WO2022059587A1 - 数値制御装置 - Google Patents

数値制御装置 Download PDF

Info

Publication number
WO2022059587A1
WO2022059587A1 PCT/JP2021/033141 JP2021033141W WO2022059587A1 WO 2022059587 A1 WO2022059587 A1 WO 2022059587A1 JP 2021033141 W JP2021033141 W JP 2021033141W WO 2022059587 A1 WO2022059587 A1 WO 2022059587A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining program
work
corner
control device
numerical control
Prior art date
Application number
PCT/JP2021/033141
Other languages
English (en)
French (fr)
Inventor
浩之 藤本
誠彰 相澤
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to DE112021004325.0T priority Critical patent/DE112021004325T5/de
Priority to US18/043,533 priority patent/US20230266739A1/en
Priority to JP2022550508A priority patent/JP7498286B2/ja
Priority to CN202180061594.5A priority patent/CN116075787A/zh
Publication of WO2022059587A1 publication Critical patent/WO2022059587A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • G05B19/40937Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of machining or material parameters, pocket machining
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/408Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by data handling or data format, e.g. reading, buffering or conversion of data
    • G05B19/4083Adapting programme, configuration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • G05B19/4103Digital interpolation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34088Chamfer, corner shape calculation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34143Approximate corner by polynomial
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45151Deburring

Definitions

  • the present invention relates to a numerical control device.
  • a machining path for chamfering is added to the machining program corresponding to the location where burrs occur.
  • burrs can be suppressed by adding a machining path for chamfering to the machining program, it takes time to modify the machining program. Therefore, a numerical control device capable of easily suppressing the generation of burrs is desired.
  • the numerical control device includes an analysis unit that analyzes a machining program for machining a workpiece in a machine tool, and an angle that identifies a corner portion that causes a burr in the workpiece based on the analyzed machining program. It is equipped with a section-specific section.
  • the generation of burrs can be easily suppressed.
  • FIG. 1 is a diagram showing a configuration of a numerical control device 1 and a machine tool 2.
  • the numerical control device 1 and the machine tool 2 are connected by a bus (not shown) or the like, and the machine tool 2 operates according to the control of the numerical control device 1.
  • the machine tool 2 processes the work under the control of the numerical control device 1.
  • the machine tool 2 has a general machine tool configuration.
  • the numerical control device 1 includes a control unit 11 and a storage unit 12.
  • the control unit 11 is a processor such as a CPU (Central Processing Unit), and realizes various functions by executing a program stored in the storage unit 12.
  • CPU Central Processing Unit
  • control unit 11 includes an analysis unit 111, a corner portion specifying unit 112, a shape determination unit 113, a shape addition unit 114, and an interpolation processing unit 115.
  • the storage unit 12 is composed of a ROM (read only memory), a RAM (random access memory), a non-volatile memory, a hard disk drive, and the like, and stores various data.
  • the storage unit 12 stores the machining program 121, the tool data 122, the additional shape data 123, the work shape data 124, and the like, which will be described later.
  • the analysis unit 111 analyzes the machining program 121 for machining the work in the machine tool 2.
  • the corner portion specifying portion 112 identifies the corner portion that causes burrs in the work based on the analyzed machining program 121.
  • the shape addition portion 114 adds a curved shape (chamfer shape) path at the corner portion specified by the corner portion specifying portion 112. Specifically, the shape addition unit 114 adds a curved shape (chamfer shape) command path to the command path corresponding to the corner portion specified by the corner portion specifying portion 112 in the command path of the machining program.
  • the interpolation processing unit 115 interpolates a path in which a command path having a curved shape (chamfer shape) is added to the command path of the machining program.
  • the machine tool 2 operates on the path subjected to the interpolation processing by the interpolation processing unit 115 to process the workpiece.
  • FIG. 2A and 2B are views showing an example of machining a work W by the tool 21 of the machine tool 2.
  • the work W has corners and corners.
  • the corner portion is a portion of the work W that protrudes toward the tool 21 side, and the corner portion is a portion of the work W that is recessed from the tool 21 side.
  • the numerical control device 1 identifies a corner portion that causes a burr in the work W, and the specified corner portion is a path having a minute curved shape that does not affect the shape accuracy. To add. As a result, the numerical control device 1 can suppress the generation of burrs at the corners when the work W is machined by the machine tool 2.
  • FIG. 3 is a diagram showing an example of processing for analyzing the positional relationship of workpieces by the numerical control device 1.
  • FIG. 4 is a diagram showing an example of a corner portion and a corner portion specified by the numerical control device 1.
  • the analysis unit 111 analyzes the positional relationship of the workpieces in the machining program 121 based on the direction of the escape operation in which the tool of the machine tool 2 is released from the cutting end position.
  • the analysis unit 111 determines in the machining program 121 whether the direction of the escape operation with respect to the command path is the A side or the B side. Then, when the analysis unit 111 determines that the direction of the escape operation is on the B side, the analysis unit 111 determines that the work is on the A side as the positional relationship of the work.
  • the analysis unit 111 determines that the direction of the escape operation is the A side, the analysis unit 111 determines that the work is on the B side as the positional relationship of the work. That is, the analysis unit 111 determines that the work is on the side opposite to the direction of the escape operation.
  • the corner portion specifying portion 112 specifies the corner portion and the corner portion of the work based on the positional relationship of the work in the machining program 121 and the change in the moving direction of the program command path of the machining program 121. do.
  • the corner identification part 112 changes the movement direction of the program command path of the machining program 121. Based on this, the corners and corners of the work are identified.
  • the analysis unit 111 determines that the work is on the A side as the positional relationship of the work. Then, in the corner portion specifying portion 112, the moving direction of the program command path changes, and the angle formed by the two changed moving directions is less than the first threshold value (for example, 150 °) on the work side (A side). In this case, the position where the moving direction has changed is specified as the corner of the work.
  • the first threshold value for example, 150 °
  • the moving direction of the program command path is changed, and the angle formed by the two changed moving directions is equal to or higher than the second threshold value (for example, 210 °) on the work side (A side).
  • the second threshold value for example, 210 °
  • the position where the moving direction has changed is specified as the corner of the work.
  • the designation of the corners and corners of the work is not limited to the above processing, and other processing may be used.
  • FIG. 5A to 5C are diagrams showing another example of the process of identifying the corner portion.
  • FIG. 5A is a diagram showing an example of a program command path of the machining program 121.
  • 5B and 5C are diagrams showing an example of a corner portion and a corner portion specified by the numerical control device 1.
  • the work machined by the machine tool 2 is arranged on either the A side or the B side with respect to the program command path of the machining program 121.
  • the analysis unit 111 analyzes the positional relationship of the work in the machining program 121 based on the orientation of the tool 21 of the machine tool 2 and the machining program 121. Specifically, the analysis unit 111 determines whether the work is on either the A side or the B side as the positional relationship of the work based on the direction of the blade of the tool 21 in the machining program 121 and the tool data 122. decide.
  • the analysis unit 111 determines that the work is on the A side as the positional relationship of the work.
  • the analysis unit 111 determines that the work is on the B side as the positional relationship of the work when the direction of the blade of the tool 21 in the machining program 121 is facing the B side.
  • the corner portion specifying portion 112 is the corner portion and the corner of the work based on the positional relationship of the work in the machining program 121 and the change in the moving direction of the program command path of the machining program 121. Identify the department.
  • the corner identification portion 112 changes the movement direction of the program command path of the machining program 121. Based on this, the corners and corners of the work are identified.
  • the analysis unit 111 determines that the work is on the A side as the positional relationship of the work. Then, in the corner portion specifying portion 112, the moving direction of the program command path changes, and the angle formed by the two changed moving directions is less than the first threshold value (for example, 150 °) on the work side (A side). In this case, the position where the moving direction has changed is specified as the corner of the work.
  • the first threshold value for example, 150 °
  • the moving direction of the program command path is changed, and the angle formed by the two changed moving directions is equal to or higher than the second threshold value (for example, 210 °) on the work side (A side).
  • the second threshold value for example, 210 °
  • the position where the moving direction has changed is specified as the corner of the work.
  • the corner identification portion 112 is based on the change in the moving direction of the program command path of the machining program 121. Identify the corners and corners of the work.
  • the analysis unit 111 determines that the work is on the B side as the positional relationship of the work. Then, in the corner portion specifying portion 112, the moving direction of the program command path changes, and the angle formed by the two changed moving directions is less than the first threshold value (for example, 150 °) on the work side (B side). In this case, the position where the moving direction has changed is specified as the corner of the work.
  • the first threshold value for example, 150 °
  • the moving direction of the program command path is changed, and the angle formed by the two changed moving directions is equal to or higher than the second threshold value (for example, 210 °) on the work side (B side).
  • the second threshold value for example, 210 °
  • the position where the moving direction has changed is specified as the corner of the work.
  • FIG. 6A to 6C are diagrams showing another example of the process of identifying the corner portion.
  • FIG. 6A is a diagram showing an example of a program command path of the machining program 121.
  • 6B and 6C are diagrams showing an example of a corner portion and a corner portion specified by the numerical control device 1.
  • the work machined by the machine tool 2 is arranged on either the A side or the B side with respect to the program command path of the machining program 121.
  • the analysis unit 111 analyzes the positional relationship of the work in the machining program 121 based on the direction of the tool diameter correction of the tool 22 of the machine tool 2 and the machining program 121.
  • the analysis unit 111 has the work on either the A side or the B side as the positional relationship of the work based on the direction of the tool diameter correction of the tool 22 in the machining program 121 and the tool data 122. To decide.
  • the analysis unit 111 determines that the work is on the A side as the positional relationship of the work when the tool diameter correction direction of the tool 22 is on the B side. Further, as shown in FIG. 6C, when the tool diameter correction direction of the tool 22 is on the A side, the analysis unit 111 determines that the work is on the B side as a positional relationship of the work. That is, the analysis unit 111 determines that the work is on the side opposite to the tool diameter correction direction of the tool 22 with respect to the command path of the machining program.
  • the corner portion specifying portion 112 is the corner portion and the corner of the work based on the positional relationship of the work in the machining program 121 and the change in the moving direction of the program command path of the machining program 121. Identify the department.
  • the corner identification portion 112 changes the movement direction of the program command path of the machining program 121. Based on this, the corners and corners of the work are identified.
  • the analysis unit 111 determines that the work is on the A side as the positional relationship of the work. Then, in the corner portion specifying portion 112, the moving direction of the program command path changes, and the angle formed by the two changed moving directions is less than the first threshold value (for example, 150 °) on the work side (A side). In this case, the position where the moving direction has changed is specified as the corner of the work.
  • the first threshold value for example, 150 °
  • the moving direction of the program command path is changed, and the angle formed by the two changed moving directions is equal to or higher than the second threshold value (for example, 210 °) on the work side (A side).
  • the second threshold value for example, 210 °
  • the position where the moving direction has changed is specified as the corner of the work.
  • the corner identification portion 112 is based on the change in the moving direction of the program command path of the machining program 121. Identify the corners and corners of the work.
  • the analysis unit 111 determines that the work is on the B side as the positional relationship of the work. Then, in the corner portion specifying portion 112, the moving direction of the program command path changes, and the angle formed by the two changed moving directions is less than the first threshold value (for example, 150 °) on the work side (B side). In this case, the position where the moving direction has changed is specified as the corner of the work.
  • the first threshold value for example, 150 °
  • the moving direction of the program command path is changed, and the angle formed by the two changed moving directions is equal to or higher than the second threshold value (for example, 210 °) on the work side (B side).
  • the second threshold value for example, 210 °
  • the position where the moving direction has changed is specified as the corner of the work.
  • FIG. 7 is a diagram showing the configurations of the numerical control device 1 and the machine tool 2 according to another embodiment.
  • the same components as those of the embodiment shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted or simplified.
  • the embodiment shown in FIG. 7 is mainly different from the embodiment shown in FIG. 1 in that the machining program correction unit 116 and the machining program editing unit 117 are provided in place of the shape addition unit 114 and the interpolation processing unit 115.
  • Other configurations of the embodiment shown in FIG. 7 include the same configurations as those of the embodiment shown in FIG.
  • the machining program correction unit 116 modifies the machining program 121 in order to machine the corner portion specified by the corner portion specifying portion 112 in a curved shape. Specifically, the machining program correction unit 116 modifies the machining program 121 by adding a program command path for machining in a curved shape at the corner portion specified by the corner portion specifying portion 112 to the machining program.
  • the machining program editing unit 117 edits the modified machining program 121. Specifically, the machining program editing unit 117 draws the modified program command path of the machining program 121 on the display unit (not shown). Further, the machining program editing unit 117 confirms and corrects the portion where the curved shape is added in the modified machining program 121 according to the operation of the numerical control device 1 by the operator.
  • the corners specified by the corner identification section 112 can be machined in a curved shape.
  • the shape determining unit 113 determines the dimension of the curved shape added by the shape adding unit 114 and the machining program correction unit 116 at the corner portion specified by the corner portion specifying portion 112. Specifically, the shape determining unit 113 reads out the additional shape data 123 or the work shape data 124 from the storage unit 12.
  • the additional shape data 123 may be, for example, data in which the dimensions of the curved shape are set.
  • the work shape data 124 may be, for example, drawing data (CAD (Computer-Aided Design) data) for processing the work, and the dimensions of the curved shape are within the shape accuracy described in the drawing data. To determine.
  • CAD Computer-Aided Design
  • the shape determining unit 113 determines the dimension of the curved shape to be added to the corner portion specified by the corner portion specifying portion 112 based on the read additional shape data 123 or the work shape data 124. Further, the curved shape to be added is, for example, an R shape.
  • the numerical control device 1 is based on the analysis unit 111 that analyzes the machining program 121 for machining the workpiece in the machine tool 2 and the analyzed machining program 121.
  • a corner portion specifying portion 112 for specifying a corner portion that causes burrs on the work is provided.
  • the numerical control device 1 can specify the corners where burrs are generated on the work. Therefore, for example, by processing the specified corners in a curved shape, the generation of burrs can be easily suppressed. Can be done.
  • the numerical control device 1 further includes a shape addition unit 114 that adds a curved path at the corner portion specified by the corner portion identification unit 112. As a result, the numerical control device 1 can easily suppress the generation of burrs by adding a curved path at the specified corner portion.
  • the numerical control device 1 further includes an interpolation processing unit 115 that interpolates based on a path in which a curved path is added by the shape addition section 114 to the command path of the machining program 121. As a result, the numerical control device 1 can operate the machine tool 2 on the path to which the curved path is added to process the work.
  • the analysis unit 111 analyzes the positional relationship of the workpiece in the machining program 121 based on the direction of the escape operation in which the tool of the machine tool 2 is released from the cutting end position.
  • the corner portion specifying portion 112 identifies the corner portion based on the positional relationship of the work in the machining program 121 and the change in the moving direction of the program command path of the machining program 121. Thereby, the numerical control device 1 can appropriately identify the corner portion of the work from the machining program 121.
  • the analysis unit 111 analyzes the positional relationship of the work in the machining program 121 based on the orientation of the tool 21 of the machine tool 2 and the machining program 121.
  • the corner portion specifying portion 112 identifies the corner portion based on the positional relationship of the work in the machining program 121 and the change in the moving direction of the program command path of the machining program 121. Thereby, the numerical control device 1 can appropriately identify the corner portion of the work from the machining program 121.
  • the analysis unit 111 analyzes the positional relationship of the work in the machining program 121 based on the direction of the tool diameter correction of the tool 22 of the machine tool 2 and the machining program 121.
  • the corner portion specifying portion 112 identifies the corner portion based on the positional relationship of the work in the machining program 121 and the change in the moving direction of the program command path of the machining program. Thereby, the numerical control device 1 can appropriately identify the corner portion of the work from the machining program 121.
  • the numerical control device 1 further includes a machining program correction unit 116 that modifies the machining program 121 in order to machine the corner portion specified by the corner portion specifying portion 112 in a curved shape.
  • the machine tool 2 can process the machine tool 2 in a curved shape at the corner portion specified by the corner portion specifying portion 112 by modifying the machining program 121.
  • the numerical control device 1 includes a machining program editing unit 117 that confirms and corrects the program command path of the machining program 121 modified by the machining program modification unit 116. As a result, the operator can confirm and correct the modified machining program 121 in the machining program modification unit 116.
  • the numerical control device 1 further includes a shape determining unit 113 for determining the dimension of the curved shape to be added at the corner portion specified by the corner portion specifying unit 112. Thereby, the numerical control device 1 can determine the dimension of the curved shape at the corner portion to an appropriate value.
  • the above numerical control device 1 can be realized by hardware, software, or a combination thereof. Further, the control method performed by the above numerical control device 1 can also be realized by hardware, software, or a combination thereof.
  • what is realized by software means that it is realized by a computer reading and executing a program.
  • Non-transitory computer-readable media include various types of tangible storage media (tangible studio media).
  • Examples of non-temporary computer-readable media include magnetic recording media (eg, hard disk drives), optomagnetic recording media (eg, optomagnetic disks), CD-ROMs (Read Only Memory), CD-Rs, CD-Rs /. W, including semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Geometry (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Numerical Control (AREA)

Abstract

簡易にバリの発生を抑制することができる数値制御装置を提供すること。数値制御装置は、工作機械においてワークを加工するための加工プログラムを解析する解析部と、解析された前記加工プログラムに基づいて、前記ワークにバリを発生させる角部を特定する角部特定部と、を備える。

Description

数値制御装置
 本発明は、数値制御装置に関する。
 従来より、加工後のワークの角部は、バリが発生するため、バリを後工程において除去する必要がある。そのため、ワークの角部に形成されたバリを除去するための方法が提案されている(例えば特許文献1参照)。
 また、バリの発生を抑制するために、バリが発生する箇所に対応する加工プログラムに面取り加工を行う加工経路を追加すること等が行われている。
国際公開第2015/114734号
 しかし、加工プログラムに面取り加工を行う加工経路を追加することによってバリの発生を抑制することができるが、加工プログラムの修正に時間がかかってしまう。そこで、簡易にバリの発生を抑制することができる数値制御装置が望まれている。
 本開示に係る数値制御装置は、工作機械においてワークを加工するための加工プログラムを解析する解析部と、解析された前記加工プログラムに基づいて、前記ワークにバリを発生させる角部を特定する角部特定部と、を備える。
 本発明によれば、簡易にバリの発生を抑制することができる。
数値制御装置及び工作機械の構成を示す図である。 工作機械の工具によるワークの加工例を示す図である。 工作機械の工具によるワークの加工例を示す図である。 数値制御装置によるワークの位置関係を解析する処理の一例を示す図である。 数値制御装置によって特定された角部及び隅部の一例を示す図である。 加工プログラムのプログラム指令経路の一例を示す図である。 数値制御装置によって特定された角部及び隅部の一例を示す図である。 数値制御装置によって特定された角部及び隅部の一例を示す図である。 加工プログラムのプログラム指令経路の一例を示す図である。 数値制御装置によって特定された角部及び隅部の一例を示す図である。 数値制御装置によって特定された角部及び隅部の一例を示す図である。 他の実施形態に係る数値制御装置及び工作機械の構成を示す図である。
 以下、本発明の実施形態の一例について説明する。
 図1は、数値制御装置1及び工作機械2の構成を示す図である。数値制御装置1及び工作機械2は、バス(図示せず)等によって接続されており、工作機械2は、数値制御装置1の制御に従って動作する。具体的には、工作機械2は、数値制御装置1の制御に従ってワークを加工する。なお、本明細書では、工作機械2の他の構成は、説明の簡素化のため省略するが、工作機械2は、一般的な工作機械の構成を有する。
 図1に示すように、数値制御装置1は、制御部11と、記憶部12と、を備える。
 制御部11は、CPU(Central Processing Unit)等のプロセッサであり、記憶部12に記憶されたプログラムを実行することによって、各種機能を実現する。
 また、制御部11は、解析部111と、角部特定部112と、形状決定部113と、形状追加部114と、補間処理部115と、を備える。
 記憶部12は、ROM(read only memory)、RAM(random access memory)、不揮発性メモリ、ハードディスクドライブ等で構成され、各種のデータを記憶する。例えば、記憶部12は、後述する加工プログラム121、工具データ122、追加形状データ123、ワーク形状データ124等を記憶する。
 解析部111は、工作機械2においてワークを加工するための加工プログラム121を解析する。
 角部特定部112は、解析された加工プログラム121に基づいて、ワークにバリを発生させる角部を特定する。
 形状追加部114は、角部特定部112によって特定された角部において曲線形状(面取り形状)の経路を追加する。具体的には、形状追加部114は、加工プログラムの指令経路において、角部特定部112によって特定された角部に対応する指令経路に、曲線形状(面取り形状)の指令経路を追加する。
 補間処理部115は、加工プログラムの指令経路に曲線形状(面取り形状)の指令経路を追加した経路を補間する。
 そして、補間処理部115による補間処理を行った経路で工作機械2が動作し、ワークを加工する。
 図2A及び図2Bは、工作機械2の工具21によるワークWの加工例を示す図である。
 図2Aに示すように、工具21によるワークWを加工する際に、ワークWは、角部及び隅部を有する。角部は、ワークWにおいて、工具21側に向かって突出した部分であり、隅部は、ワークWにおいて、工具21側から窪んだ部分である。
 このようなワークWにおいて、隅部は、工具21によって加工された際に、バリを発生させないが、角部では、バリが発生する。
 そこで、本実施形態に係る数値制御装置1は、図2Bに示すように、ワークWにバリを発生させる角部を特定し、特定された角部に形状精度に影響しない微小な曲線形状の経路を追加する。これにより、数値制御装置1は、工作機械2によってワークWを加工する際に、角部にバリを発生させることを抑制することができる。
 図3は、数値制御装置1によるワークの位置関係を解析する処理の一例を示す図である。図4は、数値制御装置1によって特定された角部及び隅部の一例を示す図である。解析部111は、加工プログラム121において、工作機械2の工具を切削終了位置から逃がす逃げ動作の方向に基づいて、加工プログラム121におけるワークの位置関係を解析する。
 具体的には、図3に示すように、解析部111は、加工プログラム121において、指令経路に対する逃げ動作の方向がA側及びB側のいずれの方向になるかを判別する。そして、解析部111は、逃げ動作の方向がB側であると判別された場合、ワークの位置関係として、ワークがA側にあると決定する。
 また、解析部111は、逃げ動作の方向がA側であると判別された場合、ワークの位置関係として、ワークがB側にあると決定する。すなわち、解析部111は、逃げ動作の方向とは反対側にワークがあると決定する。
 そして、図4に示すように、角部特定部112は、加工プログラム121におけるワークの位置関係及び加工プログラム121のプログラム指令経路の移動方向の変化に基づいて、ワークの角部及び隅部を特定する。
 具体的には、角部特定部112は、図3に示す例において、ワークの位置関係として、ワークがA側にあると決定された場合、加工プログラム121のプログラム指令経路の移動方向の変化に基づいて、ワークの角部及び隅部を特定する。
 例えば、図4に示す例では、解析部111により、ワークの位置関係として、ワークがA側にあると決定される。そして、角部特定部112は、プログラム指令経路の移動方向が変化し、変化した2つ移動方向のなす角度が、ワーク側(A側)において第1の閾値(例えば、150°)未満である場合、移動方向が変化した位置をワークの角部として特定する。
 また、角部特定部112は、プログラム指令経路の移動方向が変化し、変化した2つ移動方向のなす角度が、ワーク側(A側)において第2の閾値(例えば、210°)以上である場合、移動方向が変化した位置をワークの隅部として特定する。なお、ワークの角部及び隅部の特定は、上記の処理に限定されず、他の処理を用いてもよい。
 図5Aから図5Cは、角部を特定する処理の別の例を示す図である。図5Aは、加工プログラム121のプログラム指令経路の一例を示す図である。図5B及び図5Cは、数値制御装置1によって特定された角部及び隅部の一例を示す図である。
 図5Aに示すように、工作機械2によって加工されるワークは、加工プログラム121のプログラム指令経路に対してA側及びB側のいずれかの側に配置される。
 図5Aから図5Cに示す例では、解析部111は、工作機械2の工具21の向き及び加工プログラム121に基づいて、加工プログラム121におけるワークの位置関係を解析する。
 具体的には、解析部111は、加工プログラム121及び工具データ122における工具21の刃の向きに基づいて、ワークの位置関係として、ワークがA側及びB側のいずれかの側にあるかを決定する。
 例えば、解析部111は、図5Bに示すように、加工プログラム121における工具21の刃の向きがA側に向いている場合、ワークの位置関係として、ワークがA側にあると決定する。
 また、解析部111は、図5Cに示すように、加工プログラム121における工具21の刃の向きがB側に向いている場合、ワークの位置関係として、ワークがB側にあると決定する。
 そして、図5B及び図5Cに示すように、角部特定部112は、加工プログラム121におけるワークの位置関係及び加工プログラム121のプログラム指令経路の移動方向の変化に基づいて、ワークの角部及び隅部を特定する。
 具体的には、角部特定部112は、図5Bに示す例において、ワークの位置関係として、ワークがA側にあると決定された場合、加工プログラム121のプログラム指令経路の移動方向の変化に基づいて、ワークの角部及び隅部を特定する。
 例えば、図5Bに示す例では、解析部111により、ワークの位置関係として、ワークがA側にあると決定される。そして、角部特定部112は、プログラム指令経路の移動方向が変化し、変化した2つ移動方向のなす角度が、ワーク側(A側)において第1の閾値(例えば、150°)未満である場合、移動方向が変化した位置をワークの角部として特定する。
 また、角部特定部112は、プログラム指令経路の移動方向が変化し、変化した2つ移動方向のなす角度が、ワーク側(A側)において第2の閾値(例えば、210°)以上である場合、移動方向が変化した位置をワークの隅部として特定する。
 一方、角部特定部112は、図5Cに示す例において、ワークの位置関係として、ワークがB側にあると決定された場合、加工プログラム121のプログラム指令経路の移動方向の変化に基づいて、ワークの角部及び隅部を特定する。
 例えば、図5Cに示す例では、解析部111により、ワークの位置関係として、ワークがB側にあると決定される。そして、角部特定部112は、プログラム指令経路の移動方向が変化し、変化した2つ移動方向のなす角度が、ワーク側(B側)において第1の閾値(例えば、150°)未満である場合、移動方向が変化した位置をワークの角部として特定する。
 また、角部特定部112は、プログラム指令経路の移動方向が変化し、変化した2つ移動方向のなす角度が、ワーク側(B側)において第2の閾値(例えば、210°)以上である場合、移動方向が変化した位置をワークの隅部として特定する。
 図6Aから図6Cは、角部を特定する処理の別の例を示す図である。図6Aは、加工プログラム121のプログラム指令経路の一例を示す図である。図6B及び図6Cは、数値制御装置1によって特定された角部及び隅部の一例を示す図である。
 図6Aに示すように、工作機械2によって加工されるワークは、加工プログラム121のプログラム指令経路に対してA側及びB側のいずれかの側に配置される。図6Aから図6Cに示す例では、解析部111は、工作機械2の工具22の工具径補正の方向及び加工プログラム121に基づいて、加工プログラム121におけるワークの位置関係を解析する。
 具体的には、解析部111は、加工プログラム121及び工具データ122における工具22の工具径補正の方向に基づいて、ワークの位置関係として、ワークがA側及びB側のいずれかの側にあるかを決定する。
 例えば、解析部111は、図6Bに示すように、工具22の工具径補正の方向がB側である場合、ワークの位置関係として、ワークがA側にあると決定する。また、解析部111は、図6Cに示すように、工具22の工具径補正の方向がA側である場合、ワークの位置関係として、ワークがB側にあると決定する。すなわち、解析部111は、加工プログラムの指令経路に対して、工具22の工具径補正の方向とは逆側にワークがあると決定する。
 そして、図6B及び図6Cに示すように、角部特定部112は、加工プログラム121におけるワークの位置関係及び加工プログラム121のプログラム指令経路の移動方向の変化に基づいて、ワークの角部及び隅部を特定する。
 具体的には、角部特定部112は、図6Bに示す例において、ワークの位置関係として、ワークがA側にあると決定された場合、加工プログラム121のプログラム指令経路の移動方向の変化に基づいて、ワークの角部及び隅部を特定する。
 例えば、図6Bに示す例では、解析部111により、ワークの位置関係として、ワークがA側にあると決定される。そして、角部特定部112は、プログラム指令経路の移動方向が変化し、変化した2つ移動方向のなす角度が、ワーク側(A側)において第1の閾値(例えば、150°)未満である場合、移動方向が変化した位置をワークの角部として特定する。
 また、角部特定部112は、プログラム指令経路の移動方向が変化し、変化した2つ移動方向のなす角度が、ワーク側(A側)において第2の閾値(例えば、210°)以上である場合、移動方向が変化した位置をワークの隅部として特定する。
 一方、角部特定部112は、図6Cに示す例において、ワークの位置関係として、ワークがB側にあると決定された場合、加工プログラム121のプログラム指令経路の移動方向の変化に基づいて、ワークの角部及び隅部を特定する。
 例えば、図6Cに示す例では、解析部111により、ワークの位置関係として、ワークがB側にあると決定される。そして、角部特定部112は、プログラム指令経路の移動方向が変化し、変化した2つ移動方向のなす角度が、ワーク側(B側)において第1の閾値(例えば、150°)未満である場合、移動方向が変化した位置をワークの角部として特定する。
 また、角部特定部112は、プログラム指令経路の移動方向が変化し、変化した2つ移動方向のなす角度が、ワーク側(B側)において第2の閾値(例えば、210°)以上である場合、移動方向が変化した位置をワークの隅部として特定する。
 図7は、他の実施形態に係る数値制御装置1及び工作機械2の構成を示す図である。なお、図7に示す実施形態の説明においては、図1に示す実施形態と同一の構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
 図7に示す実施形態は、形状追加部114及び補間処理部115に代えて、加工プログラム修正部116及び加工プログラム編集部117を備える点が図1に示す実施形態とは主に異なる。図7に示す実施形態の他の構成は、図1に示す実施形態と同様の構成を備える。
 加工プログラム修正部116は、角部特定部112によって特定された角部を曲線形状で加工するために、加工プログラム121を修正する。具体的には、加工プログラム修正部116は、角部特定部112によって特定された角部において曲線形状で加工するプログラム指令経路を加工プログラムに追加することによって、加工プログラム121を修正する。
 加工プログラム編集部117は、修正された加工プログラム121を編集する。具体的には、加工プログラム編集部117は、修正された加工プログラム121のプログラム指令経路を表示部(図示せず)に描画する。また、加工プログラム編集部117は、オペレータによる数値制御装置1の操作に従って、修正された加工プログラム121において、曲線形状を追加した箇所の確認及び修正を行う。
 このように図7に示す実施形態は、加工プログラム修正部116により加工プログラム121を修正することによって角部特定部112によって特定された角部において曲線形状で加工することができる。
 また、形状決定部113は、角部特定部112によって特定された角部において、形状追加部114及び加工プログラム修正部116によって追加される曲線形状の寸法を決定する。
 具体的には、形状決定部113は、記憶部12から追加形状データ123又はワーク形状データ124を読み出す。ここで、追加形状データ123は、例えば、曲線形状の寸法を設定したデータであってもよい。また、ワーク形状データ124は、例えば、ワークを加工するための図面データ(CAD(Computer-Aided Design)データ)であってもよく、図面データに記載された形状精度に収まるように曲線形状の寸法を決定する。
 このように、形状決定部113は、読み出した追加形状データ123又はワーク形状データ124に基づいて、角部特定部112で特定された角部に追加する曲線形状の寸法を決定する。また、追加する曲線形状は、具体的には、例えばR形状である。
 以上説明したように、本実施形態によれば、数値制御装置1は、工作機械2においてワークを加工するための加工プログラム121を解析する解析部111と、解析された加工プログラム121に基づいて、ワークにバリを発生させる角部を特定する角部特定部112と、を備える。これにより、数値制御装置1は、ワークにバリを発生させる角部を特定することができるため、例えば、特定された角部を曲線形状で加工することにより、簡易にバリの発生を抑制することができる。
 また、数値制御装置1は、角部特定部112によって特定された角部において曲線形状の経路を追加する形状追加部114を更に備える。これにより、数値制御装置1は、特定された角部において曲線形状の経路を追加することにより、簡易にバリの発生を抑制することができる。
 また、数値制御装置1は、加工プログラム121の指令経路に形状追加部114により曲線形状の経路を追加した経路に基づいて補間する補間処理部115を更に備える。これにより、数値制御装置1は、曲線形状の経路を追加した経路で工作機械2を動作させ、ワークを加工することができる。
 また、解析部111は、加工プログラム121において、工作機械2の工具を切削終了位置から逃がす逃げ動作の方向に基づいて、加工プログラム121におけるワークの位置関係を解析する。角部特定部112は、加工プログラム121におけるワークの位置関係及び加工プログラム121のプログラム指令経路の移動方向の変化に基づいて、角部を特定する。これにより、数値制御装置1は、加工プログラム121からワークの角部を適切に特定することができる。
 また、解析部111は、工作機械2の工具21の向き及び加工プログラム121に基づいて、加工プログラム121におけるワークの位置関係を解析する。角部特定部112は、加工プログラム121におけるワークの位置関係及び加工プログラム121のプログラム指令経路の移動方向の変化に基づいて、角部を特定する。これにより、数値制御装置1は、加工プログラム121からワークの角部を適切に特定することができる。
 また、解析部111は、工作機械2の工具22の工具径補正の方向及び加工プログラム121に基づいて、加工プログラム121におけるワークの位置関係を解析する。角部特定部112は、加工プログラム121におけるワークの位置関係及び加工プログラムのプログラム指令経路の移動方向の変化に基づいて、角部を特定する。これにより、数値制御装置1は、加工プログラム121からワークの角部を適切に特定することができる。
 また、数値制御装置1は、角部特定部112によって特定された角部を曲線形状で加工するために、加工プログラム121を修正する加工プログラム修正部116を更に備える。これにより、工作機械2は、加工プログラム121を修正することによって角部特定部112によって特定された角部において曲線形状で加工することができる。
 また、数値制御装置1は、加工プログラム修正部116において修正された加工プログラム121のプログラム指令経路を確認及び修正する加工プログラム編集部117を備える。これにより、加工プログラム修正部116において修正された加工プログラム121をオペレータが確認及び修正することができる。
 また、数値制御装置1は、角部特定部112によって特定された角部において追加する曲線形状の寸法を決定する形状決定部113を更に備える。これにより、数値制御装置1は、角部における曲線形状の寸法を適切な値に決定することができる。
 以上、本発明の実施形態について説明したが、上記の数値制御装置1は、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。また、上記の数値制御装置1により行なわれる制御方法も、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。
 プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。
 また、上述した各実施形態は、本発明の好適な実施形態ではあるが、上記各実施形態のみに本発明の範囲を限定するものではない。本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。
 1 数値制御装置
 2 工作機械
 11 制御部
 12 記憶部
 111 解析部
 112 角部特定部
 113 形状決定部
 114 形状追加部
 115 補間処理部
 116 加工プログラム修正部
 117 加工プログラム編集部

Claims (8)

  1.  工作機械においてワークを加工するための加工プログラムを解析する解析部と、
     解析された前記加工プログラムに基づいて、前記ワークにバリを発生させる角部を特定する角部特定部と、
    を備える数値制御装置。
  2.  前記角部特定部によって特定された前記角部において曲線形状の経路を追加する形状追加部を更に備える請求項1に記載の数値制御装置。
  3.  前記解析部は、前記加工プログラムにおいて、前記工作機械の工具を切削終了位置から逃がす逃げ動作の方向に基づいて、前記加工プログラムにおける前記ワークの位置関係を解析し、
     前記角部特定部は、前記加工プログラムにおける前記ワークの位置関係及び前記加工プログラムのプログラム指令経路の移動方向の変化に基づいて、前記角部を特定する、
    請求項1又は2に記載の数値制御装置。
  4.  前記解析部は、前記工作機械の工具の向き及び前記加工プログラムに基づいて、前記加工プログラムにおける前記ワークの位置関係を解析し、
     前記角部特定部は、前記加工プログラムにおける前記ワークの位置関係及び前記加工プログラムのプログラム指令経路の移動方向の変化に基づいて、前記角部を特定する、
    請求項1又は2に記載の数値制御装置。
  5.  前記解析部は、前記工作機械の工具の工具径補正の方向及び前記加工プログラムに基づいて、前記加工プログラムにおける前記ワークの位置関係を解析し、
     前記角部特定部は、前記加工プログラムにおける前記ワークの位置関係及び前記加工プログラムのプログラム指令経路の移動方向の変化に基づいて、前記角部を特定する、
    請求項1又は2に記載の数値制御装置。
  6.  前記角部特定部によって特定された前記角部を曲線形状で加工するために、前記加工プログラムを修正する加工プログラム修正部を更に備える請求項1に記載の数値制御装置。
  7.  前記加工プログラム修正部によって修正された前記加工プログラムの確認及び修正を行う加工プログラム編集部を更に備える請求項6に記載の数値制御装置。
  8.  前記角部特定部によって特定された前記角部に追加する曲線形状の寸法を決定する形状決定部を更に備える請求項2又は6に記載の数値制御装置。
PCT/JP2021/033141 2020-09-15 2021-09-09 数値制御装置 WO2022059587A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021004325.0T DE112021004325T5 (de) 2020-09-15 2021-09-09 Numerische Steuervorrichtung
US18/043,533 US20230266739A1 (en) 2020-09-15 2021-09-09 Numerical control device
JP2022550508A JP7498286B2 (ja) 2020-09-15 2021-09-09 数値制御装置
CN202180061594.5A CN116075787A (zh) 2020-09-15 2021-09-09 数值控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-154558 2020-09-15
JP2020154558 2020-09-15

Publications (1)

Publication Number Publication Date
WO2022059587A1 true WO2022059587A1 (ja) 2022-03-24

Family

ID=80776035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033141 WO2022059587A1 (ja) 2020-09-15 2021-09-09 数値制御装置

Country Status (5)

Country Link
US (1) US20230266739A1 (ja)
JP (1) JP7498286B2 (ja)
CN (1) CN116075787A (ja)
DE (1) DE112021004325T5 (ja)
WO (1) WO2022059587A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092142A (ja) * 2008-10-06 2010-04-22 Mori Seiki Co Ltd 自動プログラミング装置及びこれを備えたnc工作機械の制御装置
JP2019082851A (ja) * 2017-10-30 2019-05-30 ファナック株式会社 数値制御装置、cnc工作機械、数値制御方法及び数値制御用プログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114734A1 (ja) 2014-01-28 2015-08-06 株式会社牧野フライス製作所 切削加工方法および工具経路生成装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092142A (ja) * 2008-10-06 2010-04-22 Mori Seiki Co Ltd 自動プログラミング装置及びこれを備えたnc工作機械の制御装置
JP2019082851A (ja) * 2017-10-30 2019-05-30 ファナック株式会社 数値制御装置、cnc工作機械、数値制御方法及び数値制御用プログラム

Also Published As

Publication number Publication date
JP7498286B2 (ja) 2024-06-11
US20230266739A1 (en) 2023-08-24
CN116075787A (zh) 2023-05-05
JPWO2022059587A1 (ja) 2022-03-24
DE112021004325T5 (de) 2023-06-01

Similar Documents

Publication Publication Date Title
JP6646027B2 (ja) ポストプロセッサ装置、加工プログラム生成方法、cnc加工システム及び加工プログラム生成用プログラム
KR101815143B1 (ko) 절삭가공방법 및 공구경로 생성장치
JP2017204072A (ja) 加工プログラム処理装置およびこれを備えた多軸加工機
JP2019070953A (ja) 加工プログラム処理装置およびこれを備えた多軸加工機
JP6574127B2 (ja) 数値制御装置およびこれを備えた工作機械
WO2022059587A1 (ja) 数値制御装置
JP7464712B2 (ja) ポストプロセッサ、加工プログラム生成方法、cnc加工システム及び加工プログラム生成用プログラム
WO2019198734A1 (ja) ツールパスの生成方法、ツールパスの生成装置、ツールパスを生成するプログラムおよびプログラムを記録した記録媒体
JP6148921B2 (ja) レーザ加工機の自動プログラミング装置
JP2008071015A (ja) 数値制御装置
WO2021014749A1 (ja) Ncプログラム生成システム及びncプログラム生成方法
US20230096031A1 (en) Nc program conversion processing method, conversion computer, and conversion program
JP4700369B2 (ja) Cam装置、工具軌跡作成方法および工具軌跡作成プログラム
JP6836552B2 (ja) 数値制御装置
WO2020008891A1 (ja) 数値制御装置
JPH11165239A (ja) 数値制御データ編集装置と数値制御データの編集方法
JP3116733B2 (ja) Camシステム用加工軸方向決定装置
JP7213744B2 (ja) 3次元形状加工方法
WO2024084706A1 (ja) 加工指令修正装置及び加工指令修正方法
US20230305521A1 (en) Numerical controller and control method
JP5636841B2 (ja) 加工方法およびncプログラム作成装置
JP2007007759A (ja) 加工条件設定方法および加工条件設定プログラムを記録した記録媒体
JP2022041079A (ja) プログラム作成装置
JP2021039401A (ja) 数値制御装置
JP2015047683A (ja) 円筒状工具を用いた加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550508

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21869274

Country of ref document: EP

Kind code of ref document: A1