WO2022052410A1 - 一种抗紫外pbt复合物及其制备方法和应用 - Google Patents

一种抗紫外pbt复合物及其制备方法和应用 Download PDF

Info

Publication number
WO2022052410A1
WO2022052410A1 PCT/CN2021/073982 CN2021073982W WO2022052410A1 WO 2022052410 A1 WO2022052410 A1 WO 2022052410A1 CN 2021073982 W CN2021073982 W CN 2021073982W WO 2022052410 A1 WO2022052410 A1 WO 2022052410A1
Authority
WO
WIPO (PCT)
Prior art keywords
pbt
ultraviolet
lignin
tensile strength
parts
Prior art date
Application number
PCT/CN2021/073982
Other languages
English (en)
French (fr)
Inventor
莫文杰
黄险波
叶南飚
朱文
龚德君
丁超
付学俊
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2022052410A1 publication Critical patent/WO2022052410A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the invention relates to the technical field of engineering plastics, and more particularly, to an anti-ultraviolet PBT compound and a preparation method and application thereof.
  • polybutylene terephthalate As one of the five major engineering plastics, polybutylene terephthalate (PBT) is widely used in various fields, such as electronic appliances, lighting, Home appliances and automobiles, etc. For products used outdoors, the material is usually required to have certain UV resistance, but the UV resistance of PBT itself is not good. Under the action of light and oxygen, PBT will produce physical or chemical changes such as discoloration, surface cracks, hardening, deterioration of electrical properties and decline of mechanical properties. Among light waves, ultraviolet light (wavelength ⁇ 400nm) has the greatest destructive effect.
  • the method to improve the anti-ultraviolet performance of PBT is to add anti-ultraviolet agent, and the most widely used in industry are benzophenones and benzotriazoles.
  • Chinese patent application CN106566211A provides a PBT for outdoor anti-ultraviolet optical cable loose tube, by adding 2-4% anti-ultraviolet agent to the PBT material to improve its anti-ultraviolet performance, the anti-ultraviolet agent used is UV-P and UV -9 mixture.
  • CN101914270A provides a special material for yellowing-resistant PBT plastic shell of energy-saving lamps with a cover.
  • the special material for PBT plastic shell includes 0.3-1.5% of benzotriazole anti-ultraviolet agent, so as to improve the yellowing of PBT material after ultraviolet irradiation,
  • the prior art does not involve the mechanical properties of the PBT plastic case.
  • chemical small-molecule anti-ultraviolet agents commonly used on the market usually degrade slowly in the natural environment, causing pollution to the ecological environment, and also have the disadvantages of easy transfer, harmful to human body, and high price.
  • Lignin is a by-product of pulp and paper making, and its molecular structure contains a large number of conjugated chromophores such as carbon-carbon double bonds, carbonyl groups, benzene rings and quinoid structures, which enable lignin to effectively absorb ultraviolet light and can Used as a UV absorber.
  • lignin has the advantages of being safe, degradable and environmentally friendly, and can replace traditional chemical UV-resistant agents. Chen Jianhao et al. (Chen Jianhao. Research on the anti-aging properties of lignin on polyolefin plastics [D].) studied the effect of lignin on the anti-aging properties of polyolefin plastics.
  • Olefin plastics can improve their thermal-oxidative aging resistance and anti-ultraviolet aging properties, and at the same time have little effect on the mechanical properties of polyolefin plastics.
  • Alexy Alexy P,B Kosiková,G Podstránska. The effect of blending lignin with polyethylene and polypropylene on physical properties[J].Polymer,2000,41(13):4901-4908.
  • et al found that lignin can improve polyolefin
  • the anti-ultraviolet degradation performance of plastics, lignin was blended with low-density polyethylene (LDPE) and polypropylene (PP), respectively.
  • LDPE low-density polyethylene
  • PP polypropylene
  • the present invention provides an anti-ultraviolet PBT compound, which uses lignin as an ultraviolet absorber and adds glass fiber, and has good anti-ultraviolet performance and mechanical properties.
  • Another object of the present invention is to provide a method for preparing the above-mentioned anti-ultraviolet PBT compound.
  • Another object of the present invention is to provide the application of the above-mentioned anti-ultraviolet PBT compound.
  • the technical scheme adopted in the present invention is:
  • An anti-ultraviolet PBT compound comprising the following components by weight:
  • the average diameter of the glass fibers is less than or equal to 13 ⁇ m, and the pH of the lignin is 7.0 to 8.0.
  • lignin accounts for 1.23-8.33% of the total weight of the PBT and lignin, and lignin accounts for 1.02-6.47% of the total weight of the UV-resistant PBT composite.
  • lignin pH ⁇ 7.0.
  • the pH of the lignin is 7.0-8.0.
  • the pH detection method of lignin is as follows: dissolve 10 g of lignin in 100 ml of water, and after the pH of the solution is balanced, measure the pH of the supernatant with a pH meter, which is the pH of lignin.
  • the lignin is 3-5 parts by weight. Under the scheme of 3-5 parts by weight of lignin, lignin accounts for 5.17-8.33% of the total weight of the PBT and lignin, and the lignin accounts for 3.98-6.47% of the total weight of the UV-resistant PBT composite.
  • the lignin is alkali lignin separated by alkaline pulping.
  • alkali lignin has the largest yield and relatively low cost.
  • Alkali lignin comes from the alkali pulping waste liquor in papermaking, and is generally purified by acid precipitation or spray drying.
  • the average diameter of the glass fibers affects the mechanical properties of the fabricated PBT composites.
  • the lower the average diameter of the glass fiber the stronger the tensile strength.
  • Common glass fibers used for PBT materials have an average diameter of 8 ⁇ m, 10 ⁇ m, 11 ⁇ m, 13 ⁇ m, 17 ⁇ m, etc.
  • the manufacturing cost of glass fibers with a too low average diameter will be higher.
  • the inventors have found that when the average diameter of the glass fibers is larger, the tensile strength of the lignin-containing PBT composites cannot maintain a good level; when the average diameter of the glass fibers is ⁇ 13 ⁇ m, the obtained lignin-containing PBT composites
  • the material can have the tensile strength required by the application, and the tensile strength is greater than or equal to 100 MPa.
  • the average diameter of the glass fibers is 10 ⁇ m.
  • the average diameter of the glass fibers is 10 ⁇ m, and the amount of lignin is 3-5 parts by weight.
  • the glass fibers are alkali-free glass fibers.
  • E-glass fiber refers to glass fiber with alkali metal oxide ⁇ 0.8%, usually also called E glass fiber, which has excellent mechanical properties, high mechanical strength, low dielectric constant, high dielectric strength, and good chemical stability .
  • the glass fibers are chopped glass fibers with a length of 3-5 mm.
  • the intrinsic viscosity of the PBT is 0.8-1.3 dl/g at 25°C.
  • the detection of the PBT intrinsic viscosity is in a phenol-tetrachloroethane solvent (the mass ratio of phenol and tetrachloroethane is 3:2).
  • the toughening agent can be a commonly used toughening agent in PBT, such as ethylene-acrylate-glycidyl methacrylate terpolymer, ethylene-methyl acrylate binary copolymer, ethylene-butyl acrylate binary copolymer One or more of the copolymers.
  • the antioxidants can be commonly used antioxidants in PBT, such as hindered phenolic antioxidants, phosphites, and thioester antioxidants.
  • the present invention also protects the preparation method of the anti-ultraviolet PBT compound, comprising the following steps:
  • the glass fiber is added into the mixture formed by the dried PBT, lignin, toughening agent and antioxidant, and the anti-ultraviolet PBT compound is obtained after being melt extruded, cooled and pelletized by a twin-screw extruder.
  • the temperature of the twin-screw extruder is 220-250° C.
  • the feeding amount is 300-500 kg/h
  • the rotational speed of the main machine is 300-400 rpm.
  • the present invention also protects the application of the anti-ultraviolet PBT compound in anti-ultraviolet PBT products.
  • the invention uses safe, efficient and environment-friendly lignin as the ultraviolet absorber of PBT, replaces the commonly used chemical type anti-ultraviolet agent on the market, and the prepared PBT compound containing lignin has good anti-ultraviolet performance.
  • the problem of PBT mechanical properties decline caused by the addition of lignin is reduced.
  • a PBT composite with both mechanical properties and UV resistance is prepared, the initial tensile strength of the PBT composite is ⁇ 100 MPa, and after ultraviolet aging, the tensile strength retention rate of the material is ⁇ 90%.
  • the raw materials in the embodiment and the comparative example can be obtained through commercially available, and the details are as follows:
  • the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in the technical field.
  • Embodiments 1 to 14 provide an anti-ultraviolet PBT compound, and the addition amount of each component of the PBT compound is shown in Table 1.
  • the dried PBT is mixed with lignin, toughening agent and antioxidant, put into the main feeding hopper of the twin-screw extruder, and the glass fiber is put into the side feeding hopper of the twin-screw extruder.
  • the anti-ultraviolet PBT compound is obtained after discharging, cooling and granulation.
  • the drying conditions of PBT were drying at 120°C for 4 hours, the temperature of the twin-screw extruder was 220-250°C, the feed rate was 300kg/h, and the main engine speed was 300rpm.
  • Comparative Examples 1 to 9 provide a PBT compound, and the addition amount of each component of the PBT compound is shown in Table 2.
  • Comparative Example 1 The difference between Comparative Example 1 and Example 1 is that the amount of glass fiber added is 10 parts;
  • Comparative Example 2 The difference between Comparative Example 2 and Example 1 is that the average diameter of the added glass fibers is 17 ⁇ m;
  • Comparative Example 3 The difference between Comparative Example 3 and Example 1 is that no lignin is added;
  • Comparative Example 4 The difference between Comparative Example 4 and Example 1 is that the amount of lignin added is 8 parts;
  • Comparative Example 7 The difference between Comparative Example 7 and Example 1 is that the addition amount of the toughening agent is 8 parts.
  • Comparative Example 8 The difference between Comparative Example 8 and Example 1 is that PBT only includes 55 parts by weight of PBT without adding any other components;
  • Comparative Example 9 The difference between Comparative Example 9 and Example 1 is that the PBT complex consists only of PBT and lignin.
  • the detection method is as follows:
  • test specimens were injected according to the corresponding standards for tensile strength testing; A tensile strength test was performed.
  • the ultraviolet aging test is aging according to the cycle-condition of method A in ISO4892-3;
  • the tensile strength retention rate is the ratio of the tensile strength of the sample after UV aging to the value before aging, and the unit is %.
  • Example 1 Example 4 and Example 5 it can be seen that the tensile strength of the PBT composite prepared by selecting glass fibers with an average diameter of 10 ⁇ m is relatively higher.
  • Example 1 and Examples 7-8 it can be seen from Example 1 and Examples 7-8 that when glass fibers with an average diameter of 10 ⁇ m are selected, the addition amount of lignin is 3-5 parts by weight, and the tensile strength retention rate of the UV-resistant PBT composite is better.
  • the tensile strength before UV aging was 96 MPa, which could not meet the requirements.
  • the initial tensile strength of the PBT composite is poor, and the tensile strength before UV aging is only 75MPa.
  • Comparative Example 6 no toughening agent was added, and the compatibility of lignin and PBT became poor, resulting in a decrease in tensile strength before UV aging. performance, after UV aging, the tensile strength retention rate is ⁇ 87.9%, which cannot meet the requirements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种抗紫外PBT复合物及其制备方法和应用。该PBT复合物包括如下组分:PBT,玻璃纤维,木质素,增韧剂,抗氧剂;其中玻璃纤维的平均直径≤13μm,木质素的pH=7.0~8.0。本发明使用安全、高效、环境友好的木质素作为PBT的紫外吸收剂,替代了市面上常用的化工类抗紫外剂,制得的含有木质素的PBT复合物具有良好抗紫外性能。同时,通过低直径玻璃纤维、增韧剂等与PBT、木质素的互相配合,减少了由木质素的添加带来的PBT机械性能下降的问题。由此,制备得到了机械性能与抗紫外性能兼具的PBT复合物,所述PBT复合物初始拉伸强度≥100MPa,经过紫外老化后,材料的拉伸强度保持率≥90%。

Description

一种抗紫外PBT复合物及其制备方法和应用 技术领域
本发明涉及工程塑料技术领域,更具体的,涉及一种抗紫外PBT复合物及其制备方法和应用。
背景技术
作为五大工程塑料之一,聚对苯二甲酸丁二醇酯(PBT)凭借着其优异的加工性能、耐溶剂性能、电性能和耐热性能而广泛应用于各个领域,如电子电器、照明、家电和汽车等。对于户外使用的产品,通常要求材料具有一定的抗紫外性能,但是PBT本身的抗紫外性能不佳。在光和氧的作用下PBT会产生如变色、表面裂缝、硬化、电性能变坏以及力学性能下降等物理或化学变化,在光波中,紫外光(波长<400nm)的破坏作用最大。
目前改善PBT抗紫外性能的方法就是加入抗紫外剂,工业上应用最多的为二苯甲酮类和苯并***类。中国专利申请CN106566211A提供一种户外抗紫外光缆松套管用PBT,通过在PBT材料中添加2~4%的抗紫外剂,以提升其抗紫外性能,其使用的抗紫外剂为UV-P和UV-9的混合物。CN101914270A提供一种带罩节能灯耐黄变PBT塑壳专用料,该PBT塑壳专用料中包括0.3~1.5%的苯并***类抗紫外剂,以改善PBT材料经紫外照射后变黄,但对于PBT塑壳的力学性能,该现有技术并未涉及。目前市面上常用的化工类小分子抗紫外剂,通常在自然环境中降解速率慢,对生态环境造成污染,还有易转移、对人体有害、价格高等缺点。
木质素是制浆造纸的副产物,其分子结构内含有大量的碳碳双键、羰基、苯环和醌式结构等共轭发色基团,这使得木质素能够有效地吸收紫外光,可以作为紫外光吸收剂进行使用。同时,木质素具有安全、可降解、环境友好的优点,能够取代传统的化工类抗紫外剂。陈建浩等(陈建浩.木质素对聚烯烃塑料的防老化性能研究[D].)研究了木质素对聚烯烃塑料的防老化性能的影响,结果表明木质素以1~3%的添加量加入聚烯烃塑料,能够提高其抗热氧老化和抗紫外老化性能,同时对聚烯烃塑料的机械性能影响较小。Alexy(Alexy P,B Kosiková,G Podstránska.The effect of blending lignin with polyethylene and polypropylene on  physical properties[J].Polymer,2000,41(13):4901-4908.)等人发现木质素能够提高聚烯烃塑料的抗紫外降解性能,将木质素分别与低密度聚乙烯(LDPE)和聚丙烯(PP)共混,研究发现当木质素添加量小于10%时,对PP和LDPE的力学性能影响较小,添加5%木质素与未添加木质素的材料相比,PP的拉伸强度下降约4%,LDPE的拉伸强度下降约2%;当木质素添加量超过10%,PP和LDPE的力学性能有较大幅度的下降。
因此,需要开发出一种对环境友好、成本低廉,且具有良好机械性能、抗紫外性能的PBT复合物。
发明内容
本发明为克服上述现有技术所述的缺陷,提供一种抗紫外PBT复合物,该PBT复合物使用木质素作为紫外吸收剂,同时加入了玻璃纤维,具有良好的抗紫外性能和机械性能。
本发明的另一目的在于提供上述抗紫外PBT复合物的制备方法。
本发明的另一目的在于提供上述抗紫外PBT复合物的应用。
为解决上述技术问题,本发明采用的技术方案是:
一种抗紫外PBT复合物,包括如下重量份的组分:
PBT 55~80份,
玻璃纤维 15~30份,
木质素 1~5份,
增韧剂 0.5~5份,
抗氧剂 0.1~0.5份,
其中玻璃纤维的平均直径≤13μm,木质素的pH=7.0~8.0。
由于木质素表面亲疏水性不均匀的特性,其添加到塑料中易团聚成大颗粒,影响塑料的拉伸强度。对于不同的塑料体系,其拉伸强度受木质素的影响有一定差别。现有技术中有报道,在聚烯烃塑料中,木质素添加量小于10%时对其拉伸强度影响较小。发明人实验发现,尽管木质素与PBT具有较好的相容性,但在PBT中单独添加木质素会造成PBT的拉伸强度大幅度下降。当PBT为55重量份,木质素添加量为5重量份时,(即木质素添加量为约8.3%),与未添加木质素的PBT相比,拉伸强度下降11.1%。
通过对木质素的筛选,以及在PBT复合物中添加玻璃纤维、增韧剂,可以 在有效提升PBT复合物抗紫外性能的同时,维持PBT较好的拉伸强度。在本发明的方案下,木质素占所述PBT与木质素总重量的1.23~8.33%,木质素占所述抗紫外PBT复合物总重量的1.02~6.47%。
一般的,木质素pH≥7.0。优选地,木质素的pH=7.0~8.0。
木质素的pH检测方法为:将10g木质素溶于100ml水中,待溶液pH平衡后,用pH计测定上清液的pH值,即为木质素的pH。
当添加至PBT的木质素pH>8.0时,制成的PBT材料性能下降。
优选地,所述木质素为3~5重量份。在木质素为3~5重量份的方案下,木质素占所述PBT与木质素总重量的5.17~8.33%,所述木质素占所述抗紫外PBT复合物总重量的3.98~6.47%。
优选地,所述木质素为碱法制浆分离的碱木质素。
目前市面上的木质素根据制备工艺的不同,有酶解木质素、有机溶剂型木质素和碱木质素三种类型,其中碱木质素的产量最大,相对成本较低。碱木质素来源于造纸中的碱法制浆废液,一般使用酸析法或喷雾干燥法提纯。
玻璃纤维的平均直径大小影响了制成的PBT复合材料的力学性能。
一般来说,在其他条件相同的情况下,玻璃纤维的平均直径越低,其拉伸强度越强。常见的用于PBT材料的玻璃纤维平均直径有8μm、10μm、11μm、13μm、17μm等,平均直径过低的玻璃纤维其制造成本会较高。发明人研究发现,当玻璃纤维平均直径较大时,含有木质素的PBT复合物拉伸强度无法维持较好的水平;当玻璃纤维的平均直径≤13μm时,制得的含有木质素的PBT复合物能够具有本申请所需要的拉伸强度,拉伸强度≥100MPa。
优选地,所述玻璃纤维的平均直径为10μm。
发明人研究发现,当玻璃纤维平均直径为10μm时,在本发明技术方案范围内,木质素的添加量越高,制成的PBT复合物的拉伸强度保持率越高,且对PBT复合物的初始拉伸强度没有明显影响。
优选地,所述玻璃纤维的平均直径为10μm,木质素为3~5重量份。优选地,所述玻璃纤维是无碱玻璃纤维。
无碱玻璃纤维是指碱金属氧化物≤0.8%的玻璃纤维,通常也称作E玻璃纤维,其具有优异的机械性能,力学强度高、介电常数低、绝缘强度高,且化学稳定性好。
优选地,所述玻璃纤维是短切玻璃纤维,长度为3~5mm。
优选地,所述PBT的特性粘度为25℃下0.8~1.3dl/g。
所述PBT特性粘度的检测为在苯酚-四氯乙烷溶剂(苯酚与四氯乙烷的质量比为3∶2)中测试。
所述增韧剂可以是PBT中常用的增韧剂,例如是乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯三元共聚物、乙烯-丙烯酸甲酯二元共聚物、乙烯-丙烯酸丁酯二元共聚物中的一种或几种。
所述抗氧剂可以是PBT中常用的抗氧剂,例如受阻酚类抗氧剂、亚磷酸酯类、硫代酯类抗氧剂。
本发明还保护所述抗紫外PBT复合物的制备方法,包括如下步骤:
将玻璃纤维加入由烘干后的PBT与木质素、增韧剂、抗氧剂形成的混合物中,经双螺杆挤出机熔融挤出、冷却、造粒后得到抗紫外PBT复合物。
优选地,所述双螺杆挤出机的温度为220~250℃,喂料量为300~500kg/h,主机转速为300~400rpm。
本发明还保护所述抗紫外PBT复合物在抗紫外PBT制品中的应用。
与现有技术相比,本发明的有益效果是:
本发明使用安全、高效、环境友好的木质素作为PBT的紫外吸收剂,替代了市面上常用的化工类抗紫外剂,制得的含有木质素的PBT复合物具有良好抗紫外性能。同时,通过低直径玻璃纤维、增韧剂等与PBT、木质素的互相配合,减少了由木质素的添加带来的PBT机械性能下降的问题。由此,制备得到了机械性能与抗紫外性能兼具的PBT复合物,所述PBT复合物初始拉伸强度≥100MPa,经过紫外老化后,材料的拉伸强度保持率≥90%。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。
实施例及对比例中的原料均可通过市售得到,具体如下:
Figure PCTCN2021073982-appb-000001
Figure PCTCN2021073982-appb-000002
除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1~14
实施例1~14提供一种抗紫外PBT复合物,该PBT复合物各组分的添加量如表1所示。
表1实施例1~14中各组分加入量(重量份)
Figure PCTCN2021073982-appb-000003
实施例1~14中抗紫外PBT复合物的制备方法均为:
将烘干后的PBT与木质素、增韧剂、抗氧剂混合,投入双螺杆挤出机的主喂料斗中,将玻璃纤维投入到双螺杆挤出机的侧喂料斗中,经熔融挤出、冷却、造粒后得到抗紫外PBT复合物。
其中PBT的烘干条件为120℃下烘干4h,双螺杆挤出机的温度为220~250℃, 喂料量为300kg/h,主机转速为300rpm。
对比例1~9
对比例1~9提供一种PBT复合物,该PBT复合物各组分的添加量如表2所示。
表2对比例1~9中各组分加入量(重量份)
Figure PCTCN2021073982-appb-000004
对比例1与实施例1的区别在于,玻璃纤维的添加量为10份;
对比例2与实施例1的区别在于,添加的玻璃纤维的平均直径是17μm;
对比例3与实施例1的区别在于,没有添加木质素;
对比例4与实施例1的区别在于,木质素的添加量为8份;
对比例5与实施例1的区别在于,添加的木质素为山东泉林木质素,pH=9.0;
对比例6与实施例1的区别在于,没有添加增韧剂;
对比例7与实施例1的区别在于,增韧剂的添加量为8份。
对比例8与实施例1的区别在于,PBT仅包括55重量份的PBT,未添加任何其他组分;
对比例9与实施例1的区别在于,PBT复合物仅由PBT和木质素组成。
对比例1~9中PBT复合物的制备方法与实施例1~14相同。
性能测试
对上述实施例及对比例制备的PBT复合物进行性能测试。
检测方法具体如下:
将各PBT复合物置于120℃的除湿干燥箱中烘干4h后,按照相应的标准注塑测试样片,进行拉伸强度测试;将各PBT复合物测试样片置于紫外老化箱中老化四周后,再次进行拉伸强度测试。
其中紫外老化测试按照ISO4892-3中方法A的循环一条件进行老化;
拉伸强度按照ISO 527标准测试,单位为MPa;
拉伸强度保持率为紫外老化后样片的拉伸强度与老化前该值之比,单位为%。
实施例1~14的测试结果见表3。
表3实施例1~14的PBT复合物的性能测试结果
Figure PCTCN2021073982-appb-000005
对比例1~9的测试结果见表4。
表4对比例1~9的PBT复合物的性能测试结果
Figure PCTCN2021073982-appb-000006
由表3可以看出,实施例中各PBT复合物在紫外老化前,拉伸强度均≥100MPa,均具有良好的初始拉伸强度。经过紫外老化后,其拉伸强度保持率均≥90.2%。这说明本发明制备的PBT复合物具有良好的抗紫外性能,其在紫外光照射后,能够保持较好的拉伸强度。
其中实施例1、实施例4和实施例5,可以看出,选用平均直径10μm的玻璃纤维制备的PBT复合物拉伸强度相对更高。
由实施例1、实施例7~8可以看出,当选用平均直径10μm的玻璃纤维时,木质素的添加量为3~5重量份,抗紫外PBT复合物的拉伸强度保持率更好。
由表4可以看出,对比例1添加10份玻璃纤维,其PBT复合物的初始拉伸 强度较差,仅为98MPa。对比例2添加的玻璃纤维的平均直径是17μm,该PBT复合物紫外老化前的拉伸强度仅为95MPa,无法满足要求。对比例3未添加木质素,该PBT复合物经过紫外老化测试,其拉伸强度保持率仅为86.7%,抗紫外性能较差。对比例4的木质素添加量过高,造成了PBT复合物的拉伸强度下降,紫外老化前其拉伸强度为96MPa,无法满足要求。对比例5添加的木质素为pH=9.0,木质素偏碱性,造成了PBT一定程度的降解,该PBT复合物的初始拉伸强度较差,紫外老化前拉伸强度仅为75MPa。对比例6没有添加增韧剂,木质素和PBT的相容性变差,导致紫外老化前拉伸强度下降,对比例7的增韧剂添加量过高,均影响了PBT复合物的抗紫外性能,经过紫外光老化,其拉伸强度保持率均≤87.9%,无法满足要求。通过比较对比例8~9的紫外老化前拉伸强度,可以看出在PBT中单独添加木质素,会造成拉伸强度的大幅度下降,对比例9的PBT复合物的拉伸强度仅为对比例8的88.9%。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种抗紫外PBT复合物,其特征在于,包括如下重量份的组分:
    PBT 55~80份,玻璃纤维15~30份,木质素1~5份,增韧剂0.5~5份,抗氧剂0.1~0.5份;
    其中玻璃纤维的平均直径≤13μm,木质素的pH=7.0~8.0。
  2. 根据权利要求1所述的抗紫外PBT复合物,其特征在于,所述玻璃纤维的平均直径为10μm。
  3. 根据权利要求1或2所述的抗紫外PBT复合物,其特征在于,所述木质素为3~5重量份。
  4. 根据权利要求1所述的抗紫外PBT复合物,其特征在于,所述木质素为碱法制浆分离的碱木质素。
  5. 根据权利要求1所述的抗紫外PBT复合物,其特征在于,所述玻璃纤维为无碱玻璃纤维。
  6. 根据权利要求1所述的抗紫外PBT复合物,其特征在于,所述玻璃纤维的长度为3~5mm。
  7. 根据权利要求1所述的抗紫外PBT复合物,其特征在于,所述PBT的特性粘度为25℃下0.8~1.3dl/g。
  8. 根据权利要求1所述的抗紫外PBT复合物,其特征在于,所述增韧剂为乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯三元共聚物、乙烯-丙烯酸甲酯二元共聚物、乙烯-丙烯酸丁酯二元共聚物中的一种或几种。
  9. 权利要求1~8任一项所述抗紫外PBT复合物的制备方法,其特征在于,包括如下步骤:
    将玻璃纤维加入由烘干后的PBT与木质素、增韧剂、抗氧剂形成的混合物中,经双螺杆挤出机熔融挤出、冷却、造粒后得到抗紫外PBT复合物。
  10. 权利要求1~8任一项所述抗紫外PBT复合物在抗紫外PBT制品中的应用。
PCT/CN2021/073982 2020-09-09 2021-01-27 一种抗紫外pbt复合物及其制备方法和应用 WO2022052410A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010939549.2 2020-09-09
CN202010939549.2A CN111978690B (zh) 2020-09-09 2020-09-09 一种抗紫外pbt复合物及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022052410A1 true WO2022052410A1 (zh) 2022-03-17

Family

ID=73449657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073982 WO2022052410A1 (zh) 2020-09-09 2021-01-27 一种抗紫外pbt复合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111978690B (zh)
WO (1) WO2022052410A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403847A (zh) * 2022-09-02 2022-11-29 中建中环生态环保科技有限公司 一种高强度耐老化光伏浮体用聚乙烯复合材料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111978690B (zh) * 2020-09-09 2022-04-19 金发科技股份有限公司 一种抗紫外pbt复合物及其制备方法和应用
CN113881195A (zh) * 2021-09-30 2022-01-04 宜宾天亿新材料科技有限公司 生物降解树脂组合物及其制备方法
CN115305710A (zh) * 2022-08-08 2022-11-08 江苏盛纺纳米材料科技股份有限公司 一种抗紫外线非织造材料及其生产工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104497605A (zh) * 2010-02-10 2015-04-08 日立化成工业株式会社 复合成型体
CN106519601A (zh) * 2016-10-26 2017-03-22 安徽飞达电气科技有限公司 一种电容器用改性塑料外壳
CN109844022A (zh) * 2016-10-14 2019-06-04 三井化学株式会社 树脂组合物及成型体
CN110959026A (zh) * 2017-12-29 2020-04-03 沙特基础工业全球技术公司 用于纳米成型技术(nmt)的低介电常数(dk)和耗散系数(df)材料
CN111978690A (zh) * 2020-09-09 2020-11-24 金发科技股份有限公司 一种抗紫外pbt复合物及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612746A (ja) * 1984-06-15 1986-01-08 Mitsubishi Chem Ind Ltd ポリエステル樹脂組成物
CN101602882B (zh) * 2008-06-13 2012-03-21 中国科学院宁波材料技术与工程研究所 竹粉填充生物基树脂复合材料及其制备方法
KR101480809B1 (ko) * 2012-03-26 2015-01-09 한국화학연구원 리그닌-폴리에스테르 수지 혼합 분말의 제조 방법 및 이에 따라 제조되는 리그닌-폴리에스테르 수지 혼합 분말
CN105315696A (zh) * 2015-10-30 2016-02-10 安徽天星光纤通信设备有限公司 耐磨耐疲劳电缆料及其制备方法
CN109943039A (zh) * 2019-02-15 2019-06-28 北京林业大学 一种甲基化木质素/pbat可生物降解塑料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104497605A (zh) * 2010-02-10 2015-04-08 日立化成工业株式会社 复合成型体
CN109844022A (zh) * 2016-10-14 2019-06-04 三井化学株式会社 树脂组合物及成型体
CN106519601A (zh) * 2016-10-26 2017-03-22 安徽飞达电气科技有限公司 一种电容器用改性塑料外壳
CN110959026A (zh) * 2017-12-29 2020-04-03 沙特基础工业全球技术公司 用于纳米成型技术(nmt)的低介电常数(dk)和耗散系数(df)材料
CN111978690A (zh) * 2020-09-09 2020-11-24 金发科技股份有限公司 一种抗紫外pbt复合物及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403847A (zh) * 2022-09-02 2022-11-29 中建中环生态环保科技有限公司 一种高强度耐老化光伏浮体用聚乙烯复合材料及其制备方法
CN115403847B (zh) * 2022-09-02 2023-07-25 中建中环生态环保科技有限公司 一种高强度耐老化光伏浮体用聚乙烯复合材料及其制备方法

Also Published As

Publication number Publication date
CN111978690B (zh) 2022-04-19
CN111978690A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
WO2022052410A1 (zh) 一种抗紫外pbt复合物及其制备方法和应用
CN103012968A (zh) 一种耐候玻纤增强聚丙烯复合材料及其制备方法
CN113583396B (zh) 一种耐循环注塑的pbt组合物及其制备方法和制品
CN106751593B (zh) 装订机电机安装座用pbt工程塑料及电机安装座
CN110358267B (zh) 一种抗老化聚酯复合材料及其制备方法
CN101165093B (zh) 高抗水解性阻燃增强聚对苯二甲酸丁二醇酯复合物及制法
CN107849338B (zh) 聚对苯二甲酸丁二醇酯树脂组合物
CN104592722A (zh) 高光泽低翘曲玻纤增强pbt/pp合金及其制备方法
CN113527884A (zh) 一种高cti的聚苯硫醚复合材料
CN113652037A (zh) 一种高强度抗老化聚氯乙烯复合材料及其制备方法和应用
CN114426760A (zh) 耐水解的聚酯基复合材料及其制备方法
CN109294073A (zh) 一种耐老化的ppr管材及其制备方法
CN109535563B (zh) 一种环保复合材料及其制备方法与应用
CN109627733A (zh) 一种高白度高韧性pc组合物及其制备方法
CN112321995B (zh) 耐低温耐水解玻纤增强pbt及其制备方法
CN112795145B (zh) 一种不含锑白的高gwit溴系阻燃pbt及其制备方法和应用
CN110591267B (zh) 耐候性优异低烟环保5va级阻燃asa材料及其制备方法
CN114410035A (zh) 一种抗老化阻燃管道材料及其制备方法
CN113026140A (zh) 一种木质素/聚烯烃复合人造草丝及其制备方法
KR101865616B1 (ko) 천연섬유 처리방법 및 이를 포함하는 복합재
CN114773798B (zh) 一种高冲击、长效耐黄变的pbt增强阻燃复合材料及其制备方法和应用
CN104744804B (zh) 一种低噪音eva电缆料的制备方法
CN113845760B (zh) 一种低浮纤的增强pbt/pet合金组合物及其制备方法和应用
CN114410096B (zh) 一种含钴有机蒙脱土改性的耐热老化阻燃pc光学薄膜材料及其制备方法
CN115505203B (zh) 一种耐候性pp材料及其制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/08/2023).

122 Ep: pct application non-entry in european phase

Ref document number: 21865474

Country of ref document: EP

Kind code of ref document: A1