WO2022062081A1 - 显示面板及其制作方法、显示装置 - Google Patents

显示面板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2022062081A1
WO2022062081A1 PCT/CN2020/126369 CN2020126369W WO2022062081A1 WO 2022062081 A1 WO2022062081 A1 WO 2022062081A1 CN 2020126369 W CN2020126369 W CN 2020126369W WO 2022062081 A1 WO2022062081 A1 WO 2022062081A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
wavelength range
light
display panel
electrically connected
Prior art date
Application number
PCT/CN2020/126369
Other languages
English (en)
French (fr)
Inventor
杨荣娟
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Publication of WO2022062081A1 publication Critical patent/WO2022062081A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel, a manufacturing method thereof, and a display device.
  • Mini/Micro LEDs mini/micro light-emitting diodes
  • splicing Since the width of the seam is a key factor affecting the display effect, major panel manufacturers have devoted themselves to the development of seamless splicing technology, and the most ideal way to achieve seamless splicing is to use the back binding method.
  • the backside bonding refers to the bonding of the chip on film and the circuit board on the backside of the display area, and the outer pin binding area is also located on the backside of the display area.
  • a major difficulty of the backside bonding process is that when the backside shorting bar laser cutting is performed, the laser energy is relatively large, and the laser can easily pass through the transparent glass substrate and damage the thin film transistor and its connecting circuit at the corresponding position on the front side. , thereby affecting the display effect and yield.
  • the present application provides a display panel, a manufacturing method thereof, and a display device, so as to avoid the problem that the laser beam damages the front thin film transistor and its connecting circuit during the laser cutting of the back shorting bar, thereby ensuring the display effect and good quality of the display panel. Rate.
  • an embodiment of the present application provides a display panel, the display panel includes: a substrate structure, the substrate structure includes a first substrate, and the first substrate is transparent when illuminated by light in a first wavelength range, It is opaque when illuminated by light in the second wavelength range, so as to transmit the light in the first wavelength range and shield the light in the second wavelength range; the thin film transistor and a plurality of signal lines on the first substrate, the signal lines and the thin film The transistors are electrically connected; at least one shorting bar and a plurality of bonding wires are located on the surface of the substrate structure away from the signal lines, and each shorting bar is electrically connected to at least part of the bonding wires, and is used to connect to the display panel when the display panel is tested.
  • At least part of the binding traces provide test signals; and, at least part of the conductive traces located on the side surface of the substrate structure, one end of the conductive traces is electrically connected to the corresponding signal line, and the other end of the conductive trace is electrically connected to the corresponding binding trace.
  • the shorting bar is arranged along the direction perpendicular to the binding wires, and a cut is provided at the corresponding position of any two adjacent binding wires, and the cut is formed by optical cutting in the second wavelength range.
  • the fabrication material of the first substrate includes a photochromic material
  • the light in the second wavelength range is light that excites the photochromic material to change from transparent to opaque.
  • the photochromic material is a metal halide.
  • the substrate structure further includes a second substrate, and the second substrate is fixed on the surface of the first substrate away from the signal line.
  • the second substrate is transparent under the illumination of the light of the first wavelength range, opaque under the illumination of the light of the second wavelength range, takes the light of the first wavelength range, and shields the light of the second wavelength range .
  • the substrate structure further includes an adhesive layer, and the adhesive layer is located between the first substrate and the second substrate.
  • the display panel further includes a chip-on-film and a circuit board located on the surface of the substrate structure away from the signal line, the chip-on film is electrically connected with the binding wires, and the circuit board is electrically connected with the chip-on film.
  • the display panel further includes a first color sub-pixel, a second color sub-pixel and a third color sub-pixel, and at least one shorting bar includes a first shorting bar, a second shorting bar and a third shorting bar, all connected to the first color
  • the bonding traces of the subpixels are all connected to the first shorting bar, all the bonding traces connected to the second color subpixel are connected to the second shorting bar, and all the bonding traces connected to the third color subpixel are connected to the second shorting bar. Connect to the third shorting bar.
  • an embodiment of the present application further provides a method for fabricating a display panel, the method includes: providing a substrate structure, the substrate structure includes a first substrate, and the first substrate is irradiated with light in a first wavelength range Transparent and opaque under the illumination of the light of the second wavelength range, so as to transmit the light of the first wavelength range and shield the light of the second wavelength range; form a thin film transistor and a plurality of signal lines on the substrate structure, the signal The wires are electrically connected to the thin film transistors; at least one shorting bar and a plurality of bonding wires are formed on the surface of the substrate structure away from the signal wires, and each shorting bar is electrically connected to at least part of the bonding wires for performing on the display panel Provide a test signal to at least part of the binding traces during testing; and, forming conductive traces at least partially located on the side surface of the substrate structure, one end of the conductive traces is electrically connected to the corresponding signal wire, and the other end is electrically
  • the shorting bars are arranged in a direction perpendicular to the binding traces, and after forming the conductive traces at least partially located on the side surface of the substrate structure, the method further includes: cutting the shorting bars with light in the second wavelength range, so as to A cutout is formed at the corresponding position of any two adjacent binding traces.
  • the method further includes: forming a chip-on-chip film and a circuit board on the surface of the substrate structure facing away from the signal lines, and the chip-on-chip film It is electrically connected with the binding wiring, and the circuit board is electrically connected with the chip-on-chip film.
  • embodiments of the present application further provide a display device, the display device includes a display panel, the display panel includes: a substrate structure, the substrate structure includes a first substrate, and the first substrate emits light in a first wavelength range Transparent under irradiation and opaque under irradiation of light of a second wavelength range to transmit light of the first wavelength range and shield light of the second wavelength range; a thin film transistor and a plurality of strips on the first substrate a signal line, the signal line is electrically connected to the thin film transistor; at least one shorting bar and a plurality of bonding wires are located on the surface of the substrate structure away from the signal wire, and each shorting bar is electrically connected to at least part of the bonding wire for Provide a test signal to at least part of the binding traces when the display panel is tested; and, at least part of the conductive traces located on the side surface of the substrate structure, one end of the conductive traces is electrically connected to the corresponding signal wire, and the other end of the conductive trace
  • the shorting bar is arranged in a direction perpendicular to the binding wires, and a cutout is provided at the corresponding position of any two adjacent binding wires, and the cutout is formed by optical cutting in the second wavelength range.
  • the fabrication material of the first substrate includes a photochromic material
  • the light in the second wavelength range is light that excites the photochromic material to change from transparent to opaque.
  • the photochromic material is a metal halide.
  • the substrate structure further includes a second substrate, and the second substrate is fixed on the surface of the first substrate away from the signal line.
  • the second substrate is transparent under the illumination of the light of the first wavelength range, opaque under the illumination of the light of the second wavelength range, takes the light of the first wavelength range, and shields the light of the second wavelength range .
  • the substrate structure further includes an adhesive layer, and the adhesive layer is located between the first substrate and the second substrate.
  • the display panel further includes a chip-on-film and a circuit board located on the surface of the substrate structure away from the signal line, the chip-on film is electrically connected with the binding wires, and the circuit board is electrically connected with the chip-on film.
  • the first substrate in the substrate structure transparent under the illumination of the light of the first wavelength range, and opaque under the illumination of the light of the second wavelength range
  • the first substrate can be made opaque under laser irradiation to shield the laser beam , thereby avoiding the problem that the laser beam passes through the first substrate and damages the thin film transistor and its connecting circuit, so as to ensure the display effect and yield of the display panel.
  • FIG. 1 is a schematic top-view structural diagram of a display panel provided by an embodiment of the present application.
  • Fig. 2 is the sectional structure schematic diagram taken along the C-C' line of the display panel in Fig. 1;
  • FIG. 3 is a schematic diagram of a bottom view structure of a display panel provided by an embodiment of the present application.
  • FIG. 4 is another schematic diagram of the bottom view of the display panel provided by the embodiment of the present application.
  • Fig. 5 is another cross-sectional structure schematic diagram taken along the C-C' line of the display panel in Fig. 1;
  • FIG. 6 is another schematic view of the bottom structure of the display panel provided by the embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for manufacturing a display panel provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • FIG. 1 is a schematic top view of a display panel provided by an embodiment of the present application.
  • FIG. 2 is a cross-sectional structural schematic diagram of the display panel in FIG. 1 taken along the line CC'
  • FIG. 3 is a schematic diagram of the present application.
  • the display panel 10 includes a substrate structure 11 , a thin film transistor 12 , a plurality of signal lines 13 , at least one shorting bar 14 , a plurality of bonding wires 15 , and a conductive wire 16 .
  • the substrate structure 11 includes a first substrate 111, which is transparent under the irradiation of light in the first wavelength range, and opaque under the irradiation of light in the second wavelength range, so as to transmit the first wavelength range of light and shields light from a second wavelength range.
  • the above-mentioned thin film transistor 12 and a plurality of signal lines 13 are located on the first substrate 111 , and the signal lines 13 are electrically connected to the thin film transistor 12 for providing signals to the thin film transistor 12 .
  • the above-mentioned at least one shorting bar 14 and a plurality of bonding wires 15 are located on the surface 11A of the substrate structure 11 away from the signal wires 13 , and each shorting bar 14 is electrically connected to at least a part of the bonding wires 15 for connecting to the display panel 10 .
  • a test signal is provided to the above-mentioned at least part of the bonding traces 15 .
  • the above-mentioned conductive traces 16 are at least partially located on the side surface 11B of the substrate structure 11 .
  • the fabrication material of the first substrate 111 may include a photochromic material
  • the photochromic material may be a metal halide (for example, silver halide, zinc halide, copper halide or magnesium halide, etc.), transition metal oxide or rare earth
  • Inorganic photochromic materials such as complexes can also be organic photochromic materials such as spiropyran, spirophenoxine, oxazine dye, or dehydropyridine.
  • the fabrication material of the first substrate 111 can be obtained by doping the above-mentioned photochromic material into a base material (eg, glass or organic resin).
  • the light in the second wavelength range is the light that excites the photochromic material to change from transparent to opaque. deepening, thereby reducing the transmittance of the first substrate 111 to the light in the second wavelength range, for example, to less than 10%, so as to achieve the effect of the first substrate 111 shielding the light in the second wavelength range .
  • the color of the photochromic material will also change from dark to colorless, thereby causing the above-mentioned first substrate.
  • the transmittance of the light in the first wavelength range of the first substrate 111 is increased, for example, to more than 90%, so as to realize the effect of the first substrate 111 transmitting the light in the first wavelength range.
  • the light in the first wavelength range may be visible light (wavelength range is 400-700 nm)
  • the light in the second wavelength range may be ultraviolet light (light with a wavelength less than 400 nanometers)
  • the transmittance of the first substrate 111 can be changed from 100% to 0% under the irradiation of light in the second wavelength range.
  • the above-mentioned thin film transistor 12 may include a gate electrode, and a source electrode and a drain electrode disposed on both sides of the gate electrode, and the relative positions of the source electrode and the drain electrode are not limited.
  • the above-mentioned plurality of signal lines 13 may include data lines and scan lines, wherein the signal lines receive signals and are used to drive the display panel 10 to perform picture display.
  • the scan lines in the above-mentioned signal lines 13 may receive scan signals from a scan signal driving chip (not shown in the figure), or the data lines in the above-mentioned signal lines 13 may drive the chip (not shown in the figure) from data signals. shown) to receive a data signal.
  • the number of the above-mentioned conductive traces 16 may be multiple, and may be the same as the number of the above-mentioned signal traces 13 and binding traces 15 , that is, each wire trace 16 corresponds to one signal trace 13 and one Binding traces 15, so that one end of each wire trace 16 is connected to the corresponding signal wire 13, and the other end is connected to the corresponding binding trace 15, so as to realize the electrical connection between the shorting bar 14 and the signal wire 13 .
  • the above-mentioned shorting bar 14 can receive the test signal, and transmit the received test signal to the above-mentioned at least part of the signal lines 13 to detect whether the signal line 13 has an open circuit or other defects.
  • the above-mentioned display panel 10 may further include a plurality of pixels (not shown in the figure), and each pixel may include at least three sub-pixels of different colors, for example, a first-color sub-pixel, a second-color sub-pixel For the pixel and the third color sub-pixel, the above-mentioned thin film transistor 12 is electrically connected to the corresponding sub-pixel, and is used to light up the sub-pixel when a driving signal or a test signal is received.
  • the at least one shorting bar 14 may include a first shorting bar, a second shorting bar and a third shorting bar, and all the binding wires 15 connected to the first color sub-pixels are connected to the first shorting bar, All the bonding wires 15 connected to the subpixels of the second color are connected to the second shorting bar, and all the bonding wires 15 connected to the subpixels of the third color are connected to the third shorting bar.
  • different test signals can be provided through the first shorting bar, the second shorting bar and the third shorting bar, so that the display panel displays pictures of different colors to detect Defects in scan lines and/or data lines to which pixels are connected.
  • the shorting bar 14 no longer functions in the actual operation of the display panel 10 , and the plurality of binding wires 15 (signal wires 13 ) are still shorted together by the shorting bar 14 Therefore, in order to subsequently provide data signals and/or scan signals to the thin film transistor 12 through the signal line 13 electrically connected to the binding wire 15, the above-mentioned shorting bar 14 needs to be cut off to short-circuit the above-mentioned A plurality of binding traces 15 are separated.
  • the above-mentioned shorting bars 14 can be arranged in a direction perpendicular to the binding traces 15 , and after the shorting bars 14 are cut off, as shown in FIG. 4 , any adjacent two A cutout 141 is provided at a corresponding position of the binding wire 15 , and the cutout 141 transversely cuts the shorting bar 14 for separating the shorted binding wires 15 .
  • the above-mentioned incision 141 may be formed by optical cutting in the second wavelength range.
  • the laser light L in the above-mentioned second wavelength range is used to irradiate any adjacent two ties.
  • the above-mentioned cutouts 141 are formed by removing the shorting bars 14 located at the corresponding positions of any two adjacent binding wires 15 at corresponding positions of the wires 15 .
  • the shorting bar 14 is laser cut by the laser light L in the second wavelength range, the laser light L can be prevented from passing through the first substrate 111
  • the thin film transistor 12 and the signal line 13 located at the corresponding positions on the front surface of the first substrate 111 are damaged.
  • the above-mentioned substrate structure 11 may further include a second substrate 112 , and the second substrate 112 is fixed on the surface 111A of the first substrate 111 facing away from the signal line 13 .
  • the above-mentioned substrate structure 11 may further include an adhesive layer 113, and the adhesive layer 113 is located between the above-mentioned first substrate 111 and the second substrate 112, and is used for connecting the first substrate 111 and the second substrate 112. glued together.
  • the material of the adhesive layer 113 can be a heat-sensitive or pressure-sensitive adhesive material with hydrophobicity.
  • the adhesive layer 113 When heated or pressurized, the adhesive layer 113 will be cured, and at the same time, the adhesive ability will be enhanced, so as to bond and fix the first substrate 111 and the second substrate 112 together to obtain the above-mentioned substrate structure 11 .
  • the above-mentioned adhesive layer 113 may be disposed in the edge region of the display panel 10 to avoid the influence of the adhesive layer 113 on the transmittance of the substrate structure 11 .
  • the second substrate 112 may also be transparent under the irradiation of light in the first wavelength range, and the second substrate 112 may be transparent in the second wavelength range.
  • the light is opaque to light of the first wavelength range, and shields the light of the second wavelength range.
  • the material of the second substrate 112 may be the same as or different from that of the first substrate 111 .
  • the fabrication material of the second substrate 112 can also be obtained by doping a base material (such as glass or organic resin) with a photochromic material
  • a photochromic material can be a metal halide (such as silver halide, Inorganic photochromic materials such as zinc halide, copper halide or magnesium halide, etc.), transition metal oxides or rare earth complexes, and organic photochromic materials such as spirocyclic pyran, spirophenoxine, oxazine dye or dehydropyridine .
  • the second substrate 112 may also be fixed on the surface of the first substrate 111 away from the shorting bar 14, and the thin film transistor 12 and the plurality of signal lines 13 are disposed on the first substrate 111.
  • the second substrate 112 together with the thin film transistors 12 and the plurality of signal lines 13 disposed thereon constitute the array substrate of the display panel 10 .
  • the above-mentioned display panel 10 may further include a chip on film 17 and a circuit board 18 on the surface 11A of the substrate structure 11 facing away from the signal line 13 , and the chip on film 17 is bound to the The wiring 15 is electrically connected, the circuit board 18 is electrically connected with the chip on film 17 , and the circuit board 18 is used to provide the signal line 13 with the voltage and control signal required for the display panel 10 to display the picture through the chip on film 17 .
  • the materials of the above-mentioned signal lines 13, conductive lines 16, binding lines 15 and shorting bars 14 may be materials with low resistivity such as aluminum, copper, silver, etc.
  • the display panel in this embodiment includes a substrate structure, a thin film transistor, a plurality of signal lines, at least one shorting bar, a plurality of bonding lines, and a conductive line
  • the substrate structure includes a first substrate that is transparent to light of a first wavelength range and opaque to light of a second wavelength range to transmit light of the first wavelength range and shield the second wavelength A range of light
  • thin film transistors and a plurality of signal lines are located on the first substrate
  • the signal lines are electrically connected to the thin film transistors
  • at least one shorting bar and a plurality of bonding traces are located on the surface of the substrate structure facing away from the signal lines
  • each The shorting bar is electrically connected to at least part of the binding traces, and is used for providing a test signal to at least part of the binding traces when the display panel is tested
  • the conductive traces are at least partially located on the side surface of the substrate structure, and one end of the conductive traces corresponds to the The signal line is electrically connected, and the substrate
  • FIG. 7 is a schematic flowchart of a method for manufacturing a display panel provided by an embodiment of the present application.
  • the specific process of the manufacturing method of the display panel may be as follows:
  • the substrate structure includes a first substrate, the first substrate is transparent under the illumination of the light of the first wavelength range, and opaque under the illumination of the light of the second wavelength range, so as to transmit the first substrate Light of one wavelength range and shielded from light of a second wavelength range.
  • the fabrication material of the first substrate may include a photochromic material
  • the photochromic material may be a metal halide (for example, silver halide, zinc halide, copper halide or magnesium halide, etc.), transition metal oxide or rare earth complex
  • Such inorganic photochromic materials can also be organic photochromic materials such as spirocyclic pyran, spirophenoxine, oxazine dyes or dehydropyridine.
  • the above-mentioned first substrate fabrication material can be obtained by doping the above-mentioned photochromic material into a matrix material (eg, glass or organic resin).
  • the light in the second wavelength range is the light that excites the photochromic material to change from transparent to opaque.
  • the deepening further results in that the transmittance of the first substrate to the light in the second wavelength range is reduced, for example, reduced to less than 10%, so as to achieve the effect of the first substrate shielding the light in the second wavelength range.
  • the color of the photochromic material will also change from dark to colorless, thereby causing the above-mentioned first substrate.
  • the transmittance to the light of the first wavelength range is increased, for example, to more than 90%, so as to realize the effect of the first substrate transmitting the light of the first wavelength range.
  • the light in the first wavelength range can be visible light (wavelength range is 400-700 nm)
  • the light in the second wavelength range can be ultraviolet light ( light with a wavelength of less than 400 nanometers)
  • the transmittance of the first substrate can be changed from 100% to 0% when the first substrate is irradiated with light in the second wavelength range.
  • the above-mentioned substrate structure may further include a second substrate, and the second substrate is fixed on the surface of the first substrate facing away from the signal line.
  • the above-mentioned substrate structure may further include an adhesive layer, and the adhesive layer is located between the above-mentioned first substrate and the second substrate, and is used for adhering and fixing the first substrate and the second substrate together.
  • the material of the adhesive layer can be a heat-sensitive or pressure-sensitive adhesive material with hydrophobicity. When heated or pressurized, the adhesive layer will be cured, and at the same time, the adhesive ability will be enhanced, so as to bond and fix the first substrate and the second substrate together to obtain the above-mentioned substrate structure.
  • the above-mentioned adhesive layer may be disposed in the edge region of the substrate structure, so as to avoid the influence of the adhesive layer on the light transmittance of the substrate structure.
  • the second substrate can also be transparent under the light irradiation of the first wavelength range, and is transparent under the light irradiation of the second wavelength range. Opaque to light of the first wavelength range and shielding light of the second wavelength range.
  • the material of the second substrate may be the same as or different from that of the first substrate.
  • the fabrication material of the second substrate can also be obtained by doping a photochromic material in a base material (eg, glass or organic resin), and the photochromic material can be a metal halide (eg, silver halide, halide Inorganic photochromic materials such as zinc, copper halide or magnesium halide, etc.), transition metal oxides or rare earth complexes, and organic photochromic materials such as spiropyran, spirophenoxine, azine dye or dehydropyridine.
  • a metal halide eg, silver halide, halide Inorganic photochromic materials such as zinc, copper halide or magnesium halide, etc.
  • transition metal oxides or rare earth complexes e.g., transition metal oxides or rare earth complexes
  • organic photochromic materials such as spiropyran, spirophenoxine, azine dye or dehydropyridine.
  • the second substrate may also be fixed on the surface of the first substrate away from the shorting bar, and the thin film transistor and the plurality of signal lines are disposed on the second substrate, It can be understood that, the second substrate, the thin film transistors and the plurality of signal lines disposed thereon together constitute the array substrate of the display panel.
  • the above-mentioned thin film transistor may include a gate electrode, and a source electrode and a drain electrode disposed on both sides of the gate electrode, and the relative positions of the source electrode and the drain electrode are not limited.
  • the above-mentioned plurality of signal lines may include data lines and scan lines, wherein the signal lines receive signals and are used to provide signals to the thin film transistors to drive the display panel to perform picture display.
  • the scan lines in the signal lines may receive scan signals from the scan signal driving chip, or the data lines in the signal lines may receive data signals from the data signal driving chips.
  • each shorting bar is electrically connected to at least part of the binding wires, and is used for sending at least a portion of the binding wires to the display panel during testing. Bonded traces provide test signals.
  • the shorting bar can receive the test signal, and transmit the received test signal to the corresponding signal line through the at least part of the bound wiring, so as to detect whether the signal line has an open circuit or other defects.
  • the number of the above-mentioned conductive traces may be multiple, and may be the same as the number of the above-mentioned signal wires and bound traces, that is, each wire trace corresponds to one signal wire and one binding trace, Therefore, one end of each wire routing is connected to the corresponding signal wire, and the other end is connected to the corresponding binding wire, so as to realize the electrical connection between the shorting bar and the signal wire.
  • the shorting bar may receive a test signal and transmit the received test signal to at least some of the signal lines to detect whether the signal line has an open circuit or other defects.
  • the shorting bar since after the test, the above-mentioned shorting bar no longer works in the actual operation of the display panel, and a plurality of binding wires (signal lines) are still shorted together by the shorting bar, so for the follow-up To be able to provide data signals and/or scan signals to the thin film transistors through the signal lines electrically connected to the binding lines, the shorting bar needs to be cut off to separate the plurality of binding lines that are shorted together.
  • it may also include:
  • S65 Cut the shorting bar with light in the second wavelength range, so as to form a cut at a corresponding position of any two adjacent binding wires.
  • the shorting bars may be arranged in a direction perpendicular to the binding wires, and the shorting bars are cut laterally by the slits to separate the shorted binding wires.
  • the laser in the second wavelength range can be used to irradiate the corresponding positions of any two adjacent binding wires to remove the short circuit located at the corresponding positions of any two adjacent binding wires. bar to form the above-mentioned incision.
  • the effect of shielding or absorbing light in the second wavelength range can be utilized by the first substrate, and when the shorting bar is laser-cut with a laser in the second wavelength range, it is possible to prevent the laser from passing through the first substrate and damaging the light in the second wavelength range.
  • the circuit board is used to provide the signal lines with voltages and control signals required by the display panel to display images through the chip-on-chip film.
  • the material of the above-mentioned signal lines, conductive lines, binding lines and shorting bars may be materials with low resistivity such as aluminum, copper, silver, and the like.
  • the manufacturing method of the display panel in this embodiment provides a substrate structure, the substrate structure includes a first substrate, and the first substrate is transparent under the light irradiation of the first wavelength range, It is opaque when illuminated by light in the second wavelength range, so as to transmit light in the first wavelength range and shield the light in the second wavelength range, and form thin film transistors and a plurality of signal lines on the substrate structure, and the signal lines and the thin film
  • the transistors are electrically connected, and then at least one shorting bar and a plurality of bonding wires are formed on the surface of the substrate structure away from the signal lines, and each shorting bar is electrically connected to at least part of the bonding wires, so as to be used when the display panel is tested
  • a test signal is provided to at least part of the binding traces, and then conductive traces at least partially located on the side surface of the substrate structure are formed, one end of the conductive traces is electrically connected to the corresponding signal wire, and the other end is electrically connected to the corresponding binding trace,
  • FIG. 8 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • the display device 70 includes the display panel 71 of any of the above embodiments.
  • the display panel 71 includes a substrate structure, thin film transistors, a plurality of signal lines, at least one shorting bar, a plurality of bonding wires, and conductive wires, wherein the substrate structure includes a first substrate, and the first substrate The substrate is transparent under the illumination of the light of the first wavelength range and opaque under the illumination of the light of the second wavelength range to transmit the light of the first wavelength range and shield the light of the second wavelength range, thin film transistors and many A signal line is located on the first substrate, the signal line is electrically connected to the thin film transistor, and is used for providing signals to the thin film transistor, at least one shorting bar and a plurality of bonding wires are located on the surface of the substrate structure away from the signal line, each The shorting bar is electrically connected to at least part of the binding traces, and is used for providing a test signal to at least part of the binding traces when the display panel is tested, the conductive traces are at least partially located on the side surface of the substrate structure, and one end of the conductive traces are
  • the display device in this embodiment includes a display panel, and the display panel includes a substrate structure, a thin film transistor, a plurality of signal lines, at least one shorting bar, a plurality of binding lines, and a conductive line
  • the substrate structure includes a first substrate, the first substrate is transparent under the illumination of the light of the first wavelength range, and opaque under the illumination of the light of the second wavelength range, so as to transmit the light of the first wavelength range , and shields the light in the second wavelength range
  • the thin film transistor and a plurality of signal lines are located on the first substrate, the signal lines are electrically connected to the thin film transistor, and at least one shorting bar and a plurality of binding lines are located on the substrate structure away from the signal lines
  • each shorting bar is electrically connected to at least part of the binding traces for providing a test signal to at least part of the binding traces when the display panel is tested, and the conductive traces are at least partially located on the side of the substrate structure, and

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)

Abstract

公开一种显示面板及其制作方法、显示装置,包括:第一衬底,透过第一波长范围的光,并屏蔽第二波长范围的光;位于第一衬底上的薄膜晶体管和多条信号线;位于衬底结构背离信号线的表面上的至少一个短路棒和多条绑定走线;至少部分位于衬底结构侧面上的导电走线,一端与对应信号线电连接,另一端与对应绑定走线电连接。

Description

显示面板及其制作方法、显示装置 技术领域
本申请涉及显示技术领域,特别涉及一种显示面板及其制作方法、显示装置。
背景技术
目前,Mini/Micro LED(迷你/微型发光二极管)尚不能大面积制备,多采用拼接的方式实现大尺寸显示。由于拼缝的宽度是影响显示效果的关键因素,各大面板厂商纷纷致力于开发无缝拼接技术,而实现无缝拼接最理想的方式是采用背面绑定方式。具体地,背面绑定指的是在显示区域的背面进行覆晶薄膜和线路板的绑定,且外引脚绑定区也位于显示区域的背面。
但是,背面绑定工艺的一大难点在于进行背面短路棒(shorting bar)激光切割时,激光能量较大,激光极易穿过透明的玻璃基板而击伤正面对应位置的薄膜晶体管及其连接电路,进而影响显示效果及良率。
技术问题
本申请提供一种显示面板及其制作方法、显示装置,以在进行背面短路棒激光切割时,避免发生激光束击伤正面薄膜晶体管及其连接电路的问题,从而确保显示面板的显示效果及良率。
技术解决方案
第一方面,本申请实施例提供一种显示面板,该显示面板包括:衬底结构,衬底结构包括第一衬底,第一衬底在第一波长范围的光照射下是透明的,在第二波长范围的光照射下是不透明的,以透过第一波长范围的光,并屏蔽第二波长范围的光;位于第一衬底上的薄膜晶体管和多条信号线,信号线与薄膜晶体管电连接;位于衬底结构背离信号线的表面上的至少一个短路棒和多条绑定走线,每一短路棒与至少部分绑定走线电连接,用于在显示面板进行测试时向至少部分绑定走线提供测试信号;以及,至少部分位于衬底结构侧面上的导电走线,导电走线的一端与对应信号线电连接,另一端与对应绑定走线电连接。
其中,短路棒沿垂直于绑定走线的方向设置,且在任意相邻两条绑定走线 的对应位置处设有切口,切口是通过第二波长范围的光切割形成的。
其中,第一衬底的制作材料包括光致变色材料,第二波长范围的光为激发光致变色材料由透明到不透明变化的光。
其中,光致变色材料为金属卤化物。
其中,衬底结构还包括第二衬底,第二衬底固设于第一衬底背离信号线的表面上。
其中,第二衬底在第一波长范围的光照射下是透明的,在第二波长范围的光照射下是不透明的,以第一波长范围的光,并屏蔽所述第二波长范围的光。
其中,衬底结构还包括粘接层,粘接层位于第一衬底和第二衬底之间。
其中,显示面板还包括位于衬底结构背离信号线的表面上的覆晶薄膜和线路板,覆晶薄膜与绑定走线电连接,线路板与覆晶薄膜电连接。
其中,显示面板还包括第一颜色子像素、第二颜色子像素和第三颜色子像素,至少一个短路棒包括第一短路棒、第二短路棒和第三短路棒,所有连接到第一颜色子像素的绑定走线都连接至第一短路棒,所有连接到第二颜色子像素的绑定走线都连接至第二短路棒,所有连接到第三颜色子像素的绑定走线都连接至第三短路棒。
第二方面,本申请实施例还提供一种显示面板的制作方法,该方法包括:提供衬底结构,衬底结构包括第一衬底,第一衬底在第一波长范围的光照射下是透明的,在第二波长范围的光照射下是不透明的,以透过第一波长范围的光,并屏蔽第二波长范围的光;在衬底结构上形成薄膜晶体管和多条信号线,信号线与薄膜晶体管电连接;在衬底结构背离信号线的表面上形成至少一个短路棒和多条绑定走线,每一短路棒与至少部分绑定走线电连接,用于在显示面板进行测试时向至少部分绑定走线提供测试信号;以及,形成至少部分位于衬底结构侧面上的导电走线,导电走线的一端与对应信号线电连接,另一端与对应绑定走线电连接。
其中,短路棒沿垂直于绑定走线的方向设置,在形成至少部分位于衬底结构侧面上的导电走线之后,还包括:利用第二波长范围的光对所述短路棒进行切割,以在任意相邻两条绑定走线的对应位置处形成切口。
其中,在衬底结构背离信号线的表面上形成至少一个短路棒和多条绑定走 线之后,还包括:在衬底结构背离信号线的表面上形成覆晶薄膜和线路板,覆晶薄膜与绑定走线电连接,线路板与覆晶薄膜电连接。
第三方面,本申请实施例还提供一种显示装置,该显示装置包括显示面板,显示面板包括:衬底结构,衬底结构包括第一衬底,第一衬底在第一波长范围的光照射下是透明的,在第二波长范围的光照射下是不透明的,以透过第一波长范围的光,并屏蔽第二波长范围的光;位于第一衬底上的薄膜晶体管和多条信号线,信号线与薄膜晶体管电连接;位于衬底结构背离信号线的表面上的至少一个短路棒和多条绑定走线,每一短路棒与至少部分绑定走线电连接,用于在显示面板进行测试时向至少部分绑定走线提供测试信号;以及,至少部分位于衬底结构侧面上的导电走线,导电走线的一端与对应信号线电连接,另一端与对应绑定走线电连接。
其中,短路棒沿垂直于绑定走线的方向设置,且在任意相邻两条绑定走线的对应位置处设有切口,切口是通过第二波长范围的光切割形成的。
其中,第一衬底的制作材料包括光致变色材料,第二波长范围的光为激发光致变色材料由透明到不透明变化的光。
其中,光致变色材料为金属卤化物。
其中,衬底结构还包括第二衬底,第二衬底固设于第一衬底背离信号线的表面上。
其中,第二衬底在第一波长范围的光照射下是透明的,在第二波长范围的光照射下是不透明的,以第一波长范围的光,并屏蔽所述第二波长范围的光。
其中,衬底结构还包括粘接层,粘接层位于第一衬底和第二衬底之间。
其中,显示面板还包括位于衬底结构背离信号线的表面上的覆晶薄膜和线路板,覆晶薄膜与绑定走线电连接,线路板与覆晶薄膜电连接。
有益效果
相较于现有技术,本申请提供的显示面板,通过使衬底结构中第一衬底在第一波长范围的光照射下是透明的,在第二波长范围的光照射下是不透明的,以透过第一波长范围的光,并屏蔽第二波长范围的光,从而,在进行第一衬底背面短路棒激光切割时,能够使得第一衬底在激光照射下不透明,以屏蔽激光束,进而避免发生激光束穿过第一衬底而击伤薄膜晶体管及其连接电路的问 题,以确保显示面板的显示效果及良率。
附图说明
图1是本申请实施例提供的显示面板的俯视结构示意图;
图2是图1中显示面板沿C-C’线截取的剖视结构示意图;
图3是本申请实施例提供的显示面板的仰视结构示意图;
图4是本申请实施例提供的显示面板的另一仰视结构示意图;
图5是图1中显示面板沿C-C’线截取的另一剖视结构示意图;
图6是本申请实施例提供的显示面板的另一仰视结构示意图;
图7是本申请实施例提供的显示面板的制作方法的流程示意图;
图8是本申请实施例提供的显示装置的结构示意图。
本发明的实施方式
下面结合附图和实施例,对本申请作进一步的详细描述。特别指出的是,以下实施例仅用于说明本申请,但不对本申请的范围进行限定。同样的,以下实施例仅为本申请的部分实施例而非全部实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
请参阅图1至图3,图1是本申请实施例提供的显示面板的俯视结构示意图,图2是图1中显示面板沿C-C’线截取的剖视结构示意图,图3是本申请实施例提供的显示面板的仰视结构示意图。如图1至图3所示,显示面板10包括衬底结构11、薄膜晶体管12、多条信号线13、至少一个短路棒14、多条绑定走线15、以及导电走线16。其中,衬底结构11包括第一衬底111,第一衬底111在第一波长范围的光照射下是透明的,在第二波长范围的光照射下是不透明的,以透过第一波长范围的光,并屏蔽第二波长范围的光。上述薄膜晶体管12和多条信号线13位于第一衬底111上,信号线13与薄膜晶体管12电连接,用于向薄膜晶体管12提供信号。上述至少一个短路棒14和多条绑定走线15位于衬底结构11背离信号线13的表面11A上,每一短路棒14与至少部分绑定走线15电连接,用于在显示面板10进行测试时向上述至少部分绑定走线15提供测试信号。上述导电走线16至少部分位于衬底结构11的侧面11B上,导电走线16的一端16A与对应信号线13电连接,另一端16B与对应绑 定走线15电连接。
其中,上述第一衬底111的制作材料可以包括光致变色材料,光致变色材料可以为金属卤化物(比如,卤化银、卤化锌、卤化铜或卤化镁等)、过渡金属氧化物或稀土配合物等无机光致变色材料,也可以为螺环吡喃、螺吩噁、嗪染料或脱氢吡啶等有机光致变色材料。举例而言,上述第一衬底111的制作材料可以通过在基体材料(比如,玻璃或有机树脂)中掺杂上述光致变色材料而得到。
在本实施例中,上述第二波长范围的光为激发光致变色材料由透明到不透明变化的光,也即,上述光致变色材料在第二波长范围的光照射下会发生变色反应,颜色加深,进而导致上述第一衬底111对第二波长范围的光的透过率减小,比如,减小至小于10%,以实现该第一衬底111屏蔽第二波长范围的光的作用。进一步地,当利用第一波长范围的光取代第二波长范围的光照射上述光致变色材料时,该光致变色材料的颜色还会由深色向无色变化,进而导致上述第一衬底111对第一波长范围的光的透过率增大,比如,增大至大于90%,以实现该第一衬底111透过第一波长范围的光的作用。其中,以上述第一衬底111为卤化银光致变色玻璃为例,上述第一波长范围的光可以为可见光(波长范围为400~700纳米),上述第二波长范围的光可以为紫外光(波长小于400纳米的光),第一衬底111在第二波长范围的光照射下,其透过率可以由100%变为0%。
其中,上述薄膜晶体管12可以包括栅极、以及设于栅极两侧的源极和漏极,且源极和漏极的相对位置不做限定。上述多条信号线13可以包括数据线和扫描线,其中,信号线接收信号,用于驱动显示面板10进行画面显示。在一个实施例中,上述信号线13中的扫描线可以从扫描信号驱动芯片(图中未示出)接收扫描信号,或上述信号线13中的数据线可以从数据信号驱动芯片(图中未示出)接收数据信号。
具体地,上述导电走线16的数量可以为多条,且可以与上述信号线13和绑定走线15的数量相同,也即,每条导线走线16均对应有一条信号线13和一条绑定走线15,从而使得每条导线走线16的一端与对应的信号线13连接,另一端与对应的绑定走线15连接,以实现短路棒14与信号线13之间的电连 接。进一步地,在上述显示面板10进行测试时,上述短路棒14可以接收到测试信号,并将接收到的测试信号传送给上述至少部分信号线13,以检测信号线13是否存在断路或者其他缺陷。
在一个实施例中,上述显示面板10还可以包括多个像素(图中未示出),每一像素可以包括至少三种不同颜色的子像素,比如,第一颜色子像素、第二颜色子像素和第三颜色子像素,上述薄膜晶体管12与对应的子像素电连接,用于在接收到驱动信号或测试信号时点亮该子像素。进一步地,上述至少一个短路棒14可以包括第一短路棒、第二短路棒和第三短路棒,并且,所有连接到第一颜色子像素的绑定走线15都连接至第一短路棒,所有连接到第二颜色子像素的绑定走线15都连接至第二短路棒,所有连接到第三颜色子像素的绑定走线15都连接至第三短路棒。如此,在上述显示面板10进行测试时,能够通过第一短路棒、第二短路棒和第三短路棒提供不同的测试信号,使得显示面板显示出不同颜色的画面,以分别检测不同颜色的子像素所连接的扫描线和/或数据线的缺陷。
并且,鉴于显示面板10在进行测试之后,短路棒14在显示面板10的实际工作中就不再起作用了,而多条绑定走线15(信号线13)仍被短路棒14短接在一起,故为了后续能够通过与绑定走线15电连接的信号线13向薄膜晶体管12提供数据信号和/或扫描信号,就需要对上述短路棒14进行切断处理,以将短接在一起的上述多条绑定走线15分开。
具体地,如图3所示,上述短路棒14可以沿垂直于绑定走线15的方向设置,并在对短路棒14进行切断处理之后,如图4所示,可以在任意相邻两条绑定走线15的对应位置处设有切口141,该切口141横向切断上述短路棒14,用于将短接的上述多条绑定走线15分开。并且,在本实施例中,上述切口141可以是通过第二波长范围的光切割形成的,具体实施时,如图2所示,利用上述第二波长范围的激光L照射任意相邻两条绑定走线15的对应位置处,以去除位于任意相邻两条绑定走线15的对应位置处的短路棒14而形成上述切口141。如此,利用第一衬底111屏蔽或吸收第二波长范围的光的作用,在采用第二波长范围的激光L对短路棒14进行激光切割时,能够避免激光L穿过上述第一衬底111而损伤位于第一衬底111正面对应位置上的薄膜晶体管12和 信号线13。
在一个实施例中,如图5所示,上述衬底结构11还可以包括第二衬底112,第二衬底112固设于第一衬底111背离信号线13的表面111A上。具体地,上述衬底结构11还可以包括粘接层113,粘接层113位于上述第一衬底111和第二衬底112之间,用于将第一衬底111和第二衬底112粘接固定在一起。其中,粘接层113的材质可以为热敏型或压敏型胶材,具有疏水性。当加热或者加压时,粘接层113会发生固化,同时伴随着粘接能力的增强,以将第一衬底111和第二衬底112粘接固定在一起,而得到上述衬底结构11。在一些具体实施例中,上述粘接层113可以设置在显示面板10的边缘区域中,以避免粘接层113对衬底结构11透过率的影响。
并且,为了更加有效地阻挡通过激光L切割短路棒14时激光L穿过衬底结构11,上述第二衬底112也可以在第一波长范围的光照射下是透明的,在第二波长范围的光照射下是不透明的,以第一波长范围的光,并屏蔽所述第二波长范围的光。具体地,上述第二衬底112的材质可以与第一衬底111的材质相同,也可以不同。例如,第二衬底112的制作材料也可以通过在基体材料(比如,玻璃或有机树脂)中掺杂光致变色材料而得到,且光致变色材料可以为金属卤化物(比如,卤化银、卤化锌、卤化铜或卤化镁等)、过渡金属氧化物或稀土配合物等无机光致变色材料,也可以为螺环吡喃、螺吩噁、嗪染料或脱氢吡啶等有机光致变色材料。
需要说明的是,在一些替代实施例中,上述第二衬底112还可以固设于第一衬底111背离短路棒14的表面上,上述薄膜晶体管12和多条信号线13设置于该第二衬底112上,可以理解的是,第二衬底112与设置于其上的薄膜晶体管12和多条信号线13共同构成显示面板10的阵列基板。
在一个具体实施例中,如图6所示,上述显示面板10还可以包括位于衬底结构11背离信号线13的表面11A上的覆晶薄膜17和线路板18,覆晶薄膜17与绑定走线15电连接,线路板18与覆晶薄膜17电连接,线路板18用于通过覆晶薄膜17向信号线13提供显示面板10进行画面显示所需要的电压以及控制信号。
在上述实施例中,上述信号线13、导电走线16、绑定走线15和短路棒 14的材质可以为铝、铜、银等具有低电阻率的材料。
区别于现有技术,本实施例中的显示面板,包括衬底结构、薄膜晶体管、多条信号线、至少一个短路棒、多条绑定走线、以及导电走线,其中,衬底结构包括第一衬底,第一衬底在第一波长范围的光照射下是透明的,在第二波长范围的光照射下是不透明的,以透过第一波长范围的光,并屏蔽第二波长范围的光,薄膜晶体管和多条信号线位于第一衬底上,信号线与薄膜晶体管电连接,至少一个短路棒和多条绑定走线位于衬底结构背离信号线的表面上,每一短路棒与至少部分绑定走线电连接,用于在显示面板进行测试时向至少部分绑定走线提供测试信号,导电走线至少部分位于衬底结构侧面上,导电走线的一端与对应信号线电连接,另一端与对应绑定走线电连接,从而,在进行第一衬底背面短路棒激光切割时,能够使得第一衬底在激光照射下不透明,以屏蔽激光束,进而发生避免激光束穿过第一衬底而击伤薄膜晶体管及其连接电路的问题,以确保显示面板的显示效果及良率。
请参阅图7,图7是本申请实施例提供的显示面板的制作方法的流程示意图。该显示面板的制作方法具体流程可以如下:
S61:提供衬底结构,衬底结构包括第一衬底,第一衬底在第一波长范围的光照射下是透明的,在第二波长范围的光照射下是不透明的,以透过第一波长范围的光,并屏蔽第二波长范围的光。
其中,第一衬底的制作材料可以包括光致变色材料,光致变色材料可以为金属卤化物(比如,卤化银、卤化锌、卤化铜或卤化镁等)、过渡金属氧化物或稀土配合物等无机光致变色材料,也可以为螺环吡喃、螺吩噁、嗪染料或脱氢吡啶等有机光致变色材料。举例而言,上述第一衬底的制作材料可以通过在基体材料(比如,玻璃或有机树脂)中掺杂上述光致变色材料而得到。
在本实施例中,上述第二波长范围的光为激发光致变色材料由透明到不透明变化的光,也即,上述光致变色材料在第二波长范围的光照射下会发生变色反应,颜色加深,进而导致上述第一衬底对第二波长范围的光的透过率减小,比如,减小至小于10%,以实现该第一衬底屏蔽第二波长范围的光的作用。进一步地,当利用第一波长范围的光取代第二波长范围的光照射上述光致变色材料时,该光致变色材料的颜色还会由深色向无色变化,进而导致上述第一衬底 对第一波长范围的光的透过率增大,比如,增大至大于90%,以实现该第一衬底透过第一波长范围的光的作用。其中,以上述第一衬底为卤化银光致变色玻璃为例,上述第一波长范围的光可以为可见光(波长范围为400~700纳米),上述第二波长范围的光可以为紫外光(波长小于400纳米的光),第一衬底在第二波长范围的光照射下,其透过率可以由100%变为0%。
在一个实施例中,上述衬底结构还可以包括第二衬底,第二衬底固设于第一衬底背离信号线的表面上。具体地,上述衬底结构还可以包括粘接层,粘接层位于上述第一衬底和第二衬底之间,用于将第一衬底和第二衬底粘接固定在一起。其中,粘接层的材质可以为热敏型或压敏型胶材,具有疏水性。当加热或者加压时,粘接层会发生固化,同时伴随着粘接能力的增强,以将第一衬底和第二衬底粘接固定在一起,而得到上述衬底结构。在一些具体实施例中,上述粘接层可以设置在衬底结构的边缘区域中,以避免粘接层对衬底结构透光率的影响。
并且,为了更加有效地阻挡通过激光切割短路棒时激光穿过衬底结构,上述第二衬底也可以在第一波长范围的光照射下是透明的,在第二波长范围的光照射下是不透明的,以第一波长范围的光,并屏蔽所述第二波长范围的光。具体地,上述第二衬底的材质可以与第一衬底的材质相同,也可以不同。例如,第二衬底的制作材料也可以通过在基体材料(比如,玻璃或有机树脂)中掺杂光致变色材料而得到,且光致变色材料可以为金属卤化物(比如,卤化银、卤化锌、卤化铜或卤化镁等)、过渡金属氧化物或稀土配合物等无机光致变色材料,也可以为螺环吡喃、螺吩噁、嗪染料或脱氢吡啶等有机光致变色材料。
需要说明的是,在一些替代实施例中,上述第二衬底还可以固设于第一衬底背离短路棒的表面上,上述薄膜晶体管和多条信号线设置于该第二衬底上,可以理解的是,第二衬底与设置于其上的薄膜晶体管和多条信号线共同构成显示面板的阵列基板。
S62:在衬底结构上形成薄膜晶体管和多条信号线,信号线与薄膜晶体管电连接。
其中,上述薄膜晶体管可以包括栅极、以及设于栅极两侧的源极和漏极,且源极和漏极的相对位置不做限定。上述多条信号线可以包括数据线和扫描 线,其中,信号线接收信号,用于向薄膜晶体管提供信号,以驱动显示面板进行画面显示。在一个实施例中,上述信号线中的扫描线可以从扫描信号驱动芯片接收扫描信号,或上述信号线中的数据线可以从数据信号驱动芯片接收数据信号。
S63:在衬底结构背离信号线的表面上形成至少一个短路棒和多条绑定走线,每一短路棒与至少部分绑定走线电连接,用于在显示面板进行测试时向至少部分绑定走线提供测试信号。
具体地,在后续对显示面板进行测试时,上述短路棒可以接收到测试信号,并将接收到的测试信号通过上述至少部分绑定走线传送给对应的信号线,以检测信号线是否存在断路或者其他缺陷。
S64:形成至少部分位于衬底结构侧面上的导电走线,导电走线的一端与对应信号线电连接,另一端与对应绑定走线电连接。
具体地,上述导电走线的数量可以为多条,且可以与上述信号线和绑定走线的数量相同,也即,每条导线走线均对应有一条信号线和一条绑定走线,从而使得每条导线走线的一端与对应的信号线连接,另一端与对应的绑定走线连接,以实现短路棒与信号线之间的电连接。进一步地,在上述显示面板进行测试时,上述短路棒可以接收到测试信号,并将接收到的测试信号传送给上述至少部分信号线,以检测信号线是否存在断路或者其他缺陷。
在一个实施例中,鉴于在测试之后,上述短路棒在显示面板的实际工作中就不再起作用了,而多条绑定走线(信号线)仍被短路棒短接在一起,故为了后续能够通过与绑定走线电连接的信号线向薄膜晶体管提供数据信号和/或扫描信号,就需要对上述短路棒进行切断处理,以将短接在一起的上述多条绑定走线分开。具体地,在上述S64之后,还可以包括:
S65:利用第二波长范围的光对所述短路棒进行切割,以在任意相邻两条绑定走线的对应位置处形成切口。
具体地,上述短路棒可以沿垂直于绑定走线的方向设置,上述切口横向切断上述短路棒,以将短接的上述多条绑定走线分开。并且,在本实施例中,可以利用上述第二波长范围的激光照射任意相邻两条绑定走线的对应位置处,以去除位于任意相邻两条绑定走线的对应位置处的短路棒而形成上述切口。如 此,能够利用第一衬底屏蔽或吸收第二波长范围的光的作用,在采用第二波长范围的激光对短路棒进行激光切割时,可以避免激光穿过上述第一衬底而损伤位于第一衬底正面对应位置上的薄膜晶体管和信号线。
在一个具体实施例中,在上述S63之后,还可以包括:
S66:在衬底结构背离信号线的表面上形成覆晶薄膜和线路板,覆晶薄膜与绑定走线电连接,线路板与覆晶薄膜电连接。
其中,线路板用于通过覆晶薄膜向信号线提供显示面板进行画面显示所需要的电压以及控制信号。
在上述实施例中,上述信号线、导电走线、绑定走线和短路棒的材质可以为铝、铜、银等具有低电阻率的材料。
区别于现有技术,本实施例中的显示面板的制作方法,通过提供衬底结构,衬底结构包括第一衬底,第一衬底在第一波长范围的光照射下是透明的,在第二波长范围的光照射下是不透明的,以透过第一波长范围的光,并屏蔽第二波长范围的光,并在衬底结构上形成薄膜晶体管和多条信号线,信号线与薄膜晶体管电连接,然后在衬底结构背离信号线的表面上形成至少一个短路棒和多条绑定走线,每一短路棒与至少部分绑定走线电连接,用于在显示面板进行测试时向至少部分绑定走线提供测试信号,之后形成至少部分位于衬底结构侧面上的导电走线,导电走线的一端与对应信号线电连接,另一端与对应绑定走线电连接,从而,在进行第一衬底背面短路棒激光切割时,能够使得第一衬底在激光照射下不透明,以屏蔽激光束,进而避免发生激光束穿过第一衬底而击伤薄膜晶体管及其连接电路的问题,以确保显示面板的显示效果及良率。
请参阅图8,图8是本申请实施例提供的显示装置的结构示意图。该显示装置70包括上述任一实施例的显示面板71。
具体地,显示面板71包括衬底结构、薄膜晶体管、多条信号线、至少一个短路棒、多条绑定走线、以及导电走线,其中,衬底结构包括第一衬底,第一衬底在第一波长范围的光照射下是透明的,在第二波长范围的光照射下是不透明的,以透过第一波长范围的光,并屏蔽第二波长范围的光,薄膜晶体管和多条信号线位于第一衬底上,信号线与薄膜晶体管电连接,用于向薄膜晶体管提供信号,至少一个短路棒和多条绑定走线位于衬底结构背离信号线的表面 上,每一短路棒与至少部分绑定走线电连接,用于在显示面板进行测试时向至少部分绑定走线提供测试信号,导电走线至少部分位于衬底结构侧面上,导电走线的一端与对应信号线电连接,另一端与对应绑定走线电连接。
区别于现有技术,本实施例中的显示装置,包括显示面板,显示面板包括衬底结构、薄膜晶体管、多条信号线、至少一个短路棒、多条绑定走线、以及导电走线,其中,衬底结构包括第一衬底,第一衬底在第一波长范围的光照射下是透明的,在第二波长范围的光照射下是不透明的,以透过第一波长范围的光,并屏蔽第二波长范围的光,薄膜晶体管和多条信号线位于第一衬底上,信号线与薄膜晶体管电连接,至少一个短路棒和多条绑定走线位于衬底结构背离信号线的表面上,每一短路棒与至少部分绑定走线电连接,用于在显示面板进行测试时向至少部分绑定走线提供测试信号,导电走线至少部分位于衬底结构侧面上,导电走线的一端与对应信号线电连接,另一端与对应绑定走线电连接,从而,在进行第一衬底背面短路棒激光切割时,能够使得第一衬底在激光照射下不透明,以屏蔽激光束,进而避免发生激光束穿过第一衬底而击伤薄膜晶体管及其连接电路的问题,以确保显示面板的显示效果及良率。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种显示面板,其包括:
    衬底结构,所述衬底结构包括第一衬底,所述第一衬底在第一波长范围的光照射下是透明的,在第二波长范围的光照射下是不透明的,以透过所述第一波长范围的光,并屏蔽所述第二波长范围的光;
    位于所述第一衬底上的薄膜晶体管和多条信号线,所述信号线与所述薄膜晶体管电连接;
    位于所述衬底结构背离所述信号线的表面上的至少一个短路棒和多条绑定走线,每一所述短路棒与至少部分所述绑定走线电连接,用于在所述显示面板进行测试时向所述至少部分绑定走线提供测试信号;以及,
    至少部分位于所述衬底结构侧面上的导电走线,所述导电走线的一端与对应所述信号线电连接,另一端与对应所述绑定走线电连接。
  2. 根据权利要求1所述的显示面板,其中,所述短路棒沿垂直于所述绑定走线的方向设置,且在任意相邻两条所述绑定走线的对应位置处设有切口,所述切口是通过所述第二波长范围的光切割形成的。
  3. 根据权利要求1所述的显示面板,其中,所述第一衬底的制作材料包括光致变色材料,所述第二波长范围的光为激发所述光致变色材料由透明到不透明变化的光。
  4. 根据权利要求3所述的显示面板,其中,所述光致变色材料为金属卤化物。
  5. 根据权利要求1所述的显示面板,其中,所述衬底结构还包括第二衬底,所述第二衬底固设于所述第一衬底背离所述信号线的表面上。
  6. 根据权利要求5所述的显示面板,其中,所述第二衬底在所述第一波长范围的光照射下是透明的,在所述第二波长范围的光照射下是不透明的,以透过所述第一波长范围的光,并屏蔽所述第二波长范围的光。
  7. 根据权利要求5所述的显示面板,其中,所述衬底结构还包括粘接层,所述粘接层位于所述第一衬底和所述第二衬底之间。
  8. 根据权利要求1所述的显示面板,其中,所述显示面板还包括位于所述衬底结构背离所述信号线的表面上的覆晶薄膜和线路板,所述覆晶薄膜与所 述绑定走线电连接,所述线路板与所述覆晶薄膜电连接。
  9. 根据权利要求1所述的显示面板,其中,所述显示面板还包括第一颜色子像素、第二颜色子像素和第三颜色子像素,所述至少一个短路棒包括第一短路棒、第二短路棒和第三短路棒,所有连接到所述第一颜色子像素的所述绑定走线都连接至所述第一短路棒,所有连接到所述第二颜色子像素的所述绑定走线都连接至所述第二短路棒,所有连接到所述第三颜色子像素的所述绑定走线都连接至所述第三短路棒。
  10. 一种显示面板的制作方法,其包括:
    提供衬底结构,所述衬底结构包括第一衬底,所述第一衬底在第一波长范围的光照射下是透明的,在第二波长范围的光照射下是不透明的,以透过所述第一波长范围的光,并屏蔽所述第二波长范围的光;
    在所述衬底结构上形成薄膜晶体管和多条信号线,所述信号线与所述薄膜晶体管电连接;
    在所述衬底结构背离所述信号线的表面上形成至少一个短路棒和多条绑定走线,每一所述短路棒与至少部分所述绑定走线电连接,用于在所述显示面板进行测试时向所述至少部分绑定走线提供测试信号;以及,
    形成至少部分位于所述衬底结构侧面上的导电走线,所述导电走线的一端与对应所述信号线电连接,另一端与对应所述绑定走线电连接。
  11. 根据权利要求10所述的显示面板的制作方法,其中,所述短路棒沿垂直于所述绑定走线的方向设置,在所述形成至少部分位于所述衬底结构侧面上的导电走线之后,还包括:
    利用所述第二波长范围的光对所述短路棒进行切割,以在任意相邻两条所述绑定走线的对应位置处形成切口。
  12. 根据权利要求10所述的显示面板的制作方法,其中,在所述衬底结构背离所述信号线的表面上形成至少一个短路棒和多条绑定走线之后,还包括:
    在所述衬底结构背离所述信号线的表面上形成覆晶薄膜和线路板,所述覆晶薄膜与所述绑定走线电连接,所述线路板与所述覆晶薄膜电连接。
  13. 一种显示装置,其包括显示面板,所述显示面板包括:
    衬底结构,所述衬底结构包括第一衬底,所述第一衬底在第一波长范围的光照射下是透明的,在第二波长范围的光照射下是不透明的,以透过所述第一波长范围的光,并屏蔽所述第二波长范围的光;
    位于所述第一衬底上的薄膜晶体管和多条信号线,所述信号线与所述薄膜晶体管电连接;
    位于所述衬底结构背离所述信号线的表面上的至少一个短路棒和多条绑定走线,每一所述短路棒与至少部分所述绑定走线电连接,用于在所述显示面板进行测试时向所述至少部分绑定走线提供测试信号;以及,
    至少部分位于所述衬底结构侧面上的导电走线,所述导电走线的一端与对应所述信号线电连接,另一端与对应所述绑定走线电连接。
  14. 根据权利要求13所述的显示装置,其中,所述短路棒沿垂直于所述绑定走线的方向设置,且在任意相邻两条所述绑定走线的对应位置处设有切口,所述切口是通过所述第二波长范围的光切割形成的。
  15. 根据权利要求13所述的显示装置,其中,所述第一衬底的制作材料包括光致变色材料,所述第二波长范围的光为激发所述光致变色材料由透明到不透明变化的光。
  16. 根据权利要求15所述的显示装置,其中,所述光致变色材料为金属卤化物。
  17. 根据权利要求13所述的显示装置,其中,所述衬底结构还包括第二衬底,所述第二衬底固设于所述第一衬底背离所述信号线的表面上。
  18. 根据权利要求17所述的显示装置,其中,所述第二衬底在所述第一波长范围的光照射下是透明的,在所述第二波长范围的光照射下是不透明的,以透过所述第一波长范围的光,并屏蔽所述第二波长范围的光。
  19. 根据权利要求17所述的显示装置,其中,所述衬底结构还包括粘接层,所述粘接层位于所述第一衬底和所述第二衬底之间。
  20. 根据权利要求13所述的显示装置,其中,所述显示面板还包括位于所述衬底结构背离所述信号线的表面上的覆晶薄膜和线路板,所述覆晶薄膜与所述绑定走线电连接,所述线路板与所述覆晶薄膜电连接。
PCT/CN2020/126369 2020-09-24 2020-11-04 显示面板及其制作方法、显示装置 WO2022062081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011015737.2A CN112086036B (zh) 2020-09-24 2020-09-24 显示面板及其制作方法、显示装置
CN202011015737.2 2020-09-24

Publications (1)

Publication Number Publication Date
WO2022062081A1 true WO2022062081A1 (zh) 2022-03-31

Family

ID=73738769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126369 WO2022062081A1 (zh) 2020-09-24 2020-11-04 显示面板及其制作方法、显示装置

Country Status (2)

Country Link
CN (1) CN112086036B (zh)
WO (1) WO2022062081A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380861B (zh) * 2021-05-24 2023-04-18 云谷(固安)科技有限公司 显示面板及其制备方法
CN113721397A (zh) * 2021-08-20 2021-11-30 Tcl华星光电技术有限公司 绑定结构、显示装置、检测方法及检测装置
CN114203042A (zh) * 2021-12-10 2022-03-18 惠州华星光电显示有限公司 显示面板、显示面板的制作方法以及显示装置
CN114594637B (zh) * 2022-02-18 2023-11-21 厦门天马微电子有限公司 显示基板、阵列基板及显示装置
CN114578594B (zh) * 2022-03-03 2023-11-28 Tcl华星光电技术有限公司 阵列基板及其显示模组、制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104867872A (zh) * 2015-04-24 2015-08-26 京东方科技集团股份有限公司 柔性显示基板的制作方法及柔性显示面板的制作方法
CN109559667A (zh) * 2019-01-04 2019-04-02 京东方科技集团股份有限公司 一种阵列基板、其测试方法及显示面板、显示装置
US20190259978A1 (en) * 2016-12-02 2019-08-22 Samsung Display Co., Ltd. Display device and method for fabricating the same
CN110503898A (zh) * 2019-08-28 2019-11-26 京东方科技集团股份有限公司 微发光二极管显示面板及制备方法、拼接显示面板、装置
CN110658656A (zh) * 2019-09-27 2020-01-07 京东方科技集团股份有限公司 一种显示面板、显示装置及显示面板的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090011522A1 (en) * 2007-07-02 2009-01-08 Drennan Monte D Semiconductor Device Package Disassembly
KR101073563B1 (ko) * 2010-02-08 2011-10-14 삼성모바일디스플레이주식회사 표시 장치 및 이의 제조 방법
JP2012028511A (ja) * 2010-07-22 2012-02-09 On Semiconductor Trading Ltd 回路基板およびその製造方法、回路装置およびその製造方法、絶縁層付き導電箔
CN106019742B (zh) * 2016-06-15 2019-04-30 深圳市华星光电技术有限公司 液晶显示面板的制作方法
CN106292111B (zh) * 2016-10-20 2019-08-20 深圳市华星光电技术有限公司 一种阵列基板及液晶显示面板
CN109659277B (zh) * 2018-12-18 2020-12-04 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN110335860B (zh) * 2019-04-25 2021-10-22 广州国显科技有限公司 显示面板及显示面板的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104867872A (zh) * 2015-04-24 2015-08-26 京东方科技集团股份有限公司 柔性显示基板的制作方法及柔性显示面板的制作方法
US20190259978A1 (en) * 2016-12-02 2019-08-22 Samsung Display Co., Ltd. Display device and method for fabricating the same
CN109559667A (zh) * 2019-01-04 2019-04-02 京东方科技集团股份有限公司 一种阵列基板、其测试方法及显示面板、显示装置
CN110503898A (zh) * 2019-08-28 2019-11-26 京东方科技集团股份有限公司 微发光二极管显示面板及制备方法、拼接显示面板、装置
CN110658656A (zh) * 2019-09-27 2020-01-07 京东方科技集团股份有限公司 一种显示面板、显示装置及显示面板的制备方法

Also Published As

Publication number Publication date
CN112086036A (zh) 2020-12-15
CN112086036B (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2022062081A1 (zh) 显示面板及其制作方法、显示装置
KR102674764B1 (ko) 디스플레이 패널 및 그의 제조 방법
KR20180077898A (ko) 검사장치 및 이를 이용한 검사방법
KR101024535B1 (ko) 액정표시장치
CN112799256B (zh) 透明显示面板以及包括透明显示面板的透明显示装置
KR100866941B1 (ko) 액정표시장치 및 그 결함화소 수복방법
JPH06102534A (ja) 薄膜トランジスタアレイ
JP2007298938A (ja) 表示素子モジュール及びその製造方法
US11596062B2 (en) Substrate motherboard and manufacturing method thereof, driving substrate and display device
KR20020094636A (ko) 액정 표시 장치의 제조 방법
US9941218B2 (en) Display apparatus capable of easily acquiring identification about a display panel and a driving chip
JP3119357B2 (ja) 液晶表示装置
KR20200091347A (ko) 디스플레이 모듈 및 디스플레이 모듈의 리페어 방법
EP4203651A1 (en) Electroluminescence display
JP3087730B2 (ja) 液晶表示装置の製造方法
CN115207018A (zh) 显示装置
KR20180076744A (ko) 어레이 기판 및 이를 포함하는 표시장치
KR20210112815A (ko) 발광 다이오드 모듈 및 발광 다이오드 검사 방법
KR100488943B1 (ko) 리페어라인이 형성된 액정표시장치 및 그 제조방법
WO2024021117A1 (zh) 一种阵列基板、显示面板、显示装置和拼接显示装置
US20230411576A1 (en) Display device, method of manufacturing the same, and tiled display device including the same
WO2023013033A1 (ja) 表示パネルおよび表示装置の製造方法
TWI699586B (zh) 陣列基板與其製造方法
EP4207991A1 (en) Electroluminescence display having repair structure
KR20070044204A (ko) 액정표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954925

Country of ref document: EP

Kind code of ref document: A1