WO2022058109A1 - Scheibe mit funktionselement mit elektrisch schaltbaren optischen eigenschaften und muster für hochfrequenz-transmission - Google Patents

Scheibe mit funktionselement mit elektrisch schaltbaren optischen eigenschaften und muster für hochfrequenz-transmission Download PDF

Info

Publication number
WO2022058109A1
WO2022058109A1 PCT/EP2021/072767 EP2021072767W WO2022058109A1 WO 2022058109 A1 WO2022058109 A1 WO 2022058109A1 EP 2021072767 W EP2021072767 W EP 2021072767W WO 2022058109 A1 WO2022058109 A1 WO 2022058109A1
Authority
WO
WIPO (PCT)
Prior art keywords
pane
surface electrode
edge
busbar
stripped
Prior art date
Application number
PCT/EP2021/072767
Other languages
English (en)
French (fr)
Inventor
Guillaume Francois
Stefan Droste
Original Assignee
Sage Electrochromics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sage Electrochromics, Inc. filed Critical Sage Electrochromics, Inc.
Priority to JP2023512179A priority Critical patent/JP2023538377A/ja
Priority to EP21763061.5A priority patent/EP4214049A1/de
Priority to CN202180063877.3A priority patent/CN116194654A/zh
Priority to US18/043,994 priority patent/US20240027864A1/en
Publication of WO2022058109A1 publication Critical patent/WO2022058109A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • B32B17/10045Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets with at least one intermediate layer consisting of a glass sheet
    • B32B17/10055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets with at least one intermediate layer consisting of a glass sheet with at least one intermediate air space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10183Coatings of a metallic or dielectric material on a constituent layer of glass or polymer being not continuous, e.g. in edge regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/1022Metallic coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10293Edge features, e.g. inserts or holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10339Specific parts of the laminated safety glass or glazing being colored or tinted
    • B32B17/10348Specific parts of the laminated safety glass or glazing being colored or tinted comprising an obscuration band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • B32B17/10504Liquid crystal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • B32B17/10513Electrochromic layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • B32B17/10532Suspended particle layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10541Functional features of the laminated safety glass or glazing comprising a light source or a light guide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/1099After-treatment of the layered product, e.g. cooling
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/67Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
    • E06B3/6715Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased thermal insulation or for controlled passage of light
    • E06B3/6722Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased thermal insulation or for controlled passage of light with adjustable passage of light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles

Definitions

  • the invention relates to a pane with a functional element with electrically switchable optical properties, which has a low transmission attenuation for electromagnetic radiation in the high-frequency range. Furthermore, the invention relates to a method for producing such a pane and its use as well as insulating glazing comprising such a pane.
  • Modern glazing increasingly has all-round and full-surface electrically conductive coatings that are transparent to visible light. These transparent, electrically conductive coatings protect, for example, interior spaces from overheating from sunlight or from cooling down by reflecting incident thermal radiation, as is known from EP 378917 A. Transparent, electrically conductive coatings can bring about targeted heating of the pane by applying an electrical voltage, as is known from WO 2010/043598 A1.
  • the transparent, electrically conductive coatings have in common is that they are also impermeable to electromagnetic radiation in the high-frequency range. If a vehicle is glazed on all sides and over the entire surface with transparent, electrically conductive coatings, it is no longer possible to send and receive electromagnetic radiation in the interior.
  • sensors such as Rain sensors
  • camera systems or stationary antennas usually have one or two locally limited areas of the electrically conductive, transparent coating stripped. These stripped areas form a so-called communication window or data transmission window and are known, for example, from EP 1 605 729 A2. Since the transparent, electrically conductive coatings influence the color and reflection effect of a pane, communication windows are very eye-catching. Stripped areas can cause disturbances in the field of vision of the pane.
  • Discs with a metallic coating are known from EP 0 717 459 A1, US 2003/0080909 A1 and DE 198 17 712 C1, all of which have a grid-like decoating of the metallic coating.
  • the grid-like decoating acts as a low-pass filter for incident high-frequency electromagnetic radiation.
  • the distances of the grid are small compared to the wavelength of the high-frequency electromagnetic radiation and thus a relatively large proportion of the coating is structured and the view through is impaired to a greater extent. Removing a larger portion of the layer is time-consuming and expensive.
  • WO 2015/091016 A1 discloses a pane with a transparent, electrically conductive coating, into which structures without a coating are introduced, the structures without a coating having the shape of a rectangle with a completely uncoated surface or a rectangular frame without a coating.
  • a pane with an electrically conductive coating as an infrared-reflecting coating is known from EP 2 586 610 A1, lines that have been stripped of the coating being introduced into the coating.
  • US 2004/0113860 A1 discloses glazing with a metallic layer that can be used as a heating layer or for reflecting infrared radiation, openings being introduced in the layer that are intended to enable improved electromagnetic transmission.
  • the object of the present invention is now to provide a pane comprising a functional element with optical properties that can be switched electrically, which enables improved transmission of high-frequency electromagnetic radiation with simultaneous homogeneous switching behavior of the functional element and low impairment of the view, insulating glazing comprising such a pane, a method for Provide production and their use. According to the proposal of the invention, these and other objects are achieved by a pane having the features of the independent patent claims. Advantageous configurations of the invention are specified by the features of the dependent claims. A method for producing a pane with high-frequency transmission and the use of such a pane emerge from further independent patent claims.
  • a pane according to the invention comprises at least one first pane with a first side, a second side, a peripheral edge and an edge region adjoining the peripheral edge, a functional element with electrically switchable optical properties being arranged flat on the first side of the first pane.
  • the functional element comprises a first surface electrode and a second surface electrode arranged at least flat one above the other, between which an active layer of the functional element is located.
  • An electrical voltage can be applied to the surface electrodes via a first busbar, which electrically conductively contacts the first surface electrode, and a second busbar, which electrically conductively contacts the second surface electrode.
  • a structure at the edge is introduced within the first surface electrode and/or the second surface electrode, the structure at the edge being formed by stripped linear areas.
  • the stripped linear areas are located along the bus bar between the edge of the bus bar facing the center of the surface of the respective surface electrode and the center of the surface and extend from there in the direction of the opposite section of the peripheral edge of the pane.
  • the linear stripped areas can assume the most diverse courses and angles to the nearest busbar; the distance to the nearest busbar should only increase in the course of a linear stripped area and the distance to the opposite section of the peripheral edge should decrease.
  • the peripheral structure has no electrically isolated zones within the first surface electrode and the second surface electrode. Accordingly, the stripped linear areas within one of the surface electrodes do not completely enclose any surface area.
  • the invention makes it possible to design a pane with a functional element with electrically switchable optical properties with good transmission for high-frequency electromagnetic radiation. Large-area decoating of the surface electrodes can thus be avoided.
  • the structure formed by the stripped linear areas is arranged within the edge area of the pane, so that the view through the pane is not or only slightly impaired.
  • the busbars of the functional element are often covered in practice by means of an opaque cover print, with at least a partial area of the edge structure also being advantageously covered.
  • the structure at the edge of the pane does not completely enclose any surface areas of the first surface electrode and the second surface electrode.
  • the structure at the edge is preferably introduced in the edge region of the pane in the vicinity of the first busbar at least in the first surface electrode and/or in the vicinity of the second busbar at least in the second surface electrode.
  • the edge structure extends in the edge regions in which a bus bar is located, along the bus bar, with the edge structure preferably along at least 80% of the length of the nearest bus bar, particularly preferably along 90% of the length of the nearest bus bar, in particular along the entire Length of the nearest busbar is introduced into the first surface electrode and / or the second surface electrode.
  • the length of the busbar is defined as the dimension of the busbar along the nearest portion of the peripheral edge of the disk.
  • Edge structures are preferably introduced adjacent to the first busbar and adjacent to the second busbar. Edge structures are preferably introduced both in the first surface electrode adjacent to the first busbar and in the second surface electrode adjacent to the first busbar. Edge structures are also preferably introduced in the vicinity of the second busbar in the second surface electrode and in the vicinity of the second busbar in the first surface electrode. Thus, in the vicinity of a bus bar, both surface electrodes are preferably provided with the edge structure. This is advantageous in order to achieve good permeability of both surface electrodes for high-frequency electromagnetic radiation in these areas. The radiation transmitted at a first flat electrode is thus also transmitted at the second flat electrode.
  • the edge structures of the first surface electrode and the second surface electrode lying within a common edge area can be designed differently or also in the same way. Even if the structures at the edge are designed in the same way, they can be arranged essentially congruently or offset with respect to one another.
  • the busbars of different polarities are located on opposite portions of the peripheral edge of the disk. This achieves a homogeneous current flow and an even switching behavior of the functional element.
  • the stripped linear areas extending in the direction of the opposite edge form current paths between adjacent lines.
  • Structures located at the edge preferably each extend, starting from the first busbar and starting from the second busbar, in the direction of the respectively opposite edge.
  • the structure at the edge is preferably attached along the entire edge section of the peripheral edge on which the associated bus bar is located. In this way, on the one hand, the transmission of electromagnetic radiation through the pane can be increased and, on the other hand, the current flow can be directed via the surface electrodes by means of the current paths formed between stripped linear areas.
  • edge sections of the peripheral edge on which no busbars are arranged are preferably not provided with a peripheral structure comprising stripped linear areas in order to avoid disturbances in the current flow along the surface electrodes and an associated inhomogeneous switching behavior of the functional element.
  • edge sections of the peripheral edge that do not have any busbars and no structure at the edge can also be provided with a different structure of the surface electrodes.
  • a planar decoating of the surface electrodes in the edge region can be provided along the edge sections of the pane, along which no busbars run. This only takes place in the area of the pane in which the functional element does not need to be switchable, for example outside the viewing area of the pane. In this way, the transmission of electromagnetic radiation can be further increased.
  • the transmission of high-frequency electromagnetic radiation through the pane according to the invention is based on the principle that certain frequency ranges of the electromagnetic radiation are amplified on the grid formed by the structure at the edge.
  • the orientation of the decoated line-shaped areas to the field vector of the incident electromagnetic radiation is decisive for its transmission.
  • the distance between the stripped linear areas is a determining factor for the permeability of electromagnetic radiation of certain wavelengths, such as radiation for operating mobile telephony in the GSM 900 and DCS 1800 bands, UMTS, LTE and 5G as well as satellite-based navigation (GNSS) and other ISM frequencies such as WLAN, Bluetooth or CB radio.
  • the structure according to the invention allows further variations through the alignment of the lines from which the coating has been removed and through areas of intersection with optionally existing further lines. In this way it is easily possible to optimize the transmissivity for several frequency bands at the same time.
  • the edge structures according to the invention act as low-pass filters, ie they can be optimized to a cut-off frequency at which frequencies lower than the cut-off frequency are allowed to pass and from which the transmission of frequencies higher than the cut-off frequency becomes poorer. From the selection of the cut-off frequency, the distances between the decoated lines that form the lattice structure result for the person skilled in the art in a generally known manner. They influence the electromagnetic transmission in such a way that the smaller the maximum distance between the lines, the higher the limit frequency up to which the transmission remains unaffected. If, for example, the maximum distance is 2.0 mm in the vertical direction and 5.0 mm in the horizontal direction between the decoated areas, then the resulting limit wavelength can be estimated at up to 20 times these values. For the relevant relationships and estimates, reference is also made to the description of DE 195 08 042 A1. In principle, however, any polarization can be transmitted.
  • the stripped linear areas are in the form of straight lines which extend at an angle of, for example, 15° to 90° to the nearest bus bar in the direction of the opposite section of the peripheral edge.
  • the acute angle is considered.
  • the transmission of the electromagnetic radiation is determined by the relative arrangement of the decoated line-shaped areas and to the direction of polarization of the electric field vector of the impinging radiation.
  • the radiation with a direction of polarization parallel to the stripped line-shaped areas is transmitted only slightly, while the radiation with a direction of polarization perpendicular thereto is transmitted. In the case of the polarization directions in between, mainly only the component with the polarization direction perpendicular to the line-shaped area is transmitted.
  • the stripped linear areas are aligned at an angle of 90° to the busbar that is closest in each case.
  • the stripped linear areas have a wavy shape or a substantially wavy shape.
  • the essentially wavy shape thus deviates only insignificantly from the shape to be described by means of a wave function, the overall impression of a wavy shape being retained.
  • sinusoidal shape is understood in particular to mean that the lines of the linear regions have a curvature or, in each case, alternately different curvatures over the course, at least in sections.
  • the curvature or the curvatures of the decoated areas can be both with a constant angle of curvature as well as with a variable angle of curvature.
  • the term includes both curved line-shaped areas with a "perfect" sinusoidal shape and such curved linear areas with an imperfect" sinusoidal shape, in other words with any waveform.
  • a sinusoidal course and/or a zigzag course, at least in sections, of the stripped linear regions of the structure at the edges are particularly preferred.
  • Such a wavy or zigzag course with the associated change in direction of the stripped linear areas brings about improved transmission of both mutually perpendicular directions of polarization.
  • a sinusoidal curve has proven to be particularly advantageous with regard to the proportion of the transmitted radiation.
  • sinusoidal structures or any wave-shaped structures are less disturbing to an observer than rectilinear structures. This is due in particular to the fact that with a sinusoidal or wavy pattern there are fewer corners, in particular fewer right-angled or even acute-angled corners, in the structure. Even if a wavy course of the stripped linear areas is very advantageous with regard to the transmission, the influence of such an edge structure on the current flow along the surface electrodes must be taken into account. The length of the current paths introduced into the surface electrodes is increased, in particular in the case of a large amplitude in the wave-shaped profile and/or if the stripped wave-shaped areas run over a longer distance in the edge area. This results in increased electrical resistance and the associated voltage drop.
  • the stripped linear areas of the structure at the edge have a rectilinear course or an essentially rectilinear course. This is advantageous with regard to the shortest possible distance of the current paths arising between adjacent stripped linear regions.
  • An essentially rectilinear course deviates only insignificantly from a straight line, with the preferred direction of the straight line essentially describing the course being retained in this sense in the case of an essentially rectilinear course.
  • the stripped linear areas preferably assume an angle of 10° to 50°, particularly preferably 20° to 45°, in particular 25° to 40° to the adjacent first busbar or second busbar.
  • the acute angle between the decoated line-shaped Area and collector considered. Within these areas, both an advantageously high transmission can be achieved and an undesirably high voltage drop in the area of the edge structure can be avoided.
  • the stripped, linear areas of a structure at the edge can assume the same or, within the preferred areas, different angles to the adjacent busbar.
  • the linear areas from which the coating has been removed run parallel to one another.
  • the edge structure has at least two groups of stripped linear areas whose group members run parallel to one another, but which do not run parallel to the members of the other group in each case.
  • a first section of the edge area of the first flat electrode has at least one group of first stripped linear areas in the vicinity of the first bus bar, which run essentially parallel to one another.
  • a second section of the edge area of the first flat electrode, which adjoins the first section has at least a second group of stripped linear areas, which also run essentially parallel to one another.
  • the first group of stripped linear areas and the second group of stripped linear areas form an angle of 10° to 100°, preferably 40° to 90°, to one another.
  • the second surface electrode can also have at least two groups of stripped linear regions that do not run parallel to one another.
  • At least two groups of decoated line-shaped areas, the course of which is not parallel to one another, are advantageous in order to improve the transmission of electromagnetic radiation of different polarization directions.
  • the absolute value of the angle which the first group of line-shaped areas and the second group of line-shaped areas each assume in relation to the nearest bus bar is the same or approximately the same.
  • the line density of the stripped linear areas of the structure at the edge preferably increases within the edge area in the direction of the peripheral edge. According to this, there are linear areas that have been decoated in the edge area introduced of different lengths. Some of the stripped line-shaped regions have a greater length than the stripped line-shaped regions adjacent thereto and extend toward the opposite edge by a larger amount. This creates an alternating arrangement of one or more stripped linear areas of greater length with one or more stripped linear areas of shorter length.
  • the linear regions of greater length are only adjacent to similar regions of greater length on the edge of the peripheral structure facing away from the busbar, the linear regions of lesser length do not protrude correspondingly far in the direction of the center of the surface.
  • a section of the peripheral structure with a higher line density of the stripped regions is formed in the vicinity of the closest busbar, while at the edge of the peripheral structure facing away from the busbar there is a larger line spacing and thus a lower line density.
  • the frequency of the transmitted wavelengths depends on the distance between adjacent linear areas, with the area of higher line density being advantageous for the transmission of higher frequencies and in the area of lower line density, primarily lower frequencies of the high-frequency electromagnetic radiation are transmitted.
  • This embodiment is therefore advantageous in order to achieve good transmission of the most varied of frequencies in the spectrum.
  • the area of higher line density can be limited to the area of the disk that bears an opaque masking print, so as not to impair the optical appearance of the disk.
  • the first surface electrode and/or the second surface electrode each has a group of stripped linear areas that are parallel or essentially parallel to linear areas of the same group.
  • the distance between adjacent stripped linear regions of the same group is preferably 1.0 mm to 20.0 mm, preferably 1.0 mm to 10.0 mm, particularly preferably 2.0 mm to 5.0 mm. An advantageous transmission of high-frequency electromagnetic radiation takes place within these areas.
  • further decoated linear areas can be introduced into the surface electrodes in addition to the mentioned decoated linear areas. These can also assume angles to the busbars other than those described.
  • the further decoated linear areas and also cross the decoated linear areas.
  • stripped linear areas intersect with further stripped linear areas at an angle of 90°, with further stripped linear areas being attached to the four ends of the cross-shaped arrangement, each running perpendicular to the line at the end of which they are attached. It should be noted that the terminal lines attached to the ends of the cruciform arrangement do not cross each other. In this way, the formation of electrically isolated zones within the peripheral structure is avoided.
  • the cross-shaped arrangement of stripped linear areas with terminal stripped linear areas at the ends of the crossing lines encloses an arrangement of four rectangles, of which two are located next to each other and two are located one above the other.
  • the four rectangles outlined by the stripped linear areas together form a large rectangle, at the corners of which the stripped linear areas are cut out, ie there is no stripping.
  • the surface portions of the surface electrodes that are located within the rectangles are electrically conductively connected to the surrounding surface electrode, so that there are no electrically isolated zones within the structure at the edges.
  • a plurality of these cross-shaped arrangements are preferably introduced next to one another along the first busbar and/or second busbar within the first surface electrode or second surface electrode.
  • the length of the intersecting stripped linear areas is preferably 10 mm to 40 mm, preferably 20 mm to 30 mm, while the length of the terminal linear areas is 8 mm to 30 mm, preferably 15 mm to 25 mm.
  • the distance between adjacent cross-shaped arrangements is determined as the smallest distance between two lines of adjacent arrangements and is 1.0 mm to 5.0 mm, for example 2.0 mm. Good results in terms of transmission were achieved in these areas.
  • the pane according to the invention also has at least one central structure, which also outside of the edge area at least in some areas of the disc is arranged.
  • the central structure is incorporated in the first surface electrode and/or second surface electrode and has no electrically isolated zones within the first surface electrode and the second surface electrode.
  • the central structure therefore does not completely enclose any surfaces within the first surface electrode and the second surface electrode. If a central structure is provided, this is usually introduced into both surface electrodes. In this way, a transmission through both surface electrodes takes place in equal measure.
  • the first surface electrode and the second surface electrode can have different or identical central structures, which are optionally arranged congruently or offset to one another.
  • the at least one central structure preferably comprises stripped linear areas.
  • the stripped linear areas of the central structure within the first surface electrode preferably extend from the peripheral structure in the vicinity of the first busbar in the direction of the second busbar and/or the stripped linear areas of the central structure run within the second surface electrode from the peripheral structure in the vicinity of the second bus bar starting in the direction of the first bus bar.
  • Particular preference is given to central structures in the form of stripped linear areas in both flat electrodes.
  • a course of the stripped linear areas starting from a bus bar in the direction of the bus bar with the opposite polarity enables transmission in the see-through area of the pane, while maintaining good switchability of the functional element.
  • the current paths created between the stripped linear areas are decisive for the good switchability of the functional element.
  • the first and second busbars can also be attached to a plurality of side edges of the pane, with the pane preferably having a rectangular contour.
  • the peripheral edge includes four straight edge sections, two of which are opposite each other.
  • the first bus bar extends along two adjacent edge sections, with the second bus bar extending along the opposite edge sections, which are also adjacent.
  • the first busbar and the second busbar each run along two adjacent edge portions of the peripheral edge.
  • both the contact surface between the busbar and thus increases the electrically contacted surface electrode and minimizes the distance that the current must run over the surface electrode. Accordingly, improved shiftability with more homogeneous shifting behavior can be achieved.
  • the marginal structures can assume all of the structures and courses mentioned so far.
  • the stripped linear areas can have an angle of 90° to the nearest section of the busbar, with a gradual transition between the two orientations of the stripped linear areas taking place in the overlapping corner area in which a busbar comprises two adjacent edge sections.
  • the edge structures are designed as stripped linear areas which extend at an angle of 10° to 50°, particularly preferably 20° to 45°, in particular 25° to 40° to the adjacent section of the closest busbar.
  • the acute angle between the stripped linear area and the busbar is considered.
  • the angle of the stripped linear areas can be changed in relation to the nearest section of the adjacent busbar.
  • the stripped linear areas can have a constant length with a variable angle or a length that increases from the middle of the edge to the corner. A constant length is advantageous in order to keep the areas to be decoated and the associated production costs as low as possible.
  • the stripped linear areas can be designed in such a way that their ends pointing away from the associated busbar are at a constant distance from the nearest section of the peripheral edge, which achieves a particularly attractive visual appearance.
  • the stripped linear areas can be along the sections of the circumferential Edges where no busbars are arranged, electrically isolated zones can also be provided in the edge area. These electrically insulated zones are provided within the first flat electrode and/or the second flat electrode, preferably within both flat electrodes.
  • the functional element can no longer be switched in the edge area of the pane, which includes electrically isolated zones.
  • the surface electrodes can, for example, be completely decoated or else be provided with a structuring of linear decoated areas, which includes portions of the surface electrodes. This creates electrically isolated zones that are not electrically contacted with the busbars. Structuring can take place within these electrically isolated zones without regard to the current flow along the surface electrodes.
  • the electrically insulated zones are preferably outside the visible area and/or are laminated, for example, by an opaque masking print. According to the invention, such electrically insulated zones are excluded along the busbars adjacent to them in order to enable homogeneous switchability of the functional element in the viewing area.
  • the functional element with electrically switchable optical properties can be designed as an electrochromic functional element, SPD element, PDLC element or electroluminescent element.
  • the functional element is particularly preferably an electrochromic functional element.
  • An electrochromic functional element comprises at least one electrochemically active layer that is capable of reversibly storing charges.
  • the oxidation states in the stored and stored state differ in their coloring, with one of these states being transparent.
  • the storage reaction can be controlled via the externally applied potential difference.
  • the basic structure of the electrochromic functional element thus comprises at least one electrochromic material, such as tungsten oxide, which is in contact with both a surface electrode and a charge source, such as an ion-conductive electrolyte.
  • the electrochromic layer structure contains a counter-electrode, which is also capable of reversibly storing cations and is in contact with the ion-conductive electrolyte, as well as a further surface electrode which is connected to the counter-electrode.
  • the surface electrodes are connected to an external voltage source, which allows the voltage applied to the active layer to be regulated.
  • the surface electrodes are mostly thin layers of electrically conductive material, often Indium Tin Oxide (ITO). At least one of the surface electrodes is often applied directly to the surface of the first pane, for example by means of cathode atomization (sputtering).
  • the active layer is an SPD, a PDLC, an electrochromic or an electroluminescent layer.
  • An SPD functional element (suspended particle device) contains an active layer comprising suspended particles, the absorption of light by the active layer being variable by applying a voltage to the surface electrodes. The change in absorption is based on the alignment of the rod-like particles in the electrical field when an electrical voltage is applied. SPD functional elements are known, for example, from EP 0876608 B1 and WO 2011033313 A1.
  • the functional element is a PDLC (polymer dispersed liquid crystal) functional element.
  • the active layer of a PDLC functional element contains liquid crystals embedded in a polymer matrix. If no voltage is applied to the surface electrodes, the liquid crystals are aligned in a disorderly manner, which leads to strong scattering of the light passing through the active layer. If a voltage is applied to the surface electrodes, the liquid crystals align in a common direction and the transmission of light through the active layer is increased.
  • a functional element is known, for example, from DE 102008026339 A1.
  • the active layer contains electroluminescent materials, in particular organic electroluminescent materials, the luminescence of which is excited by the application of a voltage.
  • electroluminescent functional elements are known, for example, from US 2004227462 A1 and WO 2010112789 A2.
  • the electroluminescent functional element can be used as a simple light source or as a display with which any representations can be shown.
  • any type of transparent electrically conductive coating is known as the first surface electrode and as the second surface electrode.
  • the first and/or the second surface electrode comprise at least one metal, preferably silver, nickel, chromium, niobium, tin, titanium, copper, palladium, zinc, gold, cadmium, aluminum, silicon, Tungsten or alloys thereof, and/or at least one metal oxide layer, preferably tin-doped indium oxide (ITO), aluminum-doped zinc oxide (AZO), fluorine-doped tin oxide (FTO, SnO2:F), antimony-doped tin oxide (ATO, SnO2:Sb) , and/or carbon nanotubes and/or optically transparent, electrically conductive polymers, preferably poly(3,4-ethylenedioxythiophene), polystyrene sulfonate, poly(4,4-dioctylcyclopentadithiophene), 2,3-dichloro-5
  • the thickness of the surface electrodes can vary widely and be adapted to the requirements of the individual case. It is essential here that the thickness of the transparent, electrically conductive coating must not be so great that it becomes impermeable to electromagnetic radiation, preferably electromagnetic radiation with a wavelength of 300 to 1,300 nm and in particular visible light.
  • the transparent, electrically conductive coating preferably has a layer thickness of 10 nm to 5 ⁇ m and particularly preferably of 30 nm to 1 ⁇ m.
  • the line-shaped decoated areas introduced into the first and/or second flat electrode have a line width of the decoated areas of 5 ⁇ m to 500 ⁇ m and preferably of 10 ⁇ m to 140 ⁇ m.
  • the switching process of the functional element is not visibly impaired within these line widths.
  • these line widths can be introduced in a simple manner using commercially available lasers.
  • the surface electrodes of the functional element are electrically conductively contacted via so-called busbars and are connected via the busbars to an electrical supply line, which is connected to an external voltage source.
  • busbars strips of an electrically conductive material or electrically conductive imprints can be used as busbars, with which the surface electrodes are connected.
  • the bus bars also known as bus bars, are used to transmit electrical power and enable homogeneous voltage distribution.
  • the busbars are advantageously produced by printing a conductive paste.
  • the conductive paste preferably contains silver particles and glass frits.
  • the layer thickness of the conductive paste is preferably from 5 ⁇ m to 20 ⁇ m.
  • thin and narrow metal foil strips or metal wires are used as busbars, which preferably contain copper and/or aluminum, in particular copper foil strips with a thickness of, for example used about 50 pm.
  • the width of the copper foil strips is preferably 1 mm to 10 mm.
  • the electrical contact between an electrically conductive layer of the functional element serving as a surface electrode and the busbar can be produced, for example, by soldering or gluing with an electrically conductive adhesive.
  • the electrical supply line which is used to contact the busbars with an external voltage source, is an electrical conductor, preferably containing copper. Other electrically conductive materials can also be used. Examples are aluminum, gold, silver or tin and alloys thereof.
  • the electrical supply line can be designed both as a flat conductor and as a round conductor, and in both cases as a single-wire or multi-wire conductor (stranded).
  • the electrical supply line preferably has a line cross-section of 0.08 mm 2 to 2.5 mm 2 .
  • Foil conductors can also be used as a supply line. Examples of foil conductors are described in DE 42 35 063 A1, DE 20 2004 019 286 U1 and DE 93 13 394 U1.
  • Flexible foil conductors sometimes also called flat conductors or ribbon conductors, preferably consist of a tinned copper strip with a thickness of 0.03 mm to 0.1 mm and a width of 2 mm to 16 mm. Copper has proven itself for such conductor tracks because it has good electrical conductivity and good processing properties to form foils. At the same time, the material costs are low.
  • the invention also includes insulating glazing comprising the pane according to the invention with a functional element, a second pane and a peripheral spacer frame which connects the pane to the second pane.
  • At least one electrically conductive coating is arranged flat on the second pane, with at least one edge structure being introduced in the edge area of the electrically conductive coating.
  • the edge area of the second pane is the area adjoining the peripheral edge of the second pane.
  • the structure at the edge is applied in particular in areas in the projection of which onto the pane with the functional element there is already a structure at the edge of the pane.
  • the edge structure of the second pane can in principle assume all the structures explained for the edge structure of the first pane.
  • the marginal structures located on the first disk and the second disk can have the same or different configurations, and these can be arranged congruently or offset in the case of the same structures.
  • the electrically conductive coating of the second pane and the functional element on the first pane are attached to the pane surfaces facing the spacer and are therefore located in the inner space between the panes of the insulating glazing, where they are protected from environmental influences.
  • the electrically conductive coating of the second pane is preferably an infrared-reflecting coating.
  • the infrared-reflecting coating reduces the passage of heat through the insulating glazing, so that heat loss can be avoided in winter. In summer, on the other hand, the infrared-reflecting coating prevents the interior from heating up due to incoming solar radiation.
  • the use of an infrared-reflecting coating is advantageous since in this way the heat transfer of the waste heat from the functional element is also avoided.
  • the infrared-reflecting coating is preferably transparent to visible light in the wavelength range from 390 nm to 780 nm.
  • Transparent means that the overall transmission of the pane is particularly preferably >70% and in particular >75% permeable for visible light. As a result, the optical impression of the glazing and the view through are not impaired.
  • the infrared-reflecting coating is used for sun protection and has reflective properties in the infrared range of the light spectrum.
  • the infrared-reflecting coating has particularly low emissivities (Low-E). This advantageously reduces heating of the interior of a building as a result of solar radiation.
  • Panes that are provided with such an infrared-reflecting coating are commercially available and are referred to as low-E glass (low-emissivity glass).
  • Low-E coatings usually contain a diffusion barrier, a metal or metal-oxide-containing multilayer and a barrier layer.
  • the diffusion barrier is applied directly to the glass surface and prevents discoloration caused by the diffusion of metal atoms into the glass. Double silver layers or triple silver layers are often used as multilayers.
  • the various Low-E Coatings are known, for example, from DE 10 2009 006 062 A1, WO 2007/101964 A1, EP 0 912 455 B1, DE 199 27 683 C1, EP 1 218 307 B1 and EP 1 917 222 B1.
  • Low-E coatings are preferably deposited using the known method of magnetic field-assisted cathode sputtering.
  • Films deposited by magnetic field assisted sputtering are amorphous in structure and cause haze on clear substrates such as glass or transparent polymers.
  • a temperature treatment of the amorphous layers causes a crystal structure change towards a crystalline layer with improved transmission.
  • the temperature input into the coating can take place via a flame treatment, a plasma torch, infrared radiation or a laser treatment.
  • Such coatings typically contain at least one metal, in particular silver or a silver-containing alloy.
  • the infrared-reflecting coating can comprise a sequence of several individual layers, in particular at least one metallic layer and dielectric layers, which contain at least one metal oxide, for example.
  • the metal oxide preferably includes zinc oxide, tin oxide, indium oxide, titanium oxide, silicon oxide, aluminum oxide, or the like, and combinations of one or more thereof.
  • the dielectric material may also include silicon nitride, silicon carbide, or aluminum nitride.
  • Particularly suitable transparent, infrared-reflecting coatings contain at least one metal, preferably silver, nickel, chromium, niobium, tin, titanium, copper, palladium, zinc, gold, cadmium, aluminum, silicon, tungsten or alloys thereof, and/or at least one metal oxide layer, preferably tin-doped indium oxide (ITO), aluminum-doped zinc oxide (AZO), fluorine-doped tin oxide (FTO, SnO2:F), antimony-doped tin oxide (ATO, SnO2:Sb), and/or carbon nanotubes and/or optically transparent ones , Electrically conductive polymers, preferably poly(3,4-ethylenedioxythiophene), polystyrene sulfonate, poly(4,4-dioctylcyclopentadithiophene), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, mixtures
  • the infrared-reflecting coating preferably has a layer thickness of 10 nm to 5 ⁇ m and particularly preferably of 30 nm to 1 ⁇ m.
  • the sheet resistance of the infrared-reflecting coating is, for example, 0.35 ohms/square to 200 ohms/sq, preferably from 0.6 ohms/sq to 30 ohms/sq and more preferably from 2 ohms/sq to 20 ohms/sq.
  • a silver layer with a thickness of 6 nm to 15 nm surrounded by two barrier layers with a thickness of 0.5 nm to 2 nm containing nickel-chromium and/or titanium is used as the infrared-reflecting coating.
  • a diffusion barrier with a thickness of 25 nm to 35 nm containing SisI 4 , TiO 2 , SnZnO and/or ZnO is preferably applied between a barrier layer and the glass surface.
  • a diffusion barrier with a thickness of 35 nm to 45 nm containing ZnO and/or SisI 4 is preferably applied to the upper barrier layer facing the environment.
  • This upper diffusion barrier is optionally equipped with a protective layer with a thickness of 1 nm to 5 nm comprising TiÜ2 and/or SnZnÜ2.
  • the total thickness of all layers is preferably 67.5 nm to 102 nm.
  • the spacer is generally arranged circumferentially on the panes.
  • the first and the second collector conductor preferably run parallel to the spacer in the first glazing interior, preferably on two opposite pane edges of the first pane.
  • the spacer is generally in the form of a rectangle when viewed from above.
  • the spacer is symmetrical, i.e. it is the same distance from the edge of the insulating glass on all sides of the insulating glass.
  • the insulating glazing comprises at least two panes that are kept at a distance from one another by a spacer.
  • the insulating glazing can also include a third or additional pane. These can, for example, be attached to the pane or second pane via additional spacers.
  • the first pane of the insulating glazing which has the functional element, is laminated with a further pane via a thermoplastic composite film to form a composite pane.
  • the laminated pane has improved durability and stability.
  • the third pane, which is laminated to the first pane, also impedes the deflection and thermal expansion of the first pane.
  • a laminated pane has improved penetration resistance. This is particularly advantageous in order to protect the functional element.
  • Suitable thermoplastic composite films are known to those skilled in the art.
  • the thermoplastic composite films contain at least one thermoplastic polymer, preferably ethylene vinyl acetate (EVA), polyvinyl butyral (PVB) or polyurethane (PU) or mixtures or copolymers or derivatives thereof.
  • the thickness of the thermoplastic composite films is preferably from 0.2 mm to 2 mm, particularly preferably from 0.3 mm to 1.5 mm.
  • Polyvinyl butyral with a thickness of, for example, 0.38 mm or 0.76 mm is particularly preferably used for laminating two panes of glass.
  • the spacer of the insulating glazing preferably comprises at least one base body comprising two pane contact surfaces, a glazing interior surface, an outer surface and a hollow chamber.
  • the first and second discs are attached to the disc contacting surfaces preferably via a sealant attached between the first disc contacting surface and the disc and/or the second disc contacting surface and the second disc.
  • the sealant preferably contains butyl rubber, polyisobutylene, polyethylene vinyl alcohol, ethylene vinyl acetate, polyolefin rubber, copolymers and/or mixtures thereof.
  • the sealant is preferably introduced into the gap between spacer and panes with a thickness of 0.1 mm to 0.8 mm, particularly preferably 0.2 mm to 0.4 mm.
  • the first pane contact surface and the second pane contact surface represent the sides of the spacer on which the outer panes (pane and second pane) of insulating glazing are installed when the spacer is installed.
  • the first disk contact surface and the second disk contact surface are parallel to one another.
  • the glazing interior area is defined as the area of the spacer body which, after installation of the spacer in insulating glazing, faces towards the interior of the glazing.
  • the glazing interior surface lies between the panes.
  • the outer surface of the spacer body is the side opposite the glazing interior surface, facing away from the interior of the insulating glazing toward an exterior seal.
  • the outer surface of the spacer can be angled in each case adjacent to the pane contact surfaces, as a result of which increased stability of the base body is achieved.
  • the outer surface may be angled adjacent to the disk contact surfaces, for example by 30-60° each time relative to the outer surface.
  • the cavity of the body abuts the interior glazing surface, with the interior glazing surface being above the cavity and the outer surface of the spacer being below the cavity.
  • above is defined as facing the inner space between the panes of the insulating glazing in the installed state of the spacer in insulating glazing and below as facing away from the pane interior.
  • the hollow chamber of the spacer results in a weight reduction compared to a solidly formed spacer and is available for accommodating other components, such as a desiccant
  • the outer space between the panes of the insulating glazing is preferably filled with an outer seal.
  • This outer seal is primarily used to bond the two panes and thus the mechanical stability of the insulating glazing.
  • the outer seal preferably contains polysulfides, silicones, silicone rubber, polyurethanes, polyacrylates, copolymers and/or mixtures thereof. Such substances have very good adhesion to glass, so that the outer seal ensures that the panes are securely bonded.
  • the thickness of the outer seal is preferably 2 mm to 30 mm, particularly preferably 5 mm to 10 mm.
  • the panes of the insulating glazing can be made of organic glass or, preferably, of inorganic glass.
  • the panes can be made of flat glass, float glass, soda-lime glass, quartz glass or borosilicate glass, independently of one another.
  • the thickness of each slice can vary and thus be adapted to the requirements of the individual case.
  • the discs can be colorless or colored.
  • the glazing interior may be filled with air or another gas, particularly an inert gas such as argon or krypton.
  • an inert gas such as argon or krypton.
  • the outer space between the panes is also formed by the first pane, the second pane, the spacer and the sealant placed between panes and pane contact surfaces and is located opposite the glazing interior in the outer edge area of the insulating glazing.
  • the outer space between the panes is open on the side opposite the spacer.
  • the outer surface of the spacer faces the outer space between the panes.
  • the base body of the spacer can assume the most varied of metallic or polymeric embodiments known to those skilled in the art. Suitable metals are, in particular, aluminum or stainless steel.
  • Polymer base bodies preferably contain polyethylene (PE), polycarbonates (PC), polypropylene (PP), polystyrene, polybutadiene, polynitriles, polyesters, polyurethanes, polymethylmetacrylates, polyacrylates, polyamides, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), preferably acrylonitrile-butadiene Styrene (ABS), acrylester-styrene-acrylonitrile (ASA), acrylonitrile-butadiene-styrene/polycarbonate (ABS/PC), styrene-acrylonitrile (SAN), PET/PC, PBT/PC and/or copolymers or mixtures thereof.
  • the polymer base body is preferably glass fiber reinforced.
  • the base body preferably
  • the spacer contains a desiccant, preferably silica gels, molecular sieves, CaCl2, Na2SO4, activated carbon, silicates, bentonites, zeolites and/or mixtures thereof.
  • a desiccant preferably silica gels, molecular sieves, CaCl2, Na2SO4, activated carbon, silicates, bentonites, zeolites and/or mixtures thereof.
  • the spacer can preferably have one or more hollow chambers.
  • the desiccant is preferably contained in the hollow chamber.
  • the glazing interior surface preferably has openings in order to facilitate the absorption of air moisture by the desiccant present in the spacer. The total number of openings depends on the size of the insulating glazing.
  • the openings connect the hollow chamber with the inner space between the panes, which enables gas exchange between them. This allows the moisture in the air to be absorbed by the drying agent in the hollow chamber, thus preventing the windows from fogging up.
  • the openings are preferably designed as slits, particularly preferably as slits with a width of 0.2 mm and a length of 2 mm. The slits ensure an optimal exchange of air without desiccant penetrating from the hollow chamber into the interior of the glazing.
  • a gas-tight and vapor-tight barrier is preferably applied at least to the outer surface of the polymer base body.
  • the gas- and vapor-tight barrier improves the tightness of the spacer against gas loss and moisture penetration.
  • the barrier is preferably applied to about half to two-thirds of the pane contact surfaces.
  • a suitable spacer with a polymer base body is disclosed, for example, in WO 2013/104507 A1.
  • the invention further relates to a method for producing a pane according to the invention, wherein at least: a. a first pane with a functional element with electrically switchable optical properties is provided, and b. at least one peripheral structure comprising stripped, linear areas is formed within the first flat electrode and/or the second flat electrode in such a way that the linear areas are located adjacent to the first busbar and/or second busbar and, starting from there, in the direction of the opposite section of the peripheral Extend edge, wherein the peripheral structure has no electrically isolated zones within the first surface electrode and the second surface electrode.
  • the edge structures in the first and/or second surface electrode are preferably decoated by a laser beam.
  • Methods for structuring thin metal films are known, for example, from EP 2 200 097 A1 or EP 2 139 049 A1.
  • the width of the decoating is preferably from 5 ⁇ m to 150 ⁇ m, particularly preferably from 5 ⁇ m to 100 ⁇ m, very particularly preferably from 10 ⁇ m to 50 ⁇ m and in particular from 15 ⁇ m to 30 ⁇ m. In this area, a particularly clean and residue-free decoating takes place using the laser beam.
  • the decoating by means of a laser beam is particularly advantageous since the decoated lines are optically very inconspicuous and the appearance and the look-through are only slight affect.
  • a line of width d which is wider than the width of a laser cut, is stripped by repeatedly scanning the line with the laser beam. The process duration and the process costs therefore increase with increasing line width.
  • the decoated structure is introduced into the first and/or second surface electrode by laser structuring.
  • the laser beam can be focused through the pane and/or any carrier foils of the functional element onto the first and/or second surface electrode.
  • the invention also extends to the use of a pane as described above or a corresponding insulating glazing as glazing with low transmission loss for high-frequency electromagnetic radiation, in a vehicle body or a vehicle door of a means of transport on land, on water or in the air, preferably as a windscreen, in buildings as part of an exterior facade or a building window.
  • FIG. 1a shows a schematic representation of a pane according to the invention in a plan view
  • FIG. 1b shows a cross section of the pane according to the invention according to FIG. 1a along the section line AA'
  • FIG. 2 shows a schematic representation of a further exemplary embodiment of a pane according to the invention in a plan view
  • FIG. 3 shows a schematic representation of a further exemplary embodiment of a pane according to the invention in a plan view
  • FIG. 4 shows a schematic representation of a further exemplary embodiment of a pane according to the invention in a plan view
  • FIG. 5 shows a schematic representation of a further exemplary embodiment of a pane according to the invention in a plan view
  • FIG. 6 shows an alternative embodiment of a pane according to the invention within an enlarged section Z according to FIG. 5,
  • FIG. 7 shows an alternative embodiment of a pane according to the invention within an enlarged section Z according to FIG. 5,
  • FIG. 8 shows an alternative embodiment of a pane according to the invention within an enlarged section Z according to FIG. 5,
  • FIG. 9 shows an alternative embodiment of a pane according to the invention within an enlarged detail Z according to FIG. 5,
  • FIG. 10 shows a schematic representation of a further exemplary embodiment of a pane according to the invention in a plan view
  • FIG. 11 shows a schematic representation of a further exemplary embodiment of a pane according to the invention in a plan view
  • FIG. 12 an insulating glazing according to the invention comprising a pane according to the invention.
  • FIG. 1a shows a schematic representation of a pane 10 according to the invention in a plan view.
  • FIG. 1b shows a cross section of this disc along the section line AA′.
  • the pane 10 comprises a first pane 1.1, on the first side I of which a functional element 2 is arranged flat.
  • the functional element 2 comprises an electrochromic layer as the active layer 4, which is arranged over a large area between a first surface electrode 3.1 and a second surface electrode 3.2, with the surface electrodes 3.1, 3.2 being in direct contact with the active layer 4.
  • the first surface electrode 3.1 and the second surface electrode 3.2 are each applied to a carrier film 12.
  • the functional element 2 is connected to the first pane 1.1 by means of a thermoplastic composite film 9 via the surface of the carrier film 12 facing away from the flat electrode 3.1.
  • the first surface electrode 3.1 closest to the first pane 1.1 can also be applied directly to the first pane 1.1, with the thermoplastic composite film 9 and the carrier film 12 of the first surface electrode 3.1 can be dispensed with.
  • a first busbar 5.1 and a second busbar 5.1 are attached in the edge region R of the pane 10, along two opposite sections of the peripheral edge K, the first busbar 5.1 having the first surface electrode 3.1 and the second busbar
  • the switching process of the active layer 4 is induced by applying an electrical voltage via the bus bars 5.1, 5.2 to the surface electrodes 3.1, 3.2.
  • structures 6 on the edge are each introduced into the first surface electrode 3.1 and the second surface electrode 3.2, adjacent to the first busbar 5.1 and the second busbar 5.2.
  • the peripheral structures 6 are formed by stripped linear areas 7, which extend from the closest busbar 5.1, 5.2 in the direction of the respectively opposite busbar 5.1, 5.2.
  • the stripped linear areas 7 have a length of about 5% to 30% of the distance between opposite busbars and have a distance of 2.0 mm to the respective adjacent stripped linear area 7.
  • the stripped linear areas 7 is not a material of the surface electrodes 3.1,
  • the peripheral structures 6 are decoated, for example, by laser structuring and have only a very small line width of, for example, 0.1 mm.
  • the view through the pane 10 according to the invention is not significantly impaired and the decoated structures 6 are hardly recognizable.
  • Current paths are formed between adjacent stripped linear regions 7, along which current flows from the busbars 5.1, 5.2 via the surface electrode 3.1, 3.2 associated with the busbar in the direction of the opposite busbar.
  • the peripheral structures 6 do not enclose any closed surfaces of the surface electrodes 3.1, 3.2 and the switchability of the functional element 2 is not affected.
  • FIG. 2 shows a further embodiment of a pane 10 according to the invention.
  • the pane 10 essentially corresponds to the pane 10 according to FIG linear areas 7 are formed. These have a sinusoidal shape. This improves the transmission of electromagnetic radiation whose field vector has components parallel to the preferred direction of the linear regions 7 .
  • FIG. 3 shows a further embodiment of a pane 10 according to the invention.
  • the pane 10 corresponds essentially to the pane 10 according to FIG.
  • These linear regions 7 running parallel to the busbar 5.1, 5.2 form a cross-shaped arrangement with the linear regions 7 running in the direction of the opposite busbar 5.1, 5.2.
  • At the ends of the lines forming the cross there are further stripped linear areas 7, which each run perpendicular to the line of the cross-shaped arrangement at the end of which they are attached.
  • the line-shaped areas, which together have a cross-shaped arrangement have a length of 25 mm, while the terminal sections of the stripped line-shaped areas 7 have a length of 19 mm.
  • the cross-shaped arrangements do not form any closed surfaces.
  • the distance between adjacent cross-shaped arrangements is 2 mm.
  • the peripheral structures 6 in FIG. 3 exhibit good transmission of electromagnetic radiation of different frequencies, with the switching behavior of the functional element 2 being only slightly impaired.
  • FIG. 4 shows a further embodiment of a pane 10 according to the invention.
  • the pane 10 essentially corresponds to the pane 10 according to FIG.
  • two groups of stripped linear regions 7 are attached to each of the busbars 5.1, 5.2, with the linear regions 7 of a group each running parallel to one another.
  • the linear areas 7 of two different groups are at an angle of 90° to one another, that is to say they differ in terms of their orientation to the bus bar in the sign of the angle amount 45°.
  • the different Alignments of the two groups of linear areas 7 bring about improved transmission of electromagnetic radiation of different field vectors.
  • FIG. 5 shows a further embodiment of a pane 10 according to the invention.
  • the pane 10 corresponds essentially to the pane 10 according to FIG .
  • a central structure 8 is introduced into the first surface electrode 3.1 and the second surface electrode 3.2.
  • the central structure 8 comprises linear areas 7 which run perpendicularly to the busbars 5.1, 5.2 and connect the peripheral structures 6 to one another.
  • the central structure 8 can be attached directly to the stripped areas 7 of the structure 6 at the edge or at a small distance from the structure 6 at the edge.
  • current paths are formed between the peripheral structures 6 adjacent to the first busbar 5.1 and the peripheral structures 6 adjacent to the second busbar 5.2, so that the switching behavior of the functional element is hardly affected.
  • transmission of electromagnetic radiation in the transparent area of pane 10 can also take place via the central structure.
  • FIG. 6 shows an alternative embodiment of a pane 10 according to the invention within an enlarged section Z according to FIG. 5.
  • edge portions of the peripheral edge K covered.
  • the second busbar 5.2 (not shown) also runs along two adjacent edge sections that are opposite those of the busbar 5.1.
  • the decoated linear areas 7 of the peripheral structure 6 form an angle of 90° to the nearest section of the adjacent busbar 5.1, with a gradual transition between the two orientations of the decoated linear areas 7 taking place in the corner area of the busbar 5.1.
  • the edge structure 6 adjacent to the second busbar 5.2 (not shown) is constructed analogously. Due to the different orientations of the stripped linear areas 7, an advantageously high transmission of electromagnetic radiation results.
  • a central structure can also be provided in this case, for example in the form of linear areas that run between the peripheral structures 6 of the first busbar 5.1 and the second busbar 5.2.
  • Figure 7 shows a further alternative embodiment of a pane according to the invention within an enlarged section Z according to Figure 5.
  • the embodiment of Figure 7 essentially corresponds to Figure 6, with the difference being a slower gradual transition from an arrangement of the stripped linear areas 7 at an angle from 90° to the nearest busbar section towards an orientation at an angle of 45°. An angle of 90° is taken at the middle of the edges, while an angle of 45° is reached in the corner areas.
  • the length of the stripped linear areas remains essentially constant in order not to increase the process time of the laser structuring.
  • the higher diversity of the angles of line-shaped areas achieved in FIG. 7 is advantageous with regard to the transmission of different field vectors of the electromagnetic radiation.
  • FIG. 8 shows a further alternative embodiment of a pane according to the invention within an enlarged section Z according to FIG. 5, this embodiment essentially corresponding to the configuration in FIG.
  • the length of the stripped linear areas 7 increases from the center of the edge to the corner of the pane 10 .
  • the edge of the peripheral structure 6, which is at a constant height, can be perceived as visually more appealing.
  • FIG. 9 shows a further alternative embodiment of a pane according to the invention within an enlarged section Z according to FIG. 5, the essential features of the embodiment in FIG. 8 corresponding.
  • the stripped linear regions 7 according to FIG. 9 comprise lines of different lengths, which are arranged in alternation with one another.
  • the transmission of higher frequencies is preferred in comparison to an improved transmission of lower frequencies in the area of the peripheral structure with a lower line density.
  • FIG. 10 shows a schematic representation of a further exemplary embodiment of a pane according to the invention in a plan view. The pane 10 of FIG.
  • the marginal structures 6 are formed by stripped linear areas 7, which extend within the first and second surface electrodes 3.1, 3.2 from the nearest busbar 5.1, 5.2 in the direction of the respectively opposite busbar 5.1, 5.2.
  • the linear areas 7 of the peripheral structures 6 run essentially perpendicularly to the busbars 5.1, 5.2 and merge directly into the central structure 8.
  • the central structure 8 and the edge structure 6 jointly form decoated lines 7 which are parallel to one another and run between the first busbar 5.1 and the second busbar 5.2. In this case, current paths 7 are formed between the stripped lines.
  • the edge structure 6 and the central structure 8 do not enclose any closed surfaces of the surface electrodes 3.1, 3.2 and the switchability of the functional element 2 is not affected.
  • a central structure 8 is not provided in the entire area of the pane, in particular the center of the surface of the pane 10 is left open in order to ensure an improved view through the pane 10 .
  • the distances between adjacent stripped lines 7 within the peripheral structure 6 and the central structure 8 increase from the edge sections without a bus bar in the direction of the center of the pane. As a result, the stripped linear areas 7 become less conspicuous in the direction of the central viewing area of the pane.
  • the distance between adjacent stripped lines 7 is 2 mm to 10 mm.
  • Electrically insulated zones 13 are located along the sections of the peripheral edge K to which no collector conductors are attached. These electrically insulated zones 13 are implemented as a grid structure comprising surfaces of the surface electrodes 3.1 and 3.2 enclosed therein that do not belong to the switchable area of the functional element 2. Such According to the invention, closed areas cannot be attached as a peripheral structure along the busbars, nor can they be formed in the central structure. Such surface areas can only be excluded from the switchable functional element 2 at the edge sections without a bus bar without influencing the switching behavior of the remaining functional element.
  • the embodiment of Figure 10 is particularly advantageous for good transmission of high-frequency electromagnetic To achieve radiation with good switching behavior of the functional element and good visual appearance.
  • FIG. 11 shows a schematic representation of a further exemplary embodiment of a pane according to the invention in a top view, this embodiment essentially corresponding to that described in FIG.
  • this embodiment essentially corresponding to that described in FIG.
  • not all of the stripped linear areas 7 of the peripheral structure 6 merge into linear stripped areas 7 of the central structure 8 .
  • the distance between adjacent stripped linear areas 7 of edge structure 6 and central structure 8 is 2 mm.
  • This embodiment also has a particularly good transmission of high-frequency electromagnetic radiation with good switching behavior of the functional element and a good visual appearance.
  • FIG. 12 shows insulating glazing 20 according to the invention, comprising a pane 10 according to the invention.
  • An electrochromic functional element 2 is attached to the first pane 1.1, and an electrically conductive coating 11 is applied to a second pane 1.2.
  • the electrically conductive coating 11 is infrared reflective.
  • the first pane 1.1 is assembled on the surface facing away from the functional element 2 by means of a thermoplastic intermediate layer 9 with a third pane 1.3 to form a pane 10 in the form of a composite pane.
  • the pane 10 and the second pane 1.2 are connected via the spacer 21 to form the insulating glazing 20. Between the first pane 1.1 and the second pane 1.2, the spacer 21 is attached circumferentially via a sealant 26.
  • the sealant 26 connects the disk contact surfaces 22.1 and 22.2 of the spacer 21 with the disks 1.1 and 1.2.
  • the spacer 21 is designed as a polymer base body with a hollow chamber 29 .
  • a gas-tight and water-tight barrier film (not shown) is applied to the outer surface 23 of the spacer 21 .
  • the hollow chamber 29 contains a desiccant 28 which can absorb residual moisture from the glazing interior 25 via openings in the glazing interior surface 24 .
  • the glazing interior 25 adjoining the glazing interior surface 24 of the spacer 21 is defined as the space delimited by the panes 1 . 1 , 1 . 2 and the spacer 21 .
  • the outer space between the panes adjoining the outer surface 23 of the spacer 21 is in the form of a strip Circumferential section of the glazing, which is delimited on one side by the two panes 1.1, 1.2 and on another side by the spacer 21 and whose fourth edge is open.
  • the glazing interior 25 is filled with argon.
  • a sealant 26 is introduced between a respective pane contact surface 22.1 or 22.2 and the adjacent pane 1.1 or 1.2, which seals the gap between pane 1.1, 1.2 and spacer 21.
  • the sealant 26 is polyisobutylene.
  • the outer seal 27 is made of silicone.
  • the outer seal 27 ends flush with the pane edges of the first pane 1.1 and the second pane 1.2.
  • the second pane 1.2 has a thickness of 4.0 mm and has an infrared-reflecting coating 11 on the pane surface facing towards the interior 25 of the glazing.
  • the electrochromic functional element 2 which is equipped with a first bus bar 5 .
  • the second bus bar is not shown in this view.
  • the busbars 5.1, 5.2 were produced by imprinting a conductive paste and electrically contacted on the electrochromic functional element 2.
  • the conductive paste also known as silver paste, contains silver particles and glass frits.
  • the bus bars run on the first disc 1 .1 in the glazing interior 25 and parallel to the glazing interior surface 24 of the spacer 21.
  • the first disc 1.1 has a thickness of 2.0 mm and is a thermoplastic composite film 9 made of 0.76 mm PVB with a third disc 1.3 laminated with a thickness of 2.0 mm.
  • the composite pane 10 made up of the first pane 1.1 and the third pane 1.3 represents the outer pane of building glazing, while the second pane 1.2 is the inner pane.
  • the insulating glazing 20 according to the invention has good heat dissipation of the electrochromic functional element 2 and good thermal insulation of the building interior thanks to the infrared-reflecting coating 11.
  • the functional element 2 is designed according to FIG central structures 8 are equipped according to FIG.
  • the electrically conductive coating 11 of the second pane, which acts as an infrared-reflecting coating, is also provided with the peripheral and central structures 6, 8 explained in FIG. Reference List

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Glass (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

Scheibe (10) mit Funktionselement (2) mit elektrisch schaltbaren optischen Eigenschaften, umfassend: mindestens eine erste Scheibe, mindestens ein Funktionselement (2) mit elektrisch schaltbaren optischen Eigenschaften mindestens umfassend flächig in dieser Reihenfolge übereinander angeordnet eine erste Flächenelektrode (3.1), eine aktive Schicht (4) und eine zweite Flächenelektrode (3.2), mindestens ein erster Sammelleiter (5.1), der die erste Flächenelektrode (3.1) elektrisch leitfähig kontaktiert und mindestens ein zweiter Sammelleiter (5.2), der die zweite Flächenelektrode (3.2) elektrisch leitfähig kontaktiert, mindestens eine randständige Struktur (6) im Randbereich (R), die durch entschichtete, linienförmige Bereiche (7) innerhalb der ersten Flächenelektrode (3.1) und/oder der zweiten Flächenelektrode (3.2) derart gebildet ist, dass sich die linienförmigen Bereiche (7) benachbart zum ersten Sammelleiter (5.1) und/oder zweiten Sammelleiter (5.2) befinden und sich von dort ausgehend in Richtung des gegenüberliegenden Abschnitts der umlaufenden Kante (K) erstrecken, wobei die randständige Struktur (6) keine elektrisch isolierten Zonen innerhalb der ersten Flächenelektrode (3.1) und der zweiten Flächenelektrode (3.2) aufweist.

Description

Scheibe mit Funktionselement mit elektrisch schaltbaren optischen Eigenschaften und Muster für Hochfrequenz-Transmission
Die Erfindung betrifft eine Scheibe mit Funktionselement mit elektrisch schaltbaren optischen Eigenschaften, die eine niedrige Transmissionsdämpfung für elektromagnetische Strahlung im Hochfrequenzbereich aufweist. Des Weiteren betrifft die Erfindung ein Verfahren zur Herstellung einer solchen Scheibe und deren Verwendung sowie eine Isolierverglasung umfassend eine solche Scheibe.
Aktuelle Verglasungen benötigen eine Vielzahl von technischen Einrichtungen zum Senden und Empfangen von elektromagnetischer Strahlung zum Betrieb von Grunddiensten wie Rundfunkempfang, vorzugsweise in den Bändern AM, FM oder DAB, Mobiltelefonie in den Bändern GSM 900 und DCS 1800, UMTS, LTE und 5G sowie satellitengestützter Navigation (GPS) und WLAN. Insbesondere im Bereich der Kraftfahrzeugverglasungen sind vielfältige Ansätze bekannt um die Transmission elektromagnetischer Strahlung zu verbessern. Im Zuge moderner schaltbarer Gebäudeverglasungen tritt diese Problematik jedoch in zunehmendem Maße auch in diesem Bereich auf.
Moderne Verglasungen weisen zunehmend allseitige und vollflächige elektrisch leitfähige und für sichtbares Licht transparente Beschichtungen auf. Diese transparenten, elektrisch leitfähigen Beschichtungen schützen beispielsweise Innenräume vor Überhitzung durch Sonnenlicht oder Auskühlung, indem sie einfallende Wärmestrahlung reflektieren, wie aus EP 378917 A bekannt ist. Transparente, elektrisch leitfähige Beschichtungen können durch Anlegen einer elektrischen Spannung eine gezielte Erwärmung der Scheibe bewirken, wie aus WO 2010/043598 A1 bekannt ist.
Den transparenten, elektrisch leitfähigen Beschichtungen ist gemeinsam, dass sie auch undurchlässig für elektromagnetische Strahlung im Hochfrequenzbereich sind. Durch eine allseitige und vollflächige Verglasung eines Fahrzeugs mit transparenten, elektrisch leitfähigen Beschichtungen ist das Senden und Empfangen von elektromagnetischer Strahlung im Innenraum nicht mehr möglich. Für den Betrieb von Sensoren wie Regensensoren, Kamerasystemen oder ortsfesten Antennen werden üblicherweise ein oder zwei örtlich begrenzte Bereiche der elektrisch leitfähigen, transparenten Beschichtung entschichtet. Diese entschichteten Bereiche bilden ein sogenanntes Kommunikationsfenster oder Datenübertragungsfenster und sind beispielsweise aus EP 1 605 729 A2 bekannt. Da die transparenten, elektrisch leitfähigen Beschichtungen die Farbgebung und Reflexionswirkung einer Scheibe beeinflussen, sind Kommunikationsfenster optisch sehr auffällig. Durch entschichtete Bereiche können sich Störungen im Sichtfeld der Scheibe ergeben.
Aus der EP 0 717 459 A1 , der US 2003/0080909 A1 und der DE 198 17 712 C1 sind Scheiben mit einer metallischen Beschichtung bekannt, die allesamt eine rasterförmige Entschichtung der metallischen Beschichtung aufweisen. Die rasterförmige Entschichtung wirkt als Tiefpass-Filter für eine auftreffende hochfrequente elektromagnetische Strahlung. Die Abstände des Rasters sind klein gegenüber der Wellenlänge der hochfrequenten elektromagnetischen Strahlung und damit wird ein relativ großer Anteil der Beschichtung strukturiert und die Durchsicht in größerem Maße beeinträchtigt. Die Entfernung eines größeren Anteils der Schicht ist langwierig und kostenintensiv.
In US 2020/056423 A1 und US2018/307111 A1 werden Isolierverglasungen umfassend Funktionselemente mit elektrisch schaltbaren optischen Eigenschaften beschrieben.
WO 2015/091016 A1 offenbart eine Scheibe mit einer transparenten elektrisch leitfähigen Beschichtung, in die entschichtete Strukturen eingebracht sind, wobei die entschichteten Strukturen die Form eines vollflächig entschichteten Rechtecks oder eines entschichteten rechteckförmigen Rahmens aufweisen.
Aus EP 2 586 610 A1 ist eine Scheibe mit elektrisch leitfähiger Beschichtung als infrarotreflektierende Beschichtung bekannt, wobei in die Beschichtung entschichtete Linien eingebracht sind.
US 2004/0113860 A1 offenbart eine Verglasung mit metallischer Schicht, die als Heizschicht oder zur Reflektion von Infrarotstrahlung genutzt werden kann, wobei Öffnungen in der Schicht eingebracht sind, die eine verbesserte elektromagnetische Transmission ermöglichen sollen. Die Aufgabe der vorliegenden Erfindung besteht nunmehr darin, eine Scheibe umfassend ein Funktionselement mit elektrisch schaltbaren optischen Eigenschaften, die eine verbesserte Transmission hochfrequenter elektromagnetischer Strahlung bei gleichzeitig homogenem Schaltverhalten des Funktionselementes und geringen Beeinträchtigungen der Durchsicht, eine Isolierverglasung umfassend solch eine Scheibe, ein Verfahren zu deren Herstellung sowie deren Verwendung bereitzustellen. Diese und weitere Aufgaben werden nach dem Vorschlag der Erfindung durch eine Scheibe mit den Merkmalen der unabhängigen Patentansprüche gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind durch die Merkmale der Unteransprüche angegeben. Ein Verfahren zur Herstellung einer Scheibe mit Hochfrequenz- Transmission sowie die Verwendung einer solchen Scheibe gehen aus weiteren unabhängigen Patentansprüchen hervor.
Eine erfindungsgemäße Scheibe umfasst mindestens eine erste Scheibe mit einer ersten Seite, einer zweiten Seite, einer umlaufenden Kante und einem an die umlaufende Kante angrenzenden Randbereich, wobei ein Funktionselement mit elektrisch schaltbaren optischen Eigenschaften flächig auf der ersten Seite der ersten Scheibe angeordnet ist. Das Funktionselement umfasst mindestens flächig übereinander angeordnet eine erste Flächenelektrode und eine zweite Flächenelektrode zwischen denen sich eine aktive Schicht des Funktionselementes befindet. Über einen ersten Sammelleiter, der die erste Flächenelektrode elektrisch leitfähig kontaktiert, und einen zweiten Sammelleiter, der die zweite Flächenelektrode elektrisch leitfähig kontaktiert, kann eine elektrische Spannung an den Flächenelektroden angelegt werden. Im Randbereich der Scheibe ist in Nachbarschaft zum ersten Sammelleiter und/oder in Nachbarschaft zum zweiten Sammelleiter eine randständige Struktur innerhalb der ersten Flächenelektrode und/oder der zweiten Flächenelektrode eingebracht, wobei die randständige Struktur von entschichteten linienförmigen Bereichen gebildet wird. Die entschichteten linienförmigen Bereiche befinden sich dabei entlang der Sammelleiter zwischen der der Flächenmitte der jeweiligen Flächenelektrode zugewandten Kante des Sammelleiters und der Flächenmitte und erstrecken sich von dort ausgehend in Richtung des gegenüberliegenden Abschnitts der umlaufenden Kante der Scheibe. Dabei können die linienförmigen entschichteten Bereiche die verschiedensten Verläufe und Winkel zum nächstliegenden Sammelleiter einnehmen, es sollte lediglich im Verlauf eines linienförmigen entschichteten Bereichs der Abstand zum nächstliegenden Sammelleiter ansteigen und der Abstand zum gegenüberliegenden Abschnitt der umlaufenden Kante abnehmen. Die randständige Struktur weist dabei keine elektrisch isolierten Zonen innerhalb der ersten Flächenelektrode und der zweiten Flächenelektrode auf. Demnach umschließen die entschichteten linienförmigen Bereiche innerhalb einer der Flächenelektroden keinen Flächenbereich vollständig.
Die Erfindung ermöglicht die Ausgestaltung einer Scheibe mit Funktionselement mit elektrisch schaltbaren optischen Eigenschaften mit guter Transmission für hochfrequente elektromagnetische Strahlung. Somit können großflächige Entschichtungen der Flächenelektroden vermieden werden. Darüber hinaus ist die von den entschichteten linienförmigen Bereichen gebildete Struktur innerhalb des Randbereichs der Scheibe angeordnet, so dass auch die Durchsicht durch die Scheibe nicht oder nur geringfügig beeinträchtigt wird. Darüber hinaus werden die Sammelleiter des Funktionselementes in der Praxis häufig mittels eines opaken Abdeckdrucks kaschiert, wobei vorteilhafterweise zumindest ein Teilbereich der randständigen Struktur ebenfalls abgedeckt wird. Die randständige Struktur der Scheibe umschließt ferner keine Flächenbereiche der ersten Flächenelektrode und der zweiten Flächenelektrode vollständig. Dadurch entstehen keine elektrisch isolierten Zonen innerhalb der Flächenelektroden, so dass keine Bereiche mit unzureichendem Schaltverhalten des Funktionselementes entstehen. Demnach wird eine Scheibe mit gutem Schaltverhalten des Funktionselementes, guter optischer Durchsicht im transparenten Zustand und ausreichender Transmission für hochfrequente elektromagnetische Strahlung erhalten.
Vorzugsweise ist die randständige Struktur im Randbereich der Scheibe in Nachbarschaft zum ersten Sammelleiter zumindest in die erste Flächenelektrode und/oder in Nachbarschaft zum zweiten Sammelleiter zumindest in die zweite Flächenelektrode eingebracht.
Die randständige Struktur erstreckt sich in den Randbereichen, in denen sich ein Sammelleiter befindet, entlang des Sammelleiters, wobei die randständige Struktur bevorzugt mindestens entlang 80 % der Länge des nächstliegenden Sammelleiters, besonders bevorzugt entlang 90 % der Länge des nächstliegenden Sammelleiters, insbesondere entlang der gesamten Länge des nächstliegenden Sammelleiters in die erste Flächenelektrode und/oder die zweite Flächenelektrode eingebracht ist. Die Länge des Sammelleiters ist dabei als die Dimension des Sammelleiters entlang des nächstliegenden Abschnitts der umlaufenden Kante der Scheibe definiert.
Bevorzugt sind randständige Strukturen jeweils benachbart zum ersten Sammelleiter und benachbart zum zweiten Sammelleiter eingebracht. Bevorzugt sind randständige Strukturen sowohl in der ersten Flächenelektrode benachbart zum ersten Sammelleiter als auch in der zweiten Flächenelektrode benachbart zum ersten Sammelleiter eingebracht. Bevorzugt sind ebenfalls randständige Strukturen in Nachbarschaft zum zweiten Sammelleiter in der zweiten Flächenelektrode und in Nachbarschaft zum zweiten Sammelleiter in der ersten Flächenelektrode eingebracht. Somit sind in Nachbarschaft zu einem Sammelleiter bevorzugt beide Flächenelektroden mit der randständigen Struktur versehen. Dies ist vorteilhaft um in diesen Bereichen eine gute Durchlässigkeit beider Flächenelektroden für hochfrequente elektromagnetische Strahlung zu erzielen. Die an einer ersten Flächenelektrode transmittierte Strahlung wird somit auch an der zweiten Flächenelektrode transmittiert. Die innerhalb eines gemeinsamen Randbereichs liegenden randständigen Strukturen der ersten Flächenelektrode und der zweiten Flächenelektrode können unterschiedlich oder auch gleichartig ausgeführt sein. Auch wenn die randständigen Strukturen gleichartig ausgeführt sind können diese im Wesentlichen deckungsgleich oder auch versetzt zueinander abgeordnet sein.
Bevorzugt sind die Sammelleiter unterschiedlicher Polaritäten an gegenüberliegenden Abschnitten der umlaufenden Kante der Scheibe angeordnet. Dadurch wird ein homogener Stromfluss und ein gleichmäßiges Schaltverhalten des Funktionselementes erzielt. Die sich in Richtung der gegenüberliegenden Kante erstreckenden entschichteten linienförmigen Bereiche bilden dabei Strompfade zwischen benachbarten Linien aus. Bevorzugt erstrecken sich randständige Strukturen jeweils vom ersten Sammelleiter ausgehend und vom zweiten Sammelleiter ausgehend in Richtung der jeweils gegenüberliegenden Kante. Die randständige Struktur ist dabei bevorzugt entlang des gesamten Kantenabschnitts der umlaufenden Kante, an dem sich der zugehörige Sammelleiter befindet, angebracht. Auf diese Weise kann einerseits die Transmission elektromagnetischer Strahlung durch die Scheibe erhöht werden und andererseits der Stromfluss über die Flächenelektroden mittels der zwischen entschichteten linienförmigen Bereichen ausgebildeten Strompfade gelenkt werden. Die Kantenabschnitte der umlaufenden Kante, an denen keine Sammelleiter angeordnet sind, werden bevorzugt nicht mit einer randständigen Struktur umfassend entschichtete linienförmige Bereiche versehen um Störungen des Stromflusses entlang der Flächenelektroden und ein damit einhergehendes inhomogenes Schaltverhalten des Funktionselementes zu vermeiden. Wahlweise können jedoch auch Kantenabschnitte der umlaufenden Kante, die keine Sammelleiter und keine randständige Struktur aufweisen, mit einer anderweitigen Strukturierung der Flächenelektroden versehen sein. Insbesondere kann entlang der Kantenabschnitte der Scheibe, an denen keine Sammelleiter verlaufen, eine flächige Entschichtung der Flächenelektroden im Randbereich vorgesehen werden. Dies erfolgt lediglich in dem Bereich der Scheibe, in dem auf eine Schaltbarkeit des Funktionselementes verzichtet werden kann, beispielsweise außerhalb des Durchsichtbereichs der Scheibe. Auf diese Weise kann die Transmission elektromagnetischer Strahlung weiter erhöht werden.
Die Transmission hochfrequenter elektromagnetischer Strahlung durch die erfindungsgemäße Scheibe basiert auf dem Prinzip, dass an dem durch die randständige Struktur gebildeten Gitter bestimmte Frequenzbereiche der elektromagnetischen Strahlung verstärkt werden. Je geringer die Abstände benachbarter entschichteter linienförmiger Bereiche, desto mehr wird die Transmission höherer Frequenzen bevorzugt, während die niedrigeren Frequenzen der hochfrequenten elektromagnetischen Strahlung bei höheren Linienabständen verstärkt transmittiert werden. Darüber hinaus ist die Orientierung der entschichteten linienförmigen Bereiche zum Feldvektor der auftreffenden elektromagnetischen Strahlung entscheidend für deren Transmission. Der Abstand der entschichteten linienförmigen Bereiche ist ein bestimmender Faktor für die Durchlässigkeit der elektronmagnetischen Strahlung bestimmter Wellenlängen wie beispielsweise Strahlung zum Betrieb von Mobiltelefonie in den Bändern GSM 900 und DCS 1800, UMTS, LTE und 5G sowie satellitengestützer Navigation (GNSS) und anderer ISM-Frequenzen wie WLAN, Bluetooth oder CB-Funk. Andererseits erlaubt die erfindungsgemäße Struktur weitere Variationen durch die Ausrichtung der entschichteten Linien und durch Überschneidungsbereiche mit optional vorhandenen weiteren Linien. Auf diese Weise ist es leicht möglich eine Optimierung der Transmissivität auch für mehrere Frequenzbänder gleichzeitig zu erzielen. Die erfindungsgemäßen randständigen Strukturen wirken als Tiefpassfilter, das heißt sie können auf eine Grenzfrequenz optimiert werden, bei der kleinere Frequenzen als die Grenzfrequenz durchgelassen werden und ab welcher die Transmission höherer Frequenzen als die Grenzfrequenz schlechter wird. Aus der Wahl der Grenzfrequenz ergeben sich für den Fachmann in allgemein bekannter Weise die Abstände der entschichteten Linien, die die Gitterstruktur bilden. Die elektromagnetische Transmission wird durch sie derartig beeinflusst, dass je kleiner der maximale Abstand zwischen den Linien ist, desto höher ist die Grenzfrequenz, bis zu der die Transmission unbeeinflusst bleibt. Wenn der maximale Abstand beispielsweise in vertikaler Richtung 2,0 mm und in horizontaler Richtung 5,0 mm zwischen den entschichteten Bereichen beträgt, dann kann man die sich hieraus ergebende Grenzwellenlänge abschätzen zu dem bis zu 20-fachen dieser Werte. Für die diesbezüglichen Zusammenhänge und Abschätzungen wird auch auf die Beschreibung der DE 195 08 042 A1 verwiesen. Grundsätzlich kann aber jede beliebige Polarisation transmittiert werden.
In einer bevorzugten Ausführungsform sind die entschichteten linienförmigen Bereiche als Geraden ausgeführt, die sich in einem Winkel von beispielsweise 15° bis 90° zum nächstliegenden Sammelleiter in Richtung des gegenüberliegenden Abschnitts der umlaufenden Kante erstrecken. Bei der Bestimmung des Winkels zwischen entschichtetem linienförmigen Bereich und nächstliegendem Sammelleiter wird der spitze Winkel betrachtet. Die Transmission der elektromagnetischen Strahlung bestimmt sich dabei durch die relative Anordnung der entschichteten linienförmigen Bereiche und zu der Polarisationsrichtung des elektrischen Feldvektors der auftreffenden Strahlung. Die Strahlung mit Polarisationsrichtung parallel zu den entschichteten linienförmigen Bereichen wird nur geringfügig transmittiert, während die Strahlung mit einer Polarisationsrichtung senkrecht dazu transmittiert wird. Bei den dazwischenliegenden Polarisationsrichtungen wird jeweils hauptsächlich nur die Komponente mit Polarisationsrichtung senkrecht zum linienförmigen Bereich transmittiert. Um eine ausreichende Gesamttransmission zu erzielen kann nun beispielsweise eine Polarisationsrichtung vernachlässigt werden, wobei in der dazu senkrechten Polarisationsrichtung eine maximale Transmission erzielt wird. In diesem Sinne sind die entschichteten linienförmigen Bereiche in einer bevorzugten Ausführungsform in einem Winkel von 90° zu dem jeweils nächstliegenden Sammelleiter ausgerichtet.
In einer weiteren bevorzugten Ausführungsform weisen die entschichteten linienförmigen Bereiche eine wellenförmige Gestalt oder im Wesentlichen wellenförmige Gestalt auf. Als im Wesentlichen wellenförmig wird dabei beispielsweise eine aus mehreren sich berührenden Geradenabschnitten gebildete Gestalt, die sich mittels einer Wellenfunktion annähernd beschreiben lässt, bezeichnet. Die im Wesentlichen wellenförmige Gestalt weicht somit nur unwesentlich von der mittels einer Wellenfunktion zu beschreibenden Gestaltung ab, wobei der Gesamteindruck einer Wellenform erhalten bleibt. Unter dem Begriff sinusförmige Gestalt wird im Sinne der vorliegenden Erfindung insbesondere verstanden, dass die Linien der linienförmigen Bereiche eine Krümmung bzw. jeweils im Verlauf zumindest abschnittsweise abwechselnd unterschiedliche Krümmungen aufweisen. Die Krümmung beziehungsweise die Krümmungen der entschichteten Bereiche können sowohl mit einem gleichbleibenden Krümmungswinkel als auch mit einem veränderlichen Krümmungswinkel verlaufen. Insbesondere sind unter dem Begriff sowohl gekrümmte linienförmige Bereiche mit „perfekter“ Sinusform umfasst wie auch solche gekrümmten linienförmige Bereiche mit nicht „perfekter“ Sinusform, mit anderen Worten also mit einer beliebigen Wellenform. Besonders bevorzugt werden ein sinusförmiger Verlauf und/oder ein zumindest abschnittsweise zickzackförmiger Verlauf der entschichteten linienförmigen Bereiche der randständigen Struktur. Ein solcher, wellenförmiger oder zickzackförmiger, Verlauf mit der damit einhergehenden Richtungsänderung der entschichteten linienförmigen Bereiche bewirkt eine verbesserte Transmission beider zueinander senkrechter Polarisationsrichtungen. Dabei hat sich ein sinusförmiger Verlauf als besonders vorteilhaft hinsichtlich des Anteils der transmittierten Strahlung erwiesen. Sinusförmige oder beliebige wellenförmige Strukturen sind für einen Betrachter außerdem weniger störend im Erscheinungsbild als geradlinige Strukturen. Dies liegt insbesondere daran, dass sich bei einem sinusförmigen bzw. wellenförmigen Muster weniger Ecken, insbesondere weniger rechtwinklige oder gar spitzwinklige Ecken, in der Struktur ergeben. Auch wenn ein wellenförmiger Verlauf der entschichteten linienförmigen Bereiche sehr vorteilhaft hinsichtlich der Transmission ist, so ist der Einfluss einer solchen randständigen Struktur auf den Stromfluss entlang der Flächenelektroden zu beachten. Insbesondere bei einer großen Amplitude im wellenförmigen Verlauf und/oder sofern die entschichtete wellenförmigen Bereiche über eine weitere Strecke im Randbereich verlaufen, wird die Länge der in die Flächenelektroden eingebrachten Strompfade erhöht. Dies hat einen erhöhten elektrischen Widerstand und den damit einhergehenden Spannungsabfall zur Folge.
Gemäß einer bevorzugten Ausführungsform weisen die entschichteten linienförmigen Bereiche der randständigen Struktur einen geradlinigen Verlauf oder einen im Wesentlichen geradlinigen Verlauf auf. Dies ist vorteilhaft hinsichtlich einer möglichst kurzen Strecke der zwischen benachbarten entschichteten linienförmigen Bereichen entstehenden Strompfade. Ein im Wesentlichen geradliniger Verlauf weicht nur unwesentlich von einer Geraden ab, wobei in diesem Sinne bei einem im Wesentlichen geradlinigen Verlauf die Vorzugsrichtung der den Verlauf im Wesentlichen beschreibenden Geraden erhalten bleibt. Bevorzugt nehmen die entschichteten linienförmigen Bereiche dabei einen Winkel von 10° bis 50°, besonders bevorzugt 20° bis 45°, insbesondere 25° bis 40° zum benachbarten ersten Sammelleiter oder zweiten Sammelleiter ein. Dabei wird der spitze Winkel zwischen entschichtetem linienförmigen Bereich und Sammelleiter betrachtet. Innerhalb dieser Bereiche kann sowohl eine vorteilhaft hohe Transmission erzielt werden als auch ein unerwünscht hoher Spannungsabfall im Bereich der randständigen Struktur vermieden werden.
Die entschichteten linienförmigen Bereiche einer randständigen Struktur können die gleichen oder innerhalb der bevorzugten Bereiche verschiedene Winkel zum benachbarten Sammelleiter einnehmen. In einer möglichen Ausführungsform verlaufen die entschichteten linienförmigen Bereiche dabei parallel zueinander. In einer weiteren möglichen Ausführungsform weist die randständige Struktur mindestens zwei Gruppen von entschichteten linienförmigen Bereichen auf, deren Gruppenmitglieder parallel zueinander verlaufen, die allerdings nicht parallel zu den Mitgliedern der jeweils anderen Gruppe verlaufen. Ein erster Abschnitt des Randbereichs der ersten Flächenelektrode weist dabei in Nachbarschaft zum ersten Sammelleiter zumindest eine Gruppe von ersten entschichteten linienförmigen Bereichen auf, die im Wesentlichen parallel zueinander verlaufen. Ein zweiter Abschnitt des Randbereichs der ersten Flächenelektrode, der an den ersten Abschnitt angrenzt, weist zumindest eine zweite Gruppe von entschichteten linienförmigen Bereichen auf, die ebenfalls im Wesentlichen parallel zueinander verlaufen. Die erste Gruppe der entschichteten linienförmigen Bereiche und die zweite Gruppe der entschichteten linienförmigen Bereiche nehmen einen Winkel von 10° bis 100°, bevorzugt 40° bis 90° zueinander ein. Die zweite Flächenelektrode kann analog dazu ebenfalls mindestens zwei Gruppen von entschichteten linienförmigen Bereichen aufweisen, die nicht parallel zueinander verlaufen. Mindestens zwei Gruppen entschichteter linienförmiger Bereiche, deren Verlauf nicht parallel zueinander ist, sind vorteilhaft um die Transmission elektromagnetischer Strahlung verschiedener Polarisationsrichtungen zu verbessern. In einer besonders bevorzugten Ausführungsform ist der Betrag des Winkels, den die erste Gruppe von linienförmigen Bereichen und die zweite Gruppe von linienförmigen Bereichen jeweils zum nächstliegenden Sammelleiter einnehmen, gleich oder näherungsweise gleich. Somit kann die gewünschte unterschiedliche Ausrichtung der Gruppen von entschichteten linienförmigen Bereichen erzielt und gleichzeitig der für den Verlauf der Strompfade vorteilhafteste Winkel der Linien gewählt werden.
Bevorzugt nimmt die Liniendichte der entschichteten linienförmigen Bereiche der randständigen Struktur innerhalb des Randbereichs in Richtung der umlaufenden Kante zu. Demnach sind in den Randbereich entschichtete linienförmige Bereiche unterschiedlicher Länge eingebracht. Einige der entschichteten linienförmigen Bereiche weisen eine größere Länge auf als die dazu benachbarten entschichteten linienförmigen Bereiche und erstrecken sich um einen größeren Betrag in Richtung der gegenüberliegenden Kante. Dadurch entsteht eine alternierende Anordnung eines oder mehrerer entschichteter linienförmiger Bereiche größerer Länge mit einem oder mehreren entschichteten linienförmigen Bereich geringerer Länge. Die linienförmigen Bereiche größerer Länge sind an der dem Sammelleiter abgewandten Kante der randständigen Struktur lediglich gleichartigen Bereichen größerer Länge benachbart, die linienförmigen Bereiche geringerer Länge ragen nicht entsprechend weit in Richtung der Flächenmitte. Auf diese Weise wird in Nachbarschaft zum nächstliegenden Sammelleiter ein Abschnitt der randständigen Struktur mit höherer Liniendichte der entschichteten Bereiche gebildet, während an der dem Sammelleiter abgewandten Kante der randständigen Struktur ein größerer Linienabstand und somit eine geringere Liniendichte vorliegt. Die Frequenz der transmittierten Wellenlängen hängt vom Abstand benachbarter linienförmiger Bereiche ab, wobei der Bereich höherer Liniendichte vorteilhaft zur Transmission höherer Frequenzen ist und im Bereich geringerer Liniendichte vor allem niedrigere Frequenzen der hochfrequenten elektromagnetischen Strahlung transmittiert werden. Somit ist diese Ausführungsform vorteilhaft um eine gute Transmission der verschiedensten Frequenzen des Spektrums zu erzielen. Optional kann der Bereich höherer Liniendichte auf den Bereich der Scheibe beschränkt werden, der einen opaken Abdeckdruck trägt, um das optische Erscheinungsbild der Scheibe nicht zu beeinträchtigen.
Bevorzugt weist die erste Flächenelektrode und/oder die zweite Flächenelektrode jeweils eine Gruppe von entschichteten linienförmigen Bereichen auf, die parallel oder im Wesentlichen parallel zu linienförmigen Bereichen der gleichen Gruppe sind. Bevorzugt beträgt der Abstand benachbarter entschichteter linienförmiger Bereiche der gleichen Gruppe 1 ,0 mm bis 20,0 mm, bevorzugt 1 ,0 mm bis 10,0 mm, besonders bevorzugt 2,0 mm bis 5,0 mm. Innerhalb dieser Bereiche erfolgt eine vorteilhafte Transmission hochfrequenter elektromagnetischer Strahlung.
In sämtlichen beschriebenen Ausführungsformen können zusätzlich zu den erwähnten entschichteten linienförmigen Bereichen weitere entschichtete linienförmige Bereiche in die Flächenelektroden eingebracht sein. Diese können auch andere als die beschriebenen Winkel zu den Sammelleitern einnehmen. Beispielsweise können sich die weiteren entschichteten linienförmigen Bereiche und die entschichteten linienförmigen Bereiche auch kreuzen. In einer bevorzugten Ausführungsform kreuzen sich entschichtete linienförmige Bereiche mit weiteren entschichteten linienförmigen Bereichen in einem Winkel von 90°, wobei an den vier Enden der kreuzförmigen Anordnung weitere entschichtete linienförmige Bereiche angebracht sind, die jeweils senkrecht zu der Linie verlaufen an deren Ende sie angebracht sind. Dabei ist zu beachten, dass die endständigen Linien, die an den Enden der kreuzförmigen Anordnung angebracht sind, sich nicht miteinander kreuzen. Auf diese Weise wird die Bildung elektrisch isolierter Zonen innerhalb der randständigen Struktur vermieden. Die kreuzförmige Anordnung entschichteter linienförmiger Bereiche mit endständigen entschichteten linienförmigen Bereichen an den Enden der sich kreuzenden Linien umschließt dabei eine Anordnung aus vier Rechtecken, von denen sich jeweils zwei nebeneinander und zwei übereinander befinden. Die vier von den entschichteten linienförmigen Bereichen umzeichneten Rechtecke bilden gemeinsam ein großes Rechteck, an dessen Ecken die entschichteten linienförmigen Bereiche ausgespart sind, also keine Entschichtung vorliegt. Über diesen Bereich sind die Flächenanteile der Flächenelektroden, die sich innerhalb der Rechtecke befinden, elektrisch leitend mit der umgebenden Flächenelektrode verbunden, so dass sich keine elektrisch isolierten Zonen innerhalb der randständigen Struktur ergeben. Bevorzugt werden mehrere dieser kreuzförmigen Anordnungen nebeneinander entlang des ersten Sammelleiters und/oder zweiten Sammelleiters innerhalb der ersten Flächenelektrode beziehungsweise zweiten Flächenelektrode eingebracht. Eine solche randständige Struktur erzielt sowohl eine gute Transmission verschiedener Polarisationsrichtungen des elektrischen Feldvektors als auch eine gute Transmission verschiedener Frequenzen und eine geringe Beeinträchtigung des Schaltverhaltens des Funktionselementes im Durchsichtbereich der Scheibe. Bevorzugt beträgt die Länge der sich kreuzenden entschichteten linienförmigen Bereiche jeweils 10 mm bis 40 mm, bevorzugt 20 mm bis 30 mm, während die Länge der endständigen linienförmigen Bereiche 8 mm bis 30 mm, bevorzugt 15 mm bis 25 mm beträgt. Der Abstand benachbarter kreuzförmiger Anordnungen wird als geringster Abstand zweier Linien benachbarter Anordnungen bestimmt und beträgt 1 ,0 mm bis 5,0 mm, beispielsweise 2,0 mm. In diesen Bereichen konnten gute Ergebnisse hinsichtlich der Transmission erzielt werden.
Optional weist die erfindungsgemäße Scheibe zusätzlich mindestens eine mittige Struktur auf, die auch außerhalb des Randbereichs zumindest in Teilbereichen der Scheibe angeordnet ist. Die mittige Struktur ist in der ersten Flächenelektrode und/oder zweiten Flächenelektrode eingebracht und weist jeweils keine elektrisch isolierten Zonen innerhalb der ersten Flächenelektrode und der zweiten Flächenelektrode auf. Die mittige Struktur umschließt somit keinerlei Flächen innerhalb der ersten Flächenelektrode und der zweiten Flächenelektrode vollständig. Sofern eine mittige Struktur vorgesehen ist, so wird diese in der Regel in beide Flächenelektroden eingebracht. Auf diese Weise erfolgt gleichermaßen eine Transmission durch beide Flächenelektroden. Die erste Flächenelektrode und die zweite Flächenelektrode können verschiedene oder gleichartige mittige Strukturen aufweisen, die wahlweise deckungsgleich oder versetzt zueinander angeordnet sind.
Bevorzugt umfasst die mindestens eine mittige Struktur entschichtete linienförmige Bereiche. Bevorzugt erstrecken sich die entschichteten linienförmigen Bereiche der mittigen Struktur innerhalb der ersten Flächenelektrode von der randständigen Struktur in Nachbarschaft des ersten Sammelleiters ausgehend in Richtung des zweiten Sammelleiters und/oder die entschichteten linienförmigen Bereiche der mittigen Struktur verlaufen innerhalb der zweiten Flächenelektrode von der randständigen Struktur in Nachbarschaft des zweiten Sammelleiters ausgehend in Richtung des ersten Sammelleiters. Insbesondere bevorzugt sind mittige Strukturen in Form von entschichteten linienförmigen Bereichen in beiden Flächenelektroden. Ein Verlauf der entschichteten linienförmigen Bereiche ausgehend von einem Sammelleiter in Richtung des gegenpoligen Sammelleiters ermöglicht einerseits eine Transmission im Durchsichtbereich der Scheibe, wobei andererseits eine gute Schaltbarkeit des Funktionselementes erhalten bleibt. Für die gute Schaltbarkeit des Funktionselementes sind dabei die zwischen den entschichteten linienförmigen Bereichen entstehenden Strompfade entscheidend.
Der erste und der zweite Sammelleiter können auch an mehreren Seitenkanten der Scheibe angebracht sein, wobei die Scheibe vorzugsweise eine rechteckige Kontur aufweist. Die umlaufende Kante umfasst dabei vier geradlinige Kantenabschnitte, wovon jeweils zwei einander gegenüberliegen. In einer bevorzugten Ausführungsform erstreckt sich der erste Sammelleiter entlang zweier benachbarter Kantenabschnitte, wobei der zweite Sammelleiter sich entlang der diesen gegenüberliegenden ebenfalls benachbarten Kantenabschnitten erstreckt. Somit verlaufen der erste Sammelleiter und der zweite Sammelleiter jeweils entlang zweier benachbarter Kantenabschnitte der umlaufenden Kante. Dabei wird sowohl die Kontaktfläche zwischen Sammelleiter und damit elektrisch kontaktierter Flächenelektrode vergrößert, als auch die Strecke minimiert, die der Strom über die Flächenelektrode verlaufen muss. Demnach kann eine verbesserte Schaltbarkeit mit homogenerem Schaltverhalten erreicht werden. Die randständigen Strukturen können grundsätzlich sämtliche der bisher erwähnten Strukturen und Verläufe einnehmen. Beispielsweise können die entschichteten linienförmigen Bereiche einen Winkel von 90° zum nächstliegenden Abschnitt des Sammelleiters aufweisen, wobei im übergreifenden Eckbereich, in dem ein Sammelleiter zwei benachbarte Kantenabschnitte umfasst, ein schrittweiser Übergang zwischen beiden Ausrichtungen der entschichteten linienförmigen Bereiche erfolgt. In einer weiteren bevorzugten Ausführungsform sind die randständigen Strukturen als entschichtete linienförmige Bereiche ausgeführt, die sich in einem Winkel von 10° bis 50°, besonders bevorzugt 20° bis 45°, insbesondere 25° bis 40° zum benachbarten Abschnitt des nächstliegenden Sammelleiters erstrecken. Dabei wird der spitze Winkel zwischen entschichtetem linienförmigen Bereich und Sammelleiter betrachtet. Besonders bevorzugt ist der Winkel der entschichteten linienförmigen Bereiche im Verhältnis zum nächstliegenden Abschnitt des benachbarten Sammelleiters veränderlich. Dabei erfolgt bevorzugt ein schrittweiser Übergang zwischen entschichteten linienförmigen Bereichen mit einem Winkel von 90° zum nächstliegenden Abschnitt des benachbarten Sammelleiters und entschichteten linienförmigen Bereichen mit einem Winkel von 45° zum nächstliegenden Abschnitt des benachbarten Sammelleiters. Ein Winkel von 45° wird in der Ecke der Scheibe erreicht, die vom zugehörigen Sammelleiter überspannt wird, während Winkel von 90° im Bereich der Kantenmitte vorliegen. Auf diese Weise können sämtliche Polarisationsrichtungen des elektrischen Feldvektors gleichermaßen transmittiert und ein homogenes optisches Erscheinungsbild erzielt werden. Die entschichteten linienförmigen Bereiche können mit veränderlichem Winkel eine konstante Länge oder auch eine von der Kantenmitte zur Ecke zunehmende Länge aufweisen. Eine konstante Länge ist vorteilhaft um die zu entschichtenden Bereiche und den damit einhergehenden Produktionsaufwand möglichst gering zu halten. Wird eine von der Kantenmitte zur Ecke ansteigende Länge gewählt, können die entschichteten linienförmigen Bereiche so ausgeführt werden, dass ihre von dem zugehörigen Sammelleiter wegweisenden Enden in gleichbleibender Entfernung zum nächstliegenden Abschnitt der umlaufenden Kante liegen, wodurch ein besonders ansprechendes optisches Erscheinungsbild erzielt wird.
Zusätzlich zu den genannten erforderlichen oder optionalen Strukturen der entschichteten linienförmigen Bereiche können entlang der Abschnitte der umlaufenden Kante, an denen keine Sammelleiter angeordnet sind auch elektrisch isolierte Zonen im Randbereich vorgesehen werden. Diese elektrisch isolierten Zonen sind innerhalb der ersten Flächenelektrode und/oder der zweiten Flächenelektrode, bevorzugt innerhalb beider Flächenelektroden vorgesehen. In dem Randbereich der Scheibe, der elektrisch isolierte Zonen umfasst, ist das Funktionselement nicht mehr schaltbar. Im Randbereich können die Flächenelektroden beispielsweise vollständig entschichtet werden oder auch mit einer Strukturierung linienförmiger entschichteter Bereiche versehen werden, die Anteile der Flächenelektroden einschließt. Dadurch entstehen elektrisch isolierte Zonen, die nicht elektrisch mit den Sammelleitern kontaktiert sind. Innerhalb dieser elektrisch isolierten Zonen kann eine Strukturierung ohne Rücksicht auf den Stromfluss entlang der Flächenelektroden erfolgen. Die elektrisch isolierten Zonen liegen in Einbaulage der Scheibe, beispielsweise in einer Isolierverglasung, bevorzugt außerhalb des Sichtbereichs und/oder werden beispielsweise durch einen opaken Abdeckdruck kaschiert. Erfindungsgemäß sind solche elektrisch isolierten Zonen entlang der Sammelleiter benachbart zu diesen ausgeschlossen, um eine homogene Schaltbarkeit des Funktionselementes im Durchsichtbereich zu ermöglichen.
Das Funktionselement mit elektrisch schaltbaren optischen Eigenschaften kann als elektrochromes Funktionselement, SPD-Element, PDLC-Element oder elektrolumineszentes Element ausgeführt sein. Besonders bevorzugt ist das Funktionselement ein elektrochromes Funktionselement.
Ein elektrochromes Funktionselement umfasst mindestens eine elektrochemisch aktive Schicht, die in der Lage ist, reversibel Ladungen einzulagern. Die Oxidationszustände im eingelagerten und ausgelagerten Zustand unterscheiden sich dabei in ihrer Farbgebung, wobei einer dieser Zustände transparent ist. Die Einlagerungsreaktion ist über die von außen angelegte Potentialdifferenz steuerbar. Der Grundaufbau des elektrochromen Funktionselementes umfasst somit mindestens ein elektrochromes Material, wie Wolframoxid, das sowohl mit einer Flächenelektrode, als auch einer Ladungsquelle, wie einem ionenleitfähigen Elektrolyten, in Kontakt steht. Darüber hinaus enthält der elektrochrome Schichtaufbau eine Gegenelektrode, die ebenfalls in der Lage ist reversibel Kationen einzulagern, und mit dem ionenleitfähigen Elektrolyten in Berührung steht, sowie eine weitere Flächenelektrode, die sich an die Gegenelektrode anschließt. Die Flächenelektroden sind mit einer externen Spannungsquelle verbunden, wodurch die an die aktive Schicht angelegte Spannung reguliert werden kann. Die Flächenelektroden sind meist dünne Schichten elektrisch leitfähigen Materials, häufig Indium-Zinnoxid (ITO). Häufig ist zumindest eine der Flächenelektroden direkt auf die Oberfläche der ersten Scheibe aufgebracht, beispielsweise mittels Kathodenzerstäubung (Sputtern).
Andere mögliche Funktionselemente unterscheiden sich davon im Wesentlichen durch die Art der aktiven Schicht, die zwischen den Flächenelektroden vorliegt. In weiteren möglichen Ausgestaltungen ist die aktive Schicht eine SPD-, eine PDLC-, eine elektrochrome oder eine elektrolumineszente Schicht.
Ein SPD-Funktionselement (suspended particle device) enthält eine aktive Schicht umfassend suspendierte Partikel, wobei die Absorption von Licht durch die aktive Schicht mittels Anlegen einer Spannung an die Flächenelektroden veränderbar ist. Die Absorptionsänderung beruht auf der Ausrichtung der stäbchenartigen Partikel im elektrischen Feld bei angelegter elektrischer Spannung. SPD-Funktionselemente sind beispielsweise aus EP 0876608 B1 und WO 2011033313 A1 bekannt.
In einer möglichen Ausgestaltung ist das Funktionselement ein PDLC-Funktionselement (polymer dispersed liquid crystal). Die aktive Schicht eines PDLC-Funktionselements enthält Flüssigkristalle, welche in eine Polymermatrix eingelagert sind. Wird an die Flächenelektroden keine Spannung angelegt, so sind die Flüssigkristalle ungeordnet ausgerichtet, was zu einer starken Streuung des durch die aktive Schicht tretenden Lichts führt. Wird an die Flächenelektroden eine Spannung angelegt, so richten sich die Flüssigkristalle in einer gemeinsamen Richtung aus und die Transmission von Licht durch die aktive Schicht wird erhöht. Ein solches Funktionselement ist beispielsweise aus DE 102008026339 A1 bekannt.
Bei elektrolumineszenten Funktionselementen enthält die aktive Schicht elektrolumineszente Materialen, insbesondere organische elektrolumineszente Materialen, deren Lumineszenz durch Anlegen einer Spannung angeregt wird. Elektrolumineszente Funktionselemente sind beispielsweise aus US 2004227462 A1 und WO 2010112789 A2 bekannt. Das elektrolumineszente Funktionselement kann als einfache Lichtquelle verwendet werden, oder als Display mit dem beliebige Darstellungen gezeigt werden können.
Als erste Flächenelektrode und als zweite Flächenelektrode sind prinzipiell jegliche Art von transparenten elektrisch leitfähigen Beschichtungen bekannt. Die erste und/oder die zweite Flächenelektrode umfassen mindestens ein Metall, bevorzugt Silber, Nickel, Chrom, Niob, Zinn, Titan, Kupfer, Palladium, Zink, Gold, Cadmium, Aluminium, Silizium, Wolfram oder Legierungen daraus, und/oder mindestens eine Metalloxidschicht, bevorzugt Zinn-dotiertes Indiumoxid (ITO), Aluminium-dotiertes Zinkoxid (AZO), Fluordotiertes Zinnoxid (FTO, SnO2:F), Antimon-dotiertes Zinnoxid (ATO, SnO2:Sb), und/oder Kohlenstoffnanoröhrchen und/oder optisch transparente, elektrisch leitfähige Polymere, bevorzugt Poly(3,4-ethylenedioxythiophene), Polystyrensulfonat, Poly(4,4- dioctylcylopentadithiophen), 2,3-Dichloro-5,6-dicyano-1 ,4-benzoquinon, Gemische und/oder Copolymere davon.
Die Dicke der Flächenelektroden kann breit variieren und den Erfordernissen des Einzelfalls angepasst werden. Wesentlich ist dabei, dass die Dicke der transparenten, elektrisch leitfähigen Beschichtung nicht so hoch werden darf, dass sie für elektromagnetische Strahlung, vorzugsweise elektromagnetische Strahlung einer Wellenlänge von 300 bis 1.300 nm und insbesondere sichtbares Licht, undurchlässig wird. Die transparente, elektrisch leitfähige Beschichtung weist bevorzugt eine Schichtdicke von 10 nm bis 5 pm und besonders bevorzugt von 30 nm bis 1 pm auf.
Die in die erste und/oder zweite Flächenelektrode eingebrachten linienförmigen entschichteten Bereiche weisen eine Linienbreite der entschichteten Bereiche von jeweils 5 pm bis 500 pm und bevorzugt von jeweils 10 pm bis 140 pm auf. Innerhalb dieser Linienbreiten wird der Schaltvorgang des Funktionselementes nicht sichtbar beeinträchtigt. Ferner sind diese Linienbreiten auf einfache Art und Weise mit kommerziell erhältlichen Lasern einzubringen.
Die Flächenelektroden des Funktionselements werden über sogenannte Sammelleiter elektrisch leitend kontaktiert und über die Sammelleiter mit einer elektrischen Zuleitung verbunden, die an eine externe Spannungsquelle angeschlossen ist. Als Sammelleiter können beispielsweise Streifen eines elektrisch leitfähigen Materials oder elektrisch leitfähige Aufdrucke verwendet werden mit denen die Flächenelektroden verbunden werden. Die Sammelleiter, auch als bus bars bezeichnet, dienen der Übertragung elektrischer Leistung und ermöglichen eine homogene Spannungsverteilung. Die Sammelleiter werden vorteilhaft durch Aufdrucken einer leitfähigen Paste hergestellt. Die leitfähige Paste enthält bevorzugt Silber-Partikel und Glasfritten. Die Schichtdicke der leitfähigen Paste beträgt bevorzugt von 5 pm bis 20 pm.
In einer alternativen Ausgestaltung werden dünne und schmale Metallfolienstreifen oder Metalldrähte als Sammelleiter verwendet, die bevorzugt Kupfer und/oder Aluminium enthalten, insbesondere werden Kupferfolienstreifen mit einer Dicke von beispielsweise etwa 50 pm verwendet. Die Breite der Kupferfolienstreifen beträgt bevorzugt 1 mm bis 10 mm. Der elektrische Kontakt zwischen einer als Flächenelektrode dienenden elektrisch leitfähigen Schicht des Funktionselements und dem Sammelleiter kann beispielsweise durch Auflöten oder Kleben mit einem elektrisch leitfähigen Kleber hergestellt werden.
Die elektrische Zuleitung, die der Kontaktierung der Sammelleiter mit einer externen Spannungsquelle dient, ist ein elektrischer Leiter, bevorzugt enthaltend Kupfer. Es können auch andere elektrisch leitende Materialien verwendet werden. Beispiele hierfür sind Aluminium, Gold, Silber oder Zinn und Legierungen davon. Die elektrische Zuleitung kann sowohl als Flachleiter als auch als Rundleiter ausgestaltet sein, sowie in beiden Fällen als eindrähtiger oder mehrdrähtiger Leiter (Litze).
Die elektrische Zuleitung besitzt bevorzugt einen Leitungsquerschnitt von 0,08 mm2 bis 2,5 mm2.
Als Zuleitung können auch Folienleiter verwendet werden. Beispiele für Folienleiter werden in DE 42 35 063 A1 , DE 20 2004 019 286 U1 und DE 93 13 394 U1 beschrieben.
Flexible Folienleiter, mitunter auch Flachleiter oder Flachbandleiter genannt, bestehen bevorzugt aus einem verzinnten Kupferband mit einer Dicke von 0,03 mm bis 0,1 mm und einer Breite von 2 mm bis 16 mm. Kupfer hat sich für solche Leiterbahnen bewährt, da es eine gute elektrische Leitfähigkeit sowie eine gute Verarbeitbarkeit zu Folien besitzt. Gleichzeitig sind die Materialkosten niedrig.
Die Erfindung umfasst des Weiteren eine Isolierverglasung umfassend die erfindungsgemäße Scheibe mit Funktionselement, eine zweite Scheibe und einen umlaufenden Abstandhalterrahmen, der die Scheibe mit der zweiten Scheibe verbindet. Auf der zweiten Scheibe ist mindestens eine elektrisch leitfähige Beschichtung flächig angeordnet, wobei in der elektrisch leitfähigen Beschichtung mindestens eine randständige Struktur im Randbereich eingebracht ist. Der Randbereich der zweiten Scheibe ist der an die umlaufende Kante der zweiten Scheibe grenzende Bereich. Die randständige Struktur ist dabei insbesondere in Bereichen angebracht, in deren Projektion auf die Scheibe mit Funktionselement bereits eine randständige Struktur der Scheibe vorliegt. Die randständige Struktur der zweiten Scheibe kann grundsätzlich alle für die randständige Struktur der ersten Scheibe erläuterten Strukturen annehmen. Die auf der ersten Scheibe und der zweiten Scheibe befindlichen randständigen Strukturen können gleich oder verschieden ausgestaltet sein, wobei diese bei gleichen Strukturen deckungsgleich oder versetzt angeordnet sein können.
Die elektrisch leitfähige Beschichtung der zweiten Scheibe sowie das auf der ersten Scheibe befindliche Funktionselement sind auf den dem Abstandhalter zugewandten Scheibenoberflächen angebracht und befinden sich somit im inneren Scheibenzwischenraum der Isolierverglasung, wo diese vor Umwelteinflüssen geschützt sind.
Bevorzugt ist die elektrisch leitfähige Beschichtung der zweiten Scheibe eine infrarotreflektierende Beschichtung. Die infrarotreflektierende Beschichtung vermindert den Wärmedurchgang durch die Isolierverglasung, so dass im Winter ein Verlust von Wärme vermieden werden kann. Im Sommer verhindert die infrarotreflektierende Beschichtung hingegen die Aufheizung des Innenraumes durch eintreffende Sonnenstrahlung. Insbesondere in Kombination mit dem elektrochromen Funktionselement ist die Verwendung einer infrarotreflektierenden Beschichtung vorteilhaft, da so auch der Wärmedurchgang der Abwärme des Funktionselementes vermieden wird.
Die infrarotreflektierende Beschichtung ist bevorzugt für sichtbares Licht im Wellenlängenbereich von 390 nm bis 780 nm durchlässig. "Durchlässig" bedeutet, dass die Gesamttransmission der Scheibe insbesondere für sichtbares Licht bevorzugt >70% und insbesondere >75% durchlässig ist. Dadurch werden der optische Eindruck der Verglasung sowie die Durchsicht nicht beeinträchtigt.
Die infrarotreflektierende Beschichtung dient der Sonnenschutzwirkung und weist dazu reflektierende Eigenschaften im infraroten Bereich des Lichtspektrums auf. Die infrarotreflektierende Beschichtung weist besonders niedrige Emissivitäten (Low-E) aufweisen. Dadurch wird ein Aufheizen des Innenraums eines Gebäudes infolge von Sonnenstrahlung vorteilhaft vermindert. Scheiben, die mit einer solchen infrarotreflektierenden Beschichtung versehen sind, sind handelsüblich und werden als Low-E-Glas (Low-Emissivity-Glas) bezeichnet.
Low-E-Beschichtungen enthalten üblicherweise eine Diffusionssperre, einen metallöder metalloxidhaltigen Multilayer und eine Sperrschicht. Die Diffusionssperre wird direkt auf die Glasoberfläche aufgebracht und verhindert eine Verfärbung durch Diffusion von Metallatomen ins Glas. Häufig werden Doppelsilberschichten oder Dreifachsilberschichten als Multilayer eingesetzt. Die verschiedensten Low-E- Beschichtungen sind beispielsweise bekannt aus DE 10 2009 006 062 A1 , WO 2007/101964 A1 , EP 0 912 455 B1 , DE 199 27 683 C1 , EP 1 218 307 B1 und EP 1 917 222 B1.
Die Abscheidung von Low-E-Beschichtungen erfolgt bevorzugt über das an sich bekannte Verfahren der magnetfeldunterstützte Kathodenzerstäubung. Durch magnetfeldunterstützte Kathodenzerstäubung abgeschiedene Schichten weisen eine amorphe Struktur auf und bewirken eine Trübung von durchsichtigen Substraten wie Glas oder transparenten Polymeren. Eine Temperaturbehandlung der amorphen Schichten bewirkt eine Kristallstrukturänderung hin zu einer kristallinen Schicht mit verbesserter Transmission. Der Temperatureintrag in die Beschichtung kann über eine Flammenbehandlung, einen Plasmabrenner, Infrarotstrahlung oder eine Laserbehandlung erfolgen.
Solche Beschichtungen enthalten typischerweise zumindest ein Metall, insbesondere Silber oder eine silberhaltige Legierung. Die infrarotreflektierende Beschichtung kann eine Abfolge mehrerer Einzelschichten umfassen, insbesondere zumindest eine metallische Schicht und dielektrische Schichten, die beispielsweise zumindest ein Metalloxid enthalten. Das Metalloxid enthält bevorzugt Zinkoxid, Zinnoxid, Indiumoxid, Titanoxid, Siliziumoxid, Aluminiumoxid oder dergleichen sowie Kombinationen von einem oder mehreren daraus. Das dielektrische Material kann auch Siliziumnitrid, Siliziumcarbid oder Aluminiumnitrid enthalten.
Besonders geeignete transparente, infrarotreflektierende Beschichtungen enthalten mindestens ein Metall, bevorzugt Silber, Nickel, Chrom, Niob, Zinn, Titan, Kupfer, Palladium, Zink, Gold, Cadmium, Aluminium, Silizium, Wolfram oder Legierungen daraus, und/oder mindestens eine Metalloxidschicht, bevorzugt Zinn-dotiertes Indiumoxid (ITO), Aluminium-dotiertes Zinkoxid (AZO), Fluor-dotiertes Zinnoxid (FTO, SnO2:F), Antimon-dotiertes Zinnoxid (ATO, SnO2:Sb), und/oder Kohlenstoffnanoröhrchen und/oder optisch transparente, elektrisch leitfähige Polymere, bevorzugt Poly(3,4-ethylenedioxythiophene), Polystyrensulfonat, Poly(4,4- dioctylcylopentadithiophen), 2,3-Dichloro-5,6-dicyano-1 ,4-benzochinon, Gemische und/oder Copolymere davon
Die infrarotreflektierende Beschichtung weist bevorzugt eine Schichtdicke von 10 nm bis 5 pm und besonders bevorzugt von 30 nm bis 1 pm auf. Der Flächenwiderstand der infrarotreflektierenden Beschichtung beträgt z.B. 0,35 Ohm/Quadrat bis 200 Ohm/Quadrat, bevorzugt 0,6 Ohm/Quadrat bis 30 Ohm/Quadrat und insbesondere von 2 Ohm/Quadrat bis 20 Ohm/Quadrat.
In einem möglichen Ausführungsbeispiel wird als infrarotreflektierende Beschichtung eine Silberschicht mit einer Dicke von 6 nm bis 15 nm umgeben von zwei Sperrschichten mit einer Dicke von 0,5 nm bis 2 nm enthaltend Nickel-Chrom und/oder Titan eingesetzt. Zwischen einer Sperrschicht und der Glasoberfläche ist bevorzugt eine Diffusionssperre mit einer Dicke von 25 nm bis 35 nm enthaltend Sisl^ , TiÜ2, SnZnO und/oder ZnO aufgebracht. Auf die obere Sperrschicht ist der Umgebung zugewandt bevorzugt eine Diffusionssperre mit einer Dicke von 35 nm bis 45 nm enthaltend ZnO und/oder Sisl^ aufgetragen. Diese obere Diffusionssperre ist optional mit einer Schutzschicht mit einer Dicke von 1 nm bis 5 nm umfassend TiÜ2 und/oder SnZnÜ2 ausgestattet. Die Gesamtdicke aller Schichten beträgt bevorzugt 67,5 nm bis 102 nm.
Der Abstandhalter ist im Allgemeinen umlaufend auf den Scheiben angeordnet. Der erste und der zweite Sammelleiter verlaufen im ersten Verglasungsinnenraum vorzugsweise parallel zum Abstandhalter, bevorzugt an zwei einander gegenüberliegenden Scheibenkanten der ersten Scheibe.
Der Abstandhalter ist in der Draufsicht in der Regel in Form eines Rechtecks ausgebildet. Normalerweise ist der Abstandshalter symmetrisch, d.h. er hat an allen Seiten der Isolierverglasung den gleichen Abstand zur Kante der Isolierverglasung.
Die Isolierverglasung umfasst mindestens zwei Scheiben, die durch einen Abstandhalter auf Abstand zueinander gehalten werden. Die Isolierverglasung kann auch eine dritte oder weitere Scheiben umfassen. Diese können beispielsweise über weitere Abstandhalter an der Scheibe oder zweiten Scheibe angesetzt sein.
In einer bevorzugten Ausführungsform ist die erste Scheibe der Isolierverglasung, die das Funktionselement aufweist, mit einer weiteren Scheibe über eine thermoplastische Verbundfolie zu einer Verbundscheibe laminiert. Die Verbundscheibe weist eine verbesserte Widerstandsfähigkeit und Stabilität auf. Die an die erste Scheibe anlaminierte dritte Scheibe erschwert zudem die Durchbiegung und thermische Ausdehnung der ersten Scheibe. Ferner weist eine Verbundscheibe eine verbesserte Durchbruchhemmung auf. Dies ist insbesondere vorteilhaft um das Funktionselement zu schützen. Geeignete thermoplastische Verbundfolien sind dem Fachmann bekannt. Die thermoplastischen Verbundfolien enthalten zumindest ein thermoplastisches Polymer, bevorzugt Ethylenvinylacetat (EVA), Polyvinylbutyral (PVB) oder Polyurethan (PU) oder Gemische oder Copolymere oder Derivate davon. Die Dicke der thermoplastischen Verbundfolien beträgt bevorzugt von 0,2 mm bis 2 mm, besonders bevorzugt von 0,3 mm bis 1 ,5 mm. Besonders bevorzugt wird zur Lamination zweier Glasscheiben Polyvinylbutyral in einer Dicke von beispielsweise 0,38 mm oder 0,76 mm eingesetzt.
Der Abstandhalter der Isolierverglasung umfasst bevorzugt mindestens einen Grundkörper umfassend zwei Scheibenkontaktflächen, eine Verglasungsinnenraumfläche, eine Außenfläche und eine Hohlkammer.
Die erste und die zweite Scheibe sind an den Scheibenkontaktflächen bevorzugt über ein Dichtmittel angebracht, das zwischen der ersten Scheibenkontaktfläche und der Scheibe und/oder der zweiten Scheibenkontaktfläche und der zweiten Scheibe angebracht ist.
Das Dichtmittel enthält bevorzugt Butylkautschuk, Polyisobutylen, Polyethylenvinylalkohol, Ethylenvinylacetat, Polyolefin-Kautschuk, Copolymere und/oder Gemische davon.
Das Dichtmittel ist bevorzugt in mit einer Dicke von 0,1 mm bis 0,8 mm, besonders bevorzugt 0,2 mm bis 0,4 mm in den Spalt zwischen Abstandhalter und Scheiben eingebracht.
Die erste Scheibenkontaktfläche und die zweite Scheibenkontaktfläche stellen die Seiten des Abstandhalters dar, an denen beim Einbau des Abstandhalters die Montage der äußeren Scheiben (Scheibe und zweite Scheibe) einer Isolierverglasung erfolgt. Die erste Scheibenkontaktfläche und die zweite Scheibenkontaktfläche verlaufen parallel zueinander.
Die Verglasungsinnenraumfläche ist als die Fläche des Abstandhaltergrundkörpers definiert, die nach Einbau des Abstandhalters in einer Isolierverglasung in Richtung des Innenraums der Verglasung weist. Die Verglasungsinnenraumfläche liegt dabei zwischen den Scheiben. Die Außenfläche des Abstandhaltergrundkörpers ist die der Verglasungsinnenraumfläche gegenüberliegende Seite, die vom Innenraum der Isolierverglasung weg in Richtung einer äußeren Versiegelung weist.
Die Außenfläche des Abstandhalters kann in einer möglichen Ausführungsform jeweils benachbart zu den Scheibenkontaktflächen abgewinkelt sein, wodurch eine erhöhte Stabilität des Grundkörpers erzielt wird. Die Außenfläche kann benachbart zu den Scheibenkontaktflächen beispielsweise um jeweils 30-60°, relativ zur Außenfläche, abgewinkelt sein.
Die Hohlkammer des Grundkörpers grenzt an die Verglasungsinnenraumfläche, wobei die Verglasungsinnenraumfläche sich oberhalb der Hohlkammer befindet und die Außenfläche des Abstandhalters sich unterhalb der Hohlkammer befindet. Oberhalb ist in diesem Zusammenhang als im Einbauzustand des Abstandhalters in einer Isolierverglasung dem inneren Scheibenzwischenraum der Isolierverglasung zugewandt und unterhalb als dem Scheibeninnenraum abgewandt definiert.
Die Hohlkammer des Abstandhalters führt zu einer Gewichtsreduktion im Vergleich zu einem massiv ausgeformten Abstandhalter und steht zur Aufnahme von weiteren Komponenten, wie beispielsweise eines Trockenmittels, zur Verfügung
Der äußere Scheibenzwischenraum der Isolierverglasung ist bevorzugt mit einer äußeren Abdichtung verfüllt. Diese äußere Abdichtung dient vor allem der Verklebung der beiden Scheiben und somit der mechanischen Stabilität der Isolierverglasung.
Die äußere Abdichtung enthält bevorzugt Polysulfide, Silikone, Silikonkautschuk, Polyurethane, Polyacrylate, Copolymere und/oder Gemische davon. Derartige Stoffe haben eine sehr gute Haftung auf Glas, so dass die äußere Abdichtung eine sichere Verklebung der Scheiben gewährleistet. Die Dicke der äußeren Abdichtung beträgt bevorzugt 2 mm bis 30 mm, besonders bevorzugt 5 mm bis 10 mm.
Die Scheiben der Isolierverglasung können aus organischem Glas oder vorzugsweise aus anorganischem Glas sein. In einer vorteilhaften Ausgestaltung der erfindungsgemäßen Isolierverglasung können die Scheiben unabhängig voneinander aus Flachglas, Floatglas, Kalk-Natron-Glas, Quarzglas oder Borosilikatglas sein. Die Dicke jeder Scheibe kann variieren und so den Erfordernissen des Einzelfalls angepasst werden. Vorzugsweise werden Scheiben mit Standardstärken von 1 mm bis 19 mm und bevorzugt von 2 mm bis 8 mm verwendet. Die Scheiben können farblos oder gefärbt sein.
Der Verglasungsinnenraum kann mit Luft oder einem anderen Gas, insbesondere einem Edelgas, wie z.B. Argon oder Krypton, gefüllt sein. Die Verglasungsinnenraumfläche des Abstandhalters ist dem Verglasungsinnenraum zugewandt.
Der äußere Scheibenzwischenraum wird ebenfalls durch die erste Scheibe, die zweite Scheibe, den Abstandhalter und das zwischen Scheiben und Scheibenkontaktflächen platzierte Dichtmittel gebildet und befindet sich gegenüber dem Verglasungsinnenraum im äußeren Randbereich der Isolierverglasung. Der äußere Scheibenzwischenraum ist auf der dem Abstandshalter gegenüberliegenden Seite offen. Die Außenfläche des Abstandhalters ist dem äußeren Scheibenzwischenraum zugewandt.
Der Grundkörper des Abstandhalters kann die verschiedensten dem Fachmann bekannten metallischen oder polymeren Ausführungsformen annehmen. Geeignete Metalle sind insbesondere Aluminium oder Edelstahl. Polymere Grundkörper enthalten bevorzugt Polyethylen (PE), Polycarbonate (PC), Polypropylen (PP), Polystyrol, Polybutadien, Polynitrile, Polyester, Polyurethane, Polymethylmetacrylate, Polyacrylate, Polyamide, Polyethylenterephthalat (PET), Polybutylenterephthalat (PBT), bevorzugt Acrylnitril-Butadien-Styrol (ABS), Acrylester-Styrol-Acrylnitril (ASA), Acrylnitril- Butadien-Styrol/Polycarbonat (ABS/PC), Styrol-Acrylnitril (SAN), PET/PC, PBT/PC und/oder Copolymere oder Gemische davon. Bevorzugt ist der polymere Grundkörper glasfaserverstärkt. Der Grundkörper weist bevorzugt einen Glasfaseranteil von 20 % bis 50 %, besonders bevorzugt von 30 % bis 40 % auf. Der Glasfaseranteil im polymeren Grundkörper verbessert gleichzeitig die Festigkeit und Stabilität.
In einer bevorzugten Ausführungsform enthält der Abstandhalter ein Trockenmittel, bevorzugt Kieselgele, Molekularsiebe, CaCI2, Na2SO4, Aktivkohle, Silikate, Bentonite, Zeolithe und/oder Gemische davon.
Der Abstandhalter kann bevorzugt eine oder mehrere Hohlkammern aufweisen. In der Hohlkammer ist bevorzugt das Trockenmittel enthalten. Die Verglasungsinnenraumfläche weist dabei bevorzugt Öffnungen auf, um die Aufnahme von Luftfeuchtigkeit durch das im Abstandhalter vorhandene Trockenmittel zu erleichtern. Die Gesamtzahl der Öffnungen hängt dabei von der Größe der Isolierverglasung ab. Die Öffnungen verbinden die Hohlkammer mit dem inneren Scheibenzwischenraum, wodurch ein Gasaustausch zwischen diesen möglich wird. Dadurch wird eine Aufnahme von Luftfeuchtigkeit durch das in der Hohlkammer befindliche Trockenmittel erlaubt und somit ein Beschlagen der Scheiben verhindert. Die Öffnungen sind bevorzugt als Schlitze ausgeführt, besonders bevorzugt als Schlitze mit einer Breite von 0,2 mm und einer Länge von 2 mm. Die Schlitze gewährleisten einen optimalen Luftaustausch ohne dass Trockenmittel aus der Hohlkammer in den Verglasungsinnenraum eindringen kann.
Bei Verwendung polymerer Grundkörper ist bevorzugt zumindest auf der Außenfläche des polymeren Grundkörpers eine gas- und dampfdichte Barriere aufgebracht ist. Die gas- und dampfdichte Barriere verbessert die Dichtigkeit des Abstandhalters gegen Gasverlust und Eindringen von Feuchtigkeit. Bevorzugt ist die Barriere auf etwa der Hälfte bis zwei Drittel der Scheibenkontaktflächen aufgebracht. Ein geeigneter Abstandhalter mit polymerem Grundkörper ist beispielsweise in WO 2013/104507 A1 offenbart.
Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung einer erfindungsgemäßen Scheibe, wobei mindestens: a. eine erste Scheibe mit einem Funktionselement mit elektrisch schaltbaren optischen Eigenschaften bereitgestellt wird, und b. mindestens eine randständige Struktur umfassend entschichtete, linienförmige Bereiche innerhalb der ersten Flächenelektrode und/oder der zweiten Flächenelektrode derart gebildet wird, dass sich die linienförmigen Bereiche benachbart zum ersten Sammelleiter und/oder zweiten Sammelleiter befinden und sich von dort ausgehend in Richtung des gegenüberliegenden Abschnitts der umlaufenden Kante erstrecken, wobei die randständige Struktur keine elektrisch isolierten Zonen innerhalb der ersten Flächenelektrode und der zweiten Flächenelektrode aufweist.
Die Entschichtung der randständigen Strukturen in der ersten und/oder zweiten Flächenelektrode erfolgt bevorzugt durch einen Laserstrahl. Verfahren zum Strukturieren dünner Metallfilme sind beispielsweise aus EP 2 200 097 A 1 oder EP 2 139 049 A 1 bekannt. Die Breite der Entschichtung beträgt bevorzugt von 5 pm bis 150 pm, besonders bevorzugt von 5 pm bis 100 pm, ganz besonders bevorzugt von 10 pm bis 50 pm und insbesondere von 15 pm bis 30 pm. In diesem Bereich findet eine besonders saubere und rückstandsfreie Entschichtung durch den Laserstrahl statt. Die Entschichtung mittels Laserstrahl ist besonders vorteilhaft, da die entschichteten Linien optisch sehr unauffällig sind und das Erscheinungsbild und die Durchsicht nur wenig beeinträchtigen. Die Entschichtung einer Linie der Breite d, die breiter ist als die Breite eines Laserschnitts, erfolgt durch mehrmaliges Abfahren der Linie mit dem Laserstrahl. Die Prozessdauer und die Prozesskosten steigen deshalb mit zunehmender Linienbreite an.
In einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird die entschichtete Struktur durch Laserstrukturierung in die erste und/oder zweite Flächenelektrode eingebracht. Der Laserstrahl kann dabei durch die Scheibe und/oder etwaige Trägerfolien des Funktionselementes hindurch auf die erste und/oder zweite Flächenelektrode fokussiert werden.
Die Erfindung erstreckt sich weiterhin auf die Verwendung einer wie vorstehend beschriebenen Scheibe oder einer entsprechenden Isolierverglasung als Verglasung mit niedriger Transmissionsdämpfung für hochfrequente elektromagnetische Strahlung, in einer Fahrzeugkarosserie oder einer Fahrzeugtür eines Fortbewegungsmittels zu Lande, zu Wasser oder in der Luft, bevorzugt als Windschutzscheibe, in Gebäuden als Teil einer Außenfassade oder eines Gebäudefensters.
Die Erfindung wird nachfolgend anhand einer Zeichnung und eines Beispiels näher erläutert. Die Zeichnung ist nicht vollständig maßstabsgetreu. Die Erfindung wird durch die Zeichnung in keiner Weise eingeschränkt. Es zeigen:
Figur 1 a eine schematische Darstellung einer erfindungsgemäßen Scheibe in einer Draufsicht,
Figur 1 b einen Querschnitt der erfindungsgemäßen Scheibe gemäß Figur 1a entlang der Schnittlinie A-A‘,
Figur 2 eine schematische Darstellung eines weiteren Ausführungsbeispiels einer erfindungsgemäßen Scheibe in einer Draufsicht,
Figur 3 eine schematische Darstellung eines weiteren Ausführungsbeispiels einer erfindungsgemäßen Scheibe in einer Draufsicht,
Figur 4 eine schematische Darstellung eines weiteren Ausführungsbeispiels einer erfindungsgemäßen Scheibe in einer Draufsicht, Figur 5 eine schematische Darstellung eines weiteren Ausführungsbeispiels einer erfindungsgemäßen Scheibe in einer Draufsicht,
Figur 6 eine alternative Ausführungsform einer erfindungsgemäßen Scheibe innerhalb eines vergrößerten Ausschnitts Z gemäß Figur 5,
Figur 7 eine alternative Ausführungsform einer erfindungsgemäßen Scheibe innerhalb eines vergrößerten Ausschnitts Z gemäß Figur 5,
Figur 8 eine alternative Ausführungsform einer erfindungsgemäßen Scheibe innerhalb eines vergrößerten Ausschnitts Z gemäß Figur 5,
Figur 9 eine alternative Ausführungsform einer erfindungsgemäßen Scheibe innerhalb eines vergrößerten Ausschnitts Z gemäß Figur 5,
Figur 10 eine schematische Darstellung eines weiteren Ausführungsbeispiels einer erfindungsgemäßen Scheibe in einer Draufsicht,
Figur 11 eine schematische Darstellung eines weiteren Ausführungsbeispiels einer erfindungsgemäßen Scheibe in einer Draufsicht und
Figur 12 eine erfindungsgemäße Isolierverglasung umfassend eine erfindungsgemäße Scheibe.
Figur 1a zeigt eine schematische Darstellung einer erfindungsgemäßen Scheibe 10 in Draufsicht. Figur 1 b zeigt einen Querschnitt dieser Scheibe entlang der Schnittlinie AA‘. Die Scheibe 10 umfasst eine erste Scheibe 1.1 , auf deren erster Seite I ein Funktionselement 2 flächig angeordnet ist. Das Funktionselement 2 umfasst eine elektrochrome Schicht als aktive Schicht 4, die flächig zwischen einer ersten Flächenelektrode 3.1 und einer zweiten Flächenelektrode 3.2 angeordnet ist, wobei die Flächenelektroden 3.1 , 3.2 in unmittelbarem Kontakt zur aktiven Schicht 4 stehen. Die erste Flächenelektrode 3.1 und die zweite Flächenelektrode 3.2 sind jeweils auf einer Trägerfolie 12 aufgebracht. Das Funktionselement 2 ist mittels einer thermoplastischen Verbundfolie 9 über die der Flächenelektrode 3.1 abgewandte Oberfläche der Trägerfolie 12 an der ersten Scheibe 1.1 angebunden. Alternativ kann die der ersten Scheibe 1.1 nächstliegende erste Flächenelektrode 3.1 auch unmittelbar auf der ersten Scheibe 1.1 aufgebracht werden, wobei auf die thermoplastische Verbundfolie 9 und die Trägerfolie 12 der ersten Flächenelektrode 3.1 verzichtet werden kann. Im Randbereich R der Scheibe 10, entlang zweier sich gegenüberliegender Abschnitte der umlaufenden Kante K sind ein erster Sammelleiter 5.1 und ein zweiter Sammelleiter 5.1 angebracht, wobei der erste Sammelleiter 5.1 die erste Flächenelektrode 3.1 und der zweite Sammelleiter
5.2 die zweite Flächenelektrode 3.2 elektrisch leitend kontaktiert. Durch Anlegen einer elektrischen Spannung über die Sammelleiter 5.1 , 5.2 an den Flächenelektroden 3.1 , 3.2 wird der Schaltvorgang der aktiven Schicht 4 induziert. Im Randbereich R sind jeweils benachbart zum ersten Sammelleiter 5.1 und zum zweiten Sammelleiter 5.2 randständige Strukturen 6 jeweils in die erste Flächenelektrode 3.1 und die zweite Flächenelektrode 3.2 eingebracht. Die randständigen Strukturen 6 werden durch entschichtete linineförmige Bereiche 7 gebildet, die sich von dem nächstliegenden Sammelleiter 5.1 , 5.2 ausgehend in Richtung des jeweils gegenüberliegenden Sammelleiters 5.1 , 5.2 erstrecken. Die entschichteten linienförmigen Bereiche 7 weisen in Anhängigkeit von der Höhe der Scheibe eine Länge von etwa 5 % bis 30 % des Abstands zwischen gegenüberliegenden Sammelleitern auf und haben einen Abstand von 2,0 mm zum jeweils benachbarten entschichteten linienförmigen Bereich 7. Entlang der entschichteten linienförmigen Bereiche 7 ist kein Material der Flächenelektroden 3.1 ,
3.2 vorhanden und dieses wurde entfernt oder zersetzt, beispielsweise durch Laserstrukturierung. Durch die randständige Struktur 6 werden die ansonsten für hochfrequente elektromagnetische Strahlung undurchlässigen Flächenelektroden 3.1 ,
3.2 durchlässig. Die randständigen Strukturen 6 werden beispielsweise durch Laserstrukturierung entschichtet und haben nur eine sehr geringe Linienbreite von beispielsweise 0, 1 mm. Die Durchsicht durch die erfindungsgemäße Scheibe 10 ist nicht wesentlich beeinträchtigt und die entschichteten Strukturen 6 sind kaum erkennbar. Zwischen benachbarten entschichteten linienförmigen Bereichen 7 werden Strompfade ausgebildet, entlang derer ein Stromfluss von den Sammelleitern 5.1 , 5.2 über die dem Sammelleiter zugehörige Flächenelektrode 3.1 , 3.2 in Richtung des gegenüberliegenden Sammelleiters erfolgt. Die randständigen Strukturen 6 schließen keine geschlossenen Flächen der Flächenelektroden 3.1 , 3.2 ein und die Schaltbarkeit des Funktionselementes 2 wird nicht beeinflusst.
Figur 2 zeigt eine weitere Ausführungsform einer erfindungsgemäßen Scheibe 10. Die Scheibe 10 entspricht im Wesentlichen der Scheibe 10 gemäß Figur 1 a, wobei im Unterschied dazu die randständigen Strukturen 6 aus wellenförmigen entschichteten linienförmigen Bereichen 7 gebildet sind. Diese weisen eine sinusförmige Gestalt auf. Dadurch wird die Transmission elektromagnetischer Strahlung verbessert, deren Feldvektor Komponenten parallel zur Vorzugsrichtung der linienförmigen Bereiche 7 aufweist.
Figur 3 zeigt eine weitere Ausführungsform einer erfindungsgemäßen Scheibe 10. Die Scheibe 10 entspricht im Wesentlichen der Scheibe 10 gemäß Figur 1 a, wobei im Unterschied dazu die randständigen Strukturen 6 weitere entschichtete linienförmige Bereiche 7 aufweisen, die parallel zum nächstliegenden Sammelleiter 5.1 , 5.2 verlaufen. Diese parallel zum Sammelleiter 5.1 , 5.2 verlaufenden linienförmigen Bereiche 7 bilden mit den in Richtung des gegenüberliegenden Sammelleiters 5.1 , 5.2 verlaufenden linienförmigen Bereichen 7 eine kreuzförmige Anordnung. An den Enden der das Kreuz ausbildenden Linien befinden sich weitere entschichtete linienförmige Bereiche 7, die jeweils senkrecht zur der Linie der kreuzförmigen Anordnung verlaufen, an deren Ende sie angesetzt sind. Die linienförmigen Bereiche, die gemeinsam eine kreuzförmige Anordnung aufweisen, haben eine Länge von 25 mm, während die endständigen Abschnitte der entschichteten linienförmigen Bereiche 7 eine Länge von 19 mm aufweisen. Somit bilden die kreuzförmigen Anordnungen keine geschlossenen Flächen aus. Der Abstand benachbarter kreuzförmiger Anordnungen beträgt 2 mm. Die randständigen Strukturen 6 der Figur 3 weisen eine gute Transmission elektromagnetischer Strahlung verschiedener Frequenzen auf, wobei das Schaltverhalten des Funktionselementes 2 nur geringfügig beeinträchtigt wird.
Figur 4 zeigt eine weitere Ausführungsform einer erfindungsgemäßen Scheibe 10. Die Scheibe 10 entspricht im Wesentlichen der Scheibe 10 gemäß Figur 1 a, wobei im Unterschied dazu die linienförmigen entschichteten Bereiche 7 in einem Winkel von 45° zum nächstliegenden Sammelleiter 5.1 , 5.2 verlaufen. Dabei sind an jedem der Sammelleiter 5.1 , 5.2 jeweils zwei Gruppen von entschichteten linienförmigen Bereichen 7 angebracht, wobei die linienförmigen Bereiche 7 einer Gruppe jeweils parallel zueinander verlaufen. Die linienförmigen Bereiche 7 zweier unterschiedlicher Gruppen stehen in einem Winkel von 90° zueinander, unterscheiden sich also hinsichtlich ihrer Ausrichtung zum Sammelleiter im Vorzeichen des Winkelbetrags 45°. Die verschiedenen Ausrichtungen der beiden Gruppen von linienförmigen Bereichen 7 bewirken eine verbesserte Transmission elektromagnetischer Strahlung verschiedener Feldvektoren.
Figur 5 zeigt eine weitere Ausführungsform einer erfindungsgemäßen Scheibe 10. Die Scheibe 10 entspricht im Wesentlichen der Scheibe 10 gemäß Figur 4, wobei im Unterschied dazu die linienförmigen entschichteten Bereiche 7 der randständigen Struktur 6 in einem Winkel von 25° zum nächstliegenden Sammelleiter 5.1 , 5.2 verlaufen. Zusätzlich dazu ist eine mittige Struktur 8 in die erste Flächenelektrode 3.1 und die zweite Flächenelektrode 3.2 eingebracht. Die mittige Struktur 8 umfasst linienförmige Bereiche 7, die senkrecht zu den Sammelleitern 5.1 , 5.2 verlaufen und die randständigen Strukturen 6 miteinander verbinden. Die mittige Struktur 8 kann dabei unmittelbar an den entschichteten Bereichen 7 der randständigen Struktur 6 ansetzen oder auch einen geringen Abstand zur randständigen Struktur 6 einnehmen. Dabei werden Strompfade zwischen den randständigen Strukturen 6 benachbart zum ersten Sammelleiter 5.1 und den randständigen Strukturen 6 benachbart zum zweiten Sammelleiter 5.2 ausgebildet, so dass das Schaltverhalten des Funktionselementes kaum beeinflusst wird. Gleichzeitig kann über die mittige Struktur auch eine Transmission elektromagnetischer Strahlung im Durchsichtbereich der Scheibe 10 stattfinden.
Figur 6 zeigt eine alternative Ausführungsform einer erfindungsgemäßen Scheibe 10 innerhalb eines vergrößerten Ausschnitts Z gemäß Figur 5. Im Unterschied zu der in Figur 5 beschriebenen Scheibe, weist die Scheibe 10 der Figur 6 einen ersten Sammelleiter 5.1 auf, der zwei benachbarte, im rechten Winkel zueinander angeordnete, Kantenabschnitte der umlaufenden Kante K bedeckt. Der zweite Sammelleiter 5.2 (nicht gezeigt) verläuft dabei ebenfalls an zwei benachbarten Kantenabschnitten, die denen des Sammelleiters 5.1 gegenüberliegen. In beiden Kantenabschnitten nehmen die entschichteten linienförmigen Bereiche 7 der randständigen Struktur 6 einen Winkel von 90° zum nächstliegenden Abschnitt des benachbarten Sammelleiters 5.1 ein, wobei im Eckbereich des Sammelleiters 5.1 ein schrittweiser Übergang zwischen beiden Orientierungen der entschichteten linienförmigen Bereiche 7 erfolgt. Die randständige Struktur 6 benachbart zum zweiten Sammelleiter 5.2 (nicht gezeigt) ist analog dazu aufgebaut. Aufgrund der verschiedensten Ausrichtungen der entschichten linienförmigen Bereiche 7 ergibt sich eine vorteilhaft hohe Transmission elektromagnetischer Strahlung. Optional kann auch in diesem Fall eine mittige Struktur vorgesehen werden, beispielsweise in Form linienförmiger Bereiche, die zwischen den randständigen Strukturen 6 des ersten Sammelleiters 5.1 und des zweiten Sammelleiters 5.2 verlaufen.
Figur 7 zeigt eine weitere alternative Ausführungsform einer erfindungsgemäßen Scheibe innerhalb eines vergrößerten Ausschnitts Z gemäß Figur 5. Die Ausführungsform der Figur 7 entspricht im Wesentlichen der Figur 6, wobei im Unterschied dazu ein langsamer schrittweiser Übergang von einer Anordnung der entschichteten linienförmigen Bereiche 7 in einem Winkel von 90° zum nächstliegenden Sammelleiterabschnitt hin zu einer Orientierung im Winkel von 45° erfolgt. Ein Winkel von 90° wird dabei an den Kantenmitten eingenommen, während in den Eckbereichen ein Winkel von 45° erreicht wird. Die Länge der entschichteten linienförmigen Bereiche bleibt dabei im Wesentlichen konstant um die Prozesszeit der Laserstrukturierung nicht zu erhöhen. Die in Figur 7 erreichte höhere Diversität der Winkel linienförmiger Bereiche ist vorteilhaft hinsichtlich der Transmission verschiedener Feldvektoren der elektromagnetischen Strahlung.
Figur 8 zeigt eine weitere alternative Ausführungsform einer erfindungsgemäßen Scheibe innerhalb eines vergrößerten Ausschnitts Z gemäß Figur 5, wobei diese Ausführungsform im Wesentlichen der Ausgestaltung der Figur 7 entspricht. Im Unterschied dazu nimmt die Länge der entschichteten linienförmigen Bereiche 7 von der Kantenmitte zur Ecke der Scheibe 10 zu. Die auf konstanter Höhe befindliche Kante der randständigen Struktur 6 kann als optisch ansprechender empfunden werden.
Figur 9 zeigt eine weitere alternative Ausführungsform einer erfindungsgemäßen Scheibe innerhalb eines vergrößerten Ausschnitts Z gemäß Figur 5, wobei die wesentlichen Merkmale der Ausgestaltung der Figur 8 entsprechen. Im Unterschied dazu umfassen die entschichteten linienförmigen Bereiche 7 gemäß Figur 9 Linien unterschiedlicher Länge, die alternierend zueinander angeordnet sind. Dadurch liegt im Bereich benachbart zum Sammelleiter 5.1 eine größere Liniendichte vor als an der der Durchsichtfläche benachbarten Kante der randständigen Struktur. Im Bereich höherer Liniendichte ist die Transmission höherer Frequenzen bevorzugt im Vergleich zu einer verbesserten Transmission niedrigerer Frequenzen im Bereich der randständigen Struktur mit geringerer Liniendichte. Figur 10 zeigt eine schematische Darstellung eines weiteren Ausführungsbeispiels einer erfindungsgemäßen Scheibe in einer Draufsicht. Die Scheibe 10 der Figur 10 entspricht im Wesentlichen der Scheibe 10 der Figur 1 a, wobei die Unterschiede im Folgenden erläutert werden. Die randständigen Strukturen 6 werden durch entschichtete linienförmige Bereiche 7 gebildet, die sich innerhalb der ersten und zweiten Flächenelektrode 3.1 , 3.2 von dem nächstliegenden Sammelleiter 5.1 , 5.2 ausgehend in Richtung des jeweils gegenüberliegenden Sammelleiters 5.1 , 5.2 erstrecken. Im vorliegenden Ausführungsbeispiel verlaufen die linienförmigen Bereiche 7 der randständigen Strukturen 6 im Wesentlichen senkrecht zu den Sammelleitern 5.1 , 5.2 und gehen unmittelbar in die mittige Struktur 8 über. Die mittige Struktur 8 und die randständige Struktur 6 bilden gemeinsam zueinander parallele entschichtete Linien 7 aus, die zwischen dem ersten Sammelleiter 5.1 und dem zweiten Sammelleiter 5.2 verlaufen. Dabei werden zwischen den entschichteten Linien 7 Strompfade ausgebildet. Die randständige Struktur 6 und die mittige Struktur 8 schließen keine geschlossenen Flächen der Flächenelektroden 3.1 , 3.2 ein und die Schaltbarkeit des Funktionselementes 2 wird nicht beeinflusst. Eine mittige Struktur 8 ist nicht im gesamten Bereich der Scheibe vorgesehen, insbesondere die Flächenmitte der Scheibe 10 wird ausgespart um eine verbesserte Durchsicht durch die Scheibe 10 zu gewährleisten. Ferner nehmen die Abstände benachbarter entschichteter Linien 7 innerhalb der randständigen Struktur 6 und der mittigen Struktur 8 von den Kantenabschnitten ohne Sammelleiter in Richtung der Scheibenmitte zu. Dadurch werden die entschichteten linienförmigen Bereiche 7 in Richtung des zentralen Durchsichtbereichs der Scheibe unauffälliger. Der Abstand benachbarter entschichteter Linien 7 liegt bei 2 mm bis 10 mm. Entlang der Abschnitte der umlaufenden Kante K, an denen keine Sammelleiter angebracht sind, befinden sich elektrisch isolierte Zonen 13. Diese elektrisch isolierten Zonen 13 sind als Gitterstruktur umfassend darin eingeschlossene Flächen der Flächenelektroden 3.1 und 3.2 realisiert gehören nicht zum schaltbaren Bereich des Funktionselementes 2. Solche geschlossenen Flächen können erfindungsgemäß nicht als randständige Struktur entlang der Sammelleiter angebracht sein und auch nicht in der mittigen Struktur gebildet werden. Lediglich an den Kantenabschnitten ohne Sammelleiter können derartige Flächenbereiche vom schaltbaren Funktionselement 2 ausgenommen werden ohne das Schaltverhalten des restlichen Funktionselementes zu beeinflussen. Die Ausführungsform der Figur 10 ist besonders vorteilhaft um eine gute Transmission hochfrequenter elektromagnetischer Strahlung zu erreichen bei gutem Schaltverhalten des Funktionselementes und gutem optischen Erscheinungsbild zu gewährleisten.
Figur 11 zeigt eine schematische Darstellung eines weiteren Ausführungsbeispiels einer erfindungsgemäßen Scheibe in einer Draufsicht, wobei diese Ausführungsform im Wesentlichen der in Figur 10 beschriebenen entspricht. Im Unterschied dazu gehen nicht sämtliche entschichteten linienförmigen Bereiche 7 der randständigen Struktur 6 in linienförmige entschichtete Bereiche 7 der mittigen Struktur 8 über. Im Bereich des zentralen Durchsichtbereichs der Scheibe 10 ist keine mittige Struktur 8 vorhanden, jedoch eine randständige Struktur 6. Der Abstand benachbarter entschichteter linienförmiger Bereiche 7 der randständigen Struktur 6 und der mittigen Struktur 8 beträgt 2 mm. Auch diese Ausführungsform weist eine besonders gute Transmission hochfrequenter elektromagnetischer Strahlung bei gutem Schaltverhalten des Funktionselementes und gutem optischen Erscheinungsbild auf.
Figur 12 zeigt eine erfindungsgemäße Isolierverglasung 20 umfassend eine erfindungsgemäße Scheibe 10. Ein elektrochromes Funktionselement 2 auf der ersten Scheibe 1.1 angebracht, eine elektrisch leitfähige Beschichtung 11 ist auf einer zweiten Scheibe 1.2 aufgebracht. Die elektrisch leitfähige Beschichtung 11 ist infrarotreflektierend. Die erste Scheibe 1.1 ist an der dem Funktionselement 2 abgewandten Oberfläche mittels einer thermoplastischen Zwischenschicht 9 mit einer dritten Scheibe 1.3 zur Scheibe 10 in Form einer Verbundscheibe zusammengesetzt. Die Scheibe 10 und die zweite Scheibe 1.2 sind über den Abstandhalter 21 zur Isolierverglasung 20 verbunden. Zwischen der ersten Scheibe 1.1 und der zweiten Scheibe 1 .2 ist über ein Dichtmittel 26 umlaufend der Abstandhalter 21 angebracht. Das Dichtmittel 26 verbindet dabei die Scheibenkontaktflächen 22.1 und 22.2 des Abstandhalters 21 mit den Scheiben 1.1 und 1.2. Der Abstandhalter 21 ist als polymerer Grundkörper mit einer Hohlkammer 29 ausgebildet. Auf der Außenfläche 23 des Abstandhalters 21 ist eine gas- und wasserdichte Barrierefolie aufgebracht (nicht gezeigt). Die Hohlkammer 29 enthält ein Trockenmittel 28, das über Öffnungen in der Verglasungsinnenraumfläche 24 Restfeuchte aus dem Verglasungsinnenraum 25 aufnehmen kann. Der an die Verglasungsinnenraumfläche 24 des Abstandhalters 21 angrenzende Verglasungsinnenraum 25 wird als der von den Scheiben 1.1 , 1.2 und dem Abstandhalter 21 begrenzte Raum definiert. Der an die Außenfläche 23 des Abstandhalters 21 angrenzende äußere Scheibenzwischenraum ist ein streifenförmiger umlaufender Abschnitt der Verglasung, der von je einer Seite von den beiden Scheiben 1.1 , 1.2 und auf einer weiteren Seite von dem Abstandhalter 21 begrenzt wird und dessen vierte Kante offen ist. Der Verglasungsinnenraum 25 ist mit Argon gefüllt. Zwischen jeweils einer Scheibenkontaktfläche 22.1 bzw. 22.2 und der benachbarten Scheibe 1.1 bzw. 1.2 ist ein Dichtmittel 26 eingebracht, das den Spalt zwischen Scheibe 1.1 , 1.2 und Abstandhalter 21 abdichtet. Das Dichtmittel 26 ist Polyisobutylen. Auf der Außenfläche 23 ist eine äußere Versiegelung 27 im äußeren Scheibenzwischenraum angebracht, die der Verklebung der ersten Scheibe 1.1 und der zweiten Scheibe 1.2 dient. Die äußere Abdichtung 27 besteht aus Silikon. Die äußere Abdichtung 27 schließt bündig mit den Scheibenkanten der ersten Scheibe 1.1 und der zweiten Scheibe 1.2 ab. Die zweite Scheibe 1.2 hat eine Dicke von 4,0 mm und weist an der zum Verglasungsinnenraum 25 gerichteten Scheibenoberfläche eine infrarotreflektierende Beschichtung 11 auf. Auf der zum Verglasungsinnenraum 25 gerichteten Scheibenoberfläche I der ersten Scheibe 1.1 ist das elektrochrome Funktionselement 2 aufgebracht, das mit einem ersten Sammelleiter 5.1 zur elektrischen Kontaktierung des Funktionselements 2 ausgestattet ist. Der zweite Sammelleiter ist in dieser Ansicht nicht gezeigt. Die Sammelleiter 5.1 , 5.2 wurden durch Aufdrucken einer leitfähigen Paste hergestellt und auf dem elektrochromen Funktionselement 2 elektrisch kontaktiert. Die leitfähige Paste, auch als Silberpaste bezeichnet, enthält Silber-Partikel und Glasfritten. Die Sammelleiter verlaufen auf der ersten Scheibe 1 .1 im Verglasungsinnenraum 25 und parallel zur Verglasungsinnenraumfläche 24 des Abstandhalters 21. Die erste Scheibe 1.1 weist eine Dicke von 2,0 mm auf und ist über eine thermoplastische Verbundfolie 9 aus 0,76 mm PVB mit einer dritten Scheibe 1.3 mit einer Dicke von 2,0 mm laminiert. Die Verbundscheibe Scheibe 10 aus erster Scheibe 1.1 und dritter Scheibe 1.3 stellt die Außenscheibe einer Gebäudeverglasung dar, während die zweite Scheibe 1.2 die Innenscheibe ist. Die erfindungsgemäße Isolierverglasung 20 verfügt über eine gute Wärmeableitung des elektrochromen Funktionselementes 2 und eine gute thermische Isolation des Gebäudeinnenraums durch die infrarotreflektierende Beschichtung 11. Das Funktionselement 2 ist gemäß Figur 5 ausgestaltet, wobei die erste und die zweite Flächenelektrode 3.1 , 3.2 mit randständigen Strukturen 6 und mittigen Strukturen 8 gemäß Figur 5 ausgestattet sind. Die als infrarotreflektierende Beschichtung wirkende elektrisch leitfähige Beschichtung 11 der zweiten Scheibe ist ebenfalls mit den in Figur 5 erläuterten randständigen und mittigen Strukturen 6, 8 versehen. Bezugszeichenliste
10 Scheibe
1.1 erste Scheibe
1.2 zweite Scheibe
1.3 dritte Scheibe
2 Funktionselement mit elektrisch schaltbaren optischen Eigenschaften
3 Flächenelektroden
3.1 erste Flächenelektrode
3.2 zweite Flächenelektrode
4 aktive Schicht
5 Sammelleiter
5.1 erster Sammelleiter
5.2 zweiter Sammelleiter
6 randständige Struktur
7 linienförmige Bereiche
8 mittige Struktur
9 thermoplastische Zwischenschicht
11 elektrisch leitfähige Beschichtung
12 Trägerfolien
13 elektrisch isolierte Zonen
20 Isolierverglasung
21 Abstandhalter
22 Scheibenkontaktflächen 22.1 erste Scheibenkontaktfläche
22.2 zweite Scheibenkontaktfläche
23 Außenseite des Abstandhalters
24 Verglasungsinnenraumfläche des Abstandhalters
25 Verglasungsinnenraum
26 Dichtmittel
27 äußere Versiegelung
28 Trockenmittel
29 Hohlkammer
I erste Seite
II zweite Seite
K umlaufende Kante
R Randbereich

Claims

36
Patentansprüche Scheibe (10) mit Funktionselement (2) mit elektrisch schaltbaren optischen Eigenschaften, umfassend: mindestens eine erste Scheibe (1.1) mit einer ersten Seite (I), einer zweiten Seite (II) und einem Randbereich (R) angrenzend an eine umlaufende Kante (K), mindestens ein Funktionselement (2) mit elektrisch schaltbaren optischen Eigenschaften, das flächig auf der ersten Seite (I) der ersten Scheibe (1.1) angeordnet ist, mindestens umfassend flächig in dieser Reihenfolge übereinander angeordnet eine erste Flächenelektrode (3.1), eine aktive Schicht (4) und eine zweite Flächenelektrode (3.2), mindestens ein erster Sammelleiter (5.1), der die erste Flächenelektrode (3.1) elektrisch leitfähig kontaktiert und mindestens ein zweiter Sammelleiter (5.2), der die zweite Flächenelektrode (3.2) elektrisch leitfähig kontaktiert, mindestens eine randständige Struktur (6) im Randbereich (R), die durch entschichtete, linienförmige Bereiche (7) innerhalb der ersten Flächenelektrode (3.1) und/oder der zweiten Flächenelektrode (3.2) derart gebildet ist, dass sich die linienförmigen Bereiche (7) benachbart entlang des ersten Sammelleiters (5.1) und/oder zweiten Sammelleiter (5.2) befinden und sich von dort ausgehend in Richtung des gegenüberliegenden Abschnitts der umlaufenden Kante (K) erstrecken, wobei die randständige Struktur (6) keine elektrisch isolierten Zonen innerhalb der ersten Flächenelektrode (3.1) und der zweiten Flächenelektrode (3.2) aufweist. Scheibe (10) nach Anspruch 1 , wobei mindestens ein erster Sammelleiter (5.1) und mindestens ein zweiter Sammelleiter (5.2) an einander gegenüberliegenden Abschnitten der umlaufenden Kante (K) angeordnet sind. Scheibe (10) nach Anspruch 1 oder 2, wobei die entschichteten linienförmigen Bereiche (7) eine wellenförmige Gestalt oder im Wesentlichen wellenförmige Gestalt, bevorzugt einen zumindest abschnittsweise sinusförmigen Verlauf und/oder einen zumindest abschnittsweise zickzackförmigen Verlauf aufweisen. 37
4. Scheibe (10) nach Anspruch 1 oder 2, wobei die entschichteten linienförmigen Bereiche (7) der randständigen Struktur (6) einen geradlinigen Verlauf oder im Wesentlichen geradlinigen Verlauf aufweisen.
5. Scheibe (10) nach Anspruch 4, wobei die entschichteten linienförmigen Bereiche
(7) einen Winkel von 10° bis 50°, bevorzugt 20° bis 45°, besonders bevorzugt 25° bis 40° zum benachbarten ersten Sammelleiter (5.1) oder zweiten Sammelleiter (5.2) aufweisen.
6. Scheibe (10) nach einem der Ansprüche 1 bis 5, wobei die entschichteten linienförmigen Bereiche (7) der randständigen Struktur (6) eine in Richtung der umlaufenden Kante (K) erhöhte Liniendichte aufweisen.
7. Scheibe (10) nach einem der Ansprüche 1 bis 6, wobei die erste Flächenelektrode (3.1) und/oder die zweite Flächenelektrode (3.2) eine Gruppe von entschichteten linienförmigen Bereichen (7) aufweist, die parallel oder im Wesentlichen parallel zu linienförmigen Bereichen (7) der der gleichen Gruppe sind, wobei der Abstand benachbarter entschichteter Bereiche der gleichen Gruppe bevorzugt 1 ,0 mm bis 20,0 mm, besonders bevorzugt 1 ,0 mm bis 10,0 mm, insbesondere 2,0 mm bis 5,0 mm beträgt.
8. Scheibe (10) nach einem der Ansprüche 1 bis 7, wobei die erste Flächenelektrode
(3.1) und/oder die zweite Flächenelektrode (3.2) mindestens eine mittige Struktur
(8) aufweisen, die in Bereichen außerhalb des Randbereichs (R) zumindest teilweise eingebracht ist und wobei die mittige Struktur (8) keine elektrisch isolierten Zonen innerhalb der ersten Flächenelektrode (3.1) und der zweiten Flächenelektrode (3.2) aufweist.
9. Scheibe (10) nach Anspruch 8, wobei die mittige Struktur (8) entschichtete linienförmige Bereiche (7) aufweist, die sich bevorzugt innerhalb der ersten Flächenelektrode (3.1) von der randständigen Struktur (6) in Nachbarschaft des ersten Sammelleiters (5.1) ausgehend in Richtung des zweiten Sammelleiters
(5.2) erstrecken und/oder innerhalb der zweiten Flächenelektrode (3.2) von der randständigen Struktur (6) in Nachbarschaft des zweiten Sammelleiters (5.2) ausgehend in Richtung des ersten Sammelleiters (5.1) erstrecken.
10. Scheibe (10) nach einem der Ansprüche 1 bis 9, wobei entlang der Abschnitte der umlaufenden Kante (K), an denen keine Sammelleiter (5.1 , 5.2) angeordnet sind, elektrisch isolierte Zonen (13) im Randbereich (R) innerhalb der ersten Flächenelektrode (3.1) und/oder der zweiten Flächenelektrode (3.2) eingebracht sind.
11. Scheibe (10) nach einem der Ansprüche 1 bis 10, wobei das Funktionselement (2) ein elektrochromes Funktionselement, ein SPD-Element, ein PDLC-Element oder ein elektrolumineszentes Element ist.
12. Isolierverglasung (20) mindestens umfassend:
- eine Scheibe (10) nach einem der Ansprüche 1 bis 11 ,
- eine zweite Scheibe (1.2) mindestens umfassend eine elektrisch leitfähige Beschichtung (11),
- einen umlaufenden Abstandhalter (21), der die zweite Scheibe (1.2) mit der Scheibe (10) verbindet, wobei in der elektrisch leitfähigen Beschichtung (11) mindestens eine randständige Struktur (6) im Randbereich (R) eingebracht ist.
13. Verfahren zur Herstellung einer Scheibe (10) nach einem der Ansprüche 1 bis 11 , wobei mindestens: a. eine erste Scheibe (10) mit einem Funktionselement (2) mit elektrisch schaltbaren optischen Eigenschaften bereitgestellt wird, und b. mindestens eine randständige Struktur (6) umfassend entschichtete, linienförmige Bereiche (7) innerhalb der ersten Flächenelektrode (3.1) und/oder der zweiten Flächenelektrode (3.2) derart gebildet wird, dass sich die linienförmigen Bereiche (7) benachbart zum ersten Sammelleiter (5.1) und/oder zweiten Sammelleiter (5.2) befinden und sich von dort ausgehend in Richtung des gegenüberliegenden Abschnitts der umlaufenden Kante (K) erstrecken, wobei die randständige Struktur (6) keine elektrisch isolierten Zonen innerhalb der ersten Flächenelektrode (3.1) und der zweiten Flächenelektrode (3.2) aufweist. Verfahren zur Herstellung einer Scheibe (10) nach Anspruch 12, wobei die randständige Struktur (6) durch Laserstrukturierung eingebracht wird. Verwendung einer Scheibe (10) nach einem der Ansprüche 1 bis 11 oder einer Isolierverglasung (20) nach Anspruch 12 als Verglasung mit niedriger
Transmissionsdämpfung für hochfrequente elektromagnetische Strahlung, in einer Fahrzeugkarosserie oder einer Fahrzeugtür eines Fortbewegungsmittels zu Lande, zu Wasser oder in der Luft, bevorzugt als Windschutzscheibe, in Gebäuden als Teil einer Außenfassade oder eines Gebäudefensters.
PCT/EP2021/072767 2020-09-18 2021-08-17 Scheibe mit funktionselement mit elektrisch schaltbaren optischen eigenschaften und muster für hochfrequenz-transmission WO2022058109A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023512179A JP2023538377A (ja) 2020-09-18 2021-08-17 電気的に制御可能な光学特性を有する機能素子と高周波数透過のための型とを含むペイン
EP21763061.5A EP4214049A1 (de) 2020-09-18 2021-08-17 Scheibe mit funktionselement mit elektrisch schaltbaren optischen eigenschaften und muster für hochfrequenz-transmission
CN202180063877.3A CN116194654A (zh) 2020-09-18 2021-08-17 带有具有可电切换的光学性质的功能元件和用于高频传输的图案的玻璃板
US18/043,994 US20240027864A1 (en) 2020-09-18 2021-08-17 Pane with a functional element having electrically switchable optical properties and pattern for high-frequency transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20196837.7 2020-09-18
EP20196837 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022058109A1 true WO2022058109A1 (de) 2022-03-24

Family

ID=72561614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/072767 WO2022058109A1 (de) 2020-09-18 2021-08-17 Scheibe mit funktionselement mit elektrisch schaltbaren optischen eigenschaften und muster für hochfrequenz-transmission

Country Status (6)

Country Link
US (1) US20240027864A1 (de)
EP (1) EP4214049A1 (de)
JP (1) JP2023538377A (de)
CN (1) CN116194654A (de)
TW (1) TWI815164B (de)
WO (1) WO2022058109A1 (de)

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0378917A1 (de) 1988-12-16 1990-07-25 Nippon Sheet Glass Co., Ltd. Wärmereflektierende Verbundscheibe
DE9313394U1 (de) 1992-10-17 1993-10-28 Vegla Vereinigte Glaswerke Gmbh, 52066 Aachen Autoglasscheibe aus Verbundglas mit in der Zwischenschicht eingebetteten Drähten und einem Anschlußkabel
DE4235063A1 (de) 1992-10-17 1994-04-21 Ver Glaswerke Gmbh Autoglasscheibe aus Verbundglas mit in der Zwischenschicht eingebetteten Drähten und einem Anschlußkabel
DE19508042A1 (de) 1994-03-07 1995-10-26 Nippon Sheet Glass Co Ltd Für elektrische Strahlung durchlässige und wärmereflektierende Beschichtung und zugeordneter Herstellungsprozeß
EP0717459A1 (de) 1994-12-08 1996-06-19 Robert Bosch Gmbh Metallisierte Glasscheibe
DE19817712C1 (de) 1998-04-21 2000-02-03 Sekurit Saint Gobain Deutsch Transparente Platte, insbesondere Glasscheibe mit einer Beschichtung und einem Strahlungsfenster
DE19927683C1 (de) 1999-06-17 2001-01-25 Sekurit Saint Gobain Deutsch Sonnen- und Wärmestrahlen reflektierende Verbundglasscheibe
EP0876608B1 (de) 1995-11-27 2002-04-17 Fuhr, Günter Verfahren und vorrichtung zur erzeugung von resonanzerscheinungen in partikelsuspensionen
US20030080909A1 (en) 2001-10-25 2003-05-01 Voeltzel Charles S. Coated substrate having a frequency selective surface
US20040113860A1 (en) 2002-12-04 2004-06-17 The Ohio State University Radio transmission region in metallic panel
US20040227462A1 (en) 2003-05-16 2004-11-18 Tetsuya Utsumi Light-emitting apparatus and method for forming the same
EP1605729A2 (de) 2004-04-15 2005-12-14 Pilkington Plc Elektrische beheizte Scheibe.
DE202004019286U1 (de) 2004-12-14 2006-04-20 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Flachleiter-Anschlusselement für Fensterscheiben
EP0912455B1 (de) 1996-06-21 2006-05-17 Cardinal CG Company Hitzebeständige transparente beschichtete glasgegenstand
WO2007101964A1 (fr) 2006-03-06 2007-09-13 Saint-Gobain Glass France Substrat muni d'un empilement a proprietes thermiques
EP1218307B1 (de) 1999-09-23 2008-07-02 Saint-Gobain Glass France Mit einem auf sonnenstrahlung wirkenden dünnschichtaufbau versehene verglasung
EP1917222B1 (de) 2005-08-23 2009-03-11 Saint-Gobain Glass France Dünne low-e-beschichtungssysteme mit streuschutzzwischenschichten
DE102008026339A1 (de) 2008-05-31 2009-12-03 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Elektrisch schaltbares Sichtschutzfenster
EP2139049A1 (de) 2008-06-25 2009-12-30 Schneeberger Holding AG Vorrichtung zur Strukturierung eines Solarmoduls
WO2010043598A1 (de) 2008-10-15 2010-04-22 Saint-Gobain Glass France Transparenter gegenstand mit einem örtlich begrenzten, strukturierten, elektrisch beheizbaren, transparenten bereich, verfahren zu seiner herstellung und seine verwendung
EP2200097A1 (de) 2008-12-16 2010-06-23 Saint-Gobain Glass France S.A. Verfahren zur Herstellung einer Photovoltaikvorrichtung und System zur Strukturierung eines Objekts
DE102009006062A1 (de) 2009-01-24 2010-07-29 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Infrarotstrahlung abschirmendes, für sichtbares Licht transparentes Laminat mit einem für Infrarotstrahlung durchlässigen optischen Fenster, Verfahren zu seiner Herstellung und seiner Verwendung
WO2010112789A2 (fr) 2009-04-02 2010-10-07 Saint-Gobain Glass France Procede de fabrication d'un dispositif a diode electroluminescente organique avec structure a surface texturee et oled a structure a surface texturee obtenue par ce procede
WO2011033313A1 (en) 2009-09-18 2011-03-24 Pilkington Group Limited Laminated glazing
EP2586610A1 (de) 2011-10-27 2013-05-01 Saint-Gobain Glass France Scheibe mit Hochfrequenz-Transmission
WO2013104507A1 (de) 2012-01-13 2013-07-18 Saint-Gobain Glass France Abstandshalter für isolierverglasungen
WO2015091016A1 (de) 2013-12-16 2015-06-25 Saint-Gobain Glass France Beheizbare scheibe mit hochfrequenz-transmission
US20180307111A1 (en) 2017-04-20 2018-10-25 Cardinal Ig Company High performance privacy glazing structures
US20200056423A1 (en) 2018-08-17 2020-02-20 Cardinal Ig Company Privacy glazing structure with asymetrical pane offsets for electrical connection configurations

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0378917A1 (de) 1988-12-16 1990-07-25 Nippon Sheet Glass Co., Ltd. Wärmereflektierende Verbundscheibe
DE9313394U1 (de) 1992-10-17 1993-10-28 Vegla Vereinigte Glaswerke Gmbh, 52066 Aachen Autoglasscheibe aus Verbundglas mit in der Zwischenschicht eingebetteten Drähten und einem Anschlußkabel
DE4235063A1 (de) 1992-10-17 1994-04-21 Ver Glaswerke Gmbh Autoglasscheibe aus Verbundglas mit in der Zwischenschicht eingebetteten Drähten und einem Anschlußkabel
DE19508042A1 (de) 1994-03-07 1995-10-26 Nippon Sheet Glass Co Ltd Für elektrische Strahlung durchlässige und wärmereflektierende Beschichtung und zugeordneter Herstellungsprozeß
EP0717459A1 (de) 1994-12-08 1996-06-19 Robert Bosch Gmbh Metallisierte Glasscheibe
EP0876608B1 (de) 1995-11-27 2002-04-17 Fuhr, Günter Verfahren und vorrichtung zur erzeugung von resonanzerscheinungen in partikelsuspensionen
EP0912455B1 (de) 1996-06-21 2006-05-17 Cardinal CG Company Hitzebeständige transparente beschichtete glasgegenstand
DE19817712C1 (de) 1998-04-21 2000-02-03 Sekurit Saint Gobain Deutsch Transparente Platte, insbesondere Glasscheibe mit einer Beschichtung und einem Strahlungsfenster
DE19927683C1 (de) 1999-06-17 2001-01-25 Sekurit Saint Gobain Deutsch Sonnen- und Wärmestrahlen reflektierende Verbundglasscheibe
EP1218307B1 (de) 1999-09-23 2008-07-02 Saint-Gobain Glass France Mit einem auf sonnenstrahlung wirkenden dünnschichtaufbau versehene verglasung
US20030080909A1 (en) 2001-10-25 2003-05-01 Voeltzel Charles S. Coated substrate having a frequency selective surface
US20040113860A1 (en) 2002-12-04 2004-06-17 The Ohio State University Radio transmission region in metallic panel
US20040227462A1 (en) 2003-05-16 2004-11-18 Tetsuya Utsumi Light-emitting apparatus and method for forming the same
EP1605729A2 (de) 2004-04-15 2005-12-14 Pilkington Plc Elektrische beheizte Scheibe.
DE202004019286U1 (de) 2004-12-14 2006-04-20 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Flachleiter-Anschlusselement für Fensterscheiben
EP1917222B1 (de) 2005-08-23 2009-03-11 Saint-Gobain Glass France Dünne low-e-beschichtungssysteme mit streuschutzzwischenschichten
WO2007101964A1 (fr) 2006-03-06 2007-09-13 Saint-Gobain Glass France Substrat muni d'un empilement a proprietes thermiques
DE102008026339A1 (de) 2008-05-31 2009-12-03 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Elektrisch schaltbares Sichtschutzfenster
EP2139049A1 (de) 2008-06-25 2009-12-30 Schneeberger Holding AG Vorrichtung zur Strukturierung eines Solarmoduls
WO2010043598A1 (de) 2008-10-15 2010-04-22 Saint-Gobain Glass France Transparenter gegenstand mit einem örtlich begrenzten, strukturierten, elektrisch beheizbaren, transparenten bereich, verfahren zu seiner herstellung und seine verwendung
EP2200097A1 (de) 2008-12-16 2010-06-23 Saint-Gobain Glass France S.A. Verfahren zur Herstellung einer Photovoltaikvorrichtung und System zur Strukturierung eines Objekts
DE102009006062A1 (de) 2009-01-24 2010-07-29 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Infrarotstrahlung abschirmendes, für sichtbares Licht transparentes Laminat mit einem für Infrarotstrahlung durchlässigen optischen Fenster, Verfahren zu seiner Herstellung und seiner Verwendung
WO2010112789A2 (fr) 2009-04-02 2010-10-07 Saint-Gobain Glass France Procede de fabrication d'un dispositif a diode electroluminescente organique avec structure a surface texturee et oled a structure a surface texturee obtenue par ce procede
WO2011033313A1 (en) 2009-09-18 2011-03-24 Pilkington Group Limited Laminated glazing
EP2586610A1 (de) 2011-10-27 2013-05-01 Saint-Gobain Glass France Scheibe mit Hochfrequenz-Transmission
WO2013104507A1 (de) 2012-01-13 2013-07-18 Saint-Gobain Glass France Abstandshalter für isolierverglasungen
WO2015091016A1 (de) 2013-12-16 2015-06-25 Saint-Gobain Glass France Beheizbare scheibe mit hochfrequenz-transmission
US20180307111A1 (en) 2017-04-20 2018-10-25 Cardinal Ig Company High performance privacy glazing structures
US20200056423A1 (en) 2018-08-17 2020-02-20 Cardinal Ig Company Privacy glazing structure with asymetrical pane offsets for electrical connection configurations

Also Published As

Publication number Publication date
US20240027864A1 (en) 2024-01-25
CN116194654A (zh) 2023-05-30
TWI815164B (zh) 2023-09-11
EP4214049A1 (de) 2023-07-26
TW202231468A (zh) 2022-08-16
JP2023538377A (ja) 2023-09-07

Similar Documents

Publication Publication Date Title
EP3818232B1 (de) Abdeckelement für sammelschiene
EP2936926B1 (de) Scheibe mit elektrischer heizschicht
EP3085199B1 (de) Beheizbare scheibe mit hochfrequenz-transmission
EP2906417B1 (de) Scheibe mit hochfrequenz-transmission
EP2452227B1 (de) Elektrochrome schichtstruktur und verfahren zu deren herstellung
EP2614680B1 (de) Transparente scheibe mit heizbeschichtung
EP2917782B1 (de) Mehrschichtfolie mit elektrisch schaltbaren optischen eigenschaften
EP3676661B1 (de) Isolierverglasung mit elektrischem anschlusselement
WO2020094380A1 (de) Isolierverglasung mit doppeltem abstandhalter
WO1999040481A1 (de) Elektrochromes display
EP2586610B1 (de) Scheibe mit Hochfrequenz-Transmission
EP2766774B1 (de) Elektrochrome isolierverglasung mit kapazitiver sensorschaltfläche
EP1049958A1 (de) Elektrochrome zelle
EP3702572A1 (de) Isolierverglasung mit elektrochromem funktionselement und infrarotreflektierender beschichtung
WO2022058109A1 (de) Scheibe mit funktionselement mit elektrisch schaltbaren optischen eigenschaften und muster für hochfrequenz-transmission
EP4217576A1 (de) Isolierverglasung mit elektrisch leitfähiger beschichtung und/oder elektrisch steuerbarem funktionselement
EP4298306A1 (de) Anschlusselement für isolierverglasungen mit elektrisch leitfähiger beschichtung und/oder elektrisch steuerbarem funktionselement
EP3702571A1 (de) Isolierverglasung mit elektrisch leitfähiger beschichtung und/oder elektrisch leitfähigem funktionselement
EP4370326A1 (de) Verbundscheibe mit opaken maskierungsbereich und teiltransparenter reflektierender beschichtung
WO2023072501A1 (de) Verbundscheibe mit heizwiderstandsschicht

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21763061

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512179

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18043994

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021763061

Country of ref document: EP

Effective date: 20230418