WO2022052583A1 - 一种散热控制方法、装置以及设备 - Google Patents

一种散热控制方法、装置以及设备 Download PDF

Info

Publication number
WO2022052583A1
WO2022052583A1 PCT/CN2021/103361 CN2021103361W WO2022052583A1 WO 2022052583 A1 WO2022052583 A1 WO 2022052583A1 CN 2021103361 W CN2021103361 W CN 2021103361W WO 2022052583 A1 WO2022052583 A1 WO 2022052583A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
heat
dissipation channel
channel
power consumption
Prior art date
Application number
PCT/CN2021/103361
Other languages
English (en)
French (fr)
Inventor
韩红瑞
Original Assignee
苏州浪潮智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州浪潮智能科技有限公司 filed Critical 苏州浪潮智能科技有限公司
Priority to US18/023,398 priority Critical patent/US11853135B2/en
Publication of WO2022052583A1 publication Critical patent/WO2022052583A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20836Thermal management, e.g. server temperature control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49216Control of temperature of processor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to the field of servers, in particular to a heat dissipation control method, and also to a heat dissipation control device and equipment.
  • the existing cooling control method usually detects the current temperature of the target location, and controls the fan to run at a speed corresponding to the current temperature in order to provide the corresponding cooling capacity.
  • the current cooling control method is based on the actual temperature value. After reaching a certain value, the corresponding heat dissipation will be provided, and the heat dissipation action is relatively lagging, that is to say, when the heat dissipation is performed, the temperature value of the target location (such as the CPU (Central Processing Unit, central processing unit)) is already at a high level. , and heat dissipation takes a certain amount of time, so the device at the target location will work for a long time at a higher level of temperature value, which makes the related devices have potential safety hazards and may shorten the service life.
  • the target location such as the CPU (Central Processing Unit, central processing unit)
  • the present invention provides a heat dissipation control method, including:
  • the heat sink is controlled according to the first parameter adjustment amount so that the heat dissipation rate matches the heat generation rate.
  • determining the heat generation rate of the heat dissipation channel according to the power consumption value of each device in the heat dissipation channel is specifically:
  • the heat generation rate of the heat dissipation channel is calculated according to the sum of the respective power consumption values.
  • the calculation of the heat dissipation speed of the heat dissipation channel according to the temperature value of the heat dissipation channel and the actual unit time flow rate of the heat dissipation medium is specifically:
  • V is the heat dissipation rate
  • C is the air specific heat capacity
  • CFM is the actual unit time flow rate of the heat dissipation medium in the heat dissipation channel
  • is the density of the heat dissipation medium
  • ⁇ T is the inlet of the heat dissipation medium in the heat dissipation channel
  • V is the flow rate of the heat dissipation medium
  • S is the cross-sectional area of the heat dissipation channel.
  • the obtaining of the power consumption value of each non-moving device in the heat dissipation channel is as follows:
  • the calculation of the heat generation rate of the heat dissipation channel according to the sum of the respective power consumption values is specifically:
  • the heat generation rate of the target heat dissipation channel is calculated according to the sum of the respective power consumption values.
  • the radiator is a fan
  • the heat dissipation channel is an air duct, and the heat dissipation medium is air.
  • radiators there are multiple radiators corresponding to the heat dissipation channels;
  • control of the radiator according to the first parameter adjustment amount is specifically:
  • the plurality of the heat sinks corresponding to the heat dissipation channel are controlled according to the first parameter adjustment amount.
  • the heat dissipation control method further includes:
  • the radiator is controlled according to the second parameter adjustment amount so that the actual flow rate per unit time is equal to the theoretical flow rate per unit time.
  • the present invention also provides a heat dissipation control device, comprising:
  • a first calculation module configured to calculate the heat generation rate of the heat dissipation channel according to the power consumption value of each device in the heat dissipation channel;
  • a second calculation module configured to calculate the heat dissipation speed of the heat dissipation channel according to the temperature value of the heat dissipation channel and the actual unit time flow rate of the heat dissipation medium;
  • a determination module configured to determine the first parameter adjustment amount of the radiator according to the difference between the heat generation rate and the heat dissipation rate
  • a control module configured to control the heat sink according to the first parameter adjustment amount, so that the heat dissipation speed matches the heat generation speed.
  • the present invention also provides a heat dissipation control device, including:
  • the processor is configured to implement the steps of the heat dissipation control method according to any one of the above when executing the computer program.
  • the present invention provides a heat dissipation control method.
  • the present application can calculate the heat generation speed of the heat dissipation channel according to the power consumption value of each device in the heat dissipation channel, and then control the heat sink based on the heat generation speed so as to dissipate heat from the heat dissipation channel.
  • the speed matches the heat generation speed.
  • the application can match the heat dissipation speed during this time period to suppress each device in the heat dissipation channel.
  • the temperature rise of the heat dissipation channel makes the devices in the heat dissipation channel work under high temperature conditions as little as possible, which eliminates the safety hazards of related devices and prolongs the service life.
  • the present invention also provides a heat dissipation control device and equipment, which have the beneficial effects of the above heat dissipation control method system.
  • FIG. 1 is a schematic flowchart of a heat dissipation control method provided by the present invention
  • FIG. 2 is a schematic structural diagram of a heat dissipation control device provided by the present invention.
  • FIG. 3 is a schematic structural diagram of a heat dissipation control device provided by the present invention.
  • FIG. 1 is a schematic flowchart of a heat dissipation control method provided by the present invention.
  • the heat dissipation control method includes:
  • Step S1 Calculate the heat generation rate of the heat dissipation channel according to the power consumption value of each device in the heat dissipation channel;
  • the source of the temperature increase in the heat dissipation channel is mainly the electrothermal conversion when the device is powered on, but this heating process is not completed instantaneously, it can be Before the temperature rise, the heat generation rate corresponding to the power consumption value of each device in the heat dissipation channel is detected in time, and the processing to prevent the temperature rise is carried out in a targeted manner.
  • the heat dissipation channel may refer to a channel through which the heat dissipation medium of the radiator flows, for example, an air channel of a fan or a water flow channel of a liquid-cooled heat dissipation device, which is not limited in this embodiment of the present invention.
  • each device may refer to a device that can perform energy conversion to generate thermal energy, and may include, for example, a CPU, a GPU (Graphics Processing Unit, graphics processor), a wire, and the like, which is not limited in this embodiment of the present invention.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • wire and the like, which is not limited in this embodiment of the present invention.
  • Step S2 calculating the heat dissipation speed of the heat dissipation channel according to the temperature value of the heat dissipation channel and the actual unit time flow rate of the heat dissipation medium;
  • the radiator is controlled to achieve matching.
  • the temperature value of the heat dissipation channel can reflect the temperature change of the heat dissipation channel under the heat dissipation effect of the radiator, and the actual unit time flow of the heat dissipation medium is also directly related to the heat dissipation speed, so it can be accurately calculated based on these two data.
  • the cooling speed of the cooling channel can reflect the temperature change of the heat dissipation channel under the heat dissipation effect of the radiator, and the actual unit time flow of the heat dissipation medium is also directly related to the heat dissipation speed, so it can be accurately calculated based on these two data.
  • the cooling speed of the cooling channel can reflect the temperature change of the heat dissipation channel under the heat dissipation effect of the radiator, and the actual unit time flow of the heat dissipation medium is also directly related to the heat dissipation speed, so it can be accurately calculated based on these two data.
  • the cooling speed of the cooling channel can reflect the temperature change of the heat
  • the heat dissipation speed of the heat dissipation channel may also be calculated in other ways, which is not limited in this embodiment of the present invention.
  • Step S3 determining the first parameter adjustment amount of the radiator according to the difference between the heat production rate and the heat dissipation rate;
  • the difference between the heat generation rate and the heat dissipation rate may be arbitrary, and the difference may also be zero.
  • the difference between the heat generation rate and the heat dissipation rate is a positive number, it indicates the power consumption of each device in the heat dissipation channel. Increase, the heat generation capacity of each device in the heat dissipation channel increases. At this time, it is necessary to increase the power consumption of the heat sink to make the heat dissipation speed match the heat generation speed.
  • the difference between the heat speed minus the heat dissipation speed is negative, it means that the power consumption of each device in the heat dissipation channel is reduced, and the heat generation capacity of each device in the heat dissipation channel is weakened. Match the heat generation rate to avoid wasting energy.
  • the radiator when the difference between the heat production rate and the heat dissipation rate is not zero, the radiator needs to be controlled according to the difference, and the control of the radiator actually refers to the adjustment of the operating power consumption of the radiator, so The first parameter adjustment amount of the radiator needs to be determined according to the difference between the heat generation rate and the heat dissipation rate, so that subsequent steps can control the radiator based on the adjustment amount.
  • the parameter refers to a parameter related to the heat dissipation capability provided by the radiator.
  • the parameter may refer to the rotational speed of the fan, etc., which is not limited in this embodiment of the present invention.
  • Step S4 Controlling the radiator according to the first parameter adjustment amount, so that the heat dissipation rate matches the heat generation rate.
  • the heat sink can be controlled according to the first parameter adjustment amount, so that the heat dissipation rate and the heat generation rate can be matched, so that the The temperature is always maintained in a stable and healthy range, which is conducive to the stable operation of the server and reduces the probability of damage to related components.
  • the heat dissipation control method in the embodiment of the present invention may be performed once every preset time period, so as to continuously keep each device in the heat dissipation channel running within a healthy and stable temperature value range.
  • the present application can also set temperature sensors on key devices (such as CPU and GPU, etc.) to monitor and prompt their temperature, and can perform over-temperature alarms, etc., so as to ensure that the temperature is controlled incorrectly. Safety of critical components.
  • key devices such as CPU and GPU, etc.
  • the present invention provides a heat dissipation control method.
  • the present application can calculate the heat generation speed of the heat dissipation channel according to the power consumption value of each device in the heat dissipation channel, and then control the heat sink based on the heat generation speed so as to dissipate heat from the heat dissipation channel.
  • the speed matches the heat generation speed. Before the actual temperature rises, there is usually a period of time when the power consumption is high, that is, the temperature rises.
  • the application can match the heat dissipation speed during this time period to suppress each device in the heat dissipation channel.
  • the temperature of the heat dissipation channel is increased, so that the devices in the heat dissipation channel work under high temperature conditions as little as possible, which eliminates the safety hazards of related devices and prolongs the service life.
  • the heat generation rate of the heat dissipation channel is determined as follows:
  • the power consumption value of this part of the moving device should not be referred to when calculating. Therefore, in the embodiment of the present invention, the power consumption value of each non-moving device in the heat dissipation channel can be obtained first, and then the production of the heat dissipation channel can be performed based on the power consumption value of the non-moving device. Calculation of thermal velocity.
  • the heat generation rate of the heat dissipation channel can be calculated as:
  • the sum of the heat generation and power consumption of each device is used as the heat generation rate
  • the above-mentioned voltage may be a fixed value, and the real-time value of the current value may be collected by a current sensor, which is not limited in this embodiment of the present invention.
  • calculation methods of heat generation and power consumption of each device may also be of other various types, which are not limited in this embodiment of the present invention.
  • the heat dissipation speed of the heat dissipation channel is calculated as follows:
  • V is the heat dissipation rate
  • C is the air specific heat capacity
  • CFM Cubic Feet per Minute, cubic feet per minute
  • is the density of the heat dissipation medium
  • ⁇ T is the heat dissipation in the heat dissipation channel
  • V is the flow rate of the heat dissipation medium
  • S is the cross-sectional area of the heat dissipation channel.
  • the heat dissipation rate can be accurately calculated by the above formula.
  • the formula for calculating the heat dissipation rate may also be of other types, which is not limited in this embodiment of the present invention.
  • the inlet temperature and outlet temperature of the heat dissipation medium in the heat dissipation channel can be collected by a temperature sensor, and the flow rate of the heat dissipation medium can be collected by a wind speed sensor (when the radiator is a fan), etc., which is not described in this embodiment of the present invention. limited.
  • the heat generation rate of the heat dissipation channel is calculated as follows:
  • the heat dissipation control method in the present application can control the radiators corresponding to each heat dissipation channel, that is to say, the present application can control the multiple heat sinks in the server. Differential control can be performed without the need for unified control as in the prior art. On the one hand, power consumption can be reduced, and on the other hand, the temperature value of each heat dissipation channel can be guaranteed to be stable within a healthy temperature value range.
  • the radiator is a fan
  • the heat dissipation channel is an air duct, and the heat dissipation medium is air.
  • the fan is a common radiator, which has the advantages of low cost and simple structure.
  • the heat sink may also be of various other types, which is not limited in this embodiment of the present invention.
  • using a processor independent of the server where the radiator is located to execute the program corresponding to the above heat dissipation control method can reduce the pressure on the BMC (Baseboard Management Controller, baseboard management controller), so that it can better run other services.
  • BMC Baseboard Management Controller, baseboard management controller
  • the processor may be of various types, for example, may be a single chip or an ARM (Advanced RISC (Reduced Instruction Set Computing, reduced instruction set computer) Machines, advanced reduced instruction set processor) processor, etc.
  • ARM Advanced RISC
  • the embodiment of the present invention is This is not limited.
  • radiators there are multiple radiators corresponding to the heat dissipation channels;
  • controlling the radiator according to the first parameter adjustment amount is as follows:
  • the plurality of heat sinks corresponding to the heat dissipation channels are controlled according to the first parameter adjustment amount.
  • the radiator since the radiator operates under different power consumption, its energy conversion efficiency is quite different. When the energy conversion efficiency is low, it is equivalent to a waste of energy. For example, when the radiator is a fan, the If the rotational speed is too high, the energy conversion efficiency is poor. Therefore, in the embodiment of the present invention, when there are multiple heat sinks corresponding to the heat dissipation channels, the energy conversion efficiency of the multiple heat sinks corresponding to the heat dissipation channels can be used. The maximum sum is the target, and the multiple radiators corresponding to the cooling channel are controlled according to the adjustment amount of the first parameter.
  • the other fan when there are 3 fans, if two of the fans are running at the highest energy At the wind speed corresponding to the conversion efficiency, the other fan does not need to work to meet the current cooling requirements, then two of the fans can be controlled to run at the wind speed corresponding to the highest energy conversion efficiency, and the other fan does not work, so that the The energy conversion efficiency of the radiator corresponding to the heat dissipation channel is the highest, which is equivalent to providing the required wind speed with the least electric energy, thereby reducing the energy consumption.
  • control of the plurality of heat sinks corresponding to the heat dissipation channel according to the first parameter adjustment amount can also be in other specific forms.
  • the embodiments of the present invention are not limited herein.
  • the heat dissipation control method further includes:
  • the radiator is controlled according to the second parameter adjustment so that the actual flow rate per unit time is equal to the theoretical flow rate per unit time.
  • the resistance to the heat dissipation medium is also different, and the resistance will also affect the heat dissipation speed.
  • the resistance is too large, and the fan only works at 800 rpm, and the corresponding actual unit time flow is also smaller than the theoretical unit time flow corresponding to 1000 rpm/min, so the heat dissipation rate at this time is relatively ideal.
  • the heat dissipation speed in the heat sink has been discounted. If this situation is not discovered in time, it will inevitably lead to an increase in the temperature in the heat dissipation channel, which will increase the probability of thermal failure of related devices and increase maintenance costs. Therefore, this application can be used in the actual unit time.
  • the unit time flow compensation value is calculated according to the two, and then the second parameter adjustment amount is calculated based on the unit time flow compensation value and the radiator is controlled through it, which is equivalent to compensating for the heat dissipation.
  • the deviation of the heat dissipation speed caused by the resistance difference of the channel makes the temperature control more precise, and further ensures the stable operation of the server.
  • FIG. 2 is a schematic structural diagram of a heat dissipation control device provided by the present invention.
  • the heat dissipation control device includes:
  • the first calculation module 1 is used to calculate the heat generation rate of the heat dissipation channel according to the power consumption value of each device in the heat dissipation channel;
  • the second calculation module 2 is used to calculate the heat dissipation speed of the heat dissipation channel according to the temperature value of the heat dissipation channel and the actual unit time flow rate of the heat dissipation medium;
  • a determination module 3 configured to determine the first parameter adjustment amount of the radiator according to the difference between the heat production speed and the heat dissipation speed
  • the control module 4 is configured to control the radiator according to the adjustment amount of the first parameter, so that the heat dissipation speed matches the heat generation speed.
  • FIG. 3 is a schematic structural diagram of a heat dissipation control device provided by the present invention.
  • the heat dissipation control device includes:
  • memory 5 for storing computer programs
  • the processor 6 is configured to implement the steps of the heat dissipation control method in the foregoing embodiments when executing the computer program.
  • the terms “comprising”, “comprising” or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus.
  • an element qualified by the phrase “comprising a" does not preclude the presence of additional identical elements in the process, method, article, or device that includes the element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种散热控制方法,本申请可以根据散热通道中各个器件的功耗值计算出该散热通道的产热速度,然后基于该产热速度对散热器进行控制以便该散热通道的散热速度与产热速度匹配,由于在实际温度提升之前,其通常存在功耗较高也即温度提升的一段时间,本申请在该时间段内便可以进行散热速度的匹配以便压制散热通道中各器件的温度提升,使得散热通道中各器件尽可能少的工作在高温条件下,消除了相关器件安全隐患且延长了使用寿命。一种散热控制装置及设备,具有如上散热控制方法***的有益效果。

Description

一种散热控制方法、装置以及设备
本申请要求于2020年09月08日提交至中国专利局、申请号为202010935962.1、发明名称为“一种散热控制方法、装置以及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及服务器领域,特别是涉及一种散热控制方法,本发明还涉及一种散热控制装置以及设备。
背景技术
在服务器中,现有的散热控制方法通常为检测到目标位置的当前温度,并控制风扇以与当前温度对应的转速运转以便提供对应的散热能力,当前的这种散热控制方法是在实际温度值到达一定数值后,才会提供相应的散热,散热动作比较滞后,也就是说在进行散热的时候,目标位置(例如CPU(Central Processing Unit,中央处理器))的温度值已经处于较高的水平,并且散热需要一定的时间,因此目标位置的器件便会在较高水平的温度值下进行较长时间的工作,使得相关器件存在安全隐患并有可能缩短使用寿命。
因此,如何提供一种解决上述技术问题的方案是本领域技术人员目前需要解决的问题。
发明内容
本发明的目的是提供一种散热控制方法,使得散热通道中各器件尽可能少的工作在高温条件下,消除了相关器件安全隐患且延长了使用寿命;本发明的另一目的是提供一种散热控制装置以及设备,使得散热通道中各器件尽可能少的工作在高温条件下,消除了相关器件安全隐患且延长了使用寿命。
为解决上述技术问题,本发明提供了一种散热控制方法,包括:
根据散热通道中各个器件的功耗值计算出所述散热通道的产热速度;
根据所述散热通道的温度值以及散热介质的实际单位时间流量计算出所述散热通道的散热速度;
根据所述产热速度以及所述散热速度的差值确定出散热器的第一参数调整量;
根据所述第一参数调整量对所述散热器进行控制,以便所述散热速度与所述产热速度匹配。
优选地,所述根据散热通道中各个器件的功耗值确定出所述散热通道的产热速度具体为:
获取散热通道中各个非运动器件的功耗值;
根据各个所述功耗值之和计算出所述散热通道的产热速度。
优选地,所述根据所述散热通道的温度值以及散热介质的实际单位时间流量计算出所述散热通道的散热速度具体为:
V 散热=C×CFM×ρ×ΔT;
CFM=V×S;
其中,V 散热为散热速度,C为空气比热容,CFM为所述散热通道的散热介质的实际单位时间流量,ρ为所述散热介质的密度,ΔT为所述散热通道中所述散热介质的入口温度以及出口温度的温度差值,V为所述散热介质的流速,S为所述散热通道的截面积。
优选地,所述散热通道为多个;
所述获取散热通道中各个非运动器件的功耗值具体为:
获取目标散热通道中各个非运动器件的功耗值;
所述根据各个所述功耗值之和计算出所述散热通道的产热速度具体为:
根据各个所述功耗值之和计算出所述目标散热通道的产热速度。
优选地,所述散热器为风扇;
则所述散热通道为风道,所述散热介质为空气。
优选地,应用于独立于散热器所在服务器的处理器。
优选地,所述散热通道对应的散热器为多个;
则所述根据所述第一参数调整量对所述散热器进行控制具体为:
以所述散热通道对应的多个所述散热器的能量转换效率总和最高为目标,根据所述第一参数调整量对所述散热通道对应的多个所述散热器进行控制。
优选地,所述根据所述第一参数调整量对所述散热器进行控制之后,该散热控制方法还包括:
计算所述实际单位时间流量相对于所述散热器当前的理论单位时间流量的单位时间流量补偿值;
根据所述单位时间流量补偿值生成对于所述散热器的第二参数调整量;
根据所述第二参数调整量对所述散热器进行控制,以便使得所述实际单位时间流量等于所述理论单位时间流量。
为解决上述技术问题,本发明还提供了一种散热控制装置,包括:
第一计算模块,用于根据散热通道中各个器件的功耗值计算出所述散热通道的产热速度;
第二计算模块,用于根据所述散热通道的温度值以及散热介质的实际单位时间流量计算出所述散热通道的散热速度;
确定模块,用于根据所述产热速度以及所述散热速度的差值确定出散热器的第一参数调整量;
控制模块,用于根据所述第一参数调整量对所述散热器进行控制,以便所述散热速度与所述产热速度匹配。
为解决上述技术问题,本发明还提供了一种散热控制设备,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如上任一项所述散热控制方法的步骤。
本发明提供了一种散热控制方法,本申请可以根据散热通道中各个器件的功耗值计算出该散热通道的产热速度,然后基于该产热速度对散热器进行控制以便该散热通道的散热速度与产热速度匹配,由于在实际温度提升之前,其通常存在功耗较高也即温度提升的一段时间,本申请在该时间 段内便可以进行散热速度的匹配以便压制散热通道中各器件的温度提升,使得散热通道中各器件尽可能少的工作在高温条件下,消除了相关器件安全隐患且延长了使用寿命。
本发明还提供了一种散热控制装置及设备,具有如上散热控制方法***的有益效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的一种散热控制方法的流程示意图;
图2为本发明提供的一种散热控制装置的结构示意图;
图3为本发明提供的一种散热控制设备的结构示意图。
具体实施方式
本发明的核心是提供一种散热控制方法,使得散热通道中各器件尽可能少的工作在高温条件下,消除了相关器件安全隐患且延长了使用寿命;本发明的另一核心是提供一种散热控制装置以及设备,使得散热通道中各器件尽可能少的工作在高温条件下,消除了相关器件安全隐患且延长了使用寿命。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1,图1为本发明提供的一种散热控制方法的流程示意图,该散热控制方法包括:
步骤S1:根据散热通道中各个器件的功耗值计算出散热通道的产热速度;
具体的,考虑到如上背景技术中的技术问题,同时由于申请人考虑到了在散热通道中温度的提升来源主要是器件通电时的电热转换,但是这个升温的过程并不是瞬间完成的,因此可以在升温之前及时地检测出散热通道中各个器件的功耗值对应的产热速度,并针对性地进行防止升温的处理。
其中,散热通道可以指的是散热器的散热介质所流经的通道,例如可以是风扇的风道或者是液冷散热装置的水流通道等,本发明实施例在此不做限定。
具体的,各个器件可以指的是可以进行能量转换产生热能的器件,例如可以包括CPU、GPU(Graphics Processing Unit,图形处理器)以及导线等,本发明实施例在此不做限定。
步骤S2:根据散热通道的温度值以及散热介质的实际单位时间流量计算出散热通道的散热速度;
具体的,为了对散热器进行控制以使得散热器的散热速度与散热通道的产热速度相匹配,那么须首先了解在散热器作用下,散热通道当前的散热速度,从而可以在当前的散热速度的基础之上对于散热器进行控制以便实现匹配。
具体的,散热通道的温度值可以反映出在散热器散热作用下的散热通道的温度变化,而散热介质的实际单位时间流量也与散热速度直接相关,因此可以根据这两个数据准确地计算出散热通道的散热速度。
当然,除了根据上述两个数据计算散热通道的散热速度外,散热通道的散热速度还可以采用其他方式进行计算,本发明实施例在此不做限定。
步骤S3:根据产热速度以及散热速度的差值确定出散热器的第一参数调整量;
具体的,产热速度与散热速度的差值可能为任意情况,该差值也可能为零,当产热速度减去散热速度的差值为正数时,说明散热通道内各器件的功耗增加了,散热通道内各器件的产热能力增加,此时需要提升散热器的功耗以便使得散热速度匹配上产热速度,在散热通道内各器件升温之前 对其温度进行压制,而当产热速度减去散热速度的差值为负数时,说明散热通道内各器件的功耗降低了,散热通道内各器件的产热能力减弱,此时需要降低散热器的功耗以便使得散热速度与产热速度相匹配,以免造成能源的浪费。
其中,当产热速度以及散热速度的差值不为零时,均需要根据该差值对于散热器进行控制,而对于散热器的控制其实指的是对于散热器的运行功耗进行调整,因此需要根据产热速度以及散热速度的差值确定出来散热器的第一参数调整量,以便后续步骤基于该调整量对于散热器进行控制。
其中,参数指的是与散热器所能提供的散热能力相关的参数,例如当散热器为风扇时,参数可以指的是风扇的转速等,本发明实施例在此不做限定。
步骤S4:根据第一参数调整量对散热器进行控制,以便散热速度与产热速度匹配。
具体的,在确定出对散热器的第一参数调整量之后,便可以根据第一参数调整量对于散热器进行控制,从而可以使得散热速度与产热速度相匹配,使得散热通道内各器件的温度始终保持在稳定健康的区间,有利于服务器的稳定运行且降低相关器件损坏的概率。
其中,本发明实施例中的散热控制方法可以每隔预设时段执行一次,以便持续地保持散热通道内各器件运行在健康稳定的温度值区间内。
具体的,值得一提的是,本申请还可以在关键器件(例如CPU以及GPU等)上设置温度传感器对其温度进行监测以及提示,并可以进行超温报警等,以便在温度控制错误时确保关键器件的安全。
具体的,在减少了器件高温状况的情况下,也相当于减少了风扇高速运转的时间,也就减少了***噪音,提升了用户体验。
本发明提供了一种散热控制方法,本申请可以根据散热通道中各个器件的功耗值计算出该散热通道的产热速度,然后基于该产热速度对散热器进行控制以便该散热通道的散热速度与产热速度匹配,由于在实际温度提升之前,其通常存在功耗较高也即温度提升的一段时间,本申请在该时间段内便可以进行散热速度的匹配以便压制散热通道中各器件的温度提升, 使得散热通道中各器件尽可能少的工作在高温条件下,消除了相关器件安全隐患且延长了使用寿命。
在上述实施例的基础上:
作为一种优选的实施例,根据散热通道中各个器件的功耗值确定出散热通道的产热速度具体为:
获取散热通道中各个非运动器件的功耗值;
根据各个功耗值之和计算出散热通道的产热速度。
具体的,考虑到散热通道中除了大部分会将能量转换为热能进行温度提升的器件外,还存在一些器件会将能两个转换为动能,例如用于散热的风扇等,在进行产热速度计算的时候不应参考这部分运动器件的功耗值,因此本发明实施例中首先可以获取散热通道中各个非运动器件的功耗值,然后基于非运动器件的功耗值进行散热通道的产热速度的计算。
具体的,根据各个功耗值之和计算出散热通道的产热速度可以为:
计算出各个器件的产热功耗;
将各个器件的产热功耗之和作为产热速度;
其中,各个器件的产热功耗的计算方式可以为电压U乘以电流I,那么该器件在T时间段内产生的热量Q=U*I*T。
具体的,上述的电压可以为固定值,而电流值的实时数值可以通过电流传感器进行采集,本发明实施例在此不做限定。
当然,除了上述计算方式外,各个器件的产热功耗的计算方式还可以为其他多种类型,本发明实施例在此不做限定。
作为一种优选的实施例,根据散热通道的温度值以及散热介质的实际单位时间流量计算出散热通道的散热速度具体为:
V 散热=C×CFM×ρ×ΔT;
CFM=V×S;
其中,V 散热为散热速度,C为空气比热容,CFM(Cubic Feet per Minute,立方英尺每分钟)为散热通道的散热介质的实际单位时间流量,ρ为散热 介质的密度,ΔT为散热通道中散热介质的入口温度以及出口温度的温度差值,V为散热介质的流速,S为散热通道的截面积。
具体的,通过上述公式可以准确地对散热速度进行计算。
当然,除了上述公式外,计算散热速度的公式还可以为其他多种类型,本发明实施例在此不做限定。
具体的,散热通道中散热介质的入口温度以及出口温度均可以通过温度传感器采集得到,而散热介质的流速可以通过风速传感器(散热器为风扇时)等进行采集,本发明实施例在此不做限定。
作为一种优选的实施例,散热通道为多个;
获取散热通道中各个非运动器件的功耗值具体为:
获取目标散热通道中各个非运动器件的功耗值;
根据各个功耗值之和计算出散热通道的产热速度具体为:
根据各个功耗值之和计算出目标散热通道的产热速度。
具体的,当服务器中的散热通道为多个时,本申请中的散热控制方法可以针对各个散热通道所对应的散热器进行控制,也就是说本申请可以对服务器中的多个散热器进行针对性地区分控制,而无需像现有技术中一样进行统一的控制,一方面可以降低功耗,另一方面可以保证各个散热通道的温度值均稳定在健康的温度值区间。
作为一种优选的实施例,散热器为风扇;
则散热通道为风道,散热介质为空气。
具体的,风扇为常见的散热器,其具有成本低以及结构简单等优点。
当然,除了风扇外,散热器还可以为其他多种类型,本发明实施例在此不做限定。
作为一种优选的实施例,应用于独立于散热器所在服务器的处理器。
具体的,采用独立于散热器所在服务器的处理器执行上述散热控制方法对应的程序,可以减轻BMC(Baseboard Management Controller,基板管理控制器)的压力,以便其更好地运行其他业务。
其中,处理器可以为多种类型,例如可以为单片器或者ARM(Advanced RISC(Reduced Instruction Set Computing,精简指令集计算机)Machines,高级精简指令集处理器)处理器等,本发明实施例在此不做限定。
作为一种优选的实施例,散热通道对应的散热器为多个;
则根据第一参数调整量对散热器进行控制具体为:
以散热通道对应的多个散热器的能量转换效率总和最高为目标,根据第一参数调整量对散热通道对应的多个散热器进行控制。
具体的,由于散热器运行在不同的功耗下,其能量转换效率存在较大差别,当能量转换效率较低时则相当于造成了能量的浪费,例如当散热器为风扇的时候,风扇的转速如果太高的话,那么其能量转换效率是较差的,因此本发明实施例中可以在当散热通道对应的散热器为多个的时候,以散热通道对应的多个散热器的能量转换效率总和最高为目标,根据第一参数调整量对散热通道对应的多个散热器进行控制,例如一种情况下可以为:当风扇为3个的时候,若其中两个风扇均运行在最高的能量转换效率对应的风速下,另外一个风扇不用工作即可满足当前的散热需求,那么此时便可以控制其中两个风扇运行在最高的能量转换效率对应的风速下,另外一个风扇不用工作,从而使得该散热通道对应的散热器的能量转换效率最高,相当于以最少的电能来提供所需求的风速,降低了能源的消耗。
当然,除了上述列举的实例外,以散热通道对应的多个散热器的能量转换效率总和最高为目标,根据第一参数调整量对散热通道对应的多个散热器进行控制还可以为其他具体形式,本发明实施例在此不做限定。
作为一种优选的实施例,根据第一参数调整量对散热器进行控制之后,该散热控制方法还包括:
计算实际单位时间流量相对于散热器当前的理论单位时间流量的单位时间流量补偿值;
根据单位时间流量补偿值生成对于散热器的第二参数调整量;
根据第二参数调整量对散热器进行控制,以便使得实际单位时间流量等于理论单位时间流量。
具体的,考虑到在散热通道的结构不同时,其对散热介质构成的阻力也不同,该阻力同样会对散热速度产生影响,例如原本欲控制风扇工作在1000转每分钟,但是由于散热通道的阻力太大,风扇仅仅工作在800转每分钟的工况下,相应的其实际单位时间流量相对于1000转/min所对应的理论单位时间流量也较小,因此此时的散热速度相对于理想中的散热速度打了折扣,如果没有及时发现该情况,那么势必会造成散热通道中温度的提升,也就增加了相关器件受热故障的概率,增加了维修成本,因此本申请可以在实际单位时间流量与理论单位时间流量不同的时候,根据两者计算出单位时间流量补偿值,然后基于单位时间流量补偿值计算出第二参数调整量并通过其对散热器进行控制,相当于补偿了因为散热通道的阻力差异所带来的散热速度的偏差,使得温度控制更加精确,进一步地保障了服务器的稳定运行。
请参考图2,图2为本发明提供的一种散热控制装置的结构示意图,该散热控制装置包括:
第一计算模块1,用于根据散热通道中各个器件的功耗值计算出散热通道的产热速度;
第二计算模块2,用于根据散热通道的温度值以及散热介质的实际单位时间流量计算出散热通道的散热速度;
确定模块3,用于根据产热速度以及散热速度的差值确定出散热器的第一参数调整量;
控制模块4,用于根据第一参数调整量对散热器进行控制,以便散热速度与产热速度匹配。
对于本发明实施例提供的散热控制装置的介绍请参照前述的散热控制方法的实施例,本发明实施例在此不再赘述。
请参考图3,图3为本发明提供的一种散热控制设备的结构示意图,该散热控制设备包括:
存储器5,用于存储计算机程序;
处理器6,用于执行计算机程序时实现如前述实施例中散热控制方法的步骤。
对于本发明实施例提供的散热控制设备的介绍请参照前述的散热控制方法的实施例,本发明实施例在此不再赘述。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种散热控制方法,其特征在于,包括:
    根据散热通道中各个器件的功耗值计算出所述散热通道的产热速度;
    根据所述散热通道的温度值以及散热介质的实际单位时间流量计算出所述散热通道的散热速度;
    根据所述产热速度以及所述散热速度的差值确定出散热器的第一参数调整量;
    根据所述第一参数调整量对所述散热器进行控制,以便所述散热速度与所述产热速度匹配。
  2. 根据权利要求1所述的散热控制方法,其特征在于,所述根据散热通道中各个器件的功耗值确定出所述散热通道的产热速度具体为:
    获取散热通道中各个非运动器件的功耗值;
    根据各个所述功耗值之和计算出所述散热通道的产热速度。
  3. 根据权利要求2所述的散热控制方法,其特征在于,所述根据所述散热通道的温度值以及散热介质的实际单位时间流量计算出所述散热通道的散热速度具体为:
    V 散热=C×CFM×ρ×ΔT;
    CFM=V×S;
    其中,V 散热为散热速度,C为空气比热容,CFM为所述散热通道的散热介质的实际单位时间流量,ρ为所述散热介质的密度,ΔT为所述散热通道中所述散热介质的入口温度以及出口温度的温度差值,V为所述散热介质的流速,S为所述散热通道的截面积。
  4. 根据权利要求3所述的散热控制方法,其特征在于,所述散热通道为多个;
    所述获取散热通道中各个非运动器件的功耗值具体为:
    获取目标散热通道中各个非运动器件的功耗值;
    所述根据各个所述功耗值之和计算出所述散热通道的产热速度具体为:
    根据各个所述功耗值之和计算出所述目标散热通道的产热速度。
  5. 根据权利要求4所述的散热控制方法,其特征在于,所述散热器为风扇;
    则所述散热通道为风道,所述散热介质为空气。
  6. 根据权利要求1所述的散热控制方法,其特征在于,应用于独立于散热器所在服务器的处理器。
  7. 根据权利要求1所述的散热控制方法,其特征在于,所述散热通道对应的散热器为多个;
    则所述根据所述第一参数调整量对所述散热器进行控制具体为:
    以所述散热通道对应的多个所述散热器的能量转换效率总和最高为目标,根据所述第一参数调整量对所述散热通道对应的多个所述散热器进行控制。
  8. 根据权利要求1至6任一项所述的散热控制方法,其特征在于,所述根据所述第一参数调整量对所述散热器进行控制之后,该散热控制方法还包括:
    计算所述实际单位时间流量相对于所述散热器当前的理论单位时间流量的单位时间流量补偿值;
    根据所述单位时间流量补偿值生成对于所述散热器的第二参数调整量;
    根据所述第二参数调整量对所述散热器进行控制,以便使得所述实际单位时间流量等于所述理论单位时间流量。
  9. 一种散热控制装置,其特征在于,包括:
    第一计算模块,用于根据散热通道中各个器件的功耗值计算出所述散热通道的产热速度;
    第二计算模块,用于根据所述散热通道的温度值以及散热介质的实际单位时间流量计算出所述散热通道的散热速度;
    确定模块,用于根据所述产热速度以及所述散热速度的差值确定出散热器的第一参数调整量;
    控制模块,用于根据所述第一参数调整量对所述散热器进行控制,以便所述散热速度与所述产热速度匹配。
  10. 一种散热控制设备,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序时实现如权利要求1至8任一项所述散热控制方法的步骤。
PCT/CN2021/103361 2020-09-08 2021-06-30 一种散热控制方法、装置以及设备 WO2022052583A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/023,398 US11853135B2 (en) 2020-09-08 2021-06-30 Heat dissipation control method, apparatus and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010935962.1A CN112105225B (zh) 2020-09-08 2020-09-08 一种散热控制方法、装置以及设备
CN202010935962.1 2020-09-08

Publications (1)

Publication Number Publication Date
WO2022052583A1 true WO2022052583A1 (zh) 2022-03-17

Family

ID=73752609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103361 WO2022052583A1 (zh) 2020-09-08 2021-06-30 一种散热控制方法、装置以及设备

Country Status (3)

Country Link
US (1) US11853135B2 (zh)
CN (1) CN112105225B (zh)
WO (1) WO2022052583A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105225B (zh) 2020-09-08 2022-04-22 苏州浪潮智能科技有限公司 一种散热控制方法、装置以及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070252544A1 (en) * 2004-10-28 2007-11-01 International Business Machines Corporation Method and Apparatus For Thermal Control of Electronic Components
CN103228122A (zh) * 2013-04-28 2013-07-31 上海电机学院 多级分区散热***
CN104460911A (zh) * 2014-12-22 2015-03-25 浪潮电子信息产业股份有限公司 一种散热控制方法、装置及***
CN111506130A (zh) * 2020-04-14 2020-08-07 浪潮商用机器有限公司 一种散热器的控制方法、装置及设备
CN112105225A (zh) * 2020-09-08 2020-12-18 苏州浪潮智能科技有限公司 一种散热控制方法、装置以及设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW542328U (en) * 2002-07-11 2003-07-11 Uniwill Comp Corp Rotatable mechanism
CN1758171B (zh) * 2004-10-10 2010-05-12 仁宝电脑工业股份有限公司 自动微调散热风扇的转速的方法
JP4201762B2 (ja) * 2004-12-17 2008-12-24 富士通株式会社 電子機器
TWI432947B (zh) * 2011-04-14 2014-04-01 Compal Electronics Inc 電腦散熱風扇之控制方法
CN105116009B (zh) * 2015-08-11 2017-12-08 上海原动力通信科技有限公司 一种发热模拟装置和热管散热性能检测装置
CN106292963A (zh) * 2016-08-24 2017-01-04 浪潮电子信息产业股份有限公司 一种基于cpu功耗的风扇调控方法
CN106255392B (zh) * 2016-09-21 2019-11-29 珠海格力电器股份有限公司 电气柜的散热控制方法、装置和***
TWM542328U (zh) * 2017-01-16 2017-05-21 Evga Corp 基於顯示卡核心參數之散熱控制裝置
CN108089682A (zh) * 2018-01-08 2018-05-29 北京荷云达世科技有限公司 一种高效集成的云计算机冷却***
CN208805774U (zh) * 2018-10-31 2019-04-30 江苏财经职业技术学院 一种计算机硬件用散热结构
JP2023000066A (ja) * 2021-06-17 2023-01-04 三菱重工業株式会社 冷却液循環ユニット及びその制御方法並びにプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070252544A1 (en) * 2004-10-28 2007-11-01 International Business Machines Corporation Method and Apparatus For Thermal Control of Electronic Components
CN103228122A (zh) * 2013-04-28 2013-07-31 上海电机学院 多级分区散热***
CN104460911A (zh) * 2014-12-22 2015-03-25 浪潮电子信息产业股份有限公司 一种散热控制方法、装置及***
CN111506130A (zh) * 2020-04-14 2020-08-07 浪潮商用机器有限公司 一种散热器的控制方法、装置及设备
CN112105225A (zh) * 2020-09-08 2020-12-18 苏州浪潮智能科技有限公司 一种散热控制方法、装置以及设备

Also Published As

Publication number Publication date
CN112105225A (zh) 2020-12-18
US11853135B2 (en) 2023-12-26
US20230229209A1 (en) 2023-07-20
CN112105225B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
TWI430077B (zh) 用於電腦系統的風扇控制系統與方法
TWI624215B (zh) 電腦風扇控制方法及風扇控制系統
US7991515B2 (en) Computer cooling system with preferential cooling device selection
US10180665B2 (en) Fluid-cooled computer system with proactive cooling control using power consumption trend analysis
TWI394033B (zh) 用於不同高度之電腦系統的風扇控制系統與方法
US8140196B2 (en) Method of controlling temperature of a computer system
WO2021027298A1 (zh) 一种散热元件的控制方法及控制装置
TW201223423A (en) Heat dissipating device and method thereof
TWI468594B (zh) 多重效率風扇控制系統與具有風扇控制系統的電腦系統
CN102724846B (zh) 散热控制方法及散热控制装置
TW201200996A (en) System and method for controlling temperature of a computer
JP2012114437A (ja) 冷却装置及びファン制御のための動作方法
CN108255272A (zh) 一种服务器的散热风扇的调速方法及装置
TWI486763B (zh) 電腦系統之過熱保護方法及相關裝置
WO2022052583A1 (zh) 一种散热控制方法、装置以及设备
CN112286322A (zh) 一种服务器内存主动散热的方法、***、设备及介质
CN104214121A (zh) 风扇转数控制***及方法
CN110567739B (zh) 一种散热器散热状态快速检测方法及装置
TW201445295A (zh) 風扇轉數控制系統及方法
CN104131990A (zh) 一种可根据环境温度自动调节风扇转速的控制方法
TW201529991A (zh) 風扇控制系統及方法
CN111156187A (zh) 一种服务器风扇转速控制方法及装置
JP2014183074A (ja) 電子機器及び冷却方法
TWI297429B (en) System and method for controlling heat dissipation
CN111698874B (zh) 空调器散热方法、散热装置及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21865639

Country of ref document: EP

Kind code of ref document: A1