WO2022062321A1 - 一种硅基负极复合材料和锂二次电池 - Google Patents

一种硅基负极复合材料和锂二次电池 Download PDF

Info

Publication number
WO2022062321A1
WO2022062321A1 PCT/CN2021/078605 CN2021078605W WO2022062321A1 WO 2022062321 A1 WO2022062321 A1 WO 2022062321A1 CN 2021078605 W CN2021078605 W CN 2021078605W WO 2022062321 A1 WO2022062321 A1 WO 2022062321A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
negative electrode
degrees
alloy
composite material
Prior art date
Application number
PCT/CN2021/078605
Other languages
English (en)
French (fr)
Inventor
殷营营
刘柏男
罗飞
李泓
Original Assignee
溧阳天目先导电池材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 溧阳天目先导电池材料科技有限公司 filed Critical 溧阳天目先导电池材料科技有限公司
Priority to EP21870710.7A priority Critical patent/EP4220758A1/en
Publication of WO2022062321A1 publication Critical patent/WO2022062321A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of secondary battery materials, in particular to a silicon-based negative electrode composite material and a lithium secondary battery.
  • Silicon-based anodes are currently the main commercially developed anode materials with high energy density.
  • one silicon atom can combine 4.4 lithium ions to form a Li 22 Si 5 alloy, which exhibits an ultra-high capacity of 4200mAh/g, but in the process of lithium intercalation to form the alloy, it is accompanied by a volume expansion of about 300%.
  • the volume expansion will cause huge internal stress, destroy the solid electrolyte interface (SEI) film on the particle surface, cause the cracking of active particles and even pulverize and fall off, causing them to fall off from the current collector.
  • SEI solid electrolyte interface
  • SiO x silicon oxide
  • SiO x silicon oxide
  • Amorphous SiOx is composed of Si particles below 5nm or metallic silicon clusters uniformly dispersed in the SiO2 matrix.
  • the reaction of lithium and silica will generate a variety of irreversible lithium oxides. These irreversible products will act as a buffer zone for the volume expansion of silicon and inhibit the volume expansion of silicon.
  • the role of the buffer band is limited and cannot make the cycle performance of SiO x reach a practical standard.
  • the formation of irreversible lithium oxide will also lead to the loss of lithium, which reduces the first cycle charge-discharge efficiency of the battery to below 75%.
  • the poor conductivity of SiO itself limits the effective release of battery capacity at high rates.
  • the carbon coating method is commonly used.
  • the carbon layer can improve the electrical conductivity of the particle surface, and the binding effect on the particles can also reduce the volume expansion of the silicon-based negative electrode.
  • the carbon layer can reduce the contact area between the particles and the electrolyte, and improve the first cycle efficiency of the material.
  • the carbon layer coating can only improve the surface conductivity of the material, and the ability of conducting electrons and lithium ions inside the particles has not changed.
  • silicon-based anodes still face the problems of large volume expansion and low rate performance, which need to be solved urgently.
  • Embodiments of the present invention provide a silicon-based negative electrode composite material and a lithium secondary battery.
  • the silicon-based negative electrode is a composite material containing Li x My Si z alloy in the lithium intercalation state, and the alloy material is dispersed in the whole silicon-based particle, which increases the electrical conductivity of the material.
  • the surface of the silicon-based particles is coated with a carbon layer, and the carbon layer increases the electrical conductivity of the surface of the silicon-based particles.
  • the lithium secondary battery prepared by using this silicon-based negative electrode composite material has excellent rate capability.
  • an embodiment of the present invention provides a silicon-based negative electrode composite material, and the silicon-based negative electrode composite material is a composite material of silicon-based particles and a carbon coating layer coated on the surface of the silicon-based particles;
  • the silicon-based particles are composite materials including Li x My Si z alloy in the lithium intercalation state; wherein, 0 ⁇ x ⁇ 25, 0 ⁇ y ⁇ 5, 0 ⁇ z ⁇ 6; the M includes Ni, Cu, One or more of Zn, Al, Na, Mg, Au, N, P;
  • the average particle size (D 50 ) of the silicon-based particles is 0.1-40 ⁇ m, and the specific surface area is 0.5 m 2 /g-40 m 2 /g; It is dispersed in the middle, and the grain size is 0.5nm - 100nm , and the content of the LixMySiz alloy accounts for 5%-60% of the total mass of the silicon-based negative electrode composite material after lithium intercalation; the carbon cladding
  • the thickness of the coating is 1 nm-100 nm.
  • the content of the LixMySiz alloy accounts for 10%-30% of the total mass of the silicon-based negative electrode composite material after lithium intercalation;
  • the thickness of the carbon coating layer is 5nm-25nm;
  • the silicon-based particles have an average particle size (D 50 ) of 2-15 ⁇ m, and a specific surface area of 1 m 2 /g-10 m 2 /g.
  • the Li x My Si z alloy is specifically Li 13 Ni 9 Si 18 and/or Li 3 Ni 6 Si 6 , and the strongest peaks of the corresponding X-ray diffraction XRD diffraction peaks are respectively located at 22.1 degrees and/or 47.7 degrees;
  • the Li x My Si z alloy is specifically LiCuSi , and the corresponding XRD diffraction peaks with the strongest peaks are located at 43.0 degrees, 47.62 degrees, and 49.8 degrees;
  • the Li x My Si z alloy is specifically Li 2 ZnSi, and the corresponding XRD diffraction peaks with the strongest peaks are located at 21.6 degrees and 32.6 degrees;
  • the Li x My S z alloy is specifically Li 12 Al 3 Si 4 and/or LiAlSi, and the corresponding XRD diffraction peaks with the strongest peaks are located at 20.5 degrees and/or 26.0 degrees, respectively;
  • the Li x My Si z alloy is specifically Li 3 NaSi 6 , and the strongest peak of the corresponding XRD diffraction peak is located at 9.8 degrees;
  • the Li x My S z alloy is specifically Li 12 Mg 3 Si 4 , and the strongest peak of the corresponding XRD diffraction peak is located at 20.3 degrees;
  • the Li x My Si z alloy is specifically Li 2 Au 3 Si, and the strongest peak of the corresponding XRD diffraction peak is located at 25.4 degrees;
  • the Li x My Si z alloy is specifically LiN 3 Si 2 and/or Li 8 N 4 Si and/or Li 21 N 11 Si 3 and/or Li 18 N 10 Si 3 , corresponding to The strongest peaks of the XRD diffraction peaks are located at 56.2 degrees and/or 32.3 degrees and/or 23.0 degrees and/or 54.6 degrees, respectively;
  • the Li x My S z alloy is specifically Li 5 P 3 Si, and the corresponding strongest peak of the XRD diffraction peak is located at 26.3 degrees.
  • the silicon-based particles are composite materials comprising M q Si in a non-lithiated state; 0 ⁇ q ⁇ 5.
  • an embodiment of the present invention provides a silicon-based negative electrode, including the silicon-based negative electrode composite material described in the first aspect.
  • an embodiment of the present invention provides a lithium secondary battery, the lithium secondary battery includes the silicon-based negative electrode composite material described in the first aspect or the silicon-based negative electrode described in claim 4 above.
  • the lithium secondary battery includes any one of a liquid lithium ion battery, a semi-solid lithium ion battery, an all-solid ion battery or a lithium sulfur battery.
  • the silicon-based negative electrode composite material provided by the present invention is a composite material containing Li x My Si z alloy in the intercalated state.
  • the alloy In the intercalated state, the alloy is dispersed in the whole silicon-based negative electrode particles, which increases the The electrical conductivity inside the particle, and the ductility of the alloy provide elastic space for the volume expansion of the particle.
  • the present invention also increases the conductivity of the particle surface by coating the carbon layer on the surface of the silicon-based negative electrode particle. Therefore, the silicon-based negative electrode composite material provided by the present invention has the advantages of long cycle, high rate, and high stability, while ensuring high capacity.
  • Fig. 1 is the X-ray diffraction (XRD) pattern of the lithium secondary battery silicon-based negative electrode composite material provided in the embodiment of the present invention in the lithium intercalation state;
  • XRD X-ray diffraction
  • SEM scanning electron microscope
  • FIG. 3 is a comparison diagram of the rate performance of lithium secondary batteries provided by Example 1 of the present invention and Comparative Example 1.
  • FIG. 3 is a comparison diagram of the rate performance of lithium secondary batteries provided by Example 1 of the present invention and Comparative Example 1.
  • the invention provides a silicon-based negative electrode composite material, which is a composite material of silicon-based particles and a carbon coating layer coated on the surface of the silicon-based particles;
  • the silicon-based particle is a composite material containing Li x My Si z alloy in the lithium intercalation state; wherein, 0 ⁇ x ⁇ 25, 0 ⁇ y ⁇ 5, 0 ⁇ z ⁇ 6; M includes Ni, Cu, Zn, Al , one or more of Na, Mg, Au, N, and P; the silicon-based particle is a composite material containing M q Si in a non-lithiated state; 0 ⁇ q ⁇ 5.
  • the Li x My Si z alloy is specifically Li 13 Ni 9 Si 18 and/or Li 3 Ni 6 Si 6 , and the corresponding X-ray diffraction XRD diffraction peaks are located at 22.1 degrees and 22.1 degrees respectively. / or at 47.7 degrees;
  • the Li x My Si z alloy is specifically LiCuSi , and the corresponding XRD diffraction peaks with the strongest peaks are located at 43.0 degrees, 47.62 degrees, and 49.8 degrees;
  • the Li x My S z alloy is specifically Li 2 ZnSi, and the corresponding XRD diffraction peaks are the strongest at 21.6 degrees and 32.6 degrees;
  • the Li x My S z alloy is specifically Li 12 Al 3 Si 4 and/or LiAlSi, and the corresponding XRD diffraction peaks with the strongest peaks are located at 20.5 degrees and/or 26.0 degrees, respectively;
  • the Li x My S z alloy is Li 3 NaSi 6 specifically, and the strongest peak of the corresponding XRD diffraction peak is located at 9.8 degrees;
  • the Li x My S z alloy is specifically Li 12 Mg 3 Si 4 , and the corresponding XRD diffraction peak is the strongest at 20.3 degrees;
  • the Li x My Si z alloy is specifically Li 2 Au 3 Si, and the corresponding XRD diffraction peak is the strongest at 25.4 degrees;
  • the LixMySiz alloy is specifically LiN3Si2 and/or Li8N4Si and / or Li21N11Si3 and / or Li18N10Si3 , corresponding XRD diffraction
  • the peaks with the strongest peaks are located at 56.2 degrees and/or 32.3 degrees and/or 23.0 degrees and/or 54.6 degrees, respectively;
  • the Li x My Si z alloy is specifically Li 5 P 3 Si, and the corresponding XRD diffraction peak is the strongest at 26.3 degrees.
  • the average particle size (D 50 ) of the silicon-based particles is 0.1-40 ⁇ m, and the specific surface area is 0.5 m 2 /g-40 m 2 /g; in a preferred embodiment, the silicon-based particles The average particle size (D 50 ) is 2-15 ⁇ m, and the specific surface area is 1 m 2 /g-10 m 2 /g.
  • M q Si is dispersed at the nanometer level throughout the silicon-based particles.
  • the Li x My S z alloy is dispersed in the whole silicon-based particle, which can increase the conductivity inside the particle, and the ductility of the alloy provides an elastic space for the volume expansion of the particle.
  • the grain size of Li x My Si z alloy is 0.5nm-100nm. After lithium intercalation, the content of Li x My Si z alloy in the silicon-based negative electrode composite material accounts for the total mass of the silicon-based negative electrode composite material after lithium intercalation. 5%-60%; in a preferred embodiment, it accounts for 10%-30% of the total mass of the silicon-based negative electrode composite material.
  • the thickness of the carbon coating layer is 1 nm-100 nm, preferably 5 nm-25 nm.
  • the carbon source used for preparing the carbon coating layer is one or more of toluene, methane, acetylene, glucose, pitch or high molecular polymer.
  • the silicon-based negative electrode composite material provided by the present invention is a composite material containing Li x My Si z alloy in the lithium intercalation state, and the alloy is dispersed in the whole silicon-based negative electrode particle, which increases the conductivity inside the particle.
  • the ductile plasticity of the alloy provides elastic space for the volume expansion of the particles.
  • the present invention also increases the conductivity of the particle surface by coating the carbon layer on the surface of the silicon-based negative electrode particle. Therefore, the silicon-based negative electrode composite material provided by the present invention has the advantages of long cycle, high rate, and high stability, while ensuring high capacity.
  • the following describes the specific process of preparing the silicon-based negative electrode composite material of the present invention with a plurality of specific examples, and the method and characteristics of applying it to lithium secondary batteries.
  • the metal silicon powder, the metal magnesium powder, and the silicon dioxide powder are uniformly mixed in a molar ratio of 2:1:1, and placed in a high-temperature furnace;
  • the carbon-coated magnesium-doped silicon-based negative electrode, conductive carbon black SP, and sodium carboxymethyl cellulose (CMC) were prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which was coated and dried.
  • the charging mode is 0.1C to 4.2V, and constant voltage to 0.02C. This process is the lithium intercalation process of the silicon-based negative electrode;
  • the silicon oxide powder is dispersed and ball-milled for 1 hour in a mixed solvent of ethanol and water (volume ratio 1:2), and the magnesium oxide powder is added in a ratio of 2:1 according to the molar ratio, and the ball-milling is continued for 2 hours;
  • the carbon-coated aluminum-doped silicon-based negative electrode, conductive carbon black SP, and sodium carboxymethyl cellulose (CMC) were prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which was coated and dried.
  • the silicon oxide powder is dispersed and ball-milled for 1 hour in a mixed solvent of ethanol and water (volume ratio 1:2), and alumina powder is added in a molar ratio of 2:1, and the ball-milling is continued for 2 hours;
  • the carbon-coated aluminum-doped silicon-based negative electrode, conductive carbon black SP, and sodium carboxymethyl cellulose (CMC) were prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which was coated and dried.
  • the carbon-coated phosphorus-doped silicon-based negative electrode, conductive carbon black SP, and sodium carboxymethyl cellulose (CMC) were prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which was coated and dried.
  • the carbon-coated nitrogen-doped silicon-based negative electrode, conductive carbon black SP, and sodium carboxymethyl cellulose (CMC) were prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which was coated and dried.
  • the metal silicon powder and the zinc oxide powder are uniformly mixed according to the molar ratio of 2:1, and placed in a high temperature furnace;
  • the carbon-coated zinc-doped silicon-based negative electrode, conductive carbon black SP, and sodium carboxymethyl cellulose (CMC) were prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which was coated and dried.
  • the metal silicon powder and the oxidized Cu powder are uniformly mixed according to the molar ratio of 2:1, and placed in a high temperature furnace;
  • the silicon oxide powder and the copper acetate solution are mixed uniformly in water according to the mol ratio of 2:1 after fully stirring, then add 1 mol/L sodium hydroxide solution while stirring, and fully stir for 2 hours;
  • the sieved precursor is placed in a rotary furnace, and a mixed gas of argon and methane with a volume ratio of 3:1 is passed at 1000° C., and kept for 2 hours to obtain a carbon-coated copper-doped silicon base negative electrode;
  • the carbon-coated copper-doped silicon-based negative electrode, conductive carbon black SP, and sodium carboxymethyl cellulose (CMC) were prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which was coated and dried to make The negative pole piece, with the ternary positive material NCM811 as the counter electrode, was assembled into a button battery in the glove box, and it was charged to evaluate the electrochemical performance;
  • the silicon oxide powder and the nickel acetate solution are mixed uniformly in water according to the mol ratio of 2:1, and then the sodium hydroxide solution of 1 mol/L is added while stirring, and fully stirred for 2 hours;
  • the sieved precursor is placed in a rotary furnace, and a mixed gas of argon and methane with a volume ratio of 3:1 is passed at 1000° C., and kept for 2 hours to obtain a carbon-coated nickel-doped silicon base negative electrode;
  • the carbon-coated nickel-doped silicon-based negative electrode, conductive carbon black SP, and sodium carboxymethyl cellulose (CMC) are prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which is coated and dried to make The negative pole piece, with the ternary positive material NCM811 as the counter electrode, was assembled into a button battery in the glove box, and it was charged to evaluate the electrochemical performance;
  • the silicon oxide powder and the gold powder are uniformly mixed according to the molar ratio of 2:1, and placed in a vacuum furnace;
  • the carbon-coated gold-doped silicon-based negative electrode, conductive carbon black SP, and sodium carboxymethyl cellulose (CMC) were prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which was coated and dried to form a negative electrode.
  • the ternary positive electrode material NCM811 was used as the counter electrode, and a button battery was assembled in the glove box, which was charged and the electrochemical performance was evaluated;
  • the silicon oxide powder and the sodium acetate solution are mixed uniformly in water according to the molar ratio of 2:1 after fully stirring;
  • the sieved precursor is placed in a rotary furnace, and a mixed gas of argon and acetylene with a volume ratio of 3:1 is passed at 900 ° C, and kept for 2 hours to obtain a carbon-coated sodium-doped silicon-based negative electrode ;
  • the silicon oxide powder and the nickel acetate solution are mixed uniformly in water according to the mol ratio of 2:1, and then the sodium hydroxide solution of 1 mol/L is added while stirring, and fully stirred for 2 hours;
  • the carbon-coated nickel-doped silicon-based negative electrode and commercial graphite are compounded in proportion to a composite material of 450mAh/g, and the positive electrode material lithium cobalt oxide LCO is used as the counter electrode, and a button battery is assembled in a glove box. Charge, evaluate electrochemical performance;
  • the carbon-coated aluminum-doped silicon-based negative electrode and commercial graphite are compounded in proportion to a composite material of 550mAh/g, and the ternary positive electrode material nickel cobalt lithium manganate NCM333 is used as the counter electrode, and a button battery is assembled in a glove box. , charge it, and evaluate the electrochemical performance;
  • the metal silicon powder and silicon dioxide powder are uniformly mixed according to the molar ratio of 2:1, and placed in a high-temperature furnace;
  • the triangle marks in Figure 3 show the test results of the rate performance of the battery provided in Comparative Example 1 under different charge and discharge rates for five cycles of testing, from left to right in the figure are 0.5C, 1C, 2C, 3C, 5C, 10C , Test data at 0.5C magnification.
  • the metal silicon powder and silicon dioxide powder are uniformly mixed according to the molar ratio of 2:1, and placed in a high-temperature furnace;
  • the carbon-coated silicon-based negative electrode, conductive carbon black SP, and sodium carboxymethyl cellulose (CMC) are prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which is coated and dried to make a negative electrode.
  • a button battery was assembled in the glove box, and it was charged to evaluate the electrochemical performance;
  • Table 1 above is a comparison of the electrochemical properties of the lithium secondary batteries prepared in Examples 1-15 and Comparative Examples 1-2.
  • the silicon-based negative electrode material is doped with N, P or metal elements, respectively, and the particles are coated with a carbon layer, and the obtained silicon-based negative electrode has high first-turn efficiency.
  • the rate capability of the material is greatly enhanced due to the improved internal and external electrical conductivity of the particles.
  • Comparing Example 1 and Comparative Example 2 since Example 1 is doped with magnesium metal elements, the Li 12 Mg 3 Si 4 alloy formed in the lithium intercalation state of the silicon-based negative electrode is beneficial to improve the conductivity inside the particles, and the extension of the alloy Plasticity accommodates the volume expansion of the material, increasing cyclic stability. Comparing Example 1 and Comparative Example 1, since Example 1 is doped with magnesium metal elements and coated with a carbon layer, the first-turn efficiency and rate performance of the material are more significantly improved than those of Comparative Example 1.

Abstract

一种硅基负极复合材料和锂二次电池,所述硅基负极复合材料为硅基颗粒与在所述硅基颗粒表面包覆的碳包覆层的复合材料;所述硅基颗粒在嵌锂态为包含Li xM ySi z合金的复合材料;其中,0<x<25,0<y<5,0<z<6;所述M包括Ni、Cu、Zn、Al、Na、Mg、Au、N、P中的一种或多种;所述硅基颗粒的平均粒径(D 50)为0.1-40μm,比表面积为0.5m 2/g-40m 2/g;嵌锂后,所述Li xM ySi z合金在整个硅基颗粒中呈弥散分布,晶粒尺寸为0.5nm-100nm,所述Li xM ySi z合金的含量占嵌锂后的所述硅基负极复合材料总质量的5%-60%;所述碳包覆层的厚度为1nm-100nm。

Description

一种硅基负极复合材料和锂二次电池
本申请要求于2020年09月27日提交中国专利局、申请号为202011031877.9、发明名称为“一种硅基负极复合材料和锂二次电池”的中国专利申请的优先权。
技术领域
本发明涉及二次电池材料技术领域,尤其涉及一种硅基负极复合材料和锂二次电池。
背景技术
新能源汽车的快速发展拉动了市场对锂离子电池的需求,2019年12月3日,工业和信息化部公布《新能源汽车产业发展规划(2021-2035年)》,提出到2025年新能源汽车新车销量占比达到25%左右。预计到2025年,我国新能源汽车所需动力电池装机量约为324.01GWh。不仅如此,新能源汽车对长里程的追求对电池的能量密度提出了更高的要求。目前业内分析认为,要使电动汽车性价比达到最佳,届时单体电池能量密度将达到350Wh/Kg(750Wh/L)。
硅基负极是目前商业上主要研发的高能量密度的负极材料。对于硅负极,一个硅原子可以结合4.4个锂离子形成Li 22Si 5合金,表现出4200mAh/g的超高容量,但是在此嵌锂形成合金的过程中,伴随着约300%的体积膨胀。随着嵌锂脱锂的进行,体积膨胀会引发巨大的内应力、破坏颗粒表面的固态电解质界面(SEI)膜、引起活性颗粒的开裂甚至粉化脱落等问题,导致其从集流体上脱落,活性物质失效,电池的容量迅速衰减,降低电池的使 用寿命。因此在实用性上非常不理想。
氧化亚硅(SiO x)相比于硅容量小,但对于缓解体积膨胀提高电池的循环寿命有着明显的优势。非晶态的SiO x是由5nm以下的Si颗粒或金属性硅团簇均匀分散于SiO 2基质中组成的,在首周嵌锂时,锂与二氧化硅反应会生成多种不可逆的锂氧化物,Li 2O、Li 2Si 2O 5、Li 2SiO 3、Li 4SiO 4等,这些不可逆产物会作为硅体积膨胀的缓冲带,抑制硅的体积膨胀。但是缓冲带的作用是有限的,并不能使SiO x的循环性能达到可实际应用的标准。并且,不可逆锂氧化物的生成还会导致锂的损失,使电池的首圈充放电效率下降到75%以下。此外,SiO x本身的导电性较差,较低的导电性限制了高倍率下电池容量的有效释放。
为了降低硅基负极的膨胀、提高倍率性能,常用碳包覆的方法。碳层可提高颗粒表面的电导率,对颗粒的束缚作用还可减轻硅基负极的体积膨胀,另外碳层还可减少颗粒与电解液的接触面积,提高材料的首圈效率。但是碳层包覆只能改善材料的表面电导,颗粒内部的导电子和导锂离子能力并没有发生改变。
但目前而言,硅基负极依然面临着体积膨胀大、倍率性能低等问题,亟待解决。
发明内容
本发明实施例提供了一种硅基负极复合材料和锂二次电池。硅基负极在嵌锂态为包含Li xM ySi z合金的复合材料,合金材料在整个硅基颗粒中呈弥散分布,增加了材料的导电性。另外,硅基颗粒表面包覆有碳层,碳层增加了硅基颗粒表面的导电性。利用此硅基负极复合材料制备的锂二次电池具有优异的倍率性能。
第一方面,本发明实施例提供了一种硅基负极复合材料,所述硅基负极复合材料为硅基颗粒与在所述硅基颗粒表面包覆的碳包覆层的复合材 料;
所述硅基颗粒在嵌锂态为包含Li xM ySi z合金的复合材料;其中,0<x<25,0<y<5,0<z<6;所述M包括Ni、Cu、Zn、Al、Na、Mg、Au、N、P中的一种或多种;
所述硅基颗粒的平均粒径(D 50)为0.1-40μm,比表面积为0.5m 2/g-40m 2/g;嵌锂后,所述Li xM ySi z合金在整个硅基颗粒中呈弥散分布,晶粒尺寸为0.5nm-100nm,所述Li xM ySi z合金的含量占嵌锂后的所述硅基负极复合材料总质量的5%-60%;所述碳包覆层的厚度为1nm-100nm。
优选的,所述Li xM ySi z合金的含量占所述嵌锂后的硅基负极复合材料总质量的10%-30%;
所述碳包覆层的厚度为5nm-25nm;
所述硅基颗粒的平均粒径(D 50)为2-15μm,比表面积为1m 2/g-10m 2/g。
优选的,所述M为Ni元素时,Li xM ySi z合金具体为Li 13Ni 9Si 18和/或Li 3Ni 6Si 6,相应的X射线衍射XRD衍射峰最强峰分别位于22.1度和/或47.7度处;
所述M为Cu元素时,Li xM ySi z合金具体为LiCuSi,相应的XRD衍射峰最强峰位于43.0度、47.62度、49.8度处;
所述M为Zn元素时,Li xM ySi z合金具体为Li 2ZnSi,相应的XRD衍射峰最强峰位于21.6度和32.6度处;
所述M为Al元素时,Li xM ySi z合金具体为Li 12Al 3Si 4和/或LiAlSi,相应的XRD衍射峰最强峰分别位于20.5度和/或26.0度处;
所述M为Na元素时,Li xM ySi z合金具体为Li 3NaSi 6,相应的XRD衍射峰最强峰位于9.8度处;
所述M为Mg元素时,Li xM ySi z合金具体为Li 12Mg 3Si 4,相应的XRD衍射峰最强峰位于20.3度处;
所述M为Au元素时,Li xM ySi z合金具体为Li 2Au 3Si,相应的XRD衍射 峰最强峰位于25.4度处;
所述M为N元素时,Li xM ySi z合金具体为LiN 3Si 2和/或Li 8N 4Si和/或Li 21N 11Si 3和/或Li 18N 10Si 3,相应的XRD衍射峰最强峰分别位于56.2度和/或32.3度和/或23.0度和/或54.6度处;
所述M为P元素时,Li xM ySi z合金具体为Li 5P 3Si,相应的XRD衍射峰最强峰位于26.3度处。
优选的,所述硅基颗粒在非嵌锂态下为包含M qSi的复合材料;0<q<5。
第二方面,本发明实施例提供了一种硅基负极,包括上述第一方面所述的硅基负极复合材料。
第三方面,本发明实施例提供了一种锂二次电池,所述锂二次电池包括上述第一方面所述的硅基负极复合材料或者包括上述权利要求4所述的硅基负极。
优选的,所述锂二次电池包括:液态锂离子电池、半固态锂离子电池、全固态离子电池或锂硫电池中的任一种。
本发明提供的硅基负极复合材料其硅基负极,在嵌锂态为包含Li xM ySi z合金的复合材料,嵌锂态下,合金在整个硅基负极颗粒中呈弥散分布,增加了颗粒内部的导电性,且合金的延展塑性为颗粒的体积膨胀提供了弹性空间。本发明还通过在硅基负极颗粒表面包覆碳层,增加了颗粒表面的导电性。由此,本发明提供的硅基负极复合材料具有长循环、高倍率、高稳定的优点,同时保障了较高的容量。
附图说明
下面通过附图和实施例,对本发明实施例的技术方案做进一步详细描述。
图1为本发明实施例提供的锂二次电池硅基负极复合材料在嵌锂态的X射线衍射(XRD)图谱;
图2为本发明实施例提供的锂二次电池硅基负极颗粒的扫描电子显微镜(SEM)图;
图3为本发明实施例1与对比例1提供的锂二次电池倍率性能对比图。
具体实施方式
下面通过附图和具体的实施例,对本发明进行进一步的说明,但应当理解为这些实施例仅仅是用于更详细说明之用,而不应理解为用以任何形式限制本发明,即并不意于限制本发明的保护范围。
本发明提供了一种硅基负极复合材料,为硅基颗粒与在硅基颗粒表面包覆的碳包覆层的复合材料;
硅基颗粒在嵌锂态下为包含Li xM ySi z合金的复合材料;其中,0<x<25,0<y<5,0<z<6;M包括Ni、Cu、Zn、Al、Na、Mg、Au、N、P中的一种或多种;硅基颗粒在非嵌锂态下为包含M qSi的复合材料;0<q<5。
具体的,M为Ni元素时,Li xM ySi z合金具体为Li 13Ni 9Si 18和/或Li 3Ni 6Si 6,相应的X射线衍射XRD衍射峰最强峰分别位于22.1度和/或47.7度处;
M为Cu元素时,Li xM ySi z合金具体为LiCuSi,相应的XRD衍射峰最强峰位于43.0度、47.62度、49.8度处;
M为Zn元素时,Li xM ySi z合金具体为Li 2ZnSi,相应的XRD衍射峰最强峰位于21.6度和32.6度处;
M为Al元素时,Li xM ySi z合金具体为Li 12Al 3Si 4和/或LiAlSi,相应的XRD衍射峰最强峰分别位于20.5度和/或26.0度处;
M为Na元素时,Li xM ySi z合金具体为Li 3NaSi 6,相应的XRD衍射峰最强峰位于9.8度处;
M为Mg元素时,Li xM ySi z合金具体为Li 12Mg 3Si 4,相应的XRD衍射峰最强峰位于20.3度处;
M为Au元素时,Li xM ySi z合金具体为Li 2Au 3Si,相应的XRD衍射峰最强 峰位于25.4度处;
M为N元素时,Li xM ySi z合金具体为LiN 3Si 2和/或Li 8N 4Si和/或Li 21N 11Si 3和/或Li 18N 10Si 3,相应的XRD衍射峰最强峰分别位于56.2度和/或32.3度和/或23.0度和/或54.6度处;
M为P元素时,Li xM ySi z合金具体为Li 5P 3Si,相应的XRD衍射峰最强峰位于26.3度处。
本发明的硅基负极复合材料中,硅基颗粒的平均粒径(D 50)为0.1-40μm,比表面积为0.5m 2/g-40m 2/g;在优选的实施例中,硅基颗粒的平均粒径(D 50)为2-15μm,比表面积为1m 2/g-10m 2/g。
脱锂态,M qSi在整个硅基颗粒中呈纳米级别的弥散分布。
嵌锂后,Li xM ySi z合金在整个硅基颗粒中呈弥散分布,能够增加颗粒内部的导电性,且合金的延展塑性为颗粒的体积膨胀提供了弹性空间。
Li xM ySi z合金的晶粒尺寸为0.5nm-100nm,嵌锂后,硅基负极复合材料中,Li xM ySi z合金的含量占嵌锂后的硅基负极复合材料总质量的5%-60%;在优选的实施例中,占硅基负极复合材料总质量的10%-30%。
碳包覆层的厚度为1nm-100nm,优选为5nm-25nm。其中,用于制备碳包覆层的碳源为甲苯、甲烷、乙炔、葡萄糖、沥青或高分子聚合物中的一种或多种。
本发明提供的硅基负极复合材料其硅基负极,在嵌锂态下为包含Li xM ySi z合金的复合材料,合金在整个硅基负极颗粒中呈弥散分布,增加了颗粒内部的导电性,且合金的延展塑性为颗粒的体积膨胀提供了弹性空间。本发明还通过在硅基负极颗粒表面包覆碳层,增加了颗粒表面的导电性。由此,本发明提供的硅基负极复合材料具有长循环、高倍率、高稳定的优点,同时保障了较高的容量。
为更好的理解本发明提供的技术方案,下述以多个具体实例分别说明制备本发明的硅基负极复合材料的具体过程,以及将其应用于锂二次电池的方 法和特性。
实施例1
(1)将金属硅粉,金属镁粉,二氧化硅粉末按照2:1:1的摩尔比混合均匀,并置于高温炉中;
(2)在1200℃,氮气保护气氛下将混合料烧结2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品与葡萄糖按照20:1的质量比进行混合,置于高温炉中,氮气氛围900℃热处理2小时,得到碳包覆的掺镁硅基负极;其SEM图像如图2所示。由图中可以看出,制备的硅基负极为土豆状的微米级别颗粒。
(4)将碳包覆的掺镁硅基负极与导电碳黑SP、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料镍钴锰酸锂NCM811为对电极,在手套箱中组装成纽扣电池,对其进行充电,评价电化学性能;
(5)首先对纽扣电池进行第一圈充电,充电模式为0.1C充电至4.2V,并恒压充电至0.02C。此过程为硅基负极的嵌锂过程;
(6)在手套箱中将负极处于嵌锂态的纽扣电池进行拆解,用碳酸二甲酯(DMC)溶剂浸泡冲洗负极极片,晾干后,刮下极片物料,进行XRD测试,得到的XRD图谱如图1所示。图中清晰可见材料中包含Li 12Mg 3Si 4合金,主峰位于20.3度处。
(7)将做好的纽扣电池进行倍率测试,测试程序为:前三周用0.1C充电至4.2V,并恒压充电至0.02C,静置5s后以0.1C放电至2.75V截止。之后保持充放电截止电压不变,依次改变充放电倍率为0.5C、1C、2C、3C、5C、10C、0.5C。上述每种倍率均分别循环五周,并分别对每种倍率取五周的平均值评价其倍率性能,结果见表1。图3中圆点标记所示为本发明实 施例1提供的电池在不同充放电倍率下循环五周测试的倍率性能测试结果,图中从左至右分别为0.5C、1C、2C、3C、5C、10C、0.5C倍率下的测试数据。
实施例2
(1)将氧化亚硅粉末在乙醇与水(体积比1:2)的混合溶剂进行分散球磨1小时,按照摩尔比为2:1的比例加入氧化镁粉末,继续球磨2小时;
(2)将球磨后的浆料进行离心、烘干;
(3)将烘干后的前驱体置于回转炉中,在1000℃下通体积比为3:1的氩气和甲烷的混合气体,并保温2小时,得到碳包覆的掺镁硅基负极;
(4)将碳包覆的掺镁硅基负极与导电碳黑SP、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以正极材料钴酸锂LCO为对电极,在手套箱中组装成纽扣电池,对其进行充电,评价电化学性能;
(5)将做好的纽扣电池进行倍率测试,测试程序为:前三周用0.1C充电至4.4V,并恒压充电至0.02C,静置5s后以0.1C放电至2.75V截止。之后保持充放电截止电压不变,依次改变充放电倍率为0.5C、1C、2C、3C、5C、10C、0.5C。上述每种倍率均分别循环五周,并分别对每种倍率取五周的平均值评价其倍率性能,结果见表1。
实施例3
(1)将金属硅粉,氧化铝粉末,二氧化硅粉末按照2:1:1的摩尔比混合均匀,并置于真空炉中;
(2)在900℃,真空下将混合料热处理2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品与石油沥青按照20:1的质量比进行混合,置于 高温炉中,氮气氛围900℃热处理2小时,得到碳包覆的掺铝硅基负极;
(4)将碳包覆的掺铝硅基负极与导电碳黑SP、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料镍钴锰酸锂NCM333为对电极,在手套箱中组装成纽扣电池,对其进行充电,评价电化学性能;
(5)将做好的纽扣电池进行倍率测试,测试程序为:前三周用0.1C充电至4.2V,并恒压充电至0.02C,静置5s后以0.1C放电至2.75V截止。之后保持充放电截止电压不变,依次改变充放电倍率为0.5C、1C、2C、3C、5C、10C、0.5C。上述每种倍率均分别循环五周,并分别对每种倍率取五周的平均值评价其倍率性能,结果见表1。
实施例4
(1)将氧化亚硅粉末在乙醇与水(体积比1:2)的混合溶剂进行分散球磨1小时,按照摩尔比为2:1的比例加入氧化铝粉末,继续球磨2小时;
(2)将球磨后的浆料进行离心、烘干;
(3)将烘干后的前驱体置于回转炉中,在950℃下通体积比为2:1的氩气和乙炔的混合气体,并保温2小时,得到碳包覆的掺铝硅基负极;
(4)将碳包覆的掺铝硅基负极与导电碳黑SP、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料镍钴锰酸锂NCM523为对电极,在手套箱中组装成纽扣电池,对其进行充电,评价电化学性能;
(5)将做好的纽扣电池进行倍率测试,测试程序为:前三周用0.1C充电至4.2V,并恒压充电至0.02C,静置5s后以0.1C放电至2.75V截止。之后保持充放电截止电压不变,依次改变充放电倍率为0.5C、1C、2C、3C、5C、10C、0.5C。上述每种倍率均分别循环五周,并分别对每种倍率取五周的平均值评价其倍率性能,结果见表1。
实施例5
(1)将氧化亚硅粉末在乙醇与水(体积比1:2)的混合溶剂经充分搅拌后混合均匀,之后按照摩尔比为2:1的比例边搅拌边加入磷酸溶液,并充分搅拌2小时;
(2)将混合好的浆料直接烘干;
(3)将烘干后的浆料置于高温炉中,在1100℃,氮气保护气氛下将混合料烧结2小时,冷却后,进行粉碎、筛分;
(4)将筛分后的前驱体置于回转炉中,在950℃下通体积比为2:1的氩气和乙炔的混合气体,并保温2小时,得到碳包覆的掺磷硅基负极;
(5)将碳包覆的掺磷硅基负极与导电碳黑SP、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料镍钴铝酸锂NCA为对电极,在手套箱中组装成纽扣电池,对其进行充电,评价电化学性能;
(6)将做好的纽扣电池进行倍率测试,测试程序为:前三周用0.1C充电至4.2V,并恒压充电至0.02C,静置5s后以0.1C放电至2.75V截止。之后保持充放电截止电压不变,依次改变充放电倍率为0.5C、1C、2C、3C、5C、10C、0.5C。上述每种倍率均分别循环五周,并分别对每种倍率取五周的平均值评价其倍率性能,结果见表1。
实施例6
(1)将氧化亚硅粉末在乙醇与水(体积比1:2)的混合溶剂经充分搅拌后混合均匀,之后按照摩尔比为2:1的比例边搅拌边加入2-氯乙胺盐酸盐溶液,并充分搅拌2小时;
(2)将混合好的浆料直接烘干;
(3)将烘干后的浆料置于真空炉中,在1000℃,真空环境下将混合 料热处理2小时,冷却后,进行粉碎、筛分;
(4)将筛分后的前驱体与酚醛树脂按照20:1的比例溶于酒精溶剂,搅拌6小时形成均匀浆料;
(5)将上述浆料直接烘干;
(6)将烘干后的浆料置于高温炉中,在900℃,氮气保护气氛下将混合料烧结2小时,冷却后,进行粉碎、筛分,得到碳包覆的掺氮硅基负极;
(7)将碳包覆的掺氮硅基负极与导电碳黑SP、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以正极材料磷酸铁锂LFP为对电极,在手套箱中组装成纽扣电池,对其进行充电,评价电化学性能;
(8)将做好的纽扣电池进行倍率测试,测试程序为:前三周用0.1C充电至4.2V,并恒压充电至0.02C,静置5s后以0.1C放电至2.75V截止。之后保持充放电截止电压不变,依次改变充放电倍率为0.5C、1C、2C、3C、5C、10C、0.5C。上述每种倍率均分别循环五周,并分别对每种倍率取五周的平均值评价其倍率性能,结果见表1。
实施例7
(1)将金属硅粉,氧化锌粉末按照2:1的摩尔比混合均匀,并置于高温炉中;
(2)在1100℃,氮气保护气氛下将混合料烧结2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品与石油沥青按照20:1的质量比进行混合,置于高温炉中,氮气氛围900℃热处理2小时,得到碳包覆的掺锌硅基负极;
(4)将碳包覆的掺锌硅基负极与导电碳黑SP、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以正极材料锰酸锂LMO为对电极,在手套箱中组装成纽扣电池,对其进行充电, 评价电化学性能;
(5)将做好的纽扣电池进行倍率测试,测试程序为:前三周用0.1C充电至4.2V,并恒压充电至0.02C,静置5s后以0.1C放电至2.75V截止。之后保持充放电截止电压不变,依次改变充放电倍率为0.5C、1C、2C、3C、5C、10C、0.5C。上述每种倍率均分别循环五周,并分别对每种倍率取五周的平均值评价其倍率性能,结果见表1。
实施例8
(1)将金属硅粉,金属锌粉,二氧化硅粉末按照2:1:1的摩尔比混合均匀,并置于高温炉中;
(2)在1200℃,氮气保护气氛下将混合料烧结2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品与葡萄糖按照20:1的质量比进行混合,置于高温炉中,氮气氛围900℃热处理2小时,得到碳包覆的掺锌硅基负极;
(4)将碳包覆的掺锌硅基负极与导电碳黑SP、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料NCM811为对电极,以石榴石型Li 7La 3Zr 2O 12(LLZO)作为固态电解质,在手套箱中组装成全固态纽扣电池,对其进行充电,评价电化学性能;
(5)将做好的纽扣电池进行倍率测试,测试程序为:前三周用0.1C充电至4.2V,并恒压充电至0.02C,静置5s后以0.1C放电至2.75V截止。之后保持充放电截止电压不变,依次改变充放电倍率为0.5C、1C、2C、3C、5C、10C、0.5C。上述每种倍率均分别循环五周,并分别对每种倍率取五周的平均值评价其倍率性能,结果见表1。
实施例9
(1)将金属硅粉,氧化Cu粉末按照2:1的摩尔比混合均匀,并置于高温炉中;
(2)在1100℃,氮气保护气氛下将混合料烧结2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品与聚偏氟乙烯(PVDF)按照20:1的比例溶于N,N-二甲基甲酰胺(NMF)溶剂,搅拌6小时形成均匀浆料;
(4)将上述浆料直接烘干;
(5)将烘干后的浆料置于高温炉中,在900℃,氮气保护气氛下将混合料烧结2小时,冷却后,进行粉碎、筛分,得到碳包覆的掺铜硅基负极;
(6)将碳包覆的掺铜硅基负极与导电碳黑SP、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料NCM811为对电极,以聚烯烃基凝胶聚合物电解质膜作为半固态电解质,在手套箱中组装成半固态纽扣电池,对其进行充电,评价电化学性能;
(7)将做好的纽扣电池进行倍率测试,测试程序为:前三周用0.1C充电至4.2V,并恒压充电至0.02C,静置5s后以0.1C放电至2.75V截止。之后保持充放电截止电压不变,依次改变充放电倍率为0.5C、1C、2C、3C、5C、10C、0.5C。上述每种倍率均分别循环五周,并分别对每种倍率取五周的平均值评价其倍率性能,结果见表1。
实施例10
(1)将氧化亚硅粉末与醋酸铜溶液按照2:1的摩尔比在水中经充分搅拌后混合均匀,之后边搅拌边加入1mol/L的氢氧化钠溶液,并充分搅拌2小时;
(2)将上述浆料进行多次离心洗涤,并烘干;
(3)将烘干后的前驱体置于高温炉中,在1100℃,氮气保护气氛下 烧结2小时,冷却后,进行粉碎、筛分;
(4)将筛分后的前驱体置于回转炉中,在1000℃下通体积比为3:1的氩气和甲烷的混合气体,并保温2小时,得到碳包覆的掺铜硅基负极;
(5)将碳包覆的掺铜硅基负极与导电碳黑SP、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料NCM811为对电极,在手套箱中组装成纽扣电池,对其进行充电,评价电化学性能;
(6)将做好的纽扣电池进行倍率测试,测试程序为:前三周用0.1C充电至4.2V,并恒压充电至0.02C,静置5s后以0.1C放电至2.75V截止。之后保持充放电截止电压不变,依次改变充放电倍率为0.5C、1C、2C、3C、5C、10C、0.5C。上述每种倍率均分别循环五周,并分别对每种倍率取五周的平均值评价其倍率性能,结果见表1。
实施例11
(1)将氧化亚硅粉末与醋酸镍溶液按照2:1的摩尔比在水中经充分搅拌后混合均匀,之后边搅拌边加入1mol/L的氢氧化钠溶液,并充分搅拌2小时;
(2)将上述浆料进行多次离心洗涤,并烘干;
(3)将烘干后的前驱体置于高温炉中,在1100℃,氮气保护气氛下烧结2小时,冷却后,进行粉碎、筛分;
(4)将筛分后的前驱体置于回转炉中,在1000℃下通体积比为3:1的氩气和甲烷的混合气体,并保温2小时,得到碳包覆的掺镍硅基负极;
(5)将碳包覆的掺镍硅基负极与导电碳黑SP、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料NCM811为对电极,在手套箱中组装成纽扣电池,对其进行充电,评价电化学性能;
(6)将做好的纽扣电池进行倍率测试,测试程序为:前三周用0.1C充电至4.2V,并恒压充电至0.02C,静置5s后以0.1C放电至2.75V截止。之后保持充放电截止电压不变,依次改变充放电倍率为0.5C、1C、2C、3C、5C、10C、0.5C。上述每种倍率均分别循环五周,并分别对每种倍率取五周的平均值评价其倍率性能,结果见表1。
实施例12
(1)将氧化亚硅粉,金粉按照2:1的摩尔比混合均匀,并置于真空炉中;
(2)在1200℃,真空条件下将混合料热处理3小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品与石油沥青按照20:1的质量比进行混合,置于高温炉中,氮气氛围900℃热处理2小时,得到碳包覆的掺金硅基负极;
(4)将碳包覆的掺金硅基负极与导电碳黑SP、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料NCM811为对电极,在手套箱中组装成纽扣电池,对其进行充电,评价电化学性能;
(5)将做好的纽扣电池进行倍率测试,测试程序为:前三周用0.1C充电至4.2V,并恒压充电至0.02C,静置5s后以0.1C放电至2.75V截止。之后保持充放电截止电压不变,依次改变充放电倍率为0.5C、1C、2C、3C、5C、10C、0.5C。上述每种倍率均分别循环五周,并分别对每种倍率取五周的平均值评价其倍率性能,结果见表1。
实施例13
(1)将氧化亚硅粉末与醋酸钠溶液按照2:1的摩尔比在水中经充分搅拌后混合均匀;
(2)将上述浆料直接进行烘干;
(3)将烘干后的前驱体置于高温炉中,在1100℃,氩气保护气氛下烧结2小时,冷却后,进行粉碎、筛分;
(4)将筛分后的前驱体置于回转炉中,在900℃下通体积比为3:1的氩气和乙炔混合气体,并保温2小时,得到碳包覆的掺钠硅基负极;
(5)将碳包覆的掺钠硅基负极与导电碳黑SP、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料NCM811为对电极,在手套箱中组装成纽扣电池,对其进行充电,评价电化学性能;
(6)将做好的纽扣电池进行倍率测试,测试程序为:前三周用0.1C充电至4.2V,并恒压充电至0.02C,静置5s后以0.1C放电至2.75V截止。之后保持充放电截止电压不变,依次改变充放电倍率为0.5C、1C、2C、3C、5C、10C、0.5C。上述每种倍率均分别循环五周,并分别对每种倍率取五周的平均值评价其倍率性能,结果见表1。
实施例14
(1)将氧化亚硅粉末与醋酸镍溶液按照2:1的摩尔比在水中经充分搅拌后混合均匀,之后边搅拌边加入1mol/L的氢氧化钠溶液,并充分搅拌2小时;
(2)将上述浆料进行多次离心洗涤,并烘干;
(3)将烘干后的前驱体置于高温炉中,在1100℃,氮气保护气氛下烧结2小时,冷却后,进行粉碎、筛分;
(4)将筛分后的前驱体置于回转炉中,在1000℃下通体积比为3:1的氩气和甲烷的混合气体,并保温2小时,得到碳包覆的掺镍硅基负极;
(5)将碳包覆的掺镍硅基负极与商品石墨按比例复合为450mAh/g的复合材料,与正极材料钴酸锂LCO为对电极,在手套箱中组装成纽扣电池, 对其进行充电,评价电化学性能;
(6)将做好的纽扣电池进行倍率测试,测试程序为:前三周用0.1C充电至4.4V,并恒压充电至0.02C,静置5s后以0.1C放电至2.75V截止。之后保持充放电截止电压不变,依次改变充放电倍率为0.5C、1C、2C、3C、5C、10C、0.5C。上述每种倍率均分别循环五周,并分别对每种倍率取五周的平均值评价其倍率性能,结果见表1。
实施例15
(1)将金属硅粉,氧化铝粉末,二氧化硅粉末按照2:1:1的摩尔比混合均匀,并置于真空炉中;
(2)在900℃,真空下将混合料热处理2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品与石油沥青按照20:1的质量比进行混合,置于高温炉中,氮气氛围900℃热处理2小时,得到碳包覆的掺铝硅基负极;
(4)将碳包覆的掺铝硅基负极与商品石墨按比例复合为550mAh/g的复合材料,与三元正极材料镍钴锰酸锂NCM333为对电极,在手套箱中组装成纽扣电池,对其进行充电,评价电化学性能;
(5)将做好的纽扣电池进行倍率测试,测试程序为:前三周用0.1C充电至4.2V,并恒压充电至0.02C,静置5s后以0.1C放电至2.75V截止。之后保持充放电截止电压不变,依次改变充放电倍率为0.5C、1C、2C、3C、5C、10C、0.5C。上述每种倍率均分别循环五周,并分别对每种倍率取五周的平均值评价其倍率性能,结果见表1。
为更好的说明本发明的硅基负极复合材料的性能,还提供了对比例用以进行对比说明。
对比例1
(1)将金属硅粉,二氧化硅粉末按照2:1的摩尔比混合均匀,并置于高温炉中;
(2)在1200℃,氮气保护气氛下将混合料烧结2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品与导电碳黑SP、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料镍钴锰酸锂NCM811为对电极,在手套箱中组装成纽扣电池,对其进行充电,评价电化学性能;
(4)将做好的纽扣电池进行倍率测试,测试程序为:前三周用0.1C充电至4.2V,并恒压充电至0.02C,静置5s后以0.1C放电至2.75V截止。之后保持充放电截止电压不变,依次改变充放电倍率为0.5C、1C、2C、3C、5C、10C、0.5C。上述每种倍率均分别循环五周,并分别对每种倍率取五周的平均值评价其倍率性能,结果见表1。图3中三角标记所示为对比例1提供的电池在不同充放电倍率下循环五周测试的倍率性能测试结果,图中从左至右分别为0.5C、1C、2C、3C、5C、10C、0.5C倍率下的测试数据。
对比例2
(1)将金属硅粉,二氧化硅粉末按照2:1的摩尔比混合均匀,并置于高温炉中;
(2)在1200℃,氮气保护气氛下将混合料烧结2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品与葡萄糖按照20:1的质量比进行混合,置于高温炉中,氮气氛围900℃热处理2小时,得到碳包覆的硅基负极;
(4)将碳包覆的硅基负极与导电碳黑SP、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料镍钴锰酸锂NCM811为对电极,在手套箱中组装成纽扣电池,对其进行充电,评价电化学性能;
(5)将做好的纽扣电池进行倍率测试,测试程序为:前三周用0.1C充电至4.2V,并恒压充电至0.02C,静置5s后以0.1C放电至2.75V截止。之后保持充放电截止电压不变,依次改变充放电倍率为0.5C、1C、2C、3C、5C、10C、0.5C。上述每种倍率均分别循环五周,并分别对每种倍率取五周的平均值评价其倍率性能,结果见表1。
Figure PCTCN2021078605-appb-000001
表1
以上表1为实施例1-15和对比例1-2制备的锂二次电池的电化学性能对比。在各实施例中,分别对硅基负极材料进行了N、P或金属元素的掺杂,并对颗粒进行了碳层包覆,得到的硅基负极具有较高的首圈效率。特别地,由于颗粒内部和外部导电性的改善,材料的倍率性能得到了很大的提高。对比实施例1和对比例2,由于实施例1掺杂了镁金属元素,硅基负极在嵌锂态形成的Li 12Mg 3Si 4合金,有利于提高颗粒内部的导电性,且合金的延展塑性可适应材料的体积膨胀,增加循环稳定性。对比实施例1和对比例1, 由于实施例1掺杂了镁金属元素并进行了碳层包覆,材料的首圈效率和倍率性能相比对比例1有了更加明显的提升。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种硅基负极复合材料,其特征在于,所述硅基负极复合材料为硅基颗粒与在所述硅基颗粒表面包覆的碳包覆层的复合材料;
    所述硅基颗粒在嵌锂态为包含Li xM ySi z合金的复合材料;其中,0<x<25,0<y<5,0<z<6;所述M包括Ni、Cu、Zn、Al、Na、Mg、Au、N、P中的一种或多种;
    所述硅基颗粒的平均粒径(D 50)为0.1-40μm,比表面积为0.5m 2/g-40m 2/g;嵌锂后,所述Li xM ySi z合金在整个硅基颗粒中呈弥散分布,晶粒尺寸为0.5nm-100nm,所述Li xM ySi z合金的含量占嵌锂后的所述硅基负极复合材料总质量的5%-60%;所述碳包覆层的厚度为1nm-100nm。
  2. 根据权利要求1所述的硅基负极复合材料,其特征在于,所述Li xM ySi z合金的含量占所述嵌锂后的硅基负极复合材料总质量的10%-30%;
    所述碳包覆层的厚度为5nm-25nm;
    所述硅基颗粒的平均粒径(D 50)为2-15μm,比表面积为1m 2/g-10m 2/g。
  3. 根据权利要求1所述的硅基负极复合材料,其特征在于,
    所述M为Ni元素时,Li xM ySi z合金具体为Li 13Ni 9Si 18和/或Li 3Ni 6Si 6,相应的X射线衍射XRD衍射峰最强峰分别位于22.1度和/或47.7度处;
    所述M为Cu元素时,Li xM ySi z合金具体为LiCuSi,相应的XRD衍射峰最强峰位于43.0度、47.62度、49.8度处;
    所述M为Zn元素时,Li xM ySi z合金具体为Li 2ZnSi,相应的XRD衍射峰最强峰位于21.6度和32.6度处;
    所述M为Al元素时,Li xM ySi z合金具体为Li 12Al 3Si 4和/或LiAlSi,相应的XRD衍射峰最强峰分别位于20.5度和/或26.0度处;
    所述M为Na元素时,Li xM ySi z合金具体为Li 3NaSi 6,相应的XRD衍射峰最强峰位于9.8度处;
    所述M为Mg元素时,Li xM ySi z合金具体为Li 12Mg 3Si 4,相应的XRD衍射 峰最强峰位于20.3度处;
    所述M为Au元素时,Li xM ySi z合金具体为Li 2Au 3Si,相应的XRD衍射峰最强峰位于25.4度处;
    所述M为N元素时,Li xM ySi z合金具体为LiN 3Si 2和/或Li 8N 4Si和/或Li 21N 11Si 3和/或Li 18N 10Si 3,相应的XRD衍射峰最强峰分别位于56.2度和/或32.3度和/或23.0度和/或54.6度处;
    所述M为P元素时,合金材料Li xM ySi z具体为Li 5P 3Si,相应的XRD衍射峰最强峰位于26.3度处。
  4. 根据权利要求1所述的硅基负极复合材料,其特征在于,所述硅基颗粒在非嵌锂态下为包含M qSi的复合材料;0<q<5。
  5. 一种硅基负极,其特征在于,所述硅基负极包括上述权利要求1-4任一所述的硅基负极复合材料。
  6. 一种锂二次电池,其特征在于,所述锂二次电池包括上述权利要求1-4任一所述的硅基负极复合材料或者包括上述权利要求5所述的硅基负极。
  7. 根据权利要求6所述的锂二次电池,其特征在于,所述锂二次电池包括:液态锂离子电池、半固态锂离子电池、全固态离子电池或锂硫电池中的任一种。
PCT/CN2021/078605 2020-09-27 2021-03-02 一种硅基负极复合材料和锂二次电池 WO2022062321A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21870710.7A EP4220758A1 (en) 2020-09-27 2021-03-02 Silicon-based negative electrode composite material and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011031877.9A CN112151760A (zh) 2020-09-27 2020-09-27 一种硅基负极复合材料和锂二次电池
CN202011031877.9 2020-09-27

Publications (1)

Publication Number Publication Date
WO2022062321A1 true WO2022062321A1 (zh) 2022-03-31

Family

ID=73894249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078605 WO2022062321A1 (zh) 2020-09-27 2021-03-02 一种硅基负极复合材料和锂二次电池

Country Status (3)

Country Link
EP (1) EP4220758A1 (zh)
CN (1) CN112151760A (zh)
WO (1) WO2022062321A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4261941A1 (en) * 2022-04-14 2023-10-18 Cellforce Group GmbH Pre-lithiated lithium-silicon-alloy material arrangement, an anode comprising the same and a method to manufacture of a material arrangement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151760A (zh) * 2020-09-27 2020-12-29 溧阳天目先导电池材料科技有限公司 一种硅基负极复合材料和锂二次电池
CN113437271B (zh) * 2021-06-16 2022-04-12 溧阳天目先导电池材料科技有限公司 一种均匀改性的硅基复合材料及其制备方法和应用
CN115537906A (zh) * 2022-10-27 2022-12-30 合肥国轩高科动力能源有限公司 改性单晶三元正极材料及其制备方法、锂离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105406050A (zh) * 2015-12-31 2016-03-16 深圳市贝特瑞新能源材料股份有限公司 一种复合硅负极材料、制备方法和用途
CN105489840A (zh) * 2016-01-13 2016-04-13 哈尔滨工业大学深圳研究生院 一种锂离子电池硅基负极材料及其制备方法
KR20160070909A (ko) * 2014-12-10 2016-06-21 한양대학교 산학협력단 고용량 리튬 저장 소재용 거대기공 실리콘-금속 합금 입자 및 그 제조방법
CN105870423A (zh) * 2016-06-03 2016-08-17 田东 一种锂离子电池硅基负极材料的制备方法
CN107790712A (zh) * 2017-09-30 2018-03-13 山西沃特海默新材料科技股份有限公司 一种锂电池的铜‑铝‑硅合金纳米负极材料及其制备方法
CN109755515A (zh) * 2018-12-27 2019-05-14 信阳师范学院 一种锂离子电池硅/碳负极复合材料及其制备方法
CN112151760A (zh) * 2020-09-27 2020-12-29 溧阳天目先导电池材料科技有限公司 一种硅基负极复合材料和锂二次电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160070909A (ko) * 2014-12-10 2016-06-21 한양대학교 산학협력단 고용량 리튬 저장 소재용 거대기공 실리콘-금속 합금 입자 및 그 제조방법
CN105406050A (zh) * 2015-12-31 2016-03-16 深圳市贝特瑞新能源材料股份有限公司 一种复合硅负极材料、制备方法和用途
CN105489840A (zh) * 2016-01-13 2016-04-13 哈尔滨工业大学深圳研究生院 一种锂离子电池硅基负极材料及其制备方法
CN105870423A (zh) * 2016-06-03 2016-08-17 田东 一种锂离子电池硅基负极材料的制备方法
CN107790712A (zh) * 2017-09-30 2018-03-13 山西沃特海默新材料科技股份有限公司 一种锂电池的铜‑铝‑硅合金纳米负极材料及其制备方法
CN109755515A (zh) * 2018-12-27 2019-05-14 信阳师范学院 一种锂离子电池硅/碳负极复合材料及其制备方法
CN112151760A (zh) * 2020-09-27 2020-12-29 溧阳天目先导电池材料科技有限公司 一种硅基负极复合材料和锂二次电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NEW ENERGY VEHICLE INDUSTRY DEVELOPMENT PLAN, 3 December 2019 (2019-12-03), pages 2021 - 2035

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4261941A1 (en) * 2022-04-14 2023-10-18 Cellforce Group GmbH Pre-lithiated lithium-silicon-alloy material arrangement, an anode comprising the same and a method to manufacture of a material arrangement
WO2023198892A1 (en) * 2022-04-14 2023-10-19 Cellforce Group Gmbh Pre-lithiated lithium-silicon-alloy material arrangement, an anode comprising the same and a method to manufacture of a material arrangement

Also Published As

Publication number Publication date
EP4220758A1 (en) 2023-08-02
CN112151760A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2022062321A1 (zh) 一种硅基负极复合材料和锂二次电池
JP7352727B2 (ja) ニッケルマンガン酸リチウム複合材、その製造方法及びリチウムイオン電池
WO2021238051A1 (zh) 无钴正极材料、其制备方法及锂离子电池
WO2022062320A1 (zh) 一种含有金属元素梯度掺杂的负极材料及其应用
WO2022166007A1 (zh) 一种三维碳硅复合材料及其制备方法
WO2021077586A1 (zh) 一种用于电极材料的硅氧颗粒及其制备方法和应用
WO2019052572A1 (zh) 一种微胶囊型硅碳复合负极材料及其制备方法和应用
KR20060048656A (ko) 규소 복합체 및 그의 제조 방법 및 비수전해질 이차 전지용부극재
CN111769267B (zh) 一种锂离子电池复合正极材料及其制备方法
WO2022062319A1 (zh) 一种含硅酸盐骨架的硅基负极材料、负极片和锂电池
CN113130858B (zh) 硅基负极材料及其制备方法、电池和终端
WO2022002057A1 (zh) 硅氧复合负极材料、负极和锂离子电池及其制备方法
WO2024031867A1 (zh) 氮掺杂石墨烯包覆硅碳复合材料及其制备方法和应用
CN110550635B (zh) 一种新型的碳包覆硅氧负极材料的制备方法
JPWO2021238050A5 (zh)
CN114520320B (zh) 一种基于碱金属还原法的氧化锂复合正极材料
CN111640928A (zh) Ncma四元系材料及其制备方法、锂电池正极材料及锂电池
WO2022236984A1 (zh) 均匀改性的硅基锂离子电池负极材料及其制备方法和应用
CN113644271B (zh) 一种钠离子电池负极补钠添加剂及负极材料
CN114524468A (zh) 一种改性单晶超高镍四元ncma正极材料的制备方法
JP2023531266A (ja) 正極板及び電池
WO2024055730A1 (zh) 正极片、电芯和电池
WO2022057278A1 (zh) 一种快充石墨及电池
CN113066988A (zh) 一种负极极片及其制备方法和用途
CN112687855B (zh) 正极材料及其制备方法、电极和电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2021870710

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021870710

Country of ref document: EP

Effective date: 20230428