WO2022064626A1 - 半導体レーザ装置 - Google Patents

半導体レーザ装置 Download PDF

Info

Publication number
WO2022064626A1
WO2022064626A1 PCT/JP2020/036181 JP2020036181W WO2022064626A1 WO 2022064626 A1 WO2022064626 A1 WO 2022064626A1 JP 2020036181 W JP2020036181 W JP 2020036181W WO 2022064626 A1 WO2022064626 A1 WO 2022064626A1
Authority
WO
WIPO (PCT)
Prior art keywords
ridge
layer
semiconductor laser
refractive index
conductive type
Prior art date
Application number
PCT/JP2020/036181
Other languages
English (en)
French (fr)
Inventor
君男 鴫原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/036181 priority Critical patent/WO2022064626A1/ja
Priority to JP2022551125A priority patent/JP7353510B2/ja
Priority to CN202180062640.3A priority patent/CN116648837A/zh
Priority to US18/044,959 priority patent/US20230361535A1/en
Priority to PCT/JP2021/000430 priority patent/WO2022064728A1/ja
Priority to EP21871865.8A priority patent/EP4220875A1/en
Publication of WO2022064626A1 publication Critical patent/WO2022064626A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2036Broad area lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2218Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties
    • H01S5/222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties having a refractive index lower than that of the cladding layers or outer guiding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • H01S5/209Methods of obtaining the confinement using special etching techniques special etch stop layers

Definitions

  • This disclosure relates to a semiconductor laser device.
  • Patent Document 1 has a ridge type broad area semiconductor laser apparatus having an actual refractive index distribution in the horizontal direction, which has a thick optical guide layer capable of allowing a higher-order mode of the first order or higher in the stacking direction of crystals. Horizontally permissible by providing terrace regions on both sides of the ridge structure, which have a refractive index lower than the effective refractive index of the ridge region and higher than the refractive index of the clad region, through the grooves. It is disclosed that the number of modes is reduced to narrow the horizontal spread angle.
  • the actual refractive index distribution means a refractive index distribution in which the refractive index is described by a real number, and the waveguide becomes a refractive index waveguide, and the electric field distribution and the magnetic field distribution obtained by solving the wave equation, Propagation constants and the like are real numbers.
  • Patent Document 2 in a ridge type broad area semiconductor laser device in which both sides of the ridge structure are embedded with semiconductor layers to provide a difference in refractive index in the horizontal direction, current is not injected on the ridge side of the boundary between the ridge structure and the semiconductor layer.
  • NFP Near Field Pattern
  • the horizontal spread angle can be narrowed on average by reducing the number of allowable modes in the horizontal direction as compared with the case where the number of allowable modes is large. There is a problem that the horizontal spread angle varies depending on which of the allowable modes oscillates. This is due to the small gain difference between the allowed modes.
  • a peak does not appear in the NFP near both ends of the ridge structure, and the peak does not appear in the NFP near both ends of the ridge structure.
  • the current was reduced locally, the NFP at the site was not weakened.
  • the NFP is determined by the linear combination of each mode allowed, which is affected by locally reducing the current in all modes. It is due to that.
  • the present disclosure has been made to solve the above-mentioned problems, and in a structure in which the number of modes allowed in the horizontal direction is reduced, the gain of the low-order mode is made larger than the gain of the high-order mode. It is an object of the present invention to obtain a ridge type broad area semiconductor laser apparatus having an actual refractive index distribution in which a low-order mode is oscillated to narrow the horizontal spread angle and the coupling efficiency with an optical component is enhanced.
  • the semiconductor laser device disclosed in the present application includes a first conductive type semiconductor substrate, a first conductive type clad layer laminated on the first conductive type semiconductor substrate, and an optical guide layer on the first conductive type side.
  • a resonator composed of an active layer, an optical guide layer on the second conductive type side, a clad layer of the second conductive type, a contact layer of the second conductive type, a front end surface and a rear end surface for reciprocating a laser beam, and the front end surface.
  • the laser light is waveguideed between the rear end faces, the ridge region having a width represented by 2 W, the oscillation wavelength is ⁇ , and the higher-order mode of the first order or higher is provided in the stacking direction of each layer.
  • the ridge region is provided on both sides of the ridge inner region having a width of 2 Wi and an effective refractive index of n ai , and the width is represented by W o , and the effective refractive index is n. It is composed of a ridge outer region having a current non-injection structure, which is ao , and at least the second conductive type contact layer and the second conductive type clad layer are removed on both sides of the ridge outer region, and effective refraction is performed. A clad region having a rate of n c is provided, and the average refractive index na e of the ridge inner region and the ridge outer region is set.
  • W o which is the width of the ridge outer region, is larger than the distance from the lower end of the current non-injection structure to the active layer, and smaller than W, which is 1/2 the width of the ridge region. It is a feature.
  • the ridge region is composed of a ridge inner region and a ridge outer region, a current non-injection structure is provided in the ridge outer region, and the current injected into the semiconductor laser device is exclusively in the ridge inner region. Since the current is made to flow, a semiconductor laser device capable of making the gain in the low-order mode larger than the gain in the high-order mode, enabling laser oscillation in the low-order mode, and narrowing the horizontal spread angle is obtained. It has the effect of being laser.
  • FIG. 1 It is a schematic diagram which shows the current flow and the refractive index distribution in the cross section of the ridge type broad area semiconductor laser apparatus which has the actual refractive index distribution which is a comparative example. It is a schematic diagram which shows the current flow and the refractive index distribution in the cross section of the ridge type broad area semiconductor laser apparatus which has the actual refractive index distribution of this disclosure. It is a perspective view which shows the ridge type broad area semiconductor laser apparatus of the 975 nm band which has the actual refractive index distribution by Embodiment 1. FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by Embodiment 1. FIG.
  • FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by Embodiment 1.
  • FIG. It is a perspective view which shows the ridge type broad area semiconductor laser apparatus of the 975 nm band which has the actual refractive index distribution by the modification 1 of Embodiment 1.
  • FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by the modification 1 of Embodiment 1.
  • FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by the modification 1 of Embodiment 1.
  • FIG. It is a perspective view which shows the ridge type broad area semiconductor laser apparatus of the 975 nm band which has the actual refractive index distribution by the modification 2 of Embodiment 1.
  • FIG. 1 It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by the modification 2 of Embodiment 1.
  • FIG. 2 is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by the modification 2 of Embodiment 1.
  • FIG. It is a perspective view which shows the ridge type broad area semiconductor laser apparatus of the 975 nm band which has the actual refractive index distribution by Embodiment 2.
  • FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by Embodiment 2.
  • FIG. 2 It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by Embodiment 2.
  • FIG. 2 It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by Embodiment 2.
  • FIG. 1 It is a perspective view which shows the ridge type broad area semiconductor laser apparatus of the 975 nm band which has the actual refractive index distribution by the modification 1 of Embodiment 2. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by the modification 1 of Embodiment 2.
  • FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by the modification 1 of Embodiment 2.
  • FIG. It is a perspective view which shows the ridge type broad area semiconductor laser apparatus of the 975 nm band which has the actual refractive index distribution by the modification 2 of Embodiment 2. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by the modification 2 of Embodiment 2.
  • FIG. 1 It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by the modification 1 of Embodiment 2.
  • FIG. It is a perspective view which shows the ridge type broad area semiconductor laser apparatus of
  • FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by the modification 2 of Embodiment 2.
  • FIG. It is a perspective view which shows the ridge type broad area semiconductor laser apparatus of the 975 nm band which has the actual refractive index distribution by Embodiment 3.
  • FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by Embodiment 3.
  • FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by Embodiment 3.
  • FIG. It is a perspective view which shows the ridge type broad area semiconductor laser apparatus of the 975 nm band which has the actual refractive index distribution by the modification 1 of Embodiment 3.
  • FIG. 1 It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by the modification 1 of Embodiment 3.
  • FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by the modification 1 of Embodiment 3.
  • FIG. It is a perspective view which shows the ridge type broad area semiconductor laser apparatus of the 975 nm band which has the actual refractive index distribution by the modification 2 of Embodiment 3.
  • FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by the modification 2 of Embodiment 3.
  • FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by the modification 2 of Embodiment 3.
  • FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by the modification 2 of Embodiment 3.
  • FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by
  • FIG. 1 It is a perspective view which shows the ridge type broad area semiconductor laser apparatus of the 975 nm band which has the actual refractive index distribution by Embodiment 4.
  • FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by Embodiment 4.
  • FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by Embodiment 4.
  • FIG. It is a perspective view which shows the ridge type broad area semiconductor laser apparatus of the 975 nm band which has the actual refractive index distribution by the modification 1 of Embodiment 4.
  • FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by the modification 1 of Embodiment 4.
  • FIG. It is a perspective view which shows the ridge type broad area semiconductor laser apparatus of the 975 nm band which has the actual refractive index distribution by the modification 2 of Embodiment 4.
  • FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by the modification 2 of Embodiment 4.
  • FIG. It is a figure which shows the gain of each mode of the ridge type broad area semiconductor laser apparatus by the modification 2 of Embodiment 4.
  • FIG. It is a perspective view which shows the ridge type broad area semiconductor laser apparatus of the 975 nm band which has the actual refractive index distribution by Embodiment 5.
  • FIG. 1 is a schematic diagram showing the flow of current I and the refractive index distribution in a cross section orthogonal to the optical waveguide direction of a ridge type broad area semiconductor laser device having an actual refractive index distribution, which is a comparative example.
  • the active layer 101 from the lower semiconductor substrate (not shown) side, the active layer 101, the optical guide layer 102, the first etching stop layer 103 (first ESL layer, Etching Stop Layer: ESL), and the p-type first clad layer. It is composed of 104, a second etching stop layer 105 (second ESL layer), a p-type second clad layer 106, and the above layers.
  • the current I flowing through the ridge region Ia is in the horizontal direction from the upper end of the first ESL layer 103, that is, in the x direction in FIG. Will spread and flow.
  • the current distribution J (x) at the upper end of the active layer 101 can be obtained by using Non-Patent Document 1.
  • the x direction may be referred to as a ridge width direction.
  • the ridge region I a having a ridge width of 2 W has a structure in which both sides are sandwiched by the clad region II c in the horizontal direction, that is, in the x direction.
  • the effective refractive indexes of the ridge region I a and the clad region II c are represented by n a and n c , respectively.
  • the normalized frequency v can be defined as the following equation (1).
  • is the oscillation wavelength of the semiconductor laser device.
  • a mode in which INT [v / ( ⁇ / 2)] + 1, which is the number obtained by dividing the normalized frequency v by ⁇ / 2, converting it to an integer, and adding 1, is allowed in the horizontal direction, that is, in the x direction in FIG. It becomes the number of.
  • FIG. 2 is a schematic diagram showing a current flow and a refractive index distribution in a cross section orthogonal to the optical waveguide direction of a ridge type broad area semiconductor laser device having an actual refractive index distribution disclosed in the present application.
  • the ridge outer region Ia o having a width W o (hereinafter referred to as a ridge outer region width) is substantially the ridge inner region I a having an effective refractive index of 2 Wii (hereinafter referred to as a ridge inner region width).
  • the structure is removed by etching as long as it is the same as i .
  • the ridge outer region I ao is provided on both sides of the ridge inner region I ai in the ridge width direction in the ridge region I a
  • the clad region II c is provided on both sides of the ridge outer region I a o in the ridge width direction.
  • the effective refractive index is substantially the same when the effective refractive index of the ridge inner region I ai is na i and the effective refractive index of the ridge outer region I a o is na o .
  • the number of allowable modes calculated by substituting the average refractive index na e calculated from 2) into na in the equation (1) is that there is no ridge outer region I a o , that is, the ridge outer region width W. It means that it is the same as the number of allowable modes when o is zero.
  • the current I flows exclusively through the ridge inner region I ai .
  • the current I starts to spread in the horizontal direction from the upper end of the second ESL layer 105 and passes through the distance h 1 + h 2 to the active layer 101.
  • ⁇ i (x) be the next mode that is allowed in the horizontal direction, and normalize it as in the following equation (3).
  • the allowable mode ⁇ i (x) can be obtained from Non-Patent Document 2 and the like.
  • the gain Gi is generated by the interaction between light and current, it is defined by the following equation (5). Since both the light distribution (mode) and the current distribution are normalized, the difference in gain in each mode can be understood by the magnitude of the gain Gi .
  • FIG. 3 is a perspective view showing a ridge type broad area semiconductor laser device 500 in the 975 nm band having an actual refractive index distribution according to the first embodiment.
  • an xyz Cartesian coordinate system is defined.
  • the z-axis is the direction in which the laser beam of the ridge type broad area semiconductor laser device 500 is emitted, and is also the length direction axis of the resonator of the ridge type broad area semiconductor laser device 500.
  • the z direction is also called the "resonator length direction”. It is assumed that the y-axis is parallel to the normal on the upper surface of the n-type GaAs substrate 2.
  • the y-axis direction coincides with the crystal growth direction of the semiconductor layer formed on the n-type GaAs substrate 2.
  • the y-axis direction is also referred to as "stacking direction”.
  • the x-axis is an axis perpendicular to the yz plane and coincides with the axis in the width direction of the ridge type broad area semiconductor laser device 500.
  • the x-axis direction is also referred to as "ridge width direction”.
  • a horizontal transverse mode occurs in the ridge type broad area semiconductor laser device 500.
  • the ridge type broad area semiconductor laser apparatus 500 has an n-type electrode 1 (first conductive type electrode) and an n-type GaAs substrate 2 (first conductive type) from the lower surface side (also referred to as the back surface side). (Semiconductor substrate), n-type AlGaAs clad layer 3 (first conductive type clad layer, refractive index n cn ) with an Al composition ratio of 0.20 and a layer thickness of 1.5 ⁇ m, and a layer thickness of 200 nm with an Al composition ratio of 0.25.
  • n-type AlGaAs low refractive index layer 4 (first conductive type low refractive index layer, refractive index n n ), n-side AlGaAs second optical guide layer 5 with an Al composition ratio of 0.16 and a layer thickness of 1100 nm, Al composition ratio of 0. .14, n-side AlGaAs first optical guide layer 6 with a layer thickness of 100 nm, InGaAs quantum well active layer 7 with an In composition ratio of 0.119, and p-side AlGaAs first with an Al composition ratio of 0.14 and a layer thickness of 300 nm.
  • Optical guide layer 8 p-side AlGaAs second optical guide layer 9 with an Al composition ratio of 0.16 and a layer thickness of 300 nm
  • p-type AlGaAs first ESL layer 10 with an Al composition ratio of 0.55 and a layer thickness of 140 nm
  • refractive index layer or a second conductive type low refractive index layer
  • a p -type AlGaAs first clad layer 11 (second conductive type) having an Al composition ratio of 0.20 and a layer thickness of 0.55 ⁇ m.
  • p-type AlGaAs second ESL layer 12 with an Al composition ratio of 0.55 and a layer thickness of 40 nm
  • p-type AlGaAs second clad layer 13 with an Al composition ratio of 0.20 and a layer thickness of 0.95 ⁇ m.
  • p-type GaAs contact layer 14 (second conductive type contact layer) with a layer thickness of 0.2 ⁇ m
  • SiN film 15 with a thickness of 0.2 ⁇ m, upper surface. It is composed of a p-type electrode 16 (second conductive type electrode) on the side.
  • the n-side AlGaAs second optical guide layer 5 and the n-side AlGaAs first optical guide layer 6 are collectively referred to as an n-side optical guide layer 61 or a first conductive type-side optical guide layer 61, and the p-side AlGaAs first.
  • the optical guide layer 8 and the p-side AlGaAs second optical guide layer 9 are collectively referred to as a p-side optical guide layer 81 or a second conductive type-side optical guide layer 81. Since each optical guide layer is usually an undoped layer, the layer on which side of the InGaAs quantum well active layer 7 is attached is distinguished by adding a "side".
  • the n-side or the first conductive type side means the side on which each of the n-type or the first conductive type is provided with respect to the InGaAs quantum well active layer 7.
  • the p-side or the second conductive type side means the side on which each of the p-type or the second conductive type is provided with respect to the InGaAs quantum well active layer 7.
  • the second conductive type first clad layer (p-type AlGaAs first clad layer 11) and the second conductive type second clad layer (p-type AlGaAs second clad layer 13) are combined to form a second conductive type clad layer.
  • the reason why the In composition ratio of the InGaAs quantum well active layer 7 is 0.119 and the layer thickness is 8 nm is that the oscillation wavelength is approximately 975 nm.
  • front end faces and rear end faces constituting a resonator that reciprocates the laser beam are provided at both ends of the ridge type broad area semiconductor laser device 500, for example, by cleavage.
  • the above-mentioned n-type and p-type conductive types may be interchanged. That is, the first conductive type may be n type and the second conductive type may be p type, and the first conductive type may be p type and the second conductive type may be n type. Hereinafter, it may be referred to as a first conductive type or a second conductive type.
  • each semiconductor layer from the n-type AlGaAs clad layer 3 to the p-type GaAs contact layer 14 is sequentially formed by a crystal growth method such as a metalorganic chemical vapor deposition (MOCVD). Crystal growth.
  • MOCVD metalorganic chemical vapor deposition
  • the ridge inner region I ai and the ridge outer region I ao are covered with a resist and dry-etched to the first ESL layer 10 to peel off the resist.
  • the ridge inner region I ai is covered with a resist, a SiN film 15 is formed and lifted off, and the resist is peeled off.
  • the p-type electrode 16 is formed on the upper surface side and the n-type electrode 1 is formed on the lower surface side.
  • the p-type GaAs contact layer 14 and the p-type AlGaAs second clad layer 13 in the ridge outer region Iao are at least removed by etching, and the exposure removed by etching. Since the surface is covered with the SiN film 15 which is an insulating film to form a current non-injection structure, the current injected into the ridge type broad area semiconductor laser device 500 flows exclusively in the ridge inner region I ai .
  • the refractive index of the AlGaAs layer having an Al composition ratio of 0.14, 0.16, 0.20, 0.25 and 0.55 at a wavelength of 975 nm can be determined. They are 3.4322173, 3.419578, 3.39462, 3.364330 and 3.191285, respectively. Further, empirically, the refractive indexes of InGaAs having an In composition ratio of 0.119 constituting the InGaAs quantum well active layer 7 and SiN constituting the SiN film 15 are 3.542393 and 2.00, respectively.
  • the total optical guide layer thickness which is the sum of the p-side optical guide layer 81 and the n-side optical guide layer 61, is as thick as 1.8 ⁇ m, and the primary mode is in the stacking direction. The above is allowed. Therefore, when a low refractive index layer is inserted between the clad layer and the optical guide layer, the NFP becomes narrow and the FFP (Far Field Pattern: FFP) becomes wide.
  • the InGaAs quantum well active layer 7 is displaced toward the p-type AlGaAs first clad layer 11 and the p-type AlGaAs second clad layer 13 with respect to the center of the n-side optical guide layer 61 and the p-side optical guide layer 81. Therefore, it is possible to reduce the number of carriers that stay in the optical guide layer during laser driving, and high slope efficiency can be realized.
  • un is 0.2922273
  • up is 0.522208
  • up> un is established. Therefore, the light intensity distribution in the y direction, that is, the stacking direction is displaced toward the n-type GaAs substrate 2, and the number of allowable modes in the x direction, that is, the ridge width direction can be reduced.
  • the effective refractive index of the ridge region Ia and the clad region IIc can be calculated by, for example, the equivalent refractive index method described in Non-Patent Document 4, and are 3.41697 and 3.41672, respectively.
  • v in the equation (1) is 13.31, and nine modes from the 0th order (basic) to the 8th order are allowed.
  • the effective refractive index of the portion is 3.41697 , which is etching.
  • the refractive index of the ridge region I a (ridge inner region I ai and ridge outer region I a o ) is the same regardless of the removal by. Therefore, the number of allowable modes is the same.
  • the current starts to spread from the second ESL layer 12 in the x direction, that is, in the ridge width direction. That is, the current is x at a thickness h 2 (0.74 ⁇ m) from the InGaAs quantum well active layer 7 to the first ESL layer 10 and a thickness h 1 (0.59 ⁇ m) from the second ESL layer 12 to the first ESL layer 10. It spreads in the direction and reaches the InGaAs quantum well active layer 7.
  • the resistivity ⁇ between the point where the current starts to spread in the x direction and the InGaAs quantum well active layer 7 is set to 0.35 ⁇ cm. It has been confirmed that the tendency of the gain Gi is the same even if the value of the resistivity ⁇ changes.
  • the gain of the low-order mode according to the present disclosure for example, the 0th to 3rd-order mode when the ridge outer region width Wo is 10 ⁇ m or less is larger than that of the lower-order mode of the comparative example, and therefore a small gain.
  • the ridge outer region width Wo exceeds 10 ⁇ m, the gain in the low-order mode is larger than that in the comparative example, and the loss does not increase.
  • the ridge outer region width Wo is 15 ⁇ m or more, there is a gain difference of more than 11% between the basic mode and all other modes, and substantial basic mode oscillation becomes possible. This tendency becomes even more remarkable when the width of the outer region of the ridge Wo is 20 ⁇ m or more.
  • the following conditions In order for the higher-order mode of the first order or higher to be allowed in the horizontal direction, that is, in the x direction (ridge width direction), the following conditions must be satisfied. That is, Wi which is 1/2 of the width of the inner ridge region, W o of the outer region of the ridge, the average refractive index n ae represented by the equation (4), and the effective refraction of the clad region II c .
  • the index n c needs to satisfy the following equation (7).
  • the refractive index of the n-type AlGaAs clad layer 3 is n cn
  • the refractive index of the p-type AlGaAs first clad layer 11 is n cp
  • the layer thickness of the n-type AlGaAs low refractive index layer 4 is d n
  • the refractive index is n.
  • the refractive index of the type AlGaAs clad layer 3 is set to n n , which is lower than the refractive index n cn , and the layer thickness of the p-type AlGaAs low refractive index layer 10 provided between the p-side optical guide layer 81 and the p-type AlGaAs first clad layer 11 is set.
  • d p and the refractive index are n p lower than the refractive index of the p-type AlGaAs first clad layer 11, it is necessary to satisfy the following formula (8).
  • both the n-type AlGaAs low refractive index layer 4 and the p-type AlGaAs low refractive index layer 10 are provided between the clad layer and the optical guide layer. Even if both or one of the low refractive index layers is provided in the clad layer, the same effect can be obtained. Since the current spreads isotropically in the semiconductor layer, the ridge outer region width Wo may be wider than h 1 + h 2 (1.33 ⁇ m) and narrower than W (50 ⁇ m).
  • the exposed surface from which the p-type GaAs contact layer 14 and the p-type AlGaAs second clad layer 13 in the ridge outer region Iao are removed by etching is a SiN film.
  • a current non-injection structure is provided so that the current injected into the ridge type broad area semiconductor laser device 500 flows exclusively to the ridge inner region Iai , so that the gain of the low-order mode can be increased to the high-order. It has the effect of making it larger than the gain of the mode, enabling laser oscillation in lower-order modes, and narrowing the horizontal spread angle.
  • FIG. 6 is a perspective view showing a ridge type broad area semiconductor laser device 510 in the 975 nm band having an actual refractive index distribution according to the first modification of the first embodiment.
  • the difference between the ridge type broad area semiconductor laser device 510 according to the first modification of the first embodiment and the ridge type broad area semiconductor laser device 500 according to the first embodiment is the ridge type broad area semiconductor according to the first modification of the first embodiment.
  • the point that the second ESL layer 12 is not provided in the laser device 510, the p-type AlGaAs first clad layer 11 having an Al composition ratio of 0.20 and a layer thickness of 0.55 ⁇ m of the ridge type broad area semiconductor laser device 500 according to the first embodiment.
  • the ridge type broad area semiconductor laser diode 510 according to the first modification of the first embodiment is provided with the proton injection region 17 as the current non-injection structure.
  • Other layer configurations are the same as those of the ridge type broad area semiconductor laser device 500 according to the first embodiment.
  • the method for manufacturing the ridge type broad area semiconductor laser device 510 according to the first modification of the first embodiment is shown below.
  • Each semiconductor layer from the n-type AlGaAs clad layer 3 to the p-type GaAs contact layer 14 is sequentially crystal-grown on the n-type GaAs substrate 2 by a crystal growth method such as a metalorganic vapor phase growth method (MOCVD).
  • MOCVD metalorganic vapor phase growth method
  • the ridge inner region Iai is covered with a resist and protons are ion-implanted to form a proton implantation region 17, and the resist is peeled off.
  • the ridge inner region I ai and the ridge outer region I ao are covered with a resist and dry-etched to the first ESL layer 10 to peel off the resist.
  • the proton injection region of the clad region II c is also etched and disappears.
  • the ridge inner region I ai and the ridge outer region I ao are covered with a resist, a SiN film 15 is formed and lifted off, and the resist is peeled off.
  • the p-type electrode 16 is formed on the upper surface side and the n-type electrode 1 is formed on the lower surface side.
  • the main differences from the ridge type broad area semiconductor laser device 500 according to the first embodiment shown in FIG. 3 are that there is no second ESL layer 12 and that the semiconductor layer is formed by proton injection instead of etching removal of the ridge outer region Iao .
  • the point is that the proton injection region 17 is formed by the insulation. In the proton injection region 17, the semiconductor layer has a high resistance, so that it functions as a current non-injection structure.
  • a proton injection region is formed in a part of the p-type GaAs contact layer 14 and the p-type AlGaAs first clad layer 11a in the ridge outer region Iao. Since the current non-injection structure is formed by the current injection, the current injected into the ridge type broad area semiconductor laser device 510 flows exclusively to the ridge inner region I ai .
  • the effective refractive index of the ridge inner region Iai in the ridge type broad area semiconductor laser device 510 is 3.41698 .
  • v in the formula (1) is 13.58.
  • the effective refractive index of the ridge outer region Ia o provided with the proton injection region 17 that injects protons and functions as a current non-injection structure is 3.41698, which is the same as the ridge inner region I ai .
  • the distance h 1 from the first ESL layer 10 to the lower end of the proton injection region 17 is 1.0 ⁇ m.
  • the ridge outer region I ao in which the proton injection region 17 functioning as the current non-injection structure is formed is provided, and the ridge inner region I a is provided . Since the current is passed exclusively to i , a gain difference is generated between the modes, and the gain of the low-order mode is larger than that of the high-order mode. Therefore, laser oscillation in a low-order mode becomes possible, and a narrow horizontal spread angle can be realized.
  • the gain of the low-order mode according to the present disclosure for example, the 0th to 3rd-order mode when the ridge outer region width Wo is 10 ⁇ m or less is larger than that of the lower-order mode of the comparative example, and therefore a small gain.
  • the gain in the low-order mode becomes larger than that in the comparative example and the loss does not increase. ..
  • the ridge outer region width Wo is 15 ⁇ m or more, there is a gain difference of more than 11% between the basic mode and all other modes, and substantial basic mode oscillation becomes possible. This tendency becomes even more remarkable when the width of the outer region of the ridge Wo is 20 ⁇ m or more.
  • both the n-type AlGaAs low refractive index layer 4 and the p-type AlGaAs low refractive index layer 10 are provided between the clad layer and the optical guide layer.
  • the same effect can be obtained by providing both or one of the low refractive index layers in the clad layer.
  • the width of the ridge outer region Wo may be wider than h 1 + h 2 ( 1.74 ⁇ m) and narrower than W (50 ⁇ m).
  • the distance h 1 from the first ESL layer 10 to the lower end of the proton injection region 17 is made as long as 1.0 ⁇ m in order to keep the damaged portion of the semiconductor layer due to proton injection away from the light intensity distribution.
  • a structure in which protons are ion-implanted is shown as an example, but the structure is not limited to this, and the electrical resistance of the semiconductor layer is not limited to this. Anything that can be increased.
  • the ridge outer region Iao in which the proton injection region 17 functioning as the current non-injection structure is formed is provided, and the ridge type broad area semiconductor is provided. Since the current injected into the laser device 510 is made to flow exclusively to the ridge inner region Iai , the gain of the low-order mode is made larger than the gain of the high-order mode, and the laser oscillation of the low-order mode is possible. It has the effect of narrowing the horizontal spread angle.
  • FIG. 9 is a perspective view showing a ridge type broad area semiconductor laser device 520 in the 975 nm band having an actual refractive index distribution according to the second modification of the first embodiment.
  • the ridge type broad area semiconductor laser apparatus 520 has a SiN film 15a having a film thickness of 0.2 ⁇ m.
  • Each semiconductor layer from the n-type AlGaAs clad layer 3 to the p-type GaAs contact layer 14 is sequentially crystal-grown on the n-type GaAs substrate 2 by a crystal growth method such as a metalorganic vapor phase growth method (MOCVD).
  • MOCVD metalorganic vapor phase growth method
  • the ridge inner region I ai and the ridge outer region I ao are covered with a resist and dry-etched to the first ESL layer 10 to peel off the resist. Then, the ridge inner region Iai is covered with a resist, a SiN film 15a is formed and lifted off, and the resist is peeled off. Finally, the p-type electrode 16 is formed on the upper surface side and the n-type electrode 1 is formed on the lower surface side.
  • the difference from the ridge type broad area semiconductor laser apparatus 500 according to the first embodiment shown in FIG. 3 is that there is no second ESL layer 12, the ridge outer region I ao is not removed by etching, and the SiN film 15a is a p-type GaAs contact. It is located at a point provided on a part of the surface of both ends of the layer 14 in the ridge width direction.
  • ridge type broad area semiconductor laser apparatus 520 In the ridge type broad area semiconductor laser apparatus 520 according to the second modification of the first embodiment, a part of the surface of both ends of the p-type GaAs contact layer 14 in the ridge outer region Iao in the ridge width direction is covered with a SiN film 15a, respectively. Since the current non-injection structure is adopted, the current injected into the ridge type broad area semiconductor laser device 510 flows exclusively to the ridge inner region Iai .
  • the effective refractive indexes of the ridge inner region I ai , the ridge outer region I ao, and the clad region II c are 3.41698 , 3.41698 , and 3.41672 , respectively, and are 0 when the ridge width 2W is 100 ⁇ m.
  • Nine modes from the next (basic) to the eighth are allowed. Since the current spreads from the upper part of the p-type GaAs contact layer 14, h 1 is 1.7 ⁇ m.
  • the p-type GaAs contact layer 14 has a current non-injection structure in which a part of the surfaces at both ends in the ridge width direction is covered with a SiN film 15a. Since the ridge outer region Ia o having the Therefore, laser oscillation in a low-order mode becomes possible, and a narrow horizontal spread angle can be realized.
  • the gain of the low-order mode according to the present disclosure for example, the 0th to 3rd-order mode when the ridge outer region width Wo is 10 ⁇ m or less is larger than that of the lower-order mode of the comparative example, and therefore a small gain.
  • the ridge type broad area semiconductor laser apparatus 520 In the ridge type broad area semiconductor laser apparatus 520 according to the second modification of the first embodiment, even if the ridge outer region width Wo exceeds 10 ⁇ m, the gain in the low-order mode becomes larger than that in the comparative example, and the loss does not increase. do not have.
  • the ridge outer region width Wo is 15 ⁇ m or more, there is a gain difference of more than 10% between the basic mode and all other modes, and substantial basic mode oscillation becomes possible. This tendency becomes even more remarkable when the width of the outer region of the ridge Wo is 20 ⁇ m or more.
  • the width of the ridge outer region Wo may be wider than h 1 + h 2 ( 2.44 ⁇ m) and narrower than W (50 ⁇ m).
  • the current non-injection structure in the ridge outer region Iao is formed of the SiN film 15a which is an insulating film, the current starts to spread in the x direction, that is, in the ridge width direction, p-type GaAs.
  • the distance from the contact layer 14 to the InGaAs quantum well active layer 7 is as long as 2.44 ⁇ m, and it is difficult to obtain a gain difference when the ridge outer region width Wo is narrow, but the effect is obtained if the ridge outer region width Wo is widened. There is no particular problem because it will be large.
  • the method for manufacturing the ridge type broad area semiconductor laser device 520 according to the second modification of the first embodiment has an effect that the manufacturing of the ridge type broad area semiconductor laser device is extremely easy because there is no step such as etching or proton injection. ..
  • a part of the surface of both ends of the p-type GaAs contact layer 14 of the ridge outer region Iao in the ridge width direction is partially covered with the SiN film 15a. Since the current non-injection structure is covered with, the current injected into the ridge type broad area semiconductor laser device 520 flows exclusively to the ridge inner region Iai , and as a result, the gain of the low-order mode is increased to the high-order mode. It has the effect of narrowing the horizontal spread angle by making it larger than the gain of the above and enabling laser oscillation in low-order modes.
  • FIG. 12 is a perspective view showing a ridge type broad area semiconductor laser device 530 in the 975 nm band having an actual refractive index distribution according to the second embodiment.
  • the 975 nm band ridge type broad area semiconductor laser device 530 having the actual refractive index distribution according to the second embodiment arranges the position of the InGaAs quantum well active layer 7 in the center of the optical guide layers 62 and 82, that is, the InGaAs quantum well. It is characterized in that it is symmetrical with respect to the active layer 7.
  • the ridge type broad area semiconductor laser device 530 shown in FIG. 12 has an n-side AlGaAs second optical guide layer 5a having an Al composition ratio of 0.16 and a layer thickness of 700 nm, and an n-side AlGaAs second optical guide layer having an Al composition ratio of 0.14 and a layer thickness of 200 nm.
  • the ridge-type broad area semiconductor laser diode device 530 has the p-type GaAs contact layer 14 and the p-type AlGaAs first in the ridge outer region Iao , similarly to the ridge-type broad area semiconductor laser device 500 according to the first embodiment. Since the two-clad layer 13a is at least removed by etching and the exposed surface removed by etching is covered with the SiN film 15 which is an insulating film to form a current non-injection structure, the two-clad layer 13a is injected into the ridge type broad area semiconductor laser device 530. The current will flow exclusively in the ridge inner region I ai .
  • the n-side AlGaAs second optical guide layer 5a and the n-side AlGaAs first optical guide layer 6a are collectively referred to as an n-side optical guide layer 62 or a first conductive type optical guide layer 62, and the p-side AlGaAs first light.
  • the guide layer 8a and the p-side AlGaAs second optical guide layer 9a are collectively referred to as a p-side optical guide layer 82 or a second conductive type optical guide layer 82.
  • the method for manufacturing the ridge type broad area semiconductor laser device 530 is also the same as that in the first embodiment.
  • the total optical guide layer thickness of the sum of the p-side optical guide layer 82 and the n-side optical guide layer 62 of the ridge type broad area semiconductor laser apparatus 530 is as thick as 1.8 ⁇ m, and the primary mode or higher is allowed in the y direction, that is, the stacking direction. Has been done. Further, un is 0.2922273 , up is 0.522208 , and up> un is established. Therefore, the light intensity distribution in the y direction is displaced toward the n-type GaAs substrate 2, and the number of allowable modes in the x direction can be reduced.
  • the effective refractive indexes of the ridge region I a (ridge inner region I ai and the ridge outer region I a o ) and the clad region II c when the ridge outer region width Wo is zero are 3.41839 and 3. It becomes 41828.
  • the ridge width 2W is 100 ⁇ m
  • v is 8.83, and six modes from the 0th order (basic) to the 5th order are allowed.
  • the layer thickness of the p-side optical guide layer 82 of the ridge type broad area semiconductor laser apparatus 530 is the same as the layer thickness of the n-side optical guide layer 62, the loss due to the carriers staying during operation is smaller than that of the structure of the first embodiment.
  • the difference in refractive index between the ridge region I a (ridge inner region I ai and the ridge outer region I a o ) and the clad region II c can be reduced, there is an advantage that the number of allowable modes can be reduced.
  • the effective refractive index of the portion is 3.41839
  • the ridge region I a ridge inner region I ai and The refractive index of the ridge outer region Ia o . Therefore, the number of allowable modes is the same.
  • the current starts to spread from the second ESL layer 12 in the x direction, that is, in the ridge width direction. That is, the thickness h 2 (1.04 ⁇ m) from the InGaAs quantum well active layer 7 to the first ESL layer 10 and the thickness h 1 (0.44 ⁇ m) from the second ESL layer 12 to the first ESL layer 10 spread in the x direction. , InGaAs quantum well active layer 7.
  • a current non-injection structure is formed by covering the exposed surface from which the p-type GaAs contact layer 14 and the p-type AlGaAs second clad layer 13a have been removed by etching with the SiN film 15. Since the ridge outer region I ao is provided and the current flows exclusively to the ridge inner region I ai , a gain difference occurs between the modes, and the gain of the lower-order mode becomes larger than that of the higher-order mode. Therefore, laser oscillation in a low-order mode becomes possible, and a narrow horizontal spread angle can be realized.
  • the gain of the low-order mode according to the present disclosure for example, the 0th to 2nd-order mode when the ridge outer region width Wo is 10 ⁇ m or less is larger than that of the lower-order mode of the comparative example, and therefore a small gain.
  • the ridge outer region width Wo may be wider than h 1 + h 2 (1.48 ⁇ m) and narrower than W (50 ⁇ m).
  • the exposed surface from which the p-type GaAs contact layer 14 and the p-type AlGaAs second clad layer 13a in the ridge outer region Iao are removed by etching is a SiN film.
  • a current non-injection structure is provided so that the current injected into the ridge type broad area semiconductor laser device 530 flows exclusively to the ridge inner region Iai , so that the gain of the lower order mode can be increased to the higher order.
  • FIG. 15 is a perspective view showing a 975 nm band ridge type broad area semiconductor laser device 540 having an actual refractive index distribution, which is a modification 1 of the second embodiment.
  • the difference from the ridge type broad area semiconductor laser device 530 according to the second embodiment shown in FIG. 12 is that there is no second ESL layer 12, and the semiconductor layer is insulated by proton injection instead of etching removal of the ridge outer region Iao . It is a point formed by the conversion.
  • the method for manufacturing the ridge type broad area semiconductor laser device 540 is the same as that of the first modification of the first embodiment.
  • the effective refractive index of the ridge region I a (ridge inner region I ai and ridge outer region I a o ) is 3.41840 because the second ESL layer 12 is not present.
  • the effective refractive index of the clad region II c of the ridge type broad area semiconductor laser apparatus 540 is 3.41828 and the ridge width 2W is 100 ⁇ m
  • v in the formula (1) is 9.22, which is the 0th order ( Six modes from basic) to 5th order are allowed.
  • the effective refractive index of the proton-injected ridge outer region Ia o is 3.41840, which is the same as the ridge inner region Ia i .
  • the distance h 1 from the upper end of the first ESL layer 10 to the lower end of the proton injection region 17 is 0.75 ⁇ m.
  • the ridge outer region Ia o in which the proton injection region 17 functioning as the current non-injection structure is formed is provided, and the current flows exclusively to the ridge inner region I ai .
  • the gain of the low-order mode according to the present disclosure for example, the 0th to 2nd-order mode when the ridge outer region width Wo is 10 ⁇ m or less is larger than that of the lower-order mode of the comparative example, and therefore a small gain.
  • the gain in the low-order mode is larger than that in the comparative example, and the loss does not increase.
  • the ridge outer region width Wo is 15 ⁇ m or more, there is a gain difference of more than 13% between the basic mode and all other modes, and substantial basic mode oscillation becomes possible. This tendency becomes even more remarkable when the width of the outer region of the ridge Wo is 20 ⁇ m or more.
  • the width of the ridge outer region Wo may be wider than h 1 + h 2 ( 1.79 ⁇ m) and narrower than W (50 ⁇ m).
  • the distance h 1 from the first ESL layer 10 to the lower end of the proton injection region 17 is set to 0.75 ⁇ m in order to keep the damaged portion of the semiconductor layer due to proton injection away from the light intensity distribution.
  • the structure is not limited to this, and any structure that can increase the electrical resistance of the semiconductor layer may be used. If proton injection is used as a means for insulating the semiconductor layer, the etching process becomes unnecessary, so that the number of manufacturing steps can be reduced and the ridge type broad area semiconductor laser device itself can be easily manufactured. ..
  • the ridge outer region Ia o in which the proton injection region 17 functioning as the current non-injection structure is formed is provided, and the ridge type broad area semiconductor is provided. Since the current injected into the laser device 540 is made to flow exclusively to the ridge inner region Iai , the gain of the low-order mode is made larger than the gain of the high-order mode, and the laser oscillation of the low-order mode is possible. Further, the layer thickness of the p-side optical guide layer 82 is the same as the layer thickness of the n-side optical guide layer 62, so that the ridge region I a (ridge inner region I a i) is obtained. Since the difference in refractive index between the ridge outer region I ao ) and the clad region II c can be reduced, the number of allowable modes can be reduced.
  • FIG. 18 is a perspective view showing a 975 nm band ridge type broad area semiconductor laser device 550 having an actual refractive index distribution, which is a modification 2 of the second embodiment.
  • the difference from the ridge type broad area semiconductor laser apparatus 530 according to the second embodiment shown in FIG. 12 is that there is no second ESL layer 12, the ridge outer region Iao is not removed by etching, and the SiN film 15a is p-type GaAs. It is located at a point provided on a part of the surface of both ends of the contact layer 14 in the ridge width direction.
  • the method for manufacturing the ridge type broad area semiconductor laser device 550 is the same as that of the second modification of the first embodiment.
  • the effective refractive indexes of the ridge inner region I ai , the ridge outer region I ao, and the clad region II c in the ridge type broad area semiconductor laser apparatus 550 are 3.41840 , 3.41840 and 3.41828, respectively, and the ridge width.
  • 2W is 100 ⁇ m
  • 6 modes from 0th order (basic) to 5th order are allowed.
  • h 1 is 1.7 ⁇ m.
  • the ridge outer region Ia o having a current non-injection structure in which a part of the surfaces of both ends of the p-type GaAs contact layer 14 in the ridge width direction is covered with a SiN film 15a, respectively. Since the current is exclusively passed through the ridge inner region I ai , a gain difference is generated between the modes, and the gain of the low-order mode is larger than that of the high-order mode. Laser oscillation in low-order modes is possible, and a narrow horizontal spread angle can be realized.
  • the gain of the low-order mode according to the present disclosure for example, the 0th to 2nd-order mode when the ridge outer region width Wo is 10 ⁇ m or less is larger than that of the lower-order mode of the comparative example, and therefore a small gain.
  • the gain in the low-order mode is larger than that in the comparative example, and the loss does not increase.
  • the ridge outer region width Wo is 15 ⁇ m or more, there is a gain difference of more than 12% between the basic mode and all other modes, and substantial basic mode oscillation becomes possible. This tendency becomes even more remarkable when the width of the outer region of the ridge Wo is 20 ⁇ m or more.
  • the width of the ridge outer region Wo may be wider than h 1 + h 2 ( 2.74 ⁇ m) and narrower than W (50 ⁇ m).
  • the current non-injection structure in the ridge outer region Iao is formed by the SiN film 15a which is an insulating film, the current starts to spread in the x direction from the p-type GaAs contact layer 14 to the InGaAs quantum well.
  • the distance to the active layer 7 is as long as 2.74 ⁇ m, and it is difficult to obtain a gain difference when the ridge outer region width Wo is narrow, but the effect is greater when the ridge outer region width Wo is widened, so there is a particular problem. do not have. Since there is no process such as etching or proton injection, it is extremely easy to manufacture a ridge type broad area semiconductor laser device.
  • the p-type GaAs contact layer 14 has a current non-injection structure in which a part of the surfaces at both ends in the ridge width direction is covered with a SiN film 15a. Since the ridge outer region Ia o having the It has the effect of making it larger than the gain of, enabling laser oscillation in lower-order modes and narrowing the horizontal spread angle, and further, the layer thickness of the p-side optical guide layer 82 is the same as the layer thickness of the n-side optical guide layer 62.
  • the difference in refractive index between the ridge region I a (ridge inner region I ai and the ridge outer region I a o ) and the clad region II c can be reduced, so that the number of allowable modes can be reduced. Play.
  • FIG. 21 is a perspective view showing a ridge type broad area semiconductor laser device 560 in the 975 nm band having an actual refractive index distribution according to the third embodiment.
  • the ridge type broad area semiconductor laser apparatus 560 has an asymmetric structure in which the refractive index of the n-type AlGaAs clad layer 3 is higher than the refractive index of the p-type AlGaAs first clad layer 11c and the p-type AlGaAs second clad layer 13b. , The light absorption by the carrier on the side of the p-type AlGaAs first clad layer 11c and the p-type AlGaAs second clad layer 13b is reduced to improve the slope efficiency.
  • the ridge type broad area semiconductor laser apparatus 560 shown in FIG. 21 has a p-type AlGaAs first clad layer 11c (second conductive type first clad layer) having an Al composition ratio of 0.25 and a layer thickness of 0.3 ⁇ m, and an Al composition. It has a p-type AlGaAs second clad layer 13b (second conductive type second clad layer) having a ratio of 0.25 and a layer thickness of 1.2 ⁇ m.
  • Other layer configurations are the same as those of the ridge type broad area semiconductor laser device 530 of the second embodiment shown in FIG.
  • the method for manufacturing the ridge type broad area semiconductor laser device 560 is the same as that in the first embodiment.
  • the refractive index of the n-type AlGaAs clad layer 3 is higher than the refractive index of the p-type AlGaAs first clad layer 11c and the p-type AlGaAs second clad layer 13b.
  • the strength distribution is greatly displaced toward the n-type GaAs substrate 2, and carrier absorption in the p-type AlGaAs first clad layer 11c and the p-type AlGaAs second clad layer 13b can be reduced, and the slope efficiency can be improved.
  • the difference in refractive index between the ridge region I a (ridge inner region I ai and the ridge outer region I a o ) and the clad region II c is small. Therefore, the number of allowable modes can be easily reduced.
  • the total thickness of the total optical guide layer of the sum of the p-side optical guide layer 82 and the n-side optical guide layer 62 of the ridge type broad area semiconductor laser apparatus 560 is as thick as 1.8 ⁇ m, and the primary mode or higher is allowed in the stacking direction. Further, un is 0.2922273 , up is 0.480463 , and up> un is established. Therefore, the light intensity distribution in the y direction is displaced toward the n-type GaAs substrate 2, and the number of allowable modes in the x direction can be reduced.
  • the effective refractive index of the ridge region I a (ridge inner region I ai and ridge outer region I a o ) and the clad region II c when the ridge outer region width Wo of the ridge type broad area semiconductor laser device 560 is zero is determined. It becomes 3.41837 and 3.41828, respectively.
  • v is 7.99, and six modes from the 0th (basic) to the 5th are allowed.
  • the layer thickness of the p-side optical guide layer 82 is the same as the layer thickness of the n-side optical guide layer 62, so that the loss due to carriers staying during operation increases as compared with the first embodiment.
  • the refractive index of the n-type AlGaAs clad layer 3 is higher than the refractive index of the p-type AlGaAs first clad layer 11c and the p-type AlGaAs second clad layer 13b, the p-type AlGaAs first clad layer 11c and the p-type AlGaAs.
  • the spread of the light distribution to the second clad layer 13b is reduced, and the loss due to carrier absorption in the p-type AlGaAs first clad layer 11c and the p-type AlGaAs second clad layer 13b is reduced.
  • the layer thickness of the p-side optical guide layer 82 and the layer thickness of the n-side optical guide layer 62 are the same, and the refractive index of the n-type AlGaAs clad layer 3 is the p-type AlGaAs first clad layer 11c and the p-type AlGaAs second clad layer. Since it is higher than the refractive index of 13b , it is possible to reduce the difference in refractive index between the ridge region I a (ridge inner region I ai and the ridge outer region I a o ) and the clad region II c , which is acceptable. The number of modes can be reduced.
  • the effective refractive index of the portion is 3.41837
  • the ridge region I a ridge inner region I ai and The refractive index of the ridge outer region Ia o . Therefore, the number of allowable modes is the same.
  • the current starts to spread from the second ESL layer 12 in the x direction, that is, in the ridge width direction. That is, in the x direction between the thickness h 2 (1.04 ⁇ m) from the InGaAs quantum well active layer 7 to the first ESL layer 10 and the thickness h 1 (0.34 ⁇ m) from the second ESL layer 12 to the first ESL layer 10. It spreads to the InGaAs quantum well active layer 7.
  • a current non-injection structure is formed by covering the exposed surface from which the p-type GaAs contact layer 14 and the p-type AlGaAs second clad layer 13b have been removed by etching with the SiN film 15. Since the ridge outer region I ao is provided and the current flows exclusively to the ridge inner region I ai , a gain difference occurs between the modes, and the gain of the lower-order mode becomes larger than that of the higher-order mode. Therefore, laser oscillation in a low-order mode becomes possible, and a narrow horizontal spread angle can be realized.
  • the gain of the low-order mode according to the present disclosure for example, the 0th to 2nd-order mode when the ridge outer region width Wo is 10 ⁇ m or less is larger than that of the lower-order mode of the comparative example, and therefore a small gain.
  • the ridge outer region width Wo may be wider than h 1 + h 2 (1.38 ⁇ m) and narrower than W (50 ⁇ m).
  • the exposed surface from which the p-type GaAs contact layer 14, the p-type AlGaAs first clad layer 11c, and the p-type AlGaAs second clad layer 13b have been removed by etching is provided.
  • a ridge outer region Iao in which a current non-injection structure was formed by covering with a SiN film 15 was provided so that the current injected into the ridge type broad area semiconductor laser apparatus 560 could flow exclusively to the ridge inner region Iai .
  • the gain of the low-order mode is larger than that of the high-order mode, laser oscillation is possible in the low-order mode, and a narrow horizontal spread angle can be realized.
  • the p-type AlGaAs first It also has the effect of reducing light absorption by carriers on the side of the clad layer 11c and the p-type AlGaAs second clad layer 13b and increasing the slope efficiency.
  • FIG. 24 is a perspective view showing a 975 nm band ridge type broad area semiconductor laser device 570 having an actual refractive index distribution, which is a modification 1 of the third embodiment.
  • the ridge type broad area semiconductor laser apparatus 570 shown in FIG. 24 has a p-type AlGaAs first clad layer 11d (second conductive type clad layer) having an Al composition ratio of 0.25 and a layer thickness of 1.5 ⁇ m.
  • the difference from the ridge type broad area semiconductor laser device 560 shown in FIG. 21 is that there is no second ESL layer 12 and the ridge outer region Iao is formed by insulating the semiconductor layer by proton injection instead of etching removal. Is.
  • the method for manufacturing the ridge type broad area semiconductor laser device 570 is the same as that of the first modification of the first embodiment.
  • the effective refractive index of the ridge region I a (ridge inner region I ai and ridge outer region I a o ) is 3.41837 due to the absence of the second ESL layer 12.
  • the effective refractive index of the clad region II c is 3.41827, which is the same, and when the ridge width 2W is 100 ⁇ m, v in the equation (1) is 8.42, and 6 pieces from the 0th order (basic) to the 5th order. Mode is acceptable.
  • the effective refractive index of the proton-injected ridge outer region I ao is 3.41837 , which is the same as the ridge inner region I ai .
  • the distance h 1 from the upper end of the first ESL layer 10 to the lower end of the proton injection region 17 is 0.35 ⁇ m.
  • 25 and 26 show the gain Gi of each mode when the ridge outer region width Wo of the ridge type broad area semiconductor laser apparatus 570 is 3, 6, 9, 10, 11, 15, 20 and 25 ⁇ m.
  • the horizontal spread angle varies depending on which mode the laser oscillates.
  • a ridge outer region Ia o in which a proton injection region 17 functioning as a current non-injection structure is formed is provided, and a current is exclusively passed through the ridge inner region I ai .
  • the gain of the low-order mode according to the present disclosure for example, the 0th to 2nd-order mode when the ridge outer region width Wo is 10 ⁇ m or less is larger than that of the lower-order mode of the comparative example, and therefore a small gain.
  • the ridge type broad area semiconductor laser apparatus 570 even if the ridge outer region width Wo exceeds 10 ⁇ m, the gain in the low-order mode is larger than that in the comparative example, and the loss does not increase.
  • the ridge outer region width Wo is 15 ⁇ m or more, there is a gain difference of more than 14% between the basic mode and all other modes, and substantial basic mode oscillation becomes possible. This tendency becomes even more remarkable when the width of the outer region of the ridge Wo is 20 ⁇ m or more.
  • the width of the ridge outer region Wo may be wider than h 1 + h 2 ( 1.39 ⁇ m) and narrower than W (50 ⁇ m).
  • the distance h1 from the upper end of the first ESL layer 10 to the lower end of the proton injection region 17 is set to 0.35 ⁇ m in order to keep the damaged portion of the semiconductor layer due to proton injection away from the light intensity distribution.
  • the structure is not limited to this, and any structure that can increase the electrical resistance of the semiconductor layer may be used. If proton injection is used as a means for insulating the semiconductor layer, the etching process becomes unnecessary, so that the number of manufacturing steps can be reduced and the ridge type broad area semiconductor laser device itself can be easily manufactured. ..
  • the ridge outer region Ia o in which the proton injection region 17 functioning as the current non-injection structure is formed is provided, and the ridge type broad area semiconductor is provided. Since the current injected into the laser device 570 is made to flow exclusively to the ridge inner region Iai , a gain difference is generated between the modes, and the gain of the low-order mode is larger than that of the higher-order mode, so that it is low.
  • Laser oscillation is possible in the next mode, which has the effect of realizing a narrow horizontal spread angle, and the refractive index of the n-type AlGaAs clad layer 3 is higher than that of the p-type AlGaAs first clad layer 11d.
  • the asymmetric structure also has the effect of reducing light absorption by carriers on the side of the p-type AlGaAs first clad layer 11d and increasing the slope efficiency.
  • FIG. 27 is a perspective view showing a 975 nm band ridge type broad area semiconductor laser device 580 having an actual refractive index distribution, which is a modification 2 of the third embodiment.
  • the difference from the ridge type broad area semiconductor laser apparatus 560 shown in FIG. 21 is that there is no second ESL layer 12, the ridge outer region Iao is not removed by etching, and the SiN film 15a is used as the ridge of the p-type GaAs contact layer 14. It is located at a point provided on a part of the surface at both ends in the width direction.
  • the other layer structure is the same as that of the first modification of the third embodiment.
  • the method for manufacturing the ridge type broad area semiconductor laser device 580 is the same as that of the second modification of the first embodiment.
  • the effective refractive indexes of the ridge inner region I ai , the ridge outer region I ao, and the clad region II c of the ridge type broad area semiconductor laser apparatus 580 are 3.41837 , 3.41837 , and 3.41827, respectively, and the ridge width.
  • 2W is 100 ⁇ m
  • 6 modes from 0th order (basic) to 5th order are allowed.
  • h 1 is 1.7 ⁇ m.
  • the ridge outer region Ia o having a current non-injection structure in which a part of the surfaces of both ends of the p-type GaAs contact layer 14 in the ridge width direction is covered with a SiN film 15a, respectively. Since it is provided, a gain difference is generated between the modes, and the gain of the low-order mode is larger than that of the high-order mode. Therefore, laser oscillation in a low-order mode becomes possible, and a narrow horizontal spread angle can be realized.
  • the gain of the low-order mode according to the present disclosure for example, the 0th to 2nd-order mode when the ridge outer region width Wo is 10 ⁇ m or less is larger than that of the lower-order mode of the comparative example, and therefore a small gain.
  • the ridge type broad area semiconductor laser apparatus 580 even if the ridge outer region width Wo exceeds 10 ⁇ m, the gain in the low-order mode is larger than that in the comparative example, and the loss does not increase.
  • the ridge outer region width Wo is 15 ⁇ m or more, there is a gain difference of more than 13% between the basic mode and all other modes, and substantial basic mode oscillation becomes possible. This tendency becomes even more remarkable when the width of the outer region of the ridge Wo is 20 ⁇ m or more.
  • the width of the ridge outer region Wo may be wider than h 1 + h 2 ( 2.74 ⁇ m) and narrower than W (50 ⁇ m).
  • the current non-injection structure in the ridge outer region Iao is formed by the SiN film 15a which is an insulating film, the p-type GaAs contact in which the current starts to spread in the x direction, that is, in the ridge width direction.
  • the distance from the layer 14 to the InGaAs quantum well active layer 7 is as long as 2.74 ⁇ m, and if the ridge outer region width Wo is narrow, it is difficult to obtain a gain difference, but if the ridge outer region width Wo is widened, the effect is large. Therefore, there is no particular problem.
  • there is no process such as etching or proton injection, it is extremely easy to manufacture a ridge type broad area semiconductor laser device.
  • the current non-injection structure in which a part of the surfaces of both ends of the p-type GaAs contact layer 14 in the ridge width direction is covered with a SiN film 15a, respectively. Since the ridge outer region Ia o having the It has the effect of making it larger than the gain of the above, enabling laser oscillation in a low-order mode and narrowing the horizontal spread angle, and further, the refractive index of the n-type AlGaAs clad layer 3 is the refraction of the p-type AlGaAs first clad layer 11d. By adopting an asymmetric structure having a higher ratio than the ratio, the effect of reducing the light absorption by the carrier on the side of the p-type AlGaAs first clad layer 11d and increasing the slope efficiency is also obtained.
  • FIG. 30 is a perspective view showing a ridge type broad area semiconductor laser device 590 in the 975 nm band having an actual refractive index distribution according to the fourth embodiment.
  • the refractive index of the n-type AlGaAs clad layer 3 is set to the p-type AlGaAs first clad layer 11e (second conductive type first clad layer) and the p-type AlGaAs second.
  • the ridge type broad area semiconductor laser device 590 shown in FIG. 30 has a p-type AlGaAs first clad layer 11e having an Al composition ratio of 0.25 and a layer thickness of 0.35 ⁇ m, and an Al composition ratio of 0.25 and a layer thickness of 1.15 ⁇ m. It has a p-type AlGaAs second clad layer 13c. Other layer configurations are the same as those of the ridge type broad area semiconductor laser device 500 shown in FIG. 3 of the first embodiment. The method for manufacturing the ridge type broad area semiconductor laser device 590 is the same as that in the first embodiment.
  • the total thickness of the total optical guide layer of the sum of the p-side optical guide layer 81 and the n-side optical guide layer 61 of the ridge type broad area semiconductor laser apparatus 590 is as thick as 1.8 ⁇ m, and the primary mode or higher is allowed in the stacking direction. Further, un is 0.2922273 , up is 0.480463 , and up> un is established. Therefore, the light intensity distribution in the y direction is displaced toward the n-type GaAs substrate 2, and the number of allowable modes in the x direction can be reduced.
  • the effective refractive indexes of the ridge region I a (ridge inner region I ai and the ridge outer region I a o ) and the clad region II c when the ridge outer region width Wo is zero are 3.41692 and 3.41672, respectively. Become. When the ridge width 2W is 100 ⁇ m, v is 11.91, and eight modes from the 0th (basic) to the 7th are allowed.
  • the effective refractive index of the portion is 3.41692
  • the ridge region I a ridge inner region I ai and The refractive index of the ridge outer region Ia o . Therefore, the number of allowable modes is the same.
  • the current starts to spread from the second ESL layer 12 in the x direction, that is, in the ridge width direction. That is, the thickness h 2 (0.74 ⁇ m) from the InGaAs quantum well active layer 7 to the first ESL layer 10 and the thickness h 1 (0.39 ⁇ m) from the second ESL layer 12 to the first ESL layer 10 spread in the x direction. , InGaAs quantum well active layer 7.
  • 31 and 32 show the gain Gi of each mode when the ridge outer region width Wo of the ridge type broad area semiconductor laser apparatus 590 is 3, 6, 9, 10, 11, 15, 20, and 25 ⁇ m.
  • the horizontal spread angle varies depending on which mode the laser oscillates.
  • the exposed surface from which the p-type GaAs contact layer 14 and the p-type AlGaAs second clad layer 13c have been removed by etching is covered with the SiN film 15 which is an insulating film, so that no current is injected. Since the ridge outer region Iao as a structure is provided, a gain difference is generated between the modes, and the gain of the low-order mode is larger than that of the high-order mode. Therefore, laser oscillation in a low-order mode becomes possible, and a narrow horizontal spread angle can be realized.
  • the gain of the low-order mode according to the present disclosure for example, the 0th to 3rd-order mode when the ridge outer region width Wo is 10 ⁇ m or less is larger than that of the lower-order mode of the comparative example, and therefore a small gain.
  • the ridge outer region width Wo may be wider than h 1 + h 2 (1.13 ⁇ m) and narrower than W (50 ⁇ m).
  • the exposed surface from which the p-type GaAs contact layer 14 and the p-type AlGaAs second clad layer 13c in the ridge outer region Iao are removed by etching is a SiN film.
  • a current non-injection structure is provided so that the current injected into the ridge type broad area semiconductor laser device 590 flows exclusively to the ridge inner region Iai , so that the gain of the low-order mode can be increased to the high-order.
  • the refractive index of the n-type AlGaAs clad layer 3 is set to the p-type AlGaAs first clad layer 11e and the p-type AlGaAs first clad layer 11e.
  • the refractive index of the p-type AlGaAs second clad layer 13c By adopting an asymmetric structure higher than the refractive index of the p-type AlGaAs second clad layer 13c, the light absorption by the carriers on the side of the p-type AlGaAs first clad layer 11e and the p-type AlGaAs second clad layer 13c is reduced. It also has the effect of increasing the slope efficiency.
  • FIG. 33 is a perspective view showing a ridge type broad area semiconductor laser device 600 in the 975 nm band having an actual refractive index distribution according to the first modification of the fourth embodiment.
  • the difference from the ridge type broad area semiconductor laser device 590 according to the fourth embodiment shown in FIG. 30 is that there is no second ESL layer 12, and the semiconductor layer is insulated by proton injection instead of etching removal of the ridge outer region Iao . It is in the point of forming by etching.
  • the method for manufacturing the ridge type broad area semiconductor laser device 600 is the same as that of the first modification of the first embodiment.
  • the effective refractive index of the ridge region I a (ridge inner region I ai and ridge outer region I a o ) is 3.41693 due to the absence of the second ESL layer 12.
  • the effective refractive index of the clad region II c is 3.41672, which is the same, and when the ridge width 2W is 100 ⁇ m, v in the equation (1) is 12.20, and eight pieces from the 0th order (basic) to the 7th order. Mode is acceptable.
  • the effective refractive index of the proton-injected ridge outer region I ao is 3.41693 , which is the same as the ridge inner region I ai .
  • the distance h 1 from the upper end of the first ESL layer 10 to the lower end of the proton injection region 17 is 1.45 ⁇ m.
  • a ridge outer region I ao in which a proton injection region 17 functioning as a current non-injection structure is formed is provided, and a current is exclusively passed through the ridge inner region I ai .
  • the gain of the low-order mode according to the present disclosure for example, the 0th to 2nd-order mode when the ridge outer region width Wo is 10 ⁇ m or less is larger than that of the lower-order mode of the comparative example, and therefore a small gain.
  • the ridge type broad area semiconductor laser apparatus 600 even if the ridge outer region width Wo exceeds 10 ⁇ m, the gain in the low-order mode is larger than that in the comparative example, and the loss does not increase.
  • the ridge outer region width Wo is 15 ⁇ m or more, there is a gain difference of more than 11% between the basic mode and all other modes, and substantial basic mode oscillation becomes possible. This tendency becomes even more remarkable when the width of the outer region of the ridge Wo is 20 ⁇ m or more.
  • the width of the ridge outer region Wo may be wider than h 1 + h 2 ( 2.19 ⁇ m) and narrower than W (50 ⁇ m).
  • the distance h 1 from the upper end of the first ESL layer 10 to the lower end of the proton injection region 17 is as long as 1.45 ⁇ m in order to keep the damaged portion of the semiconductor layer due to proton injection and the light intensity distribution away.
  • the structure is not limited to this, and any structure that can increase the electrical resistance of the semiconductor layer may be used. If proton injection is used as a means for insulating the semiconductor layer, the etching process becomes unnecessary, so that the number of manufacturing steps can be reduced and the ridge type broad area semiconductor laser device itself can be easily manufactured. ..
  • the ridge outer region Iao in which the proton injection region 17 functioning as the current non-injection structure is formed is provided, and the ridge type broad area semiconductor is provided. Since the current injected into the laser device 600 is made to flow exclusively in the ridge inner region Iai , the gain of the low-order mode is made larger than the gain of the high-order mode, and the laser oscillation of the low-order mode is possible.
  • FIG. 36 is a perspective view showing a 975 nm band ridge type broad area semiconductor laser device 610 having an actual refractive index distribution according to the second modification of the fourth embodiment.
  • the difference from the ridge type broad area semiconductor laser apparatus 590 according to the fourth embodiment shown in FIG. 30 is that there is no second ESL layer 12, the ridge outer region Iao is not removed by etching, and the SiN film 15a is p-type GaAs. It is located at a point provided on a part of the surface of both ends of the contact layer 14 in the ridge width direction.
  • the method for manufacturing the ridge type broad area semiconductor laser device 610 is the same as that of the second modification of the first embodiment.
  • the effective refractive indexes of the ridge inner region I ai , the ridge outer region I ao, and the clad region II c in the ridge type broad area semiconductor laser apparatus 610 are 3.41693 , 3.41693 , and 3.41672, respectively, and the ridge.
  • the width 2W is 100 ⁇ m
  • eight modes from 0th order (basic) to 7th order are allowed. Since the current spreads from the upper part of the p-type GaAs contact layer 14, h 1 is 1.7 ⁇ m.
  • the gain of the low-order mode according to the present disclosure for example, the 0th to 2nd-order mode when the ridge outer region width Wo is 10 ⁇ m or less is larger than that of the lower-order mode of the comparative example, and therefore a small gain.
  • the gain in the low-order mode is larger than that in the comparative example, and the loss does not increase.
  • the ridge outer region width Wo is 15 ⁇ m or more, there is a gain difference of more than 11% between the basic mode and all other modes, and substantial basic mode oscillation becomes possible. It becomes even more remarkable when the ridge outer region width Wo is 20 ⁇ m or more.
  • the width of the ridge outer region Wo may be wider than h 1 + h 2 ( 2.44 ⁇ m) and narrower than W (50 ⁇ m).
  • the current non-injection structure in the ridge outer region Iao is formed by the SiN film 15a which is an insulating film, the p-type GaAs contact in which the current starts to spread in the x direction, that is, in the ridge width direction.
  • the distance from the layer 14 to the InGaAs quantum well active layer 7 is as long as 2.44 ⁇ m, and if the ridge outer region width Wo is narrow, it is difficult to obtain a gain difference, but if the ridge outer region width Wo is widened, the effect becomes greater. So there is no particular problem. Since there is no process such as etching or proton injection, it is extremely easy to manufacture a ridge type broad area semiconductor laser device.
  • the current non-injection structure in which a part of the surfaces of both ends of the p-type GaAs contact layer 14 in the ridge width direction is covered with a SiN film 15a, respectively. Since the ridge outer region Ia o having the It has the effect of making it larger than the gain of the above, enabling laser oscillation in a low-order mode and narrowing the horizontal spread angle, and further, the refractive index of the n-type AlGaAs clad layer 3 is the refraction of the p-type AlGaAs first clad layer 11d. By adopting an asymmetric structure having a higher ratio than the ratio, the effect of reducing the light absorption by the carrier on the side of the p-type AlGaAs first clad layer 11d and increasing the slope efficiency is also obtained.
  • FIG. 39 is a perspective view showing a ridge type broad area semiconductor laser device 620 in the 975 nm band having an actual refractive index distribution according to the fifth embodiment.
  • the ridge type broad area semiconductor laser apparatus 620 shown in FIG. 39 has a p-type AlGaAs first ESL layer 21 (p-type AlGaAs low refractive index layer or a second conductive type low refraction) having an Al composition ratio of 0.55 and a layer thickness of 40 nm.
  • It has a p-type AlGaAs third clad layer 26 (second conductive type second clad layer), a p-type GaAs contact layer 27 having a layer thickness of 0.2 ⁇ m, a SiN film 28 having a film thickness of 0.4 ⁇ m, and a p-type electrode 29. ..
  • Other layer configurations are the same as those of the ridge type broad area semiconductor laser device 500 shown in FIG. 3 of the first embodiment.
  • the p-type AlGaAs first clad layer 22 and the p-type AlGaAs second clad layer 24 are collectively referred to as a second conductive type first clad layer.
  • the manufacturing method of the ridge type broad area semiconductor laser apparatus 620 is shown below.
  • Each semiconductor layer from the n-type AlGaAs clad layer 3 to the p-type GaAs contact layer 27 is sequentially crystal-grown on the n-type GaAs substrate 2 by a crystal growth method such as a metalorganic vapor phase growth method (MOCVD).
  • MOCVD metalorganic vapor phase growth method
  • the ridge inner region Iai is covered with a resist and dry-etched to the third ESL layer 25 to peel off the resist.
  • the ridge inner region I ai and the ridge outer region I ao are covered with a resist and dry-etched to the second ESL layer 23 to peel off the resist.
  • the ridge inner region I ai , the ridge outer region I ao , and the terrace region II t are covered with a resist and dry-etched to the first ESL layer 21 to peel off the resist. Then, the ridge inner region Iai is covered with a resist, a SiN film 28 is formed and lifted off, and the resist is peeled off. Finally, the p-type electrode 16 is formed on the upper surface side and the n-type electrode 1 is formed on the lower surface side.
  • Terrace regions II t are provided on both sides of the ridge outer region I ao of the ridge type broad area semiconductor laser apparatus 620 via a clad region II c having a width d (for example, 2 ⁇ m).
  • the effective refractive index of the terrace region II t is smaller than the effective refractive index of the ridge region I a (ridge inner region I ai and ridge outer region I a o ) and larger than the effective refractive index of the clad region II c . ..
  • the location has the same structure as the clad region II c , there are many higher-order modes, but if the terrace region II t is provided, the propagation constant of the higher-order mode is divided by the wave number in free space. Since the value becomes smaller than the effective refractive index of the terrace region IIt and these higher-order modes cannot exist, the number of modes allowed in the horizontal direction can be reduced.
  • the ridge type broad area semiconductor laser device 620 has a terrace region II t having an effective refractive index of nt outside the clad region II c , and when m is a positive integer, the following equation (9) is satisfied and It is characterized by satisfying the equation (10).
  • the value obtained by dividing the propagation constant by the wave number in the free space is the value of the terrace region II t . It becomes smaller than the effective refractive index, and as a result, 11 modes from the 0th order to the 10th order are allowed.
  • the effective refractive index of the portion is 3. It becomes 41741 , and the refractive index of the ridge region I a (the ridge inner region I ai and the ridge outer region I a o ) is the same regardless of the removal by etching. Therefore, the number of allowable modes is the same.
  • the current starts to spread from the third ESL layer 25 in the x direction, that is, in the ridge width direction. That is, the thickness h 2 (0.64 ⁇ m) from the InGaAs quantum well active layer 7 to the first ESL layer 21 (p-type AlGaAs low refractive index layer 21) and the thickness h 1 from the first ESL layer 21 to the third ESL layer 25. At (0.93 ⁇ m), it spreads in the x direction and reaches the InGaAs quantum well active layer 7.
  • the exposed surface from which the p-type GaAs contact layer 27 and the p-type AlGaAs third clad layer 26 have been removed by etching is covered with a SiN film 28 to form a current non-injection structure. Since the outer region I ao is provided, a gain difference is generated between the modes, and the gain of the low-order mode is larger than that of the high-order mode. Therefore, laser oscillation in a low-order mode becomes possible, and a narrow horizontal spread angle can be realized.
  • the gain of the low-order mode according to the present disclosure for example, the 0th to 3rd-order mode when the ridge outer region width Wo is 10 ⁇ m or less is larger than that of the lower-order mode of the comparative example, and therefore a small gain.
  • the ridge outer region width Wo may be wider than h 1 + h 2 (1.57 ⁇ m) and narrower than W (50 ⁇ m).
  • the exposed surface from which the p-type GaAs contact layer 27 and the p-type AlGaAs third clad layer 26 have been removed by etching is covered with the SiN film 28 to prevent current.
  • a ridge outer region I ao as an injection structure is provided so that the current injected into the ridge type broad area semiconductor laser apparatus 620 flows exclusively to the ridge inner region I ai , so that the gain in the lower order mode is higher.
  • the gain of the higher-order mode is made larger than the gain of the mode, which enables the oscillation of the lower-order mode and narrows the horizontal spread angle.
  • the propagation constant of the higher-order mode is set to the number of waves in free space. Since the value divided by is smaller than the effective refractive index of the terrace region IIt and these higher-order modes cannot exist, the number of modes allowed in the horizontal direction can be reduced.
  • FIG. 42 is a perspective view showing a ridge type broad area semiconductor laser device 630 in the 975 nm band having an actual refractive index distribution according to the first modification of the fifth embodiment.
  • the ridge type broad area semiconductor laser device 630 shown in FIG. 42 has a p-type AlGaAs second clad layer 24a (second conductive type clad layer) having an Al composition ratio of 0.20 and a layer thickness of 1.40 ⁇ m, and has a film thickness of 0. It has a 4 ⁇ m SiN film 28a and a proton injection region 30.
  • the difference from the ridge type broad area semiconductor laser device 620 shown in FIG. 39 is that there is no third ESL layer 25, and the ridge outer region Iao is formed by insulating the semiconductor layer by proton injection instead of etching removal. It is in.
  • the manufacturing method of the ridge type broad area semiconductor laser apparatus 630 is shown below.
  • Each semiconductor layer from the n-type AlGaAs clad layer 3 to the p-type GaAs contact layer 27 is sequentially crystal-grown on the n-type GaAs substrate 2 by a crystal growth method such as a metalorganic vapor phase growth method (MOCVD).
  • MOCVD metalorganic vapor phase growth method
  • the ridge inner region Iai is covered with a resist and protons are ion-implanted to form a proton implantation region 30, and the resist is peeled off.
  • the ridge inner region I ai and the ridge outer region I ao are covered with a resist and dry-etched to the second ESL layer 23 to peel off the resist.
  • the proton injection region 30 of the clad region II c and the terrace region II t is also etched and disappears.
  • the ridge inner region I ai , the ridge outer region I ao , and the terrace region II t are covered with a resist and dry-etched to the first ESL layer 21 to peel off the resist. Further, the ridge inner region I ai and the ridge outer region I ao are covered with a resist, a SiN film 28a is formed and lifted off, and the resist is peeled off. Finally, the p-type electrode 16 is formed on the upper surface side and the n-type electrode 1 is formed on the lower surface side.
  • the value obtained by dividing the propagation constant by the wave number in the free space is the value of the terrace region II t . It becomes smaller than the effective refractive index, and as a result, 11 modes from the 0th order to the 10th order are allowed.
  • the distance h 1 from the upper end of the first ESL layer 21 to the lower end of the proton injection region 30 is 1.00 ⁇ m. Since the effective refractive index of the ridge outer region I ao , which is the ridge outer region width W o , is 3.41741 , the number of modes allowed is the same as that of the fifth embodiment.
  • the current starts to spread in the x direction from the lower end of the proton injection region 30, that is, in the ridge width direction, and has a thickness h2 ( 0.64 ⁇ m) from the InGaAs quantum well active layer 7 to the first ESL layer 21.
  • the thickness h 1 (1.00 ⁇ m) from the upper end of the ESL layer 21 to the lower end of the proton injection region 17 spreads in the x direction to reach the InGaAs quantum well active layer 7.
  • the ridge type broad area semiconductor laser device 630 since the ridge outer region Iao in which the proton injection region 30 functioning as the current non-injection structure is formed is provided, a gain difference occurs between the modes, and the lower order is generated.
  • the gain of the mode is larger than that of the higher order mode. Therefore, laser oscillation in a low-order mode becomes possible, and a narrow horizontal spread angle can be realized.
  • the gain of the low-order mode according to the present disclosure for example, the 0th to 3rd-order mode when the ridge outer region width Wo is 10 ⁇ m or less is larger than that of the lower-order mode of the comparative example, and therefore a small gain.
  • the gain in the low-order mode is larger than that in the comparative example, and the loss does not increase.
  • the ridge outer region width Wo is 15 ⁇ m or more, there is a gain difference of more than 10% between the basic mode and all other modes, and substantial basic mode oscillation becomes possible. This tendency becomes even more remarkable when the width of the outer region of the ridge Wo is 20 ⁇ m or more.
  • the width of the ridge outer region Wo may be wider than h 1 + h 2 ( 1.64 ⁇ m) and narrower than W (50 ⁇ m).
  • the distance h1 from the upper end of the first ESL layer 21 to the lower end of the proton injection region 30 is as long as 1.00 ⁇ m in order to keep the damaged portion of the semiconductor layer due to proton injection and the light intensity distribution away.
  • the structure is not limited to this, and any structure that can increase the electrical resistance of the semiconductor layer may be used. If proton injection is used as a means for insulating the semiconductor layer, the etching process becomes unnecessary, so that the number of manufacturing steps can be reduced and the ridge type broad area semiconductor laser device itself can be easily manufactured. ..
  • the ridge outer region Ia o in which the proton injection region 30 functioning as the current non-injection structure is formed is provided, and the ridge type broad area semiconductor is provided. Since the current injected into the laser device 630 is made to flow exclusively to the ridge inner region Iai , the gain of the low-order mode is made larger than the gain of the high-order mode, and the laser oscillation of the low-order mode is possible. Further, by providing the terrace region II t , the value obtained by dividing the propagation constant of the higher-order mode by the number of waves in the free space becomes smaller than the effective refractive index of the terrace region II t . Since these higher-order modes cannot exist, it also has the effect of reducing the number of modes allowed in the horizontal direction.
  • FIG. 45 is a perspective view showing a ridge type broad area semiconductor laser device 640 in the 975 nm band having an actual refractive index distribution according to the second modification of the fifth embodiment.
  • the ridge type broad area semiconductor laser device 640 shown in FIG. 45 has a SiN film 28b having a film thickness of 0.4 ⁇ m.
  • the difference from the ridge type broad area semiconductor laser device 620 shown in FIG. 39 is that there is no third ESL layer 25, and in order to form the ridge outer region Iao , the SiN film 28b is not removed by etching but a p-type GaAs contact. It is located at a point provided on a part of the surface of both ends of the layer 27 in the ridge width direction.
  • the manufacturing method of the ridge type broad area semiconductor laser apparatus 640 is shown below.
  • Each semiconductor layer from the n-type AlGaAs clad layer 3 to the p-type GaAs contact layer 27 is sequentially crystal-grown on the n-type GaAs substrate 2 by a crystal growth method such as a metalorganic vapor phase growth method (MOCVD).
  • MOCVD metalorganic vapor phase growth method
  • the ridge inner region I ai and the ridge outer region I ao are covered with a resist and dry-etched to the second ESL layer 23 to peel off the resist.
  • the ridge inner region I ai , the ridge outer region I ao , and the terrace region II t are covered with a resist and dry-etched to the first ESL layer 21 to peel off the resist.
  • the ridge inner region Iai is covered with a resist, a SiN film 28b is formed and lifted off, and the resist is peeled off.
  • the p-type electrode 16 is formed on the upper surface side and the n-type electrode 1 is formed on the lower surface side.
  • the effective refractive indexes of the ridge inner region I ai , the ridge outer region I ao, the clad region II c and the terrace region II t in the ridge type broad area semiconductor laser apparatus 640 are 3.41741 , 3.41741 and 3 .
  • it is 41637 and 3.41704 and the ridge width 2W is 100 ⁇ m, 11 modes from the 0th order (basic) to the 10th order are allowed. Since the current spreads from the upper part of the p-type GaAs contact layer 27, h 1 is 1.64 ⁇ m.
  • the ridge outer region Ia o having a current non-injection structure in which a part of the surfaces of both ends of the p-type GaAs contact layer 27 in the ridge width direction is covered with a SiN film 28b, respectively. Since the current is provided exclusively to the ridge inner region Iai , a gain difference is generated between the modes, and the gain of the low-order mode is larger than that of the high-order mode. Therefore, laser oscillation in a low-order mode becomes possible, and a narrow horizontal spread angle can be realized.
  • the gain of the low-order mode according to the present disclosure for example, the 0th to 3rd-order mode when the ridge outer region width Wo is 10 ⁇ m or less is larger than that of the lower-order mode of the comparative example, and therefore a small gain.
  • the ridge outer region width Wo of the ridge type broad area semiconductor laser apparatus 640 exceeds 10 ⁇ m, the gain in the low-order mode is larger than that in the comparative example, and the loss does not increase.
  • the ridge outer region width Wo is 15 ⁇ m or more, there is a gain difference of more than 10% between the basic mode and all other modes, and substantial basic mode oscillation becomes possible. This tendency becomes even more remarkable when the width of the outer region of the ridge Wo is 20 ⁇ m or more.
  • the ridge outer region width Wo of the ridge type broad area semiconductor laser apparatus 640 may be wider than h 1 + h 2 (2.28 ⁇ m) and narrower than W (50 ⁇ m).
  • the InGaAs quantum is formed from the p-type GaAs contact layer 27 where the current starts to spread in the x direction.
  • the distance to the well active layer 7 is as long as 2.38 ⁇ m, and it is difficult to obtain a gain difference when the ridge outer region width Wo is narrow, but the effect is greater when the ridge outer region width Wo is widened, which is a special problem. There is no.
  • there is no process such as etching or proton injection, it is extremely easy to manufacture a ridge type broad area semiconductor laser device.
  • the type broad area semiconductor laser device 640 has been exemplified, but the present invention is not limited to this, and the same effect can be obtained with a normal ridge type broad area semiconductor laser device such that the horizontal and transverse modes are not reduced.
  • the effective refractive index of the ridge outer region I ao is equal to the effective refractive index of the ridge inner region I ai , but it may be substantially the same as described in the first embodiment. It's fine.
  • the p-type GaAs contact layer 27 has a current non-injection structure in which a part of the surfaces at both ends in the ridge width direction is covered with a SiN film 28b. Since the ridge outer region Ia o is provided and the current injected into the ridge type broad area semiconductor laser apparatus 640 is exclusively passed through the ridge inner region Ia i , the gain of the lower order mode is higher than the gain of the higher order mode.
  • the value obtained by dividing the propagation constant of the higher-order mode by the number of waves in the free space is obtained by increasing the value and enabling the oscillation of the lower-order mode to narrow the horizontal spread angle, and by providing the terrace region IIt . Since it becomes smaller than the effective refractive index of the terrace region II t and these higher-order modes cannot exist, the effect that the number of modes allowed in the horizontal direction can be reduced is also obtained.
  • FIG. 48 is a perspective view showing a ridge type broad area semiconductor laser device 650 in the 975 nm band having an actual refractive index distribution according to the sixth embodiment.
  • the ridge type broad area semiconductor laser apparatus 650 shown in FIG. 48 has a p-type AlGaAs first clad layer 31 having an Al composition ratio of 0.20 and a layer thickness of 0.10 ⁇ m, and a p-type having an Al composition ratio of 0.55 and a layer thickness of 40 nm.
  • AlGaAs first ESL layer 32 (also referred to as p-type AlGaAs low refractive index layer or second conductive type low refractive index layer), p-type AlGaAs second clad layer 33 having an Al composition ratio of 0.20 and a layer thickness of 0.75 ⁇ m.
  • a p-type AlGaAs second ESL layer 34 having an Al composition ratio of 0.55 and a layer thickness of 40 nm
  • a p-type AlGaAs third clad layer 35 (second conductive type second clad layer) having an Al composition ratio of 0.20 and a layer thickness of 0.65 ⁇ m.
  • the p-type AlGaAs first clad layer 31 and the p-type AlGaAs second clad layer 33 are collectively referred to as a second conductive type first clad layer.
  • ridge type broad area semiconductor laser apparatus 500 shown in FIG. 3 of the first embodiment except that there is no n-type low refractive index layer.
  • the method for manufacturing the ridge type broad area semiconductor laser device 650 is also the same as that in the first embodiment.
  • the ridge type broad area semiconductor laser device 650 is a 975 nm band ridge type broad area semiconductor laser device having a normal actual refractive index distribution without an n-type low refractive index layer, and is a first ESL layer 32 (p-type AlGaAs low refractive index).
  • the layer 32) is provided between the p-type AlGaAs first clad layer 31 and the p-type AlGaAs second clad layer 33.
  • the gain difference between the allowed modes shows the same tendency as in the first embodiment.
  • the layer thickness of the p-type AlGaAs first clad layer 31 is 0.1 ⁇ m, but the layer thickness is not limited to this, and if the layer thickness is increased, it is permissible in the x direction. The number of modes to be played can be easily reduced.
  • the exposed surface from which the p-type GaAs contact layer 36 and the p-type AlGaAs third clad layer 35 have been removed by etching is covered with the SiN film 37 to prevent current.
  • a ridge outer region I ao as an injection structure is provided so that the current injected into the ridge type broad area semiconductor laser device 650 flows exclusively to the ridge inner region I ai , so that the gain in the lower order mode is higher. It is made larger than the gain of the mode of, and it has the effect of narrowing the horizontal spread angle by enabling the oscillation of the low-order mode.
  • FIG. 49 is a perspective view showing a 975 nm band ridge type broad area semiconductor laser device 660 having an actual refractive index distribution according to the first modification of the sixth embodiment.
  • the ridge type broad area semiconductor laser apparatus 660 shown in FIG. 49 has a p-type AlGaAs second clad layer 33a having an Al composition ratio of 0.20 and a layer thickness of 1.40 ⁇ m, a SiN film 37a having a thickness of 0.2 ⁇ m, and a proton injection region. Has 40.
  • the difference between the ridge type broad area semiconductor laser device 660 and the ridge type broad area semiconductor laser device 650 shown in FIG. 48 is that there is no second ESL layer 34, and the ridge outer region Iao is not removed by etching but by proton injection. The point is that it is formed by insulating the semiconductor layer.
  • the method for manufacturing the ridge type broad area semiconductor laser device 650 is the same as that of the first modification of the first embodiment.
  • the ridge type broad area semiconductor laser device 660 is a ridge type broad area semiconductor laser device having a normal actual refractive index distribution without an n-type low refractive index layer, and the first ESL layer 32 is combined with the p-type AlGaAs first clad layer 31. It is provided between the p-type AlGaAs second clad layer 33a.
  • the gain difference between the permissible modes shows the same tendency as that of the first modification of the first embodiment.
  • the layer thickness of the p-type AlGaAs first clad layer 31 is 0.1 ⁇ m, but the layer thickness is not limited to this, and when this layer thickness is increased, the x direction, that is, , The number of modes allowed in the ridge width direction can be easily reduced.
  • the structure is not limited to this, and any structure that can increase the electrical resistance of the semiconductor layer may be used. If proton injection is used as a means for insulating the semiconductor layer, the etching process becomes unnecessary, so that the number of manufacturing steps can be reduced and the ridge type broad area semiconductor laser device itself can be easily manufactured. ..
  • the ridge outer region Ia o in which the proton injection region 40 functioning as the current non-injection structure is formed is provided, and the ridge type broad area semiconductor is provided. Since the current injected into the laser device 660 is made to flow exclusively to the ridge inner region Iai , the gain of the low-order mode is made larger than the gain of the high-order mode, and the laser oscillation of the low-order mode is possible. It has the effect of narrowing the horizontal spread angle.
  • FIG. 50 is a perspective view showing a 975 nm band ridge type broad area semiconductor laser device 670 having an actual refractive index distribution according to the second modification of the sixth embodiment.
  • the ridge type broad area semiconductor laser device 670 shown in FIG. 50 has a SiN film 37b having a film thickness of 0.2 ⁇ m.
  • the difference from the ridge type broad area semiconductor laser apparatus 650 shown in FIG. 48 is that there is no second ESL layer 34, the ridge outer region Iao is not removed by etching, and the SiN film 37b is used as the ridge of the p-type GaAs contact layer 36. It is located at a point provided on a part of the surface at both ends in the width direction.
  • the method for manufacturing the ridge type broad area semiconductor laser device 670 is the same as that of the second modification of the first embodiment.
  • the ridge type broad area semiconductor laser device 670 is a ridge type broad area semiconductor laser device having a normal actual refractive index distribution without an n-type low refractive index layer, and the first ESL layer 32 is combined with the p-type AlGaAs first clad layer 31. It is provided between the p-type AlGaAs second clad layer 33a.
  • the gain difference between the permissible modes shows the same tendency as that of the second modification of the first embodiment.
  • the layer thickness of the p-type AlGaAs first clad layer 31 is 0.1 ⁇ m, but the layer thickness is not limited to this, and if the layer thickness is increased, it is permissible in the x direction.
  • the number of modes to be played can be easily reduced. Since there is no step such as etching or proton injection in this embodiment, it is extremely easy to manufacture a ridge type broad area semiconductor laser device.
  • a ridge type in which the number of allowable horizontal transverse modes is reduced, a gain difference is provided between the allowable horizontal transverse modes, the laser is oscillated in a low-order mode, and the horizontal spread angle is narrowed.
  • the broad area semiconductor laser device has been exemplified, but the present invention is not limited to this, and the same effect can be obtained with a ridge type broad area semiconductor laser device having a normal ridge structure that does not reduce the horizontal and transverse modes.
  • the effective refractive index of the ridge outer region I ao is equal to the effective refractive index of the ridge inner region I ai , but it may be substantially the same as described in the first embodiment. It's fine.
  • a part of the surface of both ends of the p-type GaAs contact layer 36 of the ridge outer region Iao in the ridge width direction is partially covered with the SiN film 37b. Since the current non-injection structure is covered with, the current injected into the ridge type broad area semiconductor laser device 670 flows exclusively to the ridge inner region Iai , and as a result, the gain of the low-order mode is increased to the high-order mode. It has the effect of narrowing the horizontal spread angle by making it larger than the gain of the above and enabling laser oscillation in low-order modes.
  • a ridge type broad area semiconductor laser device having an oscillation wavelength of 975 nm has been described as an example, but it goes without saying that the device is not limited to the wavelength.
  • the same effect can be obtained with a ridge type broad area semiconductor laser device of 400 nm band GaN system, 600 nm band GaInP system, and 1550 nm band InGaAsP system.
  • the ridge structure is formed on the p-type GaAs contact layer side by using the n-type GaAs substrate, but conversely, the ridge structure is formed on the n-type GaAs contact layer side by using the p-type GaAs substrate.
  • the same effect can be obtained.
  • a ridge type broad area semiconductor laser device having a ridge width of 2 W of 100 ⁇ m is exemplified, but the ridge width of 2 W is not limited to 100 ⁇ m, and the ridge width of 2 W is not limited to 100 ⁇ m. If the higher-order mode is acceptable, it does not depend on the ridge width of 2W.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本開示の半導体レーザ装置は、半導体基板(2)上に積層された第1導電型のクラッド層(3)、第1導電型側の光ガイド層(61)、活性層(7)、第2導電型側の光ガイド層(81)、第2導電型のクラッド層(11)及び第2導電型のコンタクト層(14)と、前端面と後端面からなる共振器と、前端面と後端面の間でレーザ光を導波するリッジ領域と、を備え、リッジ領域は、実効屈折率がn であるリッジ内側領域と、リッジ内側領域の両側に設けられ、実効屈折率がn である電流非注入構造を有するリッジ外側領域からなり、リッジ外側領域幅のWは、電流非注入構造の下端部から活性層までの距離よりも大きいことを特徴とする。

Description

半導体レーザ装置
 本開示は、半導体レーザ装置に関する。
 ブロードエリア半導体レーザ装置は、大出力が可能である等の利点を備えている。
 特許文献1には、水平方向に実屈折率分布を有するリッジ型ブロードエリア半導体レーザ装置において、結晶の積層方向に1次以上の高次モードが許容される程の厚い光ガイド層を有し、リッジ構造の両側に、リッジ領域の実効屈折率よりも屈折率が低く、かつ、クラッド領域の屈折率よりも高い屈折率を有するテラス領域を、溝を介して設けることで、水平方向に許容されるモード数を少なくして、水平方向広がり角を狭くすることが開示されている。なお、ここで実屈折率分布とは、屈折率が実数で記述される屈折率分布を意味し、導波機構は屈折率導波路となり、波動方程式を解くことで得られる電界分布、磁界分布、伝搬定数等は実数となる。
 特許文献2には、リッジ構造の両側を半導体層で埋め込むことにより、水平方向に屈折率差を設けたリッジ型ブロードエリア半導体レーザ装置において、リッジ構造と半導体層の境界のリッジ側を電流非注入とすることで、リッジ両端近傍に出現する近視野像(Near Field Pattern:NFP)のピークを抑制すること、ロスの増加を抑制するため電流非注入幅は10μm以下が好ましいこと等が開示されている。
国際公開第2019/053854号 特開2006-294745号公報
N. Yonezu、 I. Sakuma、 K. Kobayashi、 T. Kamejima、 M. Ueno、 and Y. Nannichi、 "A GaAs-AlxGa1-xAs Double Heterostructure Planar Stripe Laser、" Jpn. J. Appl. Phys.、 vol. 12、 no. 10、 pp. 1585-1592、 1973 川上著、"光導波路"pp.18-31、朝倉書店(1992年) 伊賀編著、 "半導体レーザ" pp. 35-38、平成6年10月25日(オーム社) G. B. Hocker and W. K. Burns、 "Mode dispersion in diffused channel waveguides by the effective index method、 " Appl. Opt.、 Vol. 16、 No. 1、 pp. 113-118、1977
 従来の実屈折率分布を有するリッジ型ブロードエリア半導体レーザ装置では、水平方向の許容モード数を少なくすることで、許容モード数が多い場合に比べて水平広がり角は平均的には狭くできるが、許容されるモードのうちのどのモードが発振するかによって水平広がり角にばらつきが生じるという問題があった。これは、許容されるモード間の利得差が小さいことに起因している。
 また、従来の実屈折率分布を有するリッジ型ブロードエリア半導体レーザ装置は、半導体層で埋め込んだブロードエリア半導体レーザ装置とは異なり、リッジ構造の両端近傍のNFPにピークが発現することは無く、また、局所的に電流を少なくすると、当該箇所のNFPが弱まることも無かった。
 実屈折率分布を有するリッジ型ブロードエリア半導体レーザ装置の場合は、NFPは許容される各モードの線形結合で決まるが、これは、局所的に電流を少なくすると、その影響は全てのモードに及ぶことに起因している。
 なお、半導体層で埋め込んだブロードエリア半導体レーザ装置で発現する特異な現象は、半導体層で埋め込むことで、利得導波路または損失導波路となることで起こると考えられる。このため、半導体層で埋め込んだ構造を、実屈折率分布を有するリッジ型ブロードエリア半導体レーザ装置に適用することは行われていなかった。
 本開示は上記のような問題点を解消するためになされたもので、水平方向に許容されるモード数を少なくした構造において、低次のモードの利得を高次のモードの利得よりも大きくすることにより低次のモードを発振させて水平方向の広がり角を狭くし、光学部品との結合効率を高めた実屈折率分布を有するリッジ型ブロードエリア半導体レーザ装置を得ることを目的としている。
 本願に開示される半導体レーザ装置は、第1導電型の半導体基板と、前記第1導電型の半導体基板上に積層された第1導電型のクラッド層、第1導電型側の光ガイド層、活性層、第2導電型側の光ガイド層、第2導電型のクラッド層及び第2導電型のコンタクト層と、レーザ光を往復させる前端面と後端面からなる共振器と、前記前端面と前記後端面の間で前記レーザ光を導波し、幅が2Wで表されるリッジ領域と、を備え、発振波長がλであり、前記各層の積層方向において、1次以上の高次モードが許容される半導体レーザ装置であって、
 前記リッジ領域は、幅が2Wで表され、実効屈折率がn であるリッジ内側領域と、前記リッジ内側領域の両側に設けられ、幅がWで表され、実効屈折率がn である、電流非注入構造を有するリッジ外側領域とで構成され、前記リッジ外側領域の両側に前記第2導電型のコンタクト層および前記第2導電型のクラッド層が少なくとも除去され、実効屈折率がnであるクラッド領域が設けられ、前記リッジ内側領域と前記リッジ外側領域の平均屈折率n が、
Figure JPOXMLDOC01-appb-M000006
で表され、以下を満たし、
Figure JPOXMLDOC01-appb-M000007
 前記リッジ外側領域の幅であるWは、前記電流非注入構造の下端部から前記活性層までの距離よりも大きく、かつ、前記リッジ領域の幅の1/2であるWよりも小さいことを特徴とする。
 本願に開示される半導体レーザ装置によれば、リッジ領域がリッジ内側領域およびリッジ外側領域からなり、リッジ外側領域に電流非注入構造を設け、半導体レーザ装置に注入される電流が専らリッジ内側領域に流れるようにしたので、低次のモードの利得を高次のモードの利得よりも大きくし、低次のモードのレーザ発振を可能にして水平広がり角を狭くすることが可能な半導体レーザ装置が得られるという効果を奏する。
比較例である実屈折率分布を有するリッジ型ブロードエリア半導体レーザ装置の断面における電流の流れと屈折率分布を示す模式図である。 本開示の実屈折率分布を有するリッジ型ブロードエリア半導体レーザ装置の断面における電流の流れと屈折率分布を示す模式図である。 実施の形態1による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置を示す斜視図である。 実施の形態1によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態1によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態1の変形例1による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置を示す斜視図である。 実施の形態1の変形例1によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態1の変形例1によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態1の変形例2による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置を示す斜視図である。 実施の形態1の変形例2によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態1の変形例2によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態2による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置を示す斜視図である。 実施の形態2によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態2によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態2の変形例1による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置を示す斜視図である。 実施の形態2の変形例1によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態2の変形例1によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態2の変形例2による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置を示す斜視図である。 実施の形態2の変形例2によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態2の変形例2によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態3による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置を示す斜視図である。 実施の形態3によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態3によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態3の変形例1による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置を示す斜視図である。 実施の形態3の変形例1によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態3の変形例1によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態3の変形例2による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置を示す斜視図である。 実施の形態3の変形例2によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態3の変形例2によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態4による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置を示す斜視図である。 実施の形態4によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態4によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態4の変形例1による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置を示す斜視図である。 実施の形態4の変形例1によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態4の変形例1によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態4の変形例2による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置を示す斜視図である。 実施の形態4の変形例2によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態4の変形例2によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態5による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置を示す斜視図である。 実施の形態5によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態5によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態5の変形例1による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置を示す斜視図である。 実施の形態5の変形例1によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態5の変形例1によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態5の変形例2による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置を示す斜視図である。 実施の形態5の変形例2によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態5の変形例2によるリッジ型ブロードエリア半導体レーザ装置の各モードの利得を表す図である。 実施の形態6による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置を示す斜視図である。 実施の形態6の変形例1による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置を示す斜視図である。 実施の形態6の変形例2による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置を示す斜視図である。
実施の形態1.
 先ず、本開示と比較例の相違点を、図1及び図2を用いて説明する。
 図1は、比較例である実屈折率分布を有するリッジ型ブロードエリア半導体レーザ装置の光導波方向に直交する断面における電流Iの流れと屈折率分布を示す模式図である。
 図1において、下側の半導体基板(図示せず)側から、活性層101、光ガイド層102、第1エッチングストップ層103(第1ESL層、Etching Stop Layer:ESL)、p型第1クラッド層104、第2エッチングストップ層105(第2ESL層)、p型第2クラッド層106、以上の各層で構成されている。
 活性層101の上端から第1ESL層103の上端までの距離をhとすると、リッジ領域Iを流れる電流Iは、第1ESL層103の上端から水平方向、つまり、図1中のx方向にも広がって流れることになる。活性層101の上端での電流分布J(x)は、非特許文献1を用いて求めることができる。なお、x方向は、リッジ幅方向と呼ぶ場合もある。
 リッジ幅2Wを有するリッジ領域Iは、水平方向、つまり、x方向において、両側をクラッド領域IIで挟まれた構造をなしている。リッジ領域I及びクラッド領域IIの実効屈折率は、それぞれ、n及びnで表される。非特許文献2に基づくと、正規化周波数vは、下記の式(1)のように定義できる。
Figure JPOXMLDOC01-appb-M000008
 ここで、λは半導体レーザ装置の発振波長である。正規化周波数vをπ/2で割って整数化して1を加えた数であるINT[v/(π/2)]+1が、水平方向、つまり、図1中のx方向で許容されるモードの数となる。
 図2は、本願に開示される実屈折率分布を有するリッジ型ブロードエリア半導体レーザ装置の光導波方向に直交する断面における電流の流れと屈折率分布を示す模式図である。幅W(以下、リッジ外側領域幅と呼ぶ)であるリッジ外側領域I を、実質的に実効屈折率が幅2W(以下、リッジ内側領域幅と呼ぶ)であるリッジ内側領域I と同一になる範囲で、エッチングで除去した構造となっている。
 リッジ外側領域I はリッジ領域I内でリッジ内側領域I のリッジ幅方向の両側に設けられ、クラッド領域IIはリッジ外側領域I のリッジ幅方向の両側に設けられる。
 ここで、実質的に実効屈折率が同一とは、リッジ内側領域I の実効屈折率をn 、リッジ外側領域I の実効屈折率をn としたときに、式(2)から算出される平均屈折率n を式(1)のnに代入して算出される許容モードの数が、リッジ外側領域I が無い場合、すなわち、リッジ外側領域幅Wがゼロの場合の許容モードの数と同一であることを意味する。
Figure JPOXMLDOC01-appb-M000009
 リッジ外側領域I の上部を第1ESL層103の上側までエッチングで除去し、絶縁膜(図示せず)で被覆するので、電流Iはリッジ内側領域I を専ら流れる。第1ESL層103の上端から第2ESL層105の上端までの距離をhとすると、電流Iは、第2ESL層105の上端から水平方向にも広がり始め、距離h+hを経て活性層101に至る。
 水平方向に許容されるi次のモードをφ(x)とし、下記の式(3)のように正規化する。なお、許容されるモードφ(x)は、非特許文献2等から求めることができる。
Figure JPOXMLDOC01-appb-M000010
 一方、電流は、リッジ内側領域幅が2Wで共振器長がLのリッジ内側領域I に1アンペア(A)流すとして、活性層101の上端での電流分布J(x)を、下記の式(4)のように正規化する。
Figure JPOXMLDOC01-appb-M000011
 利得Gは、光と電流の相互作用で発生するので、下記の式(5)のように定義される。なお、光分布(モード)と電流分布とはいずれも正規化しているので、利得Gの大小で、各モードの利得の差異が分かる。
Figure JPOXMLDOC01-appb-M000012
 図3は、実施の形態1による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置500を示す斜視図である。
 図3では、説明の便宜上、xyz直交座標系が規定されている。z軸は、リッジ型ブロードエリア半導体レーザ装置500のレーザ光が出射される方向であり、また、リッジ型ブロードエリア半導体レーザ装置500が持つ共振器の長さ方向軸でもある。z方向を「共振器長方向」とも呼ぶ。y軸は、n型GaAs基板2の上面の法線と平行であるものとする。y軸方向は、n型GaAs基板2の上に形成される半導体層の結晶成長方向と一致している。y軸方向を「積層方向」とも呼ぶ。x軸は、yz平面と垂直な軸であり、リッジ型ブロードエリア半導体レーザ装置500の幅方向の軸と一致する。x軸方向を「リッジ幅方向」とも呼ぶ。x軸に沿って、リッジ型ブロードエリア半導体レーザ装置500に水平横モードが生ずる。上記の直交座標系に関する規則は、後述する他のリッジ型ブロードエリア半導体レーザ装置の斜視図においても同様である。
 図3に示すように、リッジ型ブロードエリア半導体レーザ装置500は、下面側(裏面側とも呼ぶ)から、n型電極1(第1導電型の電極)、n型GaAs基板2(第1導電型の半導体基板)、Al組成比0.20で層厚1.5μmのn型AlGaAsクラッド層3(第1導電型のクラッド層、屈折率ncn)、Al組成比0.25で層厚200nmのn型AlGaAs低屈折率層4(第1導電型の低屈折率層、屈折率n)、Al組成比0.16で層厚1100nmのn側AlGaAs第2光ガイド層5、Al組成比0.14で層厚100nmのn側AlGaAs第1光ガイド層6、In組成比0.119で層厚8nmのInGaAs量子井戸活性層7、Al組成比0.14で層厚300nmのp側AlGaAs第1光ガイド層8、Al組成比0.16で層厚300nmのp側AlGaAs第2光ガイド層9、Al組成比0.55で層厚140nmのp型AlGaAs第1ESL層10(p型AlGaAs低屈折率層あるいは第2導電型の低屈折率層とも呼ぶ。屈折率n)、Al組成比0.20で層厚0.55μmのp型AlGaAs第1クラッド層11(第2導電型の第1クラッド層、屈折率ncp)、Al組成比0.55で層厚40nmのp型AlGaAs第2ESL層12、Al組成比0.20で層厚0.95μmのp型AlGaAs第2クラッド層13(第2導電型の第2クラッド層、屈折率ncp)、層厚0.2μmのp型GaAsコンタクト層14(第2導電型のコンタクト層)、膜厚0.2μmのSiN膜15、上面側のp型電極16(第2導電型の電極)、で構成される。
 なお、n側AlGaAs第2光ガイド層5とn側AlGaAs第1光ガイド層6とを合わせてn側光ガイド層61あるいは第1導電型側の光ガイド層61と呼び、p側AlGaAs第1光ガイド層8とp側AlGaAs第2光ガイド層9とを合わせてp側光ガイド層81あるいは第2導電型側の光ガイド層81と呼ぶ。各光ガイド層は通常はドーピングされていない層であるため、InGaAs量子井戸活性層7のどちら側にある層であるかを、「側」を付して区別している。つまり、n側あるいは第1導電型側とは、InGaAs量子井戸活性層7に対してn型あるいは第1導電型の各層が設けられている側ということを意味する。同様に、p側あるいは第2導電型側とは、InGaAs量子井戸活性層7に対してp型あるいは第2導電型の各層が設けられている側ということを意味する。
 第2導電型の第1クラッド層(p型AlGaAs第1クラッド層11)と第2導電型の第2クラッド層(p型AlGaAs第2クラッド層13)を合わせて第2導電型のクラッド層と呼ぶ。
 InGaAs量子井戸活性層7のIn組成比を0.119、層厚を8nmとしているのは、発振波長を略975nmとするためである。
 また、リッジ型ブロードエリア半導体レーザ装置500の両端部にレーザ光を往復させる共振器を構成する前端面及び後端面が、例えば劈開などにより設けられている。
 リッジ型ブロードエリア半導体レーザ装置500においては、上記のn型とp型の各導電型が入れ替わった構造でも良い。つまり、第1導電型がn型、第2導電型がp型であっても良く、また、第1導電型がp型、第2導電型がn型であっても良い。以下、第1導電型、第2導電型と表記する場合もある。
 リッジ型ブロードエリア半導体レーザ装置500の作製方法を以下に示す。
 n型GaAs基板2上に、n型AlGaAsクラッド層3からp型GaAsコンタクト層14までの各半導体層を、有機金属気相成長法(Metal Organic Chemical Vapor Deposition:MOCVD)等の結晶成長方法によって順次結晶成長する。
 次に、リッジ内側領域I をレジストで被覆して第2ESL層12までドライエッチングし、レジストを剥離する。
 その後、リッジ内側領域I とリッジ外側領域I をレジストで被覆して第1ESL層10までドライエッチングし、レジストを剥離する。
 リッジ内側領域I をレジストで被覆し、SiN膜15を成膜してリフトオフし、レジストを剥離する。
 最後に、上面側にp型電極16、下面側にn型電極1をそれぞれ形成する。
 実施の形態1によるリッジ型ブロードエリア半導体レーザ装置500では、リッジ外側領域I のp型GaAsコンタクト層14及びp型AlGaAs第2クラッド層13が少なくともエッチングで除去され、エッチングで除去された露出面を絶縁膜であるSiN膜15で覆うことによって電流非注入構造としたので、リッジ型ブロードエリア半導体レーザ装置500に注入される電流は専らリッジ内側領域I に流れることになる。
 例えば、非特許文献3である伊賀編著“半導体レーザ”pp.35-38に記載された屈折率とその計算法を用いれば、波長975nmにおけるAl組成比0.14、0.16、0.20、0.25及び0.55のAlGaAs層の屈折率は、それぞれ、3.432173、3.419578、3.394762、3.364330及び3.191285となる。
 また、InGaAs量子井戸活性層7を構成するIn組成比0.119のInGaAs及びSiN膜15を構成するSiNの屈折率は、経験上、それぞれ、3.542393及び2.00である。
 実施の形態1によるリッジ型ブロードエリア半導体レーザ装置500では、p側光ガイド層81とn側光ガイド層61の和である総光ガイド層厚は1.8μmと厚く、積層方向に1次モード以上が許容されている。このため、クラッド層と光ガイド層の間に低屈折率層を挿入すると、NFPは狭くなり、FFP(Far Field Pattern:FFP)は広くなる。
 また、InGaAs量子井戸活性層7はn側光ガイド層61とp側光ガイド層81の中心に対してp型AlGaAs第1クラッド層11およびp型AlGaAs第2クラッド層13側に変位しているので、レーザ駆動中に光ガイド層内に滞留するキャリアを少なくすることができ、高いスロープ効率が実現できる。
 屈折率nciのクラッド層と光ガイド層の間に、屈折率nで層厚dの低屈折率層を挿入した場合の大小関係を、式(1)に替えて、下記の式(6)のuで表すことにする。
Figure JPOXMLDOC01-appb-M000013
 実施の形態1によるリッジ型ブロードエリア半導体レーザ装置500の場合、uは0.292273、uは0.522208となり、u>uが成立する。このため、y方向、つまり積層方向の光強度分布はn型GaAs基板2側へ変位し、x方向、つまり、リッジ幅方向の許容モード数を減らすことが可能となる。
 先ず、リッジ外側領域幅Wがゼロの場合、つまり、比較例のリッジ構造を考える。この場合、リッジ領域I及びクラッド領域IIの実効屈折率は、例えば、非特許文献4に記載の等価屈折率法によって算出することができ、それぞれ3.41697及び3.41672となる。リッジ幅2Wが100μmの場合、式(1)のvは13.31となり、0次(基本)から8次までの9個のモードが許容される。
 実施の形態1によるリッジ型ブロードエリア半導体レーザ装置500のように、リッジ外側領域I を第2ESL層12に達するまでエッチングで除去した場合の当該箇所の実効屈折率は3.41697となり、エッチングによる除去に拘らずリッジ領域I(リッジ内側領域I 及びリッジ外側領域I )の屈折率は同一である。このため、許容されるモード数は同一となる。
 一方、電流は、第2ESL層12からx方向、すなわちリッジ幅方向にも広がり始める。つまり、電流は、InGaAs量子井戸活性層7から第1ESL層10までの厚さh(0.74μm)と第2ESL層12から第1ESL層10までの厚さh(0.59μm)でx方向に広がり、InGaAs量子井戸活性層7に至ることになる。以下、簡略化のため、電流がx方向に広がり始める箇所からInGaAs量子井戸活性層7までの間の抵抗率ρを0.35Ωcmとする。なお、抵抗率ρの値が変わっても、利得Gの傾向は同じであることは確認している。
 図4及び図5に、リッジ外側領域幅Wが3、6、9、10、11、15、20及び25μmの場合の各モードの利得Gを示す。併せて、比較例であるリッジ外側領域幅W=0μmの場合も示す。比較例の場合は、各モードに利得差は殆どなく、あっても1%未満なので、どのモードでもレーザ発振し得る。このため、水平広がり角には、どのモードでレーザ発振するかによるばらつきが生じる。
 リッジ外側領域I を設けてリッジ内側領域I に専ら電流を流すと、各モード間に利得差が生じ、低次のモードの利得が高次のモードよりも大きくなる。このため、低次のモードでのレーザ発振が可能となり、狭い水平広がり角が実現できる。
 また、本開示による低次のモード、例えば、リッジ外側領域幅Wが10μm以下の場合の0次から3次のモードの利得は、比較例の低次のモードよりも大きくなるので、少ない利得でレーザ発振に至り、比較例よりも低しきい値電流でレーザ発振するリッジ型ブロードエリア半導体レーザ装置が得られる。
 リッジ外側領域幅Wが10μmを超えても、低次モードの利得は、比較例よりも大きくなりロスが増すことはない。リッジ外側領域幅Wが15μm以上では基本モードと他の全てのモードの間に11%を超える利得差があり、実質的な基本モード発振が可能となる。リッジ外側領域幅Wが20μm以上では、この傾向はさらに顕著になる。
 水平方向、つまり、x方向(リッジ幅方向)に1次以上の高次モードが許容されるためには、下記の条件を満たす必要がある。
 すなわち、上記のリッジ内側領域幅の1/2であるW、上記のリッジ外側領域幅W、式(4)で表される平均屈折率n 及び上記のクラッド領域IIの実効屈折率nが、下記の式(7)を満たす必要がある。
Figure JPOXMLDOC01-appb-M000014
 また、各層の積層方向において、1次以上の高次モードが許容されるためには、下記の条件を満たす必要がある。
 すなわち、n型AlGaAsクラッド層3の屈折率をncn、p型AlGaAs第1クラッド層11の屈折率をncpとし、n型AlGaAs低屈折率層4の層厚をd、屈折率をn型AlGaAsクラッド層3の屈折率ncnよりも低いnとし、p側光ガイド層81とp型AlGaAs第1クラッド層11の間に設けられたp型AlGaAs低屈折率層10の層厚をd、屈折率をp型AlGaAs第1クラッド層11の屈折率よりも低いnとした場合、下記の式(8)を満たす必要がある。
Figure JPOXMLDOC01-appb-M000015
 実施の形態1によるリッジ型ブロードエリア半導体レーザ装置500では、n型AlGaAs低屈折率層4及びp型AlGaAs低屈折率層10の両方とも、クラッド層と光ガイド層の間に設けているが、両方または一方の低屈折率層をクラッド層内に設けても、同様な効果を奏する。
 なお、電流は半導体層内を等方的に広がるので、リッジ外側領域幅Wはh+h(1.33μm)より広く、W(50μm)よりも狭い範囲であれば良い。
 以上、実施の形態1によるリッジ型ブロードエリア半導体レーザ装置500では、リッジ外側領域I のp型GaAsコンタクト層14及びp型AlGaAs第2クラッド層13がエッチングで除去された露出面をSiN膜15で覆うことにより電流非注入構造を設け、リッジ型ブロードエリア半導体レーザ装置500に注入される電流が専らリッジ内側領域I に流れるようにしたので、低次のモードの利得を高次のモードの利得よりも大きくし、低次のモードのレーザ発振を可能にして水平広がり角を狭くする効果を奏する。
実施の形態1の変形例1
 図6は、実施の形態1の変形例1による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置510を示す斜視図である。
 実施の形態1の変形例1によるリッジ型ブロードエリア半導体レーザ装置510と実施の形態1によるリッジ型ブロードエリア半導体レーザ装置500の相違点は、実施の形態1の変形例1によるリッジ型ブロードエリア半導体レーザ装置510では第2ESL層12が設けられていない点、実施の形態1によるリッジ型ブロードエリア半導体レーザ装置500のAl組成比0.20で層厚0.55μmのp型AlGaAs第1クラッド層11(第2導電型の第1クラッド層)に代えてAl組成比0.20で層厚1.5μmのp型AlGaAs第1クラッド層11a(第2導電型のクラッド層)が設けられている点、実施の形態1の変形例1によるリッジ型ブロードエリア半導体レーザ装置510では電流非注入構造としてプロトン注入領域17が設けられている点が相違する。その他の層構成は、実施の形態1によるリッジ型ブロードエリア半導体レーザ装置500と同一である。
 実施の形態1の変形例1によるリッジ型ブロードエリア半導体レーザ装置510の作製方法を以下に示す。
 n型GaAs基板2上に、n型AlGaAsクラッド層3からp型GaAsコンタクト層14までの各半導体層を、有機金属気相成長法(MOCVD)等の結晶成長方法で順次結晶成長する。
 次に、リッジ内側領域I をレジストで被覆してプロトンをイオン注入してプロトン注入領域17を形成し、レジストを剥離する。
 その後、リッジ内側領域I とリッジ外側領域I をレジストで被覆して第1ESL層10までドライエッチングし、レジストを剥離する。このとき、クラッド領域IIのプロトン注入領域もエッチングされて消失する。
 リッジ内側領域I とリッジ外側領域I をレジストで被覆し、SiN膜15を成膜してリフトオフし、レジストを剥離する。
 最後に、上面側にp型電極16、下面側にn型電極1をそれぞれ形成する。
 図3に示す実施の形態1によるリッジ型ブロードエリア半導体レーザ装置500と異なる主な点は、第2ESL層12が無いこと、リッジ外側領域I をエッチング除去ではなく、プロトン注入による半導体層の絶縁体化でプロトン注入領域17を形成する点にある。プロトン注入領域17では、半導体層は高抵抗化するので電流非注入構造として機能する。
 実施の形態1の変形例1によるリッジ型ブロードエリア半導体レーザ装置510では、リッジ外側領域I のp型GaAsコンタクト層14及びp型AlGaAs第1クラッド層11aの一部にプロトン注入領域が形成されることによって電流非注入構造としたので、リッジ型ブロードエリア半導体レーザ装置510に注入される電流は専らリッジ内側領域I に流れることになる。
 第2ESL層12が無いことにより、リッジ型ブロードエリア半導体レーザ装置510におけるリッジ内側領域I の実効屈折率は3.41698となる。一方、クラッド領域IIの実効屈折率は同一である3.41672であり、リッジ幅2W(リッジ外側領域幅W=0μm)が100μmの場合、式(1)のvは13.58となり、0次(基本)から8次までの9個のモードが許容される。
 プロトンを注入して電流非注入構造として機能するプロトン注入領域17を設けたリッジ外側領域I の実効屈折率は、リッジ内側領域I と同一である3.41698である。一例として、プロトンをp型GaAsコンタクト層14の表面から深さ0.7μmまで注入した場合は、第1ESL層10からプロトン注入領域17の下端部までの距離hは1.0μmとなる。
 図7及び図8に、リッジ外側領域I のリッジ外側領域幅Wが3、6、9、10、11、15、20及び25μmの場合の各モードの利得Gを示す。併せて、比較例であるリッジ外側領域幅W=0μmの場合も示す。比較例の場合は、各モードに利得差は殆どなく、あっても1%未満であり、どのモードでもレーザ発振し得る。このため、比較例においては、水平広がり角には、どのモードでレーザ発振するかによるばらつきが生じる。
 一方、実施の形態1の変形例1によるリッジ型ブロードエリア半導体レーザ装置510では、電流非注入構造として機能するプロトン注入領域17が形成されたリッジ外側領域I を設け、リッジ内側領域I に専ら電流を流すので、各モード間に利得差が生じ、低次のモードの利得が高次のモードよりも大きくなる。このため、低次のモードでのレーザ発振が可能となり、狭い水平広がり角が実現できる。
 また、本開示による低次のモード、例えば、リッジ外側領域幅Wが10μm以下の場合の0次から3次のモードの利得は、比較例の低次のモードよりも大きくなるので、少ない利得でレーザ発振に至り、比較例よりも低しきい値電流でレーザ発振するリッジ型ブロードエリア半導体レーザ装置が得られる。
 実施の形態1の変形例1によるリッジ型ブロードエリア半導体レーザ装置510では、リッジ外側領域幅Wが10μmを超えても、低次モードの利得は比較例よりも大きくなりロスが増すことはない。リッジ外側領域幅Wが15μm以上では基本モードと他の全てのモードの間に11%を超える利得差があり、実質的な基本モード発振が可能となる。リッジ外側領域幅Wが20μm以上では、この傾向はさらに顕著になる。
 実施の形態1の変形例1によるリッジ型ブロードエリア半導体レーザ装置510では、n型AlGaAs低屈折率層4及びp型AlGaAs低屈折率層10とも、クラッド層と光ガイド層の間に設けているが、両方または一方の低屈折率層をクラッド層内に設けても、同様な効果が得られる。
 なお、リッジ外側領域幅Wはh+h(1.74μm)より広く、W(50μm)よりも狭い範囲であれば良い。第1ESL層10からプロトン注入領域17の下端部までの距離hを1.0μmと長くしているのは、プロトン注入による半導体層のダメージ部分を光強度分布から遠ざけるためである。
 実施の形態1の変形例1によるリッジ型ブロードエリア半導体レーザ装置510の作製方法では、一例として、プロトンをイオン注入した構造を示したが、これに限定されるものではなく、半導体層の電気抵抗を大きくできるものであれば良い。
 半導体層の絶縁体化の手段としてプロトン注入を用いると、エッチング工程が不必要となるので、作製工程数を少なくできる上、リッジ型ブロードエリア半導体レーザ装置の作製自体も容易となるという効果を奏する。
 以上、実施の形態1の変形例1によるリッジ型ブロードエリア半導体レーザ装置510では、電流非注入構造として機能するプロトン注入領域17が形成されたリッジ外側領域I を設け、リッジ型ブロードエリア半導体レーザ装置510に注入される電流が専らリッジ内側領域I に流れるようにしたので、低次のモードの利得を高次のモードの利得よりも大きくし、低次のモードのレーザ発振を可能にして水平広がり角を狭くする効果を奏する。
実施の形態1の変形例2
 図9は、実施の形態1の変形例2による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置520を示す斜視図である。リッジ型ブロードエリア半導体レーザ装置520は、図9に示すように、膜厚0.2μmのSiN膜15aを有する。
 実施の形態1の変形例2によるリッジ型ブロードエリア半導体レーザ装置520の作製方法を以下に示す。
 n型GaAs基板2上に、n型AlGaAsクラッド層3からp型GaAsコンタクト層14までの各半導体層を、有機金属気相成長法(MOCVD)等の結晶成長方法で順次結晶成長する。
 次に、リッジ内側領域I とリッジ外側領域I をレジストで被覆して第1ESL層10までドライエッチングし、レジストを剥離する。
 その後、リッジ内側領域I をレジストで被覆し、SiN膜15aを成膜してリフトオフし、レジストを剥離する。
 最後に、上面側にp型電極16、下面側にn型電極1をそれぞれ形成する。
 図3に示す実施の形態1によるリッジ型ブロードエリア半導体レーザ装置500と異なる点は、第2ESL層12が無いこと、リッジ外側領域I をエッチング除去ではなく、SiN膜15aをp型GaAsコンタクト層14のリッジ幅方向の両端の表面の一部にそれぞれ設けた点にある。
 実施の形態1の変形例2によるリッジ型ブロードエリア半導体レーザ装置520では、リッジ外側領域I のp型GaAsコンタクト層14のリッジ幅方向の両端の表面の一部をそれぞれSiN膜15aで覆って電流非注入構造としたので、リッジ型ブロードエリア半導体レーザ装置510に注入される電流は、専らリッジ内側領域Iaに流れることになる。
 リッジ内側領域I 、リッジ外側領域I 及びクラッド領域IIの実効屈折率は、それぞれ、3.41698、3.41698及び3.41672であり、リッジ幅2Wが100μmの場合は、0次(基本)から8次までの9個のモードが許容される。電流はp型GaAsコンタクト層14の上部から広がるので、hは1.7μmとなる。
 図10及び図11に、リッジ外側領域幅Wが3、6、9、10、11、15、20及び25μmの場合の各モードの利得Gを示す。併せて、比較例であるリッジ外側領域幅W=0μmの場合も示す。比較例の場合は、各モードに利得差は殆どなく、あっても1%未満であり、どのモードでもレーザ発振し得る。このため、水平広がり角には、どのモードでレーザ発振するかによるばらつきが生じる。
 一方、実施の形態1の変形例2によるリッジ型ブロードエリア半導体レーザ装置520では、p型GaAsコンタクト層14のリッジ幅方向の両端の表面の一部をそれぞれSiN膜15aで覆った電流非注入構造を有するリッジ外側領域I を設け、リッジ内側領域I に専ら電流を流すので、各モード間に利得差が生じ、低次のモードの利得が高次のモードよりも大きくなる。このため、低次のモードでのレーザ発振が可能となり、狭い水平広がり角が実現できる。
 また、本開示による低次のモード、例えば、リッジ外側領域幅Wが10μm以下の場合の0次から3次のモードの利得は、比較例の低次のモードよりも大きくなるので、少ない利得でレーザ発振に至り、比較例よりも低しきい値電流でレーザ発振するリッジ型ブロードエリア半導体レーザ装置が得られる。
 実施の形態1の変形例2によるリッジ型ブロードエリア半導体レーザ装置520では、リッジ外側領域幅Wが10μmを超えても、低次モードの利得は、比較例よりも大きくなりロスが増すことはない。リッジ外側領域幅Wが15μm以上では基本モードと他の全てのモードの間に、10%を超える利得差があり、実質的な基本モード発振が可能となる。リッジ外側領域幅Wが20μm以上では、この傾向はさらに顕著になる。
 なお、リッジ外側領域幅Wはh+h(2.44μm)より広く、W(50μm)よりも狭い範囲であれば良い。本実施の形態においては、リッジ外側領域I における電流非注入構造は、絶縁膜であるSiN膜15aで形成しているので、電流がx方向、すなわち、リッジ幅方向に広がり始めるp型GaAsコンタクト層14からInGaAs量子井戸活性層7までの距離は2.44μmと長くなり、リッジ外側領域幅Wが狭い場合には利得差が付きにくいが、リッジ外側領域幅Woを広くすれば効果は大きくなるので、特段の問題はない。
 実施の形態1の変形例2によるリッジ型ブロードエリア半導体レーザ装置520の作製方法では、エッチングあるいはプロトン注入といった工程がないので、リッジ型ブロードエリア半導体レーザ装置の作製が極めて容易であるという効果を奏する。
 以上、実施の形態1の変形例2によるリッジ型ブロードエリア半導体レーザ装置520では、リッジ外側領域I のp型GaAsコンタクト層14のリッジ幅方向の両端の表面の一部をそれぞれSiN膜15aで覆って電流非注入構造としたので、リッジ型ブロードエリア半導体レーザ装置520に注入される電流は専らリッジ内側領域I に流れることになる結果、低次のモードの利得を高次のモードの利得よりも大きくし、低次のモードのレーザ発振を可能にして水平広がり角を狭くする効果を奏する。
実施の形態2.
 図12は、実施の形態2による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置530を示す斜視図である。実施の形態2による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置530は、InGaAs量子井戸活性層7の位置を光ガイド層62、82の中央に配置する、つまり、InGaAs量子井戸活性層7に対して対称形である点に特徴がある。
 図12に示すリッジ型ブロードエリア半導体レーザ装置530は、Al組成比0.16で層厚700nmのn側AlGaAs第2光ガイド層5a、Al組成比0.14で層厚200nmのn側AlGaAs第1光ガイド層6a、Al組成比0.14で層厚200nmのp側AlGaAs第1光ガイド層8a、Al組成比0.16で層厚700nmのp側AlGaAs第2光ガイド層9a、Al組成比0.20で層厚0.40μmのp型AlGaAs第1クラッド層11b(第2導電型の第1クラッド層)、Al組成比0.20で層厚1.10μmのp型AlGaAs第2クラッド層13a(第2導電型の第2クラッド層)を有する。その他の構成は、実施の形態1の図3に示す構造と同一である。
 すなわち、実施の形態2によるリッジ型ブロードエリア半導体レーザ装置530は実施の形態1によるリッジ型ブロードエリア半導体レーザ装置500と同様、リッジ外側領域I のp型GaAsコンタクト層14及びp型AlGaAs第2クラッド層13aが少なくともエッチングで除去され、エッチングで除去された露出面を絶縁膜であるSiN膜15で覆うことによって電流非注入構造としたので、リッジ型ブロードエリア半導体レーザ装置530に注入される電流は専らリッジ内側領域I に流れることになる。
 なお、n側AlGaAs第2光ガイド層5aとn側AlGaAs第1光ガイド層6aとを合わせてn側光ガイド層62あるいは第1導電型の光ガイド層62と呼び、p側AlGaAs第1光ガイド層8aとp側AlGaAs第2光ガイド層9aとを合わせてp側光ガイド層82あるいは第2導電型の光ガイド層82と呼ぶ。
 リッジ型ブロードエリア半導体レーザ装置530の作製方法も実施の形態1と同様である。
 リッジ型ブロードエリア半導体レーザ装置530のp側光ガイド層82とn側光ガイド層62の和の総光ガイド層厚は1.8μmと厚く、y方向、すなわち積層方向に1次モード以上が許容されている。また、uは0.292273、uは0.522208となり、u>uが成立する。このため、y方向の光強度分布はn型GaAs基板2の側へ変位し、x方向の許容モード数を減らすことが可能となる。
 先ず、リッジ外側領域幅Wがゼロの場合のリッジ領域I(リッジ内側領域I 及びリッジ外側領域I )及びクラッド領域IIの実効屈折率は、それぞれ3.41839及び3.41828となる。リッジ幅2Wが100μmの場合、vは8.83となり、0次(基本)から5次までの6個のモードが許容される。
 リッジ型ブロードエリア半導体レーザ装置530のp側光ガイド層82の層厚はn側光ガイド層62の層厚と同一なので、実施の形態1の構造に比べて動作中に滞留するキャリアによる損失は増すものの、リッジ領域I(リッジ内側領域I 及びリッジ外側領域I )とクラッド領域II間の屈折率差を小さくできるので、許容されるモード数を少なくできるという利点がある。
 リッジ外側領域I を第2ESL層12に達するまでエッチングで除去した場合の当該箇所の実効屈折率は3.41839となり、エッチングによる除去に拘らずリッジ領域I(リッジ内側領域I 及びリッジ外側領域I )の屈折率は同一である。このため、許容されるモード数は同一となる。
 一方、電流は、第2ESL層12からx方向、すなわち、リッジ幅方向にも広がり始める。つまり、InGaAs量子井戸活性層7から第1ESL層10までの厚さh(1.04μm)と第2ESL層12から第1ESL層10までの厚さh(0.44μm)でx方向に広がり、InGaAs量子井戸活性層7に至る。
 図13及び図14に、リッジ外側領域幅Wが3、6、9、10、11、15、20及び25μmの場合の各モードの利得Gを示す。併せて、比較例であるリッジ外側領域幅W=0μmの場合も示す。比較例の場合は、各モードに利得差は殆どなく、あっても1%未満なので、どのモードでもレーザ発振し得る。このため、水平広がり角には、どのモードでレーザ発振するかによるばらつきが生じる。
 一方、リッジ型ブロードエリア半導体レーザ装置530では、p型GaAsコンタクト層14及びp型AlGaAs第2クラッド層13aがエッチングで除去された露出面をSiN膜15で覆うことにより電流非注入構造が形成されたリッジ外側領域I を設け、リッジ内側領域I に専ら電流を流すので、各モード間に利得差が生じ、低次のモードの利得が高次のモードよりも大きくなる。このため、低次のモードでのレーザ発振が可能となり、狭い水平広がり角が実現できる。
 また、本開示による低次のモード、例えば、リッジ外側領域幅Wが10μm以下の場合の0次から2次のモードの利得は、比較例の低次のモードよりも大きくなるので、少ない利得でレーザ発振に至り、比較例よりも低しきい値電流でレーザ発振するリッジ型ブロードエリア半導体レーザ装置が得られる。
 リッジ型ブロードエリア半導体レーザ装置530では、リッジ外側領域幅Wが10μmを超えても、低次モードの利得は、比較例よりも大きくなりロスが増すことはない。リッジ外側領域幅Wが15μm以上では基本モードと他の全てのモードの間に13%を超える利得差があり、実質的な基本モード発振が可能となる。リッジ外側領域幅Wが20μm以上では、この傾向はさらに顕著になる。
 なお、電流は等方的に広がるので、リッジ外側領域幅Wはh+h(1.48μm)より広く、W(50μm)よりも狭い範囲であれば良い。
 以上、実施の形態2によるリッジ型ブロードエリア半導体レーザ装置530では、リッジ外側領域I のp型GaAsコンタクト層14及びp型AlGaAs第2クラッド層13aがエッチングで除去された露出面をSiN膜15で覆うことにより電流非注入構造を設け、リッジ型ブロードエリア半導体レーザ装置530に注入される電流が専らリッジ内側領域I に流れるようにしたので、低次のモードの利得を高次のモードの利得よりも大きくし、低次のモードのレーザ発振を可能にして水平広がり角を狭くする効果を奏し、さらに、p側光ガイド層82の層厚をn側光ガイド層62の層厚と同一としたので、リッジ領域I(リッジ内側領域I 及びリッジ外側領域I )とクラッド領域II間の屈折率差を小さくできるので、許容されるモード数を少なくできるという効果を奏する。
実施の形態2の変形例1
 図15は、実施の形態2の変形例1である実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置540を示す斜視図である。
 図12に示される実施の形態2によるリッジ型ブロードエリア半導体レーザ装置530と異なる点は、第2ESL層12が無いこと、リッジ外側領域I をエッチング除去ではなく、プロトン注入による半導体層の絶縁化で形成する点である。
 リッジ型ブロードエリア半導体レーザ装置540の作製方法は、実施の形態1の変形例1と同様である。
 リッジ型ブロードエリア半導体レーザ装置540では、第2ESL層12が無いことにより、リッジ領域I(リッジ内側領域I 及びリッジ外側領域I )の実効屈折率は3.41840となる。リッジ型ブロードエリア半導体レーザ装置540のクラッド領域IIの実効屈折率は同一である3.41828であり、リッジ幅2Wが100μmの場合、式(1)のvは9.22となり、0次(基本)から5次までの6個のモードが許容される。
 プロトンを注入したリッジ外側領域I の実効屈折率は、リッジ内側領域I と同一である3.41840である。一例として、プロトンをp型GaAsコンタクト層14の表面から深さ0.95μmまで注入した場合は、第1ESL層10の上端部からプロトン注入領域17の下端部までの距離hは0.75μmとなる。
 図16及び図17に、リッジ外側領域幅Wが3、6、9、10、11、15、20及び25μmの場合の各モードの利得Gを示す。併せて、比較例であるW=0μmの場合も示す。比較例の場合は、各モードに利得差は殆どなく、あっても1%未満であり、どのモードでもレーザ発振し得る。このため、水平広がり角には、どのモードでレーザ発振するかによるばらつきが生じる。
 一方、リッジ型ブロードエリア半導体レーザ装置540では、電流非注入構造として機能するプロトン注入領域17が形成されたリッジ外側領域I を設け、リッジ内側領域I に専ら電流を流すので、各モード間に利得差が生じ、低次のモードの利得が高次のモードよりも大きくなる。低次のモードでのレーザ発振が可能となり、狭い水平広がり角が実現できる。
 また、本開示による低次のモード、例えば、リッジ外側領域幅Wが10μm以下の場合の0次から2次のモードの利得は、比較例の低次のモードよりも大きくなるので、少ない利得でレーザ発振に至り、比較例よりも低しきい値電流でレーザ発振するリッジ型ブロードエリア半導体レーザ装置が得られる。
 リッジ型ブロードエリア半導体レーザ装置540では、リッジ外側領域幅Wが10μmを超えても、低次モードの利得は、比較例よりも大きくなりロスが増すことはない。リッジ外側領域幅Wが15μm以上では基本モードと他の全てのモードの間に13%を超える利得差があり、実質的な基本モード発振が可能となる。リッジ外側領域幅Wが20μm以上では、この傾向はさらに顕著になる。
 なお、リッジ外側領域幅Wはh+h(1.79μm)より広く、W(50μm)よりも狭い範囲であれば良い。第1ESL層10からプロトン注入領域17の下端部までの距離hを0.75μmとしているのは、プロトン注入による半導体層のダメージ部分を光強度分布から遠ざけるためである。
 本実施の形態では、一例として、プロトンをイオン注入した構造を示したが、これに限定されるものではなく、半導体層の電気抵抗を大きくできるものであれば良い。
 半導体層の絶縁体化の手段としてプロトン注入を用いると、エッチング工程が不必要となるので、作製工程数を少なくできる上、リッジ型ブロードエリア半導体レーザ装置の作製自体も容易となるという効果を奏する。
 以上、実施の形態2の変形例1によるリッジ型ブロードエリア半導体レーザ装置540では、電流非注入構造として機能するプロトン注入領域17が形成されたリッジ外側領域I を設け、リッジ型ブロードエリア半導体レーザ装置540に注入される電流が専らリッジ内側領域I に流れるようにしたので、低次のモードの利得を高次のモードの利得よりも大きくし、低次のモードのレーザ発振を可能にして水平広がり角を狭くする効果を奏し、さらに、p側光ガイド層82の層厚をn側光ガイド層62の層厚と同一としたので、リッジ領域I(リッジ内側領域I 及びリッジ外側領域I )とクラッド領域II間の屈折率差を小さくできるので、許容されるモード数を少なくできるという効果を奏する。
実施の形態2の変形例2
 図18は、実施の形態2の変形例2である実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置550を示す斜視図である。
 図12に示される実施の形態2によるリッジ型ブロードエリア半導体レーザ装置530と異なる点は、第2ESL層12が無いこと、リッジ外側領域I をエッチング除去ではなく、SiN膜15aをp型GaAsコンタクト層14のリッジ幅方向の両端の表面の一部にそれぞれ設けた点にある。
 リッジ型ブロードエリア半導体レーザ装置550の作製方法は、実施の形態1の変形例2と同様である。
 リッジ型ブロードエリア半導体レーザ装置550におけるリッジ内側領域I 、リッジ外側領域I 及びクラッド領域IIの実効屈折率は、それぞれ3.41840、3.41840及び3.41828であり、リッジ幅2Wが100μmの場合は、0次(基本)から5次までの6個のモードが許容される。電流はp型GaAsコンタクト層14の上部から広がるので、hは1.7μmとなる。
 図19及び図20に、リッジ外側領域幅Wが3、6、9、10、11、15、20及び25μmの場合の各モードの利得Gを示す。併せて、比較例であるリッジ外側領域幅W=0μmの場合も示す。比較例の場合は、各モードに利得差は殆どなく、あっても1%未満であり、どのモードでもレーザ発振し得る。このため、水平広がり角には、どのモードでレーザ発振するかによるばらつきが生じる。
 一方、リッジ型ブロードエリア半導体レーザ装置550では、p型GaAsコンタクト層14のリッジ幅方向の両端の表面の一部をそれぞれSiN膜15aで覆った電流非注入構造を有するリッジ外側領域I を設け、リッジ内側領域I に専ら電流を流すので、各モード間に利得差が生じ、低次のモードの利得が高次のモードよりも大きくなる。低次のモードでのレーザ発振が可能となり、狭い水平広がり角が実現できる。
 また、本開示による低次のモード、例えば、リッジ外側領域幅Wが10μm以下の場合の0次から2次のモードの利得は、比較例の低次のモードよりも大きくなるので、少ない利得でレーザ発振に至り、比較例よりも低しきい値電流でレーザ発振するリッジ型ブロードエリア半導体レーザ装置が得られる。
 リッジ型ブロードエリア半導体レーザ装置550では、リッジ外側領域幅Wが10μmを超えても、低次モードの利得は、比較例よりも大きくなりロスが増すことはない。リッジ外側領域幅Wが15μm以上では基本モードと他の全てのモードの間に12%を超える利得差があり、実質的な基本モード発振が可能となる。リッジ外側領域幅Wが20μm以上では、この傾向はさらに顕著になる。
 なお、リッジ外側領域幅Wはh+h(2.74μm)より広く、W(50μm)よりも狭い範囲であれば良い。本実施の形態においては、リッジ外側領域I における電流非注入構造は絶縁膜であるSiN膜15aで形成しているので、電流がx方向に広がり始めるp型GaAsコンタクト層14からInGaAs量子井戸活性層7までの距離は2.74μmと長くなり、リッジ外側領域幅Wが狭い場合は利得差が付きにくいが、リッジ外側領域幅Woを広くすれば効果は大きくなるので、特段の問題はない。
 エッチングあるいはプロトン注入といった工程がないので、リッジ型ブロードエリア半導体レーザ装置の作製が極めて容易である。
 以上、実施の形態2の変形例2によるリッジ型ブロードエリア半導体レーザ装置550では、p型GaAsコンタクト層14のリッジ幅方向の両端の表面の一部をそれぞれSiN膜15aで覆った電流非注入構造を有するリッジ外側領域I を設け、リッジ型ブロードエリア半導体レーザ装置550に注入される電流が専らリッジ内側領域I に流れるようにしたので、低次のモードの利得を高次のモードの利得よりも大きくし、低次のモードのレーザ発振を可能にして水平広がり角を狭くする効果を奏し、さらに、p側光ガイド層82の層厚をn側光ガイド層62の層厚と同一としたので、リッジ領域I(リッジ内側領域I 及びリッジ外側領域I )とクラッド領域II間の屈折率差を小さくできるので、許容されるモード数を少なくできるという効果を奏する。
実施の形態3.
 図21は、実施の形態3による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置560を示す斜視図である。
 リッジ型ブロードエリア半導体レーザ装置560では、n型AlGaAsクラッド層3の屈折率をp型AlGaAs第1クラッド層11c及びp型AlGaAs第2クラッド層13bの屈折率よりも高くした非対称構造とすることにより、p型AlGaAs第1クラッド層11c及びp型AlGaAs第2クラッド層13bの側でのキャリアによる光吸収を減らしてスロープ効率を高めたものである。
 図21に示されるリッジ型ブロードエリア半導体レーザ装置560は、Al組成比0.25で層厚0.3μmのp型AlGaAs第1クラッド層11c(第2導電型の第1クラッド層)、Al組成比0.25で層厚1.2μmのp型AlGaAs第2クラッド層13b(第2導電型の第2クラッド層)を有する。その他の層構成は、図12に示される実施の形態2のリッジ型ブロードエリア半導体レーザ装置530と同一である。
 リッジ型ブロードエリア半導体レーザ装置560の作製方法は、実施の形態1と同様である。
 リッジ型ブロードエリア半導体レーザ装置560では、n型AlGaAsクラッド層3の屈折率は、p型AlGaAs第1クラッド層11c及びp型AlGaAs第2クラッド層13bの屈折率よりも高くしているので、光強度分布はn型GaAs基板2側に大きく変位し、p型AlGaAs第1クラッド層11c及びp型AlGaAs第2クラッド層13bでのキャリア吸収を減らすことができ、スロープ効率向上が図れる。
 また、光強度分布はn型GaAs基板2側に、より大きく変位するので、リッジ領域I(リッジ内側領域I 及びリッジ外側領域I )とクラッド領域IIの屈折率差が小さくなり、容易に許容モード数を減らすことができる。
 リッジ型ブロードエリア半導体レーザ装置560のp側光ガイド層82とn側光ガイド層62の和の総光ガイド層厚は1.8μmと厚く、積層方向に1次モード以上が許容されている。また、uは0.292273、uは0.480463となり、u>uが成立する。このため、y方向の光強度分布はn型GaAs基板2側へ変位し、x方向の許容モード数を減らすことが可能となる。
 リッジ型ブロードエリア半導体レーザ装置560のリッジ外側領域幅Wがゼロの場合のリッジ領域I(リッジ内側領域I 及びリッジ外側領域I )及びクラッド領域IIの実効屈折率は、それぞれ、3.41837及び3.41828となる。リッジ幅2Wが100μmの場合、vは7.99となり、0次(基本)から5次までの6個のモードが許容される。
 リッジ型ブロードエリア半導体レーザ装置560では、p側光ガイド層82の層厚はn側光ガイド層62の層厚と同一なので、実施の形態1に比べて動作中に滞留するキャリアによる損失は増す一方で、n型AlGaAsクラッド層3の屈折率がp型AlGaAs第1クラッド層11c及びp型AlGaAs第2クラッド層13bの屈折率よりも高いので、p型AlGaAs第1クラッド層11c及びp型AlGaAs第2クラッド層13bへの光分布の広がりが少なくなって、p型AlGaAs第1クラッド層11c及びp型AlGaAs第2クラッド層13bでのキャリア吸収による損失が減ることになる。
 p側光ガイド層82の層厚とn側光ガイド層62の層厚が同一であり、n型AlGaAsクラッド層3の屈折率がp型AlGaAs第1クラッド層11c及びp型AlGaAs第2クラッド層13bの屈折率よりも高いので、リッジ領域I(リッジ内側領域I 及びリッジ外側領域I )とクラッド領域II間の屈折率差を小さくすることが可能となって、許容されるモード数を減らすことができる。
 リッジ外側領域I を第2ESL層12に達するまでエッチングで除去した場合の当該箇所の実効屈折率は3.41837となり、エッチングによる除去に拘らずリッジ領域I(リッジ内側領域I 及びリッジ外側領域I )の屈折率は同一である。このため、許容されるモード数は同一となる。
 一方、電流は、第2ESL層12からx方向、すなわち、リッジ幅方向にも広がり始める。つまり、InGaAs量子井戸活性層7から第1ESL層10までの厚さh(1.04μm)と第2ESL層12から第1ESL層10までの厚さh(0.34μm)の間でx方向に広がり、InGaAs量子井戸活性層7に至ることになる。
 図22及び図23に、リッジ型ブロードエリア半導体レーザ装置560のリッジ外側領域幅Wが3、6、9、10、11、15、20及び25μmの場合の各モードの利得Gを示す。併せて、比較例であるリッジ外側領域幅Wo=0μmの場合も示す。比較例の場合は、各モードに利得差は殆どなく、あっても1%未満なので、どのモードでもレーザ発振し得る。このため、水平広がり角には、どのモードでレーザ発振するかによるばらつきが生じる。
 一方、リッジ型ブロードエリア半導体レーザ装置560では、p型GaAsコンタクト層14及びp型AlGaAs第2クラッド層13bがエッチングで除去された露出面をSiN膜15で覆うことにより電流非注入構造が形成されたリッジ外側領域I を設けてリッジ内側領域I に専ら電流を流すので、各モード間に利得差が生じ、低次のモードの利得が高次のモードよりも大きくなる。このため、低次のモードでのレーザ発振が可能となり、狭い水平広がり角が実現できる。
 また、本開示による低次のモード、例えば、リッジ外側領域幅Wが10μm以下の場合の0次から2次のモードの利得は、比較例の低次のモードよりも大きくなるので、少ない利得でレーザ発振に至り、比較例よりも低しきい値電流でレーザ発振するリッジ型ブロードエリア半導体レーザ装置が得られる。
 リッジ型ブロードエリア半導体レーザ装置560では、リッジ外側領域幅Wが10μmを超えても、低次モードの利得は、比較例よりも大きくなりロスが増すことはない。リッジ外側領域幅Wが15μm以上では基本モードと他の全てのモードの間に14%を超える利得差があり、実質的な基本モード発振が可能となる。リッジ外側領域幅Wが20μm以上では、この傾向はさらに顕著になる。
 なお、電流は等方的に広がるので、リッジ外側領域幅Wはh+h(1.38μm)より広く、W(50μm)よりも狭い範囲であれば良い。
 以上、実施の形態3によるリッジ型ブロードエリア半導体レーザ装置560では、p型GaAsコンタクト層14、p型AlGaAs第1クラッド層11c及びp型AlGaAs第2クラッド層13bがエッチングで除去された露出面をSiN膜15で覆うことにより電流非注入構造が形成されたリッジ外側領域I を設け、リッジ型ブロードエリア半導体レーザ装置560に注入される電流を専らリッジ内側領域I に流れるようにしたので、各モード間に利得差が生じ、低次のモードの利得が高次のモードよりも大きくし、低次のモードでのレーザ発振を可能にして、狭い水平広がり角が実現できるという効果を奏し、さらに、n型AlGaAsクラッド層3の屈折率をp型AlGaAs第1クラッド層11c及びp型AlGaAs第2クラッド層13bの屈折率よりも高くした非対称構造とすることにより、p型AlGaAs第1クラッド層11c及びp型AlGaAs第2クラッド層13bの側でのキャリアによる光吸収を減らしてスロープ効率が高くなる効果も奏する。
 実施の形態3の変形例1
 図24は、実施の形態3の変形例1である実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置570を示す斜視図である。
 図24に示されるリッジ型ブロードエリア半導体レーザ装置570は、Al組成比0.25で層厚1.5μmのp型AlGaAs第1クラッド層11d(第2導電型のクラッド層)を有する。
 図21に示されるリッジ型ブロードエリア半導体レーザ装置560と異なる点は、第2ESL層12が無いこと、リッジ外側領域I をエッチング除去ではなく、プロトン注入による半導体層の絶縁化で形成する点である。
 リッジ型ブロードエリア半導体レーザ装置570の作製方法は、実施の形態1の変形例1と同様である。
 リッジ型ブロードエリア半導体レーザ装置570では、第2ESL層12が無いことにより、リッジ領域I(リッジ内側領域I 及びリッジ外側領域I )の実効屈折率は3.41837となる。クラッド領域IIの実効屈折率は同一である3.41827であり、リッジ幅2Wが100μmの場合、式(1)のvは8.42となり、0次(基本)から5次までの6個のモードが許容される。
 プロトンを注入したリッジ外側領域I の実効屈折率は、リッジ内側領域I と同一である3.41837である。一例として、プロトンをp型GaAsコンタクト層14の表面から深さ1.35μmまで注入した場合は、第1ESL層10の上端部からプロトン注入領域17の下端部までの距離hは0.35μmとなる。
 図25及び図26に、リッジ型ブロードエリア半導体レーザ装置570のリッジ外側領域幅Wが3、6、9、10、11、15、20及び25μmの場合の各モードの利得Gを示す。併せて、比較例であるリッジ外側領域幅W=0μmの場合も示す。比較例の場合は、各モードに利得差は殆どなく、あっても1%未満であり、どのモードでもレーザ発振し得る。このため、水平広がり角には、どのモードでレーザ発振するかによるばらつきが生じる。
 一方、リッジ型ブロードエリア半導体レーザ装置570では、電流非注入構造として機能するプロトン注入領域17が形成されたリッジ外側領域I を設け、リッジ内側領域I に専ら電流を流すので、各モード間に利得差が生じ、低次のモードの利得が高次のモードよりも大きくなる。このため、低次のモードでのレーザ発振が可能となり、狭い水平広がり角が実現できる。
 また、本開示による低次のモード、例えば、リッジ外側領域幅Wが10μm以下の場合の0次から2次のモードの利得は、比較例の低次のモードよりも大きくなるので、少ない利得でレーザ発振に至り、比較例よりも低しきい値電流でレーザ発振するリッジ型ブロードエリア半導体レーザ装置が得られる。
 リッジ型ブロードエリア半導体レーザ装置570では、リッジ外側領域幅Wが10μmを超えても、低次モードの利得は、比較例よりも大きくなりロスが増すことはない。リッジ外側領域幅Wが15μm以上では基本モードと他の全てのモードの間に14%を超える利得差があり、実質的な基本モード発振が可能となる。リッジ外側領域幅Wが20μm以上では、この傾向はさらに顕著になる。
 なお、リッジ外側領域幅Wはh+h(1.39μm)より広く、W(50μm)よりも狭い範囲であれば良い。第1ESL層10の上端部からプロトン注入領域17の下端部までの距離hを0.35μmとしているのは、プロトン注入による半導体層のダメージ部分を光強度分布から遠ざけるためである。
 本実施の形態では、一例として、プロトンをイオン注入した構造を示したが、これに限定されるものではなく、半導体層の電気抵抗を大きくできるものであれば良い。
 半導体層の絶縁体化の手段としてプロトン注入を用いると、エッチング工程が不必要となるので、作製工程数を少なくできる上、リッジ型ブロードエリア半導体レーザ装置の作製自体も容易となるという効果を奏する。
 以上、実施の形態3の変形例1によるリッジ型ブロードエリア半導体レーザ装置570では、電流非注入構造として機能するプロトン注入領域17が形成されたリッジ外側領域I を設け、リッジ型ブロードエリア半導体レーザ装置570に注入される電流が専らリッジ内側領域I に流れるようにしたので、各モード間に利得差が生じ、低次のモードの利得が高次のモードよりも大きくなって、低次のモードでのレーザ発振が可能となり、狭い水平広がり角が実現できるという効果を奏し、さらに、n型AlGaAsクラッド層3の屈折率をp型AlGaAs第1クラッド層11dの屈折率よりも高くした非対称構造とすることにより、p型AlGaAs第1クラッド層11dの側でのキャリアによる光吸収を減らしてスロープ効率が高くなる効果も奏する。
実施の形態3の変形例2
 図27は、実施の形態3の変形例2である実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置580を示す斜視図である。
 図21に示されるリッジ型ブロードエリア半導体レーザ装置560と異なる点は、第2ESL層12が無いこと、リッジ外側領域I をエッチング除去ではなく、SiN膜15aをp型GaAsコンタクト層14のリッジ幅方向の両端の表面の一部にそれぞれ設けた点にある。他の層構成は、実施の形態3の変形例1と同一である。
 リッジ型ブロードエリア半導体レーザ装置580の作製方法は、実施の形態1の変形例2と同様である。
 リッジ型ブロードエリア半導体レーザ装置580のリッジ内側領域I 、リッジ外側領域I 及びクラッド領域IIの実効屈折率は、それぞれ3.41837、3.41837及び3.41827であり、リッジ幅2Wが100μmの場合は、0次(基本)から5次までの6個のモードが許容される。電流はp型GaAsコンタクト層14の上部から広がるので、hは1.7μmとなる。
 図28及び図29に、リッジ型ブロードエリア半導体レーザ装置580のリッジ外側領域幅Wが3、6、9、10、11、15、20及び25μmの場合の各モードの利得Gを示す。併せて、比較例であるリッジ外側領域幅W=0μmの場合も示す。比較例の場合は、各モードに利得差は殆どなく、あっても1%未満であり、どのモードでもレーザ発振し得る。このため、水平広がり角には、どのモードでレーザ発振するかによるばらつきが生じる。
 一方、リッジ型ブロードエリア半導体レーザ装置580では、p型GaAsコンタクト層14のリッジ幅方向の両端の表面の一部をそれぞれSiN膜15aで覆った電流非注入構造を有するリッジ外側領域I を設けたので、各モード間に利得差が生じ、低次のモードの利得が高次のモードよりも大きくなる。このため、低次のモードでのレーザ発振が可能となり、狭い水平広がり角が実現できる。
 また、本開示による低次のモード、例えば、リッジ外側領域幅Wが10μm以下の場合の0次から2次のモードの利得は、比較例の低次のモードよりも大きくなるので、少ない利得でレーザ発振に至り、比較例よりも低しきい値電流でレーザ発振するリッジ型ブロードエリア半導体レーザ装置が得られる。
 リッジ型ブロードエリア半導体レーザ装置580では、リッジ外側領域幅Wが10μmを超えても、低次モードの利得は、比較例よりも大きくなりロスが増すことはない。リッジ外側領域幅Wが15μm以上では基本モードと他の全てのモードの間に13%を超える利得差があり、実質的な基本モード発振が可能となる。リッジ外側領域幅Wが20μm以上では、この傾向はさらに顕著になる。
 なお、リッジ外側領域幅Wはh+h(2.74μm)より広く、W(50μm)よりも狭い範囲であれば良い。本実施の形態においては、リッジ外側領域Iaにおける電流非注入構造は、絶縁膜であるSiN膜15aで形成しているので、電流がx方向、すなわち、リッジ幅方向に広がり始めるp型GaAsコンタクト層14からInGaAs量子井戸活性層7までの距離は2.74μmと長くなり、リッジ外側領域幅Wが狭い場合は、利得差は付きにくいが、リッジ外側領域幅Woを広くすれば効果は大きくなるので、特段の問題はない。
 また、エッチングあるいはプロトン注入といった工程がないので、リッジ型ブロードエリア半導体レーザ装置の作製が極めて容易である。
 以上、実施の形態3の変形例2によるリッジ型ブロードエリア半導体レーザ装置580では、p型GaAsコンタクト層14のリッジ幅方向の両端の表面の一部をそれぞれSiN膜15aで覆った電流非注入構造を有するリッジ外側領域I を設け、リッジ型ブロードエリア半導体レーザ装置580に注入される電流を専らリッジ内側領域I に流すようにしたので、低次のモードの利得を高次のモードの利得よりも大きくし、低次のモードのレーザ発振を可能にして水平広がり角を狭くする効果を奏し、さらに、n型AlGaAsクラッド層3の屈折率をp型AlGaAs第1クラッド層11dの屈折率よりも高くした非対称構造とすることにより、p型AlGaAs第1クラッド層11dの側でのキャリアによる光吸収を減らしてスロープ効率が高くなる効果も奏する。
実施の形態4
 図30は、実施の形態4による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置590を示す斜視図である。
 実施の形態4によるリッジ型ブロードエリア半導体レーザ装置590は、n型AlGaAsクラッド層3の屈折率をp型AlGaAs第1クラッド層11e(第2導電型の第1クラッド層)及びp型AlGaAs第2クラッド層13c(第2導電型の第2クラッド層)の屈折率よりも高くした非対称構造とすることでp型AlGaAs第1クラッド層11e及びp型AlGaAs第2クラッド層13cにおけるキャリアによる光吸収を減らすと共に、InGaAs量子井戸活性層7の位置を光ガイド層61、81の中央からp型AlGaAs第1クラッド層11e及びp型AlGaAs第2クラッド層13cの側へ変位させることで、動作中に光ガイド層内に滞留するキャリアによる光吸収も減らしてスロープ効率を高めたものである。
 図30に示されるリッジ型ブロードエリア半導体レーザ装置590は、Al組成比0.25で層厚0.35μmのp型AlGaAs第1クラッド層11e、Al組成比0.25で層厚1.15μmのp型AlGaAs第2クラッド層13cを有する。その他の層構成は、実施の形態1の図3に示されるリッジ型ブロードエリア半導体レーザ装置500と同一である。
 リッジ型ブロードエリア半導体レーザ装置590の作製方法は、実施の形態1と同様である。
 リッジ型ブロードエリア半導体レーザ装置590のp側光ガイド層81とn側光ガイド層61の和の総光ガイド層厚は1.8μmと厚く、積層方向に1次モード以上が許容されている。また、uは0.292273、uは0.480463となり、u>uが成立する。このため、y方向の光強度分布はn型GaAs基板2側へ変位し、x方向の許容モード数を減らすことが可能となる。
 リッジ外側領域幅Wがゼロの場合のリッジ領域I(リッジ内側領域I 及びリッジ外側領域I )及びクラッド領域IIの実効屈折率は、それぞれ3.41692及び3.41672となる。リッジ幅2Wが100μmの場合、vは11.91となり、0次(基本)から7次までの8個のモードが許容される。
 リッジ外側領域I を第2ESL層12に達するまでエッチングで除去した場合の当該箇所の実効屈折率は3.41692となり、エッチングによる除去に拘らずリッジ領域I(リッジ内側領域I 及びリッジ外側領域I )の屈折率は同一である。このため、許容されるモード数は同一となる。
 一方、電流は、第2ESL層12からx方向、すなわち、リッジ幅方向にも広がり始める。つまり、InGaAs量子井戸活性層7から第1ESL層10までの厚さh(0.74μm)と第2ESL層12から第1ESL層10までの厚さh(0.39μm)でx方向に広がり、InGaAs量子井戸活性層7に至ることになる。
 図31及び図32に、リッジ型ブロードエリア半導体レーザ装置590のリッジ外側領域幅Wが3、6、9、10、11、15、20及び25μmの場合の各モードの利得Gを示す。併せて、比較例であるリッジ外側領域幅W=0μmの場合も示す。比較例の場合は、各モードに利得差は殆どなく、あっても1%未満なので、どのモードでもレーザ発振し得る。このため、水平広がり角には、どのモードでレーザ発振するかによるばらつきが生じる。
 一方、リッジ型ブロードエリア半導体レーザ装置590では、p型GaAsコンタクト層14及びp型AlGaAs第2クラッド層13cがエッチングで除去された露出面を絶縁膜であるSiN膜15で覆うことにより電流非注入構造としたリッジ外側領域I を設けたので、各モード間に利得差が生じ、低次のモードの利得が高次のモードよりも大きくなる。このため、低次のモードでのレーザ発振が可能となり、狭い水平広がり角が実現できる。
 また、本開示による低次のモード、例えば、リッジ外側領域幅Wが10μm以下の場合の0次から3次のモードの利得は、比較例の低次のモードよりも大きくなるので、少ない利得でレーザ発振に至り、比較例よりも低しきい値電流でレーザ発振するリッジ型ブロードエリア半導体レーザ装置が得られる。
 リッジ型ブロードエリア半導体レーザ装置590では、リッジ外側領域幅Wが10μmを超えても、低次モードの利得は、比較例よりも大きくなりロスが増すことはない。リッジ外側領域幅Wが15μm以上では基本モードと他の全てのモードの間に12%を超える利得差があり、実質的な基本モード発振が可能となる。リッジ外側領域幅Wが20μm以上では、この傾向はさらに顕著になる。
 なお、電流は等方的に広がるので、リッジ外側領域幅Wはh+h(1.13μm)より広く、W(50μm)よりも狭い範囲であれば良い。
 以上、実施の形態4によるリッジ型ブロードエリア半導体レーザ装置590では、リッジ外側領域I のp型GaAsコンタクト層14及びp型AlGaAs第2クラッド層13cがエッチングで除去された露出面をSiN膜15で覆うことにより電流非注入構造を設け、リッジ型ブロードエリア半導体レーザ装置590に注入される電流が専らリッジ内側領域I に流れるようにしたので、低次のモードの利得を高次のモードの利得よりも大きくし、低次のモードのレーザ発振を可能にして水平広がり角を狭くする効果を奏し、さらに、n型AlGaAsクラッド層3の屈折率をp型AlGaAs第1クラッド層11e及びp型AlGaAs第2クラッド層13cの屈折率よりも高くした非対称構造とすることにより、p型AlGaAs第1クラッド層11e及びp型AlGaAs第2クラッド層13cの側でのキャリアによる光吸収を減らしてスロープ効率が高くなる効果も奏する。
実施の形態4の変形例1
 図33は、実施の形態4の変形例1による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置600を示す斜視図である。
 図30に示される実施の形態4によるリッジ型ブロードエリア半導体レーザ装置590と異なる点は、第2ESL層12が無いこと、リッジ外側領域I をエッチング除去ではなく、プロトン注入による半導体層の絶縁化で形成する点にある。
 リッジ型ブロードエリア半導体レーザ装置600の作製方法は、実施の形態1の変形例1と同様である。
 リッジ型ブロードエリア半導体レーザ装置600では、第2ESL層12が無いことにより、リッジ領域I(リッジ内側領域I 及びリッジ外側領域I )の実効屈折率は3.41693となる。クラッド領域IIの実効屈折率は同一である3.41672であり、リッジ幅2Wが100μmの場合、式(1)のvは12.20となり、0次(基本)から7次までの8個のモードが許容される。
 プロトンを注入したリッジ外側領域I の実効屈折率は、リッジ内側領域I と同一である3.41693である。一例として、プロトンをp型GaAsコンタクト層14の表面から深さ0.25μmまで注入した場合は、第1ESL層10の上端部からプロトン注入領域17の下端部までの距離hは1.45μmとなる。
 図34及び図35に、リッジ型ブロードエリア半導体レーザ装置600のリッジ外側領域幅Wが3、6、9、10、11、15、20及び25μmの場合の各モードの利得Gを示す。併せて、比較例であるリッジ外側領域幅W=0μmの場合も示す。比較例の場合は、各モードに利得差は殆どなく、あっても1%未満であり、どのモードでもレーザ発振し得る。このため、水平広がり角には、どのモードでレーザ発振するかによるばらつきが生じる。
 一方、リッジ型ブロードエリア半導体レーザ装置600では、電流非注入構造として機能するプロトン注入領域17が形成されたリッジ外側領域I を設け、リッジ内側領域I に専ら電流を流すので、各モード間に利得差が生じ、低次のモードの利得が高次のモードよりも大きくなる。このため、低次のモードでのレーザ発振が可能となり、狭い水平広がり角が実現できる。
 また、本開示による低次のモード、例えば、リッジ外側領域幅Wが10μm以下の場合の0次から2次のモードの利得は、比較例の低次のモードよりも大きくなるので、少ない利得でレーザ発振に至り、比較例よりも低しきい値電流でレーザ発振するリッジ型ブロードエリア半導体レーザ装置が得られる。
 リッジ型ブロードエリア半導体レーザ装置600では、リッジ外側領域幅Wが10μmを超えても、低次モードの利得は、比較例よりも大きくなりロスが増すことはない。リッジ外側領域幅Wが15μm以上では基本モードと他の全てのモードの間に、11%を超える利得差があり、実質的な基本モード発振が可能となる。リッジ外側領域幅Wが20μm以上では、この傾向はさらに顕著になる。
 なお、リッジ外側領域幅Wはh+h(2.19μm)より広く、W(50μm)よりも狭い範囲であれば良い。第1ESL層10の上端部からプロトン注入領域17の下端部までの距離hを1.45μmと長くしているのは、プロトン注入による半導体層のダメージ部分と光強度分布を遠ざけるためである。
 本実施の形態では、一例として、プロトンをイオン注入した構造を示したが、これに限定されるものではなく、半導体層の電気抵抗を大きくできるものであれば良い。
 半導体層の絶縁体化の手段としてプロトン注入を用いると、エッチング工程が不必要となるので、作製工程数を少なくできる上、リッジ型ブロードエリア半導体レーザ装置の作製自体も容易となるという効果を奏する。
 以上、実施の形態4の変形例1によるリッジ型ブロードエリア半導体レーザ装置600では、電流非注入構造として機能するプロトン注入領域17が形成されたリッジ外側領域I を設け、リッジ型ブロードエリア半導体レーザ装置600に注入される電流は専らリッジ内側領域I に流れるようにしたので、低次のモードの利得を高次のモードの利得よりも大きくし、低次のモードのレーザ発振を可能にして水平広がり角を狭くする効果を奏し、さらに、n型AlGaAsクラッド層3の屈折率をp型AlGaAs第1クラッド層11dの屈折率よりも高くした非対称構造とすることにより、p型AlGaAs第1クラッド層11dの側でのキャリアによる光吸収を減らしてスロープ効率が高くなる効果も奏する。
実施の形態4の変形例2
 図36は、実施の形態4の変形例2による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置610を示す斜視図である。
 図30に示される実施の形態4によるリッジ型ブロードエリア半導体レーザ装置590と異なる点は、第2ESL層12が無いこと、リッジ外側領域I をエッチング除去ではなく、SiN膜15aをp型GaAsコンタクト層14のリッジ幅方向の両端の表面の一部にそれぞれ設けた点にある。
 リッジ型ブロードエリア半導体レーザ装置610の作製方法は、実施の形態1の変形例2と同様である。
 リッジ型ブロードエリア半導体レーザ装置610におけるリッジ内側領域I 、リッジ外側領域I 及びクラッド領域IIの実効屈折率は、それぞれ、3.41693、3.41693及び3.41672であり、リッジ幅2Wが100μmの場合は、0次(基本)から7次までの8個のモードが許容される。電流はp型GaAsコンタクト層14の上部から広がるのでhは1.7μmとなる。
 図37及び図38に、リッジ型ブロードエリア半導体レーザ装置610のリッジ外側領域幅Wが3、6、9、10、11、15、20及び25μmの場合の各モードの利得Gを示す。併せて、比較例であるリッジ外側領域幅W=0μmの場合も示す。比較例の場合は、各モードに利得差は殆どなく、あっても1%未満であり、どのモードでもレーザ発振し得る。このため、水平広がり角には、どのモードでレーザ発振するかによるばらつきが生じる。
 リッジ外側領域I を設けると、各モード間に利得差が生じ、低次のモードの利得が高次のモードよりも大きくなる。このため、低次のモードでのレーザ発振が可能となり、狭い水平広がり角が実現できる。
 また、本開示による低次のモード、例えば、リッジ外側領域幅Wが10μm以下の場合の0次から2次のモードの利得は、比較例の低次のモードよりも大きくなるので、少ない利得でレーザ発振に至り、比較例よりも低しきい値電流でレーザ発振するリッジ型ブロードエリア半導体レーザ装置が得られる。
 リッジ型ブロードエリア半導体レーザ装置610では、リッジ外側領域幅Wが10μmを超えても、低次モードの利得は、比較例よりも大きくなりロスが増すことはない。リッジ外側領域幅Wが15μm以上では基本モードと他の全てのモードの間に11%を超える利得差があり、実質的な基本モード発振が可能となる。リッジ外側領域幅Wが20μm以上では、さらに顕著になる。
 なお、リッジ外側領域幅Wはh+h(2.44μm)より広く、W(50μm)よりも狭い範囲であれば良い。本実施の形態では、リッジ外側領域I における電流非注入構造は、絶縁膜であるSiN膜15aで形成しているので、電流がx方向、すなわち、リッジ幅方向に広がり始めるp型GaAsコンタクト層14からInGaAs量子井戸活性層7までの距離は2.44μmと長く、リッジ外側領域幅Wが狭い場合は、利得差は付きにくいが、リッジ外側領域幅Woを広くすれば効果は大きくなるので、特段の問題はない。
 エッチングあるいはプロトン注入といった工程がないので、リッジ型ブロードエリア半導体レーザ装置の作製が極めて容易である。
 以上、実施の形態4の変形例2によるリッジ型ブロードエリア半導体レーザ装置610では、p型GaAsコンタクト層14のリッジ幅方向の両端の表面の一部をそれぞれSiN膜15aで覆った電流非注入構造を有するリッジ外側領域I を設け、リッジ型ブロードエリア半導体レーザ装置610に注入される電流を専らリッジ内側領域I に流すようにしたので、低次のモードの利得を高次のモードの利得よりも大きくし、低次のモードのレーザ発振を可能にして水平広がり角を狭くする効果を奏し、さらに、n型AlGaAsクラッド層3の屈折率をp型AlGaAs第1クラッド層11dの屈折率よりも高くした非対称構造とすることにより、p型AlGaAs第1クラッド層11dの側でのキャリアによる光吸収を減らしてスロープ効率が高くなる効果も奏する。
実施の形態5
 図39は、実施の形態5による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置620を示す斜視図である。
 図39に示されるリッジ型ブロードエリア半導体レーザ装置620は、Al組成比0.55で層厚40nmのp型AlGaAs第1ESL層21(p型AlGaAs低屈折率層、あるいは第2導電型の低屈折率層とも呼ぶ)、Al組成比0.20で層厚0.10μmのp型AlGaAs第1クラッド層22、Al組成比0.55で層厚40nmのp型AlGaAs第2ESL層23、Al組成比0.20で層厚0.75μmのp型AlGaAs第2クラッド層24、Al組成比0.55で層厚40nmのp型AlGaAs第3ESL層25、Al組成比0.20で層厚0.65μmのp型AlGaAs第3クラッド層26(第2導電型の第2クラッド層)、層厚0.2μmのp型GaAsコンタクト層27、膜厚0.4μmのSiN膜28、p型電極29を有する。
 その他の層構成は、実施の形態1の図3に示されるリッジ型ブロードエリア半導体レーザ装置500と同一である。
 なお、p型AlGaAs第1クラッド層22とp型AlGaAs第2クラッド層24を合わせて第2導電型の第1クラッド層と呼ぶ。
 リッジ型ブロードエリア半導体レーザ装置620の作製方法を以下に示す。
 n型GaAs基板2上に、n型AlGaAsクラッド層3からp型GaAsコンタクト層27までの各半導体層を、有機金属気相成長法(MOCVD)等の結晶成長方法で順次結晶成長する。
 次に、リッジ内側領域I をレジストで被覆して第3ESL層25までドライエッチングし、レジストを剥離する。
 その後、リッジ内側領域I とリッジ外側領域I をレジストで被覆して第2ESL層23までドライエッチングし、レジストを剥離する。
 さらに、リッジ内側領域I とリッジ外側領域I 及びテラス領域IIをレジストで被覆して第1ESL層21までドライエッチングし、レジストを剥離する。
 そして、リッジ内側領域I をレジストで被覆し、SiN膜28を成膜してリフトオフし、レジストを剥離する。
 最後に、上面側にp型電極16、下面側にn型電極1をそれぞれ形成する。
 リッジ型ブロードエリア半導体レーザ装置620のリッジ外側領域I の両側には、幅d(例えば2μm)のクラッド領域IIを介してテラス領域IIを設けている。当該テラス領域IIの実効屈折率は、リッジ領域I(リッジ内側領域I 及びリッジ外側領域I )の実効屈折率より小さく、かつ、クラッド領域IIの実効屈折率よりも大きい。テラス領域IIが無く当該箇所がクラッド領域IIと同一構造の場合は、多くの高次モードが存在するが、テラス領域IIを設けると高次モードの伝搬定数を自由空間の波数で割った値がテラス領域IIの実効屈折率よりも小さくなり、これらの高次モードは存在し得なくなるので、水平方向に許容されるモード数を減らすことができる。
 リッジ型ブロードエリア半導体レーザ装置620は、クラッド領域IIの外側に実効屈折率がntのテラス領域IIを有し、mを正の整数とすると、下記の式(9)を満たし、かつ、式(10)を満たすことを特徴としている。
Figure JPOXMLDOC01-appb-M000016
 リッジ型ブロードエリア半導体レーザ装置620において、リッジ外側領域幅W=0μmの場合、リッジ領域I(リッジ内側領域I 及びリッジ外側領域I )の実効屈折率は3.41741、クラッド領域IIの実効屈折率は3.41637となるので、リッジ幅2Wが100μmでテラス領域IIがない場合は、v=27.16となり、0次から17次の18個のモードが許容される。
 一方、テラス領域IIを設けると、テラス領域IIの実効屈折率は3.41704なので、11次から17次のモードは、伝搬定数を自由空間の波数で割った値がテラス領域IIの実効屈折率よりも小さくなり、結果的に0次から10次までの11個のモードが許容されることになる。
 リッジ型ブロードエリア半導体レーザ装置620が有限のリッジ外側領域幅Wを有し、リッジ外側領域I を第3ESL層25に達するまでエッチングで除去した場合の当該箇所の実効屈折率は3.41741となり、エッチングによる除去に拘らずリッジ領域I(リッジ内側領域I 及びリッジ外側領域I )の屈折率は同一である。このため、許容されるモード数は同一となる。
 一方、リッジ型ブロードエリア半導体レーザ装置620では、電流は、第3ESL層25からx方向、すなわちリッジ幅方向にも広がり始める。つまり、InGaAs量子井戸活性層7から第1ESL層21(p型AlGaAs低屈折率層21)までの厚さh(0.64μm)と第1ESL層21から第3ESL層25までの厚さh(0.93μm)でx方向に広がり、InGaAs量子井戸活性層7に至ることになる。
 図40及び図41に、リッジ型ブロードエリア半導体レーザ装置620のリッジ外側領域幅Wが3、6、9、10、11、15、20及び25μmの場合の各モードの利得Gを示す。併せて、比較例であるリッジ外側領域幅W=0μmの場合も示す。比較例の場合は、各モードに利得差は殆どなく、あっても2%未満なので、どのモードでもレーザ発振し得る。このため、水平広がり角には、どのモードで発振するかによるばらつきが生じる。
 一方、リッジ型ブロードエリア半導体レーザ装置620では、p型GaAsコンタクト層27及びp型AlGaAs第3クラッド層26がエッチングで除去された露出面をSiN膜28で覆うことにより電流非注入構造としたリッジ外側領域I を設けたので、各モード間に利得差が生じ、低次のモードの利得が高次のモードよりも大きくなる。このため、低次のモードでのレーザ発振が可能となり、狭い水平広がり角が実現できる。
 また、本開示による低次のモード、例えば、リッジ外側領域幅Wが10μm以下の場合の0次から3次のモードの利得は、比較例の低次のモードよりも大きくなるので、少ない利得でレーザ発振に至り、比較例よりも低しきい値電流でレーザ発振するリッジ型ブロードエリア半導体レーザ装置が得られる。
 リッジ型ブロードエリア半導体レーザ装置620では、リッジ外側領域幅Wが10μmを超えても、低次モードの利得は、比較例よりも大きくなりロスが増すことはない。リッジ外側領域幅Wが15μm以上では、基本モードと他の全てのモードの間に10%を超える利得差があり、実質的な基本モード発振が可能となる。リッジ外側領域幅Wが20μm以上では、この傾向はさらに顕著になる。
 なお、電流は等方的に広がるので、リッジ外側領域幅Wはh+h(1.57μm)より広く、W(50μm)よりも狭い範囲であれば良い。
 以上、実施の形態5によるリッジ型ブロードエリア半導体レーザ装置620では、p型GaAsコンタクト層27及びp型AlGaAs第3クラッド層26がエッチングで除去された露出面をSiN膜28で覆うことにより電流非注入構造としたリッジ外側領域I を設け、リッジ型ブロードエリア半導体レーザ装置620に注入される電流が専らリッジ内側領域I に流れるようにしたので、低次のモードの利得を高次のモードの利得よりも大きくし、低次のモードの発振を可能にして水平広がり角を狭くする効果を奏し、さらに、テラス領域IIを設けることにより高次モードの伝搬定数を自由空間の波数で割った値がテラス領域IIの実効屈折率よりも小さくなり、これらの高次モードは存在し得なくなるので、水平方向に許容されるモード数を減らすことができるという効果も奏する。
実施の形態5の変形例1
 図42は、実施の形態5の変形例1による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置630を示す斜視図である。
 図42に示されるリッジ型ブロードエリア半導体レーザ装置630は、Al組成比0.20で層厚1.40μmのp型AlGaAs第2クラッド層24a(第2導電型のクラッド層)、膜厚0.4μmのSiN膜28a、プロトン注入領域30を有する。
 図39に示されるリッジ型ブロードエリア半導体レーザ装置620と異なる点は、第3ESL層25が無いこと、リッジ外側領域I をエッチング除去ではなく、プロトン注入による半導体層の絶縁化で形成する点にある。
 リッジ型ブロードエリア半導体レーザ装置630の作製方法を以下に示す。
 n型GaAs基板2上に、n型AlGaAsクラッド層3からp型GaAsコンタクト層27までの各半導体層を、有機金属気相成長法(MOCVD)等の結晶成長方法で順次結晶成長する。
 次に、リッジ内側領域I をレジストで被覆してプロトンをイオン注入してプロトン注入領域30を形成し、レジストを剥離する。
 その後、リッジ内側領域I とリッジ外側領域I をレジストで被覆して第2ESL層23までドライエッチングし、レジストを剥離する。このとき、クラッド領域II及びテラス領域IIのプロトン注入領域30もエッチングされて消失する。
 そして、リッジ内側領域I 、リッジ外側領域I 及びテラス領域IIをレジストで被覆して第1ESL層21までドライエッチングし、レジストを剥離する。
 さらに、リッジ内側領域I とリッジ外側領域I をレジストで被覆し、SiN膜28aを成膜してリフトオフし、レジストを剥離する。
 最後に、上面側にp型電極16、下面側にn型電極1をそれぞれ形成する。
 リッジ型ブロードエリア半導体レーザ装置630において、リッジ外側領域幅W=0μmの場合、リッジ領域I(リッジ内側領域I 及びリッジ外側領域I )の実効屈折率は3.41741、クラッド領域IIの実効屈折率は3.41637となるので、リッジ幅2Wが100μmでテラス領域IIがない場合は、v=27.16となり、0次から17次の18個のモードが許容される。
 一方、テラス領域IIを設けると、テラス領域IIの実効屈折率は3.41704なので、11次から17次のモードは、伝搬定数を自由空間の波数で割った値がテラス領域IIの実効屈折率よりも小さくなり、結果的に0次から10次までの11個のモードが許容されることになる。
 一例として、プロトンをp型GaAsコンタクト層27から深さ0.74μmまで注入した場合は、第1ESL層21の上端部からプロトン注入領域30の下端部までの距離hは1.00μmとなる。
 リッジ外側領域幅Wであるリッジ外側領域I の実効屈折率は3.41741なので、許容されるモード数は実施の形態5と同一である。
 一方、電流は、プロトン注入領域30の下端部からx方向、すなわち、リッジ幅方向にも広がり始め、InGaAs量子井戸活性層7から第1ESL層21までの厚さh(0.64μm)と第1ESL層21の上端部からプロトン注入領域17の下端部までの厚さh(1.00μm)とでx方向に広がり、InGaAs量子井戸活性層7に至ることになる。
 図43及び図44に、リッジ型ブロードエリア半導体レーザ装置630のリッジ外側領域幅Wが3、6、9、10、11、15、20及び25μmの場合の各モードの利得Gを示す。併せて、比較例であるリッジ外側領域幅W=0μmの場合も示す。比較例の場合は、各モードに利得差は殆どなく、あっても2%未満であり、どのモードでもレーザ発振し得る。このため、水平広がり角には、どのモードでレーザ発振するかによるばらつきが生じる。
 一方、リッジ型ブロードエリア半導体レーザ装置630では、電流非注入構造として機能するプロトン注入領域30が形成されたリッジ外側領域I を設けたので、各モード間に利得差が生じ、低次のモードの利得が高次のモードよりも大きくなる。このため、低次のモードでのレーザ発振が可能となり、狭い水平広がり角が実現できる。
 また、本開示による低次のモード、例えば、リッジ外側領域幅Wが10μm以下の場合の0次から3次のモードの利得は、比較例の低次のモードよりも大きくなるので、少ない利得でレーザ発振に至り、比較例よりも低しきい値電流でレーザ発振するリッジ型ブロードエリア半導体レーザ装置が得られる。
 リッジ型ブロードエリア半導体レーザ装置630では、リッジ外側領域幅Wが10μmを超えても、低次モードの利得は、比較例よりも大きくなりロスが増すことはない。リッジ外側領域幅Wが15μm以上では基本モードと他の全てのモードの間に10%を超える利得差があり、実質的な基本モード発振が可能となる。リッジ外側領域幅Wが20μm以上では、この傾向はさらに顕著になる。
 なお、リッジ外側領域幅Wはh+h(1.64μm)より広く、W(50μm)よりも狭い範囲であれば良い。第1ESL層21の上端部からプロトン注入領域30の下端部までの距離hを1.00μmと長くしているのは、プロトン注入による半導体層のダメージ部分と光強度分布を遠ざけるためである。
 本実施の形態では、一例として、プロトンをイオン注入した構造を示したが、これに限定されるものではなく、半導体層の電気抵抗を大きくできるものであれば良い。
 半導体層の絶縁体化の手段としてプロトン注入を用いると、エッチング工程が不必要となるので、作製工程数を少なくできる上、リッジ型ブロードエリア半導体レーザ装置の作製自体も容易となるという効果を奏する。
 以上、実施の形態5の変形例1によるリッジ型ブロードエリア半導体レーザ装置630では、電流非注入構造として機能するプロトン注入領域30が形成されたリッジ外側領域I を設け、リッジ型ブロードエリア半導体レーザ装置630に注入される電流が専らリッジ内側領域I に流れるようにしたので、低次のモードの利得を高次のモードの利得よりも大きくし、低次のモードのレーザ発振を可能にして水平広がり角を狭くする効果を奏し、さらに、テラス領域IIを設けることにより高次モードの伝搬定数を自由空間の波数で割った値がテラス領域IIの実効屈折率よりも小さくなり、これらの高次モードは存在し得なくなるので、水平方向に許容されるモード数を減らすことができるという効果も奏する。
実施の形態5の変形例2
 図45は、実施の形態5の変形例2による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置640を示す斜視図である。
 図45に示されるリッジ型ブロードエリア半導体レーザ装置640は、膜厚0.4μmのSiN膜28bを有する。
 図39に示されるリッジ型ブロードエリア半導体レーザ装置620と異なる点は、第3ESL層25が無いこと、リッジ外側領域I を形成するため、エッチング除去ではなく、SiN膜28bをp型GaAsコンタクト層27のリッジ幅方向の両端の表面の一部にそれぞれ設けた点にある。
 リッジ型ブロードエリア半導体レーザ装置640の作製方法を以下に示す。
 n型GaAs基板2上に、n型AlGaAsクラッド層3からp型GaAsコンタクト層27までの各半導体層を、有機金属気相成長法(MOCVD)等の結晶成長方法で順次結晶成長する。
 次に、リッジ内側領域I とリッジ外側領域I をレジストで被覆して第2ESL層23までドライエッチングし、レジストを剥離する。
 そして、リッジ内側領域I 、リッジ外側領域I 及びテラス領域IIをレジストで被覆して第1ESL層21までドライエッチングし、レジストを剥離する。
 その後、リッジ内側領域I をレジストで被覆し、SiN膜28bを成膜してリフトオフし、レジストを剥離する。
 最後に、上面側にp型電極16、下面側にn型電極1をそれぞれ形成する。
 リッジ型ブロードエリア半導体レーザ装置640におけるリッジ内側領域I 、リッジ外側領域I 、クラッド領域II及びテラス領域IIの実効屈折率は、それぞれ、3.41741、3.41741、3.41637及び3.41704であり、リッジ幅2Wが100μmの場合は、0次(基本)から10次までの11個のモードが許容される。電流はp型GaAsコンタクト層27の上部から広がるので、hは1.64μmとなる。
 図46及び図47に、リッジ型ブロードエリア半導体レーザ装置640のリッジ外側領域幅Wが3、6、9、10、11、15、20及び25μmの場合の各モードの利得Gを示す。併せて、比較例であるリッジ外側領域幅W=0μmの場合も示す。比較例の場合は、各モードに利得差は殆どなく、あっても2%未満であり、どのモードでもレーザ発振し得る。このため、水平広がり角には、どのモードでレーザ発振するかによるばらつきが生じる。
 一方、リッジ型ブロードエリア半導体レーザ装置640では、p型GaAsコンタクト層27のリッジ幅方向の両端の表面の一部をそれぞれSiN膜28bで覆った電流非注入構造を有するリッジ外側領域I を設け、電流が専らリッジ内側領域I に流れるようにしたので、各モード間に利得差が生じ、低次のモードの利得が高次のモードよりも大きくなる。このため、低次のモードでのレーザ発振が可能となり、狭い水平広がり角が実現できる。
 また、本開示による低次のモード、例えば、リッジ外側領域幅Wが10μm以下の場合の0次から3次のモードの利得は、比較例の低次のモードよりも大きくなるので、少ない利得でレーザ発振に至り、比較例よりも低しきい値電流でレーザ発振するリッジ型ブロードエリア半導体レーザ装置が得られる。
 リッジ型ブロードエリア半導体レーザ装置640のリッジ外側領域幅Wが10μmを超えても、低次モードの利得は、比較例よりも大きくなりロスが増すことはない。リッジ外側領域幅Wが15μm以上では基本モードと他の全てのモードの間に10%を超える利得差があり、実質的な基本モード発振が可能となる。リッジ外側領域幅Wが20μm以上では、この傾向はさらに顕著になる。
 リッジ型ブロードエリア半導体レーザ装置640のリッジ外側領域幅Wはh+h(2.28μm)より広く、W(50μm)よりも狭い範囲であれば良い。本実施の形態においては、リッジ外側領域I における電流非注入構造は、絶縁膜であるSiN膜28bで形成しているので、電流がx方向に広がり始めるp型GaAsコンタクト層27からInGaAs量子井戸活性層7までの距離は2.38μmと長くなり、リッジ外側領域幅Wが狭い場合は利得差が付きにくいが、リッジ外側領域幅Woを広くすれば効果は大きくなるので、特段の問題はない。
 また、エッチングあるいはプロトン注入といった工程がないので、リッジ型ブロードエリア半導体レーザ装置の作製が極めて容易である。
 本実施の形態では、許容される水平横モード数を少なくする構造を用いて、許容される水平横モード間に利得差を設けて低次のモードでレーザ発振させ、水平広がり角を狭くしたリッジ型ブロードエリア半導体レーザ装置640を例示したが、これに限定されるものではなく、水平横モードが少なくなることのないような通常のリッジ型ブロードエリア半導体レーザ装置でも同様な効果を奏する。
 本実施の形態では、リッジ外側領域I の実効屈折率は、リッジ内側領域I の実効屈折率と等しくしているが、実施の形態1で説明したように実質的に同一であれば良い。
 以上、実施の形態5の変形例2によるリッジ型ブロードエリア半導体レーザ装置640では、p型GaAsコンタクト層27のリッジ幅方向の両端の表面の一部をそれぞれSiN膜28bで覆った電流非注入構造を有するリッジ外側領域I を設け、リッジ型ブロードエリア半導体レーザ装置640に注入される電流を専らリッジ内側領域I に流すので、低次のモードの利得を高次のモードの利得よりも大きくし、低次のモードの発振を可能にして水平広がり角を狭くする効果を奏し、さらに、テラス領域IIを設けることにより高次モードの伝搬定数を自由空間の波数で割った値がテラス領域IIの実効屈折率よりも小さくなり、これらの高次モードは存在し得なくなるので、水平方向に許容されるモード数を減らすことができるという効果も奏する。
実施の形態6
 図48は、実施の形態6による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置650を示す斜視図である。
 図48に示されるリッジ型ブロードエリア半導体レーザ装置650は、Al組成比0.20で層厚0.10μmのp型AlGaAs第1クラッド層31、Al組成比0.55で層厚40nmのp型AlGaAs第1ESL層32(p型AlGaAs低屈折率層、あるいは第2導電型の低屈折率層とも呼ぶ)、Al組成比0.20で層厚0.75μmのp型AlGaAs第2クラッド層33、Al組成比0.55で層厚40nmのp型AlGaAs第2ESL層34、Al組成比0.20で層厚0.65μmのp型AlGaAs第3クラッド層35(第2導電型の第2クラッド層)、層厚0.2μmのp型GaAsコンタクト層36、膜厚0.2μmのSiN膜37、p型電極38、を有する。
 なお、p型AlGaAs第1クラッド層31とp型AlGaAs第2クラッド層33を合わせて第2導電型の第1クラッド層と呼ぶ。
 その他の層構成は、n型低屈折率層が無い点を除いて、実施の形態1の図3に示されるリッジ型ブロードエリア半導体レーザ装置500と同一である。
 リッジ型ブロードエリア半導体レーザ装置650の作製方法も実施の形態1と同様である。
 リッジ型ブロードエリア半導体レーザ装置650は、n型低屈折率層がない通常の実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置であり、第1ESL層32(p型AlGaAs低屈折率層32)をp型AlGaAs第1クラッド層31とp型AlGaAs第2クラッド層33の間に設けている。許容されるモード間の利得差は、実施の形態1と同様な傾向を示す。
 リッジ型ブロードエリア半導体レーザ装置650では、p型AlGaAs第1クラッド層31の層厚を0.1μmとしているが、この層厚に限定されるものではなく、この層厚を厚くするとx方向に許容されるモード数を容易に少なくすることができる。
 以上、実施の形態6によるリッジ型ブロードエリア半導体レーザ装置650では、p型GaAsコンタクト層36及びp型AlGaAs第3クラッド層35がエッチングで除去された露出面をSiN膜37で覆うことにより電流非注入構造としたリッジ外側領域I を設け、リッジ型ブロードエリア半導体レーザ装置650に注入される電流が専らリッジ内側領域I に流れるようにしたので、低次のモードの利得を高次のモードの利得よりも大きくし、低次のモードの発振を可能にして水平広がり角を狭くする効果を奏する。
実施の形態6の変形例1
 図49は、実施の形態6の変形例1による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置660を示す斜視図である。
 図49に示されるリッジ型ブロードエリア半導体レーザ装置660は、Al組成比0.20で層厚1.40μmのp型AlGaAs第2クラッド層33a、膜厚0.2μmのSiN膜37a、プロトン注入領域40を有する。
 リッジ型ブロードエリア半導体レーザ装置660が図48に示されるリッジ型ブロードエリア半導体レーザ装置650と異なる点は、第2ESL層34が無いこと、リッジ外側領域I をエッチング除去ではなく、プロトン注入による半導体層の絶縁化で形成する点にある。
 リッジ型ブロードエリア半導体レーザ装置650の作製方法は、実施の形態1の変形例1と同様である。
 リッジ型ブロードエリア半導体レーザ装置660は、n型低屈折率層がない通常の実屈折率分布を有するリッジ型ブロードエリア半導体レーザ装置であり、第1ESL層32をp型AlGaAs第1クラッド層31とp型AlGaAs第2クラッド層33aの間に設けている。許容されるモード間の利得差は、実施の形態1の変形例1と同様な傾向を示す。
 リッジ型ブロードエリア半導体レーザ装置650では、p型AlGaAs第1クラッド層31の層厚を0.1μmとしているが、この層厚に限定されるものではなく、この層厚を厚くするとx方向、すなわち、リッジ幅方向に許容されるモード数を容易に少なくすることができる。
 本実施の形態では、一例として、プロトンをイオン注入した構造を示したが、これに限定されるものではなく、半導体層の電気抵抗を大きくできるものであれば良い。
 半導体層の絶縁体化の手段としてプロトン注入を用いると、エッチング工程が不必要となるので、作製工程数を少なくできる上、リッジ型ブロードエリア半導体レーザ装置の作製自体も容易となるという効果を奏する。
 以上、実施の形態6の変形例1によるリッジ型ブロードエリア半導体レーザ装置660では、電流非注入構造として機能するプロトン注入領域40が形成されたリッジ外側領域I を設け、リッジ型ブロードエリア半導体レーザ装置660に注入される電流が専らリッジ内側領域I に流れるようにしたので、低次のモードの利得を高次のモードの利得よりも大きくし、低次のモードのレーザ発振を可能にして水平広がり角を狭くする効果を奏する。
実施の形態6の変形例2
 図50は、実施の形態6の変形例2による実屈折率分布を有する975nm帯のリッジ型ブロードエリア半導体レーザ装置670を示す斜視図である。
 図50に示されるリッジ型ブロードエリア半導体レーザ装置670は、膜厚0.2μmのSiN膜37bを有する。
 図48に示されるリッジ型ブロードエリア半導体レーザ装置650と異なる点は、第2ESL層34が無いこと、リッジ外側領域I をエッチング除去ではなく、SiN膜37bをp型GaAsコンタクト層36のリッジ幅方向の両端の表面の一部にそれぞれ設けた点にある。
 リッジ型ブロードエリア半導体レーザ装置670の作製方法は、実施の形態1の変形例2と同様である。
 リッジ型ブロードエリア半導体レーザ装置670は、n型低屈折率層がない通常の実屈折率分布を有するリッジ型ブロードエリア半導体レーザ装置であり、第1ESL層32をp型AlGaAs第1クラッド層31とp型AlGaAs第2クラッド層33aの間に設けている。許容されるモード間の利得差は、実施の形態1の変形例2と同様な傾向を示す。
 リッジ型ブロードエリア半導体レーザ装置670では、p型AlGaAs第1クラッド層31の層厚を0.1μmとしているが、この層厚に限定されるものではなく、この層厚を厚くするとx方向に許容されるモード数を容易に少なくすることができる。
 なお、本実施の形態には、エッチングあるいはプロトン注入といった工程がないので、リッジ型ブロードエリア半導体レーザ装置の作製が極めて容易である。
 本実施の形態では、許容される水平横モード数を少なくする構造を用いて、許容される水平横モード間に利得差を設けて低次のモードで発振させ、水平広がり角を狭くしたリッジ型ブロードエリア半導体レーザ装置を例示したが、これに限定されるものではなく、水平横モードを少なくしないような通常のリッジ構造を有するリッジ型ブロードエリア半導体レーザ装置でも同様な効果を奏する。
 本実施の形態では、リッジ外側領域I の実効屈折率は、リッジ内側領域I の実効屈折率と等しくしているが、実施の形態1で説明したように実質的に同一であれば良い。
 以上、実施の形態6の変形例2によるリッジ型ブロードエリア半導体レーザ装置670では、リッジ外側領域I のp型GaAsコンタクト層36のリッジ幅方向の両端の表面の一部をそれぞれSiN膜37bで覆って電流非注入構造としたので、リッジ型ブロードエリア半導体レーザ装置670に注入される電流は専らリッジ内側領域I に流れることになる結果、低次のモードの利得を高次のモードの利得よりも大きくし、低次のモードのレーザ発振を可能にして水平広がり角を狭くする効果を奏する。
 本開示では、発振波長975nmのリッジ型ブロードエリア半導体レーザ装置を例に説明したが、当該波長に限定されるものでないことは言うまでもない。例えば、400nm帯のGaN系、600nm帯のGaInP系、1550nm帯のInGaAsP系のリッジ型ブロードエリア半導体レーザ装置でも同様な効果を奏することができる。
 また、本開示では、n型GaAs基板を用いてp型GaAsコンタクト層側にリッジ構造を形成しているが、逆に、p型GaAs基板を用いてn型GaAsコンタクト層側にリッジ構造を形成しても同様な効果が得られる。
 なお、本開示では、リッジ幅2Wが100μmのリッジ型ブロードエリア半導体レーザ装置を例示したが、リッジ幅2Wは100μmに限定されるものではなく、水平方向、すなわち、リッジ幅方向に1次以上の高次モードが許容されるものであれば、リッジ幅2Wには依存しない。
 本開示は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 n型電極、2 n型GaAs基板、3 n型AlGaAsクラッド層、4 n型AlGaAs低屈折率層、5、5a n側AlGaAs第2光ガイド層、6、6a n側AlGaAs第1光ガイド層、7 InGaAs量子井戸活性層、8、8a p側AlGaAs第1光ガイド層、9、9a p側AlGaAs第2光ガイド層、10、21、32 p型AlGaAs低屈折率層(第1ESL層)、11、11a、11b、11c、11d、11e、22、31 p型AlGaAs第1クラッド層、12、23、34 第2ESL層、13、13a、13b、13c、24、24a、33、33a p型AlGaAs第2クラッド層、14、27、36 p型GaAsコンタクト層、15、15a、28、28a、28b、37、37a、37b SiN膜、16、29、38 p型電極、17、30、40 プロトン注入領域、25 第3ESL層、26、35 p型AlGaAs第3クラッド層、61、62 n側光ガイド層、81、82 p側光ガイド層、 101 活性層、102 光ガイド層、103 第1エッチングストップ層、104 p型第1クラッド層、105 第2エッチングストップ層、106 p型第2クラッド層

Claims (12)

  1.  第1導電型の半導体基板と、
     前記第1導電型の半導体基板上に積層された第1導電型のクラッド層、第1導電型側の光ガイド層、活性層、第2導電型側の光ガイド層、第2導電型のクラッド層及び第2導電型のコンタクト層と、
     レーザ光を往復させる前端面と後端面からなる共振器と、
     前記前端面と前記後端面の間で前記レーザ光を導波し、幅が2Wで表されるリッジ領域と、を備え、発振波長がλであり、前記各層の積層方向において、1次以上の高次モードが許容される半導体レーザ装置であって、
     前記リッジ領域は、
     幅が2Wで表され、実効屈折率がn であるリッジ内側領域と、
     前記リッジ内側領域の両側に設けられ、幅がWで表され、実効屈折率がn である、電流非注入構造を有するリッジ外側領域と、で構成され、
     前記リッジ外側領域の両側に前記第2導電型のコンタクト層および前記第2導電型のクラッド層が少なくとも除去され、実効屈折率がnであるクラッド領域が設けられ、
     前記リッジ内側領域と前記リッジ外側領域の平均屈折率n が、
    Figure JPOXMLDOC01-appb-M000001
    で表され、以下の関係を満たし、
    Figure JPOXMLDOC01-appb-M000002
     前記リッジ外側領域の幅であるWは、前記電流非注入構造の下端部から前記活性層までの距離よりも大きく、かつ、前記リッジ領域の幅の1/2であるWよりも小さいことを特徴とする半導体レーザ装置。
  2.  前記リッジ領域のリッジ幅方向において許容されるモードの数は、前記リッジ領域と前記クラッド領域を有する構造によって許容されるモードの数と同一であることを特徴とする請求項1に記載の半導体レーザ装置。
  3.  前記第2導電型のクラッド層が、第2導電型の第1クラッド層及び第2導電型の第2クラッド層で構成され、
     前記電流非注入構造は、前記リッジ外側領域において少なくとも前記第2導電型のコンタクト層及び前記第2導電型の第2クラッド層が除去された露出面を被覆する絶縁膜を有することを特徴とする請求項1または2に記載の半導体レーザ装置。
  4.  前記電流非注入構造はプロトン注入領域からなることを特徴とする請求項1または2に記載の半導体レーザ装置。
  5.  前記電流非注入構造は、前記リッジ外側領域の前記第2導電型のコンタクト層のリッジ幅方向の両端の表面の一部をそれぞれ被覆する絶縁膜からなることを特徴とする請求項1または2に記載の半導体レーザ装置。
  6.  前記第1導電型側の光ガイド層の層厚が、前記第2導電型側の光ガイド層の層厚よりも厚いことを特徴とする請求項1から5のいずれか1項に記載の半導体レーザ装置。
  7.  前記第1導電型側の光ガイド層の層厚は、前記第2導電型側の光ガイド層の層厚と同一であることを特徴とする請求項1から5のいずれか1項に記載の半導体レーザ装置。
  8.  前記第1導電型のクラッド層の屈折率ncnが、前記第2導電型のクラッド層の屈折率ncpよりも高いことを特徴とする請求項1から7のいずれか1項に記載の半導体レーザ装置。
  9.  前記第1導電型のクラッド層の屈折率ncnが、前記第2導電型のクラッド層の屈折率ncpよりも高く、かつ、前記第1導電型側の光ガイド層の層厚が、前記第2導電型側の光ガイド層の層厚よりも厚いことを特徴とする請求項1から5のいずれか1項に記載の半導体レーザ装置。
  10.  前記第2導電型側の光ガイド層と前記第2導電型のクラッド層の間または前記第2導電型のクラッド層内に、前記第2導電型のクラッド層の屈折率よりも低い第2導電型の低屈折率層を有することを特徴とする請求項1から9のいずれか1項に記載の半導体レーザ装置。
  11.  前記第1導電型のクラッド層の屈折率をncn、前記第2導電型のクラッド層の屈折率をncpとし、
     前記第1導電型側の光ガイド層と前記第1導電型のクラッド層の間または前記第1導電型のクラッド層内に、層厚がdで前記第1導電型のクラッド層の屈折率ncnよりも低い屈折率nの第1導電型の低屈折率層と、前記第2導電型側の光ガイド層と前記第2導電型のクラッド層の間または前記第2導電型のクラッド層内に、層厚がdで前記第2導電型のクラッド層の屈折率ncpよりも低い屈折率nの第2導電型の低屈折率層と、を有し、
    Figure JPOXMLDOC01-appb-M000003
    を満たすことを特徴とする請求項1から9のいずれか1項に記載の半導体レーザ装置。
  12.  前記クラッド領域の両側に実効屈折率がntのテラス領域を有し、正の整数mにより、
    Figure JPOXMLDOC01-appb-M000004
    を満たし、かつ、
    Figure JPOXMLDOC01-appb-M000005
    を満たすことを特徴とする請求項1から11のいずれか1項に記載の半導体レーザ装置。
PCT/JP2020/036181 2020-09-25 2020-09-25 半導体レーザ装置 WO2022064626A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2020/036181 WO2022064626A1 (ja) 2020-09-25 2020-09-25 半導体レーザ装置
JP2022551125A JP7353510B2 (ja) 2020-09-25 2021-01-08 半導体レーザ装置
CN202180062640.3A CN116648837A (zh) 2020-09-25 2021-01-08 半导体激光装置
US18/044,959 US20230361535A1 (en) 2020-09-25 2021-01-08 Semiconductor laser device
PCT/JP2021/000430 WO2022064728A1 (ja) 2020-09-25 2021-01-08 半導体レーザ装置
EP21871865.8A EP4220875A1 (en) 2020-09-25 2021-01-08 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/036181 WO2022064626A1 (ja) 2020-09-25 2020-09-25 半導体レーザ装置

Publications (1)

Publication Number Publication Date
WO2022064626A1 true WO2022064626A1 (ja) 2022-03-31

Family

ID=80845077

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/036181 WO2022064626A1 (ja) 2020-09-25 2020-09-25 半導体レーザ装置
PCT/JP2021/000430 WO2022064728A1 (ja) 2020-09-25 2021-01-08 半導体レーザ装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000430 WO2022064728A1 (ja) 2020-09-25 2021-01-08 半導体レーザ装置

Country Status (5)

Country Link
US (1) US20230361535A1 (ja)
EP (1) EP4220875A1 (ja)
JP (1) JP7353510B2 (ja)
CN (1) CN116648837A (ja)
WO (2) WO2022064626A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210676A1 (ja) * 2022-04-28 2023-11-02 ヌヴォトンテクノロジージャパン株式会社 半導体発光素子、及び半導体発光素子の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014078567A (ja) * 2012-10-09 2014-05-01 Mitsubishi Electric Corp 半導体レーザ装置
JP2017084845A (ja) * 2015-10-22 2017-05-18 三菱電機株式会社 半導体レーザ装置
WO2019053854A1 (ja) * 2017-09-14 2019-03-21 三菱電機株式会社 半導体レーザ装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2889626B2 (ja) 1989-12-26 1999-05-10 三洋電機株式会社 半導体レーザ
JP4656398B2 (ja) 2005-04-07 2011-03-23 ソニー株式会社 ブロードエリア型半導体レーザ素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014078567A (ja) * 2012-10-09 2014-05-01 Mitsubishi Electric Corp 半導体レーザ装置
JP2017084845A (ja) * 2015-10-22 2017-05-18 三菱電機株式会社 半導体レーザ装置
WO2019053854A1 (ja) * 2017-09-14 2019-03-21 三菱電機株式会社 半導体レーザ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210676A1 (ja) * 2022-04-28 2023-11-02 ヌヴォトンテクノロジージャパン株式会社 半導体発光素子、及び半導体発光素子の製造方法

Also Published As

Publication number Publication date
JP7353510B2 (ja) 2023-09-29
US20230361535A1 (en) 2023-11-09
CN116648837A (zh) 2023-08-25
EP4220875A1 (en) 2023-08-02
WO2022064728A1 (ja) 2022-03-31
JPWO2022064728A1 (ja) 2022-03-31

Similar Documents

Publication Publication Date Title
JP4387472B2 (ja) 半導体レーザ
JP2001210910A (ja) 半導体レーザ
KR100703228B1 (ko) 반도체 레이저 장치
JP3576560B2 (ja) 半導体レーザ素子
WO2022064626A1 (ja) 半導体レーザ装置
CN113140965B (zh) 一种半导体激光器外延结构及其制备方法
US6724795B2 (en) Semiconductor laser
US7409134B2 (en) Control of output beam divergence in a semiconductor waveguide device
US7095769B2 (en) Semiconductor laser diode with higher-order mode absorption layers
US6856636B2 (en) Semiconductor laser device
JP3974852B2 (ja) 半導体レーザ素子
JPS59119783A (ja) 半導体発光装置
Fujimoto et al. High-power InGaAs/AlGaAs laser diodes with decoupled confinement heterostructure
JP2004111535A (ja) 半導体レーザ装置
JP7511743B2 (ja) 半導体レーザ装置
JP2009076640A (ja) 半導体発光素子
JP2008034886A (ja) 半導体レーザ
KR100759802B1 (ko) 매립형 봉우리 도파로 레이저 다이오드
JP4523131B2 (ja) 半導体レーザ装置
JP2004103679A (ja) 半導体発光素子および半導体発光素子モジュール
US20220131344A1 (en) Semiconductor optical device and method of manufacturing the same
JP2007189264A (ja) 半導体レーザ
KR100359940B1 (ko) 반도체 레이저 다이오드
JP2004103678A (ja) 半導体レーザおよび半導体レーザモジュール
JP2003152268A (ja) 半導体レーザおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP