WO2022060206A1 - 음극 및 이를 포함하는 리튬 이차전지 - Google Patents

음극 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2022060206A1
WO2022060206A1 PCT/KR2021/012984 KR2021012984W WO2022060206A1 WO 2022060206 A1 WO2022060206 A1 WO 2022060206A1 KR 2021012984 W KR2021012984 W KR 2021012984W WO 2022060206 A1 WO2022060206 A1 WO 2022060206A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
negative electrode
carbon
active material
graphene
Prior art date
Application number
PCT/KR2021/012984
Other languages
English (en)
French (fr)
Inventor
오일근
신선영
김동혁
이용주
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP21869828.0A priority Critical patent/EP4195312A1/en
Priority to CN202180064661.9A priority patent/CN116235306A/zh
Priority to US18/024,184 priority patent/US20230335715A1/en
Publication of WO2022060206A1 publication Critical patent/WO2022060206A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an anode having improved lifespan characteristics and a lithium secondary battery including the same.
  • Si Silicon
  • Si which has a capacity (4200 mAh/g) more than 10 times that of a conventional graphite-based material (theoretical capacity is 372 mAh/g)
  • theoretical capacity is 372 mAh/g
  • silicon expands in volume by charging and shrinks in volume during discharging. For this reason, when the secondary battery is repeatedly charged and discharged, silicon used as the negative electrode active material is pulverized, and the number of particles isolated by losing a conductive path in the electrode increases, resulting in deterioration of the capacity of the secondary battery.
  • silicon oxide (SiO x ) proposed as another method for improving cycle characteristics is decomposed into Si and SiO 2 by disproportionation at a high temperature of 1,000° C. or more, while silicon crystals of several nm are silicon oxide to form a uniformly dispersed structure.
  • silicon oxide When such silicon oxide is applied as an anode active material for a secondary battery, the capacity is only half that of a silicon anode active material, but it is about 5 times larger than the capacity of a carbon-based anode active material, and structurally, the volume change during charging and discharging is small, so the cycle life The characteristics are expected to be excellent.
  • silicon oxide reacts with lithium and silicon oxide during initial charging to produce lithium silicide and lithium oxide (lithium oxide and lithium silicate).
  • CNT carbon nanotube
  • silicon oxide when silicon oxide is used as an anode active material, there is still a need for the development of a silicon oxide-based material that can satisfy not only initial capacity/efficiency, but also lifespan characteristics by reducing the lithium oxide generation reaction that causes such irreversibility. .
  • An object of the present invention is to provide an anode and a lithium secondary battery including an anode active material having excellent initial capacity/efficiency and lifespan characteristics.
  • the negative electrode of the following embodiment is provided.
  • Mg-containing silicon oxide a carbon coating layer surrounding the surface of the Mg-containing silicon oxide, and a negative electrode active material comprising a graphene coating layer surrounding the carbon coating layer, 2) single-walled carbon nanotubes (Single-walled Carbon Nanotubes, SWCNT) comprising a conductive material, and 3) a negative electrode active material layer containing a binder;
  • the range of the D / G band intensity ratio of the graphene included in the graphene coating layer is 0.8 to 1.5
  • the D/G band intensity ratio of the graphene is the maximum peak of the D band at 1360 ⁇ 50 cm -1 to the maximum peak intensity of the G band at 1580 ⁇ 50 cm -1 obtained by Raman spectroscopy of graphene.
  • a cathode is provided, characterized in that it is defined as the average value of the ratio of intensities.
  • the range of the D/G band intensity ratio of graphene included in the graphene coating layer may be 0.8 to 1.4.
  • the Mg-containing silicon oxide may include 4 to 15 wt% of Mg.
  • the content of the graphene coating layer may be 0.5 to 10% by weight based on the total weight of the negative electrode active material.
  • the content of the carbon coating layer may be 0.5 to 10% by weight based on the total weight of the negative electrode active material.
  • the content of the single-walled carbon nanotubes may be 0.01 to 0.06 wt% based on the total weight of the anode active material layer.
  • the conductive material is carbon black, acetylene black, Ketjen black, carbon nanofiber, channel black, furnace black, lamp black, thermal black, carbon fiber, metal fiber, fluorocarbon, metal powder, conductive whisker, conductive metal oxide, polyphenyl It may further include a lene derivative, or two or more of these.
  • the negative active material layer may further include a carbon-based active material.
  • the carbon-based active material may include artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbead, petroleum coke, plastic resin, carbon fiber, pyrolytic carbon, or two or more of these.
  • a lithium secondary battery including the negative electrode according to any one of the first to ninth embodiments.
  • a graphene coating layer was introduced in addition to the existing carbon coating layer on the surface of the Mg-containing silicon oxide, and single-walled carbon nanotubes (SWCNTs) were used together as a conductive material. , Since the graphene coating layer has excellent affinity with single-walled carbon nanotubes and excellent flexibility, electrical short circuit is prevented even when silicon oxide shrinks/expands, thereby exhibiting an excellent life improvement effect.
  • SWCNTs single-walled carbon nanotubes
  • the graphene coating layer is preserved despite the volume expansion and contraction of the Mg-containing silicon oxide, direct exposure of the Mg-containing silicon oxide to the electrolyte is prevented, thereby preventing the degradation of the Mg-containing silicon oxide even at high temperature storage.
  • the carbon coating layer and the graphene coating layer are provided together on the surface of the Mg-containing silicon oxide, the volume expansion of the Mg-containing silicon oxide is suppressed by the carbon coating layer, and the electrical network is maintained even after shrinkage through the flexibility of graphene, which is the secondary battery. It is possible to exert synergistic effects such as improvement of lifespan and improvement of high-temperature storage characteristics.
  • FIG. 1 is a schematic diagram showing lithiation and delithiation processes of a conventional silicon oxide having a carbon coating layer (a) and a negative electrode active material (b) according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the lithiation and delithiation processes of a conventional negative electrode (a) including a silicon oxide having a carbon coating layer and a negative electrode (b) including a negative electrode active material according to an embodiment of the present invention.
  • a negative electrode according to an aspect of the present invention is a negative electrode according to an aspect of the present invention.
  • Mg-containing silicon oxide a carbon coating layer surrounding the surface of the Mg-containing silicon oxide, and a negative electrode active material comprising a graphene coating layer surrounding the carbon coating layer, 2) single-walled carbon nanotubes (Single-walled Carbon Nanotubes, SWCNT) comprising a conductive material, and 3) a negative electrode active material layer containing a binder;
  • the range of the D / G band intensity ratio of the graphene included in the graphene coating layer is 0.8 to 1.5
  • the D/G band intensity ratio of the graphene is the maximum peak of the D band at 1360 ⁇ 50 cm -1 to the maximum peak intensity of the G band at 1580 ⁇ 50 cm -1 obtained by Raman spectroscopy of graphene. It is characterized in that it is defined as the average value of the ratio of intensities.
  • the negative active material includes a silicon oxide containing Mg corresponding to the core, and a carbon coating layer and a graphene coating layer corresponding to the shell part surrounding part or all of the outside of the core part.
  • the carbon coating layer which is one of the shell parts, may include a carbon material, and the carbon material may be bonded to, attached to, or coated with a surface of the core part.
  • the carbon material may include at least one selected from the group consisting of crystalline carbon, natural graphite, artificial graphite, graphene, kish graphite, graphitized carbon fiber, graphitized mesocarbon microbead, and amorphous carbon. there is.
  • the carbon material may include soft carbon, hard carbon, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, liquid crystal It may include one obtained by heat-treating or calcining at least one selected from the group consisting of pitch (mesophase pitches), petroleum and coal-based cokes (petroleum or coal tar pitch derived cokes), and activated carbon.
  • the graphene coating layer may include graphene, and the graphene may be bonded, attached, or coated to the surface of the carbon coating layer.
  • the graphene coating layer is preserved on the surface of the Mg-containing silicon oxide even when the Mg-containing silicon oxide repeats volume expansion and contraction in the process of lithiation/delithiation, in which lithium ions are inserted and desorbed from the Mg-containing silicon oxide. Therefore, it is possible to prevent the silicon oxide from being directly exposed to the electrolyte, so that the degradation of the silicon oxide can be prevented even in high-temperature storage.
  • the reason that the graphene coating layer is preserved on the surface of the carbon coating layer surrounding the surface of the Mg-containing silicon oxide even when the Mg-containing silicon oxide repeats volume expansion and contraction is that the carbon coating layer prevents the volume expansion of the Mg-containing silicon oxide This is because the flexible graphene coating layer can shrink again after expansion.
  • the range of the D/G band intensity ratio of the graphene is 0.8 to 1.5, wherein the D/G band intensity ratio of the graphene is 1580 ⁇ 50 cm ⁇ 1 of the G band at 1580 ⁇ 50 cm ⁇ 1 obtained by Raman spectroscopy of the graphene. It is defined as the average value of the ratio of the maximum peak intensity of the D band at 1360 ⁇ 50 cm -1 to the maximum peak intensity.
  • the D band at 1360 ⁇ 50 cm ⁇ 1 indicates the presence of carbon particles and the characteristic of incomplete and disordered walls
  • the G band at 1580 ⁇ 50 cm ⁇ 1 indicates the continuous form of carbon-carbon bonds (CC). This indicates the properties of the crystalline layer of graphene.
  • the degree of disorder or defects of graphene can be evaluated by the intensity ratio (D/G intensity ratio) of the D-band peak and the G-band peak, and when this ratio is high, it can be evaluated as having many disorders or defects, and when this ratio is low, It can be evaluated that the graphene has few defects and has a high degree of crystallinity.
  • the term "defect" as used herein refers to an incomplete part of the graphene arrangement, such as a lattice defect, which is caused by intrusion of an unnecessary atom as an impurity into the bond between carbons constituting graphene, a shortage of necessary carbon atoms, or misalignment. defect), and due to this, the defective part is easily cut by an external stimulus.
  • the intensity of the D-band peak and the G-band peak can be defined, for example, as the height of the X-axis central value or the area at the bottom of the peak in the Raman spectrum. Considering the ease of measurement, the X-axis central value can be adopted.
  • the range of the D/G band intensity ratio of the graphene is 0.8 to 1.5, and according to one embodiment of the present invention, the range of the D/G band intensity ratio of the graphene is 0.8 to 1.4, or 1 to 1.4, or from 0.8 to 1.32, or from 0.8 to 1.31, or from 0.8 to 1.22, or from 0.8 to 1.12, or from 1 to 1.32, or from 1 to 1.31, or from 1.12 or 1.22.
  • the graphene When the range of the D/G band intensity ratio of the graphene satisfies this range, the graphene is oxidized to a certain extent and there is a defect, thereby increasing the hydrophilicity and adsorption with the Mg-containing silicon oxide and thus the Mg-containing silicon It is advantageous by increasing the graphene coverage of the oxide.
  • the content of the graphene coating layer is 0.5 to 10% by weight, or 0.7 to 9.7% by weight, or 1 to 9.7% by weight, or 2.9 to 9.7% by weight based on the total weight of the negative electrode active material, or from 4.8 to 9.7% by weight, alternatively from 1 to 4% by weight, alternatively from 1 to 3% by weight, alternatively from 1 to 2.9% by weight.
  • the content of the graphene coating layer satisfies this range, it is advantageous in terms of being able to sufficiently cover the surface of the Mg-containing silicon oxide in a range that does not reduce capacity and efficiency.
  • the content of the carbon coating layer is 0.5 to 10% by weight, or 0.7 to 7% by weight, or 1 to 5% by weight, or 2 to 4% by weight, or 3 to 4% by weight, or 3.5 to 10% by weight based on the total weight of the negative electrode active material 3.8% by weight, or 3.5 to 3.7% by weight, or 3.7 to 3.8% by weight.
  • the content of the carbon coating layer satisfies this range, it is possible to appropriately coat the Mg-containing silicon oxide to improve electrical conductivity, prevent the Mg-containing silicon oxide from reacting with moisture, and the carbon coating layer to be formed in excess. It is advantageous in that it is possible to prevent the problem of a decrease in initial capacity and efficiency caused when the silicon oxide is present, and to suppress the volume expansion of the Mg-containing silicon oxide.
  • the carbon coating layer and the graphene coating layer are provided together on the surface of the Mg-containing silicon oxide, thereby suppressing the volume expansion of the Mg-containing silicon oxide by the carbon coating layer, and maintaining the electrical network even after shrinkage through the flexibility of graphene, so that the lifespan of the secondary battery It is possible to exert synergistic effects such as improvement and improvement of high-temperature storage characteristics.
  • the Mg-containing silicon oxide may include magnesium silicate (Mg-silicate) containing Si and Mg, and may further include a silicon oxide represented by Si and SiO x (0 ⁇ x ⁇ 2).
  • the Mg-silicate includes MgSiO 3 and Mg 2 SiO 4 .
  • gas may be generated by reacting with water when mixing the slurry in an aqueous system, and MgO is present in a state that does not bind (react) with SiO 2 causing irreversibility. , the effect of improving the initial efficiency is small, and there is no effect of inhibiting swelling during insertion/desorption of Li, so battery performance may be deteriorated.
  • the I(Mg 2 SiO 4 )/I(MgSiO 3 ) may be specifically 0.1 to 0.9, and more specifically 0.2 to 0.7.
  • the reason for using magnesium silicate obtained by reacting with Mg instead of using SiO alone is for the purpose of improving initial efficiency. Compared to graphite, SiO has a high capacity but low initial efficiency, so it is important to increase the initial efficiency of SiO in order to maximize the capacity in an actual battery.
  • the initial efficiency improvement effect may be different depending on the amount of Mg bonding with SiO x (0 ⁇ x ⁇ 2).
  • the peak can be observed through XRD diffraction measurement using a Cu (K ⁇ -ray) (wavelength: 1.54 ⁇ ) source.
  • Mg-containing silicon oxide Mg, magnesium silicate, and silicon oxide are in a state in which the elements of each phase diffuse to each other and the interface between the phases are bonded, that is, because each phase is bonded at the atomic level, the volume change during occlusion and release of lithium ions It is small and the cracks of the composite particles are not easily generated even by repeated charging and discharging.
  • the Mg-containing silicon oxide is 4 wt% to 15 wt%, specifically 4 wt% to 10 wt%, or 4 wt% to 8 wt%, or 8 wt% to 10% by weight, or from 8% to 15% by weight Mg.
  • the content of Mg satisfies this range, it is possible to have an effect of improving the efficiency while minimizing the reduction in capacity, it is possible to prevent the generation of MgO as a side reaction product, and it is advantageous to improve the life performance by reducing the pores of the internal structure.
  • the average particle diameter (D50) of the Mg-containing silicon oxide powder that is, the 50% particle diameter (D 50 ) of the volume cumulative particle size distribution of the powder is 0.1 ⁇ m to 20 ⁇ m, specifically 0.5 ⁇ m to It may be 10 ⁇ m.
  • the 90% particle size (D 90 ) of the cumulative volume particle size distribution of the Mg-containing silicon oxide powder is 30 ⁇ m or less, specifically 15 ⁇ m or less, and more specifically 10 ⁇ m or less.
  • the maximum particle size of the cumulative volume particle size distribution is 35 ⁇ m or less, and specifically 25 ⁇ m or less. Measurements of the 50% particle size, 90% particle size, and maximum particle size of the volume cumulative particle size distribution can be obtained, for example, by the cumulative frequency when measured using a laser diffraction particle size distribution measuring apparatus commonly used.
  • Figure 1 (a) shows the lithiation and delithiation process of a conventional negative electrode active material having a carbon coating layer 20 on the surface of the Mg-containing silicon oxide 10
  • Figure 1 (b) is Mg-containing silicon
  • the Mg-containing silicon oxide 10 is expanded, and then the Mg-containing silicon oxide is delithiated, in which lithium is desorbed. (10) shrinks and returns to its original size, but the carbon coating layer 20 is not restored to its original shape. As a result, the surface A of the Mg-containing silicon oxide 10 exposed without being covered by the carbon coating layer may react with the electrolyte to cause the silicon oxide to deteriorate.
  • the negative electrode active material according to an embodiment of the present invention having a carbon coating layer 20 and a graphene coating layer 30 on the surface of the Mg-containing silicon oxide 10, lithium is inserted ( After lithiation), when the Mg-containing silicon oxide 10 expands and then lithium is desorbed (delithiated) and the Mg-containing silicon oxide 10 contracts and returns to its original size, the surface of the Mg-containing silicon oxide 10 Some cracks may occur in the carbon coating layer formed on the . However, since the graphene coating layer 30 is preserved as it is, even when cracks occur in the carbon coating layer, the problem of degradation of the silicon oxide by exposure to the electrolyte can be prevented.
  • the SiO x (0 ⁇ x ⁇ 2) gas may be prepared by evaporating Si/SiO 2 in the range of 1,000° C. to 1,800° C., and the Mg gas is in the range of 800° C. to 1,600° C. It can be prepared by evaporating Mg from
  • the reaction of the SiO x (0 ⁇ x ⁇ 2) gas and the Mg gas may proceed at 800 to 1,800 °C, and within 1 to 6 hours, the target cooling temperature is 400 °C to 900 °C, specifically 500 to 800 °C. Can be quenched.
  • the quenching time after the gas phase reaction of the SiO x (0 ⁇ x ⁇ 2) gas and the Mg gas satisfies the above range, as the quenching time to a low temperature in a short time causes Mg and SiO x to not react properly, silicate It is possible to prevent the problem of not being formed and remaining as an unwanted phase such as MgO, and as a result, the initial efficiency and the anti-swelling effect may be improved, thereby increasing the lifespan performance of the battery.
  • additional heat treatment may be performed, and the ratio of Si grain size and Mg silicate may be adjusted according to the heat treatment temperature. For example, when the additional heat treatment temperature is high, the Mg 2 SiO 4 phase may increase and the Si grain size may increase.
  • the precipitated Mg-containing silicon oxide may include a crystalline silicon phase and a matrix embedded in a shape in which the silicon phase is dotted, wherein the matrix includes Mg-silicate and silicon-oxide .
  • Mg-containing silicon oxide powder which is a core portion having a particle diameter (D50) of 0.1 ⁇ m to 20 ⁇ m, may be prepared by mechanically milling the Mg-containing silicon oxide.
  • a carbon-based material source gas is injected into the pulverized Mg-containing silicon oxide and heat-treated at 850° C. to 1,150° C. for 30 minutes to 8 hours to form a carbon coating layer including a carbon-based material on the surface of the silicon oxide composite.
  • methane gas may be used as the carbon-based material source gas, and in this case, a mixed gas in which argon gas is further added may be used, and the carbon coating layer may be formed using a chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • the graphene coating layer may be formed on the carbon coating layer through a spray drying method after mixing with the graphene dispersion.
  • the spray drying may be carried out at, for example, 150 °C to 250 °C, or 175 °C to 225 °C, or 200 °C.
  • the negative electrode according to one aspect of the present invention may be prepared by coating a mixture of a conductive material and a binder including an anode active material, a single-walled carbon nanotube (SWCNT) and a binder on an anode current collector and then drying. , If necessary, may further include a filler in the mixture.
  • an anode active material including the Mg-containing silicon oxide, a carbon coating layer surrounding the surface of the Mg-containing silicon oxide, and a graphene coating layer surrounding the carbon coating layer is used.
  • the current collector is generally made to have a thickness of 3 to 500 ⁇ m.
  • Such a current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • Carbon, nickel, titanium, silver or the like surface-treated may be used. Among them, it may be appropriately selected and used according to the polarity of the positive electrode or the negative electrode.
  • the binder is a component that assists in bonding between the active material and the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 50 wt % based on the total weight of the electrode mixture.
  • a binder polyacrylonitrile-acrylic acid copolymer, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone , tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber (SBR), polyacrylic acid, polyacrylic acid substituted with alkali cations or ammonium ions, alkali cations or poly(alkylene-maleic anhydride) copolymer substituted with ammonium ion, poly(alkylene-male
  • the polyacrylic acid substituted with the alkali cation includes lithium-polyacrylate (Li-PAA, polyacrylic acid substituted with lithium), and the poly(alkylene-maleic anhydride) copolymer substituted with the alkali cation.
  • the sieve may include poly(isobutylene-maleic anhydride) substituted with lithium.
  • the conductive material essentially includes single-walled carbon nanotubes (SWCNTs).
  • SWCNTs single-walled carbon nanotubes
  • graphene has a high affinity for single-walled carbon nanotubes. Therefore, when single-walled carbon nanotubes are used as conductive materials, lithium ions are inserted (lithiation, lithiation). ) and de-lithiation, it is advantageous in maintaining the electrical network between the active material and the conductive material during charging and discharging, so it is possible to improve lifespan and excellently improve high-temperature storage performance.
  • the single-walled carbon nanotube is a material in which hexagonal-arranged carbon atoms form a tube, and exhibits insulator, conductor, or semiconductor properties according to its unique chirality, and the carbon atoms are connected by strong covalent bonds.
  • the tensile strength is about 100 times greater than that of steel, and it has excellent flexibility and elasticity, and is chemically stable.
  • the average diameter of the single-walled carbon nanotubes may be 3 nm to 10 nm, specifically 5 nm to 8 nm. When the above range is satisfied, it is possible to derive desirable viscosity and solid content when preparing the conductive material dispersion.
  • single-walled carbon nanotubes may exist in an entangled state (aggregate) by agglomeration with each other. Accordingly, the average diameter of the single-walled carbon nanotubes constituting the aggregate is determined by checking the diameter of the single-walled carbon nanotube aggregate in an entangled state extracted from the conductive material dispersion by SEM or TEM, and then determining the diameter of the aggregate. It can be derived by dividing by the number of
  • the BET specific surface area of the single-walled carbon nanotube may be 200m 2 /g to 700m 2 /g, specifically 230m 2 /g to 600m 2 /g, or 250m 2 /g to 580m 2 /g.
  • a conductive material dispersion having a desirable solid content is derived, and the viscosity of the negative electrode slurry is prevented from increasing excessively.
  • the BET specific surface area may be measured through a nitrogen adsorption BET method.
  • the aspect ratio of the single-walled carbon nanotubes may be 100 to 3,000, specifically 200 to 2,000, or 250 to 1,000.
  • the specific surface area is at a high level, the single-walled carbon nanotubes in the negative electrode may be adsorbed to the active material particles by strong attractive force. Accordingly, the conductive network may be smoothly maintained even when the anode active material expands in volume.
  • the aspect ratio can be confirmed by obtaining the average of the aspect ratios of 15 single-walled carbon nanotubes having a large aspect ratio and 15 single-walled carbon nanotubes having a small aspect ratio when the single-walled carbon nanotube powder is observed through SEM.
  • the conductive material is a component that does not induce chemical changes in the battery together with single-walled carbon nanotubes, for example, carbon black, acetylene black, Ketjen black (brand name), carbon nanofibers, channel black, furnace black, lamp Carbon black, such as black and thermal black, conductive fibers, such as carbon fiber and metal fiber, Metal powders, such as fluorocarbon, aluminum, and nickel powder; conductive whiskers such as zinc oxide and potassium titanate, and conductive metal oxides such as titanium oxide; A conductive material such as a polyphenylene derivative may be further used.
  • carbon black acetylene black, Ketjen black (brand name)
  • carbon nanofibers such as carbon fiber and metal fiber
  • Metal powders such as fluorocarbon, aluminum, and nickel powder
  • conductive whiskers such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • a conductive material such as a polyphenylene derivative may be further used.
  • the content of the single-walled carbon nanotube may be 0.01 to 0.06 wt%, or 0.01 to 0.05 wt%, or 0.01 to 0.04 wt%, or 0.04 to 0.06 wt%, based on the total weight of the negative electrode active material layer.
  • the content of the single-walled carbon nanotube satisfies this range, it is advantageous in terms of being able to sufficiently build an electrical network in a range that does not reduce the initial efficiency of the Mg-containing silicon oxide.
  • the negative electrode active material layer may further include a carbon-based active material as an additional negative electrode active material.
  • the carbon-based active material is artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbead, petroleum coke, plastic resin, carbon fiber, one or two or more of materials made of crystalline or amorphous carbon such as pyrolytic carbon to be used can
  • the carbon-based material may have an average particle diameter of 25 ⁇ m or less, or 5 to 25 ⁇ m, or 8 to 20 ⁇ m, and when the average particle diameter of the carbon-based material is 25 ⁇ m or less, room temperature and low temperature output characteristics are improved, This can be advantageous in terms of fast charging.
  • the carbon-based active material may be 70 to 97 wt%, or 75 to 95 wt%, or 80 to 93 wt%, based on the total weight of the negative active material layer.
  • a negative active material comprising a carbon coating layer surrounding the surface of the Mg-containing silicon oxide, and the Mg-containing silicon oxide, and a graphene coating layer surrounding the carbon coating layer, that is, "carbon
  • the weight ratio of the "Mg-containing silicon oxide with the coating layer and the graphene coating layer formed" and the carbon-based active material is 1:2 to 1:33, or 1:3 to 1:32, or 1:4 to 1:30, or 1:5.7 to 1:20.
  • the carbon-based active material When the carbon-based active material is included in the anode active material layer in this content range, it may serve as a matrix of the anode active material and contribute to capacity expression.
  • Figure 2 (a) is a conventional negative electrode active material having a carbon coating layer on the surface of the Mg-containing silicon oxide of Figure 1 (a) and a negative electrode having graphite 110 and single-walled carbon nanotubes 120 as conductive materials of the lithiation and delithiation process
  • (b) of FIG. 2 is an anode active material according to an embodiment of the present invention having a carbon coating layer and a graphene coating layer on the surface of the Mg-containing silicon oxide of FIG. 1 (b)
  • Mg-containing silicon oxide is expanded after lithium is inserted (lithiated), and then lithium is desorbed (delithiated) to Mg-containing silicon oxide. Even if it shrinks and returns to its original size, the graphene coating layer formed on the outermost side of the negative electrode active material is preserved as it is, and the single-walled carbon nanotubes 120 and graphite 110 connected to the graphene coating layer are also formed between Mg-containing silicon oxide. The electrical network formed in the can still be maintained.
  • a graphene coating layer having excellent flexibility and excellent affinity with single-walled carbon nanotubes is provided on the surface of the Mg-containing silicon oxide, so that the lifespan of a secondary battery employing such a negative electrode Properties and high temperature storage performance can be significantly improved.
  • the negative electrode when the negative electrode is manufactured by applying a mixture of the negative electrode active material, the conductive material and the binder on the negative electrode current collector, the solid mixture consisting of the negative electrode active material, the conductive material and the binder is directly applied by a dry method It can also be prepared by adding the negative active material, the conductive material and the binder to the dispersion medium by a wet method, followed by stirring to apply the mixture in the form of a slurry, and removing the dispersion medium by drying or the like.
  • an aqueous medium of water (deionized water, etc.) may be used, or an organic type such as N-methyl-pyrrolidone (NMP, N-methyl-2-pyrrolidone) or acetone.
  • NMP N-methyl-pyrrolidone
  • acetone acetone
  • a lithium secondary battery comprising a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, wherein the negative electrode includes the negative electrode according to an aspect of the present invention.
  • the positive electrode may be manufactured by coating a mixture of a positive electrode active material, a conductive material, and a binder on a positive electrode current collector and then drying the mixture, and if necessary, may further include a filler in the mixture.
  • the conductive material, the current collector, and the binder may refer to the above-described negative electrode.
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally 0.01 to 10 ⁇ m, and the thickness is generally 5 to 300 ⁇ m.
  • a separation membrane For example, olefin polymers, such as chemical-resistance and hydrophobic polypropylene; A film, sheet, or non-woven fabric made of glass fiber or polyethylene is used.
  • the separation membrane may further include a porous layer including a mixture of inorganic particles and a binder resin on the outermost surface.
  • the electrolyte contains an organic solvent and a predetermined amount of a lithium salt, and as a component of the organic solvent, for example, propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), methyl propionate (MP), dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran , N-methyl-2-pyrrolidone (NMP), ethylmethyl carbonate (EMC), vinylene carbonate (VC), gamma butyrolactone (GBL), fluoroethylene carbonate (FEC), methyl formate, ethyl formate, formic acid propyl, methyl acetate, ethyl acetate, propyl acetate, pentyl acetate, methyl propionate,
  • PC propylene carbonate
  • halogen derivatives of the above organic solvents can be used, and linear ester materials are also available.
  • the lithium salt is a material readily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium 4-phenyl borate, imide, or the like may be used.
  • the secondary battery of the present invention can be manufactured by housing/sealing the electrode assembly in which the positive electrode and the negative electrode are alternately laminated with a separator together with an electrolyte solution in an exterior material such as a battery case.
  • a conventional method may be used without limitation.
  • a battery module including the secondary battery as a unit cell and a battery pack including the same. Since the battery module and the battery pack include a secondary battery exhibiting excellent fast charging characteristics at high loading, they may be used as power sources for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and power storage systems.
  • the secondary batteries a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery is preferable.
  • a conductive material for battery elements that are not described in this specification, for example, a conductive material, reference may be made to the elements commonly used in the battery field, particularly in the lithium secondary battery field.
  • Silicon powder and silicon dioxide (SiO 2 ) powder are uniformly mixed in a molar ratio of 1:1 and heat-treated at 1,400°C in a reduced pressure atmosphere of 1 torr to prepare SiO x (0 ⁇ x ⁇ 2) gas, and Mg to 900°C was heat-treated to prepare Mg gas.
  • This SiO x (0 ⁇ x ⁇ 2) gas and Mg gas were reacted at 1,300° C. for 3 hours, cooled to 800° C. within 4 hours to precipitate, and then pulverized with a jet mill to have an average particle diameter (D50) of 5 ⁇ m Mg-containing silicon oxide powder was recovered.
  • the recovered Mg-containing silicon oxide powder was heated at a rate of 5°C/min using a tube-type electric furnace and CVD treatment was performed under a mixed gas of argon (Ar) and methane (CH 4 ) at 950°C for 2 hours.
  • Mg-containing silicon oxide with a carbon coating layer was prepared.
  • the Mg-containing silicon oxide content, the carbon coating layer content, and the graphene coating layer content based on the total weight of the negative active material are shown in Table 1 below, and the D/G band intensity ratio of the graphene coating layer is also shown in Table 1 below.
  • Anode active material prepared above: artificial graphite: conductive material (carbon black): conductive material (single-walled carbon nanotube (SWCNT): carboxymethyl cellulose: styrene-butadiene rubber (SBR) 14.3: 81: A negative electrode mixture layer slurry was prepared by mixing with water as a dispersion medium in a weight ratio of 0.96: 0.04: 1.2: 2.5, wherein the average diameter of the single-walled carbon nanotubes was 20 nm, the specific surface area was 580 m 2 /g, and the aspect ratio was 250.
  • the negative electrode mixture layer slurry was uniformly coated on both sides of a copper current collector having a thickness of 20 ⁇ m. The coating was performed at a drying temperature of 70° C. and a coating speed of 0.2 m/min. Thereafter, the anode mixture layer was rolled to match the porosity of 28% using a roll press equipment to match the target thickness. Next, the negative electrode was prepared by drying in a vacuum oven at 130° C. for 8 hours.
  • PVdF polyvinylidene fluoride
  • a positive electrode mixture layer slurry was prepared by dispersing it in rollidone. This slurry was coated on both sides of an aluminum foil having a thickness of 20 ⁇ m, respectively. The coating was performed at a drying temperature of 80° C. and a coating speed of 0.2 m/min. Then, the positive electrode mixture layer was rolled to match the porosity of 24% using a roll press equipment to match the target thickness. Next, it was dried in a vacuum oven at 130° C. for 8 hours.
  • the electrolyte solution is a mixture of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) in an organic solvent in a composition of 3:7 (volume ratio), LiPF 6 is dissolved to a concentration of 1.0M, vinylene carbonate (VC) 2 It was prepared by dissolving so as to be % by weight.
  • An anode active material was prepared in the same manner as in Example 1, except that the Mg-containing silicon oxide content, the carbon coating layer content, the graphene coating layer content, and the D/G band intensity ratio of the graphene coating layer were changed as shown in Table 1 below. .
  • Anode active material prepared above: artificial graphite: conductive material (carbon black): conductive material (single-walled carbon nanotube (SWCNT): carboxymethyl cellulose: styrene-butadiene rubber (SBR) 14.3: 81: A negative electrode, a positive electrode, and a secondary battery were prepared in the same manner as in Example 1, except that a negative electrode mixture layer slurry was prepared by mixing it with water as a dispersion medium in a weight ratio of 0.96: 0.04: 1.2: 2.5.
  • An anode active material was prepared in the same manner as in Example 1, except that the Mg-containing silicon oxide content, the carbon coating layer content, the graphene coating layer content, and the D/G band intensity ratio of the graphene coating layer were changed as shown in Table 1 below. .
  • a negative electrode, a positive electrode, and a secondary battery were manufactured in the same manner as in Example 1, except that the negative active material prepared above was used.
  • An anode active material was prepared in the same manner as in Example 1, except that the Mg-containing silicon oxide content, the carbon coating layer content, the graphene coating layer content, and the D/G band intensity ratio of the graphene coating layer were changed as shown in Table 1 below. .
  • a negative electrode, a positive electrode, and a secondary battery were manufactured in the same manner as in Example 1, except that the negative active material prepared above was used.
  • An anode active material was prepared in the same manner as in Example 1, except that the Mg-containing silicon oxide content, the carbon coating layer content, the graphene coating layer content, and the D/G band intensity ratio of the graphene coating layer were changed as shown in Table 1 below. .
  • a negative electrode, a positive electrode, and a secondary battery were manufactured in the same manner as in Example 1, except that the negative active material prepared above was used.
  • An anode active material was prepared in the same manner as in Example 1, except that the Mg-containing silicon oxide content, the carbon coating layer content, the graphene coating layer content, and the D/G band intensity ratio of the graphene coating layer were changed as shown in Table 1 below. .
  • a negative electrode, a positive electrode, and a secondary battery were manufactured in the same manner as in Example 1, except that the negative active material prepared above was used.
  • An anode active material was prepared in the same manner as in Example 1, except that the Mg-containing silicon oxide content, the carbon coating layer content, the graphene coating layer content, and the D/G band intensity ratio of the graphene coating layer were changed as shown in Table 1 below. .
  • a negative electrode, a positive electrode, and a secondary battery were manufactured in the same manner as in Example 1, except that the negative active material prepared above was used.
  • An anode active material was prepared in the same manner as in Example 1, except that the Mg-containing silicon oxide content, the carbon coating layer content, the graphene coating layer content, and the D/G band intensity ratio of the graphene coating layer were changed as shown in Table 1 below. .
  • Anode active material prepared above: artificial graphite: conductive material (carbon black): conductive material (single-walled carbon nanotube (SWCNT): carboxymethyl cellulose: styrene-butadiene rubber (SBR) 14.3: 81: A negative electrode, a positive electrode, and a secondary battery were prepared in the same manner as in Example 1, except that the negative electrode mixture layer slurry was prepared by mixing it with water as a dispersion medium at a weight ratio of 1: 0: 1.2: 2.5.
  • An anode active material was prepared in the same manner as in Example 1, except that the Mg-containing silicon oxide content, the carbon coating layer content, the graphene coating layer content, and the D/G band intensity ratio of the graphene coating layer were changed as shown in Table 1 below. .
  • Anode active material prepared above: artificial graphite: conductive material (carbon black): conductive material (single-walled carbon nanotube (SWCNT): carboxymethyl cellulose: styrene-butadiene rubber (SBR) 14.3: 81: A negative electrode, a positive electrode, and a secondary battery were prepared in the same manner as in Example 1, except that the negative electrode mixture layer slurry was prepared by mixing it with water as a dispersion medium in a weight ratio of 1: 0: 1.2: 2.5.
  • a negative active material was prepared in the same manner as in Example 1, except that the graphene coating layer was not formed, and the Mg-containing silicon oxide content and the carbon coating layer content were changed as shown in Table 1 below.
  • Anode active material prepared above: artificial graphite: conductive material (carbon black): conductive material (single-walled carbon nanotube (SWCNT): carboxymethyl cellulose: styrene-butadiene rubber (SBR) 14.3: 81: A negative electrode, a positive electrode, and a secondary battery were prepared in the same manner as in Example 1, except that a negative electrode mixture layer slurry was prepared by mixing it with water as a dispersion medium in a weight ratio of 0.96: 0.04: 1.2: 2.5.
  • a negative active material was prepared in the same manner as in Example 1, except that the graphene coating layer was not formed, and the Mg-containing silicon oxide content and the carbon coating layer content were changed as shown in Table 1 below.
  • Anode active material prepared above: artificial graphite: conductive material (carbon black): conductive material (single-walled carbon nanotube (SWCNT): carboxymethyl cellulose: styrene-butadiene rubber (SBR) 14.3: 81: A negative electrode, a positive electrode, and a secondary battery were prepared in the same manner as in Example 1, except that a negative electrode mixture layer slurry was prepared by mixing it with water as a dispersion medium in a weight ratio of 0.92: 0.08: 1.2: 2.5.
  • a negative active material was prepared in the same manner as in Example 1, except that the graphene coating layer was not formed, and the Mg-containing silicon oxide content and the carbon coating layer content were changed as shown in Table 1 below.
  • Anode active material prepared above: artificial graphite: conductive material (carbon black): conductive material (single-walled carbon nanotube (SWCNT): carboxymethyl cellulose: styrene-butadiene rubber (SBR) 14.3: 81: A negative electrode, a positive electrode, and a secondary battery were prepared in the same manner as in Example 1, except that the negative electrode mixture layer slurry was prepared by mixing it with water as a dispersion medium in a weight ratio of 0.92: 0.08: 1.2: 2.5.
  • a negative active material was prepared in the same manner as in Example 1, except that the graphene coating layer was not formed, and the Mg-containing silicon oxide content and the carbon coating layer content were changed as shown in Table 1 below.
  • Anode active material prepared above: artificial graphite: conductive material (carbon black): conductive material (single-walled carbon nanotube (SWCNT): carboxymethyl cellulose: styrene-butadiene rubber (SBR) 14.3: 81: A negative electrode, a positive electrode, and a secondary battery were prepared in the same manner as in Example 1, except that a negative electrode mixture layer slurry was prepared by mixing it with water as a dispersion medium in a weight ratio of 0.92: 0.08: 1.2: 2.5.
  • the D/G band intensity ratio of the graphene of the graphene coating layer provided in the anode active materials obtained in Examples 1 to 7 and Comparative Examples 1 to 8 was 25 points for each sample by Raman spectroscopy using a laser of 532 nm wavelength (Raman spectroscopy) Integral values for D and G bands were obtained through spectroscopy), and the D/G band intensity ratio was calculated for them.
  • the D/G band intensity ratio of graphene is the maximum peak of the D band at 1360 ⁇ 50 cm -1 to the maximum peak intensity of the G band at 1580 ⁇ 50 cm -1 obtained by Raman spectroscopy of graphene. It was defined as the average value of the ratio of intensities.
  • the D/G band intensity ratio of graphene is shown in Table 1.
  • the capacity retention rate of the secondary batteries prepared in Examples 1 to 7 and Comparative Examples 1 to 8 during high temperature storage (8 weeks) at 60° C. was measured by the following method.
  • the capacity of the first charge/discharge cycle is measured and used as a reference, and the capacity retention rate for the discharge capacity obtained by repeating the charge/discharge once after discharging after 8 weeks of storage in a high-temperature chamber at 60°C in a fully charged state after charging again measured.
  • the high temperature (45° C.) capacity retention rate (300 cycles) of the secondary batteries prepared in Examples 1 to 7 and Comparative Examples 1 to 8 was measured by the following method.
  • the capacity retention rate was defined in the following formula.
  • the measurement results are shown in Table 1.
  • Capacity retention rate (%) [300th cycle discharge capacity/second cycle discharge capacity] X 100
  • Mg-containing silicon oxide content, carbon coating layer containing, and graphene coating layer content in Table 1 are calculated based on the total weight of "Mg-containing silicon oxide with carbon coating layer and graphene coating layer formed",
  • SW-CNT content is negative electrode active material It is calculated based on the total weight of the layer.

Abstract

집전체; 및 상기 집전체의 적어도 일면 상에 위치하고, 1) Mg 함유 규소산화물, 및 상기 Mg 함유 규소산화물의 표면을 둘러싸는 탄소 코팅층, 및 상기 탄소 코팅층을 둘러싸는 그래핀 코팅층을 포함하는 음극활물질, 2) 단일벽 탄소나노튜브(Single-walled Carbon Nanotube, SWCNT)을 포함하는 도전재, 및 3) 바인더를 함유하는 음극활물질층;을 구비하고, 상기 그래핀 코팅층에 포함되는 그래핀의 D/G 밴드 강도비의 범위가 0.8 내지 1.5이고, 이때 상기 그래핀의 D/G 밴드 강도비는 그래핀의 라만 분광 분석법에 의해 얻어진 1580 ± 50 cm-1 에서의 G 밴드의 최대 피크 강도에 대한 1360 ± 50 cm-1 에서의 D 밴드의 최대 피크 강도의 비의 평균값으로 정의되는 것을 특징으로 하는 음극 및 이를 포함하는 리튬이차전지가 제시된다.

Description

음극 및 이를 포함하는 리튬 이차전지
본 발명은 수명 특성이 개선된 음극 및 이를 포함하는 리튬 이차전지에 대한 것이다.
본 출원은 2020년 9월 21일에 출원된 한국출원 제10-2020-0121831호에 기초한 우선권을 주장하며, 해당 출원의 명세서에 개시된 모든 내용은 본 출원에 원용된다.
최근, 모바일 기기, 퍼스널 컴퓨터, 전기 모터, 일시 축전 장치의 개발 및 보급에 따라 고용량의 에너지원이 요구되고 있으며, 그 대표적인 예로서 리튬 이차전지를 들 수 있다. 차세대형 비수 전해질 이차전지의 음극 재료로서 종래의 흑연계 재료(이론 용량이 372mAh/g)의 10배 이상의 용량(4200mAh/g)을 가지는 규소(Si)가 주목받고 있다. 이로부터, 탄소계 재료를 대신할 신규 재료로서 리튬과 합금화하여 높은 이론 용량을 나타내는 규소를 음극 활물질로 이용하는 것이 제안되고 있다.
하지만, 규소는 충전에 의해 체적 팽창이 생기고 방전시에는 체적 수축된다. 이 때문에, 이차전지가 충방전을 반복하면 음극 활물질로서 이용된 규소는 미분화되어 전극 내에서 도전 패스를 잃고 고립되는 입자가 증대되어, 그 결과 이차전지의 용량 열화가 발생한다.
사이클 특성을 향상시키는 방법으로서 규소의 미립자화가 시도된 결과, 미립자화를 진행시킬수록 사이클 특성의 향상은 기대할 수 있으나, 결정성 규소의 결정자 사이즈를 작게 하는 점에서는 한계가 있어, 충방전에서 규소의 미분화가 진행된다는 과제를 충분히 해결하는 것은 곤란하였다.
또한, 사이클 특성을 향상시키는 다른 방법으로서 제안된 규소 산화물(SiOx)은 1,000℃ 이상의 고온에서 불균화반응(disproportionation)[0010] 에 의해 Si와 SiO2로 분해되면서 수 nm의 규소 결정이 규소산화물에 균일하게 분산되는 구조를 형성한다. 이러한 규소산화물을 이차전지의 음극 활물질로 적용하면, 용량이 규소 음극 활물질의 용량의 절반 수준에 불과하지만 탄소계 음극 활물질의 용량 대비 5배 정도로 크고, 구조적으로 충방전시의 부피변화가 작아 사이클 수명 특성이 우수한 것으로 기대되고 있다. 하지만, 규소산화물은 초기 충전시에 리튬과 규소산화물이 반응하여 리튬실리사이드와 리튬산화물(산화리튬 및 규산리튬)이 생성되는데, 이중 리튬산화물은 이후의 전기화학 반응에 관여하지 않게 되므로 초기 충전시에 음극으로 이동된 리튬의 일부가 방전시에 양극으로 돌아오지 않는 비가역 반응이 발생하게 된다. 규소산화물의 경우 다른 규소계 음극에 비하여 이와 같은 비가역 용량이 커서 초기효율(ICE, 초기의 충전 용량 대비 방전 용량의 비율)이 70 내지 75%로 매우 낮다. 이러한 낮은 초기 효율은 이차전지를 구성하는데 있어서 양극의 용량을 과잉으로 필요로 하게 되어 음극이 갖는 단위 질량당의 용량을 상쇄하게 되는 문제가 있었다.
또한, 규소산화물을 음극활물질로 사용하는 경우 도전재로 카본나노튜브(CNT) 를 적용하면 전기전도성 향상 및 전기적 단락을 개선시키는 역할을 하지만, 부피 수축/팽창 과정을 거치며 규소산화물 표면에서 분리되어 전기적 단락을 초래한다.
따라서, 규소산화물을 음극 활물질로서 사용하는 경우에, 이처럼 비가역을 발생시키는 리튬산화물 생성 반응을 감소시켜 초기 용량/효율뿐만 아니라, 수명 특성도 만족할 수 있는 규소산화물계 소재의 개발에 대한 요구가 여전히 있다.
본 발명은 초기 용량/효율과 수명 특성이 우수한 음극 활물질을 포함하는 음극 및 리튬 이차전지를 제공하는 것을 목적으로 한다. 이 외의 본 발명의 다른 목적 및 장점들은 하기 설명에 의해서 이해될 수 있을 것이다. 한편, 본 발명의 목적 및 장점들은 특허청구범위에서 기재되는 수단 또는 방법, 및 이의 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기 본 발명의 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 하기 구현예의 음극이 제공된다.
본 발명의 제1 구현예에 따르면,
집전체; 및
상기 집전체의 적어도 일면 상에 위치하고,
1) Mg 함유 규소산화물, 상기 Mg 함유 규소산화물의 표면을 둘러싸는 탄소 코팅층, 및 상기 탄소 코팅층을 둘러싸는 그래핀 코팅층을 포함하는 음극활물질, 2) 단일벽 탄소나노튜브(Single-walled Carbon Nanotube, SWCNT)을 포함하는 도전재, 및 3) 바인더를 함유하는 음극활물질층;을 구비하고,
상기 그래핀 코팅층에 포함되는 그래핀의 D/G 밴드 강도비의 범위가 0.8 내지 1.5이고,
이때 상기 그래핀의 D/G 밴드 강도비는 그래핀의 라만 분광 분석법에 의해 얻어진 1580 ± 50 cm-1 에서의 G 밴드의 최대 피크 강도에 대한 1360 ± 50 cm-1 에서의 D 밴드의 최대 피크 강도의 비의 평균값으로 정의되는 것을 특징으로 하는 음극이 제공된다.
본 발명의 제2 구현예에 따르면, 제1 구현예에 있어서,
상기 그래핀 코팅층에 포함되는 그래핀의 D/G 밴드 강도비의 범위가 0.8 내지 1.4일 수 있다.
본 발명의 제3 구현예에 따르면, 제1 구현예 또는 제2 구현예에 있어서,
상기 Mg 함유 규소산화물이 4 내지 15 중량%의 Mg를 포함할 수 있다.
본 발명의 제4 구현예에 따르면, 제1 구현예 내지 제3 구현예 중 어느 한 구현예에 있어서,
상기 그래핀 코팅층의 함량이 상기 음극활물질 전체 중량에 대해서 0.5 내지 10 중량%일 수 있다.
본 발명의 제5 구현예에 따르면, 제1 구현예 내지 제4 구현예 중 어느 한 구현예에 있어서,
상기 탄소 코팅층의 함량이 상기 음극활물질 전체 중량에 대해서 0.5 내지 10 중량%일 수 있다.
본 발명의 제6 구현예에 따르면, 제1 구현예 내지 제5 구현예 중 어느 한 구현예에 있어서,
상기 단일벽 탄소나노튜브의 함량이 상기 음극활물질층 전체 중량에 대해서 0.01 내지 0.06 중량%일 수 있다.
본 발명의 제7 구현예에 따르면, 제1 구현예 내지 제6 구현예 중 어느 한 구현예에 있어서,
상기 도전재가 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 카본 나노 섬유, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙, 탄소 섬유, 금속 섬유, 플로로카본, 금속 분말, 도전성 위스커, 도전성 금속 산화물, 폴리페닐렌 유도체, 또는 이들 중 2 이상을 더 포함할 수 있다.
본 발명의 제8 구현예에 따르면, 제1 구현예 내지 제7 구현예 중 어느 한 구현예에 있어서,
상기 음극활물질층이 탄소계 활물질을 더 포함할 수 있다.
본 발명의 제9 구현예에 따르면, 제8 구현예에 있어서,
상기 탄소계 활물질이 인조흑연, 천연흑연, 흑연화탄소 섬유, 흑연화 메조카본마이크로비드, 석유코크스, 수지소성체, 탄소섬유, 열분해 탄소, 또는 이들 중 2 이상을 포함할 수 있다.
본 발명의 제10 구현예에 따르면, 제1 구현예 내지 제9 구현예 중 어느 한 구현예에 따른 음극을 포함하는 리튬 이차전지가 제공된다.
본 발명의 일 구현예 따른 음극에서는, Mg 함유 규소산화물 표면에 기존 탄소 코팅층에 추가로 그래핀 코팅층을 도입하고, 도전재로서 단일벽 탄소나노튜브(Single-walled Carbon Nanotube, SWCNT)을 함께 사용한 결과, 상기 그래핀 코팅층이 단일벽 탄소나노튜브와의 친화도가 우수하고, 유연성이 탁월하기 때문에 규소산화물이 수축/팽창하여도 전기적 단락이 방지되어 탁월한 수명개선 효과를 발휘할 수 있다.
또한, Mg 함유 규소산화물의 부피 팽창 및 수축에도 그래핀 코팅층이 보존되기 때문에 Mg 함유 규소산화물이 직접적으로 전해액에 노출되는 것이 방지되어 고온저장에서도 Mg 함유 규소산화물의의 퇴화를 방지 할 수 있다.
또한, Mg 함유 규소산화물 표면에 탄소 코팅층과 그래핀 코팅층이 함께 구비됨으로써 탄소 코팅층에 의해 Mg 함유 규소산화물의 부피 팽창을 억제하고, 그래핀의 유연함을 통해 수축 후에도 전기적 네트워크를 유지시켜주어 이차전지의 수명 향상 및 고온 저장 특성 개선 등의 시너지 효과를 발휘할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다. 한편, 본 명세서에 수록된 도면에서의 요소의 형상, 크기, 축척 또는 비율 등은 보다 명확한 설명을 강조하기 위해서 과장될 수 있다.
도 1은 종래의 탄소 코팅층을 구비한 규소산화물(a)과 본 발명의 일 구현예에 따른 음극활물질(b)의 리튬화 및 탈리튬화 과정을 나타낸 모식도이다.
도 2는 종래의 탄소 코팅층을 구비한 규소산화물을 포함한 음극(a)과 본 발명의 일 구현예에 따른 음극활물질을 포함한 음극(b)의 리튬화 및 탈리튬화 과정을 나타낸 모식도이다.
본 명세서 및 특허청구범위에 사용된 용어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 도시된 구성은 본 발명의 가장 바람직한 하나의 실시양태에 불과하고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물 및 변형예가 있을 수 있음을 이해하여야 한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 발명의 일 측면에 따른 음극은,
집전체; 및
상기 집전체의 적어도 일면 상에 위치하고,
1) Mg 함유 규소산화물, 상기 Mg 함유 규소산화물의 표면을 둘러싸는 탄소 코팅층, 및 상기 탄소 코팅층을 둘러싸는 그래핀 코팅층을 포함하는 음극활물질, 2) 단일벽 탄소나노튜브(Single-walled Carbon Nanotube, SWCNT)을 포함하는 도전재, 및 3) 바인더를 함유하는 음극활물질층;을 구비하고,
상기 그래핀 코팅층에 포함되는 그래핀의 D/G 밴드 강도비의 범위가 0.8 내지 1.5이고,
이때 상기 그래핀의 D/G 밴드 강도비는 그래핀의 라만 분광 분석법에 의해 얻어진 1580 ± 50 cm-1 에서의 G 밴드의 최대 피크 강도에 대한 1360 ± 50 cm-1 에서의 D 밴드의 최대 피크 강도의 비의 평균값으로 정의되는 것을 특징으로 한다.
상기 음극 활물질은 코어부에 해당되는 Mg 함유 규소산화물과, 상기 코어부의 외측을 일부 또는 전부 감싸고 있는 쉘부에 해당되는 탄소 코팅층 및 그래핀 코팅층을 구비한다.
상기 쉘부 중 하나인 탄소 코팅층은 탄소 재료를 포함하고, 상기 탄소 재료는 코어부의 표면에 결합, 부착 또는 피복되어 있을 수 있다. 상기 탄소 재료는 결정질 탄소, 천연 흑연, 인조 흑연, 그래핀, 키시 흑연(kish graphite), 흑연화 탄소 섬유, 흑연화 메조카본마이크로비드, 및 비정질 탄소로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 또한 상기 탄소 재료는 연화탄소(soft carbon), 경화탄소(hard carbon), 열분해 탄소(pyrolytic carbon), 액정피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(mesophase pitches), 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 및 활성탄으로 이루어지는 군으로부터 선택되는 1종 이상을 고온에서 열처리 또는 소성하여 수득된 것을 포함할 수 있다.
또한, 상기 그래핀 코팅층은 그래핀을 포함하고, 상기 그래핀은 탄소 코팅층의 표면에 결합, 부착 또는 피복되어 있을 수 있다. 상기 Mg 함유 규소산화물에 리튬이온이 삽입 및 탈리하는 리튬화/탈리튬화의 과정에서 상기 Mg 함유 규소산화물이 부피 팽창 및 수축이 반복되는 경우에도 Mg 함유 규소산화물의 표면에 그래핀 코팅층이 보존되기 때문에 규소산화물이 직접적으로 전해액에 노출되는 것이 방지되어 고온저장에서도 규소산화물의의 퇴화를 방지 할 수 있다. 이때, 상기 Mg 함유 규소산화물이 부피 팽창 및 수축이 반복되는 경우에도 Mg 함유 규소산화물의 표면을 둘러싸는 탄소 코팅층의 표면에 그래핀 코팅층이 보존되는 이유는 탄소 코팅층이 Mg 함유 규소산화물의 부피 팽창을 억제하며, 유연한 그래핀 코팅층이 팽창 후 다시 수축할 수 있기 때문이다.
상기 그래핀의 D/G 밴드 강도비의 범위가 0.8 내지 1.5이고, 이때 상기 그래핀의 D/G 밴드 강도비는 그래핀의 라만 분광 분석법에 의해 얻어진 1580 ± 50 cm-1에서의 G 밴드의 최대 피크 강도에 대한 1360 ± 50 cm-1 에서의 D 밴드의 최대 피크 강도의 비의 평균값으로 정의된다.
구체적으로, 1360 ± 50 cm-1 에서의 D 밴드는 탄소 입자의 존재와 불완전하고 무질서한 벽의 특성을 나타내며, 1580 ± 50 cm-1 에서의 G 밴드는 탄소-탄소 결합(C-C)의 연속 형태를 나타내는 것으로 이는 그래핀의 결정성 층의 특성을 나타낸다.
상기 D 밴드 피크 및 G 밴드 피크의 강도 비율(D/G 강도비)로 그래핀의 무질서 또는 결함 정도를 평가할 수 있고, 이 비율이 높으면 무질서 또는 결함이 많은 것으로 평가할 수 있으며, 이 비율이 낮으면 상기 그래핀의 결함이 적고 결정화도가 높다고 평가할 수 있다. 여기서 말하는 결함이란 그래핀을 구성하는 탄소간 결합에, 불순물로서 불필요한 원자가 침입하거나, 필요한 탄소 원자가 부족하거나, 또 어긋남이 발생하거나 하는 등에 의해 발생한 그래핀 배열의 불완전한 부분, 예를 들어 격자 결함(lattice defect)을 의미하며, 이로 인해 상기 결함 부분은 외부 자극에 의해 절단이 용이하게 발생하게 된다.
상기 D-밴드 피크 및 G-밴드 피크의 강도는 예를 들어 라만 스펙트럼에서 X축 중심치의 높이 또는 피크 하단의 면적으로 정의할 수 있으며, 측정의 용이성을 고려하여 X축 중심치의 높이 값을 채택할 수 있다
상기 그래핀의 D/G 밴드 강도비의 범위가 0.8 내지 1.5이고, 본 발명의 일 구현예에 따르면, 상기 그래핀의 D/G 밴드 강도비의 범위는 0.8 내지 1.4, 또는 1 내지 1.4, 또는 0.8 내지 1.32, 또는 0.8 내지 1.31, 또는 0.8 내지 1.22, 또는 0.8 내지 1.12, 또는 1 내지 1.32, 또는 1 내지 1.31, 또는 1.12 또는 1.22일 수 있다.
상기 그래핀의 D/G 밴드 강도비의 범위가 이러한 범위를 만족하는 경우에, 그래핀이 일정 정도 산화가 되어서 디펙트가 있음으로써 친수성이 증가하여 Mg 함유 규소산화물과 흡착이 잘되어 Mg 함유 규소산화물의 그래핀 커버리지(coverage)를 증가시켜서 유리하다.
또한, 상기 그래핀의 D/G 밴드 강도비의 범위가 0.8 미만인 경우에는 산화 정도가 감소하여 그래핀 흡착력이 떨어지는 문제가 있고, 1.5를 초과하는 경우에, 흡착력이 뛰어나지만 전기전도도 감소 및 부반응 사이트가 증가하여 효율이 낮아지는 문제가 있어 바람직하지 않다.
본 발명의 일 구현예에 따르면, 상기 그래핀 코팅층의 함량이 상기 음극활물질 전체 중량에 대해서 0.5 내지 10 중량%, 또는 0.7 내지 9.7 중량%, 또는 1 내지 9.7 중량%, 또는 2.9 내지 9.7 중량%, 또는 4.8 내지 9.7 중량%, 또는 1 내지 4 중량%, 또는 1 내지 3 중량%, 또는 1 내지 2.9 중량%일 수 있다. 상기 그래핀 코팅층의 함량이 이러한 범위를 만족하는 경우에 용량 및 효율을 감소시키지 않은 범위에서 충분히 Mg 함유 규소산화물의 표면을 피복할 수 있다는 측면에서 유리하다.
상기 탄소 코팅층의 함량은 상기 음극활물질 전체 중량에 대해서 0.5 내지 10 중량%, 또는 0.7 내지 7 중량%, 또는 1 내지 5 중량%, 또는 2 내지 4 중량%, 또는 3 내지 4 중량%, 또는 3.5 내지 3.8 중량%, 또는 3.5 내지 3.7 중량%, 또는 3.7 내지 3.8 중량%일 수 있다.
상기 탄소 코팅층의 함량이 이러한 범위를 만족하는 경우에, Mg 함유 규소 산화물을 적절히 피복하여 전기전도성을 향상시키고, Mg 함유 규소산화물이 수분과의 반응하는 것을 막을 수 있고, 탄소 코팅층이 과량으로 형성될 때 야기되는 초기 용량 및 효율이 감소되는 문제를 방지할 수 있고, Mg 함유 규소산화물의 부피 팽창을 억제할 수 있어서 유리하다.
상기 Mg 함유 규소산화물 표면에 탄소 코팅층과 그래핀 코팅층이 함께 구비됨으로써 탄소 코팅층에 의해 Mg 함유 규소산화물의 부피 팽창을 억제하고, 그래핀의 유연함을 통해 수축 후에도 전기적 네트워크를 유지시켜주어 이차전지의 수명 향상 및 고온 저장 특성 개선 등의 시너지 효과를 발휘할 수 있다.
상기 Mg 함유 규소산화물은 Si 및 Mg를 함유하는 마그네슘 실리케이트(Mg-실리케이트)를 포함하고, 또한 Si, SiOx(0<x≤2)로 표시되는 규소산화물을 더 포함할 수 있다. 상기 Mg-실리케이트는 MgSiO3 및 Mg2SiO4 를 포함한다. 그 결과, 본 발명의 음극 활물질은 X선 회절 분석시 Mg2SiO4 및 MgSiO3 에 의한 피크를 동시에 나타내고, MgO에 의한 피크는 관찰되지 않는다. MgO에 의한 피크가 추가로 관찰되는 경우, 수계 시스템에서 슬러리를 믹싱할 때 물과 반응하여 가스가 발생할 수 있고, MgO가 비가역의 원인이 되는 SiO2와 결합(반응)하지 않은 상태로 존재하기 때문에, 초기 효율의 개선 효과가 적으며, 더불어 Li 의 삽입/탈리시 스웰링 억제 효과가 없어 전지 성능이 저하될 수 있다.
또한, 상기 Mg2SiO4 에 귀속되는 피크 강도 I(Mg2SiO4)와 MgSiO3에 귀속되는 피크강도 I(MgSiO3)의 비인 I(Mg2SiO4)/I(MgSiO3)가 1 보다 작으며, 이때, 상기 Mg2SiO4 에 귀속되는 피크가 2 θ=32.2±0.2°에서 관찰되고, 상기 MgSiO3 에 귀속되는 피크가 2 θ=30.9±0.2°에서 관찰된다.
상기 I(Mg2SiO4)/I(MgSiO3)는 상세하게는 0.1 내지 0.9이고, 더 상세하게는 0.2 내지 0.7일 수 있다. SiO를 단독으로 사용하지 않고 Mg과 반응시켜 얻어진 마그네슘 실리케이트를 사용하는 이유는 초기 효율을 개선하기 위한 목적이다. 흑연 대비 SiO는 용량이 높지만 초기 효율이 낮아 실제 전지에서 용량을 최대한 증가시키기 위해서는 SiO의 초기 효율을 높이는 것이 중요하다. Mg이 SiOx(0<x<2)와 결합하는 양에 따라 초기 효율 개선 효과가 다를 수 있다. 상기 피크강도의 비인 I(Mg2SiO4)/I(MgSiO3)가 이러한 범위를 만족하는 경우, 같은 양의 Mg을 SiO와 반응시켰을 때 MgSiO3가 조금이라도 더 많이 형성될 수 있어 Mg2SiO4가 형성될 때보다 초기 효율 개선 효과가 클 수 있다.
상기 Mg2SiO4 에 귀속되는 피크가 2θ=32.2±0.2°에서 관찰되고, 상기 MgSiO3 에 귀속되는 피크가 2θ=30.9±0.2°에서 관찰된다. 이때, 상기 피크는 Cu(Kα-선) (파장: 1.54Å) 소스를 이용한 XRD 회절 측정을 통해서 관찰될 수 있다.
상기 Mg 함유 규소산화물에서 Mg, 마그네슘 실리케이트 및 규소 산화물은 각 상들의 원소가 서로 확산하여 각 상들의 경계면이 결합되어 있는 상태, 즉 각 상이 원자 레벨로 결합하고 있기 때문에 리튬 이온의 흡장 방출시 체적 변화가 적고 충방전의 반복에 의해서도 복합 입자의 균열이 잘 발생하지 않는다.
또한, 본 발명의 구체적인 일 실시양태에 있어서, 상기 Mg 함유 규소산화물이 4 중량% 내지 15 중량%, 상세하게는 4 중량% 내지 10 중량%, 또는 4 중량% 내지 8 중량%, 또는 8 중량% 내지 10 중량%, 또는 8 중량% 내지 15 중량%의 Mg를 포함할 수 있다. 상기 Mg의 함량이 이러한 범위를 만족하는 경우, 용량 감소를 최소화 하면서 효율 개선 효과를 가질 수 있고, 부반응물인 MgO가 생성되는 것을 방지할 수 있고, 내부구조의 기공을 감소시켜 수명 성능 개선에 유리하다.
본 발명의 일 구현예에 따르면, 상기 Mg 함유 규소산화물 분말의 평균 입경(D50), 즉 분말의 체적 누적 입도 분포의 50% 입경(D50)은 0.1㎛ 내지 20㎛, 상세하게는 0.5 ㎛ 내지 10㎛일 수 있다. 또한, Mg 함유 규소산화물 분말의 체적 누적 입도 분포의 90% 입경(D90)이 30㎛ 이하이고, 상세하게는 15㎛ 이하이며, 보다 상세하게는 10㎛ 이하이다. 또한, 체적 누적 입도 분포의 최대 입경이 35㎛ 이하이며, 상세하게는 25㎛ 이하이다. 체적 누적 입도 분포의 50% 입경, 90% 입경 및 최대 입경의 측정은, 예를 들면, 통상적으로 사용되는 레이저 회절 입도 분포 측정 장치를 이용하여 측정했을 때의 누적 빈도에 의해 얻어질 수 있다.
도 1의 (a)는 Mg 함유 규소산화물(10)의 표면에 탄소 코팅층(20)을 구비한 종래의 음극활물질의 리튬화 및 탈리튬화 과정을 나타내고, 도 1의 (b)는 Mg 함유 규소산화물(10)의 표면에 탄소 코팅층(20), 및 그래핀 코팅층(30)을 순차적으로 구비한 본 발명의 일 구현예에 따른 음극활물질의 리튬화 및 탈리튬화 과정을 나타낸 모식도이다.
도 1의 (a)를 참조하면 종래의 음극활물질은 충전 과정에서 리튬이 삽입(리튬화)되어 Mg 함유 규소산화물(10)이 팽창되고, 이후 리튬이 탈리하는 탈리튬화 이후에 Mg 함유 규소산화물(10)이 수축하여 원래 크기로 돌아가나, 탄소 코팅층(20)은 원래대로 복원되지 않게 된다. 그 결과 탄소 코팅층에 의해 피복되지 않고 노출되는 Mg 함유 규소산화물(10)의 표면(A)은 전해액과 반응하여 규소산화물이 퇴화하는 원인이 될 수 있다.
반면, 도 1의 (b)에서, Mg 함유 규소산화물(10)의 표면에 탄소 코팅층(20) 및 그래핀 코팅층(30)을 구비한 본 발명의 일 구현예에 따른 음극활물질은 리튬이 삽입(리튬화)후 Mg 함유 규소산화물(10)이 팽창되고 이후 리튬이 탈리(탈리튬화)하여 Mg 함유 규소산화물(10)이 수축하여 원래 크기로 돌아가는 경우에, Mg 함유 규소산화물(10)의 표면에 형성된 탄소 코팅층에는 일부 크랙이 생길 수 있다. 하지만, 그래핀 코팅층(30)이 그대로 보존되기 때문에, 탄소 코팅층에 크랙이 발생하는 경우에도 전해액에 노출되어 규소산화물이 퇴화하는 문제가 방지될 수 있다.
본 발명의 일 구현예에 따른 음극 활물질의 제조방법에 대해서 이하 설명한다.
본 발명의 일 측면에 따른 음극 활물질을 제조하는 방법은,
SiOx(0<x<2) 가스와 Mg 가스를 반응시킨 후, 400℃ 내지 900℃에서 냉각하여 Mg 함유 규소산화물을 석출하는 단계;
상기 석출된 Mg 함유 규소산화물을 분쇄하는 단계;
상기 분쇄된 Mg 함유 규소산화물에 탄소계 물질 원료 가스를 주입하고 850℃ 내지 1,150℃ 로 30분 내지 8시간 동안 열처리하여 상기 규소산화물 복합체 표면에 탄소계 물질을 포함하는 탄소 코팅층을 형성하는 단계; 및
상기 탄소 코팅층을 구비하는 Mg 함유 규소산화물에 그래핀 수계 분산액을 혼합한 후 스프레이 건조 방식으로 처리하여 상기 탄소 코팅층 표면에 그래핀 코팅층을 형성하는 단계;를 포함한다.
본 발명의 일 구현예에 따르면, 상기 SiOx(0<x<2) 가스는 Si/SiO2를 1,000℃ 내지 1,800℃ 범위에서 증발시켜 제조될 수 있고, 상기 Mg 가스는 800℃ 내지 1,600℃ 범위에서 Mg를 증발시켜서 제조될 수 있다.
상기 SiOx(0<x<2) 가스와 Mg 가스의 반응은 800 내지 1,800 ℃에서 진행될 수 있고, 1 내지 6 시간 내에, 목표 냉각 온도인 400℃ 내지 900℃, 상세하게는 500 내지 800℃로 급냉 처리할 수 있다. 상기 SiOx(0<x<2) 가스와 Mg 가스의 기상 반응 후 급냉 시간이 상기 범위를 만족하는 경우에, 짧은 시간에 낮은 온도로 급냉 시킴에 따라 Mg과 SiOx가 제대로 반응하지 못하여 실리케이트가 형성되지 못하고 MgO 등의 원치 않는 상으로 남게 되는 문제를 방지할 수 있고, 그 결과, 초기 효율 및 스웰링 방지 효과가 개선되어 전지의 수명 성능이 증가할 수 있다.
냉각 후 추가 열처리를 할 수 있고, 이때 열처리 온도에 따라 Si 결정립 크기와 Mg 실리케이트의 비율 등을 조절할 수 있다. 예를 들어, 추가 열처리 온도가 높을 경우 Mg2SiO4 상이 증가하고 Si 결정립 크기가 증가할 수 있다.
본 발명의 일 구현예에 따르면, 석출된 Mg 함유 규소산화물은 결정질인 규소상과 상기 규소상이 점재하는 모양으로 매립된 매트릭스를 포함할 수 있으며, 상기 매트릭스는 Mg-실리케이트 및 규소-산화물을 포함한다.
다음으로, 상기 Mg 함유 규소산화물을 기계적 밀링의 방법 등을 통하여 입경(D50) 0.1㎛ 내지 20㎛의 코어부인 Mg 함유 규소산화물 분말을 제조할 수 있다.
상기 분쇄된 Mg 함유 규소산화물에 탄소계 물질 원료 가스를 주입하고 850℃ 내지 1,150℃ 로 30분 내지 8시간 동안 열처리하여 상기 규소산화물 복합체 표면에 탄소계 물질을 포함하는 탄소 코팅층을 형성한다. 이때, 탄소계 물질 원료 가스로는 메탄 가스를 사용할 수 있고, 이때 아르곤 가스를 더 추가한 혼합 가스를 사용할 수도 있으며, 화학증착법(CVD)을 이용하여 탄소 코팅층을 형성할 수 있다.
다음으로 그래핀 분산액과 혼합한 후 스프레이 건조 방식을 거쳐서 탄소 코팅층 상에 그래핀 코팅층을 형성할 수 있다.
이때, 상기 스프레이 건조는 예를 들어 150℃ 내지 250℃, 또는 175℃ 내지 225℃, 또는 200℃에서 실시될 수 있다.
본 발명의 일 측면에 따른 음극은 음극 집전체 상에 음극 활물질, 단일벽 탄소나노튜브(Single-walled Carbon Nanotube, SWCNT)을 포함하는 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조할 수 있으며, 필요에 따라서는, 상기 혼합물에 충진재를 더 포함할 수도 있다. 상기 음극 활물질로 전술한 Mg 함유 규소산화물, 및 상기 Mg 함유 규소산화물의 표면을 둘러싸는 탄소 코팅층, 및 상기 탄소 코팅층을 둘러싸는 그래핀 코팅층을 포함하는 음극활물질이 사용된다.
본 발명의 일 구현예에 있어서 상기 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 이 중 양극 또는 음극의 극성에 따라 적절하게 선택하여 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 전극 합재 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더로서 폴리아크릴로니트릴-아크릴산 공중합체, 폴리비닐리덴 플로라이드, 폴리비닐알콜, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌부타디엔 고무(SBR), 폴리아크릴산, 알칼리 양이온 또는 암모늄이온으로 치환된 폴리아크릴산, 알칼리 양이온 또는 암모늄 이온으로 치환된 폴리(알킬렌-무수말레인산) 공중합체, 알칼리 양이온 또는 암모늄 이온으로 치환된 폴리(알킬렌-말레인산) 공중합체, 폴리에틸렌옥사이드, 불소 고무, 또는 이들 중 2종 이상을 사용할 수 있다. 보다 구체적으로, 상기 알칼리 양이온으로 치환된 폴리아크릴산으로는 리튬-폴리아크릴레이트(Li-PAA, 리튬이 치환된 폴리아크릴산) 등이 있고, 상기 알칼리 양이온으로 치환된 폴리(알킬렌-무수말레인산) 공중합체로는 리튬이 치환된 폴리(이소부틸렌-무수말레인산) 등이 있을 수 있다.
상기 도전재는 단일벽 탄소나노튜브(Single-walled Carbon Nanotube, SWCNT)을 필수로 포함한다. 종래 규소산화물 활물질에 적용되는 카본코팅층과 대비하여 그래핀은 단일벽 탄소나노튜브에 대한 친화도(affinity)가 높기 때문에 단일벽 탄소나노튜브를 도전재로 사용할 경우 리튬이온이 삽입(리튬화, lithiation) 및 탈리(탈리튬화, de-lithiation)하는 충방전 동안에 활물질과 도전재간의 전기적 네트워크(network)를 유지하는데 유리하여 수명개선 및 고온저장 성능을 탁월하게 향상시킬 수 있다.
상기 단일벽 탄소나노튜브는 6각형으로 배열된 탄소원자들이 튜브 형태를 이루고 있는 물질로, 특유의 나선성(chirality)에 따라 부도체, 전도체 또는 반도체 성질을 나타내며, 탄소 원자들이 강력한 공유결합으로 연결되어 있어 인장강도가 강철보다 대략 100배 이상 크고, 유연성과 탄성 등이 뛰어나며, 화학적으로도 안정한 특성을 가진다.
상기 단일벽 탄소나노튜브의 평균 직경은 3nm 내지 10nm일 수 있으며, 구체적으로 5nm 내지 8nm일 수 있다. 상기 범위를 만족하는 경우, 도전재 분산액 제조 시 바람직한 점도와 고형분 도출이 가능하다. 상기 도전재 분산액 내에서 단일벽 탄소나노튜브들은 서로 뭉쳐서 인탱글된(entangled) 상태(응집체)로 존재할 수 있다. 이에, 상기 평균 직경은 상기 도전재 분산액으로부터 추출된 임의의 인탱글된 상태의 단일벽 탄소나노튜브 응집체의 직경을 SEM 또는 TEM으로 확인한 뒤, 상기 응집체의 직경을 상기 응집체를 구성하는 단일벽 탄소나노튜브의 개수로 나누어 도출될 수 있다.
상기 단일벽 탄소나노튜브의 BET 비표면적은 200m2/g 내지 700m2/g일 수 있으며, 구체적으로 230m2/g 내지 600m2/g, 또는 250m2/g 내지 580m2/g일 수 있다. 상기 범위를 만족하는 경우, 바람직한 고형분을 가진 도전재 분산액이 도출되며, 음극 슬러리의 점도가 지나치게 상승하는 것이 방지된다. 상기 BET 비표면적은 질소 흡착 BET법을 통해 측정될 수 있다.
상기 단일벽 탄소나노튜브의 종횡비는 100 내지 3,000일 수 있으며, 구체적으로 200 내지 2,000, 또는 250 내지 1,000일 수 있다. 상기 범위를 만족하는 경우, 비표면적이 높은 수준이므로, 음극 내에서 단일벽 탄소나노튜브가 활물질 입자에 강한 인력으로 흡착될 수 있다. 이에 따라 음극 활물질의 부피 팽창에도 도전성 네트워크가 원활하게 유지될 수 있다. 상기 종횡비는 상기 단일벽 탄소나노튜브 파우더를 SEM을 통해 관찰할 시, 종횡비가 큰 단일벽 탄소나노튜브 15개와 종횡비가 작은 단일벽 탄소나노튜브 15개의 종횡비의 평균을 구하여 확인할 수 있다.
상가 단일벽 탄소나노튜브는 다중벽 탄소나노튜브나, 이중벽 탄소나노튜브와 비교하여서, 종횡비가 커서 길이가 길고, 부피가 크기 때문에 소량만 사용하여도 전기적 네트워크를 구축할 수 있다는 측면에서 유리하다.
또한, 상기 도전재는 단일벽 탄소나노튜브와 함께, 전지에 화학적 변화를 유발하지 않는 성분으로 예를 들면, 카본 블랙, 아세틸렌 블랙, 케첸 블랙(상품명), 카본 나노 섬유, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙 등의 카본 블랙, 탄소 섬유나 금속 섬유 등의 도전성 섬유, 플로로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커, 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등을 더 사용할 수 있다.
상기 단일벽 탄소나노튜브의 함량은 상기 음극활물질층 전체 중량에 대해서 0.01 내지 0.06 중량%, 또는 0.01 내지 0.05 중량%, 또는 0.01 내지 0.04 중량%, 또는 0.04 내지 0.06 중량%일 수 있다. 상기 단일벽 탄소나노튜브의 함량이 이러한 범위를 만족하는 경우에, Mg 함유 규소산화물의 초기 효율을 저하시키지 않는 범위에서 전기적 네트워크를 충분히 구축할 수 있다는 측면에서 유리하다.
본 발명의 일 구현예에 따르면, 상기 음극활물질층은 탄소계 활물질을 추가 음극활물질로서 더 포함할 수 있다. 상기 탄소계 활물질은 인조흑연, 천연흑연, 흑연화탄소 섬유, 흑연화 메조카본마이크로비드, 석유코크스, 수지소성체, 탄소섬유, 열분해 탄소 등의 결정질 또는 비정질 탄소로 이루어진 물질 중에서 하나 또는 2 이상이 사용될 수 있다. 상기 탄소계 재료는 25㎛ 이하, 또는 5 내지 25㎛, 또는 8 내지 20㎛의 평균입경을 가질 수 있고, 상기 탄소계 재료의 평균 입경이 25㎛ 이하인 경우에 상온 및 저온 출력 특성이 개선되고, 급속 충전 측면에서 유리할 수 있다.
상기 탄소계 활물질은 상기 음극활물질층 전제 중량 기준으로 70 내지 97 중량%, 또는 75 내지 95 중량%, 또는 80 내지 93 중량%일 수 있다.
또한, 본 발명의 일 구현예에 따르면, 상기 Mg 함유 규소산화물, 및 상기 Mg 함유 규소산화물의 표면을 둘러싸는 탄소 코팅층, 및 상기 탄소 코팅층을 둘러싸는 그래핀 코팅층을 포함하는 음극활물질, 즉 "탄소 코팅층과 그래핀 코팅층이 형성된 Mg함유 규소산화물" 및 상기 탄소계 활물질의 중량비는 1:2 내지 1:33, 또는 1:3 내지 1:32, 또는 1:4 내지 1:30, 또는 1:5.7 내지 1:20일 수 있다.
상기 탄소계 활물질이 이러한 함량 범위로 음극활물질층에 포함되는 경우에, 음극활물질의 매트릭스 역할을 하여서 용량 발현에 기여할 수 있다.
도 2의 (a)는 도 1 (a)의 Mg 함유 규소산화물의 표면에 탄소 코팅층을 구비한 종래의 음극활물질과 도전재로 흑연(110)과 단일벽 탄소나노튜브(120)을 구비한 음극의 리튬화 및 탈리튬화 과정을 나타내고, 도 2의 (b)는 도 1 (b)의 Mg 함유 규소산화물의 표면에 탄소 코팅층 및 그래핀 코팅층을 구비한 본 발명의 일 구현예에 따른 음극활물질과 흑연(110)과 단일벽 탄소나노튜브(120)을 구비한 음극의 리튬화 및 탈리튬화 과정을 나타낸 모식도이다.
도 2의 (a)를 참조하면 종래의 음극활물질은 충전 과정에서 리튬이 삽입(리튬화)되어 Mg 함유 규소산화물이 팽창되고, 이후 리튬이 탈리하는 탈리튬화 이후에 Mg 함유 규소산화물이 수축하여 원래 크기로 돌아갈 때, 탄소 코팅층은 원래대로 복원되지 않게 된다. 그 결과 탄소 코팅층에 결합되어 있는 단일벽 탄소나노튜브(120)와 흑연(110)과 Mg 함유 규소산화물 간에 간격이 생기게 되어, 전기적 단락이 발생하게 된다.
반면, 도 2의 (b)에서, 본 발명의 일 구현예에 따른 음극활물질은 리튬이 삽입(리튬화)후 Mg 함유 규소산화물이 팽창되고 이후 리튬이 탈리(탈리튬화)하여 Mg 함유 규소산화물이 수축하여 원래 크기로 돌아가더라도 음극활물질의 최외측에 형성된 그래핀 코팅층이 그대로 보존되고, 또한 그래핀 코팅층에 연결되어 있는 단일벽 탄소나노튜브(120)와 흑연(110)도 Mg 함유 규소산화물 사이에 형성된 전기적 네트워크가 여전히 유지될 수 있다. 따라서, 본 발명의 일 구현예에 따른 음극에서는 가요성이 우수하면서 단일벽 탄소나노튜브와 친화도가 우수한 그래핀 코팅층을 Mg 함유 규소산화물의 표면에 구비함으로써, 이러한 음극을 채용한 이차전지의 수명 특성 및 고온 저장 성능이 현저하게 개선될 수 있다.
본 발명의 일 구현예에 따르면, 상기 음극 집전체 상에 음극 활물질, 도전재 및 바인더의 혼합물을 도포하여 음극을 제조할 때, 건식 방법으로 음극 활물질, 도전재 및 바인더로 이루어진 고상 혼합물을 직접 도포하여 제조할 수도 있고, 습식 방법으로 음극 활물질, 도전재 및 바인더를 분산매에 첨가한 후 교반하여 슬러리 형태로 도포하고 분산매를 건조 등으로 제거하여 제조할 수도 있다. 이때, 습식 방법의 경우에 사용되는 분산매로는 물 (탈이온수 등)의 수계 매질을 사용할 수도 있고, 또는 N-메틸-피롤리돈(NMP, N-methyl-2-pyrrolidone), 아세톤 등의 유기계 매질을 사용할 수도 있다.
본 발명의 일 측면에 따르면, 양극, 음극 및 상기 양극과 음극의 사이에 개재된 분리막을 포함하는 리튬 이차전지를 제공하며, 상기 음극은 본 발명의 일 측면에 따른 음극을 포함하는 것이다.
상기 양극은, 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조할 수 있으며, 필요에 따라서는, 상기 혼합물에 충진재를 더 포함하기도 한다. 상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4(여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2(여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x =0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2(여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1임) 또는 Li2Mn3MO8(여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
양극에 대해서 도전재, 집전체 및 바인더는 전술한 음극의 내용을 참조할 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 필름, 시트나 부직포 등이 사용된다. 한편, 상기 분리막은 최외측 표면에 무기물 입자와 바인더 수지의 혼합물을 포함하는 다공층을 더 포함할 수 있다.
본 발명의 일 구현예에 있어서, 상기 전해액은 유기 용매와 소정량의 리튬염이 포함된 것으로서, 상기 유기 용매의 성분으로는 예를 들어 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 부틸렌 카보네이트(BC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 메틸 프로피오네이트(MP), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 비닐렌카보네이트(VC), 감마 부티로락톤(GBL), 플루오르에틸렌 카보네이트(FEC), 포름산 메틸, 포름산 에틸, 포름산 프로필, 초산 메틸, 초산 에틸, 초산 프로필, 초산 펜틸, 프로피온산 메틸, 프로피온산 에틸, 프로피온산 에틸, 프로피온산 부틸, 또는 이들의 혼합물 등이 있고, 또한, 상기 유기 용매의 할로겐 유도체도 사용 가능하고 선형 에스테르 물질도 사용될 수 있다. 상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
본 발명의 이차전지는 상기 양극, 음극을 분리막과 교호적층한 전극조립체를 전지케이스 등의 외장재에 전해액과 함께 수납/밀봉함으로써 제조할 수 있다. 이차전지의 제조방법은 통상적인 방법을 제한없이 사용할 수 있다.
본 발명의 다른 일 실시예에 따르면, 상기 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고로딩에서 우수한 급속 충전 특성을 나타내는 이차전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템의 전원으로 사용될 수 있다. 상기 2차 전지 중 리튬 금속 이차전지, 리튬 이온 이차전지, 리튬 폴리머 이차전지 또는 리튬 이온 폴리머 이차전지 등을 포함하는 리튬 이차전지가 바람직하다.
한편, 본 명세서에서 상술하지 않은 전지 소자들, 예를 들어 도전재 등에 대해서는 전지 분야, 특히 리튬 이차전지 분야에서 통상적으로 사용되는 소자들에 대한 내용을 참조할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1
(1) 음극 활물질의 제조
규소 분말과 이산화규소(SiO2) 분말을 1:1의 몰비로 균일하게 혼합하여 1 torr의 감압 분위기에서 1,400℃로 열처리하여 SiOx(0<x<2) 가스를 준비하고, Mg를 900℃로 열처리하여 Mg 가스를 준비하였다.
이러한 SiOx(0<x<2) 가스와 Mg 가스를 1,300℃에서 3시간 동안 반응시킨 후, 4 시간 내로 800℃로 냉각시켜 석출한 다음, 제트밀로 분쇄하여 평균입경(D50)이 5㎛인 Mg함유 규소산화물 분말을 회수했다.
회수된 Mg함유 규소산화물 분말을 튜브 형태의 전기로를 이용하여 5℃/분의 속도로 승온하여 950℃, 2시간의 조건으로 아르곤(Ar)과 메탄(CH4)의 혼합가스 하에서 CVD 처리를 하여 탄소 코팅층이 형성된 Mg함유 규소산화물을 제조하였다.
상기 제조된 탄소 코팅층이 형성된 Mg함유 규소산화물을 그래핀 수계 분산액과 웨트 믹서(Wet mixer) 장비를 이용하여 교반한 후 200℃에서 스프레이 건조 처리를 하여 그래핀 코팅층 및 탄소 코팅층이 형성된 Mg함유 규소산화물을 음극 활물질로 얻었다.
이때, 음극활물질 전체 중량 기준으로 Mg 함유 규소산화물 함량, 탄소 코팅층 함량, 그래핀 코팅층 함량을 각각 하기 표 1에 나타내었고, 또한 그래핀 코팅층의 D/G 밴드 강도비도 하기 표 1에 나타내었다.
상기 음극 활물질에 대해 ICP-AES(유도결합플라즈마 원자방출분광기) 분석 결과 Mg 농도가 8 중량%(wt%)임을 확인하였다.
(2) 이차전지의 제조
상기에서 제조된 음극 활물질: 인조흑연: 도전재(카본블랙): 도전재(단일벽 탄소나노튜브(Single-walled Carbon Nanotube, SWCNT): 카르복시메틸셀룰로오스: 스티렌부타디엔 러버(SBR) = 14.3 : 81 : 0.96 : 0.04 : 1.2 : 2.5의 중량비로 분산매인 물에 혼합하여 음극 합제층 슬러리를 제조하였다. 이때, 단일벽 탄소나노튜브의 평균 직경은 20 nm이고, 비표면적은 580 m2/g이고, 종횡비는 250이었다.
상기 음극 합제층 슬러리를 20㎛ 두께의 구리 집전체의 양면에 균일하게 코팅하였다. 코팅은 건조 온도 70℃, 코팅 속도 0.2m/min 조건에서 수행되었다. 이후 롤 프레스 장비를 이용하여 기공도 28%에 맞추어 음극 합제층을 압연하여 타겟 두께를 맞추었다. 다음으로 130℃ 진공 오븐에서 8시간 동안 건조하여서 음극을 제조하였다.
양극 활물질로서 Li[Ni0.6Mn0.2Co0.2]O2 96.7중량부, 도전재로서 인조흑연 1.3 중량부, 바인더로서 폴리비닐리덴 플루오라이드(PVdF)를 2.0중량부를 분산매인 1-메틸-2-피롤리돈에 분산시켜 양극 합제층 슬러리를 제조하였다. 이 슬러리를 두께 20 ㎛의 알루미늄 호일의 양면에 각각 코팅하였다. 코팅은 건조 온도 80℃, 코팅 속도 0.2m/min 조건에서 수행되었다. 이후 롤 프레스 장비를 이용하여 기공도 24%에 맞추어 양극 합제층을 압연하여 타겟 두께를 맞추었다. 다음으로 130℃ 진공 오븐에서 8시간 동안 건조하였다.
상기에서 준비된 음극 및 양극의 사이에 폴리프로필렌 소재 다공성 필름 (30㎛, Celgard 사)을 개재하여 전극 조립체를 제조한 후 전해액을 주액하고 30시간 방치하여 전해액이 전극 내부에 충분히 침윤되도록 하였다. 상기 전해액은 에틸렌 카보네이트(EC)와 에틸메틸카보네이트(EMC)를 3:7(부피비)의 조성으로 혼합된 유기 용매에 LiPF6를 1.0M의 농도가 되도록 용해시키고, 비닐렌카보네이트(VC)를 2 중량%가 되도록 용해시켜 제조하였다.
실시예 2
Mg 함유 규소산화물 함량, 탄소 코팅층 함량, 그래핀 코팅층 함량, 그래핀 코팅층의 D/G 밴드 강도비가 하기 표 1에 나타낸 바와 같이 변경된 점을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질: 인조흑연: 도전재(카본블랙): 도전재(단일벽 탄소나노튜브(Single-walled Carbon Nanotube, SWCNT): 카르복시메틸셀룰로오스: 스티렌부타디엔 러버(SBR) = 14.3 : 81 : 0.96 : 0.04 : 1.2 : 2.5의 중량비로 분산매인 물에 혼합하여 음극 합제층 슬러리를 제조한 점을 제외하고는 실시예 1과 동일한 방법으로 음극, 양극, 및 이차전지를 제조하였다.
실시예 3
Mg 함유 규소산화물 함량, 탄소 코팅층 함량, 그래핀 코팅층 함량, 그래핀 코팅층의 D/G 밴드 강도비가 하기 표 1에 나타낸 바와 같이 변경된 점을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질을 이용한 점을 제외하고는 실시예 1과 동일한 방법으로 음극, 양극, 및 이차전지를 제조하였다.
실시예 4
Mg 함유 규소산화물 함량, 탄소 코팅층 함량, 그래핀 코팅층 함량, 그래핀 코팅층의 D/G 밴드 강도비가 하기 표 1에 나타낸 바와 같이 변경된 점을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질을 이용한 점을 제외하고는 실시예 1과 동일한 방법으로 음극, 양극, 및 이차전지를 제조하였다.
실시예 5
Mg 함유 규소산화물 함량, 탄소 코팅층 함량, 그래핀 코팅층 함량, 그래핀 코팅층의 D/G 밴드 강도비가 하기 표 1에 나타낸 바와 같이 변경된 점을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질을 이용한 점을 제외하고는 실시예 1과 동일한 방법으로 음극, 양극, 및 이차전지를 제조하였다.
실시예 6
Mg 함유 규소산화물 함량, 탄소 코팅층 함량, 그래핀 코팅층 함량, 그래핀 코팅층의 D/G 밴드 강도비가 하기 표 1에 나타낸 바와 같이 변경된 점을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질을 이용한 점을 제외하고는 실시예 1과 동일한 방법으로 음극, 양극, 및 이차전지를 제조하였다.
실시예 7
Mg 함유 규소산화물 함량, 탄소 코팅층 함량, 그래핀 코팅층 함량, 그래핀 코팅층의 D/G 밴드 강도비가 하기 표 1에 나타낸 바와 같이 변경된 점을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질을 이용한 점을 제외하고는 실시예 1과 동일한 방법으로 음극, 양극, 및 이차전지를 제조하였다.
비교예 1
Mg 함유 규소산화물 함량, 탄소 코팅층 함량, 그래핀 코팅층 함량, 그래핀 코팅층의 D/G 밴드 강도비가 하기 표 1에 나타낸 바와 같이 변경된 점을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질: 인조흑연: 도전재(카본블랙): 도전재(단일벽 탄소나노튜브(Single-walled Carbon Nanotube, SWCNT): 카르복시메틸셀룰로오스: 스티렌부타디엔 러버(SBR) = 14.3 : 81 : 1 : 0 : 1.2 : 2.5의 의 중량비로 분산매인 물에 혼합하여 음극 합제층 슬러리를 제조한 점을 제외하고는 실시예 1과 동일한 방법으로 음극, 양극, 및 이차전지를 제조하였다.
비교예 2
Mg 함유 규소산화물 함량, 탄소 코팅층 함량, 그래핀 코팅층 함량, 그래핀 코팅층의 D/G 밴드 강도비가 하기 표 1에 나타낸 바와 같이 변경된 점을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질: 인조흑연: 도전재(카본블랙): 도전재(단일벽 탄소나노튜브(Single-walled Carbon Nanotube, SWCNT): 카르복시메틸셀룰로오스: 스티렌부타디엔 러버(SBR) = 14.3 : 81 : 1 : 0 : 1.2 : 2.5의 중량비로 분산매인 물에 혼합하여 음극 합제층 슬러리를 제조한 점을 제외하고는 실시예 1과 동일한 방법으로 음극, 양극, 및 이차전지를 제조하였다.
비교예 3
그래핀 코팅층을 형성하지 않고, Mg 함유 규소산화물 함량, 탄소 코팅층 함량이 하기 표 1에 나타낸 바와 같이 변경된 점을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질: 인조흑연: 도전재(카본블랙): 도전재(단일벽 탄소나노튜브(Single-walled Carbon Nanotube, SWCNT): 카르복시메틸셀룰로오스: 스티렌부타디엔 러버(SBR) = 14.3 : 81 : 0.96 : 0.04 : 1.2 : 2.5의 중량비로 분산매인 물에 혼합하여 음극 합제층 슬러리를 제조한 점을 제외하고는 실시예 1과 동일한 방법으로 음극, 양극, 및 이차전지를 제조하였다.
비교예 4
그래핀 코팅층을 형성하지 않고, Mg 함유 규소산화물 함량, 탄소 코팅층 함량이 하기 표 1에 나타낸 바와 같이 변경된 점을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질: 인조흑연: 도전재(카본블랙): 도전재(단일벽 탄소나노튜브(Single-walled Carbon Nanotube, SWCNT): 카르복시메틸셀룰로오스: 스티렌부타디엔 러버(SBR) = 14.3 : 81 : 0.92 : 0.08 : 1.2 : 2.5의 중량비로 분산매인 물에 혼합하여 음극 합제층 슬러리를 제조한 점을 제외하고는 실시예 1과 동일한 방법으로 음극, 양극, 및 이차전지를 제조하였다.
비교예 5
D/G 밴드 강도비 범위가 0.7인 그래핀을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
이후, 실시예 1과 동일한 방법으로 음극, 양극, 및 이차전지를 제조하였다.
비교예 6
D/G 밴드 강도비 범위가 1.6인 그래핀을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
이후, 실시예 1과 동일한 방법으로 음극, 양극, 및 이차전지를 제조하였다.
비교예 7
그래핀 코팅층을 형성하지 않고, Mg 함유 규소산화물 함량, 탄소 코팅층 함량이 하기 표 1에 나타낸 바와 같이 변경된 점을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질: 인조흑연: 도전재(카본블랙): 도전재(단일벽 탄소나노튜브(Single-walled Carbon Nanotube, SWCNT): 카르복시메틸셀룰로오스: 스티렌부타디엔 러버(SBR) = 14.3 : 81 : 0.92 : 0.08 : 1.2 : 2.5의 중량비로 분산매인 물에 혼합하여 음극 합제층 슬러리를 제조한 점을 제외하고는 실시예 1과 동일한 방법으로 음극, 양극, 및 이차전지를 제조하였다.
비교예 8
그래핀 코팅층을 형성하지 않고, Mg 함유 규소산화물 함량, 탄소 코팅층 함량이 하기 표 1에 나타낸 바와 같이 변경된 점을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질: 인조흑연: 도전재(카본블랙): 도전재(단일벽 탄소나노튜브(Single-walled Carbon Nanotube, SWCNT): 카르복시메틸셀룰로오스: 스티렌부타디엔 러버(SBR) = 14.3 : 81 : 0.92 : 0.08 : 1.2 : 2.5의 중량비로 분산매인 물에 혼합하여 음극 합제층 슬러리를 제조한 점을 제외하고는 실시예 1과 동일한 방법으로 음극, 양극, 및 이차전지를 제조하였다.
실험예
실험예 1 : 그래핀의 D/G 밴드 강도비 측정
실시예 1 내지 7 및 비교예 1 내지 8에서 얻어진 음극활물질에 구비된 그래핀 코팅층의 그래핀의 D/G 밴드 강도비는 각 시료에 대해 25 포인트씩 532nm 파장의 레이저를 이용한 라만 분광 분석법(Raman spectroscopy)를 통해 D밴드 및 G밴드에 대한 integral 값을 얻었고, 이에 대해서 D/G 밴드 강도비를 계산하였다.
이때, 그래핀의 D/G 밴드 강도비는 그래핀의 라만 분광 분석법에 의해 얻어진 1580 ± 50 cm-1 에서의 G 밴드의 최대 피크 강도에 대한 1360 ± 50 cm-1 에서의 D 밴드의 최대 피크 강도의 비의 평균값으로 정의하였다.
그래핀의 D/G 밴드 강도비는 표 1에 나타내었다.
실험예 2 : 60℃ 고온저장(8주) 용량 유지율
실시예 1 내지 7 및 비교예 1 내지 8에서 제조된 이차전지의 60℃ 고온저장(8주) 용량 유지율은 아래 방법으로 측정하였다.
첫번째 충/방전 사이클의 용량을 측정하여 기준으로 하고, 다시 충전하여 만충된 상태로 60℃의 고온 챔버에서 8주 보관 후 방전시킨 다음 충/방전을 1회 반복하여 얻어지는 방전 용량에 대한 용량 유지율을 측정하였다.
충전 조건: CC/CV, 0.3C, 4.25V, 0.05C cut off
방전 조건: CC 0.3C, 2.5V cut off
측정 결과를 표 1에 나타내었다.
실험예 3: 고온(45℃) 용량 유지율 (300 cycle)
실시예 1 내지 7 및 비교예 1 내지 8에서 제조된 이차전지의 고온(45℃) 용량 유지율 (300 cycle)은 아래 방법으로 측정하였다.
충전 조건: CC/CV, 1C, 4.25V, 0.05C cut off
방전 조건: CC 1C, 2.5V cut off
하기 식으로 용량 유지율을 정의하였다. 측정 결과를 표 1에 나타내었다.
용량 유지율(%)=[300번째 사이클 방전용량/두번째 사이클 방전용량] X 100
음극활물질 및 도전재 이차전지 평가결과
Mg 함유 규소산화물 함량
(wt%)
탄소 코팅층
함량
(wt%)

그래핀의 D/G 밴드 강도비
그래핀 코팅층 함량
(wt%)
SW-CNT 함량
(wt%)
60℃ 고온저장
(8주) 용량
유지율
(%)
고온(45℃)
용량 유지율
(300 cycle)(%)
실시예1 93.4 3.7 1.31 2.9 0.04 93 91
실시예2 95.2 3.8 1.32 1.0 0.04 92 90
실시예3 93.4 3.7 0.8 2.9 0.04 91 90
실시예4 93.4 3.7 1.5 2.9 0.04 89 89
실시예5 91.5 3.7 1.22 4.8 0.06 92 90
실시예6 95.2 3.8 1.31 1.0 0.01 89 89
실시예7 86.8 3.5 1.12 9.7 0.04 93 92
비교예1 90.6 3.6 1.1 5.8 0 81 80
비교예2 94.3 3.8 1.29 1.9 0 80 81
비교예3 96.1 3.9 1.85 0.0 0.04 83 84
비교예4 96.1 3.9 1.86 0.0 0.08 84 85
비교예5 93.4 3.7 0.7 2.9 0.04 80 83
비교예6 93.4 3.7 1.6 2.9 0.04 85 85
비교예7 82.2 3.3 1.3 14.5 0 75 85
비교예8 96.1 3.9 - 0.0 0.1 80 84
상기 표 1에서 Mg 함유 규소산화물 함량, 탄소 코팅층 함랑, 및 그래핀 코팅층 함량은, "탄소 코팅층과 그래핀 코팅층이 형성된 Mg함유 규소산화물" 전체 중량 기준으로 계산된 것이고, SW-CNT 함량은 음극활물질층 전체 중량 기준으로 계산된 것이다.
상기 표 1을 참조하면, 도전재로 단일벽 탄소나노튜브를 포함하고, 탄소 코팅층과 상기 탄소 코팅층의 표면에 그래핀의 D/G 밴드 강도비의 범위가 0.8 내지 1.5의 조건을 만족하는 그래핀 코팅층에 포함되는 음극활물질을 적용한 실시예 1 내지 7의 이차전지의 경우에, 비교예 1 내지 8의 이차전지와 비교하여 모두 89% 이상의 높은 60℃ 고온저장(8주) 용량 유지율 및 고온(45℃) 용량 유지율 (300 cycle)을 나타내고 있음을 알 수 있었다.

Claims (10)

  1. 집전체; 및
    상기 집전체의 적어도 일면 상에 위치하고,
    1) Mg 함유 규소산화물, 상기 Mg 함유 규소산화물의 표면을 둘러싸는 탄소 코팅층, 및 상기 탄소 코팅층을 둘러싸는 그래핀 코팅층을 포함하는 음극활물질, 2) 단일벽 탄소나노튜브(Single-walled Carbon Nanotube, SWCNT)을 포함하는 도전재, 및 3) 바인더를 함유하는 음극활물질층;을 구비하고,
    상기 그래핀 코팅층에 포함되는 그래핀의 D/G 밴드 강도비의 범위가 0.8 내지 1.5이고,
    이때 상기 그래핀의 D/G 밴드 강도비는 그래핀의 라만 분광 분석법에 의해 얻어진 1580 ± 50 cm-1 에서의 G 밴드의 최대 피크 강도에 대한 1360 ± 50 cm-1 에서의 D 밴드의 최대 피크 강도의 비의 평균값으로 정의되는 것을 특징으로 하는 음극.
  2. 제1항에 있어서,
    상기 그래핀 코팅층에 포함되는 그래핀의 D/G 밴드 강도비의 범위가 0.8 내지 1.4인 것을 특징으로 하는 음극.
  3. 제1항에 있어서,
    상기 Mg 함유 규소산화물이 4 내지 15 중량%의 Mg를 포함하는 것을 특징으로 하는 음극.
  4. 제1항에 있어서,
    상기 그래핀 코팅층의 함량이 상기 음극활물질 전체 중량에 대해서 0.5 내지 10 중량%인 것을 특징으로 하는 음극.
  5. 제1항에 있어서,
    상기 탄소 코팅층의 함량이 상기 음극활물질 전체 중량에 대해서 0.5 내지 10 중량%인 것을 특징으로 하는 음극.
  6. 제1항에 있어서,
    상기 단일벽 탄소나노튜브의 함량이 상기 음극활물질층 전체 중량에 대해서 0.01 내지 0.06 중량%인 것을 특징으로 하는 음극.
  7. 제1항에 있어서,
    상기 도전재가 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 카본 나노 섬유, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙, 탄소 섬유, 금속 섬유, 플로로카본, 금속 분말, 도전성 위스커, 도전성 금속 산화물, 폴리페닐렌 유도체, 또는 이들 중 2 이상을 더 포함하는 것을 특징으로 하는 음극.
  8. 제1항에 있어서,
    상기 음극활물질층이 탄소계 활물질을 더 포함하는 것을 특징으로 하는 음극.
  9. 제8항에 있어서,
    상기 탄소계 활물질이 인조흑연, 천연흑연, 흑연화탄소 섬유, 흑연화 메조카본마이크로비드, 석유코크스, 수지소성체, 탄소섬유, 열분해 탄소, 또는 이들 중 2 이상을 포함하는 것을 특징으로 하는 음극.
  10. 제1항 내지 제9항 중 어느 한 항에 따른 음극을 포함하는 리튬 이차전지.
PCT/KR2021/012984 2020-09-21 2021-09-23 음극 및 이를 포함하는 리튬 이차전지 WO2022060206A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21869828.0A EP4195312A1 (en) 2020-09-21 2021-09-23 Anode and lithium secondary battery comprising same
CN202180064661.9A CN116235306A (zh) 2020-09-21 2021-09-23 负极和包括其的锂二次电池
US18/024,184 US20230335715A1 (en) 2020-09-21 2021-09-23 Negative electrode and lithium secondary battery including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200121831 2020-09-21
KR10-2020-0121831 2020-09-21

Publications (1)

Publication Number Publication Date
WO2022060206A1 true WO2022060206A1 (ko) 2022-03-24

Family

ID=80777213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012984 WO2022060206A1 (ko) 2020-09-21 2021-09-23 음극 및 이를 포함하는 리튬 이차전지

Country Status (5)

Country Link
US (1) US20230335715A1 (ko)
EP (1) EP4195312A1 (ko)
KR (1) KR20220039637A (ko)
CN (1) CN116235306A (ko)
WO (1) WO2022060206A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150128592A (ko) * 2014-05-09 2015-11-18 주식회사 엘지화학 그래핀 피복된 다공성 실리콘-탄소 복합체 및 이의 제조방법
KR20160089858A (ko) * 2015-01-20 2016-07-28 썬쩐 비티아르 뉴 에너지 머티어리얼스 아이엔씨이 리튬 이온 전지용 나노 실리콘 복합 음극 활성 재료의 제조 방법 및 리튬 이온 전지
US20170062804A1 (en) * 2015-08-28 2017-03-02 Samsung Electronics Co., Ltd. Composite, method of preparing the same, electrode including the composite, and lithium battery including the electrode
KR20170090449A (ko) * 2014-11-25 2017-08-07 코닝 인코포레이티드 리튬이온 배터리 애노드용 물질 및 방법
KR20190116011A (ko) * 2018-04-04 2019-10-14 대주전자재료 주식회사 규소-산화규소-탄소 복합체 및 규소-산화규소-탄소 복합체의 제조 방법
KR20200083808A (ko) * 2018-12-28 2020-07-09 강원대학교산학협력단 리튬 이차전지용 실리콘-탄소 복합 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20200121381A (ko) 2012-11-13 2020-10-23 아도시아 개별 갯수의 사카라이드 단위로 이루어지는 백본으로 이루어지는 치환된 음이온성 화합물

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200121381A (ko) 2012-11-13 2020-10-23 아도시아 개별 갯수의 사카라이드 단위로 이루어지는 백본으로 이루어지는 치환된 음이온성 화합물
KR20150128592A (ko) * 2014-05-09 2015-11-18 주식회사 엘지화학 그래핀 피복된 다공성 실리콘-탄소 복합체 및 이의 제조방법
KR20170090449A (ko) * 2014-11-25 2017-08-07 코닝 인코포레이티드 리튬이온 배터리 애노드용 물질 및 방법
KR20160089858A (ko) * 2015-01-20 2016-07-28 썬쩐 비티아르 뉴 에너지 머티어리얼스 아이엔씨이 리튬 이온 전지용 나노 실리콘 복합 음극 활성 재료의 제조 방법 및 리튬 이온 전지
US20170062804A1 (en) * 2015-08-28 2017-03-02 Samsung Electronics Co., Ltd. Composite, method of preparing the same, electrode including the composite, and lithium battery including the electrode
KR20190116011A (ko) * 2018-04-04 2019-10-14 대주전자재료 주식회사 규소-산화규소-탄소 복합체 및 규소-산화규소-탄소 복합체의 제조 방법
KR20200083808A (ko) * 2018-12-28 2020-07-09 강원대학교산학협력단 리튬 이차전지용 실리콘-탄소 복합 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Also Published As

Publication number Publication date
US20230335715A1 (en) 2023-10-19
KR20220039637A (ko) 2022-03-29
CN116235306A (zh) 2023-06-06
EP4195312A1 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
WO2019151813A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2020045854A1 (ko) 이황화몰리브덴을 포함하는 탄소나노구조체의 제조방법, 이로부터 제조된 이황화몰리브덴을 포함하는 탄소나노구조체를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2019151814A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2018030616A1 (ko) 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지
WO2015020486A1 (ko) 리튬 이차전지용 양극 재료 및 이를 포함하는 리튬 이차전지
WO2013081245A1 (ko) 안전성과 안정성이 향상된 리튬 이차 전지
WO2015065047A1 (ko) 음극 활물질 및 이의 제조 방법
WO2017052281A1 (ko) 리튬 이차전지용 음극활물질 및 그 제조방법
WO2016032240A1 (ko) 이중 코팅층을 갖는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2018135915A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2017052278A1 (ko) 리튬 이차전지용 음극활물질 및 그 제조방법
WO2021154021A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2019151778A1 (ko) 리튬 이차전지용 음극 활물질, 이를 포함하는 음극 및 상기 음극을 포함하는 리튬 이온 이차 전지
WO2020111545A1 (ko) 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2022211589A1 (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
WO2022092906A1 (ko) 양극 활물질 및 이의 제조방법
WO2020067830A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022060205A1 (ko) 음극 및 이를 포함하는 리튬 이차전지
WO2020171367A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2020009332A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 양극 및 리튬-황 전지
WO2022149913A1 (ko) 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지
WO2022019605A1 (ko) 다공성 복합체, 이를 포함하는 음극과 리튬전지, 및 그 제조방법
WO2022050664A1 (ko) 양극 활물질, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
WO2022060206A1 (ko) 음극 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021869828

Country of ref document: EP

Effective date: 20230307

NENP Non-entry into the national phase

Ref country code: DE