WO2022054122A1 - 空調システム - Google Patents

空調システム Download PDF

Info

Publication number
WO2022054122A1
WO2022054122A1 PCT/JP2020/033900 JP2020033900W WO2022054122A1 WO 2022054122 A1 WO2022054122 A1 WO 2022054122A1 JP 2020033900 W JP2020033900 W JP 2020033900W WO 2022054122 A1 WO2022054122 A1 WO 2022054122A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
specific space
air conditioner
server device
conditioning system
Prior art date
Application number
PCT/JP2020/033900
Other languages
English (en)
French (fr)
Inventor
英希 大野
圭吾 岡島
隆 池田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/033900 priority Critical patent/WO2022054122A1/ja
Priority to JP2022548263A priority patent/JPWO2022054122A1/ja
Publication of WO2022054122A1 publication Critical patent/WO2022054122A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy

Definitions

  • This disclosure relates to an air conditioning system.
  • Patent Document 1 discloses an air conditioning control system in which an air conditioner is connected to a server via a network.
  • the air conditioner has an environment detection sensor and a load side unit.
  • the environment detection sensor detects the temperature for each of a plurality of compartments in which the air-conditioned space is divided horizontally and vertically.
  • the load side unit harmonizes the air-conditioned space.
  • the temperature of each compartment is detected for a plurality of compartments in which the air-conditioned space is divided horizontally and vertically, so that the user can store the stored material in a compartment having a temperature suitable for storage. Can be placed.
  • the power consumption can be suppressed.
  • This disclosure is made to solve the above-mentioned problems, and the purpose is to reduce the cost of the air conditioning system.
  • the air conditioning system includes an air conditioner and a server device. Refrigerant circulates in the air conditioner, and the air conditioner cools a specific space.
  • the server device controls the air conditioner.
  • the air conditioner includes a compressor, a first heat exchanger, an expansion valve, a second heat exchanger, and a sensor unit.
  • the compressor and the first heat exchanger are arranged outside the specific space.
  • the second heat exchanger and the sensor unit are arranged in a specific space.
  • the refrigerant circulates in the order of the compressor, the first heat exchanger, the expansion valve, and the second heat exchanger.
  • the server device controls the air conditioner using the physical quantity of the specific space measured by each of the sensor units and the operation data of the air conditioner.
  • the sensor unit includes a plurality of first sensors and a plurality of second sensors.
  • Each of the plurality of first sensors is arranged along the wall of the specific space and measures the temperature of the first region of the specific space.
  • Each of the plurality of second sensors is arranged on the ceiling of the specific space and measures the temperature of the second region of the specific space.
  • the first region is narrower than the second region and is a region outside the second region.
  • each of the plurality of first sensors is arranged along the wall of the specific space to measure the temperature of the first region of the specific space
  • each of the plurality of second sensors is arranged on the ceiling of the specific space.
  • FIG. 4 is a plan view of the ceiling of the warehouse of FIG. 4 from the Z-axis direction.
  • FIG. 1 is a block diagram showing the configuration of the air conditioning system 1000 according to the embodiment.
  • the air conditioning system 1000 includes a terminal device 80, a server device 90, and an air conditioner 100.
  • the terminal device 80, the server device 90, and the air conditioner 100 are connected to each other via the network NW.
  • the network NW includes, for example, the Internet, a WAN (Wide Area Network), and a LAN (Local Area Network).
  • the number of terminal devices 80 connected to the network NW may be two or more.
  • the number of air conditioners 100 connected to the network NW may be two or more.
  • the terminal device 80 acquires information about the air conditioner 100 via the server device 90.
  • the terminal device 80 transmits an operation command to the air conditioner 100 via the server device 90.
  • the terminal device 80 includes, for example, a PC (Personal Computer), a tablet, or a smartphone.
  • the server device 90 acquires and stores the operation data of the air conditioner 100 and the data regarding the space air-conditioned by the air conditioner 100 from the air conditioner 100.
  • the server device 90 learns the optimum control for the air conditioner 100 by using the accumulated data.
  • the server device 90 analyzes the airflow in the space air-conditioned by the air conditioner 100, and transmits a control command to the air conditioner 100.
  • the control command includes, for example, a target evaporation temperature, a target temperature, a start timing of the defrosting operation, an air volume, and a wind direction.
  • the server device 90 includes a processing circuit 91, a memory 92, a communication unit 93, and an input / output unit 94.
  • the processing circuit 91, the memory 92, the communication unit 93, and the input / output unit 94 are connected to each other via the bus 95.
  • the processing circuit 91 may be dedicated hardware, or may be a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit) that executes a program stored in the memory 92.
  • the processing circuit 91 may include, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (FPGA). Field Programmable Gate Array) or a combination of these is applicable.
  • the processing circuit 91 is a CPU
  • the function of the server device 90 is realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is described as a program and stored in the memory 92.
  • Each of the CPU and the GPU is also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microprocessor, a processor, or a DSP (Digital Signal Processor).
  • a machine learning program, a control program of the air conditioner 100, and an airflow analysis program are stored in the memory 92.
  • the processing circuit 91 reads out and executes the program stored in the memory 92.
  • the memory 92 stores operation data of the air conditioner 100 and data regarding the space air-conditioned by the air conditioner 100.
  • the memory 92 includes a non-volatile or volatile semiconductor memory (for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EPROM (Electrically Erasable Programmable Read Only Memory). )), And includes magnetic discs, flexible discs, optical discs, compact discs, mini discs, or DVDs (Digital Versatile Discs).
  • the communication unit 93 communicates with each of the plurality of air conditioners 100 via the network NW.
  • the input / output unit 94 receives an operation from the user and outputs the processing result to the user.
  • the input / output unit 94 includes, for example, a mouse, a keyboard, a touch panel, a display, and a speaker.
  • the air conditioner 100 includes a system controller 1, a plurality of unit coolers 10, a condensing unit 20, a plurality of sensor units 30, and a receiver 50.
  • the plurality of sensor units 30 include a plurality of temperature / humidity sensors 31 (a plurality of first sensors) and a plurality of infrared sensors (a plurality of second sensors).
  • a temperature sensor may be used instead of the temperature / humidity sensor 31.
  • the system controller 1 receives a control command from the server device 90 and controls a plurality of unit coolers 10 and a condensing unit 20 in an integrated manner.
  • the system controller 1 transmits the operation data of the air conditioner 100 to the server device 90.
  • the operation data includes, for example, the drive frequency of the compressor, the degree of superheating of the refrigerant flowing out of the evaporator, the degree of supercooling of the refrigerant flowing out of the condenser, and the opening degree of the expansion valve.
  • the plurality of unit coolers 10 are arranged in each of the plurality of warehouses 40 (specific spaces).
  • the refrigerant circulates between the plurality of unit coolers 10 and the condensining unit 20, and each of the plurality of warehouses 40 is cooled by the unit coolers 10 arranged in the warehouse 40.
  • the air conditioner 100 performs a cooling operation and a defrosting operation.
  • the plurality of sensor units 30 are arranged in the plurality of warehouses 40, respectively.
  • Each of the plurality of sensor units 30 transmits the temperature and humidity of the warehouse in which the sensor unit 30 is arranged to the receiver 50.
  • the receiver 50 transmits the temperature and humidity of the plurality of warehouses 40 measured by the plurality of sensor units 30 to the server device 90.
  • the temperature and humidity may be transmitted to the server device 90 via the system controller 1.
  • FIG. 2 is a block diagram showing the configuration of the air conditioner 100 of FIG. 1 and the flow of the refrigerant in the cooling operation.
  • each of the plurality of unit coolers 10 includes an expansion valve 11, an evaporator 12, a controller 14, a wind direction adjusting unit 15, a fan 16, and an on-off valve. 17 and 18 are included.
  • the fan 16 blows air toward the evaporator 12.
  • the wind direction adjusting unit 15 adjusts the direction of the air flow discharged from the evaporator 12 to the outside of the unit cooler 10.
  • the condensing unit 20 includes a compressor 21, a condenser 22 (first heat exchanger), an on-off valve 23, and a controller 24.
  • the system controller 1 controls the direction (angle) of the wind direction adjusting unit 15, the opening degree of the expansion valve 11, the rotation speed of the fan 16, and the opening / closing of the on-off valve 17 via the controller 14.
  • the system controller 1 controls the drive frequency of the compressor 21 and the opening / closing of the on-off valve 23 via the controller 24.
  • the system controller 1 and the controllers 14 and 24 may be integrally formed.
  • the refrigerant circulates in the order of the compressor 21, the condenser 22, the on-off valve 18, the expansion valve 11, and the evaporator 12.
  • the on-off valves 23 and 17 are connected in series in this order between the discharge port of the compressor 21 and the inflow port of the evaporator 12.
  • the on-off valve 18 is opened and the on-off valves 17 and 23 are closed.
  • FIG. 3 is a diagram showing the configuration of the air conditioner 100 of FIG. 1 and the flow of the refrigerant in the defrosting operation.
  • the on-off valve 23 and the on-off valve 17 included in the unit cooler 10 are opened, and the unit cooler 10 is opened.
  • the included on-off valve 17 is closed.
  • a part of the high temperature refrigerant discharged from the compressor 21 is supplied to the evaporator 12 without going through the condenser 22 and the expansion valve 11.
  • the frost generated in the evaporator 12 is melted by the high temperature refrigerant from the compressor 21.
  • FIG. 4 is a diagram showing how a plurality of temperature / humidity sensors 31 and a plurality of infrared sensors 32 included in the sensor unit 30 of FIG. 1 are arranged in the warehouse 40.
  • the X-axis, the Y-axis, and the Z-axis are orthogonal to each other.
  • the minus direction of the Z axis is the direction of gravity.
  • the warehouse 40 includes a ceiling Ce, walls W1, W2, W3, W4, and a floor Fr.
  • the ceiling Ce and the floor Fr face each other in the Z-axis direction.
  • the walls W1 and W3 face each other in the X-axis direction.
  • the walls W2 and W4 face each other in the Y-axis direction.
  • Each of the walls W1 and W3 connects the walls W2 and W4.
  • Each of the walls W1 to W4 connects the ceiling Ce and the floor Fr.
  • the unit cooler 10 is arranged in the center of the connection portion between the ceiling Ce and the wall W2 inside the warehouse 40.
  • the wind direction adjusting unit 15 of the unit cooler 10 is directed to the inside of the warehouse 40.
  • a plurality of temperature / humidity sensors 31 are arranged from the ceiling Ce to the floor Fr along the Z-axis direction around the connection portions of the walls W1 and W2.
  • a plurality of temperature / humidity sensors 31 are arranged around the connection portions of the walls W1 and W4 from the ceiling Ce to the floor Fr along the Z-axis direction.
  • a plurality of temperature / humidity sensors 31 are arranged from the ceiling Ce to the floor Fr along the Z-axis direction in the central portion of the wall W1.
  • a plurality of temperature / humidity sensors 31 are arranged around the connection portions of the walls W2 and W3 from the ceiling Ce to the floor Fr along the Z-axis direction.
  • a plurality of temperature / humidity sensors 31 are arranged around the connection portions of the walls W3 and W4 from the ceiling Ce to the floor Fr along the Z-axis direction.
  • a remote controller 60 of the unit cooler 10 is arranged on the wall W3.
  • a plurality of infrared sensors 32 are arranged along the Y-axis direction in the central portion of the ceiling Ce. The plurality of infrared sensors 32 is less than the plurality of temperature / humidity sensors 31.
  • FIG. 5 is a plan view of the ceiling Ce of the warehouse 40 of FIG. 4 from the Z-axis direction.
  • the region Rg1 (first region) is the measurement region of the temperature / humidity sensor 31.
  • the region Rg2 (second region) is a measurement region of the infrared sensor 32.
  • the region Rg1 is a region around the temperature / humidity sensor 31.
  • the region Rg1 is smaller than the region Rg2.
  • the region Rg1 is a region outside the region Rg2.
  • the data around the walls W1 to W4 that are the boundaries of the airflow are more important than the data in the central part in the warehouse 40.
  • the data that requires high accuracy in the airflow analysis is acquired by the temperature / humidity sensor 31, and the data in the space where a certain degree of low accuracy is allowed is acquired by the infrared sensor 32.
  • FIG. 6 is a diagram showing the relationship between the compressor output, the target evaporation temperature, the operating rate, the cooling capacity, and the efficiency of the air conditioner 100 of FIG.
  • the curve C10 represents the relationship between the compressor output or the target evaporation temperature and the operating rate.
  • the curve C11 represents the relationship between the compressor output or the target evaporation temperature and the cooling capacity.
  • the curve C12 represents the relationship between the compressor output or the target evaporation temperature and the efficiency. As shown in FIG. 6, there is a compressor output and a target evaporation temperature that maximizes operating efficiency.
  • the server device 90 predicts the operating rate of the air conditioner 100 and the electricity cost per unit time (for example, one day) by using the analysis result of the airflow distribution in the warehouse 40.
  • the server device 90 uses the analysis result of the airflow distribution in the warehouse 40 to set the target evaporation temperature predicted to maximize the efficiency of the air conditioner 100 to the air conditioner 100. Send.
  • the server device 90 detects the temperature variation (temperature unevenness) in the warehouse 40 by using the analysis result of the airflow distribution in the warehouse 40.
  • the server device 90 raises the target temperature when the maximum temperature in the warehouse 40 is lower than the allowable temperature Tu in the warehouse 40, and lowers the target temperature when the maximum temperature in the warehouse 40 exceeds the allowable temperature Tu.
  • FIG. 7 is a diagram showing a time chart of the maximum temperature Tmax and the target temperature in the warehouse 40 of FIG. 4 together.
  • the curve C21 represents the change in the highest temperature Tmax in the warehouse 40.
  • the polygonal line C22 represents a change in the target temperature.
  • the temperature Tgu is a lower limit of the target temperature, for example, a target temperature set by the user.
  • the temperature difference (margin) obtained by subtracting the temperature Tmax from the allowable temperature Tu is larger than the threshold value Mth, so that the inside of the warehouse 40 is cooled.
  • the target temperature is raised from Tgu to Tg1 (> Tgu) in order to suppress cooling by the air conditioner 100 in the time zone from time t1 to t2. Since the margin is equal to or less than the threshold value Mth at times t2 to t3, it is highly necessary to cool the inside of the warehouse 40.
  • the target temperature is lowered from T1 in order to promote cooling by the air conditioner 100 in the time zone from time t2 to t3.
  • the margin is larger than the threshold value Mth, so that the need for cooling the inside of the warehouse 40 is low.
  • the target temperature is raised from Tgu to Tg1.
  • the threshold value Mth is appropriately determined by an actual machine experiment or a simulation.
  • FIG. 8 is a flowchart showing the flow of the target temperature setting process performed in the server device 90.
  • the process shown in FIG. 8 is called for each sampling time by a main routine (not shown) that controls the server device 90 in an integrated manner.
  • the step is simply referred to as S.
  • the server device 90 determines whether or not the temperature Tmax is lower than the allowable temperature Tu in S11. When the temperature Tmax is equal to or higher than the allowable temperature Tu (NO in S11), the server device 90 lowers the target temperature in S14 and returns the process to the main routine. When the temperature Tmax is lower than the allowable temperature Tu (YES in S11), the server device 90 determines whether or not the margin is larger than the threshold value Mth in S12. When the margin is equal to or less than the threshold value Mth (NO in S12), the server device 90 lowers the target temperature in S14 and returns the process to the main routine. If the margin is greater than the threshold Mth (YES in S12), the server device 90 raises the target temperature in S13 and returns the process to the main routine.
  • the server device 90 starts the performance deterioration of the air conditioner 100 due to the frost generated in the evaporator 12 and the defrosting operation of the air conditioner 100 by using the temperature and humidity in the warehouse 40 and the operation data of the air conditioner 100. In this case, the temperature rise in the warehouse 40 is analyzed.
  • the server device 90 starts the defrosting operation of the air conditioner 100 at the timing when the electric cost required for the defrosting operation is predicted to be the minimum, or at the timing when the temperature rise in the warehouse 40 in the defrosting operation is predicted to be the minimum. do.
  • the server device 90 uses the temperature and humidity in the warehouse 40, the operation data of the air conditioner 100, the position and temperature of the articles placed in the warehouse 40, and the presence or absence of a worker present in the warehouse 40.
  • the ventilation direction of the air conditioner 100 and the rotation speed of the fan 16 are controlled so that the temperature becomes uniform inside.
  • FIG. 9 is an external view of the tablet 80B, which is an example of the terminal device 80 of FIG. As shown in FIG. 9, the tablet 80B displays the airflow distribution in the warehouse 40 superimposed on the three-dimensional image in the warehouse 40.
  • changes in airflow and electricity bills in the warehouse 40 can be visualized in chronological order at unit time intervals (for example, 1 day, 1 month, or 1 year).
  • the change in the airflow and the change in the electricity bill in the warehouse 40 when the air conditioning control as shown in FIGS. 7 and 8 is performed. It is desirable to compare and display the change in the air flow in the warehouse 40 and the change in the electricity bill when the air conditioning control is not performed.
  • the data of the airflow change and the electricity bill in the warehouse 40 when the air conditioning control is not performed are the data for a certain period (for example, several days) acquired in the state where the air conditioning control is not performed.
  • air-conditioning system manufacturers use these data to simulate replacement with refrigeration cycle equipment, which leads to further energy savings, expansion of refrigerators, installation of fans in the heat cage area, etc., and reduce the initial cost required for it.
  • Possible running costs can be proposed to the owner of the warehouse 40.
  • the manufacturer of the air conditioning system should make a proposal regarding the arrangement of luggage from the viewpoint of quality improvement and energy saving improvement without the need for equipment changes due to the tendency of changes in airflow or temperature unevenness in the warehouse 40. You can also.
  • the owner of the warehouse 40 may be charged according to the degree of energy saving achieved.
  • the manufacturing cost of the air conditioning system can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空調機は、特定空間(40)を冷房する。空調機の圧縮機および第1熱交換器は、特定空間(40)の外部に配置され、空調機の第2熱交換器(10)およびセンサ部は、特定空間(40)に配置されている。サーバ装置は、センサ部(30)の各々によって測定された特定空間(40)の物理量および空調機の運転データを用いて空調機を制御する。センサ部(30)は、複数の第1センサ(31)と、複数の第2センサ(32)とを含む。複数の第1センサ(31)の各々は、特定空間(40)の壁(W1~W4)に沿って配置され、特定空間(40)の第1領域(Rg1)の温度を測定する。複数の第2センサ(32)の各々は、特定空間(40)の天井(Ce)に配置され、特定空間(40)の第2領域(Rg2)の温度を測定する。第1領域(Rg1)は、第2領域(Rg2)より狭く、第2領域(Rg2)の外部の領域である。

Description

空調システム
 本開示は、空調システムに関する。
 従来、空調システムが知られている。たとえば、国際公開第2019/224916号(特許文献1)には、空気調和装置がネットワークを介してサーバと接続された空調制御システムが開示されている。当該空気調和装置は、環境検出センサと、負荷側ユニットとを有する。環境検出センサは、空調対象空間が水平方向および垂直方向に区切られた複数の区画に対して、区画毎に温度を検出する。負荷側ユニットは、空調対象空間を空気調和する。当該空気調和装置によれば、空調対象空間が水平方向および垂直方向に区切られた複数の区画に対して区画毎の温度が検出されるため、ユーザは、保管に適した温度の区画に保管物を置くことができる。また、保管物の置かれていない区画が必要以上に空気調和されないので、消費電力量を抑制することができる。
国際公開第2019/224916号
 特許文献1に開示された空調制御システムにおいては、空調対象空間が水平方向および垂直方向に区切られた複数の区画の各々に環境検出センサが配置される。そのため、複数の区画の数によっては、環境検出センサの設置およびメンテナンス等のコストが増加し得る。しかし、特許文献1においては当該コストの削減について考慮されていない。
 本開示は、上述のような課題を解決するためになされたものであり、その目的は、空調システムのコストを削減することである。
 本開示に係る空調システムは、空調機と、サーバ装置とを備える。空調機においては冷媒が循環し、空調機は特定空間を冷房する。サーバ装置は、空調機を制御する。空調機は、圧縮機と、第1熱交換器と、膨張弁と、第2熱交換器と、センサ部とを含む。圧縮機および第1熱交換器は、特定空間の外部に配置されている。第2熱交換器およびセンサ部は、特定空間に配置されている。冷媒は、圧縮機、第1熱交換器、膨張弁、および第2熱交換器の順に循環する。サーバ装置は、センサ部の各々によって測定された特定空間の物理量および空調機の運転データを用いて空調機を制御する。センサ部は、複数の第1センサと、複数の第2センサとを含む。複数の第1センサの各々は、特定空間の壁に沿って配置され、特定空間の第1領域の温度を測定する。複数の第2センサの各々は、特定空間の天井に配置され、特定空間の第2領域の温度を測定する。第1領域は、第2領域より狭く、第2領域の外部の領域である。
 本開示によれば、複数の第1センサの各々が特定空間の壁に沿って配置されて特定空間の第1領域の温度を測定し、複数の第2センサの各々が特定空間の天井に配置され特定空間の第2領域の温度を測定し、第1領域が第2領域より狭く、第2領域の外部の領域であることにより、空調システムの製造コストを削減することができる。
実施の形態に係る空調システムの構成を示すブロック図である。 図1の空調機の構成および冷房運転における冷媒の流れを併せて示すブロック図である。 図1の空調機の構成および除霜運転における冷媒の流れを併せて示す図である。 図1のセンサ部に含まれる複数の温湿度センサおよび複数の赤外線センサが倉庫内に配置されている様子を示す図である。 図4の倉庫の天井をZ軸方向から平面視した図である。 図1の空調機の圧縮機出力、目標蒸発温度、運転率、冷却能力、および効率の関係を示す図である。 図4の倉庫内の最高の温度および目標温度のタイムチャートを併せて示す図である。 サーバ装置において行われる目標温度の設定処理の流れを示すフローチャートである。 図1の端末装置の一例であるタブレットの外観図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。
 図1は、実施の形態に係る空調システム1000の構成を示すブロック図である。図1に示されるように、空調システム1000は、端末装置80と、サーバ装置90と、空調機100とを備える。端末装置80、サーバ装置90、および空調機100は、ネットワークNWを介して互いに接続されている。ネットワークNWは、たとえば、インターネット、WAN(Wide Area Network)、およびLAN(Local Area Network)を含む。ネットワークNWに接続される端末装置80の数は2以上であってもよい。ネットワークNWに接続される空調機100の数は2以上であってもよい。
 端末装置80は、サーバ装置90を介して空調機100に関する情報を取得する。端末装置80は、サーバ装置90を介して空調機100に対する操作指令を送信する。端末装置80は、たとえばPC(Personal Computer)、タブレット、またはスマートフォンを含む。
 サーバ装置90は、空調機100の運転データおよび空調機100によって空調される空間に関するデータを空調機100から取得して、蓄積する。サーバ装置90は、蓄積されたデータを用いて、空調機100に対する最適制御を学習する。サーバ装置90は、空調機100によって空調される空間の気流解析を行って、空調機100へ制御指令を送信する。当該制御指令には、たとえば、目標蒸発温度、目標温度、除霜運転の開始タイミング、風量、および風向が含まれる。
 サーバ装置90は、処理回路91と、メモリ92と、通信部93と、入出力部94とを含む。処理回路91、メモリ92、通信部93、および入出力部94は、バス95を介して互いに接続されている。
 処理回路91は、専用のハードウェアであってもよいし、メモリ92に格納されるプログラムを実行するCPU(Central Processing Unit)またはGPU(Graphics Processing Unit)であってもよい。処理回路91が専用のハードウェアである場合、処理回路91には、たとえば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、あるいはこれらを組み合わせたものが該当する。処理回路91がCPUの場合、サーバ装置90の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアあるいはファームウェアはプログラムとして記述され、メモリ92に格納される。なお、CPUおよびGPUの各々は、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいはDSP(Digital Signal Processor)とも呼ばれる。
 メモリ92には、たとえば機械学習プログラム、空調機100の制御プログラム、および気流解析プログラムが保存されている。処理回路91は、メモリ92に記憶されたプログラムを読み出して実行する。メモリ92には、空調機100の運転データおよび空調機100によって空調される空間に関するデータが保存される。メモリ92には、不揮発性または揮発性の半導体メモリ(たとえばRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、あるいはEEPROM(Electrically Erasable Programmable Read Only Memory))、および磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、あるいはDVD(Digital Versatile Disc)が含まれる。
 通信部93は、ネットワークNWを介して、複数の空調機100の各々と通信する。入出力部94は、ユーザからの操作を受けるとともに、処理結果をユーザに出力する。入出力部94は、たとえば、マウス、キーボード、タッチパネル、ディスプレイ、およびスピーカを含む。
 空調機100は、システムコントローラ1と、複数のユニットクーラ10と、コンデンシングユニット20と、複数のセンサ部30と、受信機50とを含む。複数のセンサ部30は、複数の温湿度センサ31(複数の第1センサ)と、複数の赤外線センサ(複数の第2センサ)とを含む。なお、温湿度センサ31に替えて温度センサが用いられてもよい。
 システムコントローラ1は、サーバ装置90からの制御指令を受けて、複数のユニットクーラ10およびコンデンシングユニット20を統合的に制御する。システムコントローラ1は、空調機100の運転データをサーバ装置90に送信する。当該運転データには、たとえば圧縮機の駆動周波数、蒸発器から流出する冷媒の過熱度、凝縮器から流出する冷媒の過冷却度、および膨張弁の開度が含まれる。
 複数のユニットクーラ10は、複数の倉庫40(特定空間)にそれぞれ配置されている。空調機100においては、複数のユニットクーラ10とコンデンシングユニット20との間を冷媒が循環し、複数の倉庫40の各々が当該倉庫40に配置されたユニットクーラ10によって冷却される。空調機100は、冷房運転および除霜運転を行なう。複数のセンサ部30は、複数の倉庫40にそれぞれ配置されている。複数のセンサ部30の各々は、当該センサ部30が配置された倉庫の温度および湿度を受信機50に送信する。受信機50は、複数のセンサ部30によって測定された複数の倉庫40の温度および湿度をサーバ装置90に送信する。当該温度および湿度は、システムコントローラ1を介してサーバ装置90に送信されてもよい。
 図2は、図1の空調機100の構成および冷房運転における冷媒の流れを併せて示すブロック図である。図2に示されるように、複数のユニットクーラ10の各々は、膨張弁11と、蒸発器12(第2熱交換器)と、コントローラ14と、風向調節部15と、ファン16と、開閉弁17,18とを含む。ファン16は、蒸発器12に向かって送風する。風向調節部15は、蒸発器12からユニットクーラ10の外部に放出される気流の向きを調節する。コンデンシングユニット20は、圧縮機21と、凝縮器22(第1熱交換器)と、開閉弁23と、コントローラ24とを含む。
 システムコントローラ1は、コントローラ14を介して、風向調節部15の方向(角度)、膨張弁11の開度、ファン16の回転速度、および開閉弁17の開閉を制御する。システムコントローラ1は、コントローラ24を介して圧縮機21の駆動周波数、および開閉弁23の開閉を制御する。システムコントローラ1およびコントローラ14,24は、一体的に形成されていてもよい。
 冷房運転において冷媒は、圧縮機21、凝縮器22、開閉弁18、膨張弁11、および蒸発器12の順に循環する。開閉弁23,17は、圧縮機21の吐出口と、蒸発器12の流入口との間において、この順に直列に接続されている。冷房運転において開閉弁18は開放され、開閉弁17,23は閉止されている。
 図3は、図1の空調機100の構成および除霜運転における冷媒の流れを併せて示す図である。図3に示されるように、或るユニットクーラ10において除霜運転の開始条件が成立した場合、開閉弁23および当該ユニットクーラ10に含まれる開閉弁17が開放されるとともに、当該ユニットクーラ10に含まれる開閉弁17が閉止される。圧縮機21から吐出された高温の冷媒の一部は、凝縮器22および膨張弁11を介さずに蒸発器12に供給される。蒸発器12に生じた霜は、圧縮機21からの高温の冷媒によって溶解する。
 図4は、図1のセンサ部30に含まれる複数の温湿度センサ31および複数の赤外線センサ32が倉庫40内に配置されている様子を示す図である。図4においてX軸、Y軸、およびZ軸は互いに直交している。Z軸のマイナス方向が重力方向である。図4に示されるように、倉庫40は、天井Ceと、壁W1,W2,W3,W4と、床Frとを含む。天井Ceおよび床Frは、Z軸方向に対向している。壁W1,W3は、X軸方向に対向している。壁W2,W4は、Y軸方向に対向している。壁W1,W3の各々は、壁W2,W4を接続している。壁W1~W4の各々は、天井Ceおよび床Frを接続している。
 ユニットクーラ10は、倉庫40の内部において天井Ceおよび壁W2の接続部分の中央に配置されている。ユニットクーラ10の風向調節部15は、倉庫40の内部に向けられている。
 倉庫40の内部において、壁W1,W2の接続部分の周辺には、Z軸方向に沿って天井Ceから床Frまで複数の温湿度センサ31が配置されている。壁W1,W4の接続部分の周辺には、Z軸方向に沿って天井Ceから床Frまで複数の温湿度センサ31が配置されている。壁W1の中央部分には、Z軸方向に沿って天井Ceから床Frまで複数の温湿度センサ31が配置されている。壁W2,W3の接続部分の周辺には、Z軸方向に沿って天井Ceから床Frまで複数の温湿度センサ31が配置されている。壁W3,W4の接続部分の周辺には、Z軸方向に沿って天井Ceから床Frまで複数の温湿度センサ31が配置されている。壁W3には、ユニットクーラ10のリモートコントローラ60が配置されている。天井Ceの中央部分には、Y軸方向に沿って複数の赤外線センサ32が配置されている。複数の赤外線センサ32は、複数の温湿度センサ31より少ない。
 図5は、図4の倉庫40の天井CeをZ軸方向から平面視した図である。図5において、領域Rg1(第1領域)は、温湿度センサ31の測定領域である。領域Rg2(第2領域)は、赤外線センサ32の測定領域である。図5に示されるように、領域Rg1は、温湿度センサ31の周囲の領域である。領域Rg1は、領域Rg2よりも小さい。領域Rg1は、領域Rg2の外部の領域である。
 倉庫40内の気流の解析において、当該気流の境界となる壁W1~W4の周辺のデータは、倉庫40内の中央部分のデータよりも重要性が高い。気流解析において精度の高さが必要になるデータは温湿度センサ31によって取得され、或る程度の精度の低さが許容される空間のデータは赤外線センサ32によって取得される。気流解析におけるデータの重要性に応じて、当該データを取得するセンサの測定領域を異ならせることにより、センサ数を削減しながら、高精度な気流解析を実現することができる。また、倉庫40内の中央部分にセンサを設置する必要がないため、センサの設置およびメンテナンス等のコストを削減することができるとともに、倉庫40内の設計の自由度および利便性を向上させることができる。
 図6は、図1の空調機100の圧縮機出力、目標蒸発温度、運転率、冷却能力、および効率の関係を示す図である。曲線C10は、圧縮機出力または目標蒸発温度と、運転率との関係を表す。曲線C11は、圧縮機出力または目標蒸発温度と、冷却能力との関係を表す。曲線C12は、圧縮機出力または目標蒸発温度と、効率との関係を表す。図6に示されるように、運転効率が最高となる圧縮機出力および目標蒸発温度が存在する。
 サーバ装置90は、倉庫40内の気流分布の解析結果を用いて、空調機100の運転率および単位時間(たとえば1日)当たりの電気コストを予測する。空調機100の目標蒸発温度を変更する場合、サーバ装置90は、倉庫40内の気流分布の解析結果を用いて、空調機100の効率が最高になると予測される目標蒸発温度を空調機100に送信する。
 サーバ装置90は、倉庫40内の気流分布の解析結果を用いて、倉庫40内の温度のばらつき(温度ムラ)を検出する。サーバ装置90は、倉庫40内における最高の温度が倉庫40内の許容温度Tuより低い場合は目標温度を上昇させ、許容温度Tuを上回る場合は目標温度を低下させる。
 図7は、図4の倉庫40内の最高の温度Tmaxおよび目標温度のタイムチャートを併せて示す図である。図7において、曲線C21は、倉庫40内の最高の温度Tmaxの変化を表す。折れ線C22は、目標温度の変化を表す。温度Tguは、目標温度の下限値であり、たとえばユーザによって設定された目標温度である。
 図7に示されるように、時刻t1から時刻t2(>t1)の時間帯において、許容温度Tuから温度Tmaxを引いた温度差(裕度)が閾値Mthより大きいため、倉庫40内を冷却する必要性が低い。時刻t1~t2の時間帯において空調機100による冷却を抑制するため、目標温度がTguからTg1(>Tgu)に上昇される。時刻t2~t3においては裕度が閾値Mth以下となるため、倉庫40内を冷却する必要性が高い。時刻t2~t3の時間帯において空調機100による冷却を促進するため、目標温度がT1から低下される。図7における時刻t3以降の時間帯においては裕度が閾値Mthより大きくなるため、倉庫40内を冷却する必要性が低い。図7における時刻t3以降の時間帯において空調機100による冷却を抑制するため、目標温度がTguからTg1に上昇される。なお、閾値Mthは、実機実験あるいはシミュレーションによって適宜決定される。
 図8は、サーバ装置90において行われる目標温度の設定処理の流れを示すフローチャートである。図8に示される処理は、サーバ装置90を統合的に制御する不図示のメインルーチンによってサンプリングタイム毎に呼び出される。以下ではステップを単にSと記載する。
 図8に示されるように、サーバ装置90は、S11において温度Tmaxが許容温度Tuより低いか否かを判定する。温度Tmaxが許容温度Tu以上(S11においてNO)、サーバ装置90は、S14において目標温度を低下させて処理をメインルーチンに返す。温度Tmaxが許容温度Tuより低い場合(S11においてYES)、サーバ装置90は、S12において裕度が閾値Mthより大きいか否かを判定する。裕度が閾値Mth以下である場合(S12においてNO)、サーバ装置90は、S14において目標温度を低下させて処理をメインルーチンに返す。裕度が閾値Mthより大きい場合(S12においてYES)、サーバ装置90は、S13において目標温度を上昇させて処理をメインルーチンに返す。
 サーバ装置90は、倉庫40内の温度および湿度、ならびに空調機100の運転データを用いて、蒸発器12に発生している霜による空調機100の性能低下および空調機100の除霜運転を開始した場合の倉庫40内の温度上昇を解析する。サーバ装置90は、除霜運転に要する電気コストが最小になると予測されるタイミング、または除霜運転における倉庫40内の温度上昇が最小になると予測されるタイミングにおいて空調機100の除霜運転を開始する。
 サーバ装置90は、倉庫40内の温度および湿度、空調機100の運転データ、倉庫40内に配置された物品の位置および温度、ならびに倉庫40内に存在する作業者の有無を用いて、倉庫40内において温度が均一となるように空調機100の送風方向およびファン16の回転速度を制御する。
 図9は、図1の端末装置80の一例であるタブレット80Bの外観図である。図9に示されるように、タブレット80Bは、倉庫40内の3次元画像に倉庫40内の気流分布を重畳して表示する。
 タブレット80Bを用いることにより、倉庫40内の気流変化および電気代の変化を単位時間間隔(たとえば1日、1ヶ月、あるいは1年)で時系列に視覚化することができる。タブレット80Bによる倉庫40内の気流変化および電気代の変化の視覚化においては、図7および図8に示されるような空調制御を行った場合の倉庫40内の気流変化および電気代の変化と、当該空調制御を行わなかった場合の倉庫40内の気流変化および電気代の変化とを比較して表示することが望ましい。当該空調制御を行わなかった場合の倉庫40内の気流変化および電気代のデータは、当該空調制御が行われない状態で取得された一定期間(たとえば数日間)のデータである。たとえば、空調システムのメーカはこれらのデータを用いて、さらに省エネにつながる冷凍サイクル装置との置換、冷凍機の増設、熱籠り領域へのファンの設置等をシミュレーションし、それに要するイニシャルコストと、低減可能なランニングコストを倉庫40の所有者に提案することができる。また、空調システムのメーカは、倉庫40内の気流の変化または温度ムラ等の傾向から、設備の変更を要せずに、品質向上および省エネ向上の観点での荷物の配置等に関する提案を行うこともできる。倉庫40内のセンサおよび気流分析を行うために必要な機器に関してセンサの設置等に係る費用を無償にする代わりに、達成された省エネ度に応じて倉庫40の所有者に課金してもよい。
 以上、実施の形態に係る空調システムによれば、空調システムの製造コストを削減することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 システムコントローラ、10 ユニットクーラ、11 膨張弁、12 蒸発器、14,24 コントローラ、15 風向調節部、16 ファン、17,18,23 開閉弁、20 コンデンシングユニット、21 圧縮機、22 凝縮器、30 センサ部、31 温湿度センサ、32 赤外線センサ、40 倉庫、50 受信機、60 リモートコントローラ、80 端末装置、80B タブレット、90 サーバ装置、91 処理回路、92 メモリ、93 通信部、94 入出力部、95 バス、100 空調機、1000 空調システム、Ce 天井、Fr 床、NW ネットワーク、W1,W2,W3,W4 壁。

Claims (9)

  1.  冷媒が循環し、特定空間を冷房する空調機と、
     前記空調機を制御するサーバ装置とを備え、
     前記空調機は、
     前記特定空間の外部に配置された圧縮機と、
     前記特定空間の外部に配置された第1熱交換器と、
     膨張弁と、
     前記特定空間に配置された第2熱交換器と、
     前記特定空間に配置されたセンサ部とを含み、
     前記冷媒は、前記圧縮機、前記第1熱交換器、前記膨張弁、および前記第2熱交換器の順に循環し、
     前記サーバ装置は、前記センサ部の各々によって測定された前記特定空間の物理量および前記空調機の運転データを用いて前記空調機を制御し、
     前記センサ部は、複数の第1センサと、複数の第2センサとを含み、
     前記複数の第1センサの各々は、前記特定空間の壁に沿って配置され、前記特定空間の第1領域の温度を測定し、
     前記複数の第2センサの各々は、前記特定空間の天井に配置され、前記特定空間の第2領域の温度を測定し、
     前記第1領域は、前記第2領域より狭く、前記第2領域の外部の領域である、空調システム。
  2.  前記サーバ装置は、前記物理量および前記運転データを用いて前記特定空間の気流分布を解析し、前記気流分布の解析結果を用いて前記空調機を制御する、請求項1に記載の空調システム。
  3.  前記サーバ装置は、前記気流分布の解析結果を用いて前記空調機の運転率および前記空調機の単位時間当たりの電気コストを予測し、予測された前記運転率および予測された前記電気コストを用いて前記空調機を制御する、請求項2に記載の空調システム。
  4.  前記サーバ装置は、前記気流分布の解析結果を用いて前記空調機の効率が最高になると予測される目標蒸発温度を前記空調機に送信する、請求項2または3に記載の空調システム。
  5.  前記サーバ装置は、前記気流分布の解析結果を用いて、前記特定空間における最高の温度を特定し、前記最高の温度が前記特定空間の許容温度より低い場合、前記特定空間の目標温度を前記最高の温度が測定されたときの前記特定空間の目標温度よりも高く設定し、前記最高の温度が前記許容温度より高い場合、前記特定空間の目標温度を前記最高の温度が測定されたときの前記特定空間の目標温度よりも低く設定する、請求項2~4のいずれか1項に記載の空調システム。
  6.  前記サーバ装置に接続された端末装置をさらに備え、
     前記端末装置は、前記特定空間の3次元画像に前記気流分布を重畳して表示する、請求項2~5のいずれか1項に記載の空調システム。
  7.  前記第2熱交換器から前記特定空間への送風方向を調節する風向調節部と、
     前記第2熱交換器から前記特定空間へ送風するファンとをさらに含み、
     前記サーバ装置は、前記物理量および前記運転データ、前記特定空間に配置された物品の位置および温度、ならびに前記特定空間に存在する人間の有無を用いて、前記特定空間において温度が均一となるように前記送風方向および前記ファンの回転速度を制御する、請求項1~5のいずれか1項に記載の空調システム。
  8.  前記サーバ装置は、前記物理量および前記運転データを用いて、前記第2熱交換器に発生している霜による前記空調機の性能低下および前記空調機の除霜運転を開始した場合の前記特定空間の温度上昇を解析して、前記除霜運転に要する電気コストが最小になると予測されるタイミング、または前記除霜運転における前記特定空間の温度上昇が最小になると予測されるタイミングにおいて前記除霜運転を開始する、請求項1~6のいずれか1項に記載の空調システム。
  9.  前記複数の第1センサの各々は、前記第1領域の温度および湿度を測定し、
     前記複数の第2センサの各々は、赤外線センサを含む、請求項1~7のいずれか1項に記載の空調システム。
PCT/JP2020/033900 2020-09-08 2020-09-08 空調システム WO2022054122A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/033900 WO2022054122A1 (ja) 2020-09-08 2020-09-08 空調システム
JP2022548263A JPWO2022054122A1 (ja) 2020-09-08 2020-09-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/033900 WO2022054122A1 (ja) 2020-09-08 2020-09-08 空調システム

Publications (1)

Publication Number Publication Date
WO2022054122A1 true WO2022054122A1 (ja) 2022-03-17

Family

ID=80631390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033900 WO2022054122A1 (ja) 2020-09-08 2020-09-08 空調システム

Country Status (2)

Country Link
JP (1) JPWO2022054122A1 (ja)
WO (1) WO2022054122A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229031A (ja) * 2008-03-25 2009-10-08 Hitachi Plant Technologies Ltd 室内空調方法と加湿機能付き室内空調装置
JP2010085032A (ja) * 2008-09-30 2010-04-15 Daikin Ind Ltd 空気調和装置
JP2012156394A (ja) * 2011-01-27 2012-08-16 Chugoku Electric Power Co Inc:The 室内温度制御システム
JP2013217634A (ja) * 2012-03-13 2013-10-24 Taisei Corp 省エネルギー空調システム
WO2019224916A1 (ja) * 2018-05-22 2019-11-28 三菱電機株式会社 空気調和装置およびこれを有する倉庫
WO2020008550A1 (ja) * 2018-07-04 2020-01-09 三菱電機株式会社 省エネ管理装置、省エネ管理システム、省エネ管理方法及びプログラム
WO2020089996A1 (ja) * 2018-10-30 2020-05-07 三菱電機株式会社 遠隔操作端末および空調システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230144A (ja) * 1993-02-05 1994-08-19 Aichi Tokei Denki Co Ltd 在室検知システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229031A (ja) * 2008-03-25 2009-10-08 Hitachi Plant Technologies Ltd 室内空調方法と加湿機能付き室内空調装置
JP2010085032A (ja) * 2008-09-30 2010-04-15 Daikin Ind Ltd 空気調和装置
JP2012156394A (ja) * 2011-01-27 2012-08-16 Chugoku Electric Power Co Inc:The 室内温度制御システム
JP2013217634A (ja) * 2012-03-13 2013-10-24 Taisei Corp 省エネルギー空調システム
WO2019224916A1 (ja) * 2018-05-22 2019-11-28 三菱電機株式会社 空気調和装置およびこれを有する倉庫
WO2020008550A1 (ja) * 2018-07-04 2020-01-09 三菱電機株式会社 省エネ管理装置、省エネ管理システム、省エネ管理方法及びプログラム
WO2020089996A1 (ja) * 2018-10-30 2020-05-07 三菱電機株式会社 遠隔操作端末および空調システム

Also Published As

Publication number Publication date
JPWO2022054122A1 (ja) 2022-03-17

Similar Documents

Publication Publication Date Title
US7908039B2 (en) Cooling storage cabinet and method of operating the same
ES2218811T3 (es) Refrigerador.
JP5362537B2 (ja) 空調制御装置、冷却システム及び空調制御プログラム
KR100208345B1 (ko) 냉장고의 온도제어방법 및 온도제어장치
JP5029913B2 (ja) 空調システム及びその制御方法
US8220278B2 (en) Air conditioner and temperature sensor
JP6556351B2 (ja) 車両用空調装置及び列車通信システム
EP4116635A1 (en) Air conditioner
JPWO2019224916A1 (ja) 空気調和装置およびこれを有する倉庫
JP2012037159A (ja) 空気調和機の制御装置および冷凍装置の制御装置
KR20190106376A (ko) 냉매소음 저감형 공기조화기 실내기 및 그 제어 방법
EP3657105A1 (en) Refrigerator and method for controlling the same
JP5312286B2 (ja) 空気調和機の制御装置、冷凍装置の制御装置
JP5473619B2 (ja) 空気調和機の制御装置
JP4502584B2 (ja) 冷却システムの制御装置
JP2009041886A (ja) 空調熱源設備の性能評価装置
WO2022054122A1 (ja) 空調システム
JP2014190657A (ja) オープンショーケース及びそれを備えた冷凍装置
JP2017180990A (ja) 空気調和装置
JP2014190658A (ja) 冷凍装置
JP5389408B2 (ja) 冷却システムの制御装置
JP2009127969A (ja) 冷蔵庫
JP5452284B2 (ja) 空気調和システム
JP3685298B2 (ja) 冷蔵ショーケースの冷却装置
JP6145867B2 (ja) オープンショーケース

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953190

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022548263

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953190

Country of ref document: EP

Kind code of ref document: A1