WO2022056787A1 - 一种三电极电池及储能*** - Google Patents

一种三电极电池及储能*** Download PDF

Info

Publication number
WO2022056787A1
WO2022056787A1 PCT/CN2020/115976 CN2020115976W WO2022056787A1 WO 2022056787 A1 WO2022056787 A1 WO 2022056787A1 CN 2020115976 W CN2020115976 W CN 2020115976W WO 2022056787 A1 WO2022056787 A1 WO 2022056787A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
battery
positive
negative
negative electrode
Prior art date
Application number
PCT/CN2020/115976
Other languages
English (en)
French (fr)
Inventor
张业正
夏维洪
乐斌
张光辉
周伟
秦学
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to PCT/CN2020/115976 priority Critical patent/WO2022056787A1/zh
Priority to EP20953645.7A priority patent/EP4195356A1/en
Priority to CN202080093603.4A priority patent/CN114982040A/zh
Publication of WO2022056787A1 publication Critical patent/WO2022056787A1/zh
Priority to US18/177,137 priority patent/US20230207893A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, in particular to a three-electrode battery and an energy storage system.
  • a lithium-ion battery is a secondary battery that mainly relies on the movement of lithium ions between the positive and negative electrodes to work.
  • lithium ions are intercalated and deintercalated back and forth between the two electrodes; during charging, lithium ions are deintercalated from the positive electrode, intercalated into the negative electrode through the electrolyte, and the negative electrode is in a lithium-rich state; during discharge, the opposite is true.
  • Lithium-ion batteries are widely used in electronic terminal industry, new energy industry and energy storage industry due to their advantages of high energy density, high voltage platform, small size, long life, no memory effect, low self-discharge rate and environmental friendliness.
  • Lithium-ion batteries usually include a shell and a cell, the cell is located in the shell, the shell is filled with electrolyte, the cell includes a positive electrode sheet and a negative electrode sheet, the positive electrode sheet is connected with a positive electrode tab, and the negative electrode sheet is connected with a negative electrode tab.
  • the outer wall of the casing is provided with a positive pole and a negative pole, the positive pole is welded with the positive pole, and the negative pole is welded with the negative pole, so as to realize the connection with the charging circuit or the discharging circuit through the positive pole and the negative pole.
  • the present application provides a three-electrode battery and an energy storage system, which solves the problem that the existing lithium-ion battery has limitations in realizing fast charging of the lithium-ion battery because lithium precipitation on the surface of the negative electrode affects the safety and service life of the battery.
  • a first aspect of the embodiments of the present application provides a three-electrode battery, including a case, a cell, a reference electrode, and a battery management unit, wherein the cell and the reference electrode are disposed in the case;
  • the battery core is provided with a positive electrode tab and a negative electrode tab
  • the casing is provided with a positive electrode post and a negative electrode post
  • the positive electrode tab is connected to the positive electrode post
  • the negative electrode tab is connected to the Negative pole connection
  • the reference electrode includes a detection part and a reference electrode tab connected to the detection part, the detection part extends into the cell, the reference tab is located outside the cell, and the reference electrode is located outside the cell. Both the specific electrode tab and the negative electrode tab are connected to the battery management unit;
  • the battery management unit is used to collect the voltage between the reference electrode and the negative electrode of the battery cell to obtain the negative electrode potential of the battery cell, and control the charging current according to the negative electrode potential.
  • the reference electrode is located in the casing of the battery, and the battery casing is also provided with a battery cell, the detection part of the reference electrode is located in the battery core, and the reference electrode tab is located in the battery Outside the cell, the reference electrode tab and the negative tab of the cell are connected to the battery management unit.
  • the battery management unit can collect the voltage between the reference electrode and the negative electrode of the cell. Since the potential of the reference electrode is known, the battery The management unit can obtain the negative electrode potential of the cell according to the voltage information, and realize real-time monitoring of the negative electrode potential.
  • the battery management unit can also control the charging current of the battery according to the obtained negative electrode potential, so as to optimize and adjust the charging current in real time to improve
  • the charging rate improves the charging speed of the battery while preventing the lithium deposition problem in the negative electrode of the battery, realizes the fast charging of the battery, and improves the safety and service life of the battery.
  • obtaining the negative electrode potential of the battery cell can enrich the external characteristic parameters of the battery, help to establish a more accurate battery model, and improve the estimation and fault diagnosis accuracy of the battery state of charge, state of health, and power state of the battery. Improve battery safety.
  • the positive electrode tab is connected to the battery management unit, and the battery management unit is configured to collect data between the reference electrode and the negative electrode of the battery cell, as well as the battery cell The voltage between the negative electrode and the positive electrode is obtained to obtain the positive electrode potential of the cell.
  • the battery management unit can obtain the positive electrode potential of the battery cell, realize real-time monitoring of the positive electrode potential, further enrich the external characteristic parameters of the battery, improve the accuracy of the established battery model, and further improve the safety of the battery.
  • the battery cell includes a positive pole piece, a first separator and a negative pole piece, the positive pole piece forms the positive pole of the battery cell, and the positive pole tab is located on the positive pole piece , the negative pole piece forms the negative pole of the battery cell, the negative pole tab is arranged on the negative pole piece, and the first diaphragm is located between the positive pole piece and the negative pole piece;
  • the detection part is embedded in the positive pole piece, and a second diaphragm is arranged between the detection part and the positive pole piece. That is, there is a second diaphragm between the parts where the detection part is in contact with the reference electrode, and the second diaphragm can separate the reference electrode and the positive electrode sheet without affecting the flow of ions.
  • the detection part is embedded in the positive pole piece, and the detection part does not protrude out of the positive pole piece, that is to say, the detection part of the reference electrode can be regarded as a part of the positive pole piece, located in the positive pole piece, and does not affect the positive pole piece.
  • the size and thickness will not cause damage to the general structure, size and thickness of the cell, and will not cause damage to the cross-section of the cell, so it will not have a negative impact on the electrochemical performance of the cell such as rate and cycle.
  • the reference electrode tab is located at an end of the detection portion close to the positive electrode tab
  • the detection part is located at an edge position of the positive pole piece on the side close to the positive electrode tab; or, the detection part is located at the middle position of the positive pole piece on the side close to the positive electrode tab. That is, the detection part is located on the side of the positive electrode piece close to the positive electrode tab, specifically, at the edge of the side. Or, in the middle of that side. Alternatively, the detection part can also be located at any position on this side, as long as it can ensure that the electrochemical performance of the positive electrode sheet is not affected.
  • the extension length of the detection portion is smaller than the length of the positive pole piece in the extension direction of the detection portion.
  • the reference electrode tab is located at an end of the detection portion close to the positive electrode tab
  • the detection portion is located at the edge of the positive electrode piece close to the side of the positive electrode tab, and the detection portion extends from one end of the positive electrode piece to the other end of the positive electrode piece. That is, the extension length of the detection part is the same as the length of the positive pole piece in the extending direction, which facilitates the cutting of the positive pole piece to embed the detection part, and the operation is simpler, which helps to improve production efficiency and facilitate mass production.
  • the detection part includes a current collector and a coating layer coated on the current collector, the current collector is connected to the reference electrode tab, and the second diaphragm It covers the outer peripheral side wall of the detection part, so that when the detection part is embedded on the positive pole piece, a second diaphragm is provided between the positive pole piece and the detection part.
  • the material of the coating layer is the same as the material of the positive electrode sheet or the negative electrode sheet.
  • the reference electrode and the battery pole piece can have the same service life, increase the service life of the reference electrode, and ensure that the positive and negative potentials can be detected during the full life cycle of the battery cell, avoiding the occurrence of lithium precipitation. At the same time, it can quickly charge the battery.
  • the battery is a lithium-ion battery
  • the material of the coating layer is lithium titanate or lithium iron phosphate.
  • the positive electrode sheet, the first separator and the negative electrode sheet are stacked and arranged to form the battery cell, that is, the battery cell may be a stacked battery cell.
  • the battery cell is a winding body formed by integrally winding the positive electrode pole piece, the first separator and the negative electrode pole piece, that is, the battery core may be a wound battery core .
  • the battery management unit includes a connected chip and a management module, the chip is arranged in the casing, and the management module is located outside the casing;
  • Both the reference electrode and the negative electrode tab are connected to the chip, and the chip is used to collect the voltage between the reference electrode and the negative electrode of the cell, and send the voltage information to the chip.
  • the management module is configured to obtain the negative electrode potential of the battery cell according to the voltage information, and control the charging current according to the negative electrode potential.
  • the positive tab can also be connected to the chip.
  • the chip can be used to collect the voltage between the reference electrode and the positive electrode of the cell, as well as between the negative electrode and the positive electrode of the cell, and send the voltage information to the management module. The information obtains the positive electrode potential of the cell.
  • the management module is configured to determine whether the negative electrode potential is greater than a preset threshold; when the negative electrode potential is greater than the preset threshold, the management module controls to increase the charging current; when the negative electrode potential is greater than the preset threshold When the negative electrode potential is less than or equal to the preset threshold, the management module controls to reduce the charging current. Therefore, under the condition of further ensuring that lithium precipitation does not occur in the negative electrode, the charging current is optimized in real time, the charging rate is improved, and the fast charging of the battery is realized.
  • the management module is further configured to control to increase the charging current according to the difference between the negative electrode potential and the preset threshold .
  • the difference between the negative electrode potential and the preset threshold value is larger (for example, when the difference value is greater than the preset value)
  • the charging current can be increased faster, so as to improve the charging rate.
  • the difference between the negative electrode potential and the preset threshold is smaller (for example, when it is less than the preset difference)
  • the increase speed of the charging current will be reduced to avoid the occurrence of lithium precipitation, which can avoid the precipitation caused by the rapid increase of the charging current. The occurrence of lithium phenomenon.
  • the shape of the casing includes but is not limited to a cylinder, a square or a special shape
  • the molding material of the housing includes but is not limited to stainless steel, aluminum or aluminum-plastic film.
  • a second aspect of the embodiments of the present application provides an energy storage system, including a battery control system and any one of the three-electrode batteries described above, wherein the battery control system is connected to a battery management unit of the three-electrode battery.
  • An energy storage system provided by the embodiments of the present application includes a three-electrode battery, and the battery adds a reference electrode as the third electrode, and the reference electrode is located in the casing of the battery, the reference electrode tab, the negative electrode
  • the ears are connected to the battery management unit, and the voltage between the reference electrode and the negative electrode of the cell is collected in real time through the battery management unit to obtain the real-time negative electrode potential, and the charging current of the battery is controlled according to the negative electrode potential, so as to optimize the charging current in real time. Adjust and improve the charging rate, while preventing the lithium precipitation problem in the negative electrode of the battery, improve the charging speed of the battery, realize the fast charging of the battery, and improve the safety and emergency practicability of the energy storage system.
  • FIG. 1 is a schematic structural diagram of a three-electrode battery provided in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of forming a laminated battery core provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of forming another laminated battery core provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of forming another laminated battery core provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a reference electrode provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a wound type battery core provided by an embodiment of the present application before winding
  • FIG. 7 is a schematic structural diagram of another wound type battery core provided in an embodiment of the present application before winding
  • FIG. 8 is a schematic structural diagram of yet another wound type battery core provided by an embodiment of the present application before winding;
  • FIG. 9 is a logical schematic diagram of a three-electrode battery implementing fast charging according to an embodiment of the present application.
  • Lithium-ion batteries are widely used in energy storage base stations, electric vehicles, and consumer electronics due to their high specific energy, long service life, no memory effect, low self-discharge rate, and environmental friendliness.
  • Lithium-ion batteries usually include a casing and a battery cell arranged in the casing.
  • the battery core includes a positive electrode piece and a negative electrode piece, and there is a separator between the positive electrode piece and the negative electrode piece to separate the positive electrode piece and the negative electrode piece. , while the separator does not affect the ionic conduction between the positive and negative electrodes.
  • a positive pole and a negative pole are arranged on the casing, the positive pole is welded with the positive pole on the positive pole piece, the negative pole is welded with the negative pole on the negative pole piece, and the positive pole and the negative pole are connected to the outside connected to the charging circuit or the discharging circuit.
  • the application of batteries is highly dependent on battery management strategies to formulate a reasonable charge and discharge system.
  • the estimation of battery state of charge, state of health, and power state can improve the safety of battery use, and also facilitate users to know the battery's status in time. Operating status.
  • the battery's external characteristic parameters such as terminal voltage U, current I, temperature T, time t, etc., are used to establish a model to predict the battery state of charge, state of health, and power state of the battery, and to predict faults.
  • the established model has low accuracy and large error, and it is difficult to meet the growing demand for battery management.
  • the embodiments of the present application provide a three-electrode battery.
  • the battery By adding a reference electrode as the third electrode, and making the reference electrode located in the casing of the battery, the battery also includes a battery cell and a battery management unit.
  • the core is arranged in the battery casing, the detection part of the reference electrode is located in the battery core, the reference electrode tab is located outside the battery core, the reference electrode tab and the negative electrode tab of the battery cell are connected to the battery management unit, and the battery management
  • the voltage between the reference electrode and the negative electrode of the battery cell can be collected. Since the potential of the reference electrode is known, the battery management unit can obtain the negative electrode potential of the battery cell according to the voltage information to realize real-time monitoring of the negative electrode potential.
  • the charging current of the battery can be controlled according to the obtained negative electrode potential, so that the charging current can be optimized and adjusted in real time, and the charging rate can be improved.
  • the acquisition of the negative electrode potential can enrich the external characteristic parameters of the battery and help to establish a more accurate battery model.
  • the three-electrode battery can be used in a communication base station as an energy storage device of the communication base station, so as to provide a safe and stable backup power supply for the base station.
  • the three-electrode battery can also be applied to electronic terminals such as mobile phones, notebook computers, tablets, etc., or can also be applied to new energy vehicles.
  • the battery may be a lithium-ion battery, a sodium-ion battery, or other batteries in which metal precipitation may occur in the negative electrode.
  • FIG. 1 shows a schematic structural diagram of a three-electrode battery provided in an embodiment of the present application.
  • a three-electrode battery 10 provided by an embodiment of the present application includes a case 11 , a battery cell 12 , a reference electrode 13 and a battery management unit 14 .
  • the case 11 is used as the main supporting member of the battery 10 , the case 11 may have a sealed accommodating cavity, the battery cell 12 and the reference electrode 13 may be arranged in the accommodating cavity of the case 11 , and in the accommodating cavity of the case 11
  • the body can be filled with electrolytes.
  • the battery cell 12 refers to an electrochemical cell containing a positive electrode and a negative electrode, and the battery cell 12 may be a bare cell.
  • the casing 11 is provided with a positive pole 111 and a negative pole 112, the positive pole 121 is connected with the positive pole 111, and the negative pole 122 is connected with the negative pole 112, so that the positive pole 111 and the negative pole 112 are connected.
  • the battery 10 is connected to an external charging and discharging circuit to realize the discharging and charging functions of the battery 10 .
  • the reference electrode 13 is used as a reference electrode and has a known stable potential.
  • the reference electrode 13 includes a detection part 131 and a reference electrode tab 132, and the electrode reaction mainly occurs in the reference electrode 13.
  • the reference electrode tab 132 is located at one end of the detection part 131 and is connected to the detection part 131.
  • the detection part 131 extends into the cell 12, the reference electrode tab 132 is located outside the cell 12, and the reference electrode Both the tab 132 and the negative tab 122 are connected to the battery management unit 14 , and the battery management unit 14 can collect the voltage between the reference electrode 13 and the negative electrode of the cell 12 through the reference electrode tab 132 and the negative tab 122 .
  • the battery management unit 14 can determine the voltage information between the reference electrode 13 and the negative electrode of the cell 12 and the known potential of the reference electrode 13 The negative electrode potential of the battery cell 12 is obtained, and the real-time monitoring of the negative electrode potential is realized, so as to avoid the problem of lithium precipitation when the negative electrode potential reaches the potential when the phenomenon of lithium precipitation can occur.
  • the battery management unit 14 can also control the charging current of the battery 10 according to the obtained negative electrode potential, so as to adjust the charging current in real time to improve the charging speed. Specifically, if the potential of the negative electrode is much higher than the potential when lithium precipitation occurs, the charging current can be appropriately increased. The potential of the negative electrode is closer to the potential of lithium deposition, which can reduce the charging current, optimize and adjust the charging current in real time, and improve the charging rate. In this way, the charging speed of the battery 10 can be improved while preventing the lithium deposition problem of the negative electrode of the battery 10, and the three-electrode can be realized. The fast charging of the battery 10 improves the safety and service life of the three-electrode battery 10 .
  • the battery management unit 14 can obtain the negative electrode potential of the battery cell 12 according to the collected voltage between the reference electrode 13 and the negative electrode of the battery cell 12 , which can enrich the external characteristic parameters of the three-electrode battery 10 and help to establish a more accurate
  • the battery model fundamentally improves the accuracy of the battery model, improves the estimation of the battery state of charge, the state of health, and the power state of the three-electrode battery 10 and the accuracy of fault diagnosis, thereby improving the safety of the battery 10 in use.
  • the positive electrode tab 121 can also be connected to the battery management unit 14, and the battery management unit 14 can be used to collect the voltage between the reference electrode 13 and the positive electrode of the battery cell 12, and the voltage between the positive electrode and the negative electrode of the battery cell 12 , and obtain the positive electrode potential of the battery cell 12 according to the voltage information, realize real-time monitoring of the positive electrode potential, further enrich the external characteristic parameters of the three-electrode battery 10, improve the accuracy of the established three-electrode battery model, and further improve the three-electrode battery model. Safety of the battery 10 .
  • the battery management unit 14 may include a chip 141 and a management module 142.
  • the chip 141 is arranged in the casing 11, the management module 142 is located outside the casing 11, and the chip 141 and the management module 142 can be connected by wireless communication.
  • the electrode 13 , the negative electrode tab 122 and the positive electrode tab 121 can all be connected to the chip 141 , and the chip 141 is used to collect the reference electrode 13 and the negative electrode of the cell 12 , the reference electrode 13 and the positive electrode of the The voltage between the negative electrode and the positive electrode of the battery cell 12, and the voltage information is sent to the management module 142.
  • the management module 142 can obtain the negative electrode potential of the battery cell 12 and the positive electrode potential of the battery cell 12 according to the voltage information, and control the battery according to the negative electrode potential. charging current.
  • the reference electrode 13 is encapsulated in the casing 11 of the three-electrode battery 10.
  • the casing can be effectively improved. 11 , avoids the problem of electrolyte leakage due to the arrangement of the reference electrode 13 , improves the use safety of the three-electrode battery 10 , and facilitates the production of the case 11 .
  • the reference electrode 13 needs to be connected to the battery cell 12 to charge the reference electrode 13 to stabilize the potential of the reference electrode 13 .
  • FIG. 2 shows a schematic diagram of forming a laminated battery core provided by an embodiment of the present application.
  • the battery cell 12 may include a positive pole piece 123 , a first separator 125 and a negative pole piece 124 , wherein the positive pole piece 123 forms the positive pole of the battery cell 12 , and the positive pole tab 121 is arranged on the positive pole piece 123 , the negative pole piece 124 forms the negative pole of the battery cell 12 .
  • the negative pole tab 122 is arranged on the negative pole piece 124, the first diaphragm 125 is arranged between the positive pole piece 123 and the negative pole piece 124, and the first diaphragm 125 separates the positive pole piece 123 and the negative pole piece 124 to avoid the positive pole piece 124.
  • the contact between the sheet 123 and the negative electrode sheet 124 causes a short circuit, and at the same time, the first diaphragm 125 can realize the conduction of ions without affecting the flow of lithium ions between the positive electrode and the negative electrode.
  • one end of the reference electrode extends out of the casing, and one end is inserted into the casing, and is arranged in parallel between the positive electrode and the negative electrode.
  • the reference electrode and the positive electrode There is a separator between the sheets, and there is also a separator between the reference electrode and the negative electrode sheet, so the setting of the reference electrode will increase the thickness of the cell, cause damage to the positive and negative interface layers of the cell, and thus affect the rate of the cell. , cycle and other electrochemical properties.
  • the detection part 131 of the reference electrode 13 is embedded in the positive pole piece 123 , and there is a second diaphragm 133 between the detection part 131 and the positive pole piece 123 , that is, the detection part 131 is in contact with the reference electrode 13 . There is a second separator 133 between the parts, and the second separator 133 can separate the reference electrode 13 and the positive electrode piece 123 without affecting the flow of ions.
  • the detection part 131 is embedded in the positive pole piece 123, and the detection part 131 does not protrude out of the positive pole piece 123, that is to say, the detection part 131 of the reference electrode 13 can be regarded as a part of the positive pole piece 123, located in the positive pole piece 123 It will not affect the size and thickness of the positive pole piece 123, and will not cause damage to the general structure, size and thickness of the battery cell 12, and will not cause damage to the interface of the battery cell 12, so it will not cause damage to the battery cell 12. Electrochemical properties such as rate and cycle are negatively affected.
  • first separator 125 between the positive electrode 123 and the negative electrode 124 , the reference electrode 13 and the positive electrode 123 are located on the same side of the first separator 125 and are arranged in close contact with the first separator 125 ,
  • the first diaphragm 125 is arranged in close contact with the negative pole piece 124, so that the detection part 131 of the reference electrode 13 is in close contact with the positive pole piece 123 and the negative pole piece 124, which can accurately measure the positive electrode potential and the negative electrode potential, and improve the sensitivity to the positive electrode. Accuracy of Potentiometric and Negative Potential Monitoring.
  • the detection part 131 of the reference electrode 13 is embedded in the positive pole piece 123. Specifically, the part matching the size and shape of the detection part 131 can be cut off from the positive pole piece 123, and then the detection part 131 can be cut off.
  • the detection part 131 of the reference electrode 13 is embedded on the positive pole piece 123 by being arranged at a position corresponding to the removed part on the positive pole piece 123 .
  • the reference electrode tab 132 can be located at one end of the detection portion 131 close to the positive electrode tab 121, that is, the reference electrode tab 132 and the positive electrode tab 121 can be located on the same side of the positive electrode tab 123, so as to facilitate the realization of the reference electrode tab.
  • the connection of the lugs 132 and the positive electrode lugs 121 to the chip 141 while optimizing the local arrangement of the battery cells 12 , helps to reduce the size of the battery 10 .
  • the detection portion 131 may be located at the edge of the positive electrode tab 123 close to the positive electrode tab 121 , that is, the detection portion 131 is located on the positive electrode tab 123 close to the positive electrode tab 121 .
  • One side is located at the edge of that side.
  • FIG. 3 shows a schematic diagram of forming another laminated battery core provided by an embodiment of the present application
  • FIG. 4 shows a schematic diagram of forming another laminated battery core provided by an embodiment of the present application.
  • the detection part 131 may also be located in the middle of the positive pole piece 123 on the side close to the positive pole tab 121 , that is, the detection part 131 is located on the side of the positive pole piece 123 close to the positive pole tab 121 , and is located the middle of the side.
  • the detection portion 131 can also be located at any position on the side, as long as the electrochemical performance of the positive electrode piece 123 is not affected.
  • the extension length of the detection portion 131 may be smaller than the length of the positive pole piece 123 in the extension direction (the extension direction of the detection portion 131 ).
  • the detection portion 131 when the detection portion 131 is located at the edge of the positive electrode piece 123 near the positive electrode tab 121, the detection portion 131 can extend from one end of the positive electrode piece 123 to the other end of the positive electrode piece 123, That is, the extension length of the detection part 131 is the same as the length of the positive pole piece 123 in the extending direction, which facilitates the cutting of the positive pole piece 123 to embed the detection part 131, and the operation is simpler, which is helpful to improve production efficiency and facilitate the production of Produce.
  • FIG. 5 shows a schematic structural diagram of a reference electrode provided in an embodiment of the present application.
  • the reference electrode 13 includes a current collector (not shown in the figure) and a coating layer 1311 coated on the current collector, where the current collector refers to a structure that collects current , such as metal foil, specifically, can be copper foil or aluminum foil.
  • the reference electrode tab 132 is connected to the current collector, and the second diaphragm 133 is wrapped on the outer peripheral side wall of the detection part 131, so that when the detection part 131 is embedded on the positive electrode piece 123, the positive electrode piece 123 and the A second diaphragm 133 is provided between the detection parts 131 .
  • the material of the coating layer 1311 can be the same as the material of the positive pole piece 123 or the negative pole piece 124, so that the reference electrode 13 and the battery pole piece can have the same service life, increase the service life of the reference electrode 13, and ensure The detection of the potential of the positive and negative electrodes can be realized in the whole life cycle of the battery cells 12 , and the fast charging of the three-electrode battery 10 can be realized while avoiding the occurrence of lithium precipitation.
  • the material of the coating layer should have a relatively stable potential value.
  • the battery 10 is a lithium ion battery
  • the material of the positive electrode plate 123 can be lithium iron phosphate, manganese acid Lithium, lithium nickelate, nickel cobalt manganese or nickel cobalt aluminum, etc.
  • the material of the negative pole piece 124 can be graphite or lithium titanate, etc.
  • the material of the coating layer 1311 on the detection part 131 of the reference electrode 13 can be lithium titanate and one of lithium iron phosphate.
  • the battery cell 12 may be a laminated battery cell. Specifically, the positive electrode pole piece 123 , the first separator 125 and the negative electrode pole piece 124 are stacked to form the battery core 12 , wherein the battery core 12 is formed.
  • the positive pole piece 123 and the negative pole piece 124 can be one or more, and a plurality of positive pole pieces 123 and negative pole pieces 124 are alternately arranged, that is, a positive pole piece 123 is adjacent to a negative pole piece 124, and two adjacent A first separator 125 is arranged between the positive electrode pieces 123 and the negative electrode pieces 124 , and the reference electrode 13 can be embedded on one of the positive electrode pieces 123 , or a reference electrode can also be embedded on several of the positive electrode pieces. 13.
  • the part matching the size and shape of the detection part 131 of the reference electrode 13 can be removed from the positive electrode piece 123 by cutting, and the detection part 131 can be embedded in the positive electrode piece 123
  • the negative pole piece 124, the first separator 125 and the positive pole piece 123 embedded with the reference electrode 13 are stacked and arranged, and the first separator 125 is located at a positive pole piece and a negative pole piece.
  • the battery cell 12 is formed, the battery cell 12 and the chip 141 are packaged in the casing 11 of the battery 10 , and after baking, liquid injection, standing, chemical formation, aging, sealing, and capacity testing, the three-electrode battery 10 is obtained.
  • FIG. 6 shows a schematic structural diagram of a wound-type battery cell provided by an embodiment of the present application before winding
  • FIG. 7 shows a schematic structural diagram of another wound-type battery core provided by an embodiment of the present application before winding
  • FIG. 8 shows a schematic structural diagram of yet another wound type battery core provided by an embodiment of the present application before winding.
  • the cell 12 may be a wound cell, as shown in FIG. 6 .
  • the positive pole piece 123 , the first separator 125 , and the negative pole piece 124 are stacked in layers, that is, the two adjacent positive pole pieces 123 and 124 are stacked.
  • the detection portion 131 may also be located at the edge of the positive pole piece 123 close to the positive pole tab 121, or, as shown in FIG. 7, The detection part 131 may be located in the middle of the side of the positive pole piece 123 close to the positive electrode tab 121 , or the detection part 131 may be located at any position on the side.
  • the extension length of the detection part 131 may be smaller than the length of the positive pole piece 123 in the extension direction.
  • the detection portion 131 when the detection portion 131 is located at the edge of the positive electrode tab 123 near the positive tab 121 , the detection portion 131 may extend from one end of the positive electrode 123 to the other end of the positive electrode 123 , that is, the extension length of the detection portion 131 is the same as the length of the positive pole piece 123 in the extension direction.
  • the part that matches the size and shape of the detection part 131 of the reference electrode 13 can be removed from the positive pole piece 123 by cutting, and the detection part 131 can be embedded in this part.
  • the negative pole piece 124, the first separator 125 and the positive pole piece 123 embedded with the reference electrode 13 are stacked and wound as a whole to form a cylindrical battery 12.
  • the chip 141 is packaged in the casing 11 of the battery 10 , and after baking, liquid injection, standing, chemical formation, aging, sealing, and capacity testing, the three-electrode battery 10 is obtained.
  • the management module 142 is used to obtain the positive electrode potential and the negative electrode potential according to the voltage information sent by the chip 141 , and control the charging current of the battery 10 according to the negative electrode potential to realize optimal adjustment of the charging current. At the same time, the management module 142 also judges whether the charging of the battery 10 reaches the cut-off condition after adjusting the charging current. If the cut-off condition is reached, indicating that the battery 10 is fully charged, the charging is stopped. If the cut-off condition is not reached, the charging is continued to be adjusted according to the real-time negative electrode potential. current until the charge cut-off condition is reached.
  • FIG. 9 shows a schematic diagram of a three-electrode battery implementing fast charging according to an embodiment of the present application.
  • the battery 10 is first charged with an initial current
  • the chip 141 collects the voltage information between the negative electrode and the reference electrode 13, and wirelessly sends the voltage information to the management module 142, and the management module 142
  • the management module 142 After receiving the voltage information, obtain the negative electrode potential, and judge whether the negative electrode potential is greater than the preset threshold value, if the negative electrode potential is greater than the preset threshold value, such as 10mV, it indicates that the negative electrode potential is larger than the negative electrode potential where lithium precipitation occurs, which can be controlled Increase the charging current.
  • the preset threshold value such as 10mV
  • the negative electrode potential is less than or equal to the preset threshold, it indicates that the negative electrode potential is closer to the negative electrode potential where lithium precipitation occurs, and the charging current is controlled to decrease, so that the charging current can be optimized in real time without further ensuring that the negative electrode does not undergo lithium precipitation.
  • the charging rate is increased to realize fast charging of the three-electrode battery 10 .
  • the management module 142 can also control to increase the charging current according to the difference between the negative electrode potential and the preset threshold.
  • the charging current can be increased faster to improve the charging rate.
  • the increase rate of the charging current will be reduced, which can avoid the occurrence of lithium precipitation due to the rapid increase of the charging current, and further ensure The negative electrode will not cause the problem of lithium precipitation.
  • the shape of the casing 11 of the battery 10 includes but is not limited to cylinder, square or special shape, and the molding material of the casing 11 includes but is not limited to stainless steel, aluminum or aluminum-plastic film.
  • Embodiments of the present application further provide an energy storage system, including a battery control system and any of the three-electrode batteries 10 in the above-mentioned embodiments.
  • the battery control system can be connected to the battery management unit 14 of the three-electrode battery 10, specifically, with the management unit 14 of the three-electrode battery 10.
  • the module 142 is connected, the management module 142 can be set in the battery control system, and the management module 142 can control the charging current of the battery 10 through the battery control system.
  • An energy storage system provided by the embodiment of the present application includes a three-electrode battery, the battery adds a reference electrode as a third electrode, and the reference electrode is located in the casing of the battery, and the reference electrode is collected in real time through the battery management unit.
  • the voltage between the electrode and the negative electrode of the battery cell can obtain the real-time negative electrode potential, and control the charging current of the battery according to the negative electrode potential, so as to optimize and adjust the charging current in real time, improve the charging rate, and prevent the lithium precipitation problem in the negative electrode of the battery. , improve the charging speed of the battery, realize the fast charging of the battery, and improve the safety and emergency practicability of the energy storage system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

一种三电极电池(10)及储能***,该三电极电池(10)包括电池管理单元(14)、壳体(11)以及设置在壳体(11)内的参比电极(13)和电芯(12),参比电极(13)的探测部(131)位于电芯(12)内,参比电极极耳(132)位于电芯(12)外,电池管理单元(14)与参比电极极耳(132)、电芯(12)的负极极耳(122)连接,可以实时采集参比电极(13)和电芯(12)的负极之间的电压以获得电芯(12)的负极电位,并根据负极电位控制电池(10)的充电电流,从而可以实时的对充电电流进行优化调整,提高充电速率,在防止负极出现析锂问题前提下,提高三电极电池(10)的充电速度,实现三电极电池(10)的快充。

Description

一种三电极电池及储能*** 技术领域
本申请涉及电池技术领域,特别涉及一种三电极电池及储能***。
背景技术
锂离子电池是一种二次电池,主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,锂离子在两个电极之间往返嵌入和脱嵌;充电时,锂离子从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。锂离子电池因具有高能量密度、高电压平台、小体积、长寿命、无记忆效应、自放电率低和环境友好等优势,被广泛应用于电子终端行业、新能源行业以及储能行业等。
锂离子电池通常包括壳体和电芯,电芯位于壳体内,壳体内充满电解液,电芯包括有正极片和负极片,正极片连接有正极极耳,负极片连接有负极极耳,在壳体外壁上具有正极极柱和负极极柱,正极极柱与正极极耳焊接,负极极柱与负极极耳焊接,从而通过正极极柱和负极极柱实现与充电电路或放电电路的连接。
然而,上述锂离子电池在充电时,当负极电位降低到0V及以下时,负极表面就会开始析锂,尤其是使用大电流充电时,负极极化电位较大,更容易产生析锂的问题,影响电池的安全性和使用寿命,对锂离子电池快充的实现具有局限性。
发明内容
本申请提供了一种三电极电池及储能***,解决了现有的锂离子电池由于负极表面容易发生析锂影响电池安全性和使用寿命而对锂离子电池实现快充具有局限性的问题。
本申请实施例的第一方面提供一种三电极电池,包括壳体、电芯、参比电极和电池管理单元,所述电芯和所述参比电极设置在所述壳体内;
所述电芯上具有正极极耳和负极极耳,所述壳体上设置有正极极柱和负极极柱,所述正极极耳与所述正极极柱连接,所述负极极耳与所述负极极柱连接;
所述参比电极包括探测部和与所述探测部连接的参比电极极耳,所述探测部伸入所述电芯内,所述参比极耳位于所述电芯外,所述参比电极极耳、所述负极极耳均与所述电池管理单元连接;
所述电池管理单元用于采集所述参比电极和所述电芯的负极之间的电压以获得所述电芯的负极电位,并根据所述负极电位控制充电电流。
通过增加参比电极作为第三电极,并使该参比电极位于电池的壳体内,在该电池壳体内还设置有电芯,参比电极的探测部位于电芯内,参比电极极耳位于电芯外,参比电极极耳和电芯的负极极耳均与电池管理单元连接,电池管理单元可以采集参比电极与电芯的负极之间的电压,由于参比电极电位已知,电池管理单元就可以根据电压 信息获得电芯的负极电位,实现对负极电位的实时监测,电池管理单元还可以根据获得的负极电位来控制电池的充电电流,从而实时的对充电电流进行优化调整,提高充电速率,在防止电池负极出现析锂问题的同时,提高电池的充电速度,实现电池的快充,并提高了电池的安全性和使用寿命。
另外,获得电芯的负极电位,可以丰富电池的外特性参数,有助于建立更准确的电池模型,提高电池电池荷电状态、健康状态以及功率状态等的估算以及故障诊断的准确性,进而提高电池的使用安全性。
在一种可能的实现方式中,所述正极极耳与所述电池管理单元连接,所述电池管理单元用于采集所述参比电极和所述电芯的负极之间、以及所述电芯的负极与正极之间的电压以获得所述电芯的正极电位。这样电池管理单元就可以获得电芯的正极电位,实现对正极电位的实时监测,进一步的丰富了电池的外特性参数,提高建立的电池模型的准确性,进而提升电池的安全性。
在一种可能的实现方式中,所述电芯包括正极极片、第一隔膜和负极极片,所述正极极片形成所述电芯的正极,所述正极极耳位于所述正极极片上,所述负极极片形成所述电芯的负极,所述负极极耳设置在所述负极极片上,所述第一隔膜位于所述正极极片和所述负极极片之间;
所述探测部嵌设在所述正极极片内,且所述探测部与所述正极极片之间具有第二隔膜。即探测部与参比电极接触的部位之间具有第二隔膜,第二隔膜可以隔开参比电极和正极极片,同时也不影响离子的流通。探测部嵌入正极极片内,探测部不凸出于正极极片外,也就是说参比电极的探测部可以看做是正极极片的一部分,位于正极极片内,不影响正极极片的尺寸和厚度,不会对电芯的大体结构、尺寸以及厚度造成破坏,不会对电芯的截面造成破坏,因此不会对电芯的倍率、循环等电化学性能产生负面影响。
在一种可能的实现方式中,所述参比电极极耳位于所述探测部靠近所述正极极耳的一端;
所述探测部位于所述正极极片靠近所述正极极耳一侧的边缘位置处;或者,所述探测部位于所述正极极片靠近所述正极极耳一侧的中部位置处。即探测部位于正极极片靠近正极极耳的一侧,具体的,位于该侧的边缘处。或者,位于该侧的中部。或者探测部也可以位于该侧的任何位置处,能够保证不影响正极极片电化学性能即可。
在一种可能的实现方式中,所述探测部的延伸长度小于所述正极极片在所述探测部延伸方向上的长度。
在一种可能的实现方式中,所述参比电极极耳位于所述探测部靠近所述正极极耳的一端;
所述探测部位于所述正极极片靠近所述正极极耳一侧的边缘处,所述探测部从所述正极极片的一端延伸到所述正极极片另一端。即探测部的延伸长度与正极极片在该延伸方向上的长度相同,这样方便对正极极片进行裁剪以嵌设探测部,操作更加简单,有助于提高生产效率,利于量产。
在一种可能的实现方式中,所述探测部包括集流体,以及涂覆在所述集流体上的涂覆层,所述集流体与所述参比电极极耳连接,所述第二隔膜覆盖在所述探测部的外 周侧壁上,这样将探测部嵌设在正极极片上时,就会使正极极片和探测部之间具有第二隔膜。
在一种可能的实现方式中,所述涂覆层的材料与所述正极极片或所述负极极片的材料相同。这样就可以使参比电极和电池极片有相同的使用寿命,增大参比电极寿命,保证在电池电芯的全寿命周期内能够实现对正负极电位的检测,在避免析锂发生的同时实现电池的快充。
在一种可能的实现方式中,所述电池为锂离子电池,所述涂覆层的材料为钛酸锂或磷酸铁锂。
在一种可能的实现方式中,所述正极极片、所述第一隔膜和所述负极极片层叠设置形成所述电芯,即电芯可以为层叠状电芯。
在一种可能的实现方式中,所述电芯为所述正极极片、所述第一隔膜和所述负极极片整体卷绕形成的卷绕体,即电芯可以为卷绕型电芯。
在一种可能的实现方式中,所述电池管理单元包括相连接的芯片和管理模块,所述芯片设置在所述壳体内,所述管理模块位于所述壳体外;
所述参比电极和所述负极极耳均与所述芯片连接,所述芯片用于采集所述参比电极和所述电芯的负极之间的电压,并将所述电压信息发送给所述管理模块,所述管理模块用于根据所述电压信息获得所述电芯的负极电位,并根据所述负极电位控制充电电流。正极极耳也可以与芯片连接,芯片可以用于采集参比电极和电芯的正极之间,以及电芯的负极与正极之间的电压,并将电压信息发送给管理模块,管理模块根据电压信息获得电芯的正极电位。
在一种可能的实现方式中,所述管理模块用于判断所述负极电位是否大于预设阈值;当所述负极电位大于所述预设阈值时,所述管理模块控制增大充电电流;当所述负极电位小于等于所述预设阈值时,所述管理模块控制减小充电电流。从而在进一步保证负极不发生析锂的情况下,实时的优化充电电流,提高充电速率,实现电池的快充。
在一种可能的实现方式中,当所述负极电位大于所述预设阈值时,所述管理模块还用于根据所述负极电位与所述预设阈值的差值控制增大所述充电电流。如负极电位与预设阈值的差值越大(如大于预设的差值时),可以使充电电流增大的速度越快,以提高充电速率。如负极电位与预设阈值的差值越小(如小于预设的差值时),则降低充电电流增大速度,以避免析锂的发生,可以避免由于充电电流增大过快而导致析锂现象的发生。
在一种可能的实现方式中,所述壳体的形状包括但不限于圆柱、方形或异形;
所述壳体的成型材料包括但不限于不锈钢、铝或铝塑膜。
本申请实施例的第二方面提供一种储能***,包括电池控制***以及上述任一所述的三电极电池,所述电池控制***与所述三电极电池的电池管理单元连接。
本申请实施例提供的一种储能***,通过包括三电极电池,该电池通过增加参比电极作为第三电极,并使该参比电极位于电池的壳体内,参比电极极耳、负极极耳均与电池管理单元连接,通过电池管理单元实时采集参比电极和电芯负极之间的电压以获得实时的负极电位,并根据负极电位控制电池的充电电流,从而实时的对充电电流 进行优化调整,提高充电速率,在防止电池负极出现析锂问题的同时,提高电池的充电速度,实现电池的快充,提高了储能***的使用安全性和应急实用性。
附图说明
图1是本申请实施例提供的一种三电极电池的结构示意图;
图2是本申请实施例提供的一种层叠状电芯的成型示意图;
图3是本申请实施例提供的另一种层叠状电芯的成型示意图;
图4是本申请实施例提供的又一种层叠状电芯的成型示意图;
图5是本申请实施例提供的一种参比电极的结构示意图;
图6是本申请实施例提供的一种卷绕型电芯卷绕前的结构示意图;
图7是本申请实施例提供的另一种卷绕型电芯卷绕前的结构示意图;
图8是本申请实施例提供的又一种卷绕型电芯卷绕前的结构示意图;
图9是本申请实施例提供的一种三电极电池实现快充的逻辑示意图。
附图标记说明:
10-三电极电池;             11-壳体;                     111-正极极柱;
112-负极极柱;              12-电芯;                     121-正极极耳;
122-负极极耳;              123-正极极片;                124-负极极片;
125-第一隔膜;              13-参比电极;                 131-探测部;
1311-涂覆层;               132-参比电极极耳;            133-第二隔膜;
14-电池管理单元;           141-芯片;                    142-管理模块。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
锂离子电池因其比能量高、使用寿命长、无记忆效应、自放电率低和环境友好等特性而被广泛地应用于储能基站、电动汽车和消费电子等产品中。
锂离子电池通常包括壳体和设置在壳体内的电芯,电芯包括有正极极片和负极极片,正极极片和负极极片之间具有隔膜,以隔开正极极片和负极极片,同时隔膜不影响正极和负极之间的离子导通。在壳体上设置有正极极柱和负极极柱,正极极柱与正极极片上的正极极耳焊接,负极极柱与负极极片上的负极极耳焊接,通过正极极柱和负极极柱与外部的充电电路或放电电路连接。
在对锂离子电池进行充电时,如负极电位降低到0V及以下时,负极表面就会开始析锂,尤其是在快充过程中,由于使用的电流较大,使负极极化电位较大,更容易发生析锂的问题,影响电池的安全性和使用寿命,因为析锂的问题成为制约锂离子电池快充实现的重要原因之一。
另外,电池的应用高度依赖电池管理策略以制定合理的充放电制度,其中对电池荷电状态、健康状态以及功率状态等的估算,可以提高电池的使用安全性,同时也方便用户及时知晓电池的运行状态。通常通过电池的外特性参数,如端电压U、电流I,温度T,时间t等来建立模型预测电池的电池荷电状态、健康状态以及功率状态并预 判故障。但是由于可以利用的参数有限,导致建立的模型精度较低,误差较大,难以满足日益增长的电池管理需求。
基于上述问题,本申请实施例提供一种三电极电池,通过增加参比电极作为第三电极,并使该参比电极位于电池的壳体内,该电池还包括有电芯和电池管理单元,电芯设置在该电池壳体内,参比电极的探测部位于电芯内,参比电极极耳位于电芯外,参比电极极耳和电芯的负极极耳均与电池管理单元连接,电池管理可以采集参比电极与电芯的负极之间的电压,由于参比电极电位已知,电池管理单元就可以根据电压信息获得电芯的负极电位,实现对负极电位的实时监测,电池管理单元还可以根据获得的负极电位来控制电池的充电电流,从而可以实时的对充电电流进行优化调整,提高充电速率,在防止负极出现析锂问题的同时,提高电池的充电速度,实现电池的快充。同时,负极电位的获得可以丰富电池的外特性参数,有助于建立更准确的电池模型。
其中,该三电极电池可以应用于通讯基站中,作为通讯基站的储能设备使用,以为基站提供安全稳定的备用供电。或者,该三电极电池也可以应用于如手机、笔记本电脑、平板等电子终端,或者也可以应用于新能源车辆上。该电池可以是锂离子电池、钠离子电池,或其他负极可能发生金属析出的电池。下面以该电池为锂离子电池为例,对三电极电池进行详细的说明。
图1示出了本申请实施例提供的一种三电极电池的结构示意图。
参见图1所示,本申请实施例提供的一种三电极电池10,包括壳体11、电芯12、参比电极13和电池管理单元14。其中,壳体11作为电池10的主要支撑构件,壳体11可以具有密封的容纳腔体,电芯12和参比电极13可以设置在壳体11的容纳腔体内,在壳体11的容纳腔体内可以充满有电解液。
电芯12是指含有正极、负极的电化学电芯,电芯12可以为裸电芯,电芯12上具有分别与电芯12的正极和负极相连的正极极耳121和负极极耳122,壳体11上设置有正极极柱111和负极极柱112,正极极耳121与正极极柱111连接,负极极耳122与负极极柱112连接,从而通过正极极柱111和负极极柱112将电池10与外部的充放电电路连接,以实现电池10的放电和充电功能。
其中,参比电极13是作为参照比较的电极,具有已知的稳定电位,具体的,参比电极13包括有探测部131和参比电极极耳132,电极反应主要发生在参比电极13的探测部131上,参比电极极耳132位于探测部131的一端,并与探测部131连接,探测部131伸入电芯12内,参比电极极耳132位于电芯12外,参比电极极耳132和负极极耳122均与电池管理单元14连接,电池管理单元14就可以通过参比电极极耳132和负极极耳122采集参比电极13和电芯12的负极之间的电压。
由于参比电极13是作为参照比较的电极,具有已知的稳定电位,电池管理单元14可以根据参比电极13与电芯12的负极之间的电压信息以及参比电极13的已知电位来获得电芯12的负极电位,实现对负极电位的实时监测,从而避免负极电位达到可以发生析锂现象时的电位而出现析锂的问题。
电池管理单元14还可以根据获得的负极电位来控制电池10的充电电流,从而实时的对充电电流进行调整,以提高充电速度。具体的,如负极电位远大于发生析锂时的电位时,可以适当的增大充电电流。负极电位较接近析锂时电位,可以减小充电电 流,实时优化调整充电电流,提高充电速率,这样就可以在防止电池10负极出现析锂问题的同时,提高电池10的充电速度,实现三电极电池10的快充,并提高了三电极电池10的安全性和使用寿命。
另外,电池管理单元14可以根据采集的参比电极13和电芯12的负极之间的电压获得电芯12的负极电位,可以丰富三电极电池10的外特性参数,有助于建立更准确的电池模型,从根本上提高了电池模型的精度,提高了对三电极电池10的电池荷电状态、健康状态以及功率状态等的估算以及故障诊断的准确性,进而提高电池10的使用安全性。
其中,正极极耳121也可以与电池管理单元14连接,电池管理单元14可以用于采集参比电极13和电芯12的正极之间的电压,以及电芯12的正极与负极之间的电压,并根据该电压信息获得电芯12的正极电位,实现对正极电位的实时监测,进一步的丰富了三电极电池10的外特性参数,提高建立的三电极电池模型的准确性,进而提升三电极电池10的安全性。
具体的,电池管理单元14可以包括芯片141和管理模块142,芯片141设置在壳体11内,管理模块142位于壳体11外,芯片141和管理模块142可以通过无线通信的方式连接,参比电极13、负极极耳122以及正极极耳121都可以与芯片141连接,芯片141用于采集参比电极13和电芯12的负极、参比电极13和电芯12的正极以及电芯12的负极和电芯12正极之间的电压,并将电压信息发送给管理模块142,管理模块142可以根据电压信息获得电芯12的负极电位以及电芯12的正极电位,并根据负极电位来控制电池的充电电流。
本申请实施例中,参比电极13封装在三电极电池10的壳体11内,与现有技术中参比电极一端伸出壳体外,一端伸入壳体相比,可以有效的提高壳体11的密封性,避免由于参比电极13的设置而导致的电解液泄露的问题,提高三电极电池10的使用安全性,同时也便于壳体11的生产实现。
另外,需要说明的是,在参比电极13使用之前,需将参比电极13与电芯12接通,对参比电极13进行充电,使参比电极13的电位稳定。
图2示出了本申请实施例提供的一种层叠状电芯的成型示意图。
参见图2所示,电芯12可以包括正极极片123、第一隔膜125和负极极片124,其中,正极极片123形成电芯12的正极,正极极耳121设置在正极极片123上,负极极片124形成电芯12的负极。
负极极耳122设置在负极极片124上,第一隔膜125设置在正极极片123和负极极片124之间,第一隔膜125隔开正极极片123和负极极片124,以避免正极极片123和负极极片124接触发生短路,同时第一隔膜125可以实现离子的导通,不影响正极与负极之间锂离子的流通。
现有技术中的具有参比电极的电池中,参比电极一端伸出壳体外,一端***壳体内,且并列设置在正极极片和负极极片之间,具体的,参比电极和正极极片之间具有隔膜,参比电极和负极极片之间也具有隔膜,这样参比电极的设置会增加电芯的厚度,对电芯的正负极界面层造成破坏,从而影响电芯的倍率、循环等电化学性能。
本申请实施例中,参比电极13的探测部131嵌设在正极极片123内,且探测部 131与正极极片123之间具有第二隔膜133,即探测部131与参比电极13接触的部位之间具有第二隔膜133,第二隔膜133可以隔开参比电极13和正极极片123,同时也不影响离子的流通。
探测部131嵌入正极极片123内,探测部131不凸出于正极极片123外,也就是说参比电极13的探测部131可以看做是正极极片123的一部分,位于正极极片123内,不影响正极极片123的尺寸和厚度,不会对电芯12的大体结构、尺寸以及厚度造成破坏,也就不会对电芯12的界面造成损坏,因此不会对电芯12的倍率、循环等电化学性能产生负面影响。
参见图2所示,正极极片123和负极极片124之间具有第一隔膜125,参比电极13和正极极片123位于第一隔膜125的同一侧并与第一隔膜125紧贴设置,第一隔膜125与负极极片124紧贴设置,这样就使参比电极13的探测部131与正极极片123和负极极片124紧贴,可以准确的测量正极电位和负极电位,提高对正极电位和负极电位监测的准确性。
参比电极13的探测部131嵌设在正极极片123内,具体的,可以在正极极片123上通过裁剪的方式剪去与探测部131尺寸以及形状等匹配的部分,然后将探测部131设置在正极极片123上去除部分对应的位置处,从而将参比电极13的探测部131嵌设在正极极片123上。
其中,参比电极极耳132可以位于探测部131靠近正极极耳121的一端,即参比电极极耳132与正极极耳121可以位于正极极片123的同一侧面上,便于实现参比电极极耳132和正极极耳121与芯片141的连接,同时优化电芯12的局部排布,有助于减小电池10的尺寸。
参见图2所示,以层叠状电芯为例,探测部131可以位于正极极片123靠近正极极耳121一侧的边缘位置处,即探测部131位于正极极片123靠近正极极耳121的一侧,具体的,位于该侧的边缘处。
图3示出了本申请实施例提供的另一种层叠状电芯的成型示意图,图4示出了本申请实施例提供的又一种层叠状电芯的成型示意图。
或者,如图3所示,探测部131也可以位于正极极片123靠近正极极耳121一侧的中部位置处,即探测部131位于正极极片123靠近正极极耳121的一侧,且位于该侧的中部。或者探测部131也可以位于该侧的任何位置处,能够保证不影响正极极片123电化学性能即可。
其中,如图2和图3所示,探测部131的延伸长度可以小于正极极片123在该延伸方向(探测部131的延伸方向)上的长度。
或者,如图4所示,当探测部131位于正极极片123靠近正极极耳121一侧的边缘处时,探测部131可以从正极极片123的一端延伸到正极极片123的另一端,即探测部131的延伸长度与正极极片123在该延伸方向上的长度相同,这样方便对正极极片123进行裁剪以嵌设探测部131,操作更加简单,有助于提高生产效率,利于量产。
图5示出了本申请实施例提供的一种参比电极的结构示意图。
本申请实施例中,参见图5所示,参比电极13包括集流体(图中未示出)和涂覆在集流体上的涂覆层1311,其中,集流体是指汇集电流的结构体,如金属箔,具体的, 可以是铜箔或者铝箔等。
参比电极极耳132与集流体连接,第二隔膜133包覆在探测部131的外周侧壁上,这样将探测部131嵌设在正极极片123上时,就会使正极极片123和探测部131之间具有第二隔膜133。
其中,涂覆层1311的材料可以与正极极片123或负极极片124的材料相同,这样就可以使参比电极13和电池极片有相同的使用寿命,增大参比电极13寿命,保证在电池电芯12的全寿命周期内能够实现对正负极电位的检测,在避免析锂发生的同时实现三电极电池10的快充。
具体的,可以理解的是,涂覆层的材料应该具有较稳定的电位值,例如,本申请实施例中,电池10为锂离子电池,正极极片123的材料可以为磷酸铁锂、锰酸锂、镍酸锂、镍钴锰或镍钴铝等,负极极片124的材料可以为石墨或钛酸锂等,参比电极13的探测部131上的涂覆层1311材料可以为钛酸锂和磷酸铁锂中的一种。
本申请实施例中,参见图2至图4所示,电芯12可以是层叠状电芯,具体的,正极极片123、第一隔膜125和负极极片124层叠设置形成电芯12,其中,正极极片123和负极极片124可以为一个或多个,多个正极极片123和负极极片124交错设置,即一个正极极片123与一个负极极片124相邻,相邻的两个正极极片123和负极极片124之间具有第一隔膜125,参比电极13可以嵌设在其中一个正极极片123上,或者也可以在其中几个正极极片上嵌设有参比电极13。
在三电极电池10的制备中,可以首先在正极极片123上通过裁剪的方式去除与参比电极13的探测部131尺寸以及形状等匹配的部分,将探测部131嵌设在正极极片123上与去除部分对应的位置处,然后将负极极片124、第一隔膜125和嵌设有参比电极13的正极极片123层叠设置,第一隔膜125位于一正极极片和一负极极片之间,形成电芯12,将电芯12、芯片141封装在电池10壳体11内,经过烘烤、注液、静置、化成、老化、密封、容量测试后,得到三电极电池10。
图6示出了本申请实施例提供的一种卷绕型电芯卷绕前的结构示意图,图7示出了本申请实施例提供的另一种卷绕型电芯卷绕前的结构示意图,图8示出了本申请实施例提供的又一种卷绕型电芯卷绕前的结构示意图。
或者,电芯12可以是卷绕型电芯,参见图6所示,具体的,正极极片123、第一隔膜125、负极极片124层叠设置,即相邻的两个正极极片123和负极极片124之间具有第一隔膜125,参比电极13可以嵌设在其中一个正极极片123上,然后将正极极片123、第一隔膜125和负极极片124作为一个整体进行卷绕,形成电芯12。
可以理解的是,在卷绕型电芯12中,参见图6所示,探测部131也可以位于正极极片123靠近正极极耳121一侧的边缘位置处,或者,如图7所示,探测部131可以位于正极极片123靠近正极极耳121一侧的中部位置处,或者,探测部131也可以位于该侧的任何位置处。
如图6和图7所示,探测部131的延伸长度可以小于正极极片123在该延伸方向上的长度。或者,如图8所示,当探测部131位于正极极片123靠近正极极耳121一侧的边缘位置处时,探测部131可以从正极极片123的一端延伸到正极极片123的另一端,即探测部131的延伸长度与正极极片123在该延伸方向上的长度相同。
相应的,在三电极电池10制备中,可以首先在正极极片123上通过裁剪的方式去除与参比电极13的探测部131尺寸以及形状等匹配的部分,将探测部131嵌设在该部分对应的位置,然后将负极极片124、第一隔膜125和嵌设有参比电极13的正极极片123层叠后作为一个整体进行卷绕,形成类圆柱体的电芯12,将电芯12、芯片141封装在电池10壳体11内,经过烘烤、注液、静置、化成、老化、密封、容量测试后,得到三电极电池10。
本申请实施例中,管理模块142用于根据芯片141发送的电压信息来获得正极电位和负极电位,并根据负极电位控制电池10的充电电流,实现对充电电流的优化调整。同时管理模块142在调整充电电流后还对电池10的充电是否达到截止条件进行判断,如达到截止条件表明电池10充满,则停止充电,如未达到截止条件,则继续根据实时的负极电位调整充电电流,直到达到充电截止条件为止。
图9示出了本申请实施例提供的一种三电极电池实现快充的逻辑示意图。
具体的,参见图9所示,电池10首先以一初始电流进行充电,芯片141采集到负极与参比电极13之间的电压信息,并将该电压信息无线发送给管理模块142,管理模块142接收到该电压信息后,获得负极电位,并判断负极电位是否大于预设阈值,若负极电位大于预设阈值,如10mV时,表明负极电位相比于发生析锂的负极电位较大,可以控制增大充电电流。
若负极电位小于等于预设阈值,表明负极电位较接近于发生析锂的负极电位,则控制减小充电电流,这样就可以在进一步保证负极不发生析锂的情况下,实时的优化充电电流,提高充电速率,实现三电极电池10的快充。
其中,当负极电位大于预设阈值时,管理模块142还可以根据负极电位与预设阈值的差值控制增大充电电流,具体的,如负极电位与预设阈值的差值越大(如大于预设的差值时),可以使充电电流增大的速度越快,以提高充电速率。
如负极电位与预设阈值的差值越小(如小于预设的差值时),则降低充电电流增大速度,可以避免由于充电电流增大过快而导致析锂现象的发生,进一步保证负极不会产生析锂的问题。
本申请实施例中,电池10的壳体11的形状包括但不限于圆柱、方形或异形,壳体11的成型材料包括但不限于不锈钢、铝或铝塑膜。
本申请实施例还提供一种储能***,包括电池控制***以及上述实施例中任一的三电极电池10,电池控制***可以与三电极电池10的电池管理单元14连接,具体的,与管理模块142连接,管理模块142可以设置在电池控制***中,管理模块142可以通过电池控制***控制电池10的充电电流。
本申请实施例提供的一种储能***,通过包括三电极电池,该电池通过增加参比电极作为第三电极,并使该参比电极位于电池的壳体内,通过电池管理单元实时采集参比电极和电芯负极之间的电压以获得实时的负极电位,并根据负极电位控制电池的充电电流,从而实时的对充电电流进行优化调整,提高充电速率,在防止电池负极出现析锂问题的同时,提高电池的充电速度,实现电池的快充,提高了储能***的使用安全性和应急实用性。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安 装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的相连或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述各实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施例各实施例技术方案的范围。

Claims (16)

  1. 一种三电极电池,其特征在于,包括壳体、电芯、参比电极和电池管理单元,所述电芯和所述参比电极设置在所述壳体内;
    所述电芯上具有正极极耳和负极极耳,所述壳体上设置有正极极柱和负极极柱,所述正极极耳与所述正极极柱连接,所述负极极耳与所述负极极柱连接;
    所述参比电极包括探测部和与所述探测部连接的参比电极极耳,所述探测部伸入所述电芯内,所述参比电极极耳位于所述电芯外,所述参比电极极耳、所述负极极耳均与所述电池管理单元连接;
    所述电池管理单元用于采集所述参比电极和所述电芯的负极之间的电压以获得所述电芯的负极电位,并根据所述负极电位控制充电电流。
  2. 根据权利要求1所述的三电极电池,其特征在于,所述正极极耳与所述电池管理单元连接,所述电池管理单元还用于采集所述参比电极和所述电芯的负极之间、以及所述电芯的负极与所述电芯的正极之间的电压以获得所述电芯的正极电位。
  3. 根据权利要求2所述的三电极电池,其特征在于,所述电芯包括正极极片、第一隔膜和负极极片,所述正极极片形成所述电芯的正极,所述正极极耳位于所述正极极片上,所述负极极片形成所述电芯的负极,所述负极极耳设置在所述负极极片上,所述第一隔膜位于所述正极极片和所述负极极片之间;
    所述探测部嵌设在所述正极极片内,且所述探测部与所述正极极片之间具有第二隔膜。
  4. 根据权利要求3所述的三电极电池,其特征在于,所述参比电极极耳位于所述探测部靠近所述正极极耳的一端;
    所述探测部位于所述正极极片靠近所述正极极耳一侧的边缘位置处;或者,所述探测部位于所述正极极片靠近所述正极极耳一侧的中部位置处。
  5. 根据权利要求4所述的三电极电池,其特征在于,所述探测部的延伸长度小于所述正极极片在所述探测部延伸方向上的长度。
  6. 根据权利要求3所述的三电极电池,其特征在于,所述参比电极极耳位于所述探测部靠近所述正极极耳的一端;
    所述探测部位于所述正极极片靠近所述正极极耳一侧的边缘处,所述探测部从所述正极极片的一端延伸到所述正极极片另一端。
  7. 根据权利要求3-6任一所述的三电极电池,其特征在于,所述探测部包括集流体,以及涂覆在所述集流体上的涂覆层,所述集流体与所述参比电极极耳连接,所述第二隔膜覆盖在所述探测部的外周侧壁上。
  8. 根据权利要求7所述的三电极电池,其特征在于,所述涂覆层的材料与所述正极极片或所述负极极片的材料相同。
  9. 根据权利要求8所述的三电极电池,其特征在于,所述电池为锂离子电池,所述涂覆层的材料为钛酸锂或磷酸铁锂。
  10. 根据权利要求3-9任一所述的三电极电池,其特征在于,所述正极极片、所述第一隔膜和所述负极极片层叠设置形成所述电芯。
  11. 根据权利要求3-9任一所述的三电极电池,其特征在于,所述电芯为所述正极极片、所述第一隔膜和所述负极极片整体卷绕形成的卷绕体。
  12. 根据权利要求1-11任一所述的三电极电池,其特征在于,所述电池管理单元包括相连接的芯片和管理模块,所述芯片设置在所述壳体内,所述管理模块位于所述壳体外;
    所述参比电极和所述负极极耳均与所述芯片连接,所述芯片用于采集所述参比电极和所述电芯的负极之间的电压,并将所述电压信息发送给所述管理模块,所述管理模块用于根据所述电压信息获得所述电芯的负极电位,并根据所述负极电位控制充电电流。
  13. 根据权利要求12所述的三电极电池,其特征在于,所述管理模块用于判断所述负极电位是否大于预设阈值;当所述负极电位大于所述预设阈值时,所述管理模块控制增大充电电流;当所述负极电位小于等于所述预设阈值时,所述管理模块控制减小充电电流。
  14. 根据权利要求13所述的三电极电池,其特征在于,当所述负极电位大于所述预设阈值时,所述管理模块还用于根据所述负极电位与所述预设阈值的差值控制增大所述充电电流。
  15. 根据权利要求1-14任一所述的三电极电池,其特征在于,所述壳体的形状包括圆柱、方形或异形;
    所述壳体的成型材料包括不锈钢、铝或铝塑膜。
  16. 一种储能***,其特征在于,包括电池控制***以及上述权利要求1-15任一所述的三电极电池,所述电池控制***与所述三电极电池的电池管理单元连接。
PCT/CN2020/115976 2020-09-17 2020-09-17 一种三电极电池及储能*** WO2022056787A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/115976 WO2022056787A1 (zh) 2020-09-17 2020-09-17 一种三电极电池及储能***
EP20953645.7A EP4195356A1 (en) 2020-09-17 2020-09-17 Three-electrode battery and energy storage system
CN202080093603.4A CN114982040A (zh) 2020-09-17 2020-09-17 一种三电极电池及储能***
US18/177,137 US20230207893A1 (en) 2020-09-17 2023-03-02 Three-electrode battery and energy storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115976 WO2022056787A1 (zh) 2020-09-17 2020-09-17 一种三电极电池及储能***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/177,137 Continuation US20230207893A1 (en) 2020-09-17 2023-03-02 Three-electrode battery and energy storage system

Publications (1)

Publication Number Publication Date
WO2022056787A1 true WO2022056787A1 (zh) 2022-03-24

Family

ID=80777325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115976 WO2022056787A1 (zh) 2020-09-17 2020-09-17 一种三电极电池及储能***

Country Status (4)

Country Link
US (1) US20230207893A1 (zh)
EP (1) EP4195356A1 (zh)
CN (1) CN114982040A (zh)
WO (1) WO2022056787A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115863785A (zh) * 2023-02-09 2023-03-28 楚能新能源股份有限公司 一种监控锂沉积的锂离子电池及方法
CN116435609A (zh) * 2023-06-15 2023-07-14 宁德时代新能源科技股份有限公司 电池单体、电池、用电装置、安全性能的检测方法及模块
CN117117365A (zh) * 2023-01-16 2023-11-24 荣耀终端有限公司 电池、电池管理方法及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117613191A (zh) * 2023-11-30 2024-02-27 三一红象电池有限公司 参比电极、其制备方法和三电极电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1815798A (zh) * 2006-01-19 2006-08-09 东莞新能源电子科技有限公司 一种提高锂离子动力电池安全性的方法
CN101855773A (zh) * 2007-09-14 2010-10-06 A123***公司 具有用于健康状态监视的参考电极的锂可再充电电池
KR20160049680A (ko) * 2014-10-28 2016-05-10 주식회사 엘지화학 전기화학적 저항 측정용 기준전극 부재를 포함하는 전지셀
CN108987836A (zh) * 2018-06-15 2018-12-11 桑顿新能源科技有限公司 一种锂离子电池三电极体系及其制备方法
CN109585907A (zh) * 2018-11-28 2019-04-05 欣旺达电子股份有限公司 三电极锂离子电池及其制作方法
CN109671994A (zh) * 2017-10-17 2019-04-23 中信国安盟固利动力科技有限公司 一种锂离子电池析锂的监控及防护方法
CN110061315A (zh) * 2019-03-29 2019-07-26 欣旺达电动汽车电池有限公司 一种锂离子电池快速充电方法
CN110828886A (zh) * 2019-11-13 2020-02-21 东莞维科电池有限公司 一种三电极锂离子电池及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179329A (ja) * 2004-12-22 2006-07-06 Toyota Motor Corp 電気化学セル、電気化学セル評価装置、電気化学セルの評価方法、及び、電気化学セルの制御方法
JP2013175417A (ja) * 2012-02-27 2013-09-05 Nippon Soken Inc リチウムイオン二次電池及びその充電制御方法
EP3425412A4 (en) * 2016-11-04 2019-01-09 LG Chem, Ltd. REACTION ESTIMATING METHOD FOR SECONDARY BATTERY AND SECONDARY BATTERY COMPRISING A BATTERY ELEMENT USED THEREFOR
CN207896215U (zh) * 2018-03-01 2018-09-21 北京小米移动软件有限公司 电池及包括该电池的电子设备
CN108630980A (zh) * 2018-05-09 2018-10-09 合肥国轩高科动力能源有限公司 一种锂离子三电极软包电池及其测试方法
CN111525205B (zh) * 2020-04-28 2021-07-06 山东宏匀纳米科技有限公司 一种含有锂镧锆氧三电极的锂离子电池及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1815798A (zh) * 2006-01-19 2006-08-09 东莞新能源电子科技有限公司 一种提高锂离子动力电池安全性的方法
CN101855773A (zh) * 2007-09-14 2010-10-06 A123***公司 具有用于健康状态监视的参考电极的锂可再充电电池
KR20160049680A (ko) * 2014-10-28 2016-05-10 주식회사 엘지화학 전기화학적 저항 측정용 기준전극 부재를 포함하는 전지셀
CN109671994A (zh) * 2017-10-17 2019-04-23 中信国安盟固利动力科技有限公司 一种锂离子电池析锂的监控及防护方法
CN108987836A (zh) * 2018-06-15 2018-12-11 桑顿新能源科技有限公司 一种锂离子电池三电极体系及其制备方法
CN109585907A (zh) * 2018-11-28 2019-04-05 欣旺达电子股份有限公司 三电极锂离子电池及其制作方法
CN110061315A (zh) * 2019-03-29 2019-07-26 欣旺达电动汽车电池有限公司 一种锂离子电池快速充电方法
CN110828886A (zh) * 2019-11-13 2020-02-21 东莞维科电池有限公司 一种三电极锂离子电池及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117117365A (zh) * 2023-01-16 2023-11-24 荣耀终端有限公司 电池、电池管理方法及电子设备
CN115863785A (zh) * 2023-02-09 2023-03-28 楚能新能源股份有限公司 一种监控锂沉积的锂离子电池及方法
CN116435609A (zh) * 2023-06-15 2023-07-14 宁德时代新能源科技股份有限公司 电池单体、电池、用电装置、安全性能的检测方法及模块

Also Published As

Publication number Publication date
US20230207893A1 (en) 2023-06-29
CN114982040A (zh) 2022-08-30
EP4195356A1 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
WO2022056787A1 (zh) 一种三电极电池及储能***
KR101923091B1 (ko) 전지
JP5810320B2 (ja) リチウムイオン電池の充電方法及び電池搭載機器
EP4258385A1 (en) Lithium ion battery and power vehicle
US10539627B2 (en) Method of restoring secondary battery and method of reusing secondary battery
CN102117931B (zh) 正极采用改性锰酸锂的高倍率圆柱形锂离子电池
CN103675685A (zh) 锂离子电池的测试方法及安全性的判断方法
CN113422115B (zh) 锂离子电芯、锂离子电芯制备方法及析锂检测方法
JP2004273139A (ja) リチウム二次電池
WO2022085318A1 (ja) 二次電池
CN111129432A (zh) 新型锂离子电池工业用无损检测的参比电极和三电极体系及方法
JP2017188430A (ja) リチウム二次電池
JP2007165074A (ja) リチウム二次電池、それを用いた電気自動車及び電動工具
JP2000277176A (ja) リチウム二次電池及び使用方法
KR20180014763A (ko) 배터리 셀 내의 애노드 전위 및/또는 캐소드 전위를 결정하기 위한 방법
WO2000042673A1 (en) Method for charging secondary cell and charger
JP2001176455A (ja) 円筒形二次電池
JP3438301B2 (ja) 非水電解液二次電池
CN108962613B (zh) 一种减小锂离子电容器漏电流的方法
JP2015002043A (ja) リチウムイオン二次電池
JP6113523B2 (ja) 二次電池装置の制御方法および二次電池装置
US11480619B2 (en) Estimation apparatus, estimation method, and computer program
JP2012028044A (ja) リチウムイオン電池
CN218957976U (zh) 一种电池
JP2001176559A (ja) 二次電池の充電電圧測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020953645

Country of ref document: EP

Effective date: 20230307

NENP Non-entry into the national phase

Ref country code: DE