WO2022048558A1 - 一种螺旋微槽型气吹微缆、制造设备及制造方法 - Google Patents

一种螺旋微槽型气吹微缆、制造设备及制造方法 Download PDF

Info

Publication number
WO2022048558A1
WO2022048558A1 PCT/CN2021/115883 CN2021115883W WO2022048558A1 WO 2022048558 A1 WO2022048558 A1 WO 2022048558A1 CN 2021115883 W CN2021115883 W CN 2021115883W WO 2022048558 A1 WO2022048558 A1 WO 2022048558A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
cable
micro
spiral
outer sheath
Prior art date
Application number
PCT/CN2021/115883
Other languages
English (en)
French (fr)
Inventor
沈清华
金永良
高峰
沈洪芬
李晓剑
张水先
沈新荣
Original Assignee
江苏亨通光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通光电股份有限公司 filed Critical 江苏亨通光电股份有限公司
Publication of WO2022048558A1 publication Critical patent/WO2022048558A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4438Means specially adapted for strengthening or protecting the cables for facilitating insertion by fluid drag in ducts or capillaries
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4485Installing in protective tubing by fluid drag during manufacturing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/50Underground or underwater installation; Installation through tubing, conduits or ducts
    • G02B6/52Underground or underwater installation; Installation through tubing, conduits or ducts using fluid, e.g. air

Definitions

  • the present application relates to the technical field of communication optical cables, and in particular, to a spiral micro-grooved air-blown micro-cable, manufacturing equipment and manufacturing method.
  • the air-blown micro-cable Compared with the traditional optical cable, the air-blown micro-cable has the same number of cores, the consumption of cabling materials and processing costs are greatly reduced, the structure size is small, the weight is light, and the optical fiber density is high.
  • the air-blown micro-cable can be directly blown into the existing communication pipeline by means of high-pressure air blowing, which greatly increases the utilization rate of the pipeline, effectively saves the pipeline resources, and meets the construction needs of network expansion. Air-blown laying is convenient and fast, which can effectively shorten the construction period of the project.
  • air-blown micro-cables generally use high-density polyethylene materials as their outer sheaths.
  • high-pressure air blowing can be used to achieve a distance of 1000m to 2000m under theoretical design, due to the actual blowing process of air-blown micro-cables It will come into contact with the pipe wall, and high-density polyethylene has a relatively large friction coefficient, which makes the forward resistance of the air-blown micro-cable relatively large, which limits the air-blown distance of the optical cable.
  • the present invention provides a spiral micro-grooved air-blown micro-cable, manufacturing equipment and manufacturing method, so as to solve the deficiencies of the prior art.
  • the present invention provides the following technical solutions:
  • an embodiment of the present invention provides a helical micro-grooved air-blown micro-cable, comprising a cable core and an outer sheath covering the cable core, and the outer wall of the outer sheath is provided with air guides to increase air flow. Spiral groove for driving force.
  • spiral micro-grooved air-blown micro-cable there are several spiral grooves;
  • the helical groove is a V-shaped structure.
  • the width of the spiral groove is 1/20 of the circumference of the outer sheath
  • the depth of the spiral groove is 1/2 of the thickness of the outer sheath.
  • the cable core includes a central strength member, a cushion layer, several optical fiber tubes and a yarn binding layer;
  • the center reinforcement is located inside the yarn binding layer
  • the cushion layer is wrapped around the outer periphery of the central reinforcement
  • a plurality of the optical fiber tubes are evenly arranged in the circumferential direction around the outer periphery of the cushion layer, and are located inside the yarn binding layer;
  • the optical fiber tube includes a sleeve and a plurality of optical fibers wrapped in the sleeve.
  • the inside of the optical fiber tube is filled with a casing water blocking substance
  • the inside of the yarn binding layer is filled with a core water-blocking substance.
  • the central reinforcing member is a high-carbon steel wire.
  • an embodiment of the present invention provides an air-blown micro-cable manufacturing equipment for manufacturing the spiral micro-grooved air-blown micro-cable as described in the first aspect, including a cable core forming device and an outer sheath forming device;
  • the cable core forming device is used for forming the cable core
  • the outer sheath forming device is used for forming an outer sheath with spiral grooves on the outer surface of the cable core;
  • the outer sheath forming device includes an extruder head and an extrusion die
  • the extrusion mold is arranged inside the extrusion head, and includes a mold core and a mold sleeve, and a flow channel is arranged between the mold core and the mold sleeve;
  • the die sleeve has a tooth-shaped opening, and is connected with a motor through a gear transmission mechanism, and is driven by the motor to rotate at a uniform speed.
  • a number of the teeth are evenly distributed along the circumferential direction of the tooth-shaped opening.
  • an embodiment of the present invention provides a method for manufacturing an air-blown micro-cable, which is performed by the air-blown micro-cable manufacturing apparatus described in the second aspect above, and the method includes:
  • the cable core is formed by the cable core forming device
  • the outer sheath material is extruded on the outer surface of the cable core through the flow channel through the extruder head.
  • the die sleeve is driven by the motor to rotate at a constant speed, thereby forming a spiral on the outer surface of the cable core.
  • the embodiments of the present invention provide a spiral micro-grooved air-blown micro-cable, a manufacturing device and a manufacturing method.
  • a spiral groove on the outer wall of the outer sheath of the air-blown micro-cable, the original performance of the air-blown micro-cable can be guaranteed to remain unchanged.
  • the high-pressure airflow can evenly wrap the air-blown micro-cable during laying, so that the air-blown micro-cable is always kept in the center of the pipe, reducing the friction with the pipe wall during the transmission process, reducing the air-blowing resistance, and effectively improving the
  • the blowing distance of the air-blown micro-cable has high promotion and application value.
  • FIG. 1 is a schematic front view of the structure of a spiral micro-grooved air-blown micro-cable provided by an embodiment of the present invention
  • FIG. 2 is a schematic side view of the structure of a spiral micro-grooved air-blown micro-cable provided by an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for manufacturing an air-blown microcable according to an embodiment of the present invention.
  • a component when a component is considered to be “connected” to another component, it can be directly connected to the other component or there may be co-located components at the same time.
  • a component When a component is considered to be “set on” another component, it can be set directly on the other component or there may be a centered set of components at the same time.
  • an embodiment of the present invention provides a spiral micro-grooved air-blown micro-cable, which includes a cable core and an outer sheath 1 covering the cable core.
  • the outer wall of the outer sheath 1 is provided with a Spiral groove 2 for guiding the air to increase the driving force of the air.
  • the outer sheath 1 covering the outer surface of the cable core.
  • the outer surface of the outer sheath 1 is added with a spiral groove that spirals along the length of the cable core.
  • the cable core is designed with a conventional cable core structure, and no additional improvement is required.
  • the general structure and size of the air-blown micro-cable product does not change, which can ensure the versatility of the product and the laid traditional products.
  • the cable core includes a central strength member 3, a cushion layer 4, several optical fiber tubes and a yarn tying layer 5;
  • the central reinforcement 3 is located inside the yarn binding layer 5;
  • the cushion layer 4 is wrapped around the outer periphery of the central reinforcement 3;
  • a plurality of the optical fiber tubes are evenly arranged in the circumferential direction around the outer periphery of the cushion layer 4, and are located inside the yarn binding layer 5;
  • the optical fiber tube includes a sleeve 6 and a plurality of optical fibers 7 wrapped in the sleeve 6 .
  • the inside of the optical fiber tube is filled with a casing water-blocking substance 8, such as fiber paste; the inside of the yarn tying layer 5 is filled with a cable core water-blocking substance 9, such as cable paste.
  • a casing water-blocking substance 8 such as fiber paste
  • the inside of the yarn tying layer 5 is filled with a cable core water-blocking substance 9, such as cable paste.
  • the central reinforcement 3 is a high carbon steel wire.
  • the helical groove 2 has a V-shaped structure, but of course other shapes are also possible, as long as the air guide can be realized to increase the driving force of the air.
  • the width of the spiral groove 2 is 1/20 of the circumference of the outer sheath 1
  • the depth of the spiral groove 2 is 1/2 of the thickness of the outer sheath 1 .
  • the helical grooves 2 may be one or several, but preferably several; the several helical grooves 2 are evenly distributed along the circumferential direction of the outer sheath 1 , and when viewed from the front, the The outer sheath 1 is shaped like a gear.
  • the air-blown micro-cable When laying and blowing, the air-blown micro-cable is transported forward under the drive of high-pressure air flow, and the air is passed between the multi-density spiral grooves to ensure that during the air-blowing process, the high-pressure air flow can evenly wrap the air-blown micro-cable and make the air blown.
  • the blown micro-cable is always kept in the center of the pipe, which can reduce the friction with the pipe wall during the conveying process, and the air flow in the spiral groove is assisted to increase the air-pulling force, thereby effectively increasing the blowing distance of the air-blown micro-cable.
  • the embodiment of the present invention provides a spiral micro-groove type air-blown micro-cable.
  • a spiral groove By arranging a spiral groove on the outer wall of the outer sheath of the air-blown micro-cable, the original performance of the air-blown micro-cable can be kept unchanged.
  • the air blowing resistance increases the blowing distance of the air blowing micro-cable, which has high promotion and application value.
  • the embodiment of the present invention provides an air-blown micro-cable manufacturing equipment for manufacturing the spiral micro-grooved air-blown micro-cable as described in the first embodiment, including a cable core forming device and an outer sheath forming device;
  • the cable core forming device is used for forming the cable core
  • the outer sheath forming device is used for forming an outer sheath with spiral grooves on the outer surface of the cable core;
  • the outer sheath forming device includes an extruder head and an extrusion die
  • the extrusion mold is arranged inside the extrusion head, and includes a mold core and a mold sleeve, and a flow channel is arranged between the mold core and the mold sleeve;
  • the die sleeve has a tooth-shaped opening, and is connected with a motor through a gear transmission mechanism, and is driven by the motor to rotate at a uniform speed.
  • teeth there are several teeth on the tooth-shaped opening;
  • a number of the teeth are evenly distributed along the circumferential direction of the tooth-shaped opening.
  • the motor adopts a small motor with a power of less than 1000W.
  • the motor drives the die sleeve to rotate at a constant speed, and in cooperation with the tooth-shaped opening of the die sleeve, an outer sheath with a spiral groove can be formed on the outer surface of the cable core.
  • the cable core forming device is an essential part of the air-blown micro-cable manufacturing equipment, and its function is to form the cable core required by the outer sheath forming device.
  • the device has not been improved, in addition, the device has been implemented in the prior art, which belongs to the common knowledge of those skilled in the art, so this embodiment does not provide an in-depth description.
  • the outer sheath of the air-blown micro-cable is formed by improving the outer sheath forming device, specifically, the mold sleeve is improved and designed as a rotatable mold sleeve with a tooth-shaped opening.
  • the spiral groove is added on the outer wall, which can ensure that the original performance of the air-blown micro-cable remains unchanged, so that the high-pressure airflow can evenly wrap the air-blown micro-cable during laying, so that the air-blown micro-cable is always kept in the center of the pipe, reducing the need for air-blown micro-cables.
  • the friction of the pipe wall during the transmission process reduces the air blowing resistance, which effectively increases the blowing distance of the air-blown micro-cable, and has high popularization and application value.
  • An embodiment of the present invention provides an air-blown micro-cable manufacturing method, which is performed by the air-blown micro-cable manufacturing equipment described in the second embodiment, and the method includes the following steps:
  • the cable core includes a central strength member, a cushion layer, a yarn binding layer, a water-blocking material for the casing, a water-blocking material for the cable core, a plurality of casings, and a plurality of optical fibers wrapped in the casing.
  • Step S301 involves various processes of cable core forming, such as:
  • the optical power of the UV curing lamp is accurately controlled by reasonably controlling the tension of the optical fiber take-up and pay-off, so that the indicators of the optical fiber after coloring meet the process and technical requirements;
  • the extrusion amount of the material is uniformly controlled, and a certain amount of casing water-blocking substances, such as fiber paste, are filled in the casing. excess length requirements;
  • the center reinforcement adopts conventional high carbon steel wire.
  • the inside of the mold core and the mold sleeve is provided with a channel running through from the front end to the rear end.
  • the sheath material will enter the flow channel between the mold core and the mold sleeve, and then extrude from the tooth-shaped opening of the mold sleeve on the outer surface of the cable core.
  • the mold sleeve rotates evenly;
  • the cooling water tank is cooled, and then the wire is taken up by the wire take-up machine under the traction of the tractor.
  • An embodiment of the present invention provides a method for manufacturing an air-blown micro-cable.
  • the outer surface of the cable core can form an outer sheath with a spiral groove.
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those skilled in the art. Numerous details are set forth, such as examples of specific components, devices, and methods, in order to provide a thorough understanding of the embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms, and neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
  • the term "and/or” includes any and all combinations of one or more of the associated listed items.
  • first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections are not limited by these terms limit. These terms may only be used to distinguish one element, component, region or section from another element, component, region or section.
  • the use of terms such as the terms “first,” “second,” and other numerical terms herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
  • Spatially relative terms such as “inside”, “outside”, “below”, “below”, “lower”, “above”, “upper”, etc., may be used herein for ease of description , to describe the relationship between one element or feature and one or more other elements or features as shown in the figures.
  • Spatially relative terms may be meant to encompass different orientations of the device than the orientation depicted in this figure. For example, if the device in this figure is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features.
  • the example term “under” can encompass both an orientation of upward and downward.
  • the device may be otherwise oriented (rotated 90 degrees or otherwise) and interpreted in relative terms of space herein.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

一种螺旋微槽型气吹微缆及其制造设备、制造方法。该气吹微缆包括缆芯和包覆该缆芯的外护层(1),该外护层(1)的外壁设有用于导气以增加气送推动力的螺旋槽(2)。这可在保证气吹微缆原性能不变的情况下,实现在敷设时高压气流能够均匀包裹气吹微缆而使气吹微缆始终保持在管道中心,减小与管壁在传送过程中的摩擦,气吹阻力得以减小,有效提高了气吹微缆的吹送距离。

Description

一种螺旋微槽型气吹微缆、制造设备及制造方法
本申请要求于2020年9月4日提交中国专利局、申请号为202010921417.7、发明名称为“一种螺旋微槽型气吹微缆、制造设备及制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信光缆技术领域,尤其涉及一种螺旋微槽型气吹微缆、制造设备及制造方法。
背景技术
随着光通信行业的不断发展,电信运营商对于网络的扩容越来越频繁。在光纤通信网络建设上,由于传统的通信光缆的结构外径较大,重量较重,在管道布放时需要占用大量的空间,致使管道的利用率比较低,所以敷设光缆的管道资源变得越来越紧张,原有的管道资源已经很难满足光缆网络扩建的需求。有人提出了新建通信管道的解决方案,然而这种方案又面临着花费资金成本高,施工难度高以及还会对公共设施造成一定的破坏的问题,所以气吹微型光缆(简称为气吹微缆)的应用价值越来越引起电信运营商的重视。
气吹微缆与传统光缆相比,相同芯数的微缆在成缆材料用量及加工费用大大降低,结构尺寸小,质量轻,光纤密度高。在敷设时,采用高压气流吹送的方式可直接将气吹微缆吹放到现有的通信管道中,大大增加了管道的利用率,有效地节省了管道资源,满足网络扩容的建设需求,同时气吹敷设方便快捷,可有效缩短工程建设周期。
目前,气吹微缆一般采用高密度聚乙烯材料作为其外护层,虽然在理论设计下采用高压气流吹送的方式可实现1000m~2000m距离的吹送,但是由于在实际吹送过程中气吹微缆会与管壁产生接触,而高密度聚乙烯有相对较大的摩擦系数,使得气吹微缆的前进阻力相对较大,限制了光缆的气吹距离。
因此,如何提升气吹微缆的气吹距离是气吹微缆的发展方向,也是本 领域技术人员需要攻克的技术难题。
发明内容
本发明提供一种螺旋微槽型气吹微缆、制造设备及制造方法,以解决现有技术的不足。
为实现上述目的,本发明提供以下的技术方案:
第一方面,本发明实施例提供一种螺旋微槽型气吹微缆,包括缆芯和包覆所述缆芯的外护层,所述外护层的外壁设有用于导气以增加气送推动力的螺旋槽。
进一步地,所述螺旋微槽型气吹微缆中,所述螺旋槽有若干个;
若干个所述螺旋槽沿着所述外护层的圆周方向均匀分布。
进一步地,所述螺旋微槽型气吹微缆中,所述螺旋槽为V形结构。
进一步地,所述螺旋微槽型气吹微缆中,所述螺旋槽的宽度为所述外护层的周长的1/20;
所述螺旋槽的深度为所述外护层的厚度的1/2。
进一步地,所述螺旋微槽型气吹微缆中,所述缆芯包括中心加强件、垫层、若干个光纤管以及扎纱层;
所述中心加强件位于所述扎纱层的内部;
所述垫层包覆在所述中心加强件的外周;
若干个所述光纤管围绕所述垫层的外周沿周向均匀设置,且位于所述扎纱层的内部;
其中,所述光纤管包括套管及包覆于所述套管内的若干光纤。
进一步地,所述螺旋微槽型气吹微缆中,所述光纤管的内部填充有套管阻水物质;
所述扎纱层的内部填充有缆芯阻水物质。
进一步地,所述螺旋微槽型气吹微缆中,所述中心加强件为高碳钢丝。
第二方面,本发明实施例提供一种气吹微缆制造设备,用于制造如上述第一方面所述的螺旋微槽型气吹微缆,包括缆芯成型装置和外护层成型装置;
所述缆芯成型装置用于成型缆芯;
所述外护层成型装置用于在所述缆芯的外表面成型具有螺旋槽的外护层;
所述外护层成型装置包括挤塑机头和挤塑模具;
所述挤塑模具设置在所述挤塑机头的内部,包括模芯和模套,所述模芯与所述模套之间设有流道;
所述模套具有齿形开口,且通过齿轮传动机构与一电机传动连接,由所述电机带动进行匀速旋转。
进一步地,所述气吹微缆制造设备中,所述齿形开口上的齿牙有若干个;
若干个所述齿牙沿着所述齿形开口的圆周方向均匀分布。
第三方面,本发明实施例提供一种气吹微缆制造方法,采用如上述第二方面所述的气吹微缆制造设备执行,所述方法包括:
通过缆芯成型装置成型缆芯;
通过挤塑机头将外护层料经由流道挤塑在所述缆芯的外表面,挤塑过程中模套在电机的带动下匀速旋转,从而在所述缆芯的外表面形成具有螺旋槽的外护层。
本发明实施例提供的一种螺旋微槽型气吹微缆、制造设备及制造方法,通过在气吹微缆的外护层外壁上设置螺旋槽,可在保证气吹微缆原性能不变的情况下,实现在敷设时高压气流能够均匀包裹气吹微缆而使气吹微缆始终保持在管道中心,减小与管壁在传送过程中的摩擦,气吹阻力得以减小,有效提高了气吹微缆的吹送距离,具有较高的推广应用价值。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例提供的一种螺旋微槽型气吹微缆的结构正面示意图;
图2是本发明实施例提供的一种螺旋微槽型气吹微缆的结构侧面示意图;
图3是本发明实施例提供的一种气吹微缆制造方法的流程示意图。
附图标记:
外护层1,螺旋槽2,中心加强件3,垫层4,扎纱层5,套管6,光纤7,套管阻水物质8,缆芯阻水物质9。
具体实施方式
为使得本发明的目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中设置的组件。当一个组件被认为是“设置在”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中设置的组件。
此外,术语“长”“短”“内”“外”等指示方位或位置关系为基于附图所展示的方位或者位置关系,仅是为了便于描述本发明,而不是指示或暗示所指的装置或原件必须具有此特定的方位、以特定的方位构造进行操作,以此不能理解为本发明的限制。
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
实施例一
请参考图1~2,本发明实施例提供一种螺旋微槽型气吹微缆,包括缆芯和包覆所述缆芯的外护层1,所述外护层1的外壁设有用于导气以增加气送推动力的螺旋槽2。
需要说明的是,本实施例中需要改进的只是包覆于所述缆芯的外表面的外护层1,具体是在外护层1的外表面增加沿着缆芯的长度方向螺旋的螺旋槽2,而缆芯为常规的缆芯结构设计,不需要进行额外改进,气吹微缆产品的通用结构尺寸不改变,可保证产品与已敷设的传统产品的通用性。
示例性的,所述缆芯包括中心加强件3、垫层4、若干个光纤管以及扎纱层5;
所述中心加强件3位于所述扎纱层5的内部;
所述垫层4包覆在所述中心加强件3的外周;
若干个所述光纤管围绕所述垫层4的外周沿周向均匀设置,且位于所述扎纱层5的内部;
其中,所述光纤管包括套管6及包覆于所述套管6内的若干光纤7。
优选的,所述光纤管的内部填充有套管阻水物质8,比如纤膏;所述扎纱层5的内部填充有缆芯阻水物质9,比如缆膏。
所述中心加强件3为高碳钢丝。
优选的,所述螺旋槽2为V形结构,当然也可以是其它形状,只要能实现导气以增加气送推动力即可。具体的,所述螺旋槽2的宽度为所述外护层1的周长的1/20,所述螺旋槽2的深度为所述外护层1的厚度的1/2。
在本实施例中,所述螺旋槽2可为一个或若干个,但优选为若干个;若干个所述螺旋槽2沿着所述外护层1的圆周方向均匀分布,从正面看,所述外护层1的形状如齿轮状。
原理说明:敷设吹送时,气吹微缆在高压气流的带动下向前传送,通过多密度的螺旋槽间传气,保证在气吹过程中,高压气流能够均匀包裹气吹微缆而使气吹微缆始终保持在管道中心位置,可减小与管壁在传送过程中的摩擦,并由螺旋槽中的气流辅助增加气送推动力,从而有效提高气吹微缆的吹送距离。
本发明实施例提供的一种螺旋微槽型气吹微缆,通过在气吹微缆的外护层外壁上设置螺旋槽,可在保证气吹微缆原性能不变的情况下,减小气吹阻力,提高气吹微缆的吹送距离,具有较高的推广应用价值。
实施例二
本发明实施例提供一种气吹微缆制造设备,用于制造如实施例一所述的螺旋微槽型气吹微缆,包括缆芯成型装置和外护层成型装置;
所述缆芯成型装置用于成型缆芯;
所述外护层成型装置用于在所述缆芯的外表面成型具有螺旋槽的外护层;
所述外护层成型装置包括挤塑机头和挤塑模具;
所述挤塑模具设置在所述挤塑机头的内部,包括模芯和模套,所述模芯与所述模套之间设有流道;
所述模套具有齿形开口,且通过齿轮传动机构与一电机传动连接,由所述电机带动进行匀速旋转。
优选的,所述齿形开口上的齿牙有若干个;
若干个所述齿牙沿着所述齿形开口的圆周方向均匀分布。
其中,所述电机采用1000W功率以下的小电机。在挤塑时,所述电机带动模套匀速旋转,配合模套的齿形开口,可在缆芯的外表面成型具有螺旋槽的外护层。
需要说明的,所述缆芯成型装置是气吹微缆制造设备的必要组成部分,其作用是成型外护层成型装置所需要的缆芯,但鉴于该装置不是本方案设计重点,本实施例未对该装置进行改进,加之该装置在现有技术中已多有实现,属于本领域技术人员的公知常识,因此本实施例不做深入的阐述。
本发明实施例提供的一种气吹微缆制造设备,通过改进外护层成型装置,具体是将模套改进设计为具有齿形开口的可旋转模套,使得气吹微缆的外护层外壁上增加了螺旋槽,可在保证气吹微缆原性能不变的情况下,实现在敷设时高压气流能够均匀包裹气吹微缆而使气吹微缆始终保持在管道中心,减小与管壁在传送过程中的摩擦,气吹阻力得以减小,有效提高了气吹微缆的吹送距离,具有较高的推广应用价值。
实施例三
本发明实施例提供一种气吹微缆制造方法,采用如实施例二所述的气吹微缆制造设备执行,所述方法包括如下步骤:
S301、通过缆芯成型装置成型缆芯;
需要说明的是,所述缆芯包括中心加强件、垫层、扎纱层、套管阻水物质、缆芯阻水物质、若干个套管以及包覆于所述套管内的若干光纤,该步骤S301涉及缆芯成型的各个工艺,比如:
(1)对光纤进行着色;
着色工序通过合理控制光纤收放线张力,精确控制UV固化灯的光功率,使得光纤着色后各项指标符合工艺和技术要求;
(2)将着色后的光纤分别送入到套管内;
套管工序通过选用合适的挤出模具,均匀控制材料挤塑量,在套管内填充一定量的套管阻水物质,比如纤膏,采用特定的水温和张力设置,满足套管外径和光纤余长要求;
(3)在扎纱层的捆扎下,将多个套管均匀分布地围绕在中心加强件的外周,然后绞合形成缆芯,在此过程中,同时在扎纱层的内部填充一定量的缆芯阻水物质,比如缆膏;
中心加强件采用常规高碳钢丝。
S302、通过挤塑机头将外护层料经由流道挤塑在所述缆芯的外表面,挤塑过程中模套在电机的带动下匀速旋转,从而在所述缆芯的外表面形成具有螺旋槽的外护层。
需要说明的是,所述模芯和模套的内部均设有从前端到后端贯穿的通道,外护层成型的过程中,缆芯放入在该通道内,挤塑机头产生的外护层料会进入模芯与模套之间的流道,然后从模套的齿形开口挤出在缆芯的外表面上,在此过程中,模套均匀旋转;外护层成型后经过冷却水槽冷却,然后在牵引机的牵引下通过收线机进行收线。
本发明实施例提供的一种气吹微缆制造方法,通过使具有齿形开口的模套在挤塑的同时进行匀速旋转,使得所述缆芯的外表面可形成具有螺旋槽的外护层,既保证了气吹微缆原性能不变,又实现在敷设时高压气流能够均匀包裹气吹微缆而使气吹微缆始终保持在管道中心,减小与管壁在传 送过程中的摩擦,气吹阻力得以减小,有效提高了气吹微缆的吹送距离,具有较高的推广应用价值。
至此,以说明和描述的目的提供上述实施例的描述。不意指穷举或者限制本公开。特定的实施例的单独元件或者特征通常不受到特定的实施例的限制,但是在适用时,即使没有具体地示出或者描述,其可以互换和用于选定的实施例。在许多方面,相同的元件或者特征也可以改变。这种变化不被认为是偏离本公开,并且所有的这种修改意指为包括在本公开的范围内。
提供示例实施例,从而本公开将变得透彻,并且将会完全地将该范围传达至本领域内技术人员。为了透彻理解本公开的实施例,阐明了众多细节,诸如特定零件、装置和方法的示例。显然,对于本领域内技术人员,不需要使用特定的细节,示例实施例可以以许多不同的形式实施,而且两者都不应当解释为限制本公开的范围。在某些示例实施例中,不对公知的工序、公知的装置结构和公知的技术进行详细地描述。
在此,仅为了描述特定的示例实施例的目的使用专业词汇,并且不是意指为限制的目的。除非上下文清楚地作出相反的表示,在此使用的单数形式“一个”和“该”可以意指为也包括复数形式。术语“包括”和“具有”是包括在内的意思,并且因此指定存在所声明的特征、整体、步骤、操作、元件和/或组件,但是不排除存在或额外地具有一个或以上的其他特征、整体、步骤、操作、元件、组件和/或其组合。除非明确地指示了执行的次序,在此描述的该方法步骤、处理和操作不解释为一定需要按照所论述和示出的特定的次序执行。还应当理解的是,可以采用附加的或者可选择的步骤。
当元件或者层称为是“在……上”、“与……接合”、“连接到”或者“联接到”另一个元件或层,其可以是直接在另一个元件或者层上、与另一个元件或层接合、连接到或者联接到另一个元件或层,也可以存在介于其间的元件或者层。与此相反,当元件或层称为是“直接在……上”、“与……直接接合”、“直接连接到”或者“直接联接到”另一个元件或层,则可能不存在介于其间的元件或者层。其他用于描述元件关系的词应当以类似的 方式解释(例如,“在……之间”和“直接在……之间”、“相邻”和“直接相邻”等)。在此使用的术语“和/或”包括该相关联的所罗列的项目的一个或以上的任一和所有的组合。虽然此处可能使用了术语第一、第二、第三等以描述各种的元件、组件、区域、层和/或部分,这些元件、组件、区域、层和/或部分不受到这些术语的限制。这些术语可以只用于将一个元件、组件、区域或部分与另一个元件、组件、区域或部分区分。除非由上下文清楚地表示,在此使用诸如术语“第一”、“第二”及其他数值的术语不意味序列或者次序。因此,在下方论述的第一元件、组件、区域、层或者部分可以采用第二元件、组件、区域、层或者部分的术语而不脱离该示例实施例的教导。
空间的相对术语,诸如“内”、“外”、“在下面”、“在……的下方”、“下部”、“上方”、“上部”等,在此可出于便于描述的目的使用,以描述如图中所示的一个元件或者特征和另外一个或多个元件或者特征之间的关系。空间的相对术语可以意指包含除该图描绘的取向之外该装置的不同的取向。例如如果翻转该图中的装置,则描述为“在其他元件或者特征的下方”或者“在元件或者特征的下面”的元件将取向为“在其他元件或者特征的上方”。因此,示例术语“在……的下方”可以包含朝上和朝下的两种取向。该装置可以以其他方式取向(旋转90度或者其他取向)并且以此处的空间的相对描述解释。

Claims (10)

  1. 一种螺旋微槽型气吹微缆,包括缆芯和包覆所述缆芯的外护层,其特征在于,所述外护层的外壁设有用于导气以增加气送推动力的螺旋槽。
  2. 根据权利要求1所述的螺旋微槽型气吹微缆,其特征在于,所述螺旋槽有若干个;
    若干个所述螺旋槽沿着所述外护层的圆周方向均匀分布。
  3. 根据权利要求1所述的螺旋微槽型气吹微缆,其特征在于,所述螺旋槽为V形结构。
  4. 根据权利要求1所述的螺旋微槽型气吹微缆,其特征在于,所述螺旋槽的宽度为所述外护层的周长的1/20;
    所述螺旋槽的深度为所述外护层的厚度的1/2。
  5. 根据权利要求1所述的螺旋微槽型气吹微缆,其特征在于,所述缆芯包括中心加强件、垫层、若干个光纤管以及扎纱层;
    所述中心加强件位于所述扎纱层的内部;
    所述垫层包覆在所述中心加强件的外周;
    若干个所述光纤管围绕所述垫层的外周沿周向均匀设置,且位于所述扎纱层的内部;
    其中,所述光纤管包括套管及包覆于所述套管内的若干光纤。
  6. 根据权利要求5所述的螺旋微槽型气吹微缆,其特征在于,所述光纤管的内部填充有套管阻水物质;
    所述扎纱层的内部填充有缆芯阻水物质。
  7. 根据权利要求5所述的螺旋微槽型气吹微缆,其特征在于,所述中心加强件为高碳钢丝。
  8. 一种气吹微缆制造设备,用于制造如权利要求1~7中任一项所述的螺旋微槽型气吹微缆,包括缆芯成型装置和外护层成型装置;
    所述缆芯成型装置用于成型缆芯;
    所述外护层成型装置用于在所述缆芯的外表面成型具有螺旋槽的外护层;
    所述外护层成型装置包括挤塑机头和挤塑模具;
    所述挤塑模具设置在所述挤塑机头的内部,包括模芯和模套,所述模芯与所述模套之间设有流道,其特征在于:
    所述模套具有齿形开口,且通过齿轮传动机构与一电机传动连接,由所述电机带动进行匀速旋转。
  9. 根据权利要求8所述的气吹微缆制造设备,其特征在于,所述齿形开口上的齿牙有若干个;
    若干个所述齿牙沿着所述齿形开口的圆周方向均匀分布。
  10. 一种气吹微缆制造方法,采用如权利要求8~9中任一项所述的气吹微缆制造设备执行,其特征在于,所述方法包括:
    通过缆芯成型装置成型缆芯;
    通过挤塑机头将外护层料经由流道挤塑在所述缆芯的外表面,挤塑过程中模套在电机的带动下匀速旋转,从而在所述缆芯的外表面形成具有螺旋槽的外护层。
PCT/CN2021/115883 2020-09-04 2021-09-01 一种螺旋微槽型气吹微缆、制造设备及制造方法 WO2022048558A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010921417.7 2020-09-04
CN202010921417.7A CN111965776A (zh) 2020-09-04 2020-09-04 一种螺旋微槽型气吹微缆、制造设备及制造方法

Publications (1)

Publication Number Publication Date
WO2022048558A1 true WO2022048558A1 (zh) 2022-03-10

Family

ID=73392171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115883 WO2022048558A1 (zh) 2020-09-04 2021-09-01 一种螺旋微槽型气吹微缆、制造设备及制造方法

Country Status (2)

Country Link
CN (1) CN111965776A (zh)
WO (1) WO2022048558A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115877525A (zh) * 2022-12-20 2023-03-31 长飞光纤光缆股份有限公司 一种气吹光纤束光缆制备装置
CN116009161A (zh) * 2022-12-20 2023-04-25 长飞光纤光缆股份有限公司 一种气吹光纤束光缆及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965776A (zh) * 2020-09-04 2020-11-20 江苏亨通光电股份有限公司 一种螺旋微槽型气吹微缆、制造设备及制造方法
CN113900205B (zh) * 2021-10-26 2022-11-18 长飞光纤光缆股份有限公司 一种表面具有螺旋沟槽的水敷设光缆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2156539A (en) * 1984-03-29 1985-10-09 Bicc Plc Manufacture of optical guide assembly
CN1241281A (zh) * 1997-09-29 2000-01-12 古河电气工业株式会社 架空电线
WO2004066008A1 (en) * 2003-01-24 2004-08-05 Lg Cable Ltd. Optical fiber unit for air blown installation, method and apparatus for manufacturing the same
CN102183830A (zh) * 2010-05-31 2011-09-14 四川汇源光通信有限公司 表面具有凹凸纹槽的绞合式微型气吹光缆及制造方法
CN104516075A (zh) * 2014-12-23 2015-04-15 成都亨通光通信有限公司 一种具有低摩擦系数的新型全干式气吹微缆
CN207601394U (zh) * 2017-12-21 2018-07-10 江苏中天科技股份有限公司 一种超柔耐弯气吹微型光缆
CN111965776A (zh) * 2020-09-04 2020-11-20 江苏亨通光电股份有限公司 一种螺旋微槽型气吹微缆、制造设备及制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2156539A (en) * 1984-03-29 1985-10-09 Bicc Plc Manufacture of optical guide assembly
CN1241281A (zh) * 1997-09-29 2000-01-12 古河电气工业株式会社 架空电线
WO2004066008A1 (en) * 2003-01-24 2004-08-05 Lg Cable Ltd. Optical fiber unit for air blown installation, method and apparatus for manufacturing the same
CN102183830A (zh) * 2010-05-31 2011-09-14 四川汇源光通信有限公司 表面具有凹凸纹槽的绞合式微型气吹光缆及制造方法
CN104516075A (zh) * 2014-12-23 2015-04-15 成都亨通光通信有限公司 一种具有低摩擦系数的新型全干式气吹微缆
CN207601394U (zh) * 2017-12-21 2018-07-10 江苏中天科技股份有限公司 一种超柔耐弯气吹微型光缆
CN111965776A (zh) * 2020-09-04 2020-11-20 江苏亨通光电股份有限公司 一种螺旋微槽型气吹微缆、制造设备及制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115877525A (zh) * 2022-12-20 2023-03-31 长飞光纤光缆股份有限公司 一种气吹光纤束光缆制备装置
CN116009161A (zh) * 2022-12-20 2023-04-25 长飞光纤光缆股份有限公司 一种气吹光纤束光缆及其制备方法

Also Published As

Publication number Publication date
CN111965776A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
WO2022048558A1 (zh) 一种螺旋微槽型气吹微缆、制造设备及制造方法
CA1103494A (en) Optical fibre cables and their manufacture
US5813106A (en) Method and apparatus for manufacturing and laying out an umbilical
WO2017084517A1 (zh) 用于极微型气吹光缆的双层共挤方法及极微型气吹光缆
WO2020253158A1 (zh) 一种无扎纱层绞式光缆及其制造方法
KR910005187B1 (ko) 공동의 광 전도체와 그 제조 방법 및 장치
US3905853A (en) Reinforced plastics tubes
CA1093877A (en) Optical waveguide cables
JP2002124136A (ja) 自己支持型ケーブル及びその製造方法
CN102568680A (zh) 一种风能电缆及制造方法
WO2020063292A1 (zh) 一种超细防蚁气吹光缆及其制作方法
JP4583605B2 (ja) 電気通信用の光ケーブル
CA1082435A (en) Process and device for producing multi-wire power cables or lines provided with reversing lay
FI83914B (fi) Foerfarande och utrustning foer tillverkning av ett flerfibrigt optiskt ledarelement.
CN113866922A (zh) 一种大芯数微束管室外光缆及其工艺制造方法
CN209746209U (zh) 一种新型易分支“8”字型光缆及其成型模具
CN115616723B (zh) 一种气吹光缆及其制造方法
CN106154471B (zh) 全干式大数据光电网线缆的生产方法及大数据光电网线缆
CN108426104A (zh) 连续纤维增强塑料压力管及其制造方法与装置
CN114019638A (zh) 一种气吹微缆、其制备方法及气吹施工方法
CN208237253U (zh) 连续纤维增强塑料压力管及其制造装置
CN207586487U (zh) 加强微型气吹光纤单元
GB1581554A (en) Manufacture of optical fibre cables
CN112630912A (zh) 层绞式气吹微缆及其生产设备、加工方法
GB2079970A (en) Improvements in or relating to optical cable elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863622

Country of ref document: EP

Kind code of ref document: A1