WO2016008336A1 - 一种实时高空间分辨的超快分幅光学成像装置 - Google Patents

一种实时高空间分辨的超快分幅光学成像装置 Download PDF

Info

Publication number
WO2016008336A1
WO2016008336A1 PCT/CN2015/080045 CN2015080045W WO2016008336A1 WO 2016008336 A1 WO2016008336 A1 WO 2016008336A1 CN 2015080045 W CN2015080045 W CN 2015080045W WO 2016008336 A1 WO2016008336 A1 WO 2016008336A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
nth
imager
optical
idler
Prior art date
Application number
PCT/CN2015/080045
Other languages
English (en)
French (fr)
Inventor
徐世祥
陈文婷
曾选科
郑水钦
蔡懿
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2016008336A1 publication Critical patent/WO2016008336A1/zh
Priority to US15/140,528 priority Critical patent/US9912852B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3532Arrangements of plural nonlinear devices for generating multi-colour light beams, e.g. arrangements of SHG, SFG, OPO devices for generating RGB light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B39/00High-speed photography
    • G03B39/005High-speed photography using image converters or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2215/00Special procedures for taking photographs; Apparatus therefor
    • G03B2215/05Combinations of cameras with electronic flash units

Definitions

  • the invention relates to ultrafast imaging technology, in particular to a real-time high spatial resolution ultrafast framing optical imaging device.
  • the technical problem to be solved by the present invention is to provide a real-time high spatial resolution ultra-fast framing optical imaging device, which aims to solve the problem of scanning speed limitation when ultra-fast framing of non-periodic repetitive transient events occurs in the prior art.
  • a real-time high spatial resolution ultra-fast framing optical imaging device includes an ultrashort pulse laser system of a femtosecond order, a frequency multiplier, a wavelength beam splitter, a continuous illumination laser, a sampling plate, a calibration camera, a first imaging recording module, and a second imaging recording module;
  • the continuous illumination laser emits continuous signal light for illuminating the object to be measured
  • the ultrashort pulse laser system of the femtosecond order outputs an ultrashort pulse laser for exciting an ultrafast event
  • the frequency multiplier is configured to multiply the frequency of the ultrashort pulse laser to obtain ultrashort pulse frequency doubled light, and the ultra short pulse frequency doubled light is used for pumping a parametric amplifier;
  • the wavelength beam splitter separates a fundamental wave of the ultrashort pulse multiplying light from an up-converted frequency-doubled light
  • sampling plate and the calibration camera are used to record a spatial light intensity distribution of the pump light
  • the first imaging recording module includes a first optical delay device, a first pumping light imager, a first parametric amplifier, a first idler light imager, and a first CCD camera; Irradiating the first optical delay device and the first pump optical imager onto the first parametric amplifier to obtain first pump light; the continuous signal light illuminating the measured object and passing the first
  • the signal light imager is also incident on the first parametric amplifier to obtain a first signal light; the up-converted frequency-doubled light instantaneously amplifies the continuous signal light when passing through the first parametric amplifier, and generates a first Idle frequency light; after the first idler light passes through the first idler light imager, the information of the first idler light is recorded by the first CCD camera;
  • the second imaging recording module includes a second optical delay device, a second pump light imager, a second signal light imager, a second parametric amplifier, a second idler light imager, and a second CCD camera;
  • the first pump light of the first imaging recording module is irradiated as a second pump light to the second parametric amplifier after being sequentially passed through the second optical delay device and the second pump light imager
  • the first signal light transmitted through the first imaging recording module is also irradiated to the second parametric amplifier as the second signal light through the second signal light imager;
  • the second pump Light instantaneously amplifying the second signal light on the second parametric amplifier and generating second idler light, after the second idler light passes through the second idler optical imager, the first The information of the secondary idle light is recorded by the second CCD camera.
  • the ultra-fast framing optical imaging device further includes a plurality of imaging recording modules, wherein the plurality of imaging recording modules are respectively a third imaging recording module and a fourth imaging recording module.
  • the nth Pumping light is sequentially applied to the nth parametric amplifier after passing through the nth optical retarder and the nth pumping optical imager; after the nth signal light passes through the nth signal optical imager And irradiating to the nth parametric amplifier; the nth pumping light instantaneously amplifies the nth signal light on the nth parametric amplifier, and generates an nth idler light, the nth idle After the frequency light passes through the nth idler optical imager, the information of the nth idler light is determined by the nth The CCD camera records.
  • the ultra-fast framing optical imaging device wherein the ultra-fast framing optical imaging device further comprises a cratering system, the cratering system extracts a spot size of the ultrashort pulse laser output by the ultrashort pulse laser system Become smaller.
  • the ultrafast framing optical imaging device wherein the ultrafast framing optical imaging device further comprises a first convex lens, the first convex lens being placed in front of the calibration camera for cooperating with the calibration camera The spatial light intensity distribution of the up-converted multiplier light.
  • the ultrafast framing optical imaging device wherein the ultrafast framing optical imaging device further comprises a second lens system, the second lens system being placed after the wavelength beam splitter for focusing ultrashort pulses
  • the laser produces ultra-fast events.
  • the ultra-fast framing optical imaging device wherein the first parametric amplifier, the second parametric amplifier, ..., the nth parametric amplifier are all non-collinear parametric amplifiers.
  • the ultrafast framing optical imaging device wherein the first signal light imager, the second signal light imager, ..., the nth signal light imager are sequentially replaced with a first signal light Fourier converter a second signal light Fourier converter, ..., an nth signal light Fourier converter; correspondingly, the first idler light imager, the second idler light imager, ..., The idler optical imager is also replaced by a first idler light Fourier converter, a second idler light Fourier converter, ..., an nth idler light Fourier converter.
  • the present invention has the beneficial effects that the real-time high spatial resolution ultra-fast framing optical imaging device can distinguish sub-picosecond time by using an imaging device combining a continuous illumination laser and an ultra-short pulse laser system.
  • the transient event is recorded by a single ultra-fast imaging, and then the framing image information at each moment is separated by a plurality of parametric amplifiers, and the respective idler light images are simultaneously received by the respective CCD cameras to realize high-resolution ultrafast framing optics. Imaging, and each framing imaging record does not require a response speed to the CCD camera.
  • the ultra-fast framing optical imaging device can achieve real-time imaging with spatial resolution greater than 20 lines/mm, high temporal resolution up to femtosecond and framing frequencies up to 10 12 fps.
  • FIG. 1 is a schematic structural view of a real-time high spatial resolution ultrafast framing optical imaging apparatus according to the present invention.
  • the invention mainly utilizes a non-collinear optical parametric amplification technique for pumping/sampling events at different moments by using ultra-short pulse lasers with continuous light illumination ultra-fast events, and simultaneously adopts several CCD cameras to simultaneously receive corresponding idler light images. To achieve sub-picosecond time-resolved ultrafast framing optical imaging.
  • a real-time high spatial resolution ultrafast framing optical imaging device comprising an ultrashort pulse laser system 101 of a femtosecond order, a frequency multiplier 103, a wavelength beam splitter 104, a continuous illumination laser 105, a sampling plate 111, calibration Camera CCD-S 112. A first imaging recording module and a second imaging recording module.
  • the continuous illumination laser 105 emits continuous signal light for illuminating the object to be measured.
  • the ultrashort pulse laser system 101 of the femtosecond order outputs an ultrashort pulse laser for exciting an ultrafast event to the frequency multiplier 103.
  • the frequency multiplier 103 is configured to multiply the frequency of the ultrashort pulse laser to obtain ultrashort pulse frequency doubled light, the ultra short pulse frequency doubled light is used for pumping a parametric amplifier, and the parametric amplifier includes a first parameter The amplifier 108, the second parametric amplifier 204, the third parametric amplifier, ..., the nth parametric amplifier.
  • the wavelength beam splitter 104 separates the fundamental wave 1041 of the ultrashort pulse multiplying light from the up-converted frequency doubled light 1042.
  • Sampling plate 111 and calibration camera CCD-S 112 is used to record the spatial light intensity distribution of the pump light.
  • the ultrashort pulse frequency doubling light is used to pump the object 107 to be excited to excite an ultrafast event.
  • the fundamental wave 1041 and the continuous signal light are simultaneously irradiated onto the object 107 to be measured, the light beam emitted from the object to be measured 107 is carried.
  • the signal light of the information of the object 107 to be measured, the idler light is included in the signal light.
  • the first imaging recording module includes a first optical delay 110, a first pumping light imager 118, a first parametric amplifier 108, a first idler light imager 117, and a first CCD camera 109.
  • the up-converted frequency-doubled light 1042 is irradiated onto the first parametric amplifier 108 via the first optical delayer 110 and the first pumping light imager 118 to obtain a first pumping light.
  • the continuous signal light illuminates the object to be measured and then passes through the first signal light imager 114 and is also incident on the first parametric amplifier 108 to obtain the first signal light.
  • the up-conversion multiplier light 1042 passes through the first parametric amplifier 108, the continuous signal light is instantaneously amplified, and the first idler light is separated, and the separated idler light carries the information of the initial time t1 of the ultra-fast event. Its time resolution depends on the time width of the pump pulse. After the first idler light passes through the first idler light imager 117, the information of the first idler light is recorded by the first CCD camera 109.
  • the second imaging recording module includes a second optical delay 201, a second pumping light imager 203, a second signal light imager 202, a second parametric amplifier 204, a second idler light imager 205, and a second CCD camera 206:
  • the first pump light transmitted through the first imaging recording module is sequentially irradiated to the second parametric amplifier 204 as the second pump light through the second optical delay device 201 and the second pump light imager 203.
  • the first signal light transmitted through the first imaging recording module as the second signal light is also irradiated onto the second parametric amplifier 204 via the second signal light imager 202; the second pump light is on the second parametric amplifier 204
  • the two signal lights are instantaneously amplified, and a second idler light is generated, and the separated idler light carries information of the initial time t2 of the ultrafast event. After the second idler light passes through the second idler light imager 205, the information of the second idler light is recorded by the second CCD camera 206.
  • the ultrafast framing optical imaging device further includes a plurality of imaging recording modules, wherein the plurality of imaging recording modules are a third imaging recording module, a fourth imaging recording module, ..., nth -1 imaging recording module, nth imaging recording module.
  • Each imaging recording module includes an optical delay device, a signal light imager, a pump light imager, a parametric amplifier, an idler light imager, and a CCD camera, that is, the main components included in each imaging recording module are the same. .
  • the nth imaging recording module includes an nth optical delay device, an nth pump optical imager, an nth parametric amplifier, an nth signal light imager, an nth idler light imager, and a nth CCD camera.
  • the first parametric amplifier 108, the second parametric amplifier 204, ..., the n-1th parametric amplifier, and the nth parametric amplifier are all non-collinear parametric amplifiers.
  • the nth The pump light is sequentially irradiated onto the nth parametric amplifier after passing through the nth optical retarder and the nth pumping optical imager.
  • the nth signal light is also irradiated onto the nth parametric amplifier after passing through the nth signal light imager.
  • the nth pump light instantaneously amplifies the nth signal light on the nth parametric amplifier, and generates an nth idler light, and the nth idler light is imaged by the nth idler light
  • the information of the nth idler light is determined by the nth The CCD camera records.
  • the number n of imaging recording modules depends on the number of framings, and the framing frequency depends on the time interval of n moments. Since the parametric amplifiers used are non-collinear parametric amplifiers, it is easy to separate the idler light from the signal light and the pump light, and the n-beam idler light space is separated, and the imaging is conveniently received by n CCD cameras.
  • the first signal light imager 114, the second signal light imager 202, ..., the nth signal light imager may sequentially use the first signal light Fourier converter and the second signal.
  • the ultrafast framing optical imaging device may further include a crater system 102, a first convex lens 115, a second lens system 119, and a beam expander 106.
  • the crater system 102 reduces the spot size of the ultrashort pulse laser light output from the ultrashort pulse laser system 101.
  • the first convex lens 115 is placed in front of the calibration camera 112 for cooperating with the calibration camera 112 to measure the spatial light intensity distribution of the up-converted frequency-doubled light.
  • the second lens system 119 is placed after the wavelength beam splitter 104 to focus the ultrashort pulse laser to produce an ultrafast event.
  • the beam expander 106 is for expanding the continuous light emitted from the continuous illumination laser 105, and the continuous signal light after the expansion is irradiated onto the object 107 to be measured.
  • the ultrafast framing optical imaging device further includes a plurality of mirrors 113.
  • a plurality of mirrors 113 are used to change the direction of propagation of the pump light, signal light or idler light.
  • the mirror 113 can be placed after the continuous illumination laser 105, before and after the first parametric amplifier 108, after the wavelength beam splitter 104, before the second signal light imager 202, after the second signal light imager 202, and after the second optical delay After 201, etc., as shown in Figure 1.
  • the number of mirrors 113 and the mounting position can be varied as needed.
  • the present invention selects a continuous light source to illuminate the ultrafast event of the object 107 under test such that the continuous laser carries information of the event at different times at different time slices.
  • a continuous light source to illuminate the ultrafast event of the object 107 under test such that the continuous laser carries information of the event at different times at different time slices.
  • the surface on which the event occurs or its spectral surface is imaged onto the optical parametric amplification crystal.
  • the pump light encounters the continuous laser in the parametric crystal, continuous light is carried.
  • the ultra-fast event occurs at a certain moment, and the idler light from the first parametric amplifier 108 carries the event information at that moment.
  • the event image at that moment can be obtained by recording the idler light information using a CCD camera.
  • the pump light corresponds to the optical shutter, and the temporal resolution of the idler light imaging is determined by the pulse width of the pump light.
  • the ultra-fast event information carried by the continuous light corresponding to the continuous light in the parametric crystal corresponds to different time points, so their idle frequency light is carried.
  • the ultra-fast event information at different time points is recorded by the respective CCD camera, and the framing image of the ultra-fast event is obtained.
  • the framing frequency depends on the difference between the time points of the imaging events of adjacent amplifiers, and the spatial resolution depends on the pump light intensity in addition to the type, thickness and phase matching conditions of the parametric crystal.
  • the number of framings depends on the number of stages of the parametric amplifier.
  • the ultrashort pulse laser system 101 can be selected from a 800 nm titanium gem femtosecond laser system or a 1064 nm wavelength femtosecond laser system, but it is not limited to a 800 nm, 1064 nm femtosecond laser system.
  • the pump wavelength emitted by it may be a fundamental wave, a second harmonic or even a third harmonic, and the selection of the pump wave depends on the parametric amplification effect on the continuous optical signal light.
  • the continuous light source is compact and inexpensive, making it easy to replace.
  • the wavelength of the continuous light source emitted by the continuous illumination laser 105 can be selected according to the spectral requirements of the imaging, and the range can be seen from the visible 500. Nm to near infrared.
  • Femtosecond laser pumping can have pumping forces of up to several hundred GW/cm 2 , with high parametric gain and broadband characteristics, which contributes to improved spatial resolution of imaging and for weak signal imaging.
  • the number of imaging framing depends on the power of the ultrashort pulse laser and the number of stages of the parametric amplifier.
  • the framing frequency depends on the time difference between the pump pulse and the signal light transmission between the parametric amplifiers.
  • the framing frequency can reach the order of 10 12 fps. .
  • the framing image information spatial information Since the framing image information spatial information is separated, it can be received by the respective CCD camera, and there is no fast response requirement for the CCD camera, and no scanning device is required.
  • the imaging time resolution depends on the pump pulse width of the parametric amplifier and the time resolution can be on the order of tens of femtoseconds.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种实时高空间分辨的超快分幅光学成像装置,包括飞秒量级的超短脉冲激光***(101)、倍频器(103)、波长分束器(104)、连续照明激光器(105)、取样板(111)、定标相机(CCD-S)、第一成像记录模块和第二成像记录模块。使用非共线光参量放大技术,利用连续光照明超快事件和超短脉冲激光对不同时刻的事件进行泵浦/取样,并采用各个CCD相机同时分别接收相应的闲频光图像实现高分辨超快多幅光学成像。从而实现高空间分辨、高时间分辨和高分幅频率的实时成像,空间分辨大于20线/mm、时间分辨达到飞秒级、分幅频率达到1012fps量级。

Description

一种实时高空间分辨的超快分幅光学成像装置 技术领域
本发明涉及超快成像技术,尤其涉及一种实时高空间分辨的超快分幅光学成像装置。
背景技术
探讨物质世界的高速演变的物理过程一直是物理学、化学以及生物医学等领域的研究热点。对这些物理过程进行准确成像对揭示这些动态规律,进而加以控制或利用是十分必要的。不同的事物发展过程具有不同的时间特性,因而相应的成像就有不同的时间分辨要求:发射、碰撞类瞬变过程要求毫秒和亚毫秒时间分辨;爆轰、***和激波类超快过程要求微秒和亚微秒时间分辨;高电压放电和激光飞片技术要求纳秒和亚纳秒时间分辨;固体中声子和激子的衰变和迁移、液体中的解相时间和分子振动弛豫、气体和固体中的等离子体增长和衰减过程要求皮秒级时间分辨;分子结构动力学(振动、化学键的断裂和形成等原子尺度上的原子运动)、光合作用的原初反应过程、视觉过程和超快速表面动力学过程则要求飞秒级时间分辨;研究高能离子和热能电子的运动、分子中价电子的运动和原子壳层内的电子动力学(束缚电子动力学,即束缚电子的激发、电离和符合)甚至要求阿秒级时间分辨。
当然,除了时间分辨要求,成像的高空间分辨也是至关重要的。这些瞬变过程可以分为两类:一类是周期性重复发生的,另一类是单次的、不能重复发生或低重复率发生的。周期性重复发生的过程可利用高时间分辨的泵浦—探针技术记录,成像的时间分辨率取决于成像光和探测光的脉冲时间宽度。超快激光技术的发展已经将泵浦—探针技术的时间分辨推进到飞秒甚至阿秒区。单次的、不能重复发生或低重复率发生的需要记录这种过程要求成像技术具有高时间分辨、高摄影频率和多幅的拍摄能力。显然泵浦—探针技术不能满足这种实时成像的要求。
我们知道,对非周期重复发生的瞬态事件进行超快分幅成像的关键技术指标有:空间分辨率、时间分辨率、分幅频率以及分幅数等。高空间分辨率除了与照明波长有关外,还取决于光学成像***的传递函数。高时间分辨则取决于成像的快门时间。高分幅频率对于超快事件的记录也是非常重要的。如果这些分幅像是同轴传输的,则分幅频率就受制于记录介质的响应速度。扫描式记录可以摆脱这种限制,但同时也带来另一紧箍咒,即扫描速度。迄今为止利用扫描方式分幅频率难以突破109fps。
技术问题
本发明所要解决的技术问题在于提供一种实时高空间分辨的超快分幅光学成像装置,旨在解决现有技术中对非周期重复发生的瞬态事件进行超快分幅时受到扫描速度限制的问题。
技术解决方案
本发明是这样实现的,一种实时高空间分辨的超快分幅光学成像装置,包括飞秒量级的超短脉冲激光***、倍频器、波长分束器、连续照明激光器、取样板、定标相机、第一成像记录模块和第二成像记录模块;
所述连续照明激光器发出连续的信号光用于照明被测物体;
所述飞秒量级的超短脉冲激光***输出超短脉冲激光,所述超短脉冲激光用于激发超快事件;
所述倍频器用于将所述超短脉冲激光的频率进行倍频,得到超短脉冲倍频光,所述超短脉冲倍频光用于泵浦参量放大器;
所述波长分束器将所述超短脉冲倍频光的基波和上转换倍频光分开;
所述的取样板和所述定标相机用于记录泵浦光的空间光强分布;
所述第一成像记录模块包括第一光学延时器、第一泵浦光成像器、第一参量放大器、第一闲频光成像器和第一CCD相机;所述上转换倍频光经所述第一光学延时器和所述第一泵浦光成像器后照射到所述第一参量放大器上得到第一泵浦光;所述连续的信号光照明被测物体后经过所述第一信号光成像器也入射到所述第一参量放大器上得到第一信号光;所述上转换倍频光通过所述第一参量放大器时将所述连续的信号光进行瞬时放大,并产生第一闲频光;所述第一闲频光通过所述第一闲频光成像器后,所述第一闲频光的信息由所述第一CCD相机进行记录;
所述第二成像记录模块包括第二光学延时器、第二泵浦光成像器、第二信号光成像器、第二参量放大器、第二闲频光成像器和第二CCD相机;透过所述第一成像记录模块的所述第一泵浦光作为第二泵浦光依次经所述第二光学延时器和所述第二泵浦光成像器后照射到所述第二参量放大器上;透过所述第一成像记录模块的所述第一信号光作为第二信号光经所述第二信号光成像器后也照射到所述第二参量放大器上;所述第二泵浦光在所述第二参量放大器上将所述第二信号光进行瞬时放大,并产生第二闲频光,所述第二闲频光通过所述第二闲频光成像器后,所述第二闲频光的信息由所述第二CCD相机记录。
所述的超快分幅光学成像装置,其中,所述超快分幅光学成像装置还包括若干个成像记录模块,所述若干个成像记录模块分别为第三成像记录模块、第四成像记录模块、……、第n-1成像记录模块、第n成像记录模块;所述第n成像记录模块包括第n光学延时器、第n泵浦光成像器、第n参量放大器、第n信号光成像器、第n闲频光成像器和第n CCD相机;
透过所述第n-1成像记录模块的第n-1信号光和第n-1泵浦光作为第n信号光和第n泵浦光进入所述第n成像记录模块,所述第n泵浦光依次经所述第n光学延时器和所述第n泵浦光成像器后照射到所述第n参量放大器上;所述第n信号光经所述第n信号光成像器后也照射到所述第n参量放大器上;所述第n泵浦光在所述第n参量放大器上将所述第n信号光进行瞬时放大,并产生第n闲频光,所述第n闲频光通过所述第n闲频光成像器后,所述第n闲频光的信息由所述第n CCD相机进行记录。
所述的超快分幅光学成像装置,其中,所述超快分幅光学成像装置还包括缩孔***,所述缩孔***将所述超短脉冲激光***输出的超短脉冲激光的光斑尺寸变小。
所述的超快分幅光学成像装置,其中,所述超快分幅光学成像装置还包括第一凸透镜,所述第一凸透镜置于所述定标相机前用于配合所述定标相机测量上转换倍频光的空间光强分布。
所述的超快分幅光学成像装置,其中,所述超快分幅光学成像装置还包括第二透镜***,所述第二透镜***置于所述波长分束器后用于聚焦超短脉冲激光产生超快事件。
所述的超快分幅光学成像装置,其中,所述第一参量放大器、所述第二参量放大器、……、第n参量放大器均为非共线参量放大器。
所述的超快分幅光学成像装置,其中,所述第一信号光成像器、第二信号光成像器、……、第n信号光成像器依次替换为第一信号光傅里叶转换器、第二信号光傅里叶转换器、……、第n信号光傅里叶转换器;相对应地,所述第一闲频光成像器、第二闲频光成像器、……、第n闲频光成像器也依次替换为第一闲频光傅里叶转换器、第二闲频光傅里叶转换器、……、第n闲频光傅里叶转换器。
有益效果
本发明与现有技术相比,有益效果在于:所述的实时高空间分辨的超快分幅光学成像装置利用连续照明激光器和超短脉冲激光***相结合的成像装置能把亚皮秒时间分辨的瞬态事件单次超快成像进行记录,然后由若干个参量放大器把各个时刻的分幅图像信息分开,由各个CCD相机同时分别接收相应的闲频光图像以实现高分辨超快分幅光学成像,且各分幅成像记录对CCD相机的响应速度无要求。采用所述的超快分幅光学成像装置能达到空间分辨率大于20线/mm、高时间分辨率达到飞秒级和分幅频率达到1012fps量级的实时成像。
附图说明
图1是本发明实时高空间分辨的超快分幅光学成像装置的结构示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明主要利用连续光照明超快事件、利用超短脉冲激光对不同时刻的事件进行泵浦/取样的非共线光参量放大技术,并采用若干个CCD相机同时分别接收相应的闲频光图像以实现亚皮秒时间分辨超快分幅光学成像。
如图1所示,为本发明其中的一个实施例。一种实时高空间分辨的超快分幅光学成像装置,包括飞秒量级的超短脉冲激光***101、倍频器103、波长分束器104、连续照明激光器105、取样板111、定标相机CCD-S 112、第一成像记录模块和第二成像记录模块。连续照明激光器105发出连续的信号光用于照明被测物体。飞秒量级的超短脉冲激光***101输出用于激发超快事件的超短脉冲激光给倍频器103。倍频器103用于将所述超短脉冲激光的频率进行倍频,得到超短脉冲倍频光,所述超短脉冲倍频光用于泵浦参量放大器,所述参量放大器包括第一参量放大器108、第二参量放大器204、第三参量放大器、……、第n参量放大器。波长分束器104将超短脉冲倍频光的基波1041和上转换倍频光1042分开。取样板111和定标相机CCD-S 112用于记录泵浦光的空间光强分布。超短脉冲倍频光用于泵浦被测物体107以激发超快事件,当基波1041和连续的信号光同时照射到被测物体107上时,从被测物体107上射出的光束为携带了被测物体107信息的信号光,所述信号光中包括了闲频光。
第一成像记录模块包括第一光学延时器110、第一泵浦光成像器118、第一参量放大器108、第一闲频光成像器117和第一CCD相机109。所述上转换倍频光1042经第一光学延时器110和第一泵浦光成像器118后照射到第一参量放大器108上得到第一泵浦光。连续的信号光照明被测物体后经过第一信号光成像器114也入射到第一参量放大器108上得到第一信号光。上转换倍频光1042通过第一参量放大器108时将连续的信号光进行瞬时放大,并分离出第一闲频光,分离出来的闲频光携带了该超快事件最初发生时刻t1的信息,其时间分辨率取决于泵浦脉冲的时间宽度。第一闲频光通过第一闲频光成像器117后,第一闲频光的信息由第一CCD相机109进行记录。
第二成像记录模块包括第二光学延时器201、第二泵浦光成像器203、第二信号光成像器202、第二参量放大器204、第二闲频光成像器205和第二CCD相机206;透过第一成像记录模块的第一泵浦光作为第二泵浦光依次经第二光学延时器201和第二泵浦光成像器203后照射到第二参量放大器204上。透过第一成像记录模块的第一信号光作为第二信号光经第二信号光成像器202后也照射到第二参量放大器204上;第二泵浦光在第二参量放大器204上将第二信号光进行瞬时放大,并产生第二闲频光,分离出来的闲频光携带了该超快事件最初发生时刻t2的信息。第二闲频光通过第二闲频光成像器205后,所述第二闲频光的信息由第二CCD相机206进行记录。
与上述实施例相结合,所述超快分幅光学成像装置还包括若干个成像记录模块,所述若干个成像记录模块分别为第三成像记录模块、第四成像记录模块、……、第n-1成像记录模块、第n成像记录模块。每个成像记录模块均包含有光学延时器、信号光成像器、泵浦光成像器、参量放大器、闲频光成像器和CCD相机,即每个成像记录模块中所包含的主要器件均相同。所述第n成像记录模块包括第n光学延时器、第n泵浦光成像器、第n参量放大器、第n信号光成像器、第n闲频光成像器和第n CCD相机。优选的,第一参量放大器108、第二参量放大器204、……、第n-1参量放大器、第n参量放大器均为非共线参量放大器。透过所述第n-1成像记录模块的第n-1信号光和第n-1泵浦光作为第n信号光和第n泵浦光进入所述第n成像记录模块,所述第n泵浦光依次经所述第n光学延时器和所述第n泵浦光成像器后照射到所述第n参量放大器上。所述第n信号光经所述第n信号光成像器后也照射到所述第n参量放大器上。所述第n泵浦光在所述第n参量放大器上将所述第n信号光进行瞬时放大,并产生第n闲频光,所述第n闲频光通过所述第n闲频光成像器后,所述第n闲频光的信息由所述第n CCD相机进行记录。成像记录模块的数量n取决于分幅数量,其分幅频率取决于n个时刻的时间间隔。由于所用的参量放大器均为非共线参量放大器,因此很容易将闲频光与信号光、泵浦光分开,而且n束闲频光空间是分离的,成像很方便被n个CCD相机接收。
与上述实施例相结合,所述第一信号光成像器114、第二信号光成像器202、……、第n信号光成像器可以依次用第一信号光傅里叶转换器、第二信号光傅里叶转换器、……、第n信号光傅里叶转换器来代替,相对应地,所述第一闲频光成像器117、第二闲频光成像器205、……、第n闲频光成像器也可以依次用第一闲频光傅里叶转换器、第二闲频光傅里叶转换器、……、第n闲频光傅里叶转换器来代替。
所述超快分幅光学成像装置还可以包括缩孔***102、第一凸透镜115、第二透镜***119和扩束器106。缩孔***102将超短脉冲激光***101输出的超短脉冲激光的光斑尺寸变小。第一凸透镜115置于定标相机112前用于配合定标相机112测量上转换倍频光的空间光强分布。第二透镜***119置于波长分束器104后用于聚焦超短脉冲激光产生超快事件。扩束器106用于将连续照明激光器105发出的连续光进行扩大,扩束后的连续的信号光照射到被测物体107上。
为了使传播过程中的光更强和使整个超快分幅光学成像装置结构更加紧凑,超快分幅光学成像装置还包括若干反射镜113。若干反射镜113用于改变泵浦光、信号光或闲频光的传播方向。反射镜113可以放置在连续照明激光器105后、第一参量放大器108前后、波长分束器104后、第二信号光成像器202前、第二信号光成像器202后、第二光学延时器201后等位置,具体如图1所示。在不同的应用场景中,反射镜113的数量和安装位置可以根据需要做出变动。
本发明选择连续光源对被测物体107的超快事件进行照明,这样该连续激光在不同时间片就携带事件在不同时刻的信息。利用成像光学***或傅里叶变换光学***,将事件发生所在面或它的谱面成像到光参量放大晶体上,当泵浦光在此参量晶体中与连续激光相遇产生的是连续光携带了超快事件发生在某时刻的信息,从第一参量放大器108出来的闲频光就携带了该时刻的事件信息。利用CCD相机记录闲频光信息即可获得该时刻的事件像。因此,此时泵浦光相当于光学快门,闲频光成像的时间分辨率由泵浦光的脉冲宽度决定。利用多级参量放大器,在每级参量放大器中泵浦光在参量晶体中与连续光相遇对应的连续光携带的超快事件信息对应的是不同时间点,因此它们的闲频光也就携带了不同时间点的超快事件信息,用各自的CCD相机记录,就得到超快事件的分幅图像。其分幅频率取决于相邻放大器成像事件的时间点之差,而空间分辨率除了与参量晶体的种类、厚度和相位匹配条件等外,还取决于泵浦光强度。分幅数则取决于参量放大器的级数。
超短脉冲激光***101可以选用800nm的钛宝石飞秒激光***,或者1064nm波长的飞秒激光***,但其并不局限于800nm、1064nm的飞秒激光***。其发出的泵浦波长可以是基波,也可以是二次谐波、甚至是三次谐波,其泵浦波的选取取决于对连续光信号光的参量放大效果。
所述的超快分幅光学成像装置具有以下的优点:
连续光源结构紧凑,价格便宜,因而方便更换。连续照明激光器105发出的连续光源的波长可以根据成像的光谱需求进行选取,其范围可以从可见的500 nm到近红外。
飞秒激光泵浦可以有高达几百GW/cm2的泵浦强度,具有高参量增益和宽带特性,有利于提高成像的空间分辨率和适用弱信号成像。
成像分幅数取决于超短脉冲激光的功率和参量放大器的级数,分幅频率则取决于各参量放大器间泵浦脉冲相对于信号光传输的时间差,分幅频率可以达到1012fps量级。
由于各分幅图像信息空间信息分开,所以可以被各自的CCD相机接收,且对CCD相机无快响应要求,无需任何扫描装置。
成像时间分辨率取决于参量放大器的泵浦脉冲宽度,时间分辨率可达几十飞秒量级。
以上所述仅为本发明的实施例之一而已,并不用以限制本发明。在装置中添加或减少反射镜用以改变光传输方向,增加或减少透镜***用以改变光束传输尺寸等等属于本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种实时高空间分辨的超快分幅光学成像装置,其特征在于,包括飞秒量级的超短脉冲激光***、倍频器、波长分束器、连续照明激光器、取样板、定标相机、第一成像记录模块和第二成像记录模块;
    所述连续照明激光器发出连续的信号光用于照明被测物体;
    所述飞秒量级的超短脉冲激光***输出超短脉冲激光,所述超短脉冲激光用于激发超快事件;
    所述倍频器用于将所述超短脉冲激光的频率进行倍频,得到超短脉冲倍频光,所述超短脉冲倍频光用于泵浦参量放大器;
    所述波长分束器将所述超短脉冲倍频光的基波和上转换倍频光分开;
    所述的取样板和所述定标相机用于记录泵浦光的空间光强分布;
    所述第一成像记录模块包括第一光学延时器、第一泵浦光成像器、第一参量放大器、第一闲频光成像器和第一CCD相机;所述上转换倍频光经所述第一光学延时器和所述第一泵浦光成像器后照射到所述第一参量放大器上得到第一泵浦光;所述连续的信号光照明被测物体后经过所述第一信号光成像器也入射到所述第一参量放大器上得到第一信号光;所述上转换倍频光通过所述第一参量放大器时将所述连续的信号光进行瞬时放大,并产生第一闲频光;所述第一闲频光通过所述第一闲频光成像器后,所述第一闲频光的信息由所述第一CCD相机进行记录;
    所述第二成像记录模块包括第二光学延时器、第二泵浦光成像器、第二信号光成像器、第二参量放大器、第二闲频光成像器和第二CCD相机;透过所述第一成像记录模块的所述第一泵浦光作为第二泵浦光依次经所述第二光学延时器和所述第二泵浦光成像器后照射到所述第二参量放大器上;透过所述第一成像记录模块的所述第一信号光作为第二信号光经所述第二信号光成像器后也照射到所述第二参量放大器上;所述第二泵浦光在所述第二参量放大器上将所述第二信号光进行瞬时放大,并产生第二闲频光,所述第二闲频光通过所述第二闲频光成像器后,所述第二闲频光的信息由所述第二CCD相机进行记录。
  2. 根据权利要求1所述的超快分幅光学成像装置,其特征在于,所述超快分幅光学成像装置还包括若干个成像记录模块,所述若干个成像记录模块分别为第三成像记录模块、第四成像记录模块、……、第n-1成像记录模块、第n成像记录模块;所述第n成像记录模块包括第n光学延时器、第n泵浦光成像器、第n参量放大器、第n信号光成像器、第n闲频光成像器和第n CCD相机;
    透过所述第n-1成像记录模块的第n-1信号光和第n-1泵浦光作为第n信号光和第n泵浦光进入所述第n成像记录模块,所述第n泵浦光依次经所述第n光学延时器和所述第n泵浦光成像器后照射到所述第n参量放大器上;所述第n信号光经所述第n信号光成像器后也照射到所述第n参量放大器上;所述第n泵浦光在所述第n参量放大器上将所述第n信号光进行瞬时放大,并产生第n闲频光,所述第n闲频光通过所述第n闲频光成像器后,所述第n闲频光的信息由所述第n CCD相机进行记录。
  3. 根据权利要求1所述的超快分幅光学成像装置,其特征在于,所述超快分幅光学成像装置还包括缩孔***,所述缩孔***将所述超短脉冲激光***输出的超短脉冲激光的光斑尺寸变小。
  4. 根据权利要求1或2所述的超快分幅光学成像装置,其特征在于,所述超快分幅光学成像装置还包括第一凸透镜,所述第一凸透镜置于所述定标相机前用于配合所述定标相机测量上转换倍频光的空间光强分布。
  5. 根据权利要求1或2所述的超快分幅光学成像装置,其特征在于,所述超快分幅光学成像装置还包括第二透镜***,所述第二透镜***置于所述波长分束器后用于聚焦超短脉冲激光产生超快事件。
  6. 根据权利要求2所述的超快分幅光学成像装置,其特征在于,所述第一参量放大器、所述第二参量放大器、……、第n参量放大器均为非共线参量放大器。
  7. 根据权利要求2所述的超快分幅光学成像装置,其特征在于,所述第一信号光成像器、第二信号光成像器、……、第n信号光成像器依次替换为第一信号光傅里叶转换器、第二信号光傅里叶转换器、……、第n信号光傅里叶转换器,相对应地,所述第一闲频光成像器、第二闲频光成像器、……、第n闲频光成像器也依次替换为第一闲频光傅里叶转换器、第二闲频光傅里叶转换器、……、第n闲频光傅里叶转换器。
PCT/CN2015/080045 2014-07-16 2015-05-28 一种实时高空间分辨的超快分幅光学成像装置 WO2016008336A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/140,528 US9912852B2 (en) 2014-07-16 2016-04-28 Real-time, ultrafast framing optical imaging device with high spatial resolution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410337541.3 2014-07-16
CN201410337541.3A CN104062841B (zh) 2014-07-16 2014-07-16 一种实时高空间分辨的超快分幅光学成像装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/140,528 Continuation US9912852B2 (en) 2014-07-16 2016-04-28 Real-time, ultrafast framing optical imaging device with high spatial resolution

Publications (1)

Publication Number Publication Date
WO2016008336A1 true WO2016008336A1 (zh) 2016-01-21

Family

ID=51550621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080045 WO2016008336A1 (zh) 2014-07-16 2015-05-28 一种实时高空间分辨的超快分幅光学成像装置

Country Status (3)

Country Link
US (1) US9912852B2 (zh)
CN (1) CN104062841B (zh)
WO (1) WO2016008336A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107529625A (zh) * 2017-10-10 2018-01-02 武汉大学 一种用于实时观测微纳瞬变现象的连续/突发双模超快成像方法
CN107632402A (zh) * 2017-10-10 2018-01-26 武汉大学 一种用于实时观测微纳瞬变现象的连续/突发/相差三模超快显微成像方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062841B (zh) * 2014-07-16 2017-04-05 深圳大学 一种实时高空间分辨的超快分幅光学成像装置
CN104375374B (zh) * 2014-11-25 2017-02-08 北京理工大学 基于频域时空变换的超快激光连续成像装置及方法
EP3273550B1 (en) * 2016-07-20 2019-07-03 Deutsches Elektronen-Synchrotron DESY Optical parametric waveform synthesizer and method for synthesizing optical waveforms
CN107036714B (zh) * 2017-04-25 2019-02-12 深圳大学 一种光谱相位干涉装置及***
CN110955107B (zh) * 2019-11-18 2022-11-15 长春理工大学 一种基于反射成像技术的超高速时间分辨摄像装置和方法
CN111308849B (zh) * 2019-11-18 2022-11-15 长春理工大学 一种基于纹影技术的超高速时间分辨摄像装置和方法
WO2021114034A1 (zh) * 2019-12-09 2021-06-17 深圳大学 一种超高速光参量放大光学成像***
CN111679547A (zh) * 2020-05-14 2020-09-18 天津大学 一种非等间隔空间采样的光学时域延展成像***
CN111781629B (zh) * 2020-07-09 2022-09-20 中国工程物理研究院激光聚变研究中心 X射线光学分幅成像***
CN112040116B (zh) * 2020-07-20 2022-07-29 清华大学 基于分孔径选通型相机的非视域动态成像方法及装置
CN116593399B (zh) * 2023-07-17 2023-09-19 杭州创锐光测技术有限公司 基于sCMOS的超快时间分辨阴影成像***及测试方法
CN117782773B (zh) * 2024-02-26 2024-05-31 中国地质大学(武汉) 多脉冲飞秒激光剥蚀固体样品的进样器和剥蚀方法
CN118169957A (zh) * 2024-05-13 2024-06-11 中国工程物理研究院激光聚变研究中心 一种用于可见光分幅相机的超快取样成像***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060263777A1 (en) * 2003-01-27 2006-11-23 Tong William G Sensitive sensing based on optical optical nonlinear wave mixing
CN101976016A (zh) * 2010-09-03 2011-02-16 深圳大学 一种基于超短脉冲色散整形和分幅技术的超高速光学成像***及方法
US20110273708A1 (en) * 2009-01-09 2011-11-10 San Diego State University Foundation Ultrasensitive detection of isotopes, chemical substances and biological substances using laser wave mixing detectors
CN103197499A (zh) * 2013-03-20 2013-07-10 中国工程物理研究院流体物理研究所 一种同时分幅扫描超高速光电摄影***
CN103259180A (zh) * 2012-02-17 2013-08-21 中国科学院物理研究所 高对比度飞秒激光脉冲产生装置
CN104062841A (zh) * 2014-07-16 2014-09-24 深圳大学 一种实时高空间分辨的超快分幅光学成像装置
CN204129432U (zh) * 2014-07-16 2015-01-28 深圳大学 实时高空间分辨的超快分幅光学成像装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841498B (zh) * 2011-06-24 2015-05-27 中国科学院物理研究所 一种超快分幅成像装置
CN203275870U (zh) * 2013-05-16 2013-11-06 中国科学院西安光学精密机械研究所 光克尔门选通分幅相机
CN103345115B (zh) * 2013-07-16 2015-11-18 中国工程物理研究院流体物理研究所 一种超高速同轴分幅相干成像光路的成像方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060263777A1 (en) * 2003-01-27 2006-11-23 Tong William G Sensitive sensing based on optical optical nonlinear wave mixing
US20110273708A1 (en) * 2009-01-09 2011-11-10 San Diego State University Foundation Ultrasensitive detection of isotopes, chemical substances and biological substances using laser wave mixing detectors
CN101976016A (zh) * 2010-09-03 2011-02-16 深圳大学 一种基于超短脉冲色散整形和分幅技术的超高速光学成像***及方法
CN103259180A (zh) * 2012-02-17 2013-08-21 中国科学院物理研究所 高对比度飞秒激光脉冲产生装置
CN103197499A (zh) * 2013-03-20 2013-07-10 中国工程物理研究院流体物理研究所 一种同时分幅扫描超高速光电摄影***
CN104062841A (zh) * 2014-07-16 2014-09-24 深圳大学 一种实时高空间分辨的超快分幅光学成像装置
CN204129432U (zh) * 2014-07-16 2015-01-28 深圳大学 实时高空间分辨的超快分幅光学成像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAI, HUI ET AL.: "Generation of Background-Free Pulses at 1064nm Accurately Synchronized with Femtosecond Laser Pulses at 794nm", ACTA PHYSICA SINICA, vol. 56, no. 5, 31 May 2007 (2007-05-31), pages 2821 - 2827, ISSN: 1000-3290 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107529625A (zh) * 2017-10-10 2018-01-02 武汉大学 一种用于实时观测微纳瞬变现象的连续/突发双模超快成像方法
CN107632402A (zh) * 2017-10-10 2018-01-26 武汉大学 一种用于实时观测微纳瞬变现象的连续/突发/相差三模超快显微成像方法
CN107529625B (zh) * 2017-10-10 2019-05-10 武汉大学 一种用于实时观测微纳瞬变现象的连续/突发双模超快成像方法

Also Published As

Publication number Publication date
CN104062841B (zh) 2017-04-05
CN104062841A (zh) 2014-09-24
US9912852B2 (en) 2018-03-06
US20160241759A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
WO2016008336A1 (zh) 一种实时高空间分辨的超快分幅光学成像装置
Rivas et al. Next generation driver for attosecond and laser-plasma physics
Thurow et al. Narrow-linewidth megahertz-rate pulse-burst laser for high-speed flow diagnostics
Mikhailova et al. Ultra-high-contrast few-cycle pulses for multipetawatt-class laser technology
Rothhardt et al. High average and peak power few-cycle laser pulses delivered by fiber pumped OPCPA system
US10020632B2 (en) UV-visible laser system having ultrashort highpower and/or high-energy pulses
Wagner et al. Pre-plasma formation in experiments using petawatt lasers
JP5628256B2 (ja) フラッシュ光分解システム
Ozaki et al. Experimental prospects at the Canadian advanced laser light source facility
Seres et al. Parametric amplification of attosecond pulse trains at 11 nm
WO2022048481A1 (zh) 一种产生具有烧蚀预脉冲的强场脉冲装置及其实现方法
Cai et al. Three-strip microchannel plate gated x-ray framing camera
US20170347439A1 (en) Method for efficient, narrow-bandwidth, laser compton x-ray and gamma-ray sources
Grigsby et al. Chirped-pulse Raman amplification for two-color, high-intensity laser experiments
Yin et al. Programmable pulse synthesizer for the generation of Joule-level picosecond laser pulses of arbitrary shape
CN104076574A (zh) 一种光学图像增强装置及方法
CN204129432U (zh) 实时高空间分辨的超快分幅光学成像装置
Losev et al. Hybrid THL-100 laser system: results and prospect
Kubodera et al. Vacuum ultraviolet Ar excimer emission initiated by high intensity laser produced electrons
Losev et al. THL-100 multi-terawatt laser system of a visible range
Dogariu et al. High-gain air lasing by multiphoton pumping of atomic species
US7709798B2 (en) Terahertz optical gate
Sanders et al. Terawatt chirped pulse Raman amplified laser for two-color experiments
JP2008244339A (ja) 光パルスレーザー装置
READ et al. ULTRAFAST LASERS: Advanced synchronization techniques enable novel ultrafast science

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822598

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15822598

Country of ref document: EP

Kind code of ref document: A1