WO2022048481A1 - 一种产生具有烧蚀预脉冲的强场脉冲装置及其实现方法 - Google Patents

一种产生具有烧蚀预脉冲的强场脉冲装置及其实现方法 Download PDF

Info

Publication number
WO2022048481A1
WO2022048481A1 PCT/CN2021/114570 CN2021114570W WO2022048481A1 WO 2022048481 A1 WO2022048481 A1 WO 2022048481A1 CN 2021114570 W CN2021114570 W CN 2021114570W WO 2022048481 A1 WO2022048481 A1 WO 2022048481A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
main laser
ablation
mirror
beam splitter
Prior art date
Application number
PCT/CN2021/114570
Other languages
English (en)
French (fr)
Inventor
马国利
尹学爱
张鑫
Original Assignee
滨州学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 滨州学院 filed Critical 滨州学院
Publication of WO2022048481A1 publication Critical patent/WO2022048481A1/zh
Priority to ZA2022/04218A priority Critical patent/ZA202204218B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/1127Q-switching using pulse transmission mode [PTM]

Definitions

  • the invention relates to laser technology, in particular to a device for generating strong field pulses with ablation pre-pulses and a method for realizing the same.
  • the peak power of the laser has developed rapidly.
  • the peak power of the laser pulse can reach several PW (10 15 W), and the laser light intensity can reach 10 22 W/cm 2 .
  • Such high-field lasers are widely used in laser-plasma interactions. According to the needs of laser-plasma interaction, more and more applications are currently
  • a common CPA system is shown in Figure 1.
  • An oscillator generates an ultra-short pulse (pulse width is usually in the order of picoseconds or femtoseconds) as a seed source, and a long pulse (pulse width length) is obtained after the pulse is time-stretched by a stretcher.
  • the length of the specific broadened pulse width depends on the energy that needs to be amplified), using the amplifier group to amplify the energy of the long pulse that has been broadened to obtain a high-energy pulse, and the high-energy laser pulse finally passes through
  • the compressor compresses the time scale of the pulse to a minimum (on the order of the pulse width back to the seed source) to obtain a high peak power strong field laser pulse.
  • a high-peak power intense field laser is delivered to the target to interact with the target.
  • the high-field laser pulse obtained by the CPA technology usually has only one pulse in one cycle, for example, the laser with the repetition frequency of 1Hz has only one pulse in 1s.
  • more and more applications now require an ablation pre-pulse with a light intensity of 10 12 W/cm 2 in the ns to ps time range before the main laser pulse to interact with the target in advance to generate a pre-plasma, followed by the main laser pulse.
  • the pulses are shaped in the pre-plasma before further interaction with the target.
  • the prior art mainly uses a small mirror 1 to use a large-diameter laser reflection part as ablation pre-pulse in the compressed laser.
  • the pulse width of the ablation pre-pulse is usually uncontrollable, and the ablation pre-pulse
  • the ablation pre-pulse and the main laser pulse are respectively focused on the target 3 non-axially by the focusing mirror 2.
  • the two sets of focusing systems not only increase the cost, but also increase the workload, and also need to focus the micron-sized ablation pre-pulse. It is difficult to spatially overlap the pulse and the focused main laser pulse of the micron-scale laser on the target point.
  • the present invention proposes a device for generating a strong field pulse with ablation pre-pulse and a method for realizing the same.
  • An object of the present invention is to provide a device for generating strong field pulses with ablation pre-pulses.
  • the CPA system sequentially includes a seed source, a stretcher, an amplifier group and a compressor; wherein, the amplifier group includes a pre-amplifier group, a beam expander system, a first-stage amplifier and a second-stage amplifier, and the pre-amplifier group includes m amplifiers, m is a natural number ⁇ 0; the seed source undergoes time-stretching of the pulse through a stretcher to obtain a long laser pulse; then enters the amplifier group, passes through the pre-amplifier group and the beam expansion system in turn, and then the first-stage amplifier amplifies the energy, and then enters the first-stage amplifier.
  • the second-stage amplifier amplifies the energy to obtain high-energy laser pulses; the high-energy laser pulses are finally compressed to the minimum time scale by the compressor, so as to obtain high-peak power strong-field laser pulses, which are output to the target area for shooting.
  • the device for generating a strong field pulse with ablation pre-pulse of the present invention is to insert a laser beam splitting device between the first-stage amplifier and the second-stage amplifier in the amplifier group of the CPA system, and the laser beam splitting device comprises: a first splitter The beam mirror, the second beam splitter, the first main laser transmission mirror and the second main laser transmission mirror have an incident angle of 45°; wherein, the laser pulse is divided into two parts through the reflection and transmission of the first beam splitter, and the first The ratio of the reflected light of the beam splitter to the transmitted light is greater than 9:1; among them, the reflected light of the first beam splitter is reflected by the first main laser transmission mirror and the second main laser transmission mirror in turn, as the main laser pulse ;
  • the transmitted light through the first beam splitter is used as the ablation pre-pulse; the main laser pulse and the ablation pre-pulse are combined through the second beam splitter after transmission;
  • the optical path between the beam splitters is greater than the optical path between the first beam split
  • the main laser pulse and ablation pre-pulse further enter the second amplifier to be amplified, and then enter the compressor for compression.
  • the compressor compresses the main laser pulse to the shortest pulse width and transmits it to the second amplifier.
  • Target area the target area has a focusing mirror. Since the ablation pre-pulse is coaxial with the main laser pulse, the focusing mirror focuses on the ablation pre-pulse and the main laser pulse at the same time, and the focus position is the same. The problem of overlapping pulses with the main laser pulse.
  • the optical path delay device includes first and second fixed mirrors, first and second delay mirrors, and an electronically controlled translation stage; wherein the first and second fixed mirrors and The first and second retardation mirrors are mirrors with an incident angle of 45°; the first and second fixed mirrors are fixedly placed between the first main laser transmission mirror and the second main laser transmission mirror, and the four are located on the same straight line
  • the first and second delay mirrors are arranged on the electronically controlled translation stage; the main laser pulse reflected by the first main laser transmission mirror passes through the first fixed mirror, and the main laser pulse is vertically reflected and transmitted to the first delay mirror, The first retardation mirror will reflect the main laser pulse vertically and enter the second retardation mirror.
  • the second retardation mirror will then vertically reflect the main laser pulse.
  • the reflected light is parallel to the light reflected from the first fixed mirror, and the propagation direction is opposite.
  • the optical distance from the first fixed mirror to the first delay mirror is equal to the optical distance from the second delay mirror to the second fixed mirror, so that the implantation of the optical path delay device will not affect the original laser. transmission.
  • the stroke of the electronically controlled translation stage is greater than 15cm, and the movement of the electronically controlled translation stage is greater than 15cm, ensuring that the optical path delay device can provide a 0-30cm adjustable optical path, which can provide a 0-1ns time delay of the main laser pulse.
  • the dispersion control device adopts a compressor, which provides half of the compression of the compressor in the entire CPA system; the compressor is a double-grating structure, and by adjusting the spacing of the grating, the Pulse width; laser pulses larger than 5mJ have a larger spot, and the stretcher will introduce more aberrations; but the compressor cannot provide too much negative dispersion, otherwise the pulse width of the ablation pre-pulse is too short at this time, and it will enter the next stage Amplifiers can damage amplifier components.
  • the dispersion control device adopts a stretcher, the stretcher provides dispersion, the dispersion amount is a fixed value, and the second-order dispersion amount provided by the stretcher is greater than 10000fs 2 , less than 1000000fs 2 ;
  • the pulse width of the pulse is not adjustable. If the light spot of the ablation pre-pulse is smaller than 4mm, the ablation pre-pulse directly enters the stretcher for stretching. If the light spot of the ablation pre-pulse is larger than 4mm, the laser pulse needs to be narrowed by the lens group first, so that the light spot of the ablation pre-pulse is smaller than 4mm before entering the stretcher.
  • the light output by the stretcher passes through the beam expanding device composed of lenses Carry out beam expansion, so that the light spot of the ablation pre-pulse is the same as that of the main laser pulse; by adjusting the beam expanding device, the divergence angle of the ablation pre-pulse is the same as that of the main laser pulse.
  • the stretcher is a material stretcher, a Martinez stretcher or an Oufner stretcher.
  • Another object of the present invention is to provide an implementation method for generating a strong field pulse with an ablation pre-pulse.
  • Step 1 build the optical path:
  • the CPA system sequentially includes a seed source, a stretcher, an amplifier group and a compressor; wherein, the amplifier group includes a pre-amplifier group, a beam expander system, a first-stage amplifier and a second-stage amplifier, and the pre-amplifier group includes m amplifiers, m is a natural number ⁇ 0;
  • a laser beam splitting device is inserted between the first-stage amplifier and the second-stage amplifier in the amplifier group of the CPA system, and the laser beam splitting device includes: a first beam splitter, a second beam splitter, and a first main laser transmission mirror and the second main laser transmission mirror, the incident angle is 45°;
  • Step 2 the seed source obtains a long laser pulse after time-stretching the pulse through a stretcher; then enters the amplifier group, passes through the pre-amplifier group and the beam expanding system in turn, and amplifies the energy through the first-stage amplifier;
  • Step 3 The laser pulse with amplified energy from the first-stage amplifier enters the laser beam splitting device:
  • the reflection and transmission of the first beam splitter are divided into two parts, and the ratio of the reflected light of the first beam splitter to the transmitted light is greater than 9:1.
  • the laser transmission mirror and the second main laser transmission mirror are reflected as the main laser pulse; the transmitted light through the first beam splitter is used as the ablation pre-pulse; the main laser pulse and the ablation pre-pulse are transmitted through the second beam splitter. Beam combining; since the optical path of the main laser pulse between the first beam splitter and the second beam splitter is greater than the optical path of the ablation pre-pulse between the first beam splitter and the second beam splitter,
  • Step 4 After passing through the laser beam splitting device, there is an ablation pre-pulse before the main laser pulse.
  • the main laser pulse and the ablation pre-pulse further enter the second amplifier to be amplified, and then enter the compressor for compression.
  • the main laser pulse is compressed to the shortest pulse width and then transmitted to the target area;
  • Step 5 the target area has a focusing mirror. Since the ablation pre-pulse is coaxial with the main laser pulse, the focusing mirror focuses on the ablation pre-pulse and the main laser pulse at the same time. The focus position is the same, and there is no need to solve the ablation pre-pulse. The problem of overlapping pulses with the main laser pulse.
  • a laser beam splitting device is inserted between the first-stage amplifier and the second-stage amplifier in the amplifier group, and the laser beam splitting device has a first beam splitter, a second beam splitter, a first main laser transmission mirror and a second The main laser transmission mirror; the light is divided into two parts by the first beam splitter, which are respectively used as the main laser pulse and the ablation pre-pulse. Amplify, and then enter the compressor for compression. The compressor compresses the main laser pulse to the shortest pulse width and transmits it to the target area; the target area has a focusing mirror.
  • the The focusing mirror focuses on the ablation pre-pulse and the main laser pulse at the same time, and the focal position is the same, and there is no need to solve the overlapping problem of the ablation pre-pulse and the main laser pulse;
  • the delay between the pre-pulse and the main laser pulse is controllable, and the pulse width of the ablation pre-pulse at the front is adjustable; the structure can provide a multifunctional light source for laser targeting, and has low cost, small workload and easy operation.
  • Fig. 1 is the structural block diagram of the CPA system
  • Fig. 2 is a schematic diagram of the action of the ablation pre-pulse and the main laser pulse on the target in the prior art
  • FIG. 3 is a block diagram of the overall structure of the device for generating strong field pulses with ablation pre-pulses according to the present invention
  • Embodiment 4 is an optical path diagram of Embodiment 1 of a laser beam splitting device for generating an intense field pulse device with an ablation pre-pulse according to the present invention
  • Embodiment 5 is an optical path diagram of Embodiment 2 of the laser beam splitting device for generating an intense field pulse device with an ablation pre-pulse according to the present invention
  • Embodiment 6 is an optical path diagram of Embodiment 3 of a laser beam splitting device for generating an intense field pulse device with an ablation pre-pulse according to the present invention
  • FIG. 7 is an optical path diagram of Embodiment 4 of a laser beam splitting device for generating an intense field pulse device with an ablation pre-pulse according to the present invention.
  • the CPA system sequentially includes a seed source, a stretcher, an amplifier group and a compressor; wherein, the amplifier group includes a pre-amplifier group, a beam expander system, a first-stage amplifier and a second-stage amplifier, and the pre-amplifier group Contains m amplifiers, where m is a natural number ⁇ 0; the device for generating a strong field pulse with ablation pre-pulse in this embodiment is to insert a laser between the first-stage amplifier and the second-stage amplifier in the amplifier group of the CPA system Beam splitting device; as shown in FIG.
  • the laser beam splitting device includes: a first beam splitter 41, a second beam splitter 42, a first main laser transmission mirror 51 and a second main laser transmission mirror 52, and the incident angles are 45°; wherein, the laser pulse is divided into two parts through the reflection and transmission of the first beam splitter 41, and the ratio of the reflected light of the first beam splitter 41 to the transmitted light is greater than 9:1; The reflected light is then reflected by the first main laser transmission mirror 51 and the second main laser transmission mirror 52 in turn as the main laser pulse; the transmitted light through the first beam splitter 41 is used as the ablation pre-pulse; the main laser pulse and the ablation pre-pulse After transmission, the ablation pre-pulse is combined by the second beam splitter 42; because the optical path of the main laser pulse between the first beam splitter 41 and the second beam splitter 42 is greater than that of the ablation pre-pulse in the first beam splitter The optical path between the mirror 41 and the second beam splitting mirror 42, so the main laser pulse follows the ablation pre
  • the laser beam splitting device of this embodiment includes: a first beam splitter 41 , a second beam splitter 42 , a first main laser transmission mirror 51 , a second main laser transmission mirror 52 and an optical path delay device 6 ; wherein, the laser pulse is divided into two parts through the reflection and transmission of the first beam splitter 41, and the ratio of the reflected light of the first beam splitter 41 to the transmitted light is greater than 9:1;
  • the optical path delay device 6 includes the first fixed mirror 61 and The second fixed mirror 62, the first retardation mirror 63, the second delay mirror 64, and the electronically controlled translation stage 65; wherein, the first and second fixed mirrors 62 and the first and second delay mirrors 64 have an incident angle of 45°
  • the first and second fixed mirrors 62 are fixedly placed between the first main laser transmission mirror and the second main laser transmission mirror, and the four are located on the same straight line;
  • the first retardation mirror 63 and the second retardation mirror 64 It is arranged on the electronically controlled translation stage 65; the reflected light from the
  • the first retardation mirror 63 vertically reflects the main laser pulse and enters the second retardation mirror 64.
  • the second retardation mirror 64 will then vertically reflect the main laser pulse, and the reflected light is parallel to the light reflected by the first fixed mirror 61. And the propagation direction is opposite, continue to transmit to the second fixed mirror 62 and then reflect vertically; the optical path from the first fixed mirror 61 to the first retardation mirror 63 is equal to the optical distance from the second retardation mirror 64 to the second fixed mirror 62, so that the optical path is delayed
  • the implantation of the device will not affect the transmission of the original laser; it is then reflected by the second main laser transmission mirror 52 as the main laser pulse; the transmitted light through the first beam splitter 41 is used as the ablation pre-pulse; the main laser pulse and ablation After transmission, the pre-pulses are combined by the second beam splitter 42 .
  • the stroke of the electronically controlled translation stage 65 is greater than 15cm, and the movement of the electronically controlled translation stage 65 is greater than 15cm, which ensures that the optical path delay device can provide a 0-30cm adjustable optical path, which can provide a 0-1ns time delay of the main laser pulse.
  • the laser beam splitting device of this embodiment further includes adding a dispersion control device to the burning pre-pulse optical path;
  • the laser beam splitting device includes: a first beam splitter 41 , a second beam splitter 42 , a first The main laser transmission mirror 51, the second main laser transmission mirror 52 and the compressor 71; wherein, the laser pulse is divided into two parts by the reflection and transmission of the first beam splitter 41, and the reflected light of the first beam splitter 41: the transmitted light The ratio is greater than 9:1; wherein, the reflected light from the first beam splitter 41 is then reflected by the first main laser transmission mirror 51 and the second main laser transmission mirror 52 in turn as the main laser pulse; The transmitted light of 41 is used as the ablation pre-pulse.
  • the ablation pre-pulse is greater than 5mJ, and the dispersion control device adopts the compressor 71; 71 is a double grating structure, and the pulse width of the ablation pre-pulse can be adjusted by adjusting the spacing of the grating; the laser pulse larger than 5mJ has a larger spot, and the stretcher will introduce more aberrations, but the compressor cannot provide too much negative. Otherwise, the pulse width of the ablation pre-pulse is too short at this time, and entering the next stage amplifier will damage the amplifier components; the main laser pulse and the ablation pre-pulse are transmitted and combined by the second beam splitter 42 .
  • the laser beam splitting device in this embodiment includes: a first beam splitter 41 , a second beam splitter 42 , a first main laser transmission mirror 51 , a second main laser transmission mirror 52 , and an optical path delay device 6 and a stretcher 72; wherein, the laser pulse is divided into two parts by the reflection and transmission of the first beam splitter, and the ratio of the reflected light of the first beam splitter: the transmitted light is greater than 9:1; wherein, the optical path delay device 6 includes a first The fixed mirror 61 and the second fixed mirror 62, the first retardation mirror 63 and the second delay mirror 64, and the electronically controlled translation stage 65; wherein, the first and second fixed mirrors 62 are fixedly placed on the first main laser transmission mirror and the second Between the main laser transmission mirrors, and the four are located on the same straight line; the first and second retardation mirrors 64 are arranged on the electronically controlled translation stage 65; the reflected light from the first beam splitter passes through the first main laser in turn The transmission mirror reflects,
  • the first delay mirror 63 then vertically reflects the main laser pulse and enters the second delay mirror 64.
  • the second delay mirror 64 will then vertically reflect the main laser pulse, the reflected light is parallel to the light reflected by the first fixed mirror 61, and the propagation direction is opposite, and continues to transmit to the second fixed mirror 62 and then vertically reflected; the first fixed mirror 61 to the first delay
  • the optical path of the mirror 63 is equal to the optical path from the second retardation mirror 64 to the second fixed mirror 62, so that the implantation of the optical path delay device will not affect the transmission of the original laser; it is then reflected by the second main laser transmission mirror 52 as the main laser
  • the transmitted light through the first beam splitter 41 is used as the ablation pre-pulse; the transmitted ablation pre-pulse is less than 5mJ, at this time, the dispersion control device is the stretcher 72, and the amount of dispersion provided by the stretcher 72 is a fixed value, and the stretching The second-order dispersion amount provided by the
  • the light output by the stretcher 72 is processed by the beam expanding device composed of the lens. Expand the beam so that the spot of the ablation pre-pulse is the same as the main laser pulse.
  • the divergence angle of the ablation pre-pulse is the same as that of the main laser; the main laser pulse and the ablation pre-pulse are transmitted through the second split
  • the beam mirror 42 performs beam combining.
  • the stroke of the electronically controlled translation stage 65 is greater than 15cm, and the movement of the electronically controlled translation stage 65 is greater than 15cm, which ensures that the optical path delay device can provide a 0-30cm adjustable optical path, which can provide a 0-1ns time delay of the main laser pulse.
  • the main laser pulse and the ablation pre-pulse after passing through the laser beam splitting device, there is an ablation pre-pulse before the main laser pulse, the main laser pulse and the ablation pre-pulse further enter the second amplifier to be amplified, and then enter the compressor for processing Compression, the compressor compresses the main laser pulse to the shortest pulse width and then transmits it to the target area; the target area has a focusing mirror, because the ablation pre-pulse and the main laser pulse are coaxial and in the same direction, so the focusing mirror simultaneously compresses the ablation pre-pulse Focusing with the main laser pulse, the focal position is the same, and there is no need to solve the overlapping problem of the ablation pre-pulse and the main laser pulse.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种产生具有烧蚀预脉冲的强场脉冲装置及其实现方法,在放大器组中的第一级放大器和第二级放大器之间***一个激光分束装置;经第一分束镜(41)将光分成两部分,分别作为主激光脉冲和烧蚀预脉冲,主激光脉冲的光程大于烧蚀预脉冲的光程,再经过第二级放大器和压缩器,最后传输到靶区;靶区具有一个聚焦镜,由于烧蚀预脉冲与主激光脉冲同轴同向,因此聚焦镜同时对烧蚀预脉冲和主激光脉冲聚焦,焦点位置相同,不需要解决烧蚀预脉冲与主激光脉冲的重叠问题。烧蚀预脉冲与主激光脉冲延迟可控,位于前面的烧蚀预脉冲脉宽可调,能够为激光打靶提供多功能光源,且成本低、工作量小、容易操作。

Description

一种产生具有烧蚀预脉冲的强场脉冲装置及其实现方法 技术领域
本发明涉及激光技术,具体涉及一种产生具有烧蚀预脉冲的强场脉冲装置及其实现方法。
背景技术
自啁啾激光脉冲放大(CPA)提出后,激光器的峰值功率飞跃发展,激光脉冲峰值功率可达数PW(10 15W),激光光强可达10 22W/cm 2。这类强场激光被广泛应用于激光等离子相互作用中。根据激光等离子体相互作用的需求,目前越来越多的应用
常见的CPA***如图1所示,一个振荡器产生超短脉冲(脉冲宽度通常为皮秒或飞秒量级)作为种子源,经过展宽器对脉冲进行时间展宽后获得长脉冲(脉宽长度几十皮秒到纳秒量级,具体展宽后的脉宽长度取决于最终需要放大的能量),利用放大器组对已经展宽的长脉冲进行能量放大获得高能量脉冲,高能量的激光脉冲最后通过压缩器将脉冲的时间尺度压缩到最小(回到种子源的脉宽量级)从而获得高峰值功率的强场激光脉冲。高峰值功率的强场激光传输到靶上与靶相互作用。
通过CPA技术获得的强场激光脉冲通常在一个周期内只具有1个脉冲,比如重复频率为1Hz的激光,1s内仅有1个脉冲。但是现在越来越多的应用需要在主激光脉冲前ns到ps时间范围内有一个光强在10 12W/cm 2的烧蚀预脉冲提前与靶相互作用产生预等离子体,随后的主激光脉冲在预等离子体中得到整形,再进一步与靶相互作用。
技术问题
如图2所示,现有技术主要是在压缩后的激光中,利用小反射镜1将大口径的激光反射部分作为烧蚀预脉冲,该烧蚀预脉冲的脉冲宽度通常不可控,而且烧蚀预脉冲与主激光脉冲分别采用聚焦镜2不同轴地聚焦到靶3上,两套聚焦***不仅增加成本,而且增加工作量,同时还需要将聚焦后的微米量级尺寸的烧蚀预脉冲与聚焦后的微米量级的激光主激光脉冲在靶点上空间重合,难度较大。
技术解决方案
针对以上现有技术中存在的问题,本发明提出了一种产生具有烧蚀预脉冲的强场脉冲装置及其实现方法。
本发明的一个目的在于提出一种产生具有烧蚀预脉冲的强场脉冲装置。
CPA***依次包括种子源、展宽器、放大器组和压缩器;其中,放大器组包括前级放大器组、扩束***、第一级放大器和第二级放大器,前级放大器组包含m个放大器,m为≥0的自然数;种子源经过展宽器对脉冲进行时间展宽后获得长激光脉冲;再进入放大器组,依次经过前级放大器组和扩束***后,经第一级放大器放大能量,再进入第二级放大器放大能量,获得高能量激光脉冲;高能量激光脉冲最后通过压缩器将脉冲的时间尺度压缩到最小,从而获得高峰值功率的强场激光脉冲,输到靶区进行打靶。
本发明的产生具有烧蚀预脉冲的强场脉冲装置为在CPA***的放大器组中的第一级放大器和第二级放大器之间***一个激光分束装置,激光分束装置包括:第一分束镜、第二分束镜、第一主激光传输镜和第二主激光传输镜,入射角均为45°;其中,激光脉冲经过第一分束镜的反射和透射分成两部分,第一分束镜的反射光:透射光的比例大于9:1;其中,经第一分束镜的反射光,再依次经过第一主激光传输镜和第二主激光传输镜反射,作为主激光脉冲;经第一分束镜的透射光作为烧蚀预脉冲;主激光脉冲与烧蚀预脉冲经过传输后通过第二分束镜进行合束;由于主激光脉冲在第一分束镜与第二分束镜之间的光程大于烧蚀预脉冲在第一分束镜与第二分束镜之间的光程,因此主激光脉冲在烧蚀预脉冲之后;经过激光分束装置后,在主激光脉冲之前具有一个烧蚀预脉冲,主激光脉冲和烧蚀预脉冲进一步进入第二放大器中被放大,再进入压缩器中进行压缩,压缩器将主激光脉冲压缩到最短脉宽后传输到靶区;靶区具有一个聚焦镜,由于烧蚀预脉冲与主激光脉冲同轴同向,因此该聚焦镜同时对烧蚀预脉冲和主激光脉冲聚焦,焦点位置相同,不需要解决烧蚀预脉冲与主激光脉冲的重叠问题。
进一步还包括光路延迟装置,设置在主激光脉冲光路中;光路延迟装置包括第一和第二固定镜片、第一和第二延迟镜片以及电控平移台;其中,第一和第二固定镜片以及第一和第二延迟镜片均为入射角为45°的镜片;第一和第二固定镜片固定放置在第一主激光传输镜与第二主激光传输镜之间,并且四者位于同一条直线上;第一和第二延迟镜片设置在电控平移台上;经第一主激光传输镜反射的主激光脉冲,经过第一固定镜片,将主激光脉冲垂直反射,传输至第一延迟镜片,第一延迟镜片再将主激光脉冲垂直反射,进入第二延迟镜片,第二延迟镜片将再将主激光脉冲垂直反射,反射光与从第一固定镜片反射出的光平行,且传播方向相反,继续传输到第二固定镜片后垂直反射;第一固定镜片到第一延迟镜片的光程等于第二延迟镜片到第二固定镜片的光程,使得光路延迟装置的植入不会影响原始激光的传输。电控平移台的行程大于15cm,电控平移台的移动大于15cm,保障该光路延迟装置可提供0~30cm可调光程,即可提供主激光脉冲0~1ns时间延迟。
进一步还包括色散调控装置,设置在烧蚀预脉冲光路中;色散调控装置位于第一分束镜与第二分束镜之间;色散调控装置采用压缩器或展宽器。如果透射的烧蚀预脉冲大于5mJ,色散调控装置采用压缩器,压缩器提供整个CPA***中压缩器一半的压缩量;压缩器为双光栅结构,通过调节光栅的间距,调节烧蚀预脉冲的脉冲宽度;大于5mJ的激光脉冲光斑较大,展宽器进行展宽会引入较多像差;但是压缩器不能提供过多的负色散,否则此时烧蚀预脉冲脉冲宽度过短,进入下一级放大器会损伤放大器元件。如果透射的烧蚀预脉冲小于5mJ,色散调控装置采用展宽器,展宽器提供色散,色散量为一固定值,展宽器提供的二阶色散量大于10000fs 2,小于1000000fs 2;此时烧蚀预脉冲的脉冲宽度不可调。如果烧蚀预脉冲的光斑小于4mm,烧蚀预脉冲直接进入展宽器进行展宽。如果烧蚀预脉冲的光斑大于4mm,此时激光脉冲需要先经过透镜组缩束,使得烧蚀预脉冲的光斑小于4mm后再进入展宽器,展宽器输出的光在经过透镜组成的扩束装置进行扩束,使烧蚀预脉冲的光斑与主激光脉冲相同;通过调节扩束装置使烧蚀预脉冲的发散角与主激光脉冲的发散角相同。展宽器采用材料展宽器、马丁内兹展宽器或者欧浮纳展宽器。
本发明的另一个目的在于提出一种产生具有烧蚀预脉冲的强场脉冲的实现方法。
本发明的产生具有烧蚀预脉冲的强场脉冲的实现方法,包括以下步骤:
步骤1,搭建光路:
CPA***依次包括种子源、展宽器、放大器组和压缩器;其中,放大器组包括前级放大器组、扩束***、第一级放大器和第二级放大器,前级放大器组包含m个放大器,m为≥0的自然数;
在CPA***的放大器组中的第一级放大器和第二级放大器之间***一个激光分束装置,激光分束装置包括:第一分束镜、第二分束镜、第一主激光传输镜和第二主激光传输镜,入射角均为45°;
步骤2,种子源经过展宽器对脉冲进行时间展宽后获得长激光脉冲;再进入放大器组,依次经过前级放大器组和扩束***后,经第一级放大器放大能量;
步骤3,从第一级放大器放大能量的激光脉冲进入激光分束装置:
经过第一分束镜的反射和透射分成两部分,第一分束镜的反射光:透射光的比例大于9:1;其中,经第一分束镜的反射光,再依次经过第一主激光传输镜和第二主激光传输镜反射,作为主激光脉冲;经第一分束镜的透射光作为烧蚀预脉冲;主激光脉冲与烧蚀预脉冲经过传输后通过第二分束镜进行合束;由于主激光脉冲在第一分束镜与第二分束镜之间的光程大于烧蚀预脉冲在第一分束镜与第二分束镜之间的光程,
因此主激光脉冲在烧蚀预脉冲之后;
步骤4,经过激光分束装置后,在主激光脉冲之前具有一个烧蚀预脉冲,主激光脉冲和烧蚀预脉冲进一步进入第二放大器中被放大,再进入压缩器中进行压缩,压缩器将主激光脉冲压缩到最短脉宽后传输到靶区;
步骤5,靶区具有一个聚焦镜,由于烧蚀预脉冲与主激光脉冲同轴同向,因此该聚焦镜同时对烧蚀预脉冲和主激光脉冲聚焦,焦点位置相同,不需要解决烧蚀预脉冲与主激光脉冲的重叠问题。
有益效果
本发明在放大器组中的第一级放大器和第二级放大器之间***一个激光分束装置,激光分束装置第一分束镜、第二分束镜、第一主激光传输镜和第二主激光传输镜;经第一分束镜将光分成两部分,分别作为主激光脉冲和烧蚀预脉冲,主激光脉冲的光程大于烧蚀预脉冲的光程,进一步进入第二放大器中被放大,再进入压缩器中进行压缩,压缩器将主激光脉冲压缩到最短脉宽后传输到靶区;靶区具有一个聚焦镜,由于烧蚀预脉冲与主激光脉冲同轴同向,因此该聚焦镜同时对烧蚀预脉冲和主激光脉冲聚焦,焦点位置相同,不需要解决烧蚀预脉冲与主激光脉冲的重叠问题;本发明可以提供具有烧蚀预脉冲的强场激光脉冲,烧蚀预脉冲与主激光脉冲延迟可控,其中位于前面的烧蚀预脉冲脉宽可调;该结构能够为激光打靶提供多功能光源,且成本低、工作量小、容易操作。
附图说明
图1为CPA***的结构框图;
图2为现有技术中烧蚀预脉冲和主激光脉冲共同与靶作用示意图;
图3为本发明的产生具有烧蚀预脉冲的强场脉冲装置的整体结构框图;
图4为本发明的产生具有烧蚀预脉冲的强场脉冲装置的激光分束装置的实施例一的光路图;
图5为本发明的产生具有烧蚀预脉冲的强场脉冲装置的激光分束装置的实施例二的光路图;
图6为本发明的产生具有烧蚀预脉冲的强场脉冲装置的激光分束装置的实施例三的光路图;
图7为本发明的产生具有烧蚀预脉冲的强场脉冲装置的激光分束装置的实施例四的光路图。
本发明的实施方式
下面结合附图和实施例,对本发明作出进一步说明。
实施例一
如图3所示,CPA***依次包括种子源、展宽器、放大器组和压缩器;其中,放大器组包括前级放大器组、扩束***、第一级放大器和第二级放大器,前级放大器组包含m个放大器,m为≥0的自然数;本实施例的产生具有烧蚀预脉冲的强场脉冲装置为在CPA***的放大器组中的第一级放大器和第二级放大器之间***一个激光分束装置;如图4所示,激光分束装置包括:第一分束镜41、第二分束镜42、第一主激光传输镜51和第二主激光传输镜52,入射角均为45°;其中,激光脉冲经过第一分束镜41的反射和透射分成两部分,第一分束镜41的反射光:透射光的比例大于9:1;其中,经第一分束镜41的反射光,再依次经过第一主激光传输镜51和第二主激光传输镜52反射,作为主激光脉冲;经第一分束镜41的透射光作为烧蚀预脉冲;主激光脉冲与烧蚀预脉冲经过传输后通过第二分束镜42进行合束;由于主激光脉冲在第一分束镜41与第二分束镜42之间的光程大于烧蚀预脉冲在第一分束镜41与第二分束镜42之间的光程,因此主激光脉冲在烧蚀预脉冲之后。
实施例二
如图4所示,本实施例的激光分束装置包括:第一分束镜41、第二分束镜42、第一主激光传输镜51、第二主激光传输镜52和光路延迟装置6;其中,激光脉冲经过第一分束镜41的反射和透射分成两部分,第一分束镜41的反射光:透射光的比例大于9:1;光路延迟装置6包括第一固定镜片61和第二固定镜片62、第一延迟镜片63和第二延迟镜片64以及电控平移台65;其中,第一和第二固定镜片62以及第一和第二延迟镜片64均为入射角为45°的镜片;第一和第二固定镜片62固定放置在第一主激光传输镜与第二主激光传输镜之间,并且四者位于同一条直线上;第一延迟镜片63和第二延迟镜片64设置在电控平移台65上;经第一分束镜的反射光,再依次经过第一主激光传输镜反射,经过第一固定镜片61,将主激光脉冲垂直反射,传输至第一延迟镜片63,第一延迟镜片63再将主激光脉冲垂直反射,进入第二延迟镜片64,第二延迟镜片64将再将主激光脉冲垂直反射,反射光与第一固定镜片61反射出的光平行,且传播方向相反,继续传输到第二固定镜片62后垂直反射;第一固定镜片61到第一延迟镜片63的光程等于第二延迟镜片64到第二固定镜片62的光程,使得光路延迟装置的植入不会影响原始激光的传输;再经过第二主激光传输镜52反射,作为主激光脉冲;经第一分束镜41的透射光作为烧蚀预脉冲;主激光脉冲与烧蚀预脉冲经过传输后通过第二分束镜42进行合束。电控平移台65的行程大于15cm,电控平移台65的移动大于15cm,保障该光路延迟装置可提供0~30cm可调光程,即可提供主激光脉冲0~1ns时间延迟。
实施例三
如图6所示,本实施例的激光分束装置还包括在灼烧预脉冲光路中加入色散调控装置;激光分束装置包括:第一分束镜41、第二分束镜42、第一主激光传输镜51、第二主激光传输镜52和压缩器71;其中,激光脉冲经过第一分束镜41的反射和透射分成两部分,第一分束镜41的反射光:透射光的比例大于9:1;其中,经第一分束镜41的反射光,再依次经过第一主激光传输镜51和第二主激光传输镜52反射,作为主激光脉冲;经第一分束镜41的透射光作为烧蚀预脉冲,烧蚀预脉冲大于5mJ,色散调控装置采用压缩器71;烧蚀预脉冲经过压缩器,压缩器可提供整个CPA***中压缩器一半的压缩量,压缩器71为双光栅结构,通过调节光栅的间距可调节烧蚀预脉冲的脉冲宽度;大于5mJ的激光脉冲光斑较大,展宽器进行展宽会引入较多像差,但是压缩器不能提供过多的负色散,否则此时烧蚀预脉冲脉冲宽度过短,进入下一级放大器会损伤放大器元件;主激光脉冲与烧蚀预脉冲经过传输后通过第二分束镜42进行合束。
实施例四
如图7所示,本实施例的激光分束装置包括:第一分束镜41、第二分束镜42、第一主激光传输镜51、第二主激光传输镜52、光路延迟装置6和展宽器72;其中,激光脉冲经过第一分束镜的反射和透射分成两部分,第一分束镜的反射光:透射光的比例大于9:1;其中,光路延迟装置6包括第一固定镜片61和第二固定镜片62、第一延迟镜片63和第二延迟镜片64以及电控平移台65;其中,第一和第二固定镜片62固定放置在第一主激光传输镜与第二主激光传输镜之间,并且四者位于同一条直线上;第一和第二延迟镜片64设置在电控平移台65上;经第一分束镜的反射光,再依次经过第一主激光传输镜反射,经过第一固定镜片61,将主激光脉冲垂直反射,传输至第一延迟镜片63,第一延迟镜片63再将主激光脉冲垂直反射,进入第二延迟镜片64,第二延迟镜片64将再将主激光脉冲垂直反射,反射光与第一固定镜片61反射出的光平行,且传播方向相反,继续传输到第二固定镜片62后垂直反射;第一固定镜片61到第一延迟镜片63的光程等于第二延迟镜片64到第二固定镜片62的光程,使得光路延迟装置的植入不会影响原始激光的传输;再经过第二主激光传输镜52反射,作为主激光脉冲;经第一分束镜41的透射光作为烧蚀预脉冲;透射的烧蚀预脉冲小于5mJ,此时色散调控装置为展宽器72,展宽器72提供的色散量为一固定值,展宽器72提供的二阶色散量大于10000fs 2,小于1000000fs 2,此时烧蚀预脉冲的脉冲宽度不可调;如果烧蚀预脉冲的光斑小于4mm,烧蚀预脉冲直接进入展宽器72进行展宽;如果烧蚀预脉冲的光斑大于4mm,此时烧蚀预脉冲需要先经过透镜组缩束,使光斑小于4mm后再进入展宽器72,展宽器72输出的光在经过透镜组成的扩束装置进行扩束,使烧蚀预脉冲的光斑与主激光脉冲相同,通过调节扩束装置使烧蚀预脉冲发散角与主激光发散角相同;主激光脉冲与烧蚀预脉冲经过传输后通过第二分束镜42进行合束。电控平移台65的行程大于15cm,电控平移台65的移动大于15cm,保障该光路延迟装置可提供0~30cm可调光程,即可提供主激光脉冲0~1ns时间延迟。
在实施例1-4中,经过激光分束装置后,在主激光脉冲之前具有一个烧蚀预脉冲,主激光脉冲和烧蚀预脉冲进一步进入第二放大器中被放大,再进入压缩器中进行压缩,压缩器将主激光脉冲压缩到最短脉宽后传输到靶区;靶区具有一个聚焦镜,由于烧蚀预脉冲与主激光脉冲同轴同向,因此该聚焦镜同时对烧蚀预脉冲和主激光脉冲聚焦,焦点位置相同,不需要解决烧蚀预脉冲与主激光脉冲的重叠问题。

Claims (9)

  1. 一种产生具有烧蚀预脉冲的强场脉冲装置,自啁啾激光脉冲放大CPA***依次包括种子源、展宽器、放大器组和压缩器;其中,放大器组包括前级放大器组、扩束***、第一级放大器和第二级放大器,前级放大器组包含m个放大器,m为≥0的自然数;其特征在于,所述产生具有烧蚀预脉冲的强场脉冲装置为在CPA***的放大器组中的第一级放大器和第二级放大器之间***一个激光分束装置,激光分束装置包括:第一分束镜、第二分束镜、第一主激光传输镜和第二主激光传输镜,入射角均为45°;其中,种子源经过展宽器对脉冲进行时间展宽后获得长激光脉冲;进入放大器组,依次经过前级放大器组和扩束***后,经第一级放大器放大能量;激光脉冲经过第一分束镜的反射和透射分成两部分,第一分束镜的反射光:透射光的比例大于9:1;其中,经第一分束镜的反射光,再依次经过第一主激光传输镜和第二主激光传输镜反射,作为主激光脉冲;经第一分束镜的透射光作为烧蚀预脉冲;主激光脉冲与烧蚀预脉冲经过传输后通过第二分束镜进行合束;由于主激光脉冲在第一分束镜与第二分束镜之间的光程大于烧蚀预脉冲在第一分束镜与第二分束镜之间的光程,因此主激光脉冲在烧蚀预脉冲之后;经过激光分束装置后,在主激光脉冲之前具有一个烧蚀预脉冲,主激光脉冲和烧蚀预脉冲进一步进入第二放大器中被放大,再进入压缩器中进行压缩,压缩器将主激光脉冲压缩到最短脉宽后传输到靶区;靶区具有一个聚焦镜,由于烧蚀预脉冲与主激光脉冲同轴同向,因此该聚焦镜同时对烧蚀预脉冲和主激光脉冲聚焦,焦点位置相同,不需要解决烧蚀预脉冲与主激光脉冲的重叠问题。
  2. 如权利要求1所述的产生具有烧蚀预脉冲的强场脉冲装置,其特征在于,还包括光路延迟装置,设置在主激光脉冲光路中;光路延迟装置包括第一和第二固定镜片、第一和第二延迟镜片以及电控平移台;其中,第一和第二固定镜片以及第一和第二延迟镜片均为入射角为45°的镜片;第一和第二固定镜片固定放置在第一主激光传输镜与第二主激光传输镜之间,并且四者位于同一条直线上;第一和第二延迟镜片设置在电控平移台上;经第一主激光传输镜反射的主激光脉冲,经过第一固定镜片,将主激光脉冲垂直反射,传输至第一延迟镜片,第一延迟镜片再将主激光脉冲垂直反射,进入第二延迟镜片,第二延迟镜片将再将主激光脉冲垂直反射,反射光与从第一固定镜片反射出的光平行,且传播方向相反,继续传输到第二固定镜片后垂直反射;第一固定镜片到第一延迟镜片的光程等于第二延迟镜片到第二固定镜片的光程,使得光路延迟装置的植入不会影响原始激光的传输。
  3. 如权利要求2所述的产生具有烧蚀预脉冲的强场脉冲装置,其特征在于,所述电控平移台的行程大于15cm,电控平移台的移动大于15cm,保障该光路延迟装置可提供0~30cm可调光程,即可提供主激光脉冲0~1ns时间延迟。
  4. 如权利要求1所述的产生具有烧蚀预脉冲的强场脉冲装置,其特征在于,还包括色散调控装置,设置在烧蚀预脉冲光路中;色散调控装置位于第一分束镜与第二分束镜之间;色散调控装置采用压缩器或展宽器。
  5. 如权利要求4所述的产生具有烧蚀预脉冲的强场脉冲装置,其特征在于,如果透射的烧蚀预脉冲大于5mJ,色散调控装置采用压缩器,压缩器提供整个CPA***中压缩器一半的压缩量;压缩器为双光栅结构,通过调节光栅的间距,调节烧蚀预脉冲的脉冲宽度。
  6. 如权利要求4所述的产生具有烧蚀预脉冲的强场脉冲装置,其特征在于,如果透射的烧蚀预脉冲小于5mJ,色散调控装置采用展宽器,展宽器提供色散,展宽器提供的二阶色散量大于10000fs 2,小于1000000fs 2
  7. 如权利要求6所述的产生具有烧蚀预脉冲的强场脉冲装置,其特征在于,如果烧蚀预脉冲的光斑小于4mm,烧蚀预脉冲直接进入展宽器进行展宽;如果烧蚀预脉冲的光斑大于4mm,此时激光脉冲需要先经过透镜组缩束,使得烧蚀预脉冲的光斑小于4mm后再进入展宽器,展宽器输出的光在经过透镜组成的扩束装置进行扩束,使烧蚀预脉冲的光斑与主激光脉冲相同;通过调节扩束装置使烧蚀预脉冲的发散角与主激光脉冲的发散角相同。
  8. 如权利要求6所述的产生具有烧蚀预脉冲的强场脉冲装置,其特征在于,所述展宽器采用材料展宽器、马丁内兹展宽器或者欧浮纳展宽器。
  9. 一种产生具有烧蚀预脉冲的强场脉冲的实现方法,其特征在于,所述实现方法包括以下步骤:    
    步骤1,搭建光路:    
    自啁啾激光脉冲放大CPA***依次包括种子源、展宽器、放大器组和压缩器;其中,放大器组包括前级放大器组、扩束***、第一级放大器和第二级放大器,前级放大器组包含m个放大器,m为≥0的自然数; 在CPA***的放大器组中的第一级放大器和第二级放大器之间***一个激光分束装置,激光分束装置包括:第一分束镜、第二分束镜、第一主激光传输镜和第二主激光传输镜,入射角均为45°;    
    步骤2,种子源经过展宽器对脉冲进行时间展宽后获得长激光脉冲;再进入放大器组,依次经过前级放大器组和扩束***后,经第一级放大器放大能量;    
    步骤3,从第一级放大器放大能量的激光脉冲进入激光分束装置: 经过第一分束镜的反射和透射分成两部分,第一分束镜的反射光:透射光的比例大于9:1;其中,经第一分束镜的反射光,再依次经过第一主激光传输镜和第二主激光传输镜反射,作为主激光脉冲;经第一分束镜的透射光作为烧蚀预脉冲;主激光脉冲与烧蚀预脉冲经过传输后通过第二分束镜进行合束;由于主激光脉冲在第一分束镜与第二分束镜之间的光程大于烧蚀预脉冲在第一分束镜与第二分束镜之间的光程,因此主激光脉冲在烧蚀预脉冲之后;    
    步骤4,经过激光分束装置后,在主激光脉冲之前具有一个烧蚀预脉冲,主激光脉冲和烧蚀预脉冲进一步进入第二放大器中被放大,再进入压缩器中进行压缩,压缩器将主激光脉冲压缩到最短脉宽后传输到靶区;    
    步骤5,靶区具有一个聚焦镜,由于烧蚀预脉冲与主激光脉冲同轴同向,因此该聚焦镜同时对烧蚀预脉冲和主激光脉冲聚焦,焦点位置相同,不需要解决烧蚀预脉冲与主激光脉冲的重叠问题。
PCT/CN2021/114570 2020-11-03 2021-08-25 一种产生具有烧蚀预脉冲的强场脉冲装置及其实现方法 WO2022048481A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2022/04218A ZA202204218B (en) 2020-11-03 2022-04-13 A device for generating strong field pulse with ablation pre-pulse and its realization method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011209127.6 2020-11-03
CN202011209127.6A CN112332200B (zh) 2020-11-03 2020-11-03 一种产生具有烧蚀预脉冲的强场脉冲装置及其实现方法

Publications (1)

Publication Number Publication Date
WO2022048481A1 true WO2022048481A1 (zh) 2022-03-10

Family

ID=74322871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114570 WO2022048481A1 (zh) 2020-11-03 2021-08-25 一种产生具有烧蚀预脉冲的强场脉冲装置及其实现方法

Country Status (3)

Country Link
CN (1) CN112332200B (zh)
WO (1) WO2022048481A1 (zh)
ZA (1) ZA202204218B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112332200B (zh) * 2020-11-03 2023-02-07 滨州学院 一种产生具有烧蚀预脉冲的强场脉冲装置及其实现方法
CN113422278B (zh) * 2021-06-04 2022-03-25 滨州学院 一种高倍频效率的绿激光器
CN113644528A (zh) * 2021-07-20 2021-11-12 中国科学院上海光学精密机械研究所 一种高峰值功率飞秒激光的多路分束装置和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103182607A (zh) * 2011-12-27 2013-07-03 三星钻石工业股份有限公司 被加工物的加工方法及激光加工装置
CN103323435A (zh) * 2013-06-21 2013-09-25 中国科学院上海技术物理研究所 基于双脉冲散焦预烧蚀的激光诱导击穿光谱探测***
CN104142316A (zh) * 2014-08-15 2014-11-12 中国科学院上海技术物理研究所 结合预烧蚀和再加热的三脉冲libs探测***
CN110783807A (zh) * 2019-09-27 2020-02-11 北京大学 一种重频啁啾脉冲放大激光时域分光***及其分光方法
US20200127431A1 (en) * 2017-07-25 2020-04-23 Imra America, Inc. Multi-pulse amplification
CN111525380A (zh) * 2020-04-01 2020-08-11 张丽 一种双脉冲光路的搭建方法及其结构
CN112332200A (zh) * 2020-11-03 2021-02-05 滨州学院 一种产生具有烧蚀预脉冲的强场脉冲装置及其实现方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1870359A (zh) * 2006-04-12 2006-11-29 中国科学院上海光学精密机械研究所 激光脉冲展宽与压缩装置
WO2011006156A2 (en) * 2009-07-10 2011-01-13 University Of Florida Research Foundation, Inc. Method and apparatus to laser ablation-laser induced breakdown spectroscopy
CN107024816B (zh) * 2017-04-21 2020-03-10 上海理工大学 高阶色散补偿啁啾光谱展宽***
CN111408856B (zh) * 2020-04-15 2022-11-22 华东师范大学重庆研究院 一种飞秒等离子体光栅制造微流控芯片方法及其装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103182607A (zh) * 2011-12-27 2013-07-03 三星钻石工业股份有限公司 被加工物的加工方法及激光加工装置
CN103323435A (zh) * 2013-06-21 2013-09-25 中国科学院上海技术物理研究所 基于双脉冲散焦预烧蚀的激光诱导击穿光谱探测***
CN104142316A (zh) * 2014-08-15 2014-11-12 中国科学院上海技术物理研究所 结合预烧蚀和再加热的三脉冲libs探测***
US20200127431A1 (en) * 2017-07-25 2020-04-23 Imra America, Inc. Multi-pulse amplification
CN110783807A (zh) * 2019-09-27 2020-02-11 北京大学 一种重频啁啾脉冲放大激光时域分光***及其分光方法
CN111525380A (zh) * 2020-04-01 2020-08-11 张丽 一种双脉冲光路的搭建方法及其结构
CN112332200A (zh) * 2020-11-03 2021-02-05 滨州学院 一种产生具有烧蚀预脉冲的强场脉冲装置及其实现方法

Also Published As

Publication number Publication date
CN112332200A (zh) 2021-02-05
CN112332200B (zh) 2023-02-07
ZA202204218B (en) 2022-07-27

Similar Documents

Publication Publication Date Title
WO2022048481A1 (zh) 一种产生具有烧蚀预脉冲的强场脉冲装置及其实现方法
RU2015135377A (ru) Фемтосекундный лазер высокой мощности с частотой повторения, регулируемой согласно скорости сканирования
Hornung et al. Temporal pulse control of a multi-10 TW diode-pumped Yb: glass laser
CN108448374B (zh) 基于空芯光纤空间相干组束的周期量级激光***
WO2016008336A1 (zh) 一种实时高空间分辨的超快分幅光学成像装置
CN106537511A (zh) 极紫外光源
WO2013146197A1 (ja) レーザアニール装置及びレーザアニール方法
KR102673836B1 (ko) 펄스 레이저 시스템
CN105449507B (zh) 一种用于飞秒激光脉冲放大***中脉冲前沿畸变的补偿装置和补偿方法
CN109286125B (zh) 一种高效的啁啾脉冲放大***
CN102882117B (zh) 一种全固态皮秒激光多通放大器
CN111509547A (zh) 超高峰值功率飞秒激光级联混合压缩***
CN111934165B (zh) 一种基于飞行焦点和等离子体背向拉曼散射的超短脉冲产生方法
CN216598384U (zh) 受激布里渊散射与受激拉曼散射组合压缩超短脉冲激光器
CN111525380A (zh) 一种双脉冲光路的搭建方法及其结构
KR20150090799A (ko) 레이저 시스템
CN212875032U (zh) 一种环形单晶光纤激光放大器
CN101504505A (zh) 一种消调制受激布里渊散射激光脉冲压缩装置
Shaw et al. Development of high-performance KrF and Raman laser facilities for inertial confinement fusion and other applications
EP3293837A1 (en) Measurement device
CN107727249A (zh) 超强超短激光脉冲远场脉宽的单发测量装置和测量方法
CN112222609A (zh) 高峰值功率激光焦点的定位方法
CN107453190B (zh) 具有高峰值功率和高平均功率的飞秒脉冲的产生装置
CN112271533B (zh) 一种啁啾脉冲放大***及其实现方法
Zhu et al. Progress on developing a PW ultrashort laser facility with ns, ps, and fs outputting pulses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863547

Country of ref document: EP

Kind code of ref document: A1