 102 is provided, or The display panel 101 and / or the viewfinder 102 may be detachable.
  • Various controls 110 are provided on the main body housing 100 of the image pickup apparatus 1.
  • various forms such as a key, a dial, and a combined operation of pressing / rotating are provided to realize various operation functions.
  • a shutter operation, a menu operation, a playback operation, a mode selection operation, a focus operation, a zoom operation, and a parameter selection operation such as a shutter speed and an F value can be performed.
  • FIG. 3 shows the internal configuration of the image pickup apparatus 1 including the lens barrel 2. Note that FIG. 3 is an example in which the image pickup apparatus 1 is divided into a main body housing 100 and a lens barrel 2.
  • the image pickup device 1 includes an image sensor (image sensor) 12, a camera signal processing unit 13, a recording control unit 14, a display unit 15, an output unit 16, an operation unit 17, a power supply unit 18, and a camera control unit 30 in a main body housing 100. It has a memory unit 31. Further, the lens barrel 2 has a lens system 21, a lens system drive unit 22, a lens barrel control unit 23, and a ring unit 24.
  • the lens system 21 in the lens barrel 2 includes a lens such as a zoom lens and a focus lens and an iris (aperture mechanism) as described later. Light from the subject (incident light) is guided by the lens system 21 and condensed on the image pickup device 12.
  • the image pickup device 12 is configured as, for example, a CCD (Charge Coupled Device) type, a CMOS (Complementary Metal Oxide Semiconductor) type, or the like.
  • the image sensor 12 executes, for example, CDS (Correlated Double Sampling) processing, AGC (Automatic Gain Control) processing, and the like on the electric signal obtained by photoelectric conversion of the received light, and further performs A / D (Analog / Digital). Perform conversion processing. Then, the image pickup signal as digital data is output to the camera signal processing unit 13 and the camera control unit 30 in the subsequent stage.
  • the camera signal processing unit 13 is configured as an image processing processor by, for example, a DSP (Digital Signal Processor) or the like.
  • the camera signal processing unit 13 performs various signal processing on the digital signal (image pickup image signal) from the image pickup element 12. For example, as a camera process, the camera signal processing unit 13 performs preprocessing, simultaneous processing, YC generation processing, resolution conversion processing, codec processing, and the like.
  • the black level of R (red), G (green), and B (blue) is clamped to a predetermined level with respect to the captured image signal from the image sensor 12, and the R, G, B Performs correction processing between color channels.
  • a color separation processing is performed so that the image data for each pixel has all the color components of R, G, and B.
  • demosaic processing is performed as color separation processing.
  • YC generation process a luminance (Y) signal and a color (C) signal are generated (separated) from the image data of R, G, and B.
  • the resolution conversion process the resolution conversion process is executed for the image data to which various signal processes have been performed.
  • the recording control unit 14 records and reproduces, for example, a recording medium using a non-volatile memory.
  • the recording control unit 14 performs a process of recording an image file such as moving image data or still image data, a thumbnail image, or the like on a recording medium, for example.
  • the actual form of the recording control unit 14 can be considered in various ways.
  • the recording control unit 14 may be configured as a flash memory built in the image pickup device 1 and a write / read circuit thereof, or a recording medium that can be attached to and detached from the image pickup device 1, such as a memory card (portable flash memory, etc.). ) May be in the form of a card recording / playback unit that performs recording / playback access. Further, it may be realized as an HDD (Hard Disk Drive) or the like as a form built in the image pickup apparatus 1.
  • HDD Hard Disk Drive
  • the display unit 15 is a display unit that displays various displays to the imager, and specifically shows the display panel 101 and the viewfinder 102 shown in FIG.
  • the display unit 15 causes various displays to be executed on the display screen based on the instructions of the camera control unit 30.
  • the display unit 15 displays a reproduced image of image data read from a recording medium by the recording control unit 14.
  • the display unit 15 is supplied with image data of the captured image whose resolution has been converted for display by the camera signal processing unit 13.
  • the display unit 15 displays a so-called through image (an image pickup monitor image based on the subject light received by the image pickup element 12) by displaying the image based on the image data of the image pickup image in response to the instruction of the camera control unit 30. ..
  • the display unit 15 causes various operation menus, icons, messages, etc., that is, display as a GUI (Graphical User Interface) to be executed on the screen based on the instruction of the camera control unit 30.
  • GUI Graphic User Interface
  • the output unit 16 performs data communication and network communication with an external device by wire or wirelessly.
  • the image data (still image file or moving image file) is transmitted and output to an external display device, recording device, playback device, information processing device, or the like.
  • the output unit 16 is a network communication unit, it communicates with various networks such as the Internet, a home network, and a LAN (Local Area Network), and transmits and receives various data to and from a server, a terminal, and the like on the network. You may do so.
  • the operation unit 17 collectively shows input devices for the user to perform various operation inputs. Specifically, the operation unit 17 shows various controls 110 (shutter button, menu button, etc.) provided in the main body housing 100. The operation unit 17 detects the user's operation, and the signal corresponding to the input operation is sent to the camera control unit 30. As the operation unit 17, not only the operation element 110 but also a touch panel may be used. For example, various operations may be possible by forming a touch panel on the display panel 101 and operating the touch panel using icons, menus, and the like to be displayed on the display panel 101. Alternatively, the operation unit 17 may detect a user's tap operation or the like using a touch pad or the like. Further, the operation unit 17 may be configured as a reception unit of an external operation device such as a separate remote controller.
  • an external operation device such as a separate remote controller.
  • the power supply unit 18 generates a power supply voltage Vcc required for each unit from, for example, a battery loaded inside, and supplies it as an operating voltage.
  • the power supply voltage Vcc by the power supply unit 18 is configured to be supplied to the circuit and the motor in the lens barrel 2.
  • the power supply unit 18 may be formed with a circuit for charging the battery or a circuit for generating the power supply voltage Vcc using the DC voltage converted and input by the AC adapter connected to the commercial AC power supply as the power supply. ..
  • the camera control unit 30 is composed of a microcomputer (arithmetic processing unit) provided with a CPU (Central Processing Unit).
  • the memory unit 31 stores information or the like used for processing by the camera control unit 30.
  • a ROM Read Only Memory
  • RAM Random Access Memory
  • flash memory and the like are comprehensively shown.
  • the memory unit 31 may be a memory area built in the microcomputer chip as the camera control unit 30, or may be configured by a separate memory chip.
  • the camera control unit 30 controls the entire image pickup apparatus 1 and the lens barrel 2 by executing a program stored in the ROM of the memory unit 31, the flash memory, or the like.
  • the camera control unit 30 controls the shutter speed of the image sensor 12, gives instructions for various signal processing in the camera signal processing unit 13, captures and records according to the user's operation, reproduces a recorded image file, and uses a user interface. Control the operation of each necessary part regarding the operation.
  • the camera control unit 30 has, for example, an autofocus control that automatically focuses on a target subject, an F value change according to a user setting operation, and an auto iris that automatically controls the F value. Control etc.
  • the RAM in the memory unit 31 is used as a work area for various data processing of the CPU of the camera control unit 30 to temporarily store data, programs, and the like.
  • the ROM and flash memory (nonvolatile memory) in the memory unit 31 include an OS (Operating System) for the CPU to control each unit, content files such as image files, application programs for various operations, and firmware. It is used for memory such as.
  • the camera control unit 30 communicates with the lens barrel control unit 23 and gives various instructions.
  • the lens barrel 2 is equipped with, for example, a lens barrel control unit 23 using a microcomputer, and various data communication with the camera control unit 30 is possible.
  • the camera control unit 30 gives a drive instruction to the lens barrel control unit 23, such as a zoom lens, a focus lens, and an iris (aperture mechanism).
  • the lens barrel control unit 23 controls the lens system drive unit 22 in response to these drive instructions to execute the operation of the lens system 21.
  • wired communication is executed between the camera control unit 30 and the lens barrel control unit 23.
  • the camera control unit 30 and the lens barrel control unit 23 may be configured to be able to perform wireless communication.
  • the lens system drive unit 22 is provided with, for example, a motor driver for a zoom lens drive motor, a motor driver for a focus lens drive motor, a motor driver for an iris motor, and the like. These motor drivers apply a drive current to the corresponding driver in response to an instruction from the lens barrel control unit 23 to move the focus lens and the zoom lens, open and close the aperture blades of the iris, and the like.
  • the ring portion 24 includes the ring 50 shown in FIG. 1, and shows a sensor for detecting the rotation angle of the ring 50 and a motor system that applies torque to the ring 50.
  • the configuration will be described later, but the lens barrel control unit 23 outputs a drive instruction to the lens system drive unit 22 in response to detecting the rotation of the ring 50 in the ring unit 24, and the operation assigned to the ring 50. To control.
  • FIG. 4 shows a configuration example in which the portion corresponding to the lens barrel 2 is integrated with the main body housing 100. Since the internal configuration is basically the same, the same reference numerals are given to avoid details, but for example, the camera control unit 30 has a function corresponding to the lens barrel control unit 23. Of course, the camera control unit 30 and the lens barrel control unit 23 may be formed by a separate microcomputer or the like.
  • the ring 50 is provided on the lens barrel 2 for operating the focusing operation by the focus lens, the change of the angle of view by the zoom lens, the adjustment of the F value in the iris, and the like, and the user can use the zoom lens and the focus lens by the ring 50.
  • Iris in this disclosure, these are collectively referred to as "driven unit" can be arbitrarily driven and operated.
  • the rotation angle of the ring 50 and the set value of the driven unit correspond to, for example, one-to-one, and the user can change the set value of the driven unit by rotating the ring 50.
  • a driven portion such as a zoom lens at a constant speed
  • the user in order to drive a driven portion such as a zoom lens at a constant speed, the user must manually rotate the ring 50 at a constant speed, and the operation tends to cause speed unevenness and camera shake.
  • a lever mechanism for operating the driven unit at a constant speed is installed.
  • a zoom lever and the like are known.
  • constant speed operation can be facilitated by changing the driving speed of the driven portion in proportion to the pushing amount of the lever.
  • the ring 50 is provided with an operation function such as a lever mechanism.
  • the lever mechanism is provided with a spring mechanism, and at the same time as changing the driving speed of the driven portion according to the amount of pushing, a force for returning the lever is generated.
  • the lever is released, it returns to the original state, and the drive speed of the driven unit automatically becomes zero.
  • the ring 50 is provided with a drive device such as a motor, has a function of driving the ring 50, and at the same time, provides force feedback to the user via the ring 50. Give it a function.
  • a drive device such as a motor
  • the user can operate the drive speed of the driven unit according to the amount of rotation, and at the same time, the ring 50 has a force to return to the origin position before the operation, similar to the lever mechanism. Let it occur.
  • the driving speed of the driven portion automatically becomes zero just by releasing the ring 50 by the user, and the ring 50 can be operated with the same feeling as the lever mechanism. Further, no additional space is required in the lens barrel 2 for that purpose.
  • FIG. 5 shows the lens barrel control unit 23, the ring unit 24, the lens system 21, and the lens system drive unit 22 in more detail than in FIGS. 3 and 4.
  • FIG. 5 shows a zoom lens 41, an iris 42, and a focus lens 43 as driven portions in the lens system 21. Further, in the lens system drive unit 22, a zoom drive unit 44, an iris drive unit 45, and a focus drive unit 46 that drive these driven units are shown.
  • the zoom lens 41 is driven by the zoom drive unit 44 so as to move back and forth in the optical axis direction.
  • the iris 42 is driven to open and close by the iris drive unit 45 so as to change the F value.
  • the focus lens 43 is driven by the focus drive unit 46 so as to move back and forth in the optical axis direction.
  • the zoom drive unit 44, the iris drive unit 45, and the focus drive unit 46 each drive the driven unit in response to a drive instruction signal from the lens barrel control unit 23.
  • the ring unit 24 includes a ring 50, a motor 51, a ring detection unit 52, a ring drive unit 53, and a gear mechanism 54.
  • the ring detection unit 52 is a sensor for detecting the rotation angle of the ring 50 from the origin position.
  • the origin position is a position in an initial state before the ring 50 is rotated by the user.
  • this origin position is a position where the amount of ring rotation is zero.
  • the ring detection unit 52 may be any as long as the lens barrel control unit 23 can obtain the rotation angle of the ring 50.
  • a plurality of position sensors arranged in the rotation direction are used, and their sensing states are present. It suffices if the lens barrel control unit 23 can obtain the rotation angle.
  • a configuration such as a rotary encoder or a configuration using an angular velocity sensor or the like is also conceivable.
  • the motor 51 is driven by the ring drive unit 53.
  • the rotational torque of the motor 51 is transmitted to the ring 50 by the gear mechanism 54 schematically shown.
  • the ring 50 is an operator for manual operation, and the user can rotate it arbitrarily as described above.
  • the motor 51, the ring drive unit 53, and the gear mechanism 54 mainly provide force feedback to the user. It also serves as a drive mechanism for returning the ring 50 to the rotation origin position. That is, when the user rotates the ring 50, for example, the user feels a force to return the ring 50 to its original position according to the amount of rotation, and the user releases the ring 50 or rotates the ring 50 at a certain rotation.
  • the motor 51 When the force for maintaining the angle is relaxed, the motor 51 automatically drives the ring 50 to return to the origin position, that is, the rotation angle position before the user's operation. Further, the motor 51 may periodically generate torque so as to give the user a click feeling according to the rotation operation of the ring 50.
  • the lens barrel control unit 23 controls the ring drive unit 53 so that such an operation is performed.
  • FIG. 6 shows the function of the lens barrel control unit 23.
  • the lens barrel control unit 23 is provided with a ring control unit 35 and a lens control unit 36 as software functions.
  • the detection information by the ring detection unit 52 is input to the ring control unit 35 and the lens control unit 36. Further, information on the origin angle is input to the ring control unit 35 and the lens control unit 36. Alternatively, the information on the origin angle may be stored in advance as a fixed value. As a result, the ring control unit 35 and the lens control unit 36 can obtain a rotation amount, that is, a rotation angle representing the rotation amount from the origin position, according to the current operation of the ring 50.
  • the lens control unit 36 gives a drive instruction (for example, a speed instruction or a position instruction) to any of the zoom drive unit 44, the iris drive unit 45, or the focus drive unit 46 according to the deviation between the current angle and the origin angle of the ring 50. Is output.
  • the zoom drive unit 44, the iris drive unit 45, or the focus drive unit 46 drives the zoom lens 41, the iris 42, or the focus lens 43 at a specified speed according to a drive command.
  • the driven portion can be driven at an arbitrary speed according to the amount of rotation of the ring 50 like a lever mechanism.
  • the ring control unit 35 outputs a drive instruction to the ring drive unit 53 in the direction of returning the deviation between the ring angle and the origin angle to zero.
  • the ring drive unit 53 applies a drive current according to the drive instruction to the motor 51.
  • the motor 51 generates torque and rotates the ring 50 via the gear mechanism 54.
  • the user can feel the restoring force to the origin like the spring mechanism of the lever by the torque generated in the ring 50. Further, when the user releases the ring 50 or loosens the force for holding the ring 50 in that state, the ring 50 returns to the origin angle as in the lever mechanism.
  • the drive instruction of the lens control unit 36 indicates zero speed, and the speed of change of the driven unit becomes zero.
  • the ring 50 can be operated like a lever mechanism to drive the driven portion at an arbitrary speed according to the amount of rotation of the ring 50.
  • FIG. 7 shows a block of processing for driving instruction output of the ring control unit 35 as described above.
  • the current ring angle based on the detection information of the ring detection unit 52 and the ring origin angle are input to the subtraction unit 61, and the ring deviation is obtained. That is, it is a rotation angle when the origin position is 0 degrees.
  • This ring deviation is input to the ring deviation / instruction speed conversion unit 62 and the ring deviation / instruction force conversion unit 63.
  • the ring deviation / indicated speed conversion unit 62 obtains the indicated speed from the ring deviation based on the stored conversion information 62a.
  • the ring deviation / instruction force conversion unit 63 obtains the instruction force from the ring deviation based on the stored conversion information 63a.
  • the conversion information 62a and 63a are assumed to be, for example, conversion table data or a conversion formula, and can be updated by, for example, the setting information MS1. It is assumed that the setting information MS1 is generated by the camera control unit 30 according to the mode setting of the user, the automatic setting according to the situation, the version upgrade of the image pickup apparatus 1, and the like. That is, the conversion table data and the conversion formula as the conversion information 62a and 63a are programmable information that can be rewritten according to the mode setting and the like.
  • the position control unit 64 generates and outputs a drive instruction to the ring drive unit 53 in response to these.
  • the rotation drive direction by the motor 51 is set by the positive or negative of the ring deviation value
  • the drive current value and the motor drive frequency according to the indicated speed and the indicated force are set, and these are output to the ring drive unit 53 as a drive instruction.
  • the ring drive unit 53 supplies the motor drive current according to the drive instruction, for example, the motor drive current such as a three-phase drive signal having a phase relationship, a current value, and a frequency according to the drive instruction to the motor 51.
  • each block shown in FIG. 7 is actually realized by arithmetic processing by software in the lens barrel control unit 23 configured by the microcomputer.
  • FIG. 8 shows a block of processing for driving instruction output of the lens control unit 36. Similar to the case of the ring control unit 35, the current ring angle based on the detection information of the ring detection unit 52 and the ring origin angle are input to the subtraction unit 71, and the ring deviation is obtained.
  • This ring deviation is input to the ring deviation / instruction conversion unit 72.
  • the ring deviation / instruction conversion unit 72 generates a drive instruction from the ring deviation based on the stored conversion information 72a.
  • This drive instruction may be, for example, information on the position where the zoom lens 41 and the focus lens 43 are displaced, information on the speed when the lens is moved, or information on the opening / closing position as the F value of the iris 42.
  • the conversion information 72a is assumed to be, for example, conversion table data or a conversion formula, and can be updated by, for example, the setting information MS2. Similar to the setting information MS1, it is assumed that the setting information MS2 is also generated by the camera control unit 30 by the user's mode setting, automatic setting according to the situation, or version upgrade of the image pickup apparatus 1. That is, the conversion table data and the conversion formula as the conversion information 72a are also programmable information that can be rewritten according to the mode setting and the like.
  • a drive instruction indicating the position and speed of the driven unit after movement is supplied to the control target switching unit 73.
  • the control target switching unit 73 selects a control target according to the operation function currently assigned to the ring 50, and outputs a drive instruction.
  • the ring deviation / instruction conversion unit 72 When the ring 50 is assigned to the zoom operation, the ring deviation / instruction conversion unit 72 generates a drive instruction for controlling the zoom lens 41, and the control target switching unit 73 sets this as the zoom drive instruction S1. It is output to the zoom drive unit 44.
  • the ring deviation / instruction conversion unit 72 When the ring 50 is assigned to the iris operation, the ring deviation / instruction conversion unit 72 generates a drive instruction for controlling the iris 42, and the control target switching unit 73 sets this as the iris drive instruction S2 and sets the iris. It is output to the drive unit 45.
  • the ring deviation / instruction conversion unit 72 When the ring 50 is assigned to the focus operation, the ring deviation / instruction conversion unit 72 generates
  • each block shown in FIG. 8 is actually realized by arithmetic processing by software in the lens barrel control unit 23 configured by the microcomputer.
  • FIG. 9 is a flowchart showing a processing example of the lens barrel control unit 23 having the ring control unit 35 and the lens control unit 36 as described above.
  • the lens barrel control unit 23 repeatedly executes the process of FIG. 9 as an interrupt process at predetermined time intervals.
  • step S101 the lens barrel control unit 23 detects the ring rotation angle. That is, the detection information of the ring detection unit 52 is input, and the rotation angle of the ring 50 is obtained. In particular, in this case, the value of the ring deviation described in FIGS. 7 and 8 is acquired as the amount of ring rotation with respect to the origin position. If the detection information of the ring detection unit 52 already indicates the ring deviation, it is sufficient to acquire it, and if the detection information can indicate the current angle position, the difference from the origin angle. The ring deviation will be calculated as.
  • step S102 the lens barrel control unit 23 confirms whether or not the current state of the ring 50 is at the origin position. That is, whether or not the ring deviation is zero.
  • the lens barrel control unit 23 ends the process of FIG.
  • the lens barrel control unit 23 proceeds from step S102 to step S103 and processes according to the setting of the allocation of the operation function of the ring 50. Branch.
  • step S110 the lens barrel control unit 23 generates a drive instruction for the zoom lens 41 by the function of the lens control unit 36, and outputs the drive instruction (zoom drive instruction S1) to the zoom drive unit 44.
  • step S111 the lens barrel control unit 23 generates a drive instruction regarding the motor 51 by the function of the ring control unit 35 and outputs the drive instruction to the ring drive unit 53. This completes one process of FIG.
  • step S120 the lens barrel control unit 23 generates a drive instruction for the iris 42 by the function of the lens control unit 36, and outputs the drive instruction (iris drive instruction S2) to the iris drive unit 45.
  • step S121 the lens barrel control unit 23 generates a drive instruction regarding the motor 51 by the function of the ring control unit 35 and outputs the drive instruction to the ring drive unit 53. This completes one process of FIG.
  • the lens barrel control unit 23 gives a drive instruction in step S121 to generate torque so that a click feeling can be obtained at each predetermined angle as the user rotates the ring 50.
  • the iris 42 has a control operation of stepwise switching of the F value. For example, the iris 42 is controlled so that a click feeling can be obtained for each ring rotation angle at which the F value is switched by one step. As a result, the user can feel that the F value is gradually changed by the operation of the ring 50.
  • step S130 the lens barrel control unit 23 generates a drive instruction for the focus lens 43 by the function of the lens control unit 36, and outputs the drive instruction (focus drive instruction S3) to the focus drive unit 46.
  • step S131 the lens barrel control unit 23 generates a drive instruction regarding the motor 51 by the function of the ring control unit 35 and outputs the drive instruction to the ring drive unit 53. This completes one process of FIG.
  • the ring 50 can be operated with operability like a lever mechanism, and the ring 50 can stably drive the driven portion. ..
  • the horizontal axis is the ring rotation amount (that is, the ring deviation in the case of the present embodiment), and the vertical axis is the drive speed of the driven portion, the ring restoration torque, and the ring at the time of release, respectively.
  • the restoration speed is used.
  • the driving speed of the driven portion in FIG. 10A is the moving speed of the zoom lens 41, the opening / closing speed of the iris 42, or the moving speed of the focus lens 43.
  • the ring restoration torque in FIG. 10B is a torque generated by the motor 51 in the direction of returning the ring 50 to the origin position. Positive and negative values correspond to the direction of the origin position.
  • the ring restoration speed at the time of release in FIG. 10C is the origin position of the ring 50 when the user releases the ring operation, that is, when the user releases the ring or relaxes the force so as not to maintain the rotation operation angle of the ring. This is the speed at which the return to is started.
  • the positive and negative values of the ring rotation amount on the horizontal axis correspond to the rotation operation direction from the ring origin position.
  • the positive and negative directions correspond to the wide side and the zoom side in the zoom operation, the increase side and the decrease side of the F value in the iris operation, and the fur side and the near side of the focal position in the focus operation.
  • the positive and negative values of the driving speed of the driven portion in FIG. 10A correspond to the moving direction (opening / closing direction) from the position before driving.
  • FIG. 10B correspond to the direction of the torque applied to direct the ring 50 toward the origin position.
  • the positive and negative values of the ring restoration speed at the time of release in FIG. 10C correspond to the direction in which the ring 50 is directed toward the origin position.
  • the format of FIG. 10 is the same for FIGS. 12 to 15 described later.
  • FIG. 10 shows the basic operating characteristics when the function of the lever mechanism is realized by the ring 50. That is, the relationship between the drive speed of the driven portion, the ring restoration torque, and the ring restoration speed at the time of release is linear with respect to the ring rotation amount so that the operating characteristics are almost the same as those of the lever mechanism of the normal spring restoration torque. I am trying to be.
  • the driving speed of the driven portion changes depending on the amount of rotation of the ring 50 by the user. That is, the user can adjust the driving speed of the driven portion by adjusting the rotation amount of the ring 50.
  • the ring restoration torque increases, which also changes the ring restoration speed at the time of release.
  • the speed gradually decreases while quickly returning to the origin position at the time of release. This is reflected in the operation that the driving speed of the driven portion such as the zoom lens 41 gradually slows down at the time of release and then stops.
  • FIG. 11A and 11B show the time response of the ring rotation amount and the drive speed of the driven portion when the user releases the ring 50 in the case of the operation characteristics as shown in FIG.
  • the horizontal axis is the elapsed time from the time of release. From the moment when the ring 50 is released, the amount of rotation of the ring gradually decreases, and the driving speed of the driven portion also gradually decreases accordingly.
  • the same functions and characteristics as those realized by the mechanical lever mechanism are realized by software. Since the drive speed of the driven unit and the ring rotation amount have a linear relationship as shown in FIG. 10A, the user can intuitively operate the lens drive speed. Further, the inclinations of FIGS. 10A, 10B, and 10C can be designed in a programmable manner. That is, it can be changed by setting the conversion information 62a, 63a, 72a. For example, by reducing the inclination, the sensitivity to the operation of the ring 50 is lowered to perform fine speed adjustment, or conversely, the sensitivity is increased so that the driven portion is driven at high speed even with a small ring rotation. It is also possible to make it.
  • FIG. 12 is an example in which the drive range of the ring 50 is limited to the mechanical end (movable end) according to the maximum speed of the driven portion.
  • the rings corresponding to the maximum speeds V1 and V2.
  • the range in which the ring can be operated is limited by limiting the rotation amounts RL1 and RL2.
  • the ring restoration torque is maximized, and even if the user tries to rotate the ring further, it is difficult to rotate the ring 50. To be. As a result, the user feels that the ring 50 can rotate only within the range of the ring rotation amounts RL1 and RL2. In other words, even if the ring 50 is actually a structure that can rotate infinitely, it makes the user feel as if a mechanical movable end is provided. As shown in FIG. 12C, the ring restoration speed at the time of release also corresponds to the movable range.
  • the user can recognize that the maximum driving speed of the driven unit has been reached by a load such as a movable end of the ring 50, and avoids a wasteful operation of turning the ring 50 too much. can.
  • a load such as a movable end of the ring 50
  • the ring 50 can be used with an operation feeling more like that of the lever mechanism due to the operation characteristics as shown in FIG.
  • the ring restoration torque may be maximized based on the detection signal of the movable end of the driven portion.
  • the zoom lens 41 and the focus lens 43 are provided with a sensor for detecting that the movable end has been reached, but the lens barrel control unit 23 is based on the detection information of the movable end sensor to be a zoom lens.
  • the ring restoration torque is controlled to be maximized. This also allows the user to recognize the movable end.
  • the iris 42 and it is conceivable to detect the maximum opening and the minimum opening of the iris 42 to maximize the ring restoration torque.
  • the mechanical movable end it can also be used when you want to limit the operating range of the driven unit due to some cause or mode setting. For example, when it is desired to limit the movable range of the focus lens 43 as a focus range limiter, by maximizing the ring restoration torque when the end of the allowable movable range is reached, further fluctuation is restricted to the user. You can perceive that you are doing it.
  • FIG. 13 is an example in which the relationship between the amount of rotation of the ring 50 and the driving speed of the driven portion is made non-linear.
  • the drive speed of the driven portion increases relatively slowly in the region where the ring rotation amount is small, and the drive speed of the driven unit increases relatively steeply in the region where the ring rotation amount is large. It has become. 13B and 13C have the same characteristics as those of FIGS. 10B and 10C.
  • the sensitivity of the driving speed of the driven portion in the low speed range is lowered, which means that fine speed adjustment is possible in the low speed range.
  • the user wants to drive the focus state precisely, the user performs an operation of delicately turning the ring 50 to make adjustments. In such a case, the focus lens drive is slow, so that delicate drive adjustments are easy.
  • Suitable for operations to drive to the optimum state in a situation where you want to make fine adjustments to the low speed by lowering the sensitivity of the ring 50 at a low speed, which is called slow zoom, which is an expression method used when approaching (pulling) the subject at a very low speed. Is also a suitable property.
  • the setting information MS2 can be used to switch between the case of having a non-linear characteristic as shown in FIG. 13A and the case of having a linear characteristic as shown in FIG. 10A, a more desirable ring operation can be performed depending on the situation. Can realize sex.
  • various settings such as in which region the sensitivity is lowered / increased and the degree of the sensitivity change can be considered.
  • FIG. 14 is an example in which the relationship between the rotation amount of the ring 50 and the ring restoration torque is non-linear.
  • the ring restoration torque increases relatively slowly in a region where the ring rotation amount is small, and the ring restoration torque increases relatively steeply in a region where the ring rotation amount is large.
  • 14A and 14C have the same characteristics as those of FIGS. 10A and 10C.
  • the torque in the reverse direction felt by the user is small in a region where the amount of ring rotation is small, that is, in a situation where the user wants to drive the driven portion a little. Therefore, it is easy to operate with a weak force. Therefore, when the user wants to finely adjust the driven portion, it becomes easy to perform a precise operation with a relatively weak force. At the time of fine adjustment, it is easy to adjust the amount of rotation and to operate it by making it possible to operate with a weak force.
  • the lens drive speed is strictly controlled by the ring rotation amount, and the lens It can be desirable for a user who wants to perform a drive operation according to the amount of rotation.
  • the characteristics shown in FIG. 14 are suitable for use in situations where it is desired to strictly control the speed by the rotation angle of the ring 50 while realizing fine adjustment of the low speed at the time of slow zoom, for example.
  • FIG. 14B An example in which the characteristics of FIG. 14B and the characteristics of FIG. 13A are combined can be considered.
  • the characteristics shown in FIG. 14B can be realized in a programmable manner. For example, if the characteristic of FIG. 10B and the characteristic of FIG. 14B can be switched by the setting information MS1, more desirable ring operability can be realized depending on the situation.
  • the non-linear characteristic as shown in FIG. 14A it is possible to set various regions in which the ring restoration torque is reduced / increased and the degree of change in the torque.
  • 15 and 16 are examples of programmable setting of the velocity locus for returning to the origin after releasing the ring 50.
  • 15A and 15B have the same characteristics as those of FIGS. 10A and 10B, but FIG. 15C shows that the relationship between the ring restoration speed at the time of release and the ring rotation amount is non-linear.
  • the relationship between the amount of ring rotation and the lens driving speed from the time the ring is released in this case is shown in FIGS. 16A and 16B.
  • the locus of the ring rotation amount from the ring release can be linearly designed as shown in FIG. 16A.
  • the locus of the driving speed of the driven portion from the ring release is also linear. Therefore, it becomes easy to predict the time from the ring rotation amount when the ring 50 is released to the stop.
  • the trajectory can be designed programmable regardless of the linearity.
  • FIGS. 15 and 16 are situations in which the speed trajectory until the approach (pull) stops is designed in advance. It is preferable to use in. The user does not have to continuously operate the ring until it stops, the quality of the captured image is improved, and the burden on the user (operator) is reduced.
  • Each of the characteristics described with reference to FIGS. 10 to 16 may be used in a fixed manner or may be switched depending on the case. By selecting the characteristics suitable for the situation at the time of shooting, the user can more easily perform shooting according to the intention.
  • the lens barrel 2 of the embodiment or the image pickup apparatus 1 including the lens barrel 2 is driven by a ring 50 that can be rotated by manual operation, a ring portion 24 including a motor 51 that drives the ring 50 to rotate, and a driven portion 24.
  • It includes a lens system 21 including a zoom lens 41, a focus lens 43, or an iris 42, a lens system drive unit 22 for driving a driven unit, and a lens barrel control unit 23.
  • the lens barrel control unit 23 controls the lens system drive unit 22 to drive the driven unit in response to the rotation of the ring 50 by manual operation, and the motor 51 controls the rotation operation direction of the ring 50 in the ring 50.
  • Control is performed to generate a restoration torque that rotates in the opposite direction.
  • the user can obtain a feeling of operation of the ring 50 in the same manner as a lever such as a general zoom lever. That is, when the lens barrel 2 or the like is provided with the ring 50 for manual operation such as zoom, iris, focus, etc., when the ring 50 is operated, the motor 51 applies a torque in the reverse direction so as to return to the origin position. Then, even if the user rotates the ring 50 for the operation of the lens system 21, the ring 50 naturally returns to the origin position when the operation is stopped. As a result, the fluctuation speed of the driven portion according to the ring operation and eventually the ring operation can be stabilized, and manual control can be facilitated.
  • the zoom lens 41 by moving the zoom lens 41 at a constant speed according to the rotation of the ring 50, it is possible to change the zoom at a constant speed, which is difficult with a normal manual ring. Further, due to the shape characteristics of the ring, the user can hold the ring at any position and perform the same operation as the lever operation, and in that sense, the operability is improved as compared with the lever operation.
  • the lens barrel control unit 23 gives a drive instruction to the lens system drive unit 22 according to the amount of rotation of the ring 50, and the motor 51 gives a drive instruction to the ring 50.
  • An example of controlling to generate a restoration torque to return the lens to the rotation origin position has been described.
  • the user can perform an operation in which the fluctuation speed of the zoom lens 41, the focus lens 43, the iris 42, etc. is adjusted according to the amount of rotation of the ring 50. Further, the user can feel the restoring force to the origin like the spring mechanism of the lever by the torque generated in the ring 50.
  • the ring 50 returns to the origin angle as in the lever mechanism.
  • the drive instruction to the lens system drive unit 22 by the lens barrel control unit 23 becomes zero, and the speed of zoom, iris, or focus change. Is zero.
  • the ring 50 can be operated like a lever mechanism, and the lens system 21 can be driven at an arbitrary speed according to the amount of rotation of the ring 50. Then, the lens system 21 can be driven at an arbitrary speed even by the ring 50 without being affected by speed unevenness and camera shake. In other words, it is possible to easily perform operations that make stable changes, which was difficult with ordinary manual rings.
  • the lens barrel control unit 23 controls the ring 50 so that the motor gives the restoration torque obtained based on the conversion information 62a and 63a according to the amount of rotation by manual operation. rice field.
  • the lens barrel control unit 23 can control the drive of the motor 51 according to the rotation amount of the ring 50, and the motor reflects the rotation amount of the rotation operation of the ring 50 of the user.
  • the control of 51 can be appropriately executed.
  • the conversion information 62a and 63a are configured to be updated according to the setting information MS1. That is, the relationship between the rotation angle of the ring 50 and the motor drive control is programmable. By making the conversion information 62a and 63a rewritable by the setting information MS1, the relationship between the drive control of the ring 50 and the motor 51 defined by the conversion information 62a and 63a can be changed according to the operability of the ring 50, the use case, and the like. It is possible to change to an appropriate state. In addition, it is conceivable that the conversion information 62a and 63a are fixed information that cannot be updated.
  • the lens barrel control unit 23 gives the lens system drive unit 22 information on the drive speed or the drive position obtained based on the conversion information 72a according to the amount of rotation by the manual operation of the ring 50. An example of controlling the operation is described.
  • the lens barrel control unit 23 can control the drive speed and drive position of the zoom lens 41, the iris 42, and the focus lens 43 according to the amount of rotation of the ring 50, and the user's ring. Drive control that reflects the rotation amount of the rotation operation of 50 can be appropriately executed.
  • the conversion information 72a is configured to be updated according to the setting information MS2. That is, it is assumed that the relationship between the rotation angle of the ring 50 and the drive control of the driven portion of the lens system is programmable. By making the conversion information 72a rewritable by the setting information MS2, the relationship between the rotation amount of the ring 50 and the drive control of the zoom lens 41, the iris 42, or the focus lens 43 defined by the conversion information 72a can be changed. It is possible to change to an appropriate state according to the use case. In addition, it is conceivable that the conversion information 72a is fixed information that cannot be updated.
  • the lens barrel control unit 23 can variably set the speed locus of the lens system drive unit 22 to return to the origin position from the time when the manual operation of the ring 50 is completed (when released). I mentioned an example. As shown in FIGS. 11 and 16, the lens barrel control unit 23 can variably set the speed locus for returning to the origin position from the time when the manual operation of the ring 50 is completed. As a result, the return operation to the origin position and the operation of the zoom lens 41 and the like during that period can be appropriately set. Further, when the locus of the lens driving speed from the release of the ring 50 is made linear, it becomes easy to predict the time from the ring rotation amount when the user releases the ring 50 to the stop.
  • the lens barrel control unit 23 controls the rotation amount of the ring 50 and the drive speed of the driven unit by the lens system drive unit 22 so as to have a linear relationship (FIGS. 10 and 12). , FIG. 14, FIG. 15).
  • a linear relationship FIGGS. 10 and 12
  • FIG. 14, FIG. 15 This makes it easier for the user to grasp the driving speed of the zoom lens 41, the iris 42, and the focus lens 43 according to the rotation operation amount (rotation angle) of the ring 50.
  • the slope of the straight line indicating the linear relationship can be changed to improve operability and adapt to the use case.
  • the sensitivity to the ring operation can be lowered and the speed of the driven portion such as the zoom lens 41 can be finely adjusted.
  • the inclination of the straight line showing the linear relationship it is possible to increase the sensitivity to the ring operation and improve the responsiveness to the change of the driven portion such as the zoom lens 41.
  • the lens barrel control unit 23 controls the rotation amount of the ring 50 and the drive speed of the driven unit by the lens system drive unit 22 so as to have a non-linear relationship (see FIG. 13).
  • the drive speed of the zoom lens 41, the iris 42, and the focus lens 43 according to the rotation operation amount (rotation angle) of the ring 50 can be set to an appropriate state for the user according to the angle range.
  • the driving speed in the low speed range can be reduced so that the lens position can be finely adjusted.
  • the lens barrel control unit 23 controls the rotation amount of the ring 50 and the restoration torque by the motor 51 so as to have a linear relationship (see FIGS. 10, 12, 13, and 15). ).
  • the rotation operation amount rotation angle
  • the user also feels a response according to the amount of rotation operation.
  • the lens barrel control unit 23 controls the rotation amount of the ring 50 and the restoration torque by the motor 51 so as to have a non-linear relationship (see FIG. 14). For example, by lowering the restoration torque in the low speed range as in the example of FIG. 14B, it becomes easy for the user to perform a fine adjustment operation of the lens drive speed, and it is easy to make a fine adjustment when zooming or focusing.
  • the lens barrel control unit 23 controls the motor 51 to generate a restoration torque that prevents further rotation according to the rotation amount of the ring 50 becoming a predetermined value.
  • the ring 50 which does not actually have a mechanical movable end can simulate the mechanical movable end of the driven portion, and when the ring 50 is used like a lever, the user can use it. It can provide easy-to-understand operability. Further, it is appropriate to limit the movable range of the ring 50 like a movable end according to the maximum speed of lens drive. The user can recognize that the maximum lens driving speed has been reached by a load such as a movable end of the ring 50.
  • the force sense may be fed back to the ring 50 when the end of the movable range on the mechanism of the driven portion of the lens system 21 is reached.
  • the user can recognize that the zoom lens 41 or the like has reached the movable end by a load such as the movable end of the ring 50.
  • the force sense may be fed back to the ring when the end of the movable range is reached. Thereby, the user can recognize that the end of the limited movable range has been reached by a load such as the movable end of the ring 50.
  • the lens barrel control unit 23 controls the restoration torque of the motor 51 so as to generate a click feeling when the ring 50 is rotated.
  • the restoration torque is periodically changed according to the rotation of the ring 50 so that the user can feel the click. This allows the user to obtain graduality when operating the ring 50. For example, it is suitable for iris operation.
  • the lens barrel control unit 23 switches the zoom lens 41, the focus lens 43, and the iris 42 as the driven unit corresponding to the manual operation of the ring 50.
  • one ring 50 can be arbitrarily switched between manual zoom operation, manual focus lens operation, and manual iris operation.
  • the user can assign one ring 50 to the necessary operation of the zoom lens 41, the focus lens 43, and the iris 42, and can operate the assigned driven portion with a lever-like operation feeling. become.
  • a plurality of rings 50 are provided as described above.
  • the technique of the above embodiment can be applied to a lens device as an interchangeable lens, and can also be applied to an image pickup device provided with a lens barrel.
  • the present technology can also adopt the following configurations.
  • a ring that can be rotated by manual operation a ring portion that includes a motor that drives the ring to rotate, and A lens system that includes a lens or iris as a driven unit,
  • the lens system drive unit that drives the driven unit and
  • the lens system drive unit In response to the rotation of the ring by manual operation, the lens system drive unit is controlled to drive the driven unit, and the motor rotates the ring in the direction opposite to the rotation operation direction.
  • the control unit When the ring is rotated by manual operation, a drive instruction is given to the lens system drive unit according to the amount of rotation of the ring, and the motor generates the restoration torque for returning the ring to the rotation origin position.
  • the lens device according to (1) above which controls.
  • (3) The control unit The lens device according to (1) or (2) above, wherein the ring is controlled so that the motor gives the restoration torque obtained based on the conversion information according to the amount of rotation by manual operation.
  • the control unit Control is performed so as to give information on the drive speed or the drive position obtained based on the conversion information according to the amount of rotation by the manual operation of the ring to the lens system drive unit (1) to (4).
  • the lens device according to any one of. (6) The lens device according to (5) above, wherein the conversion information is updated according to the setting information.
  • the control unit The lens according to any one of (1) to (6) above, wherein the speed locus for returning to the origin position from the time when the manual operation of the ring is completed can be variably set for the lens system drive unit. Device.
  • the control unit The lens device according to any one of (1) to (7) above, wherein the amount of rotation of the ring and the driving speed of the driven portion by the lens system driving portion are controlled so as to have a linear relationship.
  • the control unit The lens device according to any one of (1) to (7) above, wherein the amount of rotation of the ring and the driving speed of the driven portion by the lens system driving portion are controlled so as to have a non-linear relationship.
  • the control unit The lens device according to any one of (1) to (9) above, which controls the rotation amount of the ring and the restoration torque of the motor so as to have a linear relationship.
  • the control unit The lens device according to any one of (1) to (9) above, which controls the rotation amount of the ring and the restoration torque of the motor so as to have a non-linear relationship.
  • the control unit The lens according to any one of (1) to (11) above, wherein the motor controls the restoration torque to prevent further rotation according to the rotation amount of the ring becoming a predetermined value.
  • Device (13) The control unit The lens device according to any one of (1) to (12) above, wherein the restoration torque of the motor is controlled so as to generate a click feeling when the ring is rotated.
  • the control unit The lens device according to any one of (1) to (13) above, which switches between a zoom lens, a focus lens, and an iris as the driven unit according to the manual operation of the ring.
  • the lens system drive unit that drives the driven unit and In response to the rotation of the ring by manual operation, the lens system drive unit is controlled to drive the driven unit, and the motor rotates the ring in the direction opposite to the rotation operation direction.
  • An image pickup device equipped with a control unit that controls to generate torque.
  • a ring that can be rotated by manual operation a ring portion that includes a motor that drives the ring to rotate, and A lens system that includes a lens or iris as a driven unit, The lens system drive unit that drives the driven unit and As a control method of the device equipped with In response to the rotation of the ring by manual operation, the lens system drive unit is controlled to drive the driven unit, and the motor rotates the ring in the direction opposite to the rotation operation direction. A control method that controls to generate torque.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

This lens device or imaging device is provided with: a ring part (24) which comprises a ring (50) capable of being rotated by manual operation and a motor (51) that drives the ring to rotate; a lens system which comprises a lens or an iris; a lens-system drive unit (22) which drives the lens or the iris of the lens system; and a control unit (23). In response to the ring (50) being rotated by manual operation, the control unit (23) performs control so as to cause the lens-system drive unit (22) to drive a to-be-driven part of the lens system, and performs control so as to cause the motor (51) to impart a restoring torque that causes the ring (50) to rotate in a direction opposite to the direction of the rotary operation.

Description

レンズ装置、撮像装置、制御方法Lens device, image pickup device, control method
 本技術はレンズ装置、撮像装置、制御方法に関し、特にリング操作に関する制御技術に関する。 This technology relates to a lens device, an image pickup device, and a control method, and particularly to a control technology related to ring operation.
 スチルカメラ、ビデオカメラ等の撮像装置の分野において、特に交換式レンズを用いるカメラの場合、フォーカス(又はピント、焦点)、ズーム(又は焦点距離、画角)、アイリス(又は絞り、F値)などを操作するためにレンズ鏡筒にリング(又は操作環)を設置することがある。もちろん交換式レンズでないカメラの場合にリングが設けられるものもある。ユーザは、リングを回転させることでフォーカス、ズーム、アイリス等の被駆動部の位置や設定値を変えることができる。
 下記特許文献1では、リング操作にかかる重さを変更できるようにした撮像装置が開示されている。
In the field of image pickup devices such as still cameras and video cameras, especially in the case of cameras using interchangeable lenses, focus (or focus, focus), zoom (or focal length, angle of view), iris (or aperture, F value), etc. A ring (or operation ring) may be installed on the lens barrel to operate the lens barrel. Of course, some cameras are not interchangeable lenses and have a ring. The user can change the position and set value of the driven portion such as focus, zoom, and iris by rotating the ring.
The following Patent Document 1 discloses an image pickup device capable of changing the weight applied to the ring operation.
特開2006-78730号公報Japanese Unexamined Patent Publication No. 2006-78730
 ところでズームレンズ等の被駆動部の駆動のために手動でリングを操作する場合において、被駆動部(例えばズームレンズ)を一定速度で駆動するためには、ユーザがリングを手動で一定速度に回転させる必要があり、その操作がズーム速度のムラや手振れの原因となることがある。つまりリングの操作で、ズームやフォーカスの変化をスムースに行うことは比較的困難で熟練を要する。
 そこで本開示では、リング操作によっても、ズームレンズ等の被駆動部について安定した駆動を行うことができるようにする技術を提案する。
By the way, when the ring is manually operated to drive a driven portion such as a zoom lens, the user manually rotates the ring at a constant speed in order to drive the driven portion (for example, a zoom lens) at a constant speed. The operation may cause uneven zoom speed and camera shake. In other words, it is relatively difficult and skillful to smoothly change the zoom and focus by operating the ring.
Therefore, in the present disclosure, we propose a technique that enables stable driving of a driven portion such as a zoom lens even by a ring operation.
 本技術に係るレンズ装置は、手動操作により回転可能とされるリング、及び前記リングを回転駆動するモータを含むリング部と、被駆動部としてレンズ又はアイリスを含むレンズ系と、前記被駆動部を駆動するレンズ系駆動部と、前記リングが手動操作により回転されることに応じて、前記レンズ系駆動部に前記被駆動部の駆動を実行させる制御を行うとともに、前記モータにより前記リングにおいて回転操作方向に対する逆方向に回転させる復元トルクを生じさせる制御を行う制御部と、を備える。
 即ちレンズ鏡筒などにズーム、アイリス、フォーカス等の手動操作のためのリングを備える場合において、リングを操作したときに、ズームレンズ、アイリス、フォーカスレンズ等の被駆動部の駆動が行われるようにするとともに、リングに、その操作方向とは逆方向のトルク(復元トルク)を与えるようにする。
 なお本技術に係る撮像装置は、このような構成を備えた撮像装置とする。
The lens device according to the present technology includes a ring that can be rotated by manual operation, a ring portion that includes a motor that drives the ring to rotate, a lens system that includes a lens or an iris as a driven portion, and the driven portion. The lens system drive unit to be driven and the lens system drive unit are controlled to drive the driven unit in response to the rotation of the ring by manual operation, and the motor is used to rotate the ring. It is provided with a control unit that controls to generate a restoration torque that rotates in the direction opposite to the direction.
That is, when the lens barrel or the like is provided with a ring for manual operation such as zoom, iris, focus, etc., the driven portion such as the zoom lens, iris, focus lens, etc. is driven when the ring is operated. At the same time, a torque (restoration torque) in the direction opposite to the operation direction is applied to the ring.
The image pickup device according to the present technology is an image pickup device having such a configuration.
 上記した本技術に係るレンズ装置においては、前記制御部は、前記リングが手動操作により回転されたときに、前記レンズ系駆動部に前記リングの回転量に応じた駆動指示を行うとともに、前記モータにより、前記リングを回転原点位置に戻す前記復元トルクを発生させる制御を行うことが考えられる。
 リングの回転量がレンズやアイリスの駆動速度や位置変化に反映されるようにする。
In the lens device according to the present technology described above, when the ring is manually rotated, the control unit gives a drive instruction to the lens system drive unit according to the rotation amount of the ring, and at the same time, the motor. Therefore, it is conceivable to perform control to generate the restoration torque for returning the ring to the rotation origin position.
The amount of rotation of the ring should be reflected in the driving speed and position change of the lens and iris.
 上記した本技術に係るレンズ装置においては、前記制御部は、前記リングに対して、手動操作による回転量に応じて変換情報に基づいて求められる前記復元トルクを前記モータにより与えるようにする制御を行うことが考えられる。
 モータによるリングの回転方向とは逆方向への駆動の速度や復元トルクは、操作によるリングの回転量に応じて変換情報に応じた速度やトルクで制御されるようにする。
 変換情報とは、例えばリングの回転角度から、モータによる駆動速度やトルクを導くテーブルや演算式などである。
In the lens device according to the present technology described above, the control unit controls the ring so that the motor gives the restoration torque obtained based on the conversion information according to the amount of rotation by manual operation. It is possible to do it.
The drive speed and restoration torque in the direction opposite to the rotation direction of the ring by the motor are controlled by the speed and torque according to the conversion information according to the amount of rotation of the ring by the operation.
The converted information is, for example, a table or a calculation formula that derives the driving speed and torque by the motor from the rotation angle of the ring.
 上記した本技術に係るレンズ装置においては、前記変換情報は、設定情報に応じて更新される構成とされていることが考えられる。
 即ちリングの回転角度とモータ駆動制御の関係はプログラマブルであるとする。
In the lens device according to the present technology described above, it is considered that the conversion information is updated according to the setting information.
That is, it is assumed that the relationship between the rotation angle of the ring and the motor drive control is programmable.
 上記した本技術に係るレンズ装置においては、前記制御部は、前記レンズ系駆動部に対して、前記リングの手動操作による回転量に応じて変換情報に基づいて求められる駆動速度又は駆動位置の情報を与えるようにする制御を行うことが考えられる。
 リングの回転操作に応じてレンズ系の被駆動部の駆動が、操作によるリングの回転量に応じて変換情報により得られる速度や位置で制御されるようにする。
 変換情報とは、例えばリングの回転角度から、被駆動部の駆動速度や駆動位置を導くテーブルや演算式などである。
In the lens device according to the present technology described above, the control unit has information on the drive speed or the drive position obtained from the lens system drive unit based on the conversion information according to the amount of rotation by the manual operation of the ring. It is conceivable to perform control so as to give.
The drive of the driven portion of the lens system is controlled by the speed and position obtained by the conversion information according to the amount of rotation of the ring by the operation according to the rotation operation of the ring.
The converted information is, for example, a table or an arithmetic expression that derives the driving speed and the driving position of the driven portion from the rotation angle of the ring.
 上記した本技術に係るレンズ装置においては、前記変換情報は、設定情報に応じて更新される構成とされていることが考えられる。
 即ちリングの回転角度とレンズ系の駆動制御の関係はプログラマブルであるとする。
In the lens device according to the present technology described above, it is considered that the conversion information is updated according to the setting information.
That is, it is assumed that the relationship between the rotation angle of the ring and the drive control of the lens system is programmable.
 上記した本技術に係るレンズ装置においては、前記制御部は、前記レンズ系駆動部に対して、前記リングの手動操作が終了した時点からの原点位置へ復帰する速度軌跡を可変設定可能とされていることが考えられる。
 リングの手動操作が終了した時点とは、例えばユーザがリングから手を離し、リングの回転角度が維持されないようにリングを解放した時点、つまりモータによりリングが原点位置への復帰を始める時点である。
In the lens device according to the present technology described above, the control unit can variably set the speed trajectory for returning to the origin position from the time when the manual operation of the ring is completed for the lens system drive unit. It is possible that there is.
The time when the manual operation of the ring is completed is, for example, the time when the user releases the ring so that the rotation angle of the ring is not maintained, that is, the time when the motor starts returning to the origin position. ..
 上記した本技術に係るレンズ装置においては、前記制御部は、前記リングの回転量と、前記レンズ系駆動部による前記被駆動部の駆動速度が線形関係になるように制御することが考えられる。
 リングの回転角度と例えばズームレンズ等の被駆動部の駆動速度が一次関数で表せる比例関係となるようにする。
In the lens device according to the present technology described above, it is conceivable that the control unit controls the rotation amount of the ring and the driving speed of the driven unit by the lens system driving unit so as to have a linear relationship.
The rotation angle of the ring and the driving speed of the driven portion such as a zoom lens are set to have a proportional relationship that can be expressed by a linear function.
 上記した本技術に係るレンズ装置においては、前記制御部は、前記リングの回転量と、前記レンズ系駆動部による前記被駆動部の駆動速度が非線形関係になるように制御することが考えられる。
 リングの回転角度と例えばズームレンズ等の被駆動部の駆動速度が一次関数で表せない関係となるようにする。
In the lens device according to the present technology described above, it is conceivable that the control unit controls the rotation amount of the ring and the drive speed of the driven unit by the lens system drive unit so as to have a non-linear relationship.
The relationship between the rotation angle of the ring and the driving speed of the driven portion such as a zoom lens cannot be expressed by a linear function.
 上記した本技術に係るレンズ装置においては、前記制御部は、前記リングの回転量と、前記モータによる前記復元トルクが線形関係になるように制御することが考えられる。
 リングの回転角度とモータの復元トルクが一次関数で表せる関係となるようにする。
In the lens device according to the present technology described above, it is conceivable that the control unit controls the rotation amount of the ring and the restoration torque by the motor so as to have a linear relationship.
The relationship between the rotation angle of the ring and the restoration torque of the motor can be expressed by a linear function.
 上記した本技術に係るレンズ装置においては、前記制御部は、前記リングの回転量と、前記モータによる前記復元トルクが非線形関係になるように制御することが考えられる。
 リングの回転角度とモータの復元トルクが一次関数で表せない関係となるようにする。
In the lens device according to the present technology described above, it is conceivable that the control unit controls the rotation amount of the ring and the restoration torque by the motor so as to have a non-linear relationship.
The relationship between the rotation angle of the ring and the restoration torque of the motor cannot be expressed by a linear function.
 上記した本技術に係るレンズ装置においては、前記制御部は、前記リングの回転量が所定値となることに応じて、前記モータにより、それ以上の回転を阻止する前記復元トルクが生じるように制御することが考えられる。
 リングの回転が、所定範囲以上は困難となるようにする。
In the lens device according to the present technology described above, the control unit controls the motor to generate the restoration torque that prevents further rotation in response to the rotation amount of the ring becoming a predetermined value. It is conceivable to do.
Make it difficult to rotate the ring beyond a predetermined range.
 上記した本技術に係るレンズ装置においては、前記制御部は、前記モータによる復元トルクにより、前記リングの回転操作時にクリック感を生じさせるように制御することが考えられる。
 例えばリングの回転に応じて復元トルクを周期的に変動させることで、ユーザにクリック感が伝わるようにする。
In the lens device according to the present technology described above, it is conceivable that the control unit controls the restoration torque by the motor so as to generate a click feeling when the ring is rotated.
For example, by periodically changing the restoration torque according to the rotation of the ring, the click feeling is transmitted to the user.
 上記した本技術に係るレンズ装置においては、前記制御部は、前記リングの手動操作に応じた前記被駆動部として、ズームレンズ、フォーカスレンズ、アイリスを切り替えることが考えられる。
 例えば1つのリングを、手動ズーム操作、手動フォーカスレンズ操作、手動アイリス操作に任意に切り替えることができるようにする。
In the lens device according to the present technology described above, it is conceivable that the control unit switches between a zoom lens, a focus lens, and an iris as the driven unit according to the manual operation of the ring.
For example, one ring can be arbitrarily switched between manual zoom operation, manual focus lens operation, and manual iris operation.
 本技術に係る制御方法は、手動操作により回転可能とされるリング、及び前記リングを回転駆動するモータを含むリング部と、被駆動部としてレンズ又はアイリスを含むレンズ系と、前記被駆動部を駆動するレンズ系駆動部と、を備えた装置の制御方法として、前記リングが手動操作により回転されることに応じて、前記レンズ系駆動部に前記被駆動部の駆動を実行させる制御を行うとともに、前記モータにより前記リングにおいて回転操作方向に対する逆方向に回転させる復元トルクを生じさせる制御を行う。
 これによりレンズ装置や撮像装置において、リング操作に応じた被駆動部の安定した駆動を実現する。
The control method according to the present technology includes a ring that can be rotated by manual operation, a ring portion that includes a motor that drives the ring to rotate, a lens system that includes a lens or an iris as a driven portion, and the driven portion. As a control method of the device including the lens system drive unit to be driven, the lens system drive unit is controlled to drive the driven unit in response to the rotation of the ring by manual operation. The motor controls the ring to generate a restoring torque that rotates in the direction opposite to the rotation operation direction.
As a result, in the lens device and the image pickup device, stable driving of the driven portion according to the ring operation is realized.
本技術の実施の形態の撮像装置の外観の斜視図である。It is a perspective view of the appearance of the image pickup apparatus of embodiment of this technique. 実施の形態の撮像装置の背面図である。It is a rear view of the image pickup apparatus of an embodiment. 実施の形態の撮像装置の内部構成例のブロック図である。It is a block diagram of the internal configuration example of the image pickup apparatus of an embodiment. 実施の形態の撮像装置の他の内部構成例のブロック図である。It is a block diagram of another internal configuration example of the image pickup apparatus of an embodiment. 実施の形態のリング操作に関連する部分の説明図である。It is explanatory drawing of the part related to the ring operation of embodiment. 実施の形態の鏡筒制御部の機能を示した説明図である。It is explanatory drawing which showed the function of the lens barrel control part of embodiment. 実施の形態のリング制御部の機能の説明図である。It is explanatory drawing of the function of the ring control part of embodiment. 実施の形態のレンズ制御部の機能の説明図である。It is explanatory drawing of the function of the lens control part of embodiment. 実施の形態の鏡筒制御部の処理のフローチャートである。It is a flowchart of the process of the lens barrel control unit of embodiment. 実施の形態のリング回転量と、被駆動部の駆動速度、復元トルク、解放時の復元速度の関係の説明図である。It is explanatory drawing of the relationship between the ring rotation amount of embodiment, the drive speed of the driven part, the restoration torque, and the restoration speed at the time of release. 実施の形態のリング回転量、被駆動部の駆動速度の解放時の変化の説明図である。It is explanatory drawing of the change at the time of release of the ring rotation amount and the drive speed of the driven part of the embodiment. 実施の形態のリング回転量と、被駆動部の駆動速度、復元トルク、解放時の復元速度の関係の説明図である。It is explanatory drawing of the relationship between the ring rotation amount of embodiment, the drive speed of the driven part, the restoration torque, and the restoration speed at the time of release. 実施の形態のリング回転量と、被駆動部の駆動速度、復元トルク、解放時の復元速度の関係の説明図である。It is explanatory drawing of the relationship between the ring rotation amount of embodiment, the drive speed of the driven part, the restoration torque, and the restoration speed at the time of release. 実施の形態のリング回転量と、被駆動部の駆動速度、復元トルク、解放時の復元速度の関係の説明図である。It is explanatory drawing of the relationship between the ring rotation amount of embodiment, the drive speed of the driven part, the restoration torque, and the restoration speed at the time of release. 実施の形態のリング回転量と、被駆動部の駆動速度、復元トルク、解放時の復元速度の関係の説明図である。It is explanatory drawing of the relationship between the ring rotation amount of embodiment, the drive speed of the driven part, the restoration torque, and the restoration speed at the time of release. 実施の形態のリング回転量、被駆動部の駆動速度の解放時の変化の説明図である。It is explanatory drawing of the change at the time of release of the ring rotation amount and the drive speed of the driven part of the embodiment.
 以下、実施の形態を次の順序で説明する。
<1.撮像装置の構成>
<2.リングに関する制御構成及び動作>
<3.リング操作に関する各種設定>
<4.まとめ及び変形例>
Hereinafter, embodiments will be described in the following order.
<1. Configuration of image pickup device>
<2. Control configuration and operation related to the ring>
<3. Various settings related to ring operation>
<4. Summary and modification>
<1.撮像装置の構成>
 図1は実施の形態の撮像装置1の前方からの斜視図、図2は背面図を示している。この例では、撮像装置1は、いわゆるデジタルスチルカメラとされ、撮像モードを切り換えることで、静止画撮像と動画撮像の両方を実行できるものである。
 なお、本実施の形態では撮像装置1は、デジタルスチルカメラに限定されず、主に動画撮像に用いられるビデオカメラであっても良いし、静止画撮像のみ可能なカメラ、動画撮像のみ可能なカメラであってもよい。
<1. Configuration of image pickup device>
FIG. 1 is a perspective view from the front of the image pickup apparatus 1 of the embodiment, and FIG. 2 is a rear view. In this example, the image pickup apparatus 1 is a so-called digital still camera, and by switching the image pickup mode, both still image image pickup and moving image image pickup can be performed.
In the present embodiment, the image pickup device 1 is not limited to the digital still camera, and may be a video camera mainly used for moving image imaging, a camera capable of only still image imaging, or a camera capable of only moving image imaging. It may be.
 撮像装置1は、カメラ本体を構成する本体筐体100の前方側にレンズ鏡筒2が配置される。
 いわゆるレンズ交換式カメラとして構成される場合は、レンズ鏡筒2が本体筐体100に着脱可能とされ、レンズ交換ができる。
 またレンズ鏡筒2が本体筐体100に対して着脱不能の場合もある。例えばレンズ鏡筒2が本体筐体100に固定される構成例や、沈胴式としてレンズ鏡筒2が本体筐体100の前面で沈胴して収納される状態と突出して使用可能となる状態を遷移する構成例がある。
In the image pickup apparatus 1, the lens barrel 2 is arranged on the front side of the main body housing 100 constituting the camera main body.
When configured as a so-called interchangeable lens camera, the lens barrel 2 is attached to and detached from the main body housing 100, and the lens can be exchanged.
Further, the lens barrel 2 may not be attached to or detached from the main body housing 100. For example, a configuration example in which the lens barrel 2 is fixed to the main body housing 100, or a state in which the lens barrel 2 is retracted and stored in front of the main body housing 100 as a retractable type and a state in which the lens barrel 2 is projected and usable is changed. There is a configuration example to do.
 本実施の形態の場合は、以上のいずれの構成であってもよいが、レンズ鏡筒2には、リング50が設けられている場合を想定している。
 図1の例ではレンズ鏡筒2に1つのリング50が設けられており、ユーザが回転操作を行うことが可能とされている。リング50はユーザの設定に応じて、例えばズーム操作、アイリス操作、フォーカス操作のいずれかに割り当てられる。例えばユーザがリング50をズーム操作に割り当てる設定を行った場合は、ユーザは、リング50を手動で回転させることでズーム操作を行うことができるようになる。
 また、リング50は例えばズーム操作専用として固定的に操作が割り当てられ変更できないものであってもよい。
In the case of the present embodiment, any of the above configurations may be used, but it is assumed that the lens barrel 2 is provided with the ring 50.
In the example of FIG. 1, one ring 50 is provided on the lens barrel 2, and the user can perform a rotation operation. The ring 50 is assigned to, for example, a zoom operation, an iris operation, or a focus operation according to the user's setting. For example, if the user sets the ring 50 to be assigned to the zoom operation, the user can perform the zoom operation by manually rotating the ring 50.
Further, the ring 50 may be a ring 50 that is fixedly assigned to the operation and cannot be changed, for example, exclusively for the zoom operation.
 なお、リング50は1つではなく、2つ、あるいは3つ設けられてもよい。例えばリング50が3つ設けられる場合、それぞれにズーム操作、アイリス操作、フォーカス操作が固定的に割り当てられてもよいし、どのリング50にどの操作を割り当てるかをユーザが設定できるようにしてもよい。 Note that the ring 50 may be provided with two or three rings instead of one. For example, when three rings 50 are provided, a zoom operation, an iris operation, and a focus operation may be fixedly assigned to each, or the user may be able to set which operation is assigned to which ring 50. ..
 撮像装置1の背面側(使用者側)には、例えば液晶ディスプレイ(LCD:Liquid Crystal Display)や有機EL(Electro-Luminescence)ディスプレイ等のディスプレイデバイスによる表示パネル101が設けられる。
 またビューファインダー102として、LCDや有機ELディスプレイ等を用いて形成された表示部も設けられる。ビューファインダー102は電子式ファインダー(EVF:Electronic View Finder)に限らず、光学式ファインダー(OVF:Optical View Finder)でもよい。
On the back side (user side) of the image pickup apparatus 1, a display panel 101 using a display device such as a liquid crystal display (LCD) or an organic EL (Electro-Luminescence) display is provided.
Further, as the viewfinder 102, a display unit formed by using an LCD, an organic EL display, or the like is also provided. The view finder 102 is not limited to the electronic finder (EVF: Electronic View Finder), but may be an optical finder (OVF: Optical View Finder).
 ユーザは表示パネル101やビューファインダー102により、画像や各種情報を視認することができる。
 この例では撮像装置1には表示パネル101とビューファインダー102の両方が設けられているが、これに限定されず、表示パネル101とビューファインダー102のいずれか一方のみが設けられている構成や、表示パネル101とビューファインダー102の両方またはいずれか一方が着脱可能な構成であってもよい。
The user can visually recognize the image and various information by the display panel 101 and the viewfinder 102.
In this example, the image pickup apparatus 1 is provided with both the display panel 101 and the viewfinder 102, but the present invention is not limited to this, and a configuration in which only one of the display panel 101 and the viewfinder 102 is provided, or The display panel 101 and / or the viewfinder 102 may be detachable.
 撮像装置1の本体筐体100上には、各種の操作子110が設けられている。
 例えば操作子110としては、キー、ダイヤル、押圧/回転の複合操作子などの各種の形態のものが配備され、各種の操作機能を実現している。例えばシャッター操作、メニュー操作、再生操作、モード選択操作、フォーカス操作、ズーム操作、シャッタースピードやF値等のパラメータの選択操作などが可能とされる。
Various controls 110 are provided on the main body housing 100 of the image pickup apparatus 1.
For example, as the operator 110, various forms such as a key, a dial, and a combined operation of pressing / rotating are provided to realize various operation functions. For example, a shutter operation, a menu operation, a playback operation, a mode selection operation, a focus operation, a zoom operation, and a parameter selection operation such as a shutter speed and an F value can be performed.
 図3はレンズ鏡筒2を含めた撮像装置1の内部構成を示している。なお、この図3は、撮像装置1が本体筐体100とレンズ鏡筒2に分かれて構成される例としている。 FIG. 3 shows the internal configuration of the image pickup apparatus 1 including the lens barrel 2. Note that FIG. 3 is an example in which the image pickup apparatus 1 is divided into a main body housing 100 and a lens barrel 2.
 撮像装置1は、本体筐体100に撮像素子(イメージセンサ)12、カメラ信号処理部13、記録制御部14、表示部15、出力部16、操作部17、電源部18、カメラ制御部30、メモリ部31を有する。
 またレンズ鏡筒2はレンズ系21、レンズ系駆動部22、鏡筒制御部23、リング部24を有する。
The image pickup device 1 includes an image sensor (image sensor) 12, a camera signal processing unit 13, a recording control unit 14, a display unit 15, an output unit 16, an operation unit 17, a power supply unit 18, and a camera control unit 30 in a main body housing 100. It has a memory unit 31.
Further, the lens barrel 2 has a lens system 21, a lens system drive unit 22, a lens barrel control unit 23, and a ring unit 24.
 レンズ鏡筒2におけるレンズ系21は、後述するようにズームレンズ、フォーカスレンズ等のレンズやアイリス(絞り機構)を備える。このレンズ系21により、被写体からの光(入射光)が導かれ、撮像素子12に集光される。 The lens system 21 in the lens barrel 2 includes a lens such as a zoom lens and a focus lens and an iris (aperture mechanism) as described later. Light from the subject (incident light) is guided by the lens system 21 and condensed on the image pickup device 12.
 撮像素子12は、例えばCCD(Charge Coupled Device)型、CMOS(Complementary Metal Oxide Semiconductor)型などとして構成される。
  この撮像素子12では、受光した光を光電変換して得た電気信号について、例えばCDS(Correlated Double Sampling)処理、AGC(Automatic Gain Control)処理などを実行し、さらにA/D(Analog/Digital)変換処理を行う。そしてデジタルデータとしての撮像信号を、後段のカメラ信号処理部13やカメラ制御部30に出力する。
The image pickup device 12 is configured as, for example, a CCD (Charge Coupled Device) type, a CMOS (Complementary Metal Oxide Semiconductor) type, or the like.
The image sensor 12 executes, for example, CDS (Correlated Double Sampling) processing, AGC (Automatic Gain Control) processing, and the like on the electric signal obtained by photoelectric conversion of the received light, and further performs A / D (Analog / Digital). Perform conversion processing. Then, the image pickup signal as digital data is output to the camera signal processing unit 13 and the camera control unit 30 in the subsequent stage.
 カメラ信号処理部13は、例えばDSP(Digital Signal Processor)等により画像処理プロセッサとして構成される。このカメラ信号処理部13は、撮像素子12からのデジタル信号(撮像画像信号)に対して、各種の信号処理を施す。例えばカメラプロセスとしてカメラ信号処理部13は、前処理、同時化処理、YC生成処理、解像度変換処理、コーデック処理等を行う。 The camera signal processing unit 13 is configured as an image processing processor by, for example, a DSP (Digital Signal Processor) or the like. The camera signal processing unit 13 performs various signal processing on the digital signal (image pickup image signal) from the image pickup element 12. For example, as a camera process, the camera signal processing unit 13 performs preprocessing, simultaneous processing, YC generation processing, resolution conversion processing, codec processing, and the like.
  前処理では、撮像素子12からの撮像画像信号に対して、R(赤),G(緑),B(青)の黒レベルを所定のレベルにクランプするクランプ処理や、R,G,Bの色チャンネル間の補正処理等を行う。
  同時化処理では、各画素についての画像データが、R,G,B全ての色成分を有するようにする色分離処理を施す。例えば、ベイヤー配列のカラーフィルタを用いた撮像素子の場合は、色分離処理としてデモザイク処理が行われる。
  YC生成処理では、R,G,Bの画像データから、輝度(Y)信号および色(C)信号を生成(分離)する。
  解像度変換処理では、各種の信号処理が施された画像データに対して、解像度変換処理を実行する。
In the preprocessing, the black level of R (red), G (green), and B (blue) is clamped to a predetermined level with respect to the captured image signal from the image sensor 12, and the R, G, B Performs correction processing between color channels.
In the simultaneous processing, a color separation processing is performed so that the image data for each pixel has all the color components of R, G, and B. For example, in the case of an image sensor using a Bayer array color filter, demosaic processing is performed as color separation processing.
In the YC generation process, a luminance (Y) signal and a color (C) signal are generated (separated) from the image data of R, G, and B.
In the resolution conversion process, the resolution conversion process is executed for the image data to which various signal processes have been performed.
  記録制御部14は、例えば不揮発性メモリによる記録媒体に対して記録再生を行う。記録制御部14は例えば記録媒体に対し動画データや静止画データ等の画像ファイルやサムネイル画像等を記録する処理を行う。
  記録制御部14の実際の形態は多様に考えられる。例えば記録制御部14は、撮像装置1に内蔵されるフラッシュメモリとその書込/読出回路として構成されてもよいし、撮像装置1に着脱できる記録媒体、例えばメモリカード(可搬型のフラッシュメモリ等)に対して記録再生アクセスを行うカード記録再生部による形態でもよい。また撮像装置1に内蔵されている形態としてHDD(Hard Disk Drive)などとして実現されることもある。
The recording control unit 14 records and reproduces, for example, a recording medium using a non-volatile memory. The recording control unit 14 performs a process of recording an image file such as moving image data or still image data, a thumbnail image, or the like on a recording medium, for example.
The actual form of the recording control unit 14 can be considered in various ways. For example, the recording control unit 14 may be configured as a flash memory built in the image pickup device 1 and a write / read circuit thereof, or a recording medium that can be attached to and detached from the image pickup device 1, such as a memory card (portable flash memory, etc.). ) May be in the form of a card recording / playback unit that performs recording / playback access. Further, it may be realized as an HDD (Hard Disk Drive) or the like as a form built in the image pickup apparatus 1.
 表示部15は撮像者に対して各種表示を行う表示部であり、具体的には図2に示した表示パネル101やビューファインダー102を示している。
 表示部15は、カメラ制御部30の指示に基づいて表示画面上に各種表示を実行させる。例えば表示部15は、記録制御部14において記録媒体から読み出された画像データの再生画像を表示させる。また表示部15には、カメラ信号処理部13で表示用に解像度変換された撮像画像の画像データが供給されている。表示部15はカメラ制御部30の指示に応じて、当該撮像画像の画像データに基づいて表示を行うことで、いわゆるスルー画(撮像素子12で受光した被写体光に基づく撮像モニタ画像)を表示させる。
 また表示部15はカメラ制御部30の指示に基づいて、各種操作メニュー、アイコン、メッセージ等、即ちGUI(Graphical User Interface)としての表示を画面上に実行させる。
The display unit 15 is a display unit that displays various displays to the imager, and specifically shows the display panel 101 and the viewfinder 102 shown in FIG.
The display unit 15 causes various displays to be executed on the display screen based on the instructions of the camera control unit 30. For example, the display unit 15 displays a reproduced image of image data read from a recording medium by the recording control unit 14. Further, the display unit 15 is supplied with image data of the captured image whose resolution has been converted for display by the camera signal processing unit 13. The display unit 15 displays a so-called through image (an image pickup monitor image based on the subject light received by the image pickup element 12) by displaying the image based on the image data of the image pickup image in response to the instruction of the camera control unit 30. ..
Further, the display unit 15 causes various operation menus, icons, messages, etc., that is, display as a GUI (Graphical User Interface) to be executed on the screen based on the instruction of the camera control unit 30.
  出力部16は、外部機器との間のデータ通信やネットワーク通信を有線又は無線で行う。
  例えば外部の表示装置、記録装置、再生装置、情報処理装置等に対して撮像画像データ(静止画ファイルや動画ファイル)の送信出力を行う。
  また出力部16はネットワーク通信部であるとして、例えばインターネット、ホームネットワーク、LAN(Local Area Network)等の各種のネットワークによる通信を行い、ネットワーク上のサーバ、端末等との間で各種データ送受信を行うようにしてもよい。
The output unit 16 performs data communication and network communication with an external device by wire or wirelessly.
For example, the image data (still image file or moving image file) is transmitted and output to an external display device, recording device, playback device, information processing device, or the like.
Further, assuming that the output unit 16 is a network communication unit, it communicates with various networks such as the Internet, a home network, and a LAN (Local Area Network), and transmits and receives various data to and from a server, a terminal, and the like on the network. You may do so.
 操作部17は、ユーザが各種操作入力を行うための入力デバイスを総括して示している。具体的には操作部17は本体筐体100に設けられた各種の操作子110(シャッターボタン、メニューボタンなど)を示している。
 操作部17によりユーザの操作が検知され、入力された操作に応じた信号はカメラ制御部30へ送られる。
 この操作部17としては操作子110だけでなく、タッチパネルを用いてもよい。例えば表示パネル101にタッチパネルを形成し、表示パネル101に表示させるアイコンやメニュー等を用いたタッチパネル操作により、各種の操作が可能とされてもよい。
 或いは操作部17はタッチパッド等によりユーザのタップ操作等を検出する形態もある。
 更に操作部17は、別体のリモートコントローラ等の外部操作機器の受信部として構成されることもある。
The operation unit 17 collectively shows input devices for the user to perform various operation inputs. Specifically, the operation unit 17 shows various controls 110 (shutter button, menu button, etc.) provided in the main body housing 100.
The operation unit 17 detects the user's operation, and the signal corresponding to the input operation is sent to the camera control unit 30.
As the operation unit 17, not only the operation element 110 but also a touch panel may be used. For example, various operations may be possible by forming a touch panel on the display panel 101 and operating the touch panel using icons, menus, and the like to be displayed on the display panel 101.
Alternatively, the operation unit 17 may detect a user's tap operation or the like using a touch pad or the like.
Further, the operation unit 17 may be configured as a reception unit of an external operation device such as a separate remote controller.
 電源部18は、例えば内部に装填したバッテリーから各部に必要な電源電圧Vccを生成し、動作電圧として供給する。
 撮像装置1にレンズ鏡筒2が装着された状態では、電源部18による電源電圧Vccがレンズ鏡筒2内の回路やモータにも供給されるように構成されている。
 なお電源部18には、商用交流電源に接続したACアダプタにより変換されて入力される直流電圧を電源として、バッテリーへの充電を行う回路や電源電圧Vccを生成する回路が形成されていてもよい。
The power supply unit 18 generates a power supply voltage Vcc required for each unit from, for example, a battery loaded inside, and supplies it as an operating voltage.
When the lens barrel 2 is attached to the image pickup apparatus 1, the power supply voltage Vcc by the power supply unit 18 is configured to be supplied to the circuit and the motor in the lens barrel 2.
The power supply unit 18 may be formed with a circuit for charging the battery or a circuit for generating the power supply voltage Vcc using the DC voltage converted and input by the AC adapter connected to the commercial AC power supply as the power supply. ..
  カメラ制御部30はCPU(Central Processing Unit)を備えたマイクロコンピュータ(演算処理装置)により構成される。
 メモリ部31は、カメラ制御部30が処理に用いる情報等を記憶する。図示するメモリ部31としては、例えばROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリなど包括的に示している。
 メモリ部31はカメラ制御部30としてのマイクロコンピュータチップに内蔵されるメモリ領域であってもよいし、別体のメモリチップにより構成されてもよい。
 カメラ制御部30はメモリ部31のROMやフラッシュメモリ等に記憶されたプログラムを実行することで、この撮像装置1及びレンズ鏡筒2の全体を制御する。
  例えばカメラ制御部30は、撮像素子12のシャッタースピードの制御、カメラ信号処理部13における各種信号処理の指示、ユーザの操作に応じた撮像動作や記録動作、記録した画像ファイルの再生動作、ユーザインタフェース動作等について、必要各部の動作を制御する。レンズ系21に関しては、カメラ制御部30は、例えば自動的に目標の被写体に合焦させるオートフォーカス制御や、ユーザの設定操作に応じたF値の変更や、F値を自動的に制御するオートアイリス制御などを行う。
The camera control unit 30 is composed of a microcomputer (arithmetic processing unit) provided with a CPU (Central Processing Unit).
The memory unit 31 stores information or the like used for processing by the camera control unit 30. As the illustrated memory unit 31, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), a flash memory, and the like are comprehensively shown.
The memory unit 31 may be a memory area built in the microcomputer chip as the camera control unit 30, or may be configured by a separate memory chip.
The camera control unit 30 controls the entire image pickup apparatus 1 and the lens barrel 2 by executing a program stored in the ROM of the memory unit 31, the flash memory, or the like.
For example, the camera control unit 30 controls the shutter speed of the image sensor 12, gives instructions for various signal processing in the camera signal processing unit 13, captures and records according to the user's operation, reproduces a recorded image file, and uses a user interface. Control the operation of each necessary part regarding the operation. Regarding the lens system 21, the camera control unit 30 has, for example, an autofocus control that automatically focuses on a target subject, an F value change according to a user setting operation, and an auto iris that automatically controls the F value. Control etc.
 メモリ部31におけるRAMは、カメラ制御部30のCPUの各種データ処理の際の作業領域として、データやプログラム等の一時的な格納に用いられる。
  メモリ部31におけるROMやフラッシュメモリ(不揮発性メモリ)は、CPUが各部を制御するためのOS(Operating System)や、画像ファイル等のコンテンツファイルの他、各種動作のためのアプリケーションプログラムや、ファームウエア等の記憶に用いられる。
The RAM in the memory unit 31 is used as a work area for various data processing of the CPU of the camera control unit 30 to temporarily store data, programs, and the like.
The ROM and flash memory (nonvolatile memory) in the memory unit 31 include an OS (Operating System) for the CPU to control each unit, content files such as image files, application programs for various operations, and firmware. It is used for memory such as.
 本体筐体100にレンズ鏡筒2が装着された状態では、カメラ制御部30は鏡筒制御部23に対して通信を行い、各種の指示を行う。
 レンズ鏡筒2においては、例えばマイクロコンピュータによる鏡筒制御部23が搭載されており、カメラ制御部30との間で各種のデータ通信が可能とされる。本実施の形態の場合、カメラ制御部30は、鏡筒制御部23に対してズームレンズ、フォーカスレンズ、アイリス(絞り機構)等の駆動指示を行う。鏡筒制御部23はこれらの駆動指示に応じてレンズ系駆動部22を制御し、レンズ系21の動作を実行させる。
 なお本体筐体100にレンズ鏡筒2が装着された状態では、カメラ制御部30と鏡筒制御部23の間で有線通信が実行されるように構成されている。但し、カメラ制御部30と鏡筒制御部23が無線通信を行うことができるように構成されてもよい。
When the lens barrel 2 is attached to the main body housing 100, the camera control unit 30 communicates with the lens barrel control unit 23 and gives various instructions.
The lens barrel 2 is equipped with, for example, a lens barrel control unit 23 using a microcomputer, and various data communication with the camera control unit 30 is possible. In the case of the present embodiment, the camera control unit 30 gives a drive instruction to the lens barrel control unit 23, such as a zoom lens, a focus lens, and an iris (aperture mechanism). The lens barrel control unit 23 controls the lens system drive unit 22 in response to these drive instructions to execute the operation of the lens system 21.
When the lens barrel 2 is attached to the main body housing 100, wired communication is executed between the camera control unit 30 and the lens barrel control unit 23. However, the camera control unit 30 and the lens barrel control unit 23 may be configured to be able to perform wireless communication.
 レンズ系駆動部22には、例えばズームレンズ駆動モータに対するモータドライバ、フォーカスレンズ駆動モータに対するモータドライバ、アイリスのモータに対するモータドライバ等が設けられている。
 これらのモータドライバは鏡筒制御部23からの指示に応じて駆動電流を対応するドライバに印加し、フォーカスレンズやズームレンズの移動、アイリスの絞り羽根の開閉等を実行させることになる。
The lens system drive unit 22 is provided with, for example, a motor driver for a zoom lens drive motor, a motor driver for a focus lens drive motor, a motor driver for an iris motor, and the like.
These motor drivers apply a drive current to the corresponding driver in response to an instruction from the lens barrel control unit 23 to move the focus lens and the zoom lens, open and close the aperture blades of the iris, and the like.
 リング部24は、図1に示したリング50を含み、リング50の回転角度を検出するためのセンサやリング50にトルクを与えるモータ系を示している。その構成については後述するが、鏡筒制御部23は、リング部24におけるリング50の回転を検出することに応じて、レンズ系駆動部22に駆動指示を出力し、リング50に割り当てられた動作の制御を行う。 The ring portion 24 includes the ring 50 shown in FIG. 1, and shows a sensor for detecting the rotation angle of the ring 50 and a motor system that applies torque to the ring 50. The configuration will be described later, but the lens barrel control unit 23 outputs a drive instruction to the lens system drive unit 22 in response to detecting the rotation of the ring 50 in the ring unit 24, and the operation assigned to the ring 50. To control.
 図4は、レンズ鏡筒2に相当する部分が本体筐体100と一体化される構成例を示している。内部構成は基本的には同様であるため、同一符号を付して詳述を避けるが、例えば鏡筒制御部23に相当する機能を、カメラ制御部30が備える例としている。もちろんカメラ制御部30と鏡筒制御部23が別体のマイクロコンピュータ等で形成されてもよい。 FIG. 4 shows a configuration example in which the portion corresponding to the lens barrel 2 is integrated with the main body housing 100. Since the internal configuration is basically the same, the same reference numerals are given to avoid details, but for example, the camera control unit 30 has a function corresponding to the lens barrel control unit 23. Of course, the camera control unit 30 and the lens barrel control unit 23 may be formed by a separate microcomputer or the like.
 以下では、図3や図4の構成の撮像装置1において、特に鏡筒制御部23によるリング50の操作に応じた制御に注目して説明していく。
In the following, in the image pickup apparatus 1 having the configurations of FIGS. 3 and 4, the control according to the operation of the ring 50 by the lens barrel control unit 23 will be described in particular.
<2.リングに関する制御構成及び動作>
 リング50は、フォーカスレンズによる合焦動作、ズームレンズによる画角の変更、アイリスにおけるF値の調整などを操作するためにレンズ鏡筒2に設けられ、このリング50によりユーザはズームレンズ、フォーカスレンズ、アイリス(本開示ではこれらを総称して「被駆動部」と呼んでいる)を任意に駆動操作できる。
 リング50の回転角度と被駆動部の設定値は例えば1対1に対応しており、ユーザはリング50を回転させることで被駆動部の設定値を変えることができる。
<2. Control configuration and operation related to the ring>
The ring 50 is provided on the lens barrel 2 for operating the focusing operation by the focus lens, the change of the angle of view by the zoom lens, the adjustment of the F value in the iris, and the like, and the user can use the zoom lens and the focus lens by the ring 50. , Iris (in this disclosure, these are collectively referred to as "driven unit") can be arbitrarily driven and operated.
The rotation angle of the ring 50 and the set value of the driven unit correspond to, for example, one-to-one, and the user can change the set value of the driven unit by rotating the ring 50.
 ここで、ズームレンズ等の被駆動部を一定速度で駆動するためには、リング50をユーザが手動で一定速度に回転させる必要があり、その操作が速度ムラ、手振れの原因となりやすい。
 また、一般のカメラとしては、被駆動部を一定速度で操作するためのレバー機構を設置する例もある。例えばズームレバー等が知られている。この場合、レバーの押し込み量に比例して被駆動部の駆動速度を変えることで一定速度操作を容易にすることができる。ところが、このためにはリング50とは独立してレバー機構を設ける必要があり、レンズ鏡筒2に設置のための追加のスペースが必要になる。
Here, in order to drive a driven portion such as a zoom lens at a constant speed, the user must manually rotate the ring 50 at a constant speed, and the operation tends to cause speed unevenness and camera shake.
Further, as a general camera, there is also an example in which a lever mechanism for operating the driven unit at a constant speed is installed. For example, a zoom lever and the like are known. In this case, constant speed operation can be facilitated by changing the driving speed of the driven portion in proportion to the pushing amount of the lever. However, for this purpose, it is necessary to provide a lever mechanism independently of the ring 50, and an additional space for installation is required in the lens barrel 2.
 そこで本実施の形態では、リング50においてレバー機構のような操作機能を備えるようにする。一般的にレバー機構はバネ機構を備え、押し込み量に応じて被駆動部の駆動速度を変えると同時に、レバーを戻す力が発生する。レバーを離すと元の状態に戻り、被駆動部の駆動速度も自動的にゼロになる。 Therefore, in the present embodiment, the ring 50 is provided with an operation function such as a lever mechanism. Generally, the lever mechanism is provided with a spring mechanism, and at the same time as changing the driving speed of the driven portion according to the amount of pushing, a force for returning the lever is generated. When the lever is released, it returns to the original state, and the drive speed of the driven unit automatically becomes zero.
 このような動作を実現するために本実施の形態では、リング50にモータなどの駆動装置を備え、リング50を駆動する機能を有すると同時に、ユーザに対してリング50を介して力覚フィードバックを与える機能を持たせるようにする。 In order to realize such an operation, in the present embodiment, the ring 50 is provided with a drive device such as a motor, has a function of driving the ring 50, and at the same time, provides force feedback to the user via the ring 50. Give it a function.
 ユーザはリング50を回すことで回転量に応じて被駆動部の駆動速度を操作することが可能になると同時に、リング50にはレバー機構と同様に、操作前の原点位置に戻ろうとする力が発生するようにする。これによりユーザがリング50を離すだけで被駆動部の駆動速度は自動的にゼロになり、レバー機構と同じ感覚でリング50を操作することが可能になる。また、そのためのレンズ鏡筒2における追加のスペースも不要である。 By turning the ring 50, the user can operate the drive speed of the driven unit according to the amount of rotation, and at the same time, the ring 50 has a force to return to the origin position before the operation, similar to the lever mechanism. Let it occur. As a result, the driving speed of the driven portion automatically becomes zero just by releasing the ring 50 by the user, and the ring 50 can be operated with the same feeling as the lever mechanism. Further, no additional space is required in the lens barrel 2 for that purpose.
 図5は、鏡筒制御部23、リング部24、レンズ系21、レンズ系駆動部22を、先の図3,図4よりも詳細に示している。 FIG. 5 shows the lens barrel control unit 23, the ring unit 24, the lens system 21, and the lens system drive unit 22 in more detail than in FIGS. 3 and 4.
 図5では、レンズ系21において、被駆動部としてのズームレンズ41、アイリス42、フォーカスレンズ43を示している。またレンズ系駆動部22において、これらの被駆動部を駆動するズーム駆動部44、アイリス駆動部45、フォーカス駆動部46を示している。
 ズームレンズ41はズーム駆動部44によって光軸方向に前後に移動するように駆動される。
 アイリス42はアイリス駆動部45によってF値を変化させるように開閉駆動される。
 フォーカスレンズ43はフォーカス駆動部46によって光軸方向に前後に移動するように駆動される。
 ズーム駆動部44、アイリス駆動部45、フォーカス駆動部46は、それぞれ鏡筒制御部23からの駆動指示の信号に応じて被駆動部の駆動を行う。
FIG. 5 shows a zoom lens 41, an iris 42, and a focus lens 43 as driven portions in the lens system 21. Further, in the lens system drive unit 22, a zoom drive unit 44, an iris drive unit 45, and a focus drive unit 46 that drive these driven units are shown.
The zoom lens 41 is driven by the zoom drive unit 44 so as to move back and forth in the optical axis direction.
The iris 42 is driven to open and close by the iris drive unit 45 so as to change the F value.
The focus lens 43 is driven by the focus drive unit 46 so as to move back and forth in the optical axis direction.
The zoom drive unit 44, the iris drive unit 45, and the focus drive unit 46 each drive the driven unit in response to a drive instruction signal from the lens barrel control unit 23.
 リング部24は、リング50、モータ51、リング検出部52、リング駆動部53、ギア機構54を備える。 The ring unit 24 includes a ring 50, a motor 51, a ring detection unit 52, a ring drive unit 53, and a gear mechanism 54.
 リング検出部52は、リング50の原点位置からの回転角度を検出するためのセンサである。原点位置とはリング50がユーザによって回転操作される前の初期状態の位置である。例えばこの原点位置をリング回転量がゼロの位置とする。
 リング検出部52は鏡筒制御部23がリング50の回転角度を求めることのできるものであればよく、具体的には例えば回転方向に複数個配置されたポジションセンサであって、それらのセンシング状態によって鏡筒制御部23が回転角度を求めることができるようにされていればよい。またロータリーエンコーダのような構成、あるいは角速度センサ等を用いる構成なども考えられる。
The ring detection unit 52 is a sensor for detecting the rotation angle of the ring 50 from the origin position. The origin position is a position in an initial state before the ring 50 is rotated by the user. For example, this origin position is a position where the amount of ring rotation is zero.
The ring detection unit 52 may be any as long as the lens barrel control unit 23 can obtain the rotation angle of the ring 50. Specifically, for example, a plurality of position sensors arranged in the rotation direction are used, and their sensing states are present. It suffices if the lens barrel control unit 23 can obtain the rotation angle. Further, a configuration such as a rotary encoder or a configuration using an angular velocity sensor or the like is also conceivable.
 モータ51はリング駆動部53により駆動される。モータ51による回転トルクは、模式的に示したギア機構54によりリング50に伝達される。
 リング50は手動操作のための操作子であり、ユーザが任意に回転させることは上述の通りであるが、モータ51、リング駆動部53、及びギア機構54は、主にユーザに力覚フィードバックを与えるとともに、リング50を回転原点位置に戻すための駆動機構となる。
 つまり、ユーザがリング50を回転させると、例えば回転量に応じてリング50を元に戻そうとする力をユーザに感じさせるとともに、ユーザがリング50から手を離したり、リング50を或る回転角度に維持する力を緩めたりすると、モータ51によってリング50が自動的に原点位置、つまりユーザの操作前の回転角度位置に戻るように駆動される。またリング50の回転操作に応じてユーザにクリック感を与えるように、モータ51により周期的なトルク発生を行う場合もある。
 鏡筒制御部23は、このような動作が行われるようにリング駆動部53を制御する。
The motor 51 is driven by the ring drive unit 53. The rotational torque of the motor 51 is transmitted to the ring 50 by the gear mechanism 54 schematically shown.
The ring 50 is an operator for manual operation, and the user can rotate it arbitrarily as described above. However, the motor 51, the ring drive unit 53, and the gear mechanism 54 mainly provide force feedback to the user. It also serves as a drive mechanism for returning the ring 50 to the rotation origin position.
That is, when the user rotates the ring 50, for example, the user feels a force to return the ring 50 to its original position according to the amount of rotation, and the user releases the ring 50 or rotates the ring 50 at a certain rotation. When the force for maintaining the angle is relaxed, the motor 51 automatically drives the ring 50 to return to the origin position, that is, the rotation angle position before the user's operation. Further, the motor 51 may periodically generate torque so as to give the user a click feeling according to the rotation operation of the ring 50.
The lens barrel control unit 23 controls the ring drive unit 53 so that such an operation is performed.
 図6は鏡筒制御部23の機能を示したものである。
 鏡筒制御部23には、ソフトウェアによる機能として、リング制御部35とレンズ制御部36が設けられる。
FIG. 6 shows the function of the lens barrel control unit 23.
The lens barrel control unit 23 is provided with a ring control unit 35 and a lens control unit 36 as software functions.
 リング検出部52による検出情報はリング制御部35及びレンズ制御部36に入力される。またリング制御部35とレンズ制御部36には、原点角度の情報が入力される。あるいは原点角度の情報が予め固定値として記憶されていてもよい。
 これによりリング制御部35とレンズ制御部36は、現在のリング50の操作に応じて回転量、つまり原点位置からの回転量を表す回転角度を求めることができる。
The detection information by the ring detection unit 52 is input to the ring control unit 35 and the lens control unit 36. Further, information on the origin angle is input to the ring control unit 35 and the lens control unit 36. Alternatively, the information on the origin angle may be stored in advance as a fixed value.
As a result, the ring control unit 35 and the lens control unit 36 can obtain a rotation amount, that is, a rotation angle representing the rotation amount from the origin position, according to the current operation of the ring 50.
 レンズ制御部36は、リング50の現在の角度と原点角度の偏差に応じて、ズーム駆動部44,アイリス駆動部45,またはフォーカス駆動部46のいずれかに駆動指示(例えば速度指示あるいは位置指示)を出力する。
 ズーム駆動部44,アイリス駆動部45,またはフォーカス駆動部46では駆動指令に従いズームレンズ41、アイリス42、またはフォーカスレンズ43を、指定の速度で駆動する。
 これによりユーザがリング50を操作することで、レバー機構の様にリング50の回転量に応じて被駆動部を任意の速度で駆動することができる。
The lens control unit 36 gives a drive instruction (for example, a speed instruction or a position instruction) to any of the zoom drive unit 44, the iris drive unit 45, or the focus drive unit 46 according to the deviation between the current angle and the origin angle of the ring 50. Is output.
The zoom drive unit 44, the iris drive unit 45, or the focus drive unit 46 drives the zoom lens 41, the iris 42, or the focus lens 43 at a specified speed according to a drive command.
As a result, when the user operates the ring 50, the driven portion can be driven at an arbitrary speed according to the amount of rotation of the ring 50 like a lever mechanism.
 リング制御部35は、リング角度と原点角度の偏差をゼロに戻す方向にリング駆動部53に駆動指示を出力する。リング駆動部53は駆動指示に応じた駆動電流をモータ51に与える。これによりモータ51はトルクを発生し、ギア機構54を介してリング50を回転させる。
 ユーザはリング50に発生するトルクによってレバーのバネ機構の様に原点への復元力を感じることができる。
 また、その状態でユーザがリング50から手を離したり、リング50を保持する力を緩めたりすると、レバー機構と同様にリング50は原点角度まで戻る。このとき、リング50の現在角度と原点角度の偏差はゼロになるため、レンズ制御部36の駆動指示は速度ゼロを指示するものとなり、被駆動部の変化の速度はゼロとなる。
 このような処理によりリング50をレバー機構の様に操作してリング50の回転量に応じて任意の速度で被駆動部を駆動させることが可能となる。
The ring control unit 35 outputs a drive instruction to the ring drive unit 53 in the direction of returning the deviation between the ring angle and the origin angle to zero. The ring drive unit 53 applies a drive current according to the drive instruction to the motor 51. As a result, the motor 51 generates torque and rotates the ring 50 via the gear mechanism 54.
The user can feel the restoring force to the origin like the spring mechanism of the lever by the torque generated in the ring 50.
Further, when the user releases the ring 50 or loosens the force for holding the ring 50 in that state, the ring 50 returns to the origin angle as in the lever mechanism. At this time, since the deviation between the current angle and the origin angle of the ring 50 becomes zero, the drive instruction of the lens control unit 36 indicates zero speed, and the speed of change of the driven unit becomes zero.
By such processing, the ring 50 can be operated like a lever mechanism to drive the driven portion at an arbitrary speed according to the amount of rotation of the ring 50.
 図7は、上記のようなリング制御部35の駆動指示出力のための処理をブロック化して示したものである。
 リング検出部52の検出情報に基づく現在のリング角度と、リング原点角度が減算部61に入力され、リング偏差が求められる。つまり原点位置を0度としたときの回転角度である。
FIG. 7 shows a block of processing for driving instruction output of the ring control unit 35 as described above.
The current ring angle based on the detection information of the ring detection unit 52 and the ring origin angle are input to the subtraction unit 61, and the ring deviation is obtained. That is, it is a rotation angle when the origin position is 0 degrees.
 このリング偏差は、リング偏差/指示速度変換部62、及びリング偏差/指示力変換部63に入力される。
 リング偏差/指示速度変換部62は、記憶された変換情報62aに基づいて、リング偏差から指示速度を求める。
 リング偏差/指示力変換部63は、記憶された変換情報63aに基づいて、リング偏差から指示力を求める。
This ring deviation is input to the ring deviation / instruction speed conversion unit 62 and the ring deviation / instruction force conversion unit 63.
The ring deviation / indicated speed conversion unit 62 obtains the indicated speed from the ring deviation based on the stored conversion information 62a.
The ring deviation / instruction force conversion unit 63 obtains the instruction force from the ring deviation based on the stored conversion information 63a.
 変換情報62a、63aは、例えば変換テーブルデータや、変換式であることが想定され、例えば設定情報MS1によって更新可能である。設定情報MS1は、ユーザのモード設定、状況に応じた自動設定、あるいは撮像装置1のバージョンアップなどに応じて、カメラ制御部30が発生させることが想定される。つまり変換情報62a、63aとしての変換テーブルデータや変換式は、モード設定などに応じて書き換えることのできるプログラマブルな情報である。 The conversion information 62a and 63a are assumed to be, for example, conversion table data or a conversion formula, and can be updated by, for example, the setting information MS1. It is assumed that the setting information MS1 is generated by the camera control unit 30 according to the mode setting of the user, the automatic setting according to the situation, the version upgrade of the image pickup apparatus 1, and the like. That is, the conversion table data and the conversion formula as the conversion information 62a and 63a are programmable information that can be rewritten according to the mode setting and the like.
 リング偏差、指示速度、指示力の情報は位置制御部64に供給される。位置制御部64は、これらに応じてリング駆動部53に対する駆動指示を生成し、出力する。例えばリング偏差の値の正負によりモータ51による回転駆動方向を設定するとともに、指示速度及び指示力に応じた駆動電流値やモータ駆動周波数を設定し、これらを駆動指示としてリング駆動部53に出力する。
 リング駆動部53は、駆動指示に応じたモータ駆動電流、例えば駆動指示に応じた位相関係、電流値、周波数の3相駆動信号等のモータ駆動電流をモータ51に供給する。
Information on the ring deviation, the indicated speed, and the indicated force is supplied to the position control unit 64. The position control unit 64 generates and outputs a drive instruction to the ring drive unit 53 in response to these. For example, the rotation drive direction by the motor 51 is set by the positive or negative of the ring deviation value, the drive current value and the motor drive frequency according to the indicated speed and the indicated force are set, and these are output to the ring drive unit 53 as a drive instruction. ..
The ring drive unit 53 supplies the motor drive current according to the drive instruction, for example, the motor drive current such as a three-phase drive signal having a phase relationship, a current value, and a frequency according to the drive instruction to the motor 51.
 なお、以上の図7に示した各ブロックは、実際にはマイクロコンピュータにより構成される鏡筒制御部23内で、ソフトウェアによる演算処理で実現されることが想定される。 It is assumed that each block shown in FIG. 7 is actually realized by arithmetic processing by software in the lens barrel control unit 23 configured by the microcomputer.
 図8は、レンズ制御部36の駆動指示出力のための処理をブロック化して示したものである。
 上記のリング制御部35の場合と同様に、リング検出部52の検出情報に基づく現在のリング角度と、リング原点角度が減算部71に入力され、リング偏差が求められる。
FIG. 8 shows a block of processing for driving instruction output of the lens control unit 36.
Similar to the case of the ring control unit 35, the current ring angle based on the detection information of the ring detection unit 52 and the ring origin angle are input to the subtraction unit 71, and the ring deviation is obtained.
 このリング偏差は、リング偏差/指示変換部72に入力される。
 リング偏差/指示変換部72は、記憶された変換情報72aに基づいて、リング偏差から駆動指示を生成する。この駆動指示は、例えばズームレンズ41、フォーカスレンズ43を変位させる位置やレンズ移動時の速度の情報であったり、アイリス42のF値としての開閉位置の情報であったりする。
This ring deviation is input to the ring deviation / instruction conversion unit 72.
The ring deviation / instruction conversion unit 72 generates a drive instruction from the ring deviation based on the stored conversion information 72a. This drive instruction may be, for example, information on the position where the zoom lens 41 and the focus lens 43 are displaced, information on the speed when the lens is moved, or information on the opening / closing position as the F value of the iris 42.
 変換情報72aは、例えば変換テーブルデータや、変換式であることが想定され、例えば設定情報MS2によって更新可能である。
 設定情報MS2も、設定情報MS1と同様に、ユーザのモード設定、状況に応じた自動設定、あるいは撮像装置1のバージョンアップなどにより、カメラ制御部30が発生させることが想定される。つまり変換情報72aとしての変換テーブルデータや変換式も、モード設定などに応じて書き換えることのできるプログラマブルな情報である。
The conversion information 72a is assumed to be, for example, conversion table data or a conversion formula, and can be updated by, for example, the setting information MS2.
Similar to the setting information MS1, it is assumed that the setting information MS2 is also generated by the camera control unit 30 by the user's mode setting, automatic setting according to the situation, or version upgrade of the image pickup apparatus 1. That is, the conversion table data and the conversion formula as the conversion information 72a are also programmable information that can be rewritten according to the mode setting and the like.
 被駆動部の移動後の位置や速度を示す駆動指示は制御対象切り替え部73に供給される。制御対象切り替え部73は、現在リング50に割り当てられている操作機能に応じて制御対象を選択して、駆動指示を出力する。
 リング50がズーム操作に割り当てられている場合は、リング偏差/指示変換部72では、ズームレンズ41の制御のための駆動指示が生成され、これが制御対象切り替え部73によってズーム駆動指示S1とされてズーム駆動部44に出力される。
 リング50がアイリス操作に割り当てられている場合は、リング偏差/指示変換部72では、アイリス42の制御のための駆動指示が生成され、これが制御対象切り替え部73によってアイリス駆動指示S2とされてアイリス駆動部45に出力される。
 リング50がフォーカス操作に割り当てられている場合は、リング偏差/指示変換部72では、フォーカスレンズ43の制御のための駆動指示が生成され、これが制御対象切り替え部73によってフォーカス駆動指示S3とされてフォーカス駆動部46に出力される。
A drive instruction indicating the position and speed of the driven unit after movement is supplied to the control target switching unit 73. The control target switching unit 73 selects a control target according to the operation function currently assigned to the ring 50, and outputs a drive instruction.
When the ring 50 is assigned to the zoom operation, the ring deviation / instruction conversion unit 72 generates a drive instruction for controlling the zoom lens 41, and the control target switching unit 73 sets this as the zoom drive instruction S1. It is output to the zoom drive unit 44.
When the ring 50 is assigned to the iris operation, the ring deviation / instruction conversion unit 72 generates a drive instruction for controlling the iris 42, and the control target switching unit 73 sets this as the iris drive instruction S2 and sets the iris. It is output to the drive unit 45.
When the ring 50 is assigned to the focus operation, the ring deviation / instruction conversion unit 72 generates a drive instruction for controlling the focus lens 43, and the control target switching unit 73 sets this as the focus drive instruction S3. It is output to the focus drive unit 46.
 なお、以上の図8に示した各ブロックも、実際にはマイクロコンピュータにより構成される鏡筒制御部23内で、ソフトウェアによる演算処理で実現されることが想定される。 It is assumed that each block shown in FIG. 8 is actually realized by arithmetic processing by software in the lens barrel control unit 23 configured by the microcomputer.
 図9は以上のようなリング制御部35、レンズ制御部36を有する鏡筒制御部23の処理例を示したフローチャートである。
 例えば鏡筒制御部23は図9の処理を、所定時間毎の割り込み処理などとして繰り返し実行する。
FIG. 9 is a flowchart showing a processing example of the lens barrel control unit 23 having the ring control unit 35 and the lens control unit 36 as described above.
For example, the lens barrel control unit 23 repeatedly executes the process of FIG. 9 as an interrupt process at predetermined time intervals.
 ステップS101で鏡筒制御部23はリング回転角度検出を行う。即ちリング検出部52の検出情報を入力し、リング50の回転角度を得る。特にはこの場合、原点位置を基準としたリング回転量として、図7,図8で述べたリング偏差の値を取得する。リング検出部52の検出情報が、既にリング偏差を示すものであれば、それを取得するのみでよいし、検出情報が現在の角度位置を示すことのできるものであれば、原点角度との差分としてリング偏差を求めることになる。 In step S101, the lens barrel control unit 23 detects the ring rotation angle. That is, the detection information of the ring detection unit 52 is input, and the rotation angle of the ring 50 is obtained. In particular, in this case, the value of the ring deviation described in FIGS. 7 and 8 is acquired as the amount of ring rotation with respect to the origin position. If the detection information of the ring detection unit 52 already indicates the ring deviation, it is sufficient to acquire it, and if the detection information can indicate the current angle position, the difference from the origin angle. The ring deviation will be calculated as.
 ステップS102で鏡筒制御部23は、現在のリング50の状態が、原点位置にあるか否かを確認する。即ちリング偏差がゼロであるか否かである。リング偏差がゼロで、現在、リング50が原点位置にあると判定した場合は、鏡筒制御部23は図9の処理を終える。 In step S102, the lens barrel control unit 23 confirms whether or not the current state of the ring 50 is at the origin position. That is, whether or not the ring deviation is zero. When it is determined that the ring deviation is zero and the ring 50 is currently in the origin position, the lens barrel control unit 23 ends the process of FIG.
 リング50が原点位置にない場合、つまり、ユーザがリング50を操作しているときは、鏡筒制御部23はステップS102からステップS103に進み、リング50の操作機能の割り当ての設定に応じて処理を分岐する。 When the ring 50 is not at the origin position, that is, when the user is operating the ring 50, the lens barrel control unit 23 proceeds from step S102 to step S103 and processes according to the setting of the allocation of the operation function of the ring 50. Branch.
 リング50がズーム操作に割り当てられている場合は、鏡筒制御部23はステップS110,S111を実行する。
 ステップS110で鏡筒制御部23は、レンズ制御部36の機能により、ズームレンズ41についての駆動指示を生成し、駆動指示(ズーム駆動指示S1)をズーム駆動部44に出力する。
 ステップS111で鏡筒制御部23は、リング制御部35の機能により、モータ51に関する駆動指示を生成し、リング駆動部53に出力する。
 以上で図9の1回の処理を終える。
When the ring 50 is assigned to the zoom operation, the lens barrel control unit 23 executes steps S110 and S111.
In step S110, the lens barrel control unit 23 generates a drive instruction for the zoom lens 41 by the function of the lens control unit 36, and outputs the drive instruction (zoom drive instruction S1) to the zoom drive unit 44.
In step S111, the lens barrel control unit 23 generates a drive instruction regarding the motor 51 by the function of the ring control unit 35 and outputs the drive instruction to the ring drive unit 53.
This completes one process of FIG.
 リング50がアイリス操作に割り当てられている場合は、鏡筒制御部23はステップS120,S121を実行する。
 ステップS120で鏡筒制御部23は、レンズ制御部36の機能により、アイリス42についての駆動指示を生成し、駆動指示(アイリス駆動指示S2)をアイリス駆動部45に出力する。
 ステップS121で鏡筒制御部23は、リング制御部35の機能により、モータ51に関する駆動指示を生成し、リング駆動部53に出力する。
 以上で図9の1回の処理を終える。
When the ring 50 is assigned to the iris operation, the lens barrel control unit 23 executes steps S120 and S121.
In step S120, the lens barrel control unit 23 generates a drive instruction for the iris 42 by the function of the lens control unit 36, and outputs the drive instruction (iris drive instruction S2) to the iris drive unit 45.
In step S121, the lens barrel control unit 23 generates a drive instruction regarding the motor 51 by the function of the ring control unit 35 and outputs the drive instruction to the ring drive unit 53.
This completes one process of FIG.
 なおこのアイリス制御の場合には、鏡筒制御部23はステップS121では、ユーザがリング50を回転させるにしたがって、所定角度毎にクリック感が得られるようなトルク発生も実行させるように駆動指示を生成する。アイリス42については、F値の段階的な切り替えという制御動作になるが、例えばF値を1段階切り替えることになるリング回転角度毎にクリック感が得られるように制御する。これにより、ユーザは、リング50の操作によってF値が段階的に変更されることを感じることができる。 In the case of this iris control, the lens barrel control unit 23 gives a drive instruction in step S121 to generate torque so that a click feeling can be obtained at each predetermined angle as the user rotates the ring 50. Generate. The iris 42 has a control operation of stepwise switching of the F value. For example, the iris 42 is controlled so that a click feeling can be obtained for each ring rotation angle at which the F value is switched by one step. As a result, the user can feel that the F value is gradually changed by the operation of the ring 50.
 リング50がフォーカス操作に割り当てられている場合は、鏡筒制御部23はステップS130,S131を実行する。
 ステップS130で鏡筒制御部23は、レンズ制御部36の機能により、フォーカスレンズ43についての駆動指示を生成し、駆動指示(フォーカス駆動指示S3)をフォーカス駆動部46に出力する。
 ステップS131で鏡筒制御部23は、リング制御部35の機能により、モータ51に関する駆動指示を生成し、リング駆動部53に出力する。
 以上で図9の1回の処理を終える。
When the ring 50 is assigned to the focus operation, the lens barrel control unit 23 executes steps S130 and S131.
In step S130, the lens barrel control unit 23 generates a drive instruction for the focus lens 43 by the function of the lens control unit 36, and outputs the drive instruction (focus drive instruction S3) to the focus drive unit 46.
In step S131, the lens barrel control unit 23 generates a drive instruction regarding the motor 51 by the function of the ring control unit 35 and outputs the drive instruction to the ring drive unit 53.
This completes one process of FIG.
 このような図9の処理が繰り返し行われることで、リング50をレバー機構のような操作性で操作を行うことができるようになり、リング50によって安定した被駆動部の駆動を行うことができる。
By repeating such the process of FIG. 9, the ring 50 can be operated with operability like a lever mechanism, and the ring 50 can stably drive the driven portion. ..
<3.リング操作に関する各種設定>
 以上のようなリング50の操作に応じた被駆動部の動作やリング50に与えるトルクの制御例を各種説明していく。
 リング50の操作に応じた被駆動部の動作やリング50に与えるトルクについては、変換情報62a,63a,72aの設定により、多様な例が考えられる。
<3. Various settings related to ring operation>
Various examples of controlling the operation of the driven unit and the torque applied to the ring 50 according to the operation of the ring 50 as described above will be described.
Various examples can be considered for the operation of the driven unit and the torque applied to the ring 50 according to the operation of the ring 50, depending on the settings of the conversion information 62a, 63a, 72a.
 図10A、図10B、図10Cは、それぞれ横軸をリング回転量(即ち本実施の形態の場合はリング偏差)とし、縦軸をそれぞれ被駆動部の駆動速度、リング復元トルク、解放時のリング復元速度としている。
 図10Aの被駆動部の駆動速度は、ズームレンズ41の移動速度、又はアイリス42の開閉速度、又はフォーカスレンズ43の移動速度である。
 図10Bのリング復元トルクは、モータ51によって発生させる、リング50を原点位置に戻す方向のトルクである。正負の値は、原点位置の方向に対応している。
 図10Cの解放時リング復元速度は、ユーザがリング操作を解放したとき、つまりリングから手を離したり、リングの回転操作角度を維持しないように力を緩めたりしたときの、リング50が原点位置へ復帰を開始する速度である。
In FIGS. 10A, 10B, and 10C, the horizontal axis is the ring rotation amount (that is, the ring deviation in the case of the present embodiment), and the vertical axis is the drive speed of the driven portion, the ring restoration torque, and the ring at the time of release, respectively. The restoration speed is used.
The driving speed of the driven portion in FIG. 10A is the moving speed of the zoom lens 41, the opening / closing speed of the iris 42, or the moving speed of the focus lens 43.
The ring restoration torque in FIG. 10B is a torque generated by the motor 51 in the direction of returning the ring 50 to the origin position. Positive and negative values correspond to the direction of the origin position.
The ring restoration speed at the time of release in FIG. 10C is the origin position of the ring 50 when the user releases the ring operation, that is, when the user releases the ring or relaxes the force so as not to maintain the rotation operation angle of the ring. This is the speed at which the return to is started.
 各座標の原点(横軸と縦軸の交点)は、リング回転量=ゼロで、縦軸の速度又はトルクもゼロである。
 横軸のリング回転量の正方向の値と負方向の値は、リング原点位置からの回転操作方向に対応している。正方向と負方向は、ズーム操作でいえばワイド側とズーム側、アイリス操作でいえばF値の増加側と減少側、フォーカス操作でいえば焦点位置のファー側とニア側に相当する。
 図10Aの被駆動部の駆動速度の正負の値は、駆動前の位置からの移動方向(開閉方向)に対応している。
 図10Bのリング復元トルクの正負の値は、リング50を原点位置に向かわせるために印加するトルクの方向に対応している。
 図10Cの解放時リング復元速度の正負の値は、リング50を原点位置に向かわせる方向に対応している。
 以上の図10の形式は後述の図12から図15についても同様である。
The origin of each coordinate (the intersection of the horizontal axis and the vertical axis) is the amount of ring rotation = zero, and the velocity or torque on the vertical axis is also zero.
The positive and negative values of the ring rotation amount on the horizontal axis correspond to the rotation operation direction from the ring origin position. The positive and negative directions correspond to the wide side and the zoom side in the zoom operation, the increase side and the decrease side of the F value in the iris operation, and the fur side and the near side of the focal position in the focus operation.
The positive and negative values of the driving speed of the driven portion in FIG. 10A correspond to the moving direction (opening / closing direction) from the position before driving.
The positive and negative values of the ring restoration torque in FIG. 10B correspond to the direction of the torque applied to direct the ring 50 toward the origin position.
The positive and negative values of the ring restoration speed at the time of release in FIG. 10C correspond to the direction in which the ring 50 is directed toward the origin position.
The format of FIG. 10 is the same for FIGS. 12 to 15 described later.
 図10の例は、リング50でレバー機構の機能を実現する場合の基本的な動作特性を示すものである。即ち通常のバネ復元トルクのレバー機構とほぼ同様の動作特性となるように、リング回転量に対する、被駆動部の駆動速度、リング復元トルク、解放時リング復元速度の関係が、いずれも線形の関係になるようにしている。
 これにより、ユーザがリング50を回転させる量により、被駆動部の駆動速度が変化することになる。つまりユーザはリング50の回転量の調整で被駆動部の駆動速度を調節できる。
 またリングの回転角度が大きくなるほどリング復元トルクが大きくなり、これによって解放時のリング復元速度も変化する。従って、ユーザの操作により回転量が多くなっても解放時には迅速に原点位置に戻りつつ、徐々に速度が低下していく。これは、ズームレンズ41等の被駆動部の駆動速度も、解放時に徐々にゆっくりになって、やがて停止するという動作として反映されることになる。
The example of FIG. 10 shows the basic operating characteristics when the function of the lever mechanism is realized by the ring 50. That is, the relationship between the drive speed of the driven portion, the ring restoration torque, and the ring restoration speed at the time of release is linear with respect to the ring rotation amount so that the operating characteristics are almost the same as those of the lever mechanism of the normal spring restoration torque. I am trying to be.
As a result, the driving speed of the driven portion changes depending on the amount of rotation of the ring 50 by the user. That is, the user can adjust the driving speed of the driven portion by adjusting the rotation amount of the ring 50.
Further, as the rotation angle of the ring increases, the ring restoration torque increases, which also changes the ring restoration speed at the time of release. Therefore, even if the amount of rotation increases due to the user's operation, the speed gradually decreases while quickly returning to the origin position at the time of release. This is reflected in the operation that the driving speed of the driven portion such as the zoom lens 41 gradually slows down at the time of release and then stops.
 この動作を図11に示している。
 図11A、図11Bは、図10のような動作特性の場合において、ユーザがリング50を解放した時の、リング回転量、被駆動部の駆動速度の時間応答を示している。横軸は解放時からの経過時間である。
 リング50の解放の瞬間から、リング回転量は徐々に減少し、これに応じて被駆動部の駆動速度も徐々に低下することになる。
This operation is shown in FIG.
11A and 11B show the time response of the ring rotation amount and the drive speed of the driven portion when the user releases the ring 50 in the case of the operation characteristics as shown in FIG. The horizontal axis is the elapsed time from the time of release.
From the moment when the ring 50 is released, the amount of rotation of the ring gradually decreases, and the driving speed of the driven portion also gradually decreases accordingly.
 つまり、メカニカルなレバー機構で実現しているものと同じ機能、特性がソフトウェアにより実現される。
 そして被駆動部の駆動速度とリング回転量は図10Aのように線形の関係のため、ユーザは直感的にレンズ駆動速度を操作できる。
 また、図10A、図10B、図10Cの各々の傾きは、プログラマブルに設計可能である。即ち変換情報62a,63a,72aの設定により変更可能である。例えば傾きを小さくすることで、リング50の操作に対する感度を下げて微細な速度調整を行うようにしたり、逆に感度を上げて、少しのリング回転でも、高速に被駆動部が駆動されるようにしたりすることも可能となる。
In other words, the same functions and characteristics as those realized by the mechanical lever mechanism are realized by software.
Since the drive speed of the driven unit and the ring rotation amount have a linear relationship as shown in FIG. 10A, the user can intuitively operate the lens drive speed.
Further, the inclinations of FIGS. 10A, 10B, and 10C can be designed in a programmable manner. That is, it can be changed by setting the conversion information 62a, 63a, 72a. For example, by reducing the inclination, the sensitivity to the operation of the ring 50 is lowered to perform fine speed adjustment, or conversely, the sensitivity is increased so that the driven portion is driven at high speed even with a small ring rotation. It is also possible to make it.
 図12は、被駆動部の最大速度に合わせてリング50の駆動範囲をメカニカル端(可動端)のように制限する例である。
 図12Aのように、被駆動部の駆動速度として、一方向への最大速度V1、他方向への最大速度V2の範囲で可変されるとしたときに、この最大速度V1,V2に対応するリング回転量RL1、RL2を限度として、リング操作可能な範囲を制限する。
FIG. 12 is an example in which the drive range of the ring 50 is limited to the mechanical end (movable end) according to the maximum speed of the driven portion.
As shown in FIG. 12A, when the drive speed of the driven portion is varied in the range of the maximum speed V1 in one direction and the maximum speed V2 in the other direction, the rings corresponding to the maximum speeds V1 and V2. The range in which the ring can be operated is limited by limiting the rotation amounts RL1 and RL2.
 このために図12Bのように、リング50の操作がリング回転量RL1、RL2に至った場合に、リング復元トルクを最大化し、ユーザがそれ以上回転させようとしても、回転させることが困難な状態になるようにする。
 これにより、リング50はリング回転量RL1、RL2の範囲内でのみ回転可能なようにユーザに体感させる。換言すれば、実際にはリング50は無限回転可能な構造であっても、機構的な可動端が設けられているかのようにユーザに感じさせるようにする。
 図12Cのように、解放時リング復元速度も、可動範囲に対応したものとなる。
Therefore, as shown in FIG. 12B, when the operation of the ring 50 reaches the ring rotation amounts RL1 and RL2, the ring restoration torque is maximized, and even if the user tries to rotate the ring further, it is difficult to rotate the ring 50. To be.
As a result, the user feels that the ring 50 can rotate only within the range of the ring rotation amounts RL1 and RL2. In other words, even if the ring 50 is actually a structure that can rotate infinitely, it makes the user feel as if a mechanical movable end is provided.
As shown in FIG. 12C, the ring restoration speed at the time of release also corresponds to the movable range.
 このようにすることで、ユーザは被駆動部の駆動速度の最高速に到達したことをリング50の可動端のような負荷によって認識することができ、リング50を回し過ぎるという無駄な操作を回避できる。
 メカニカルなレバー機構の場合は、構造上、可動端は存在することになるため、図12のような動作特性により、リング50を、よりレバー機構のような操作感で使用できるようになる。
By doing so, the user can recognize that the maximum driving speed of the driven unit has been reached by a load such as a movable end of the ring 50, and avoids a wasteful operation of turning the ring 50 too much. can.
In the case of the mechanical lever mechanism, since the movable end is structurally present, the ring 50 can be used with an operation feeling more like that of the lever mechanism due to the operation characteristics as shown in FIG.
 なお、被駆動部の可動端の検出信号に基づいてリング復元トルクを最大化するようにしてもよい。例えばズームレンズ41やフォーカスレンズ43については可動端に達したことを検出するセンサが設けられることが想定されるが、鏡筒制御部23は、このような可動端センサの検出情報により、ズームレンズ41やフォーカスレンズ43が可動端に達したことを検出した場合に、リング復元トルクを最大化するように制御する。これによってもユーザに可動端を認識させることができる。
 アイリス42についても同様であり、アイリス42の最大開口、最小開口を検出してリング復元トルクを最大化することが考えられる。
The ring restoration torque may be maximized based on the detection signal of the movable end of the driven portion. For example, it is assumed that the zoom lens 41 and the focus lens 43 are provided with a sensor for detecting that the movable end has been reached, but the lens barrel control unit 23 is based on the detection information of the movable end sensor to be a zoom lens. When it is detected that the 41 or the focus lens 43 has reached the movable end, the ring restoration torque is controlled to be maximized. This also allows the user to recognize the movable end.
The same applies to the iris 42, and it is conceivable to detect the maximum opening and the minimum opening of the iris 42 to maximize the ring restoration torque.
 またメカニカルな可動端に限らず、何らかの原因やモード設定などにより、被駆動部の動作域を制限したい場合にも利用できる。
 例えばフォーカスレンジリミッターなどとしてフォーカスレンズ43の可動範囲を制限したい場合に、許容される可動範囲の端に到達したときにリング復元トルクを最大化することで、ユーザに、それ以上の変動が制限されていることを知覚させることができる。
In addition to the mechanical movable end, it can also be used when you want to limit the operating range of the driven unit due to some cause or mode setting.
For example, when it is desired to limit the movable range of the focus lens 43 as a focus range limiter, by maximizing the ring restoration torque when the end of the allowable movable range is reached, further fluctuation is restricted to the user. You can perceive that you are doing it.
 図13は、リング50の回転量と被駆動部の駆動速度の関係を非線形にした一例である。
 図13Aの場合、リング回転量が少ない領域では、被駆動部の駆動速度の上昇が比較的緩やかで、リング回転量が多い領域では、被駆動部の駆動速度の上昇が比較的急峻になる特性となっている。
 図13B、図13Cは、図10B、図10Cと同様の特性としている。
FIG. 13 is an example in which the relationship between the amount of rotation of the ring 50 and the driving speed of the driven portion is made non-linear.
In the case of FIG. 13A, the drive speed of the driven portion increases relatively slowly in the region where the ring rotation amount is small, and the drive speed of the driven unit increases relatively steeply in the region where the ring rotation amount is large. It has become.
13B and 13C have the same characteristics as those of FIGS. 10B and 10C.
 図13Aのような特性とすることで、低速域の被駆動部の駆動速度の感度を落とすことになり、これは低速域で微細な速度調整が可能になることを意味する。
 例えばフォーカス状態を精密に追い込みたい場合は、ユーザは微妙にリング50を回して調整する操作を行うが、このようなときに、フォーカスレンズ駆動が低速であることで、微妙な駆動調整がしやすく、最適状態に追い込むための操作に好適となる。
 また、スローズームといわれる動画撮影時に非常に低速で被写体に寄る(引く)場合に用いる表現手法の時に、リング50の低速度の感度を下げることで、低速度の微調整を可能としたいシチュエーションにおいても好適な特性となる。
By having the characteristics as shown in FIG. 13A, the sensitivity of the driving speed of the driven portion in the low speed range is lowered, which means that fine speed adjustment is possible in the low speed range.
For example, when the user wants to drive the focus state precisely, the user performs an operation of delicately turning the ring 50 to make adjustments. In such a case, the focus lens drive is slow, so that delicate drive adjustments are easy. , Suitable for operations to drive to the optimum state.
Also, in a situation where you want to make fine adjustments to the low speed by lowering the sensitivity of the ring 50 at a low speed, which is called slow zoom, which is an expression method used when approaching (pulling) the subject at a very low speed. Is also a suitable property.
 この図13Aのような非線形の特性とする場合と、図10Aのように線形の特性にする場合とを、設定情報MS2により切り替えることができるようにすれば、状況に応じて、より望ましいリング操作性を実現できる。
 もちろん図13Aのような非線形の特性の場合として、どの領域で感度を低下/上昇させるかという設定や、その感度変更の度合いの設定なども多様に考えられる。
If the setting information MS2 can be used to switch between the case of having a non-linear characteristic as shown in FIG. 13A and the case of having a linear characteristic as shown in FIG. 10A, a more desirable ring operation can be performed depending on the situation. Can realize sex.
Of course, in the case of the non-linear characteristic as shown in FIG. 13A, various settings such as in which region the sensitivity is lowered / increased and the degree of the sensitivity change can be considered.
 図14は、リング50の回転量とリング復元トルクの関係を非線形にした一例である。
 例えば図14Bのように、リング回転量が少ない領域では、リング復元トルクの上昇が比較的緩やかで、リング回転量が多い領域では、リング復元トルクの上昇が比較的急峻になる特性とする。
 図14A、図14Cは、図10A、図10Cと同様の特性としている。
FIG. 14 is an example in which the relationship between the rotation amount of the ring 50 and the ring restoration torque is non-linear.
For example, as shown in FIG. 14B, the ring restoration torque increases relatively slowly in a region where the ring rotation amount is small, and the ring restoration torque increases relatively steeply in a region where the ring rotation amount is large.
14A and 14C have the same characteristics as those of FIGS. 10A and 10C.
 このような特性とすることで、リング回転量の少ない領域、つまりユーザが、被駆動部を少しだけ駆動させたいようなシチュエーションでは、ユーザが感じる逆方向へのトルクが小さい。このため、弱い力で操作しやすい。
 従ってユーザが被駆動部を微細に調整したい場合に、比較的弱い力で、精密な操作がしやすくなる。微細な調整の時は、弱い力で操作できるようにすることで、回転量を調整しやすく、操作がしやすいものとなる。
With such a characteristic, the torque in the reverse direction felt by the user is small in a region where the amount of ring rotation is small, that is, in a situation where the user wants to drive the driven portion a little. Therefore, it is easy to operate with a weak force.
Therefore, when the user wants to finely adjust the driven portion, it becomes easy to perform a precise operation with a relatively weak force. At the time of fine adjustment, it is easy to adjust the amount of rotation and to operate it by making it possible to operate with a weak force.
 またこの場合に、図14Aのように、リング回転量と被駆動部の駆動速度の関係については線形にしておくことによって、リング回転量で厳密にレンズ駆動速度が制御されることになり、レンズ回転量に応じた駆動操作を行いたいユーザにとって望ましいものとすることができる。 Further, in this case, as shown in FIG. 14A, by making the relationship between the ring rotation amount and the drive speed of the driven portion linear, the lens drive speed is strictly controlled by the ring rotation amount, and the lens It can be desirable for a user who wants to perform a drive operation according to the amount of rotation.
 図14のような特性は、例えばスローズームの時に低速度の微調整を実現しつつ、リング50の回転角度で厳密に速度を管理したいシチュエーションで用いることに好適となる。 The characteristics shown in FIG. 14 are suitable for use in situations where it is desired to strictly control the speed by the rotation angle of the ring 50 while realizing fine adjustment of the low speed at the time of slow zoom, for example.
 なお、図14Bの特性と図13Aの特性を組み合わせるような例も考えられる。
 また、図14Bのような特性をプログラマブルに実現することができる。例えば設定情報MS1によって図10Bの特性と図14Bの特性の切り替えができるようにすれば、状況に応じて、より望ましいリング操作性を実現できる。
 もちろん図14Aのような非線形の特性の場合として、どの領域でリング復元トルクを低下/上昇させるかの設定や、そのトルクの変更の度合いの設定なども多様に考えられる。
An example in which the characteristics of FIG. 14B and the characteristics of FIG. 13A are combined can be considered.
In addition, the characteristics shown in FIG. 14B can be realized in a programmable manner. For example, if the characteristic of FIG. 10B and the characteristic of FIG. 14B can be switched by the setting information MS1, more desirable ring operability can be realized depending on the situation.
Of course, in the case of the non-linear characteristic as shown in FIG. 14A, it is possible to set various regions in which the ring restoration torque is reduced / increased and the degree of change in the torque.
 図15,図16は、リング50を解放した後の原点へ復帰する速度軌跡をプログラマブルに設定する例である。
 図15A、図15Bは図10A、図10Bと同様の特性であるが、図15Cは、リング回転量に対する解放時のリング復元速度の関係を非線形としている。
 この場合のリング解放時からのリング回転量とレンズ駆動速度の関係が図16A、図16Bに示される。
15 and 16 are examples of programmable setting of the velocity locus for returning to the origin after releasing the ring 50.
15A and 15B have the same characteristics as those of FIGS. 10A and 10B, but FIG. 15C shows that the relationship between the ring restoration speed at the time of release and the ring rotation amount is non-linear.
The relationship between the amount of ring rotation and the lens driving speed from the time the ring is released in this case is shown in FIGS. 16A and 16B.
 図15Cのように、解放時リング復元速度とリング回転量の関係を非線形に設計することで、図16Aのようにリング解放からのリング回転量の軌跡を線形に設計することができる。合わせて図16Bのように、リング解放からの被駆動部の駆動速度の軌跡も線形になる。
 このため、リング50を解放した時のリング回転量から停止までの時間の予測が容易となる。
 なお、軌跡は線形に拘らず、プログラマブルに設計可能である。
By designing the relationship between the ring restoration speed at release and the ring rotation amount non-linearly as shown in FIG. 15C, the locus of the ring rotation amount from the ring release can be linearly designed as shown in FIG. 16A. At the same time, as shown in FIG. 16B, the locus of the driving speed of the driven portion from the ring release is also linear.
Therefore, it becomes easy to predict the time from the ring rotation amount when the ring 50 is released to the stop.
The trajectory can be designed programmable regardless of the linearity.
 例えば動画撮影の場合は、被写体への寄り(引き)の滑らかさが重視されるが、図15,図16のような特性は、寄り(引き)が止まるまでの速度軌跡を事前に設計したいシチュエーションで用いることが好適である。ユーザは、止まるまで継続してリングを操作する必要が無くなり、撮影される画像の品質を高めるとともに、ユーザ(操作者)の負担が軽減される。 For example, in the case of moving image shooting, the smoothness of the approach (pull) to the subject is emphasized, but the characteristics shown in FIGS. 15 and 16 are situations in which the speed trajectory until the approach (pull) stops is designed in advance. It is preferable to use in. The user does not have to continuously operate the ring until it stops, the quality of the captured image is improved, and the burden on the user (operator) is reduced.
 以上の図10から図16で説明してきた各特性は、固定的に用いられてもよいし、ケースに応じて切り替えられてもよい。
 ユーザは、撮影の際に、シチュエーションに合った特性を選択することで、意図に合った撮影を、より容易に行うことができるようになる。
Each of the characteristics described with reference to FIGS. 10 to 16 may be used in a fixed manner or may be switched depending on the case.
By selecting the characteristics suitable for the situation at the time of shooting, the user can more easily perform shooting according to the intention.
 なお、本実施の形態の場合、ユーザがリング50を解放すると、リング50は原点位置に戻るが、機構のガタや、センサのノイズによってチャタリングを起こす可能性がある。
 その場合に対処するためには、リング50の原点付近でリング50が駆動しない不感帯を設けるようにしたり、リング50の原点付近で被駆動部が駆動しない不感帯を設けるようにしたりすることが好適となる。
In the case of the present embodiment, when the user releases the ring 50, the ring 50 returns to the origin position, but there is a possibility that chattering may occur due to the backlash of the mechanism or the noise of the sensor.
In order to deal with such a case, it is preferable to provide a dead zone in which the ring 50 is not driven near the origin of the ring 50, or to provide a dead zone in which the driven portion is not driven near the origin of the ring 50. Become.
<4.まとめ及び変形例>
 以上の実施の形態によれば次のような効果が得られる。
 実施の形態のレンズ鏡筒2、あるいはレンズ鏡筒2を含む撮像装置1は、手動操作により回転可能とされるリング50、及びリング50を回転駆動するモータ51を含むリング部24と、被駆動部としてズームレンズ41やフォーカスレンズ43、又はアイリス42を含むレンズ系21と、被駆動部を駆動するレンズ系駆動部22と、鏡筒制御部23を備えている。鏡筒制御部23は、リング50が手動操作により回転されることに応じて、レンズ系駆動部22に被駆動部の駆動を実行させる制御を行うとともに、モータ51によりリング50において回転操作方向に対する逆方向に回転させる復元トルクを生じさせる制御を行うようにしている。
 このような構成により、ユーザは、リング50を一般的なズームレバー等のレバーと同様の操作感を得ることができる。
 即ちレンズ鏡筒2などにズーム、アイリス、フォーカス等の手動操作のためのリング50を備える場合において、リング50を操作したときに、原点位置に戻るような逆方向のトルクをモータ51により与えることで、ユーザは、レンズ系21の操作のために、リング50を回転させても、操作をやめると自然にリング50が原点位置に戻るようになる。
 これにより、リング操作、ひいてはリング操作に応じた被駆動部の変動速度を安定させることができ、しかも手動のコントロールを容易化できる。例えばリング50の回転に応じてズームレンズ41が一定速度で移動されることで、通常の手動リングでは困難な一定速度でのズーム変化が可能となる。
 さらに、リングの形状的特徴から、ユーザがどのポジションでもホールドしてレバー操作と同様の操作が可能であり、その意味でレバー操作よりも操作性が向上することにもなる。
<4. Summary and modification>
According to the above embodiment, the following effects can be obtained.
The lens barrel 2 of the embodiment or the image pickup apparatus 1 including the lens barrel 2 is driven by a ring 50 that can be rotated by manual operation, a ring portion 24 including a motor 51 that drives the ring 50 to rotate, and a driven portion 24. It includes a lens system 21 including a zoom lens 41, a focus lens 43, or an iris 42, a lens system drive unit 22 for driving a driven unit, and a lens barrel control unit 23. The lens barrel control unit 23 controls the lens system drive unit 22 to drive the driven unit in response to the rotation of the ring 50 by manual operation, and the motor 51 controls the rotation operation direction of the ring 50 in the ring 50. Control is performed to generate a restoration torque that rotates in the opposite direction.
With such a configuration, the user can obtain a feeling of operation of the ring 50 in the same manner as a lever such as a general zoom lever.
That is, when the lens barrel 2 or the like is provided with the ring 50 for manual operation such as zoom, iris, focus, etc., when the ring 50 is operated, the motor 51 applies a torque in the reverse direction so as to return to the origin position. Then, even if the user rotates the ring 50 for the operation of the lens system 21, the ring 50 naturally returns to the origin position when the operation is stopped.
As a result, the fluctuation speed of the driven portion according to the ring operation and eventually the ring operation can be stabilized, and manual control can be facilitated. For example, by moving the zoom lens 41 at a constant speed according to the rotation of the ring 50, it is possible to change the zoom at a constant speed, which is difficult with a normal manual ring.
Further, due to the shape characteristics of the ring, the user can hold the ring at any position and perform the same operation as the lever operation, and in that sense, the operability is improved as compared with the lever operation.
 実施の形態では、鏡筒制御部23は、リング50が手動操作により回転されたときに、レンズ系駆動部22にリング50の回転量に応じた駆動指示を行うとともに、モータ51により、リング50を回転原点位置に戻す復元トルクを発生させる制御を行う例を説明した。
 これによりユーザは、リング50の回転量により、ズームレンズ41、フォーカスレンズ43、アイリス42等の変動速度を調整した操作を行うことができる。
 またユーザはリング50に発生するトルクによってレバーのバネ機構の様に原点への復元力を感じることができる。
 また、その状態でユーザがリング50から手を離すとレバー機構と同様にリング50は原点角度まで戻る。このとき、リング50の回転角度と原点角度の偏差はゼロになるため、鏡筒制御部23によるレンズ系駆動部22への駆動指示はゼロになり、ズーム、またはアイリス、またはフォーカスの変化の速度はゼロとなる。
 以上により、リング50をレバー機構の様に操作し、しかもリング50の回転量に応じて任意の速度でレンズ系21を駆動させることが可能となる。
 そして、レンズ系21の任意速度での駆動を、リング50によっても、速度ムラや手振れの影響なく実現できるようになる。つまり通常のマニュアルリングでは困難であった安定した変化を行う操作が容易に可能となる。
In the embodiment, when the ring 50 is manually rotated, the lens barrel control unit 23 gives a drive instruction to the lens system drive unit 22 according to the amount of rotation of the ring 50, and the motor 51 gives a drive instruction to the ring 50. An example of controlling to generate a restoration torque to return the lens to the rotation origin position has been described.
As a result, the user can perform an operation in which the fluctuation speed of the zoom lens 41, the focus lens 43, the iris 42, etc. is adjusted according to the amount of rotation of the ring 50.
Further, the user can feel the restoring force to the origin like the spring mechanism of the lever by the torque generated in the ring 50.
Further, when the user releases the hand from the ring 50 in that state, the ring 50 returns to the origin angle as in the lever mechanism. At this time, since the deviation between the rotation angle and the origin angle of the ring 50 becomes zero, the drive instruction to the lens system drive unit 22 by the lens barrel control unit 23 becomes zero, and the speed of zoom, iris, or focus change. Is zero.
As described above, the ring 50 can be operated like a lever mechanism, and the lens system 21 can be driven at an arbitrary speed according to the amount of rotation of the ring 50.
Then, the lens system 21 can be driven at an arbitrary speed even by the ring 50 without being affected by speed unevenness and camera shake. In other words, it is possible to easily perform operations that make stable changes, which was difficult with ordinary manual rings.
 実施の形態では、鏡筒制御部23が、リング50に対して、手動操作による回転量に応じて変換情報62a,63aに基づいて求められる復元トルクをモータにより与えるようにする制御する例を述べた。
 鏡筒制御部23は、変換情報62a,63aを備えることで、リング50の回転量に応じてモータ51の駆動制御を行うことができ、ユーザのリング50の回転操作の回転量を反映したモータ51の制御を適切に実行できる。
In the embodiment, an example is described in which the lens barrel control unit 23 controls the ring 50 so that the motor gives the restoration torque obtained based on the conversion information 62a and 63a according to the amount of rotation by manual operation. rice field.
By providing the conversion information 62a and 63a, the lens barrel control unit 23 can control the drive of the motor 51 according to the rotation amount of the ring 50, and the motor reflects the rotation amount of the rotation operation of the ring 50 of the user. The control of 51 can be appropriately executed.
 実施の形態では、変換情報62a、63aは、設定情報MS1に応じて更新される構成とした。即ちリング50の回転角度とモータ駆動制御の関係はプログラマブルであるとした。
 変換情報62a、63aを設定情報MS1によって書き換え可能とすることで、変換情報62a、63aで規定される、リング50とモータ51の駆動制御の関係を、リング50の操作性やユースケースなどに応じて適切な状態に変更することが可能となる。
 なお変換情報62a、63aは更新不能な固定の情報とされる例も考えられる。
In the embodiment, the conversion information 62a and 63a are configured to be updated according to the setting information MS1. That is, the relationship between the rotation angle of the ring 50 and the motor drive control is programmable.
By making the conversion information 62a and 63a rewritable by the setting information MS1, the relationship between the drive control of the ring 50 and the motor 51 defined by the conversion information 62a and 63a can be changed according to the operability of the ring 50, the use case, and the like. It is possible to change to an appropriate state.
In addition, it is conceivable that the conversion information 62a and 63a are fixed information that cannot be updated.
 実施の形態のでは、鏡筒制御部23が、レンズ系駆動部22に対して、リング50の手動操作による回転量に応じて変換情報72aに基づいて求められる駆動速度又は駆動位置の情報を与えるようにする制御を行う例を述べた。
 鏡筒制御部23は、変換情報72aを備えることで、リング50の回転量に応じてズームレンズ41、アイリス42、フォーカスレンズ43の駆動速度や駆動位置の制御を行うことができ、ユーザのリング50の回転操作の回転量を反映した駆動制御を適切に実行できる。
In the embodiment, the lens barrel control unit 23 gives the lens system drive unit 22 information on the drive speed or the drive position obtained based on the conversion information 72a according to the amount of rotation by the manual operation of the ring 50. An example of controlling the operation is described.
By providing the conversion information 72a, the lens barrel control unit 23 can control the drive speed and drive position of the zoom lens 41, the iris 42, and the focus lens 43 according to the amount of rotation of the ring 50, and the user's ring. Drive control that reflects the rotation amount of the rotation operation of 50 can be appropriately executed.
 実施の形態では、変換情報72aは、設定情報MS2に応じて更新される構成とした。即ちリング50の回転角度とレンズ系の被駆動部の駆動制御の関係はプログラマブルであるとした。
 変換情報72aを設定情報MS2によって書き換え可能とすることで、変換情報72aで規定される、リング50の回転量とズームレンズ41、アイリス42、又はフォーカスレンズ43の駆動制御の関係を、操作性やユースケースなどに応じて適切な状態に変更することが可能となる。
 なお、変換情報72aは更新不能な固定の情報とされる例も考えられる。
In the embodiment, the conversion information 72a is configured to be updated according to the setting information MS2. That is, it is assumed that the relationship between the rotation angle of the ring 50 and the drive control of the driven portion of the lens system is programmable.
By making the conversion information 72a rewritable by the setting information MS2, the relationship between the rotation amount of the ring 50 and the drive control of the zoom lens 41, the iris 42, or the focus lens 43 defined by the conversion information 72a can be changed. It is possible to change to an appropriate state according to the use case.
In addition, it is conceivable that the conversion information 72a is fixed information that cannot be updated.
 実施の形態のでは、鏡筒制御部23が、レンズ系駆動部22に対して、リング50の手動操作が終了した時点(解放時)からの原点位置へ復帰する速度軌跡を可変設定可能とされている例を述べた。
 鏡筒制御部23は、図11や図16のようにリング50の手動操作が終了した時点からの原点位置へ復帰する速度軌跡を可変設定可能とされている。これにより原点位置への復帰操作、及びその期間のズームレンズ41等の動作が適切に設定できる。
 また、リング50の解放からのレンズ駆動速度の軌跡を線形にした場合は、ユーザがリング50を離した時のリング回転量から、停止までの時間の予測が容易となる。
In the embodiment, the lens barrel control unit 23 can variably set the speed locus of the lens system drive unit 22 to return to the origin position from the time when the manual operation of the ring 50 is completed (when released). I mentioned an example.
As shown in FIGS. 11 and 16, the lens barrel control unit 23 can variably set the speed locus for returning to the origin position from the time when the manual operation of the ring 50 is completed. As a result, the return operation to the origin position and the operation of the zoom lens 41 and the like during that period can be appropriately set.
Further, when the locus of the lens driving speed from the release of the ring 50 is made linear, it becomes easy to predict the time from the ring rotation amount when the user releases the ring 50 to the stop.
 実施の形態では、鏡筒制御部23が、リング50の回転量と、レンズ系駆動部22による被駆動部の駆動速度が線形関係になるように制御する例を述べた(図10、図12、図14、図15参照)。
 これによりユーザにとって、リング50の回転操作量(回転角度)に応じたズームレンズ41、アイリス42、フォーカスレンズ43の駆動速度を把握しやすいものとなる。
 またこのような線形関係が設定情報MS2によってプログラムされた変換情報72aに基づくものである場合、線形関係を示す直線の傾きを変化させ、操作性の向上やユースケースへの適合を実現できる。
 例えば線形関係を示す直線の傾きを小さくすることで、リング操作に対する感度を下げてズームレンズ41等の被駆動部の微細な速度調整が可能となる。
 逆に線形関係を示す直線の傾きを大きくすることで、リング操作に対する感度を上げてズームレンズ41等の被駆動部の変化の応答性を上げることもできる。
In the embodiment, an example is described in which the lens barrel control unit 23 controls the rotation amount of the ring 50 and the drive speed of the driven unit by the lens system drive unit 22 so as to have a linear relationship (FIGS. 10 and 12). , FIG. 14, FIG. 15).
This makes it easier for the user to grasp the driving speed of the zoom lens 41, the iris 42, and the focus lens 43 according to the rotation operation amount (rotation angle) of the ring 50.
Further, when such a linear relationship is based on the conversion information 72a programmed by the setting information MS2, the slope of the straight line indicating the linear relationship can be changed to improve operability and adapt to the use case.
For example, by reducing the inclination of the straight line indicating the linear relationship, the sensitivity to the ring operation can be lowered and the speed of the driven portion such as the zoom lens 41 can be finely adjusted.
On the contrary, by increasing the inclination of the straight line showing the linear relationship, it is possible to increase the sensitivity to the ring operation and improve the responsiveness to the change of the driven portion such as the zoom lens 41.
 実施の形態では、鏡筒制御部23が、リング50の回転量と、レンズ系駆動部22による被駆動部の駆動速度が非線形関係になるように制御する例を述べた(図13参照)。
 これによりユーザにとって、リング50の回転操作量(回転角度)に応じたズームレンズ41、アイリス42、フォーカスレンズ43の駆動速度を、角度域に応じて適切な状態とすることができる。
 例えば図13Aの例のように低速域の駆動速度を落として、微細なレンズ位置調整ができるようにすることができる。
In the embodiment, an example is described in which the lens barrel control unit 23 controls the rotation amount of the ring 50 and the drive speed of the driven unit by the lens system drive unit 22 so as to have a non-linear relationship (see FIG. 13).
As a result, the drive speed of the zoom lens 41, the iris 42, and the focus lens 43 according to the rotation operation amount (rotation angle) of the ring 50 can be set to an appropriate state for the user according to the angle range.
For example, as in the example of FIG. 13A, the driving speed in the low speed range can be reduced so that the lens position can be finely adjusted.
 実施の形態では、鏡筒制御部23が、リング50の回転量と、モータ51による復元トルクが線形関係になるように制御する例を述べた(図10、図12、図13、図15参照)。
 これによりリング50の回転操作量(回転角度)に応じて、原点位置への復帰が迅速に行われるようにすることができる。ユーザは回転操作量に応じた手応えを感じることにもなる。
In the embodiment, an example is described in which the lens barrel control unit 23 controls the rotation amount of the ring 50 and the restoration torque by the motor 51 so as to have a linear relationship (see FIGS. 10, 12, 13, and 15). ).
As a result, it is possible to quickly return to the origin position according to the rotation operation amount (rotation angle) of the ring 50. The user also feels a response according to the amount of rotation operation.
 実施の形態では、鏡筒制御部23が、リング50の回転量と、モータ51による復元トルクが非線形関係になるように制御する例を述べた(図14参照)。
 例えば図14Bの例のように低速域の復元トルクを下げることで、ユーザにとっては微細なレンズ駆動速度の調整操作がしやすいものとなり、ズームやフォーカスの追い込みの際に精細な調整がしやすい。
In the embodiment, an example is described in which the lens barrel control unit 23 controls the rotation amount of the ring 50 and the restoration torque by the motor 51 so as to have a non-linear relationship (see FIG. 14).
For example, by lowering the restoration torque in the low speed range as in the example of FIG. 14B, it becomes easy for the user to perform a fine adjustment operation of the lens drive speed, and it is easy to make a fine adjustment when zooming or focusing.
 実施の形態では、鏡筒制御部23が、リング50の回転量が所定値となることに応じて、モータ51により、それ以上の回転を阻止する復元トルクが生じるように制御する例を述べた(図12参照)。
 これにより、実際には機械的な可動端がないリング50で、被駆動部の機械的な可動端を模擬的に表現することができ、リング50をレバーのように使用する場合に、ユーザにわかりやすい操作性を提供できる。
 またレンズ駆動の最大速度に合わせてリング50の可動範囲を可動端のように制限することが適切となる。ユーザは、レンズ駆動速度の最高速に到達したことをリング50の可動端のような負荷によって認識することができる。
 また、レンズ系21の被駆動部の機構上の可動範囲の端に到達したときにリング50に力覚をフィードバックするものとしてもよい。これにより、ユーザは、ズームレンズ41等が可動端に到達したことをリング50の可動端のような負荷によって認識することができる。
 また、例えばフォーカスレンジリミッターなどとして、レンズ系21の被駆動部の可動範囲を制限したい場合に、その可動範囲の端に到達したときにリングに力覚をフィードバックするものとしてもよい。これにより、ユーザは、制限された可動範囲の端に到達したことをリング50の可動端のような負荷によって認識することができる。
In the embodiment, an example has been described in which the lens barrel control unit 23 controls the motor 51 to generate a restoration torque that prevents further rotation according to the rotation amount of the ring 50 becoming a predetermined value. (See FIG. 12).
As a result, the ring 50 which does not actually have a mechanical movable end can simulate the mechanical movable end of the driven portion, and when the ring 50 is used like a lever, the user can use it. It can provide easy-to-understand operability.
Further, it is appropriate to limit the movable range of the ring 50 like a movable end according to the maximum speed of lens drive. The user can recognize that the maximum lens driving speed has been reached by a load such as a movable end of the ring 50.
Further, the force sense may be fed back to the ring 50 when the end of the movable range on the mechanism of the driven portion of the lens system 21 is reached. As a result, the user can recognize that the zoom lens 41 or the like has reached the movable end by a load such as the movable end of the ring 50.
Further, for example, when it is desired to limit the movable range of the driven portion of the lens system 21 as a focus range limiter, the force sense may be fed back to the ring when the end of the movable range is reached. Thereby, the user can recognize that the end of the limited movable range has been reached by a load such as the movable end of the ring 50.
 実施の形態では、鏡筒制御部23が、モータ51による復元トルクにより、リング50の回転操作時にクリック感を生じさせるように制御する例を述べた。
 例えばリング50の回転に応じて復元トルクを周期的に変動させることで、ユーザにクリック感が伝わるようにする。
 これによりユーザはリング50の操作時に段階性を得ることができる。例えばアイリス操作の場合などに好適となる。
In the embodiment, an example has been described in which the lens barrel control unit 23 controls the restoration torque of the motor 51 so as to generate a click feeling when the ring 50 is rotated.
For example, the restoration torque is periodically changed according to the rotation of the ring 50 so that the user can feel the click.
This allows the user to obtain graduality when operating the ring 50. For example, it is suitable for iris operation.
 実施の形態では、鏡筒制御部23が、リング50の手動操作に応じた被駆動部として、ズームレンズ41、フォーカスレンズ43、アイリス42を切り替える例を述べた。
 例えば1つのリング50を、手動ズーム操作、手動フォーカスレンズ操作、手動アイリス操作に任意に切り替えることができるようにする。
 これによりユーザは1つのリング50をズームレンズ41、フォーカスレンズ43、アイリス42のうちの必要な操作に割り当てるとともに、その割り当てた被駆動部についてレバーのような操作感で操作を行うことができるようになる。
 なお、上述のように複数のリング50を設けることも想定される。
In the embodiment, an example is described in which the lens barrel control unit 23 switches the zoom lens 41, the focus lens 43, and the iris 42 as the driven unit corresponding to the manual operation of the ring 50.
For example, one ring 50 can be arbitrarily switched between manual zoom operation, manual focus lens operation, and manual iris operation.
As a result, the user can assign one ring 50 to the necessary operation of the zoom lens 41, the focus lens 43, and the iris 42, and can operate the assigned driven portion with a lever-like operation feeling. become.
It is also assumed that a plurality of rings 50 are provided as described above.
 以上の実施の形態の技術は、交換レンズとしてのレンズ装置に適用できるし、レンズ鏡筒を備えた撮像装置としても適用できる。 The technique of the above embodiment can be applied to a lens device as an interchangeable lens, and can also be applied to an image pickup device provided with a lens barrel.
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。 It should be noted that the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 なお本技術は以下のような構成も採ることができる。
 (1)
 手動操作により回転可能とされるリング、及び前記リングを回転駆動するモータを含むリング部と、
 被駆動部としてレンズ又はアイリスを含むレンズ系と、
 前記被駆動部を駆動するレンズ系駆動部と、
 前記リングが手動操作により回転されることに応じて、前記レンズ系駆動部に前記被駆動部の駆動を実行させる制御を行うとともに、前記モータにより前記リングにおいて回転操作方向に対する逆方向に回転させる復元トルクを生じさせる制御を行う制御部と、を備えた
 レンズ装置。
 (2)
 前記制御部は、
  前記リングが手動操作により回転されたときに、前記レンズ系駆動部に前記リングの回転量に応じた駆動指示を行うとともに、前記モータにより、前記リングを回転原点位置に戻す前記復元トルクを発生させる制御を行う
 上記(1)に記載のレンズ装置。
 (3)
 前記制御部は、
 前記リングに対して、手動操作による回転量に応じて変換情報に基づいて求められる前記復元トルクを前記モータにより与えるようにする制御を行う
 上記(1)又は(2)に記載のレンズ装置。
 (4)
 前記変換情報は、設定情報に応じて更新される構成とされている
 上記(3)に記載のレンズ装置。
 (5)
 前記制御部は、
 前記レンズ系駆動部に対して、前記リングの手動操作による回転量に応じて変換情報に基づいて求められる駆動速度又は駆動位置の情報を与えるようにする制御を行う
 上記(1)から(4)のいずれかに記載のレンズ装置。
 (6)
 前記変換情報は、設定情報に応じて更新される構成とされている
 上記(5)に記載のレンズ装置。
 (7)
 前記制御部は、
 前記レンズ系駆動部に対して、前記リングの手動操作が終了した時点からの原点位置へ復帰する速度軌跡を可変設定可能とされている
 上記(1)から(6)のいずれかに記載のレンズ装置。
 (8)
 前記制御部は、
 前記リングの回転量と、前記レンズ系駆動部による前記被駆動部の駆動速度が線形関係になるように制御する
 上記(1)から(7)のいずれかに記載のレンズ装置。
 (9)
 前記制御部は、
 前記リングの回転量と、前記レンズ系駆動部による前記被駆動部の駆動速度が非線形関係になるように制御する
 上記(1)から(7)のいずれかに記載のレンズ装置。
 (10)
 前記制御部は、
 前記リングの回転量と、前記モータによる前記復元トルクが線形関係になるように制御する
 上記(1)から(9)のいずれかに記載のレンズ装置。
 (11)
 前記制御部は、
 前記リングの回転量と、前記モータによる前記復元トルクが非線形関係になるように制御する
 上記(1)から(9)のいずれかに記載のレンズ装置。
 (12)
 前記制御部は、
 前記リングの回転量が所定値となることに応じて、前記モータにより、それ以上の回転を阻止する前記復元トルクが生じるように制御する
 上記(1)から(11)のいずれかに記載のレンズ装置。
 (13)
 前記制御部は、
 前記モータによる復元トルクにより、前記リングの回転操作時にクリック感を生じさせるように制御する
 上記(1)から(12)のいずれかに記載のレンズ装置。
 (14)
 前記制御部は、
 前記リングの手動操作に応じた前記被駆動部として、ズームレンズ、フォーカスレンズ、アイリスを切り替える
 上記(1)から(13)のいずれかに記載のレンズ装置。
 (15)
 手動操作により回転可能とされるリング、及び前記リングを回転駆動するモータを含むリング部と、
 被駆動部としてレンズ又はアイリスを含むレンズ系と、
 前記被駆動部を駆動するレンズ系駆動部と、
 前記リングが手動操作により回転されることに応じて、前記レンズ系駆動部に前記被駆動部の駆動を実行させる制御を行うとともに、前記モータにより前記リングにおいて回転操作方向に対する逆方向に回転させる復元トルクを生じさせる制御を行う制御部と、を備えた
 撮像装置。
 (16)
 手動操作により回転可能とされるリング、及び前記リングを回転駆動するモータを含むリング部と、
 被駆動部としてレンズ又はアイリスを含むレンズ系と、
 前記被駆動部を駆動するレンズ系駆動部と、
 を備えた装置の制御方法として、
 前記リングが手動操作により回転されることに応じて、前記レンズ系駆動部に前記被駆動部の駆動を実行させる制御を行うとともに、前記モータにより前記リングにおいて回転操作方向に対する逆方向に回転させる復元トルクを生じさせる制御を行う
 制御方法。
The present technology can also adopt the following configurations.
(1)
A ring that can be rotated by manual operation, a ring portion that includes a motor that drives the ring to rotate, and
A lens system that includes a lens or iris as a driven unit,
The lens system drive unit that drives the driven unit and
In response to the rotation of the ring by manual operation, the lens system drive unit is controlled to drive the driven unit, and the motor rotates the ring in the direction opposite to the rotation operation direction. A lens device equipped with a control unit that controls the generation of torque.
(2)
The control unit
When the ring is rotated by manual operation, a drive instruction is given to the lens system drive unit according to the amount of rotation of the ring, and the motor generates the restoration torque for returning the ring to the rotation origin position. The lens device according to (1) above, which controls.
(3)
The control unit
The lens device according to (1) or (2) above, wherein the ring is controlled so that the motor gives the restoration torque obtained based on the conversion information according to the amount of rotation by manual operation.
(4)
The lens device according to (3) above, wherein the conversion information is updated according to the setting information.
(5)
The control unit
Control is performed so as to give information on the drive speed or the drive position obtained based on the conversion information according to the amount of rotation by the manual operation of the ring to the lens system drive unit (1) to (4). The lens device according to any one of.
(6)
The lens device according to (5) above, wherein the conversion information is updated according to the setting information.
(7)
The control unit
The lens according to any one of (1) to (6) above, wherein the speed locus for returning to the origin position from the time when the manual operation of the ring is completed can be variably set for the lens system drive unit. Device.
(8)
The control unit
The lens device according to any one of (1) to (7) above, wherein the amount of rotation of the ring and the driving speed of the driven portion by the lens system driving portion are controlled so as to have a linear relationship.
(9)
The control unit
The lens device according to any one of (1) to (7) above, wherein the amount of rotation of the ring and the driving speed of the driven portion by the lens system driving portion are controlled so as to have a non-linear relationship.
(10)
The control unit
The lens device according to any one of (1) to (9) above, which controls the rotation amount of the ring and the restoration torque of the motor so as to have a linear relationship.
(11)
The control unit
The lens device according to any one of (1) to (9) above, which controls the rotation amount of the ring and the restoration torque of the motor so as to have a non-linear relationship.
(12)
The control unit
The lens according to any one of (1) to (11) above, wherein the motor controls the restoration torque to prevent further rotation according to the rotation amount of the ring becoming a predetermined value. Device.
(13)
The control unit
The lens device according to any one of (1) to (12) above, wherein the restoration torque of the motor is controlled so as to generate a click feeling when the ring is rotated.
(14)
The control unit
The lens device according to any one of (1) to (13) above, which switches between a zoom lens, a focus lens, and an iris as the driven unit according to the manual operation of the ring.
(15)
A ring that can be rotated by manual operation, a ring portion that includes a motor that drives the ring to rotate, and
A lens system that includes a lens or iris as a driven unit,
The lens system drive unit that drives the driven unit and
In response to the rotation of the ring by manual operation, the lens system drive unit is controlled to drive the driven unit, and the motor rotates the ring in the direction opposite to the rotation operation direction. An image pickup device equipped with a control unit that controls to generate torque.
(16)
A ring that can be rotated by manual operation, a ring portion that includes a motor that drives the ring to rotate, and
A lens system that includes a lens or iris as a driven unit,
The lens system drive unit that drives the driven unit and
As a control method of the device equipped with
In response to the rotation of the ring by manual operation, the lens system drive unit is controlled to drive the driven unit, and the motor rotates the ring in the direction opposite to the rotation operation direction. A control method that controls to generate torque.
1 撮像装置
2 レンズ鏡筒
12 撮像素子
21 レンズ系
22 レンズ系駆動部
23 鏡筒制御部
24 リング部
30 カメラ制御部
31 メモリ部
35 リング制御部
36 レンズ制御部
41 ズームレンズ
42 アイリス
43 フォーカスレンズ
44 ズーム駆動部
45 アイリス駆動部
46 フォーカス駆動部
50 リング
51 モータ
52 リング検出部
53 リング駆動部
54 ギア機構
62a,63a,72a 変換情報
1 Image pickup device 2 Lens lens barrel 12 Image pickup element 21 Lens system 22 Lens system drive unit 23 Lens barrel control unit 24 Ring unit 30 Camera control unit 31 Memory unit 35 Ring control unit 36 Lens control unit 41 Zoom lens 42 Iris 43 Focus lens 44 Zoom drive unit 45 Iris drive unit 46 Focus drive unit 50 Ring 51 Motor 52 Ring detection unit 53 Ring drive unit 54 Gear mechanism 62a, 63a, 72a Conversion information

Claims (16)

  1.  手動操作により回転可能とされるリング、及び前記リングを回転駆動するモータを含むリング部と、
     被駆動部としてレンズ又はアイリスを含むレンズ系と、
     前記被駆動部を駆動するレンズ系駆動部と、
     前記リングが手動操作により回転されることに応じて、前記レンズ系駆動部に前記被駆動部の駆動を実行させる制御を行うとともに、前記モータにより前記リングにおいて回転操作方向に対する逆方向に回転させる復元トルクを生じさせる制御を行う制御部と、を備えた
     レンズ装置。
    A ring that can be rotated by manual operation, a ring portion that includes a motor that drives the ring to rotate, and
    A lens system that includes a lens or iris as a driven unit,
    The lens system drive unit that drives the driven unit and
    In response to the rotation of the ring by manual operation, the lens system drive unit is controlled to drive the driven unit, and the motor rotates the ring in the direction opposite to the rotation operation direction. A lens device equipped with a control unit that controls the generation of torque.
  2.  前記制御部は、
      前記リングが手動操作により回転されたときに、前記レンズ系駆動部に前記リングの回転量に応じた駆動指示を行うとともに、前記モータにより、前記リングを回転原点位置に戻す前記復元トルクを発生させる制御を行う
     請求項1に記載のレンズ装置。
    The control unit
    When the ring is rotated by manual operation, the lens system drive unit is instructed to drive according to the amount of rotation of the ring, and the motor generates the restoration torque for returning the ring to the rotation origin position. The lens device according to claim 1, wherein the lens device is controlled.
  3.  前記制御部は、
     前記リングに対して、手動操作による回転量に応じて変換情報に基づいて求められる前記復元トルクを前記モータにより与えるようにする制御を行う
     請求項1に記載のレンズ装置。
    The control unit
    The lens device according to claim 1, wherein the ring is controlled so that the motor gives the restoration torque obtained based on the conversion information according to the amount of rotation by manual operation.
  4.  前記変換情報は、設定情報に応じて更新される構成とされている
     請求項3に記載のレンズ装置。
    The lens device according to claim 3, wherein the conversion information is updated according to the setting information.
  5.  前記制御部は、
     前記レンズ系駆動部に対して、前記リングの手動操作による回転量に応じて変換情報に基づいて求められる駆動速度又は駆動位置の情報を与えるようにする制御を行う
     請求項1に記載のレンズ装置。
    The control unit
    The lens device according to claim 1, wherein the lens system drive unit is controlled to provide information on a drive speed or a drive position obtained based on conversion information according to the amount of rotation by manual operation of the ring. ..
  6.  前記変換情報は、設定情報に応じて更新される構成とされている
     請求項5に記載のレンズ装置。
    The lens device according to claim 5, wherein the conversion information is updated according to the setting information.
  7.  前記制御部は、
     前記レンズ系駆動部に対して、前記リングの手動操作が終了した時点からの原点位置へ復帰する速度軌跡を可変設定可能とされている
     請求項1に記載のレンズ装置。
    The control unit
    The lens device according to claim 1, wherein a speed locus for returning to the origin position from the time when the manual operation of the ring is completed can be variably set for the lens system drive unit.
  8.  前記制御部は、
     前記リングの回転量と、前記レンズ系駆動部による前記被駆動部の駆動速度が線形関係になるように制御する
     請求項1に記載のレンズ装置。
    The control unit
    The lens device according to claim 1, wherein the amount of rotation of the ring and the driving speed of the driven portion by the lens system driving portion are controlled so as to have a linear relationship.
  9.  前記制御部は、
     前記リングの回転量と、前記レンズ系駆動部による前記被駆動部の駆動速度が非線形関係になるように制御する
     請求項1に記載のレンズ装置。
    The control unit
    The lens device according to claim 1, wherein the amount of rotation of the ring and the driving speed of the driven portion by the lens system driving portion are controlled so as to have a non-linear relationship.
  10.  前記制御部は、
     前記リングの回転量と、前記モータによる前記復元トルクが線形関係になるように制御する
     請求項1に記載のレンズ装置。
    The control unit
    The lens device according to claim 1, wherein the amount of rotation of the ring and the restoration torque of the motor are controlled so as to have a linear relationship.
  11.  前記制御部は、
     前記リングの回転量と、前記モータによる前記復元トルクが非線形関係になるように制御する
     請求項1に記載のレンズ装置。
    The control unit
    The lens device according to claim 1, wherein the amount of rotation of the ring and the restoration torque of the motor are controlled so as to have a non-linear relationship.
  12.  前記制御部は、
     前記リングの回転量が所定値となることに応じて、前記モータにより、それ以上の回転を阻止する前記復元トルクが生じるように制御する
     請求項1に記載のレンズ装置。
    The control unit
    The lens device according to claim 1, wherein the motor controls the restoration torque to prevent further rotation in response to a predetermined value of rotation of the ring.
  13.  前記制御部は、
     前記モータによる復元トルクにより、前記リングの回転操作時にクリック感を生じさせるように制御する
     請求項1に記載のレンズ装置。
    The control unit
    The lens device according to claim 1, wherein the restoration torque of the motor is controlled so as to generate a click feeling when the ring is rotated.
  14.  前記制御部は、
     前記リングの手動操作に応じた前記被駆動部として、ズームレンズ、フォーカスレンズ、アイリスを切り替える
     請求項1に記載のレンズ装置。
    The control unit
    The lens device according to claim 1, wherein a zoom lens, a focus lens, and an iris are switched as the driven unit according to the manual operation of the ring.
  15.  手動操作により回転可能とされるリング、及び前記リングを回転駆動するモータを含むリング部と、
     被駆動部としてレンズ又はアイリスを含むレンズ系と、
     前記被駆動部を駆動するレンズ系駆動部と、
     前記リングが手動操作により回転されることに応じて、前記レンズ系駆動部に前記被駆動部の駆動を実行させる制御を行うとともに、前記モータにより前記リングにおいて回転操作方向に対する逆方向に回転させる復元トルクを生じさせる制御を行う制御部と、を備えた
     撮像装置。
    A ring that can be rotated by manual operation, a ring portion that includes a motor that drives the ring to rotate, and
    A lens system that includes a lens or iris as a driven unit,
    The lens system drive unit that drives the driven unit and
    In response to the rotation of the ring by manual operation, the lens system drive unit is controlled to drive the driven unit, and the motor rotates the ring in the direction opposite to the rotation operation direction. An image pickup device equipped with a control unit that controls to generate torque.
  16.  手動操作により回転可能とされるリング、及び前記リングを回転駆動するモータを含むリング部と、
     被駆動部としてレンズ又はアイリスを含むレンズ系と、
     前記被駆動部を駆動するレンズ系駆動部と、
     を備えた装置の制御方法として、
     前記リングが手動操作により回転されることに応じて、前記レンズ系駆動部に前記被駆動部の駆動を実行させる制御を行うとともに、前記モータにより前記リングにおいて回転操作方向に対する逆方向に回転させる復元トルクを生じさせる制御を行う
     制御方法。
    A ring that can be rotated by manual operation, a ring portion that includes a motor that drives the ring to rotate, and
    A lens system that includes a lens or iris as a driven unit,
    The lens system drive unit that drives the driven unit and
    As a control method of the device equipped with
    In response to the rotation of the ring by manual operation, the lens system drive unit is controlled to drive the driven unit, and the motor rotates the ring in the direction opposite to the rotation operation direction. A control method that controls to generate torque.
PCT/JP2021/030836 2020-09-25 2021-08-23 Lens device, imaging device, and control method WO2022064927A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022551208A JPWO2022064927A1 (en) 2020-09-25 2021-08-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020160640 2020-09-25
JP2020-160640 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022064927A1 true WO2022064927A1 (en) 2022-03-31

Family

ID=80845052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030836 WO2022064927A1 (en) 2020-09-25 2021-08-23 Lens device, imaging device, and control method

Country Status (2)

Country Link
JP (1) JPWO2022064927A1 (en)
WO (1) WO2022064927A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233419A (en) * 1990-02-08 1991-10-17 Asahi Optical Co Ltd Motor-driven zoom lens barrel
JPH0730804A (en) * 1993-07-14 1995-01-31 Canon Inc Signal processing unit
JPH08313787A (en) * 1995-05-17 1996-11-29 Asahi Optical Co Ltd Motor-driven zoom lens barrel
JP2005284102A (en) * 2004-03-30 2005-10-13 Nidec Copal Corp Diaphragm device for camera
WO2014034603A1 (en) * 2012-08-29 2014-03-06 富士フイルム株式会社 Drive device which can be freely attached to/detached from lens barrel, and process control method and adjustment method for same
JP2015041026A (en) * 2013-08-23 2015-03-02 キヤノン株式会社 Lens controller
JP2016014772A (en) * 2014-07-02 2016-01-28 キヤノン株式会社 Lens system and imaging device including the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233419A (en) * 1990-02-08 1991-10-17 Asahi Optical Co Ltd Motor-driven zoom lens barrel
JPH0730804A (en) * 1993-07-14 1995-01-31 Canon Inc Signal processing unit
JPH08313787A (en) * 1995-05-17 1996-11-29 Asahi Optical Co Ltd Motor-driven zoom lens barrel
JP2005284102A (en) * 2004-03-30 2005-10-13 Nidec Copal Corp Diaphragm device for camera
WO2014034603A1 (en) * 2012-08-29 2014-03-06 富士フイルム株式会社 Drive device which can be freely attached to/detached from lens barrel, and process control method and adjustment method for same
JP2015041026A (en) * 2013-08-23 2015-03-02 キヤノン株式会社 Lens controller
JP2016014772A (en) * 2014-07-02 2016-01-28 キヤノン株式会社 Lens system and imaging device including the same

Also Published As

Publication number Publication date
JPWO2022064927A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
US8605188B2 (en) Camera having a rear-surface display section and an in-viewfinder display section
JP4720771B2 (en) Imaging apparatus and imaging method
US9584726B2 (en) Imaging apparatus, imaging method, and computer-readable recording medium
US9756246B2 (en) Imaging apparatus
US10587809B2 (en) Continuous shooting device, continuous shooting method and continuous shooting control method using preliminary and calculated parameter values
WO2012131794A1 (en) Interchangeable lens and camera body
JP2019149840A (en) Zoom controller, zoom control method and program
WO2022064927A1 (en) Lens device, imaging device, and control method
US7352962B2 (en) Lens barrel apparatus for camera
JP4449663B2 (en) Imaging device
US11671713B2 (en) Imaging apparatus, transmittance designation device, transmittance control method, and program
US11237458B2 (en) Focus adjustment apparatus, image capturing apparatus, focus adjustment method, and storage medium
JPH11103409A (en) Focus operating device of television lens
JP2014178644A (en) Display device, and control method for the same
JP6218539B2 (en) Imaging apparatus and control method thereof
JP5690247B2 (en) Lens drive device
WO2023145726A1 (en) Imaging device and zoom control method
JP6235835B2 (en) Lens system and photographing apparatus having the same
KR20060113164A (en) Method of controlling digital image processing apparatus to effectively display histogram, and digital image processing apparatus using the method
WO2023058328A1 (en) Imaging device, control method, and program
JP7527112B2 (en) Electronic device and control method thereof
JP6231768B2 (en) Imaging apparatus and control method thereof
JP7387359B2 (en) Control device, imaging device, control method, and program
WO2022158203A1 (en) Image capturing device, image capture control method, and program
WO2022024849A1 (en) Imaging device, control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551208

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872059

Country of ref document: EP

Kind code of ref document: A1