WO2022056814A1 - 用于高粘流体或气液两相流体混合的微混合器 - Google Patents

用于高粘流体或气液两相流体混合的微混合器 Download PDF

Info

Publication number
WO2022056814A1
WO2022056814A1 PCT/CN2020/116131 CN2020116131W WO2022056814A1 WO 2022056814 A1 WO2022056814 A1 WO 2022056814A1 CN 2020116131 W CN2020116131 W CN 2020116131W WO 2022056814 A1 WO2022056814 A1 WO 2022056814A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
micro
mixing
mixer
channel
Prior art date
Application number
PCT/CN2020/116131
Other languages
English (en)
French (fr)
Inventor
王凯
骆广生
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to PCT/CN2020/116131 priority Critical patent/WO2022056814A1/zh
Publication of WO2022056814A1 publication Critical patent/WO2022056814A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/47Mixing liquids with liquids; Emulsifying involving high-viscosity liquids, e.g. asphalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3141Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit with additional mixing means other than injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • B01F25/31425Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction with a plurality of perforations in the axial and circumferential direction covering the whole surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
    • B01F25/43161Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod composed of consecutive sections of flat pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431971Mounted on the wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers

Definitions

  • the invention belongs to the technical field of chemistry and chemical industry, and in particular relates to a micro-mixer for mixing high-viscosity fluids or gas-liquid two-phase fluids.
  • Heterogeneous mixing process is an important step in chemical reaction and separation.
  • passive mixing equipment represented by static mixers has the characteristics of easy operation and low energy consumption.
  • the internal structure of the traditional static mixing device is complex, and the flow resistance is large when dealing with the mixing problem of high-viscosity fluids, so its application is limited.
  • microstructured mixers micromixers
  • the advent of microstructured mixers (micromixers) enables efficient static mixing processes for highly viscous fluids.
  • the micro-structure mixer mainly adopts the principle of micro-scale mixing, and divides the fluid to be dispersed into micro-scale droplets and bubbles through a precisely designed micro-structure array. Due to the good primary dispersion effect, the structure of the device is greatly simplified and the volume of the device is greatly reduced.
  • micro-mixers include interdigitated micro-mixers, Corning heart-shaped mixers, segmentation-polymerization micro-mixers, and micro-sieve dispersing mixers.
  • these micro-mixers have achieved high-efficiency mixing of liquid-liquid and gas-liquid in many application processes, it is difficult for them to play a good role in high-viscosity fluids (>50mPa s).
  • the main reason lies in the internal Precise structural design and narrow flow channels limit the mixing effect.
  • the present invention proposes a micro-mixing device that uses micro-dispersion, droplets, and bubbles to re-break.
  • the fluid division structure is used to continuously cut the droplets and bubbles in the downstream, and the final high-efficiency dispersion is realized in the mixing process with the help of the strong shear force of the high-viscosity fluid. Due to the mixed use of dispersion and fragmentation, the flow resistance is not only greatly reduced, but also liquid-liquid and gas-liquid micro-dispersion systems with droplets and bubbles less than 1 mm in diameter can be obtained.
  • the purpose of the present invention is to provide a micro-mixer for mixing high-viscosity fluid or gas-liquid two-phase fluid, characterized in that the mixer comprises a symmetrical micro-dispersing part 1, a mixing channel 2, a fluid dividing channel 3, a fluid side
  • the symmetrical micro-dispersion components 1 are symmetrically arranged on both sides of the mixing channel 2, and are plate-type mechanical components containing triangular through holes.
  • the triangular through holes are arranged in a square array 10 or a staggered array 11, and the outer contour of the triangular through holes is an isosceles triangle. , the apex angle is towards the fluid flow direction in the mixing channel, the apex angle ranges from 30°-70°, and the triangle height is 0.5-1.5mm;
  • the fluid dividing channel 3 is arranged in the downstream of the mixing channel 2 and directly communicates with the mixing channel 2.
  • the interior is a multi-layer baffle 12 structure, the thickness of the baffle is 0.5-2mm, the length is 5-10mm, and the spacing is 1-3mm, which are alternately arranged,
  • the upper and lower sides of the baffle are connected with the walls of the fluid dividing channel.
  • the micro-dispersion part 1 is connected to the fluid side distribution chamber 4, and the fluid side distribution chamber 4 is further connected to the side feed pipe 7; the main feed pipe 8, the main distribution chamber 5, the mixing channel 2, the fluid dividing channel 3, the mixed product
  • the collection chamber 6 and the discharge pipeline 9 are sequentially connected in series.
  • the micro-mixer contains at least one mixing channel and one fluid dividing channel; the mixing channel 2 has a width of 1-10mm, and a height-to-width ratio of 0.2-1; the fluid-division channel 3 has a width of 2-20mm and a height-to-width ratio of 0.3 -1;
  • the maximum viscosity of the fluid introduced into the main feed pipe 8 inside the micro-mixer is ⁇ 500mPa ⁇ s, the liquid or gas to be dispersed enters the mixer from the side feed pipe 7, and the mixed product leaves from the outlet pipe 9.
  • the micro-mixer optimizes the fluid mechanics layout by regularizing the micro-structure, reduces the pressure drop of the mixing equipment, and is suitable for mixing systems with a viscosity of less than 500 mPa ⁇ s. Rapid and uniform mixing of highly viscous heterogeneous fluids without flow resistance.
  • Figure 1 is a schematic diagram of the structure of the micro-mixer.
  • Figure 2 is a schematic diagram of the structure of the micro-mixer components, wherein a is a schematic structural diagram of a symmetrical micro-dispersing component; b is a schematic structural diagram of a baffle.
  • 1-symmetric micro-dispersion part 2-mixing channel, 3-fluid dividing channel, 4-side distribution chamber, 5-main distribution chamber, 6-mixed product collection chamber, 7-side feeding pipeline, 8-main Infeed pipe, 9-outlet pipe, 10-square array, 11-staggered array, 12-baffle.
  • the present invention provides a micro-mixer for mixing high-viscosity fluids or gas-liquid two-phase fluids.
  • the present invention will be further described below through the accompanying drawings and examples.
  • Figure 1 shows the schematic diagram of the structure of the micro-mixer.
  • It includes a symmetrical micro-dispersion part 1, a mixing channel 2, a fluid dividing channel 3, a fluid side distribution chamber 4, a main distribution chamber 5, a mixed product collection chamber 6, a side feed pipe 7, a main feed pipe 8 and a discharge pipe 9.
  • the main feeding pipeline 8, the main distribution chamber 5, the mixing channel 2, the fluid dividing channel 3, the mixed product collecting chamber 6 and the discharging pipeline 9 are sequentially connected in series.
  • symmetrical micro-dispersion parts 1 are arranged symmetrically, the symmetrical micro-dispersion part 1 is connected to the fluid side distribution chamber 4, and the fluid-side distribution chamber 4 is further connected to the side feed pipe 7;
  • the plate-type mechanical component of the hole, the triangular through hole adopts a square array 10 or a staggered array 11 layout (as shown in a in Figure 2), the outer contour of the triangular through hole is an isosceles triangle, and the apex angle is towards the direction of fluid flow in the mixing channel. Range 30°-70°, triangle height 0.5-1.5mm;
  • the fluid dividing channel 3 is arranged downstream of the mixing channel 2 and directly communicates with the mixing channel 2.
  • the interior is a multi-layer baffle 12 structure (as shown in b in Figure 2), the thickness of the baffle is 0.5-2mm, the length is 5-10mm, and the spacing is 0.5-2mm. 1-3mm, alternately arranged, the upper and lower sides of the baffle are connected to the wall of the fluid dividing channel.
  • the micro-mixer uses the n-hexane solution of butyl rubber or the polyvinyl alcohol aqueous solution as the continuous-phase fluid, and water or air as the dispersed-phase fluid, and is mixed by the micro-mixer shown in FIG. Enter the main feed pipe 8, pump the dispersed phase fluid into the side feed pipe 7, the mixed product flows out from the discharge pipe 9, collect the mixed product and take a photo with a microscope, and count the obtained droplets and bubble diameters.
  • a n-hexane solution of butyl rubber (viscosity: 153 mPa ⁇ s) was used as the continuous phase, water was used as the dispersed phase, and the flow rate of the continuous phase was 0.5 L/h and the flow rate of the dispersed phase was 0.1 L/h.
  • the internal structure of the micro-mixer contains a mixing channel with a width of 1mm and a height of 1mm, and a fluid dividing channel with a width of 2mm and a height of 2mm: there are a group of 3x3 square layout triangular through holes with a height of 0.5mm and a vertex angle of 30° on both sides of the mixing channel;
  • the dividing channel contains a set of baffles with a thickness of 0.5mm, a length of 10mm and a spacing of 1.2mm.
  • the average diameter of the micro-droplets at the outlet of the mixer was 0.77 mm, and the average flow resistance of the mixer was 0.11 MPa.
  • a n-hexane solution of butyl rubber (viscosity: 153 mPa ⁇ s) was used as the continuous phase, water was used as the dispersed phase, the flow rate of the continuous phase was 1 L/h, and the flow rate of the dispersed phase was 0.4 L/h.
  • the internal structure of the micro-mixer contains 3 mixing channels with a width of 1mm and a height of 0.5mm, and a fluid dividing channel with a width of 4mm and a height of 2mm: a set of 3x3 square layout triangular through holes with a height of 0.5mm and a apex angle of 30° on both sides of the mixing channel ;
  • the dividing channel contains 3 sets of baffles with a thickness of 0.5mm, a length of 10mm and a spacing of 1mm.
  • the average diameter of the micro-droplets at the outlet of the mixer was 0.65 mm, and the average flow resistance of the mixer was 0.15 MPa.
  • n-hexane solution of butyl rubber (viscosity: 297 mPa ⁇ s) was used as the continuous phase, water was used as the dispersed phase, the flow rate of the continuous phase was 3 L/h, and the flow rate of the dispersed phase was 1 L/h.
  • the internal structure of the micro-mixer contains a mixing channel with a width of 10mm and a height of 2mm, and a fluid division channel with a width of 20mm and a height of 6mm: there are a group of 4x3 square layout triangular through holes with a height of 1mm and a apex angle of 48° on both sides of the mixing channel;
  • the channel contains 10 sets of baffles with a thickness of 1mm, a length of 5mm and a spacing of 3mm.
  • the average diameter of the micro-droplets at the outlet of the mixer was 0.39 mm, and the average flow resistance of the mixer was 0.21 MPa.
  • the internal structure of the micro-mixer contains 2 mixing channels with a width of 8mm and a height of 4mm, and a fluid dividing channel with a width of 20mm and a height of 6mm: there are 3 groups of 2/3 triangles with a height of 1.5mm and a apex angle of 70° on both sides of the mixing channel.
  • the dividing channel contains 5 sets of baffles with a thickness of 1.5mm and a length of 5mm with a spacing of 3mm.
  • the average diameter of the micro-bubble at the outlet of the mixer is 0.92 mm, and the average flow resistance of the mixer is 0.41 MPa.
  • the internal structure of the micro-mixer contains 2 mixing channels with a width of 10mm and a height of 5mm, and 2 fluid division channels with a width of 10mm and a height of 10mm: there are 2 groups of 2/3 triangle layout triangles with a height of 1.0mm and a apex angle of 70° on both sides of the mixing channel.
  • the dividing channel contains 5 sets of baffles with a thickness of 1.0mm and a length of 5mm and a spacing of 3mm.
  • the average diameter of the micro-bubble at the outlet of the mixer is 0.78mm, and the average flow resistance of the mixer is 0.36MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)

Abstract

一种用于高粘流体或气液两相流体混合的微混合器;通过内部混合通道(2)两侧对称布置的三角形微孔阵列形成液滴或气泡,再利用混合通道(2)下游布置的板式流体分割通道(3)对液滴和气泡进一步破碎,从而实现高效液液或气液混合。该微混合器针对高粘流体流动阻力大的特点,通过规整微结构优化流体力学布局,降低混合设备压降,适用于粘度<500mPa·s的混合体系。

Description

用于高粘流体或气液两相流体混合的微混合器 技术领域
本发明属化学化工技术领域,具体涉及一种用于高粘流体或气液两相流体混合的微混合器。
背景技术
非均相混合过程是化工反应和分离的重要步骤。在连续化的反应和分离***中,以静态混合器为代表的被动混合设备具有操作简易,能耗低等特点。但是传统的静态混合装置内部结构复杂,处理高粘度流体混合问题时流动阻力大,因而其应用受到限制。微结构混合器(微混合器)的出现使得针对高粘流体的高效静态混合过程得以实现。微结构混合器主要采用微尺度混合的原理,通过精密设计的微结构阵列将待分散流体分割成为微米级的液滴和气泡,由于一次分散效果好,因此设备结构大大简化,设备体积大幅缩小。
目前较为成熟的微混合器有交叉指状微混合器、康宁心形混合器、分割-聚合型微混合器、微筛孔分散混合器等类型。这些微混合器虽然在众多应用过程中已经实现液液、气液的高效混合,但是都难以针对高粘流体(>50mPa·s)发挥较好的使用效果,主要原因就在于这些微混合器内结构设计精密,流动通道狭小,限制了混合效果的发挥。为了能使微混合的基本原理实现高粘流体的混合,需要一方面保持微米级的分散和传递尺度,另一方面降低流体的流动阻力。基于此,本发明提出采用微分散与液滴、气泡再破碎共同作用的微混合设备,该设备不追求通过一次分散获得的微小液滴和气泡,因此可以简化微分散结构的设计降低压降,同时采用流体分割结构在下游不断对液滴、气泡进行切 割,借助高粘流体剪切力强的特点实现最终的高效分散于混合过程。由于分散和破碎作用的混合使用,使得流动阻力不仅大幅下降而且能够获得液滴和气泡直径小于1mm的液液、气液微分散体系。
发明内容
本发明的目的是提供一种用于高粘流体或气液两相流体混合的微混合器,其特征在于,该混合器包括对称微分散部件1、混合通道2、流体分割通道3、流体侧分布室4、主分布室5、混合产物收集室6、侧进料管道7、主进料管道8和出料管道9,具体特征为:
1)所述对称微分散部件1对称布置在混合通道2两侧,为含有三角形通孔的板式机械部件,三角形通孔采用方形阵列10或交错阵列11布局,三角形通孔外轮廓为等腰三角形,顶角朝混合通道内流体流动方向,顶角范围30°-70°,三角形高度0.5-1.5mm;
2)所述流体分割通道3布置在混合通道2下游与混合通道2直接连通,内部为多层挡板12结构,挡板厚度0.5-2mm,长度5-10mm,间距1-3mm,交替排列,挡板上下两侧与流体分割通道壁面连接。
3)所述微分散部件1连接流体侧分布室4,流体侧分布室4进一步连接侧进料管道7;主进料管道8、主分布室5、混合通道2、流体分割通道3、混合产物收集室6和出料管道9依次串联连接。
该微混合器中至少含有一个混合通道和一个流体分割通道;混合通道2宽度为1-10mm,高度与宽度比为0.2-1;流体分割通道3宽度为2-20mm,高度与宽度比为0.3-1;微混合器内部主进料管道8通入流体的最大粘度<500mPa ·s,待分散液体或气体由侧进料管道7进入混合器,混合产物由出口管道9离开。
本发明的有益效果为:所述微混合器针对高粘流体流动阻力大的特点,通过规整微结构优化流体力学布局,降低混合设备压降,适用于粘度<500mPa·s的混合体系,在低流动阻力的情况下实现高粘非均相流体的快速均匀混合。
附图说明
图1为微混合器的结构原理图。
图2为微混合器部件结构示意图,其中,a为对称微分散部件结构示意图;b为挡板结构示意图。
图中:1-对称微分散部件,2-混合通道,3-流体分割通道,4-侧分布室,5-主分布室,6-混合产物收集室、7-侧进料管道、8-主进料管道,9-出料管道,10-方形阵列,11-交错阵列,12-挡板。
具体实施方式
本发明提供一种用于高粘流体或气液两相流体混合的微混合器,下面通过附图和实施例对本发明进行进一步说明,
图1所示为微混合器的结构原理图。
包括对称微分散部件1、混合通道2、流体分割通道3、流体侧分布室4、主分布室5、混合产物收集室6、侧进料管道7、主进料管道8和出料管道9。其中,主进料管道8、主分布室5、混合通道2、流体分割通道3、混合产物收集室6和出料管道9依次串联连接。在混合通道2两侧,对称布置对称微分散部件1,对称微分散部件1连接流体侧分布室4,流体侧分布室4进一步连接侧进料管道7;该对称微分散部件1为含有三角形通孔的板式机械部件,三角形 通孔采用方形阵列10或交错阵列11布局(如图2中a所示),三角形通孔外轮廓为等腰三角形,顶角朝混合通道内流体流动方向,顶角范围30°-70°,三角形高度0.5-1.5mm;
所述流体分割通道3布置在混合通道2下游与混合通道2直接连通,内部为多层挡板12结构(如图2中b所示),挡板厚度0.5-2mm,长度5-10mm,间距1-3mm,交替排列,挡板上下两侧与流体分割通道壁面连接。
所述微混合器以丁基橡胶的正己烷溶液或者聚乙烯醇水溶液为连续相流体,水或空气为分散相流体,通过图1所示微混合器进行混合,具体过程为将连续相流体打入主进料管道8,将分散相流体打入侧进料管道7,混合产物从出料管道9流出,收集混合产物通过显微镜拍照,统计获得的液滴和气泡直径。
实施例1:
使用丁基橡胶的正己烷溶液(粘度153mPa·s)作为连续相,水作为分散相,连续相流量0.5L/h,分散相流量0.1L/h。微混合器内部结构中含有1个宽1mm高1mm的混合通道,1个宽2mm高2mm的流体分割通道:混合通道两侧含有1组高0.5mm顶角30°的3x3方形布局三角形通孔;分割通道内含1组厚0.5mm、长10mm、间距1.2mm的挡板。测量得到混合器出口微液滴平均直径为0.77mm,混合器平均流动阻力0.11MPa。
实施例2:
使用丁基橡胶的正己烷溶液(粘度153mPa·s)作为连续相,水作为分散相,连续相流量1L/h,分散相流量0.4L/h。微混合器内部结构中含有3个宽1mm高0.5mm的混合通道,1个宽4mm高2mm的流体分割通道:混合通道两侧含有1组高0.5mm顶角30°的3x3方形布局三角形通孔;分割通道内含 3组厚0.5mm、长10mm、间距1mm的挡板。测量得到混合器出口微液滴平均直径为0.65mm,混合器平均流动阻力0.15MPa。
实施例3:
使用丁基橡胶的正己烷溶液(粘度297mPa·s)作为连续相,水作为分散相,连续相流量3L/h,分散相流量1L/h。微混合器内部结构中含有1个宽10mm高2mm的混合通道,1个宽20mm高6mm的流体分割通道:混合通道两侧含有1组高1mm顶角48°的4x3方形布局三角形通孔;分割通道内含10组厚1mm、长5mm、间距3mm的挡板。测量得到混合器出口微液滴平均直径为0.39mm,混合器平均流动阻力0.21MPa。
实施例4:
使用聚乙烯醇的水溶液(粘度459mPa·s)作为连续相,空气作为分散相,连续相流量1.3L/h,分散相流量1.2L/h。微混合器内部结构为中含有2个宽8mm高4mm的混合通道,1个宽20mm高6mm的流体分割通道:混合通道两侧含有3组高1.5mm顶角70°的2/3三角形布局三角形通孔;分割通道内含5组厚1.5mm长5mm间距3mm的挡板。测量得到混合器出口微气泡平均直径为0.92mm,混合器平均流动阻力0.41MPa。
实施例5:
使用聚乙烯醇的水溶液(粘度459mPa·s)作为连续相,空气作为分散相,连续相流量2L/h,分散相流量1.2L/h。微混合器内部结构为中含有2个宽10mm高5mm的混合通道,2个宽10mm高10mm的流体分割通道:混合通道两侧含有2组高1.0mm顶角70°的2/3三角形布局三角形通孔;分割通道内含 5组厚1.0mm长5mm间距3mm的挡板。测量得到混合器出口微气泡平均直径为0.78mm,混合器平均流动阻力0.36MPa。

Claims (3)

  1. 一种用于高粘流体或气液两相流体混合的微混合器,其特征在于,该混合器包括对称微分散部件(1)、混合通道(2)、流体分割通道(3)、流体侧分布室(4)、主分布室(5)、混合产物收集室(6)、侧进料管道(7)、主进料管道(8)和出料管道(9),具体特征为:
    1)所述对称微分散部件(1)对称布置在混合通道(2)两侧,为含有三角形通孔的板式机械部件,三角形通孔采用方形阵列(10)或交错阵列(11)布局,三角形通孔外轮廓为等腰三角形,顶角朝混合通道内流体流动方向,顶角范围30°-70°,三角形高度0.5-1.5mm;
    2)所述流体分割通道(3)布置在混合通道(2)下游与混合通道(2)直接连通,内部为多层挡板(12)结构,所述挡板厚度0.5-2mm,长度5-10mm,间距1-3mm,交替排列,挡板上下两侧与流体分割通道壁面连接;
    3)所述对称微分散部件(1)连接流体侧分布室(4),流体侧分布室(4)进一步连接侧进料管道(7);主进料管道(8)、主分布室(5)、混合通道(2)、流体分割通道(3)、混合产物收集室(6)和出料管道(9)依次串联连接。
  2. 根据权利要求1所述的微混合器,其特征在于,所述微混合器中至少含有一个混合通道和一个流体分割通道;所述混合通道(2)宽度为1-10mm,高度与宽度比为0.2-1;所述流体分割通道(3)宽度为2-20mm,高度与宽度比为0.3-1。
  3. 根据权利要求1所述的微混合器,其特征在于,所述微混合器内部主进料管道(8)通入流体的最大粘度<500mPa·s,待分散液体或气体由侧进料管道(7)进入混合器,混合产物由出口管道(9)离开。
PCT/CN2020/116131 2020-09-18 2020-09-18 用于高粘流体或气液两相流体混合的微混合器 WO2022056814A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116131 WO2022056814A1 (zh) 2020-09-18 2020-09-18 用于高粘流体或气液两相流体混合的微混合器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116131 WO2022056814A1 (zh) 2020-09-18 2020-09-18 用于高粘流体或气液两相流体混合的微混合器

Publications (1)

Publication Number Publication Date
WO2022056814A1 true WO2022056814A1 (zh) 2022-03-24

Family

ID=80777355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116131 WO2022056814A1 (zh) 2020-09-18 2020-09-18 用于高粘流体或气液两相流体混合的微混合器

Country Status (1)

Country Link
WO (1) WO2022056814A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115608299A (zh) * 2022-10-24 2023-01-17 贵州大学 一种制备纳米碳酸钙的微反应设备及使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6550956B1 (en) * 1997-09-29 2003-04-22 National Research Council Of Canada Extensional flow mixer
EP0827765B1 (en) * 1996-08-27 2007-02-21 Nippon Shokubai Co., Ltd. Gas-liquid dispersion devices, gas-liquid contact apparatus and wastewater treatment systems
CN206276255U (zh) * 2016-11-03 2017-06-27 天津斯林力克密封科技有限公司 一种高效气液混溶设备
CN107551967A (zh) * 2017-08-11 2018-01-09 上海交通大学 用于微反应器的微通道装置
CN108273456A (zh) * 2018-03-29 2018-07-13 睦化(上海)流体工程有限公司 一种微孔涡流板式混合反应器及其应用
CN109261036A (zh) * 2018-10-09 2019-01-25 清华大学 一种用于高粘流体混合的微结构混合器
CN110201589A (zh) * 2019-05-10 2019-09-06 清华大学 一种在高粘流体内分散液滴或气泡的微混合器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827765B1 (en) * 1996-08-27 2007-02-21 Nippon Shokubai Co., Ltd. Gas-liquid dispersion devices, gas-liquid contact apparatus and wastewater treatment systems
US6550956B1 (en) * 1997-09-29 2003-04-22 National Research Council Of Canada Extensional flow mixer
CN206276255U (zh) * 2016-11-03 2017-06-27 天津斯林力克密封科技有限公司 一种高效气液混溶设备
CN107551967A (zh) * 2017-08-11 2018-01-09 上海交通大学 用于微反应器的微通道装置
CN108273456A (zh) * 2018-03-29 2018-07-13 睦化(上海)流体工程有限公司 一种微孔涡流板式混合反应器及其应用
CN109261036A (zh) * 2018-10-09 2019-01-25 清华大学 一种用于高粘流体混合的微结构混合器
CN110201589A (zh) * 2019-05-10 2019-09-06 清华大学 一种在高粘流体内分散液滴或气泡的微混合器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115608299A (zh) * 2022-10-24 2023-01-17 贵州大学 一种制备纳米碳酸钙的微反应设备及使用方法
CN115608299B (zh) * 2022-10-24 2024-04-12 贵州大学 一种制备纳米碳酸钙的微反应设备及使用方法

Similar Documents

Publication Publication Date Title
CN110201589B (zh) 一种在高粘流体内分散液滴或气泡的微混合器
KR101886944B1 (ko) 나노 버블 제조 장치
CN1302838C (zh) 混合流体的方法
CN105944584B (zh) 一种用于液-液混合乳化的静态混合器及其工作方法
CN109261036B (zh) 一种用于高粘流体混合的微结构混合器
US20060187748A1 (en) Methods and devices for mixing fluids
US7708453B2 (en) Device for creating hydrodynamic cavitation in fluids
CA2236460A1 (en) Method of producing dispersions and carrying out chemical reactions in the disperse phase
WO2022056814A1 (zh) 用于高粘流体或气液两相流体混合的微混合器
US9440201B2 (en) Device and method for gas dispersion
CN206730896U (zh) 一种高压均质机
CN109550418A (zh) 一种旋流型微气泡发生器及气液反应器
RU82580U1 (ru) Смесительное устройство для систем газ - жидкость
CN107551967B (zh) 用于微反应器的微通道装置
CN113041941A (zh) 一种列管式高压微分散混合器
CN106345367B (zh) 液滴分散装置
KR101864497B1 (ko) 나노버블 발생장치
KR20190074707A (ko) 나노버블발생장치
CN111921469A (zh) 一种“笔记本型”台阶式乳化或反应微装置模块
CN115253834B (zh) 一种高通量被动式旋流强化微混合器
RU2186614C2 (ru) Аппарат и способ осуществления взаимодействия фаз в системах газ-жидкость и жидкость-жидкость
CN216964194U (zh) 一种高效流体混合器
CN115254222B (zh) 基于非对称并行微通道制备单分散非牛顿流体液滴的方法
CN115228516B (zh) 用于调控多相体系中分散相尺寸分布的限域单元和方法
CN210473831U (zh) 一种高压均质混悬单元和***

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953672

Country of ref document: EP

Kind code of ref document: A1