WO2022044916A1 - Vehicular radar system and vehicle - Google Patents

Vehicular radar system and vehicle Download PDF

Info

Publication number
WO2022044916A1
WO2022044916A1 PCT/JP2021/030192 JP2021030192W WO2022044916A1 WO 2022044916 A1 WO2022044916 A1 WO 2022044916A1 JP 2021030192 W JP2021030192 W JP 2021030192W WO 2022044916 A1 WO2022044916 A1 WO 2022044916A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
radar
radio wave
reflector
transmitting antenna
Prior art date
Application number
PCT/JP2021/030192
Other languages
French (fr)
Japanese (ja)
Inventor
洸成 菊池
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2022544496A priority Critical patent/JPWO2022044916A1/ja
Publication of WO2022044916A1 publication Critical patent/WO2022044916A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/18Reflecting surfaces; Equivalent structures comprising plurality of mutually inclined plane surfaces, e.g. corner reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart

Definitions

  • This disclosure relates to a vehicle radar system and a vehicle equipped with the vehicle radar system.
  • Vehicles that can run in automatic driving mode are equipped with multiple sensors that acquire data indicating the surrounding environment of the vehicle, such as millimeter-wave radar, cameras, and LiDAR units.
  • sensors that acquire data indicating the surrounding environment of the vehicle, such as millimeter-wave radar, cameras, and LiDAR units.
  • a long-distance millimeter-wave radar for monitoring the front region of the vehicle and a short-range millimeter-wave radar for monitoring the front side region of the vehicle are mounted on the vehicle.
  • a short-range millimeter-wave radar is mounted near the corner of the vehicle.
  • a short-range millimeter-wave radar is mounted near the left front corner of the vehicle.
  • another short-range millimeter-wave radar is mounted near the right front corner of the vehicle.
  • a long-distance millimeter-wave radar is mounted in the center of the vehicle in the left-right direction.
  • a plurality of millimeter wave radars are mounted on the front side portion of the vehicle.
  • the number of millimeter-wave radars mounted on the vehicle increases, it is necessary to secure a space in the vehicle for mounting the millimeter-wave radar. Therefore, it is originally desirable to reduce the number of millimeter-wave radars mounted on the vehicle as much as possible.
  • the vehicle radar system mounted on the vehicle is A first transmitting antenna configured to emit a first radio wave toward the outside of the vehicle, and a first transmitting antenna.
  • a second transmitting antenna configured to emit a second radio wave toward the outside of the vehicle, and a second transmitting antenna. It is configured to receive the first radio wave reflected by the object existing in the front side region of the vehicle and the second radio wave reflected by the object existing in the front region of the vehicle.
  • the receiving antenna Based on the received first radio wave, the first radar data indicating the surrounding environment in the front side region of the vehicle is generated, and the surrounding environment in the front region of the vehicle is shown based on the received second radio wave.
  • a signal processing circuit unit configured to generate second radar data, Equipped with a radar equipped with. The first transmitting antenna, the second transmitting antenna, and the receiving antenna are formed on the same antenna substrate.
  • first radar data indicating the surrounding environment in the front side region of the vehicle based on the first radio wave emitted from the first transmitting antenna, and it is emitted from the second transmitting antenna. Based on the second radio wave, it is possible to generate second radar data indicating the surrounding environment in the area in front of the vehicle.
  • the first transmitting antenna, the second transmitting antenna, and the receiving antenna are formed on the same antenna substrate. In this way, it is possible to detect the surrounding environment in the front side region and the front region of the vehicle by using one radar. Therefore, it is possible to provide a radar system for a vehicle that can detect the surrounding environment in the front side region and the front region of the vehicle while reducing the number of radars mounted on the vehicle.
  • a vehicle equipped with the above-mentioned vehicle radar system may be provided.
  • a radar system for a vehicle and a vehicle capable of detecting the surrounding environment in the front side region and the front region of the vehicle while reducing the number of radars mounted on the vehicle.
  • a radar system for a vehicle that can detect the surrounding environment in the front side region and the front region of the vehicle while reducing the number of radars mounted on the vehicle.
  • the "left-right direction”, “front-back direction”, and “vertical direction” of the vehicle 1 may be appropriately referred to. These directions are relative directions set for the vehicle 1 shown in FIG.
  • the "left-right direction” is a direction including the “left direction” and the “right direction”.
  • the “front-back direction” is a direction including the "forward direction” and the "rear direction”.
  • the vertical direction is not shown in FIG. 2, the vertical direction is a direction orthogonal to the horizontal direction and the front-back direction.
  • the vertical direction D2 (see FIG. 5) of the radar 2 mounted on the vehicle 1 is parallel to the vertical direction of the vehicle 1.
  • the horizontal direction D1 of the radar 2 is a direction orthogonal to the vertical direction D2 of the radar 2.
  • FIG. 1 is a schematic diagram showing an example of a radar system 10.
  • the radar system 10 is mounted on the vehicle 1 and includes a radar 2, a first reflector 3, and a second reflector 5. Further, the radar system 10 further includes a radar control unit 6 shown in FIG. Although the radar control unit 6 is not shown in FIG. 1, the location of the radar control unit 6 is not particularly limited.
  • the radar 2, the first reflector 3, and the second reflector 5 are covered by the front bumper 8 of the vehicle 1 and arranged in the internal space S surrounded by the front bumper 8 and the vehicle body body (not shown). There is. That is, the radar system 10 is concealed from the outside of the vehicle 1 by the front bumper 8.
  • Radar 2 is, for example, a millimeter wave radar or a microwave radar.
  • the radar 2 is configured to acquire radar data indicating the surrounding environment of the vehicle 1 by emitting radio waves toward the front of the vehicle 1.
  • the radar 2 functions as both a long-range radar (forward monitoring radar) and a short-range radar (peripheral monitoring radar).
  • the radar 2 When the radar 2 functions as a short-range radar, the radar 2 emits a first radio wave toward an object existing in the left front region (an example of the front side region) of the vehicle 1 and is reflected by the object.
  • the first radar data showing the information related to the object (for example, the distance, direction, and relative velocity of the object) is acquired.
  • the radar 2 When the radar 2 functions as a long-range radar, the radar 2 emits a second radio wave toward an object existing in the front region of the vehicle 1 via the first reflecting plate 3 and the second reflecting plate 5. In response to the reception of the second radio wave reflected by the object, the second radar data indicating the information related to the object is acquired.
  • the radar 2 is fixed, for example, by a bracket (not shown) attached to the vehicle body.
  • the first radio wave and the second radio wave may be, for example, millimeter waves in the 77 GHz band.
  • FIG. 4 is a block diagram showing the configuration of the radar 2.
  • FIG. 5 is a front view showing an example of a first transmitting antenna 25, a second transmitting antenna 26, and a receiving antenna 27 formed on the surface 20a of the antenna substrate 20.
  • the radar 2 includes an antenna board 20, a first transmitting antenna 25, a second transmitting antenna 26, a receiving antenna 27, and a radome 21 accommodating the antenna board 20. Further, as shown in FIG. 4, the radar 2 includes a transmitting side RF (radio frequency) circuit 24, a receiving side RF circuit 23, and a signal processing circuit unit 22.
  • RF radio frequency
  • the antenna board 20 is configured as a single antenna board.
  • a first transmitting antenna 25, a second transmitting antenna 26, and a receiving antenna 27 are formed on the surface 20a of the antenna substrate 20.
  • the first transmitting antenna 25 is configured to emit a first radio wave toward the outside of the vehicle 1.
  • the first transmitting antenna 25 is configured to emit a first radio wave toward an object such as another vehicle existing in the left front region (an example of the front side region) of the vehicle 1.
  • the first transmitting antenna 25 has a plurality of first transmitting antenna elements 125 (patch antenna elements) arranged in the horizontal direction D1 and the vertical direction D2 of the radar 2. In the example shown in FIG.
  • the first transmitting antenna 25 is composed of a plurality of first transmitting antenna elements 125 arranged in 7 rows ⁇ 3 columns. That is, three first transmitting antenna elements 125 are arranged in the horizontal direction D1, and seven first transmitting antenna elements 125 are arranged in the vertical direction D2.
  • the first radio wave is emitted from the first transmitting antenna 25 as a synthetic radio wave of the radio waves emitted from each first transmitting antenna element 125.
  • the vertical direction D2 of the radar 2 is parallel to the vertical direction of the vehicle 1.
  • the first field of view V1 in the horizontal direction D1 of the radar 2 associated with the first radio wave emitted from the first transmitting antenna 25 is, for example, in the range of ⁇ 40 ° to ⁇ 75 °. ..
  • the first visual field V1 in the vertical direction D2 associated with the first radio wave is within the range of ⁇ 2 ° to ⁇ 5 °.
  • the detection distance of the radar 2 associated with the first radio wave is, for example, in the range of 70 m to 100 m.
  • the second transmitting antenna 26 is configured to emit a second radio wave toward the outside of the vehicle 1 via the first reflecting plate 3 and the second reflecting plate 5.
  • the second transmitting antenna 26 is configured to emit a second radio wave toward an object such as another vehicle existing in the front region of the vehicle 1.
  • the second transmitting antenna 26 has a plurality of second transmitting antenna elements 126 (patch antenna elements) arranged in the horizontal direction D1 and the vertical direction D2 of the radar 2.
  • the second transmitting antenna 26 is composed of a plurality of second transmitting antenna elements 126 arranged in 7 rows ⁇ 5 columns.
  • the second radio wave is emitted from the second transmitting antenna 26 as a synthetic radio wave of the radio waves emitted from each second transmitting antenna element 126.
  • the second field of view V2 in the horizontal direction D1 of the radar 2 associated with the second radio wave emitted from the second transmitting antenna 26 is, for example, in the range of ⁇ 5 ° to ⁇ 10 °. ..
  • the second visual field V2 in the vertical direction D2 associated with the second radio wave is within the range of ⁇ 2 ° to ⁇ 5 °.
  • the detection distance of the radar 2 associated with the second radio wave is, for example, 200 m or more (specifically, within the range of 200 m to 300 m).
  • the first visual field V1 in the horizontal direction D1 is horizontal. It is larger than the second field V2 in the direction D1. Further, the detection distance of the radar 2 associated with the second radio wave is larger than the detection distance of the radar 2 associated with the first radio wave. In this way, the first transmitting antenna 25 functions as a wide-angle transmitting antenna, and the second transmitting antenna 26 functions as a narrow-angle transmitting antenna.
  • the receiving antenna 27 is configured to receive radio waves reflected by an object such as another vehicle existing outside the vehicle 1.
  • the receiving antenna 27 receives the first radio wave reflected by the object existing in the left front region of the vehicle 1 and the second radio wave reflected by the object existing in the front region of the vehicle 1. It is configured in.
  • the receiving antenna 27 is configured to receive both the reflected wave of the first radio wave emitted from the first transmitting antenna 25 and the reflected wave of the second radio wave emitted from the second transmitting antenna 26. It is configured as a single receiving antenna. In the present embodiment, since the receiving antenna 27 is configured as a single receiving antenna, it is possible to suppress an increase in the external size of the radar 2.
  • the frequency of the first radio wave and the frequency of the second radio wave are the same as each other. Therefore, in order to avoid interference between the first radio wave and the second radio wave, the receiving antenna 27 is configured to receive the first radio wave and the second radio wave at different timings. In other words, the emission timing of the first radio wave by the first transmitting antenna 25 and the emission timing of the second radio wave by the second transmitting antenna 26 are different from each other (this will be described later).
  • the receiving antenna 27 is arranged between the first transmitting antenna 25 and the second transmitting antenna 26 in the horizontal direction D1.
  • the receiving antenna 27 has a plurality of receiving antenna elements 127 (patch antenna elements) arranged in the horizontal direction D1 and the vertical direction D2 of the radar 2.
  • the receiving antenna 27 is composed of a plurality of receiving antenna elements 127 arranged in 7 rows ⁇ 5 columns. That is, five receiving antenna elements 127 are arranged in the horizontal direction D1, and seven receiving antenna elements 127 are arranged in the vertical direction D2.
  • Each receiving antenna element 127 is configured to receive the reflected wave of the first radio wave and the reflected wave of the second radio wave.
  • the receiving antenna 27 when the receiving antenna 27 receives the reflected wave of the first radio wave, only the high frequency signal output from the receiving antenna element 127 of 7 rows ⁇ 3 columns existing in the region 127a surrounded by the broken line is used. May be done. On the other hand, when the receiving antenna 27 receives the reflected wave of the second radio wave, the high frequency signal output from all the receiving antenna elements 127 may be used.
  • the transmitting side RF circuit 24, the receiving side RF circuit 23, and the signal processing circuit unit 22 are configured as a monolithic microwave integrated circuit (MMIC).
  • MMIC monolithic microwave integrated circuit
  • the MMIC may be mounted on the back surface of the antenna substrate 20 located on the opposite side of the surface 20a of the antenna substrate 20, for example.
  • the transmitting side RF circuit 24 is electrically connected to the first transmitting antenna 25 and the second transmitting antenna 26, and is configured to supply a high frequency signal to the first transmitting antenna 25 and the second transmitting antenna 26. ..
  • the transmission side RF circuit 24 includes a high frequency generation circuit that generates a high frequency signal, a plurality of phase detectors that adjust the phase of the high frequency signal, and a plurality of amplifiers.
  • the high frequency generating circuit When the radar 2 is a radar that adopts the FMCW method, the high frequency generating circuit generates a chirp signal (FMCW signal) whose frequency changes linearly with the passage of time.
  • FMCW signal a chirp signal
  • the transmitting side RF circuit 24 supplies a high frequency signal to the first transmitting antenna 25.
  • the transmitting side RF circuit 24 supplies a high frequency signal to the second transmitting antenna 26.
  • the emission direction of the second radio wave emitted from the second transmission antenna 26 is tilted with respect to the detection axis A1 of the radar 2.
  • the emission direction of the second radio wave corresponds to the emission direction of the beam central axis of the second radio wave, which is a synthetic radio wave of the radio waves emitted from each second transmission antenna element 126.
  • the detection axis A1 of the radar 2 is an axis perpendicular to the surface 20a of the antenna substrate 20.
  • the emission direction of the first radio wave emitted from the first transmission antenna 25 also faces the left front direction.
  • the emission direction of the second radio wave is tilted with respect to the detection axis A1 so that the emission direction of the second radio wave faces forward.
  • each phase device provided in the transmission side RF circuit 24 controls the phase of the high frequency signal (TX signal) supplied to the second transmission antenna 26 to control the emission direction of the second radio wave.
  • TX signal high frequency signal
  • the first phase detector provided in the transmitting side RF circuit 24 is input to the second transmitting antenna element group 126a composed of the seven second transmitting antenna elements 126 arranged in the first row.
  • the phase of the TX signal is adjusted (see FIG. 5).
  • the second phase detector adjusts the phase of the TX signal input to the second transmitting antenna element group 126b composed of the seven second transmitting antenna elements 126 arranged in the second row.
  • the third phase detector adjusts the phase of the TX signal input to the second transmitting antenna element group 126c composed of the seven second transmitting antenna elements 126 arranged in the third row.
  • the fourth phase detector adjusts the phase of the TX signal input to the second transmitting antenna element group 126d composed of the seven second transmitting antenna elements 126 arranged in the fourth row.
  • the fifth phase detector adjusts the phase of the TX signal input to the second transmitting antenna element group 126e composed of the seven second transmitting antenna elements 126 arranged in the fifth row. In this way, by adjusting the phase of the TX signal input to each of the second transmitting antenna element groups 126a to 126e, the emission direction of the second radio wave in the horizontal direction D1 can be tilted with respect to the detection axis A1. .. As a result, the second transmitting antenna 26 can emit the second radio wave in the forward direction.
  • the receiving side RF circuit 23 is electrically connected to the receiving antenna 27 and is configured to receive a weak high frequency signal from the receiving antenna 27.
  • the receiving side RF circuit 23 includes an amplifier, a mixer, a bandpass filter, an AD converter, and a filter circuit.
  • the amplifier is configured to amplify a weak high frequency signal output from the receiving antenna 27.
  • the mixer generates an intermediate frequency (IF) signal by mixing the high frequency signal (RX signal) output from the amplifier and the high frequency signal (TX signal) output from the high frequency generation circuit.
  • the AD converter is configured to convert an IF signal that has passed through a bandpass filter from an analog signal to a digital signal. The digital signal is transmitted to the signal processing circuit unit 22 via the filter circuit.
  • the signal processing circuit unit 22 is configured to control the transmitting side RF circuit 24 and the receiving side RF circuit 23 according to the control signal from the radar control unit 6. Further, the signal processing circuit unit 22 generates radar data (first radar data and second radar data) by signal processing (for example, fast Fourier transform processing) of the digital signal output from the receiving side RF circuit 23. Above, the generated radar data is configured to be transmitted to the radar control unit 6.
  • the signal processing circuit unit 22 includes, for example, a DSP (Digital Signal Processor) and a microcomputer composed of a processor and a memory.
  • the signal processing circuit unit 22 When the radar 2 emits the first radio wave, the signal processing circuit unit 22 in the left front region of the vehicle 1 based on the digital signal related to the reflected wave of the first radio wave output from the receiving side RF circuit 23. Generates first radar data indicating the surrounding environment. On the other hand, when the radar 2 emits the second radio wave, the signal processing circuit unit 22 is in front of the vehicle 1 based on the digital signal related to the reflected wave of the second radio wave output from the receiving side RF circuit 23. Generates second radar data indicating the surrounding environment in the area. In this respect, the signal processing circuit unit 22 is configured to generate the first radar data and the second radar data at different timings. In particular, the signal processing circuit unit 22 is configured to generate the first radar data at the first update rate and generate the second radar data at a second update rate different from the first update rate.
  • the radar control unit 6 is configured to control the drive of the radar 2.
  • the radar control unit 6 is composed of, for example, an electronic control unit (ECU).
  • the electronic control unit includes a microcomputer composed of a processor and a memory. Further, the radar control unit 6 is configured to change the relationship between the first update rate of the first radar data and the second update rate of the second radar data according to the speed of the vehicle 1 (the radar control unit 6 is configured to change the relationship between the first update rate of the first radar data and the second update rate of the second radar data. Details will be described later).
  • the radar 2 is arranged in the internal space S at a position away from the center in the left-right direction of the vehicle 1.
  • the radar 2 also functions as a forward monitoring radar for monitoring the front area of the vehicle 1, it is preferable that the radar 2 is arranged at the center of the vehicle 1 in the left-right direction.
  • the path of the radio wave emitted from the radar 2 can be changed by using the first reflector 3 and the second reflector 5 shown in FIG. 1, so that the radar 2 can be moved in the left-right direction. It does not need to be placed in the center.
  • the radar 2 can be used as both a forward monitoring radar and a peripheral monitoring radar.
  • the first reflector 3 faces the second transmitting antenna 26 of the radar 2 in the front-rear direction of the vehicle 1, and reflects the second radio wave emitted from the second transmitting antenna 26 toward the second reflecting plate 5. It is configured in. As shown in FIG. 6A, the first reflector 3 has a first reflector 32 and a first radio wave absorber 30.
  • the first reflector 32 is configured to reflect the second radio wave emitted from the second transmitting antenna 26 toward the second reflecting plate 5, for example, a metal material (gold, silver, copper, iron, etc.). ).
  • the first reflector 32 has an external size sufficient to reflect the second radio wave in the second visual field V2 among the second radio waves emitted from the second transmitting antenna 26 toward the second reflector 5. ..
  • the external size of the first reflector 32 is the distance between the radar 2 and the first reflector 3, the horizontal viewing angle of the radar 2 associated with the second radio wave, and the second radio wave. It is appropriately determined according to the vertical viewing angle of the associated radar 2.
  • the first radio wave absorber 30 is configured to absorb the second radio wave emitted from the second transmitting antenna 26.
  • the first radio wave absorber 30 is configured to absorb the side lobe component, which is a radio wave component outside the second visual field V2, among the second radio waves emitted from the second transmitting antenna 26.
  • the first radio wave absorber 30 is provided on the first reflector 32 so as to be along the end portion of the first reflector 32.
  • the first radio wave absorber 30 is provided on the first reflector 32 so as to completely surround the outer periphery of the first reflector 32.
  • the first radio wave absorber 30 may be formed of, for example, an inorganic binder and radio wave absorbing particles provided in the inorganic binder. As an example of the radio wave absorbing particles, epsilon-type iron oxide particles and titanium oxide particles may be used.
  • the width dimension of the first radio wave absorber 30 is, for example, about 10 mm.
  • the first reflector 3 is arranged outside the first field of view V1 of the radar 2 associated with the first radio wave. Therefore, it is possible to preferably prevent noise from being generated in the first radar data associated with the first radio wave because a part of the first radio wave is reflected by the first reflector 3.
  • the first reflector 3 since the emission direction of the second radio wave can be tilted with respect to the detection axis A1 of the radar 2 through phase control for the TX signal input to the second transmission antenna 26, the first reflector 3 is used. It can be arranged outside the first field V1 of the radar 2. More specifically, since the second radio wave can be emitted toward the front direction, the first reflector 3 and the radar 2 can be arranged side by side in the front-rear direction. As a result, the first reflector 3 is arranged outside the first field of view V1 of the radar 2.
  • the second reflector 5 is configured to reflect the second radio wave reflected by the first reflector 3 toward the front region of the vehicle 1.
  • the second reflector 5 is arranged so as to overlap the virtual plane Ax (see FIG. 2) in the left-right direction.
  • the virtual plane Ax is a virtual plane that passes through the center of the vehicle 1 in the left-right direction and is perpendicular to the left-right direction of the vehicle 1.
  • the second reflector 5 has a second reflector 52 and a second radio wave absorber 50.
  • the second reflector 52 is configured to reflect the second radio wave reflected by the first reflector 32 toward the front of the vehicle 1, for example, a metal material (gold, silver, copper, iron, etc.). It is composed of.
  • the second reflector 52 has an external size sufficient to reflect radio waves in the second visual field V2 toward the front of the vehicle 1.
  • the external size of the second reflector 52 is the distance between the radar 2 and the first reflector 3, the distance between the first reflector 3 and the second reflector 5, and the second radio wave. It is appropriately determined according to the horizontal viewing angle of the radar 2 associated with the second radio wave and the vertical viewing angle of the radar 2 associated with the second radio wave.
  • the second radio wave absorber 50 is configured to absorb the second radio wave reflected by the first reflector 32.
  • the second radio wave absorber 50 is configured to absorb the side lobe component, which is a radio wave component outside the second visual field V2, among the second radio waves reflected by the first reflector 32.
  • the second radio wave absorber 50 is provided on the second reflector 52 so as to be along the end portion of the second reflector 52.
  • the second radio wave absorber 50 is provided on the second reflector 52 so as to completely surround the outer periphery of the second reflector 52.
  • the second radio wave absorber 50 may be made of, for example, the same material as the material constituting the first radio wave absorber 30.
  • the width dimension of the second radio wave absorber 50 is, for example, about 10 mm.
  • the first reflector 3 and the second reflector 5 are configured to change the path of the second radio wave emitted from the second transmitting antenna 26.
  • the second radio wave emitted from the second transmitting antenna 26 by the two reflectors can be emitted from the center of the vehicle 1 in the left-right direction.
  • the radio wave reflected by the object (for example, another vehicle) existing in the front region of the vehicle 1 is reflected by the second reflector 5 and the first reflector 3, and as a result, is incident on the receiving antenna 27.
  • a peripheral monitoring radar for acquiring information on the surrounding environment in the right front region of the vehicle 1 may be arranged in the right front lamp 4b arranged on the right front side of the vehicle 1.
  • a peripheral monitoring radar for acquiring information on the surrounding environment in the left rear region of the vehicle 1 may be arranged in the left rear lamp 4c arranged on the left rear side of the vehicle 1.
  • a peripheral monitoring radar for acquiring information on the surrounding environment in the right rear region of the vehicle 1 may be arranged in the right rear lamp 4d arranged on the right rear side of the vehicle 1.
  • the radar 2 and the first reflector 3 may be arranged in the left front lamp 4a arranged on the left front side of the vehicle 1 instead of the internal space S.
  • the first radar data indicating the surrounding environment in the left front region of the vehicle 1 can be generated based on the first radio wave emitted from the first transmitting antenna 25, and the second transmitting antenna 26 can generate the first radar data. Based on the emitted second radio wave, it is possible to generate second radar data indicating the surrounding environment in the front region of the vehicle 1. Further, the first transmitting antenna 25, the second transmitting antenna 26, and the receiving antenna 27 are formed on the same antenna board 20. In this way, it is possible to detect the surrounding environment in the left front region and the front region of the vehicle 1 by using one radar 2. Therefore, it is possible to provide a radar system 10 capable of detecting the surrounding environment in the left front region and the front region of the vehicle 1 while reducing the number of radars mounted on the vehicle 1.
  • the path of the second radio wave emitted from the second transmitting antenna 26 can be changed by the first reflecting plate 3 and the second reflecting plate 5, so that the radar 2 can be mounted anywhere freely. It is possible to increase the degree of freedom, and it is possible to detect the surrounding environment in the left front region and the front region of the vehicle 1 by using one radar 2. In particular, even when the radar 2 is not arranged in the center of the vehicle 1 in the left-right direction, the second reflector 5 is arranged in the center of the left-right direction. Therefore, the second radio wave can be emitted from the center of the vehicle 1 in the left-right direction toward the front region of the vehicle 1, and the degree of freedom in the mounting location of the radar 2 can be increased.
  • the radar 2, the first reflector 3, and the second reflector 5 are covered with the front bumper 8, the design of the appearance of the vehicle 1 can be improved. Further, the front bumper 8 can protect the radar system 10 from an impact from the outside of the vehicle 1.
  • FIG. 3 is a block diagram showing a part of the configuration of the vehicle system 100.
  • the vehicle system 100 includes a vehicle control unit 12, a vehicle speed sensor 13, a radar system 10, an HMI (Human Machine Interface) 14, a GPS (Global Positioning System) 15, and a wireless communication module 16. And.
  • the vehicle control unit 12 is configured to control the running of the vehicle 1.
  • the vehicle control unit 12 is composed of, for example, at least one electronic control unit.
  • the electronic control unit includes a computer system including one or more processors and one or more memories (for example, SoC (System on a Chip) or the like), and an electronic circuit composed of active elements such as transistors and passive elements.
  • the vehicle speed sensor 13 is configured to detect the speed of the vehicle 1.
  • the vehicle speed sensor 13 is configured to transmit speed data indicating the speed of the vehicle 1 to the vehicle control unit 12.
  • the radar system 10 includes a radar 2, a radar control unit 6, a first reflector 3, and a second reflector 5 (see FIG. 1).
  • the first radar data and the second radar data acquired by the radar 2 are transmitted to the vehicle control unit 12 via the radar control unit 6.
  • the vehicle control unit 12 specifies the surrounding environment in the left front region of the vehicle 1 based on the received first radar data, and specifies the peripheral environment in the front region of the vehicle 1 based on the received second radar data. ..
  • the HMI 14 is composed of an input unit that receives an input operation from the driver and an output unit that outputs driving information and the like to the driver.
  • the input unit includes a steering wheel, an accelerator pedal, a brake pedal, an operation mode changeover switch for switching the operation mode of the vehicle 1, and the like.
  • the output unit is a display (for example, Head Up Display (HUD) or the like) that displays various driving information.
  • the GPS 15 is configured to acquire the current position information of the vehicle 1 and output the acquired current position information to the vehicle control unit 12.
  • the wireless communication module 16 is configured to receive information about other vehicles in the vicinity from the other vehicle and transmit information about the vehicle 1 to the other vehicle (vehicle-to-vehicle communication). Further, the wireless communication module 16 is configured to receive infrastructure information from traffic infrastructure equipment such as traffic lights and indicator lights and to transmit traveling information of vehicle 1 to the traffic infrastructure equipment (road-to-vehicle communication). Further, the wireless communication module 16 is configured to receive information about the pedestrian from a mobile terminal such as a smartphone carried by the pedestrian and to transmit the traveling information of the vehicle 1 to the mobile terminal (pedestrian-to-vehicle communication). .. Further, the vehicle 1 can receive predetermined information from a server on a communication network such as the Internet via the wireless communication module 16.
  • the radar 2 is mounted as a sensing device for acquiring information indicating the surrounding environment of the vehicle 1, while the vehicle system 100 may further include a camera and a LiDAR unit in addition to the radar.
  • FIG. 7 is a flowchart for explaining the generation process of the first radar data and the second radar data.
  • the first transmission antenna 25 of the radar 2 is sent to the outside of the vehicle 1 (particularly, the left front region of the vehicle 1) in response to the input of the TX signal from the transmission side RF circuit 24.
  • the first radio wave is emitted toward.
  • the receiving antenna 27 of the radar 2 receives the first radio wave reflected by an object (for example, another vehicle or the like) existing in the left front region of the vehicle 1 (step S2).
  • the signal processing circuit unit 22 of the radar 2 generates the first radar data indicating the surrounding environment in the left front region of the vehicle 1 in response to the reception of the digital signal associated with the first radio wave from the receiving side RF circuit 23. (Step S3).
  • the first radar data generated by the radar 2 is transmitted to the vehicle control unit 12 via the radar control unit 6.
  • step S4 if the radar data next generated by the radar 2 is not the second radar data (NO in step S4), the processes of steps S1 to S3 are repeatedly executed. On the other hand, when the radar data next generated by the radar 2 is the second radar data (YES in step S4), the radar 2 performs the processes of steps S5 to S7 in order to generate the second radar data. Execute.
  • step S5 the second transmitting antenna 26 of the radar 2 emits a second radio wave toward the outside of the vehicle 1 in response to the input of the TX signal from the transmitting side RF circuit 24. Specifically, the second radio wave emitted from the second transmitting antenna 26 is emitted toward the front region of the vehicle 1 via the first reflector 3 and the second reflector 5 shown in FIG.
  • the receiving antenna 27 of the radar 2 receives the second radio wave reflected by an object (for example, another vehicle or the like) existing in the front region of the vehicle 1 (step S6).
  • an object for example, another vehicle or the like
  • the signal processing circuit unit 22 of the radar 2 After that, the signal processing circuit unit 22 of the radar 2 generates the second radar data indicating the surrounding environment in the front region of the vehicle 1 in response to the reception of the digital signal associated with the second radio wave from the receiving side RF circuit 23. (Step S7).
  • the second radar data generated by the radar 2 is transmitted to the vehicle control unit 12 via the radar control unit 6.
  • step S8 if the radar data generated next by the radar 2 is not the first radar data (NO in step S8), the processes of steps S5 to S7 are repeatedly executed. On the other hand, when the radar data next generated by the radar 2 is the first radar data (YES in step S8), the radar 2 executes the processes of steps S1 to S3.
  • the signal processing circuit unit 22 is configured to generate the first radar data and the second radar data at different timings. Therefore, even if the frequencies of the first radio wave and the second radio wave are the same, the first radar data and the second radar data can be generated by the single receiving antenna 27. Further, the signal processing circuit unit 22 is configured to generate the first radar data at the first update rate (Hz) and the second radar data at the second update rate (Hz). The first update rate and the second update rate may be the same or different from each other.
  • the number of times of the first radar data generation process (processes S1 to S3) executed in one second. And the number of times of the second radar data generation processing (processing of steps S5 to S7) are the same. For example, when the first update rate and the second update rate are 5 Hz, the number of times of the first radar data generation process executed in one second and the number of times of the second radar data generation process executed in one second are It will be 5 times.
  • the first update rate of the first radar data and the second update rate of the second radar data are different from each other, the number of first radar data generation processes executed per second and the second radar data The number of generation processes is different from each other. For example, when the ratio of the first update rate to the second update rate is 3: 1, the radar 2 executes the first radar data generation process three times and then performs the second radar data generation process 1. Execute once.
  • FIG. 8 is a flowchart for explaining a process of setting a relationship between a first update rate and a second update rate according to the speed of the vehicle 1.
  • step S10 the vehicle control unit 12 (see FIG. 3) acquires data indicating the current speed of the vehicle 1 from the vehicle speed sensor 13 and then specifies the current speed of the vehicle 1 (step). S10).
  • the radar control unit 6 receives information indicating the current speed of the vehicle 1 from the vehicle control unit 12 and then determines whether the current speed of the vehicle 1 is equal to or higher than the threshold speed (step S11).
  • the threshold speed for example, 10 km / h
  • the second update rate of the second radar data is the first radar data.
  • the first update rate and the second update rate are set so as to be larger than the first update rate (step S12).
  • the radar control unit 6 may set the first update rate and the second update rate so that the ratio of the first update rate to the second update rate is 1: 3.
  • the radar control unit 6 determines that the current speed of the vehicle 1 is less than the threshold speed (for example, 10 km / h) (NO in step S11), the first update rate of the first radar data is the second.
  • the first update rate and the second update rate are set so as to be larger than the second update rate of the radar data (step S13).
  • the radar control unit 6 may set the first update rate and the second update rate so that the ratio of the first update rate to the second update rate is 3: 1.
  • the radar control unit 6 transmits signals indicating the first update rate and the second update rate to the signal processing circuit unit 22 of the radar 2.
  • the signal processing circuit unit 22 generates the first radar data and the second radar data at different timings based on the first update rate and the second update rate determined by the radar control unit 6.
  • the first update rate becomes larger than the second update rate or the second update rate becomes larger than the first update rate, depending on the relationship between the speed of the vehicle 1 and the threshold speed.
  • the optimum update rate of the first radar data and the update rate of the second radar data according to the traveling condition of the vehicle 1.
  • the detection of the object existing in the left front region of the vehicle 1 is prioritized, so that the first update rate is higher than the second update rate.
  • the detection of the object existing in the front region of the vehicle 1 is prioritized, so that the second update rate is higher than the first update rate.
  • the radar control unit 6 may directly receive data indicating the current speed of the vehicle 1 from the vehicle speed sensor 13. Further, the threshold speed used in the process of step S11 may be appropriately changed according to the traveling condition of the vehicle 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A vehicular radar system (10) comprises a radar (2) including: a first transmitting antenna (25) that emits a first radio wave; a second transmitting antenna (26) that emits a second radio wave; a receiving antenna (27) that receives the first radio wave reflected by an object located in a frontward lateral area relative to a vehicle (1), and that receives the second radio wave reflected by an object located in a front area relative to the vehicle (1); and a signal processing circuit unit configured to generate first radar data indicating a surrounding environment in the frontward lateral area relative to the vehicle (1) on the basis of the received first radio wave and to generate second radar data indicating a surrounding environment in the front area relative to the vehicle (1) on the basis of the received second radio wave.

Description

車両用レーダシステム及び車両Vehicle radar system and vehicle
 本開示は、車両用レーダシステム及び当該車両用レーダシステムを備えた車両に関する。 This disclosure relates to a vehicle radar system and a vehicle equipped with the vehicle radar system.
 自動運転モードで走行可能な車両には、ミリ波レーダ、カメラ、LiDARユニット等の車両の周辺環境を示すデータを取得する複数のセンサが搭載されている。例えば、特許文献1の開示では、車両の前方領域を監視するための長距離用ミリ波レーダと車両の前側方領域を監視するための短距離用ミリ波レーダが車両に搭載されている。 Vehicles that can run in automatic driving mode are equipped with multiple sensors that acquire data indicating the surrounding environment of the vehicle, such as millimeter-wave radar, cameras, and LiDAR units. For example, in the disclosure of Patent Document 1, a long-distance millimeter-wave radar for monitoring the front region of the vehicle and a short-range millimeter-wave radar for monitoring the front side region of the vehicle are mounted on the vehicle.
日本国特開2008-152387号公報Japanese Patent Application Laid-Open No. 2008-152387
 一般的に、車両の前側方領域(例えば、左前領域や右前領域)における周辺環境を検出するためには、車両のコーナー部の付近に短距離用ミリ波レーダが搭載される。具体的には、車両の左前領域における周辺環境を検出するためには、車両の左前コーナー部の付近に短距離用ミリ波レーダが搭載される。さらに、車両の右前領域における周辺環境を検出するためには、車両の右前コーナー部の付近に別の短距離用ミリ波レーダが搭載される。また、車両の前方領域における周辺環境を検出するためには、車両の左右方向の中央に長距離用ミリ波レーダが搭載される。このように、車両の前側方領域及び前方領域における周辺環境を検出するためには、複数のミリ波レーダが車両の前側部に搭載されている。その一方で、車両に搭載されるミリ波レーダの個数が増大する程、ミリ波レーダを搭載するための空間を車両内に確保する必要がある。このため、車両に搭載されるミリ波レーダの個数を出来る限り削減することが本来であれば望ましい。このように、車両に搭載されるミリ波レーダの個数を削減しつつ、車両の前側方領域及び前方領域における周辺環境を検出可能なレーダシステムについて検討の余地がある。 Generally, in order to detect the surrounding environment in the front side region of the vehicle (for example, the front left region or the front right region), a short-range millimeter-wave radar is mounted near the corner of the vehicle. Specifically, in order to detect the surrounding environment in the left front region of the vehicle, a short-range millimeter-wave radar is mounted near the left front corner of the vehicle. Further, in order to detect the surrounding environment in the right front region of the vehicle, another short-range millimeter-wave radar is mounted near the right front corner of the vehicle. Further, in order to detect the surrounding environment in the front region of the vehicle, a long-distance millimeter-wave radar is mounted in the center of the vehicle in the left-right direction. As described above, in order to detect the surrounding environment in the front side region and the front region of the vehicle, a plurality of millimeter wave radars are mounted on the front side portion of the vehicle. On the other hand, as the number of millimeter-wave radars mounted on the vehicle increases, it is necessary to secure a space in the vehicle for mounting the millimeter-wave radar. Therefore, it is originally desirable to reduce the number of millimeter-wave radars mounted on the vehicle as much as possible. As described above, there is room for study on a radar system capable of detecting the surrounding environment in the front side region and the front region of the vehicle while reducing the number of millimeter-wave radars mounted on the vehicle.
 本開示は、車両に搭載されるレーダの個数を削減しつつ、車両の前側方領域及び前方領域における周辺環境を検出可能な車両用レーダシステム及び車両を提供することを目的とする。 It is an object of the present disclosure to provide a vehicle radar system and a vehicle capable of detecting the surrounding environment in the front side region and the front region of the vehicle while reducing the number of radars mounted on the vehicle.
 本開示の一態様に係る車両に搭載される車両用レーダシステムは、
  前記車両の外部に向けて第1電波を出射するように構成された第1送信アンテナと、
  前記車両の外部に向けて第2電波を出射するように構成された第2送信アンテナと、
  前記車両の前側方領域に存在する対象物によって反射された前記第1電波を受信すると共に、前記車両の前方領域に存在する対象物によって反射された前記第2電波を受信するように構成された受信アンテナと、
  前記受信した第1電波に基づいて、前記車両の前側方領域における周辺環境を示す第1レーダデータを生成すると共に、前記受信した第2電波に基づいて、前記車両の前方領域における周辺環境を示す第2レーダデータを生成するように構成された信号処理回路部と、
 を備えたレーダを備える。
 前記第1送信アンテナと、前記第2送信アンテナと、前記受信アンテナは、同一のアンテナ基板上に形成されている。
The vehicle radar system mounted on the vehicle according to one aspect of the present disclosure is
A first transmitting antenna configured to emit a first radio wave toward the outside of the vehicle, and a first transmitting antenna.
A second transmitting antenna configured to emit a second radio wave toward the outside of the vehicle, and a second transmitting antenna.
It is configured to receive the first radio wave reflected by the object existing in the front side region of the vehicle and the second radio wave reflected by the object existing in the front region of the vehicle. With the receiving antenna
Based on the received first radio wave, the first radar data indicating the surrounding environment in the front side region of the vehicle is generated, and the surrounding environment in the front region of the vehicle is shown based on the received second radio wave. A signal processing circuit unit configured to generate second radar data,
Equipped with a radar equipped with.
The first transmitting antenna, the second transmitting antenna, and the receiving antenna are formed on the same antenna substrate.
 上記構成によれば、第1送信アンテナから出射された第1電波に基づいて車両の前側方領域における周辺環境を示す第1レーダデータを生成することができると共に、第2送信アンテナから出射された第2電波に基づいて車両の前方領域における周辺環境を示す第2レーダデータを生成することができる。さらに、第1送信アンテナと、第2送信アンテナと、受信アンテナが同一のアンテナ基板上に形成されている。このように、1つのレーダを用いて車両の前側方領域及び前方領域における周辺環境を検出することが可能となる。したがって、車両に搭載されるレーダの個数を削減しつつ、車両の前側方領域及び前方領域における周辺環境を検出可能な車両用レーダシステムを提供することができる。 According to the above configuration, it is possible to generate first radar data indicating the surrounding environment in the front side region of the vehicle based on the first radio wave emitted from the first transmitting antenna, and it is emitted from the second transmitting antenna. Based on the second radio wave, it is possible to generate second radar data indicating the surrounding environment in the area in front of the vehicle. Further, the first transmitting antenna, the second transmitting antenna, and the receiving antenna are formed on the same antenna substrate. In this way, it is possible to detect the surrounding environment in the front side region and the front region of the vehicle by using one radar. Therefore, it is possible to provide a radar system for a vehicle that can detect the surrounding environment in the front side region and the front region of the vehicle while reducing the number of radars mounted on the vehicle.
 また、上記車両用レーダシステムを備えた車両が提供されてもよい。 Further, a vehicle equipped with the above-mentioned vehicle radar system may be provided.
 上記によれば、車両に搭載されるレーダの個数を削減しつつ、車両の前側方領域及び前方領域における周辺環境を検出可能な車両用レーダシステム及び車両を提供することができる。 According to the above, it is possible to provide a radar system for a vehicle and a vehicle capable of detecting the surrounding environment in the front side region and the front region of the vehicle while reducing the number of radars mounted on the vehicle.
 本開示によれば、車両に搭載されるレーダの個数を削減しつつ、車両の前側方領域及び前方領域における周辺環境を検出可能な車両用レーダシステムを提供することができる。 According to the present disclosure, it is possible to provide a radar system for a vehicle that can detect the surrounding environment in the front side region and the front region of the vehicle while reducing the number of radars mounted on the vehicle.
車両用レーダシステムの一例を示す概略図である。It is a schematic diagram which shows an example of the radar system for a vehicle. 第1電波に関連付けられたレーダの第1視野と第2電波に関連付けられたレーダの第2視野を概略的に示す図である。It is a figure which shows schematic the 1st field of view of the radar associated with a 1st radio wave, and the 2nd field of view of a radar associated with a 2nd radio wave. 車両システムの構成の一部を示すブロック図である。It is a block diagram which shows a part of the structure of a vehicle system. レーダの構成を示すブロック図である。It is a block diagram which shows the structure of a radar. アンテナ基板上に形成された第1送信アンテナと、第2送信アンテナと、受信アンテナの一例を示す正面図である。It is a front view which shows an example of the 1st transmitting antenna, the 2nd transmitting antenna, and the receiving antenna formed on the antenna board. 第1反射板を示す正面図である。It is a front view which shows the 1st reflector. 第2反射板を示す正面図である。It is a front view which shows the 2nd reflector. 第1レーダデータ及び第2レーダデータの生成処理を説明するためのフローチャートである。It is a flowchart for demonstrating the generation process of the 1st radar data and the 2nd radar data. 車両の速度に応じて、第1レーダデータの第1更新レートと第2レーダデータの第2更新レートとの間の関係を設定する処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process of setting the relationship between the 1st update rate of the 1st radar data and the 2nd update rate of the 2nd radar data according to the speed of a vehicle.
 以下、本開示の実施形態(以下、単に「本実施形態」という。)について図面を参照しながら説明する。本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。 Hereinafter, an embodiment of the present disclosure (hereinafter, simply referred to as “the present embodiment”) will be described with reference to the drawings. The dimensions of each member shown in this drawing may differ from the actual dimensions of each member for convenience of explanation.
 また、本実施形態の説明では、説明の便宜上、車両1の「左右方向」、「前後方向」、「上下方向」について適宜言及する場合がある。これらの方向は、図2に示す車両1について設定された相対的な方向である。ここで、「左右方向」は、「左方向」及び「右方向」を含む方向である。「前後方向」は、「前方向」及び「後方向」を含む方向である。尚、図2では上下方向は示されていないが、上下方向は、左右方向及び前後方向に直交する方向である。さらに、車両1に搭載されたレーダ2の垂直方向D2(図5参照)は、車両1の上下方向と平行であるものとする。また、レーダ2の水平方向D1は、レーダ2の垂直方向D2に直交する方向である。 Further, in the description of the present embodiment, for convenience of explanation, the "left-right direction", "front-back direction", and "vertical direction" of the vehicle 1 may be appropriately referred to. These directions are relative directions set for the vehicle 1 shown in FIG. Here, the "left-right direction" is a direction including the "left direction" and the "right direction". The "front-back direction" is a direction including the "forward direction" and the "rear direction". Although the vertical direction is not shown in FIG. 2, the vertical direction is a direction orthogonal to the horizontal direction and the front-back direction. Further, it is assumed that the vertical direction D2 (see FIG. 5) of the radar 2 mounted on the vehicle 1 is parallel to the vertical direction of the vehicle 1. Further, the horizontal direction D1 of the radar 2 is a direction orthogonal to the vertical direction D2 of the radar 2.
 最初に、図1を参照して本実施形態に係る車両用レーダシステム10(以下、単にレーダシステム10という。)について以下に説明する。図1は、レーダシステム10の一例を示す概略図である。図1に示すように、レーダシステム10は、車両1に搭載されており、レーダ2と、第1反射板3と、第2反射板5とを備える。また、レーダシステム10は、図4に示すレーダ制御部6をさらに備える。図1にはレーダ制御部6が図示されていないが、レーダ制御部6の配置場所は特に限定されるものではない。 First, the vehicle radar system 10 (hereinafter, simply referred to as the radar system 10) according to the present embodiment will be described below with reference to FIG. FIG. 1 is a schematic diagram showing an example of a radar system 10. As shown in FIG. 1, the radar system 10 is mounted on the vehicle 1 and includes a radar 2, a first reflector 3, and a second reflector 5. Further, the radar system 10 further includes a radar control unit 6 shown in FIG. Although the radar control unit 6 is not shown in FIG. 1, the location of the radar control unit 6 is not particularly limited.
 レーダ2と、第1反射板3と、第2反射板5は、車両1のフロントバンパー8によって覆われていると共に、フロントバンパー8と図示しない車体ボディとによって囲われた内部空間S内に配置されている。つまり、レーダシステム10は、フロントバンパー8によって車両1の外部からは隠蔽されている。 The radar 2, the first reflector 3, and the second reflector 5 are covered by the front bumper 8 of the vehicle 1 and arranged in the internal space S surrounded by the front bumper 8 and the vehicle body body (not shown). There is. That is, the radar system 10 is concealed from the outside of the vehicle 1 by the front bumper 8.
 レーダ2は、例えば、ミリ波レーダ又はマイクロ波レーダである。レーダ2は、車両1の前方に向けて電波を出射することで車両1の周辺環境を示すレーダデータを取得するように構成されている。特に、レーダ2は、長距離レーダ(前方監視用レーダ)及び短距離レーダ(周辺監視用レーダ)の両方として機能する。レーダ2が短距離レーダとして機能する場合に、レーダ2は、車両1の左前領域(前側方領域の一例)に存在する対象物に向けて第1電波を出射すると共に、当該対象物によって反射された第1電波の受信に応じて、当該対象物に関連する情報(例えば、対象物の距離、方向、相対速度)を示す第1レーダデータを取得する。レーダ2が長距離レーダとして機能する場合に、レーダ2は、第1反射板3及び第2反射板5を介して車両1の前方領域に存在する対象物に向けて第2電波を出射すると共に、当該対象物によって反射された第2電波の受信に応じて、当該対象物に関連する情報を示す第2レーダデータを取得する。レーダ2は、例えば、車体ボディに取り付けられたブラケット(図示せず)によって固定されている。第1電波と第2電波は、例えば、77GHz帯のミリ波であってもよい。 Radar 2 is, for example, a millimeter wave radar or a microwave radar. The radar 2 is configured to acquire radar data indicating the surrounding environment of the vehicle 1 by emitting radio waves toward the front of the vehicle 1. In particular, the radar 2 functions as both a long-range radar (forward monitoring radar) and a short-range radar (peripheral monitoring radar). When the radar 2 functions as a short-range radar, the radar 2 emits a first radio wave toward an object existing in the left front region (an example of the front side region) of the vehicle 1 and is reflected by the object. In response to the reception of the first radio wave, the first radar data showing the information related to the object (for example, the distance, direction, and relative velocity of the object) is acquired. When the radar 2 functions as a long-range radar, the radar 2 emits a second radio wave toward an object existing in the front region of the vehicle 1 via the first reflecting plate 3 and the second reflecting plate 5. In response to the reception of the second radio wave reflected by the object, the second radar data indicating the information related to the object is acquired. The radar 2 is fixed, for example, by a bracket (not shown) attached to the vehicle body. The first radio wave and the second radio wave may be, for example, millimeter waves in the 77 GHz band.
(レーダの構成)
 次に、レーダ2の構成について図1、図4及び図5を参照することで詳細に説明する。図4は、レーダ2の構成を示すブロック図である。図5は、アンテナ基板20の表面20a上に形成された第1送信アンテナ25と、第2送信アンテナ26と、受信アンテナ27の一例を示す正面図である。
(Radar configuration)
Next, the configuration of the radar 2 will be described in detail with reference to FIGS. 1, 4 and 5. FIG. 4 is a block diagram showing the configuration of the radar 2. FIG. 5 is a front view showing an example of a first transmitting antenna 25, a second transmitting antenna 26, and a receiving antenna 27 formed on the surface 20a of the antenna substrate 20.
 図1に示すように、レーダ2は、アンテナ基板20と、第1送信アンテナ25と、第2送信アンテナ26と、受信アンテナ27と、アンテナ基板20を収容するレドーム21とを備える。さらに、図4に示すように、レーダ2は、送信側RF(無線周波数)回路24と、受信側RF回路23と、信号処理回路部22とを備える。 As shown in FIG. 1, the radar 2 includes an antenna board 20, a first transmitting antenna 25, a second transmitting antenna 26, a receiving antenna 27, and a radome 21 accommodating the antenna board 20. Further, as shown in FIG. 4, the radar 2 includes a transmitting side RF (radio frequency) circuit 24, a receiving side RF circuit 23, and a signal processing circuit unit 22.
 図5に示すように、アンテナ基板20は、単一のアンテナ基板として構成されている。アンテナ基板20の表面20a上に、第1送信アンテナ25と、第2送信アンテナ26と、受信アンテナ27が形成されている。第1送信アンテナ25は、車両1の外部に向けて第1電波を出射するように構成されている。特に、第1送信アンテナ25は、車両1の左前領域(前側方領域の一例)に存在する他車両等の対象物に向けて第1電波を出射するように構成されている。図5に示すように、第1送信アンテナ25は、レーダ2の水平方向D1及び垂直方向D2に配列された複数の第1送信アンテナ素子125(パッチアンテナ素子)を有する。図5に示す例では、第1送信アンテナ25は、7行×3列に配列された複数の第1送信アンテナ素子125により構成されている。つまり、水平方向D1に3つの第1送信アンテナ素子125が配列されていると共に、垂直方向D2に7つの第1送信アンテナ素子125が配列されている。各第1送信アンテナ素子125から出射された電波の合成電波として第1電波が第1送信アンテナ25から出射される。既に述べたように、レーダ2の垂直方向D2は、車両1の上下方向と平行であるものとする。 As shown in FIG. 5, the antenna board 20 is configured as a single antenna board. A first transmitting antenna 25, a second transmitting antenna 26, and a receiving antenna 27 are formed on the surface 20a of the antenna substrate 20. The first transmitting antenna 25 is configured to emit a first radio wave toward the outside of the vehicle 1. In particular, the first transmitting antenna 25 is configured to emit a first radio wave toward an object such as another vehicle existing in the left front region (an example of the front side region) of the vehicle 1. As shown in FIG. 5, the first transmitting antenna 25 has a plurality of first transmitting antenna elements 125 (patch antenna elements) arranged in the horizontal direction D1 and the vertical direction D2 of the radar 2. In the example shown in FIG. 5, the first transmitting antenna 25 is composed of a plurality of first transmitting antenna elements 125 arranged in 7 rows × 3 columns. That is, three first transmitting antenna elements 125 are arranged in the horizontal direction D1, and seven first transmitting antenna elements 125 are arranged in the vertical direction D2. The first radio wave is emitted from the first transmitting antenna 25 as a synthetic radio wave of the radio waves emitted from each first transmitting antenna element 125. As described above, it is assumed that the vertical direction D2 of the radar 2 is parallel to the vertical direction of the vehicle 1.
 図1に示すように、第1送信アンテナ25から出射された第1電波に関連付けられたレーダ2の水平方向D1における第1視野V1は、例えば、±40°から±75°の範囲内となる。また、第1電波に関連付けられた垂直方向D2における第1視野V1は、±2°から±5°の範囲内となる。また、第1電波に関連付けられたレーダ2の検知距離は、例えば、70mから100mの範囲内となる。 As shown in FIG. 1, the first field of view V1 in the horizontal direction D1 of the radar 2 associated with the first radio wave emitted from the first transmitting antenna 25 is, for example, in the range of ± 40 ° to ± 75 °. .. Further, the first visual field V1 in the vertical direction D2 associated with the first radio wave is within the range of ± 2 ° to ± 5 °. Further, the detection distance of the radar 2 associated with the first radio wave is, for example, in the range of 70 m to 100 m.
 第2送信アンテナ26は、第1反射板3及び第2反射板5を介して車両1の外部に向けて第2電波を出射するように構成されている。特に、第2送信アンテナ26は、車両1の前方領域に存在する他車両等の対象物に向けて第2電波を出射するように構成されている。図5に示すように、第2送信アンテナ26は、レーダ2の水平方向D1及び垂直方向D2に配列された複数の第2送信アンテナ素子126(パッチアンテナ素子)を有する。図5に示す例では、第2送信アンテナ26は、7行×5列に配列された複数の第2送信アンテナ素子126によって構成されている。つまり、水平方向D1に5つの第2送信アンテナ素子126が配列されていると共に、垂直方向D2に7つの第2送信アンテナ素子126が配列されている。各第2送信アンテナ素子126から出射された電波の合成電波として第2電波が第2送信アンテナ26から出射される。 The second transmitting antenna 26 is configured to emit a second radio wave toward the outside of the vehicle 1 via the first reflecting plate 3 and the second reflecting plate 5. In particular, the second transmitting antenna 26 is configured to emit a second radio wave toward an object such as another vehicle existing in the front region of the vehicle 1. As shown in FIG. 5, the second transmitting antenna 26 has a plurality of second transmitting antenna elements 126 (patch antenna elements) arranged in the horizontal direction D1 and the vertical direction D2 of the radar 2. In the example shown in FIG. 5, the second transmitting antenna 26 is composed of a plurality of second transmitting antenna elements 126 arranged in 7 rows × 5 columns. That is, five second transmitting antenna elements 126 are arranged in the horizontal direction D1, and seven second transmitting antenna elements 126 are arranged in the vertical direction D2. The second radio wave is emitted from the second transmitting antenna 26 as a synthetic radio wave of the radio waves emitted from each second transmitting antenna element 126.
 図1に示すように、第2送信アンテナ26から出射された第2電波に関連付けられたレーダ2の水平方向D1における第2視野V2は、例えば、±5°から±10°の範囲内となる。また、第2電波に関連付けられた垂直方向D2における第2視野V2は、±2°から±5°の範囲内となる。また、第2電波に関連付けられたレーダ2の検知距離は、例えば、200m以上(具体的には200mから300mの範囲内)となる。本実施形態では、水平方向D1に配列された第1送信アンテナ素子125の個数が水平方向D1に配列された第2送信アンテナ素子126よりも小さいため、水平方向D1における第1視野V1は、水平方向D1における第2視野V2よりも大きくなる。さらに、第2電波に関連付けられたレーダ2の検知距離は、第1電波に関連付けられたレーダ2の検知距離よりも大きくなる。このように、第1送信アンテナ25が広角用送信アンテナとして機能すると共に、第2送信アンテナ26が挟角用送信アンテナとして機能する。 As shown in FIG. 1, the second field of view V2 in the horizontal direction D1 of the radar 2 associated with the second radio wave emitted from the second transmitting antenna 26 is, for example, in the range of ± 5 ° to ± 10 °. .. Further, the second visual field V2 in the vertical direction D2 associated with the second radio wave is within the range of ± 2 ° to ± 5 °. Further, the detection distance of the radar 2 associated with the second radio wave is, for example, 200 m or more (specifically, within the range of 200 m to 300 m). In the present embodiment, since the number of the first transmitting antenna elements 125 arranged in the horizontal direction D1 is smaller than the number of the second transmitting antenna elements 126 arranged in the horizontal direction D1, the first visual field V1 in the horizontal direction D1 is horizontal. It is larger than the second field V2 in the direction D1. Further, the detection distance of the radar 2 associated with the second radio wave is larger than the detection distance of the radar 2 associated with the first radio wave. In this way, the first transmitting antenna 25 functions as a wide-angle transmitting antenna, and the second transmitting antenna 26 functions as a narrow-angle transmitting antenna.
 受信アンテナ27は、車両1の外部に存在する他車両等の対象物によって反射された電波を受信するように構成されている。特に、受信アンテナ27は、車両1の左前領域に存在する対象物によって反射された第1電波を受信すると共に、車両1の前方領域に存在する対象物によって反射された第2電波を受信するように構成されている。本実施形態では、受信アンテナ27は、第1送信アンテナ25から出射された第1電波の反射波と第2送信アンテナ26から出射された第2電波の反射波の両方を受信するように構成された単一の受信アンテナとして構成されている。本実施形態では、受信アンテナ27が単一の受信アンテナとして構成されているため、レーダ2の外形サイズの大型化を抑制することができる。また、本実施形態では、第1電波の周波数と第2電波の周波数が互いに同一である。このため、第1電波と第2電波の干渉を回避するために、受信アンテナ27は、第1電波と第2電波を異なるタイミングで受信するように構成されている。換言すれば、第1送信アンテナ25による第1電波の出射タイミングと第2送信アンテナ26による第2電波の出射タイミングは互いに異なる(これについては後述する)。 The receiving antenna 27 is configured to receive radio waves reflected by an object such as another vehicle existing outside the vehicle 1. In particular, the receiving antenna 27 receives the first radio wave reflected by the object existing in the left front region of the vehicle 1 and the second radio wave reflected by the object existing in the front region of the vehicle 1. It is configured in. In the present embodiment, the receiving antenna 27 is configured to receive both the reflected wave of the first radio wave emitted from the first transmitting antenna 25 and the reflected wave of the second radio wave emitted from the second transmitting antenna 26. It is configured as a single receiving antenna. In the present embodiment, since the receiving antenna 27 is configured as a single receiving antenna, it is possible to suppress an increase in the external size of the radar 2. Further, in the present embodiment, the frequency of the first radio wave and the frequency of the second radio wave are the same as each other. Therefore, in order to avoid interference between the first radio wave and the second radio wave, the receiving antenna 27 is configured to receive the first radio wave and the second radio wave at different timings. In other words, the emission timing of the first radio wave by the first transmitting antenna 25 and the emission timing of the second radio wave by the second transmitting antenna 26 are different from each other (this will be described later).
 図5に示すように、受信アンテナ27は、水平方向D1において、第1送信アンテナ25と第2送信アンテナ26との間に配置されている。受信アンテナ27は、レーダ2の水平方向D1及び垂直方向D2に配列された複数の受信アンテナ素子127(パッチアンテナ素子)を有する。図5に示す例では、受信アンテナ27は、7行×5列に配列された複数の受信アンテナ素子127によって構成されている。つまり、水平方向D1に5つの受信アンテナ素子127が配列されていると共に、垂直方向D2に7つの受信アンテナ素子127が配列されている。各受信アンテナ素子127が、第1電波の反射波及び第2電波の反射波を受信するように構成されている。この点において、受信アンテナ27が第1電波の反射波を受信する際には、破線で囲われた領域127aに存在する7行×3列の受信アンテナ素子127から出力された高周波信号のみが利用されてもよい。その一方で、受信アンテナ27が第2電波の反射波を受信する際には、全ての受信アンテナ素子127から出力された高周波信号が利用されてもよい。 As shown in FIG. 5, the receiving antenna 27 is arranged between the first transmitting antenna 25 and the second transmitting antenna 26 in the horizontal direction D1. The receiving antenna 27 has a plurality of receiving antenna elements 127 (patch antenna elements) arranged in the horizontal direction D1 and the vertical direction D2 of the radar 2. In the example shown in FIG. 5, the receiving antenna 27 is composed of a plurality of receiving antenna elements 127 arranged in 7 rows × 5 columns. That is, five receiving antenna elements 127 are arranged in the horizontal direction D1, and seven receiving antenna elements 127 are arranged in the vertical direction D2. Each receiving antenna element 127 is configured to receive the reflected wave of the first radio wave and the reflected wave of the second radio wave. In this respect, when the receiving antenna 27 receives the reflected wave of the first radio wave, only the high frequency signal output from the receiving antenna element 127 of 7 rows × 3 columns existing in the region 127a surrounded by the broken line is used. May be done. On the other hand, when the receiving antenna 27 receives the reflected wave of the second radio wave, the high frequency signal output from all the receiving antenna elements 127 may be used.
 図4に示すように、送信側RF回路24と、受信側RF回路23と、信号処理回路部22は、モノリシック・マイクロ波集積回路(MMIC)として構成されている。MMICは、例えば、アンテナ基板20の表面20aの反対側に位置するアンテナ基板20の裏面に搭載されてもよい。送信側RF回路24は、第1送信アンテナ25及び第2送信アンテナ26に電気的に接続されており、第1送信アンテナ25及び第2送信アンテナ26に高周波信号を供給するように構成されている。送信側RF回路24は、高周波信号を生成する高周波発生回路と、高周波信号の位相を調整する複数の位相器と、複数の増幅器とを備える。レーダ2がFMCW方式を採用するレーダである場合には、高周波発生回路は、時間経過に応じて周波数が直線的に変化するチャープ信号(FMCW信号)を生成する。レーダ2が第1電波を出射する場合には、送信側RF回路24は第1送信アンテナ25に高周波信号を供給する。一方、レーダ2が第2電波を出射する場合には、送信側RF回路24は第2送信アンテナ26に高周波信号を供給する。 As shown in FIG. 4, the transmitting side RF circuit 24, the receiving side RF circuit 23, and the signal processing circuit unit 22 are configured as a monolithic microwave integrated circuit (MMIC). The MMIC may be mounted on the back surface of the antenna substrate 20 located on the opposite side of the surface 20a of the antenna substrate 20, for example. The transmitting side RF circuit 24 is electrically connected to the first transmitting antenna 25 and the second transmitting antenna 26, and is configured to supply a high frequency signal to the first transmitting antenna 25 and the second transmitting antenna 26. .. The transmission side RF circuit 24 includes a high frequency generation circuit that generates a high frequency signal, a plurality of phase detectors that adjust the phase of the high frequency signal, and a plurality of amplifiers. When the radar 2 is a radar that adopts the FMCW method, the high frequency generating circuit generates a chirp signal (FMCW signal) whose frequency changes linearly with the passage of time. When the radar 2 emits the first radio wave, the transmitting side RF circuit 24 supplies a high frequency signal to the first transmitting antenna 25. On the other hand, when the radar 2 emits a second radio wave, the transmitting side RF circuit 24 supplies a high frequency signal to the second transmitting antenna 26.
 また、本実施形態では、図1に示すように、第2送信アンテナ26から出射される第2電波の出射方向はレーダ2の検知軸A1に対して傾いている。ここで、第2電波の出射方向とは、各第2送信アンテナ素子126から出射された電波の合成電波である第2電波のビーム中心軸の出射方向に相当する。レーダ2の検知軸A1は、アンテナ基板20の表面20aに対して垂直な軸となる。この点において、検知軸A1が車両1の左前方向に向いているため、第1送信アンテナ25から出射される第1電波の出射方向も左前方向に向いている。その一方で、第2電波の出射方向が前方向に向くように、第2電波の出射方向が検知軸A1に対して傾いている。 Further, in the present embodiment, as shown in FIG. 1, the emission direction of the second radio wave emitted from the second transmission antenna 26 is tilted with respect to the detection axis A1 of the radar 2. Here, the emission direction of the second radio wave corresponds to the emission direction of the beam central axis of the second radio wave, which is a synthetic radio wave of the radio waves emitted from each second transmission antenna element 126. The detection axis A1 of the radar 2 is an axis perpendicular to the surface 20a of the antenna substrate 20. At this point, since the detection axis A1 faces the left front direction of the vehicle 1, the emission direction of the first radio wave emitted from the first transmission antenna 25 also faces the left front direction. On the other hand, the emission direction of the second radio wave is tilted with respect to the detection axis A1 so that the emission direction of the second radio wave faces forward.
 本実施形態では、送信側RF回路24に設けられた各位相器が第2送信アンテナ26に供給される高周波信号(TX信号)の位相を制御することで、第2電波の出射方向を制御することが可能となる。この点において、送信側RF回路24に設けられた第1の位相器は、1列目に配列された7個の第2送信アンテナ素子126から構成される第2送信アンテナ素子群126aに入力されるTX信号の位相を調整する(図5参照)。第2の位相器は、2列目に配列された7個の第2送信アンテナ素子126から構成される第2送信アンテナ素子群126bに入力されるTX信号の位相を調整する。第3の位相器は、3列目に配列された7個の第2送信アンテナ素子126から構成される第2送信アンテナ素子群126cに入力されるTX信号の位相を調整する。第4の位相器は、4列目に配列された7個の第2送信アンテナ素子126から構成される第2送信アンテナ素子群126dに入力されるTX信号の位相を調整する。第5の位相器は、5列目に配列された7個の第2送信アンテナ素子126から構成される第2送信アンテナ素子群126eに入力されるTX信号の位相を調整する。このように、第2送信アンテナ素子群126a~126eの各々に入力されるTX信号の位相を調整することで、水平方向D1における第2電波の出射方向を検知軸A1に対して傾けることができる。この結果、第2送信アンテナ26は、第2電波を前方向に向けて出射することができる。 In the present embodiment, each phase device provided in the transmission side RF circuit 24 controls the phase of the high frequency signal (TX signal) supplied to the second transmission antenna 26 to control the emission direction of the second radio wave. It becomes possible. In this respect, the first phase detector provided in the transmitting side RF circuit 24 is input to the second transmitting antenna element group 126a composed of the seven second transmitting antenna elements 126 arranged in the first row. The phase of the TX signal is adjusted (see FIG. 5). The second phase detector adjusts the phase of the TX signal input to the second transmitting antenna element group 126b composed of the seven second transmitting antenna elements 126 arranged in the second row. The third phase detector adjusts the phase of the TX signal input to the second transmitting antenna element group 126c composed of the seven second transmitting antenna elements 126 arranged in the third row. The fourth phase detector adjusts the phase of the TX signal input to the second transmitting antenna element group 126d composed of the seven second transmitting antenna elements 126 arranged in the fourth row. The fifth phase detector adjusts the phase of the TX signal input to the second transmitting antenna element group 126e composed of the seven second transmitting antenna elements 126 arranged in the fifth row. In this way, by adjusting the phase of the TX signal input to each of the second transmitting antenna element groups 126a to 126e, the emission direction of the second radio wave in the horizontal direction D1 can be tilted with respect to the detection axis A1. .. As a result, the second transmitting antenna 26 can emit the second radio wave in the forward direction.
 受信側RF回路23は、受信アンテナ27に電気的に接続されており、受信アンテナ27から微弱な高周波信号を受信するように構成されている。受信側RF回路23は、増幅器と、ミキサと、バンドバスフィルタと、AD変換器と、フィルタ回路とを備える。増幅器は、受信アンテナ27から出力された微弱な高周波信号を増幅するように構成されている。ミキサは、増幅器から出力された高周波信号(RX信号)と高周波発生回路から出力された高周波信号(TX信号)をミキシングすることで、中間周波数(IF)信号を生成する。AD変換器は、バンドパスフィルタを通過したIF信号をアナログ信号からデジタル信号に変換するように構成されている。デジタル信号は、フィルタ回路を経由して信号処理回路部22に送信される。 The receiving side RF circuit 23 is electrically connected to the receiving antenna 27 and is configured to receive a weak high frequency signal from the receiving antenna 27. The receiving side RF circuit 23 includes an amplifier, a mixer, a bandpass filter, an AD converter, and a filter circuit. The amplifier is configured to amplify a weak high frequency signal output from the receiving antenna 27. The mixer generates an intermediate frequency (IF) signal by mixing the high frequency signal (RX signal) output from the amplifier and the high frequency signal (TX signal) output from the high frequency generation circuit. The AD converter is configured to convert an IF signal that has passed through a bandpass filter from an analog signal to a digital signal. The digital signal is transmitted to the signal processing circuit unit 22 via the filter circuit.
 信号処理回路部22は、レーダ制御部6からの制御信号に応じて送信側RF回路24及び受信側RF回路23を制御するように構成されている。さらに、信号処理回路部22は、受信側RF回路23から出力されたデジタル信号を信号処理(例えば、高速フーリエ変換処理)することでレーダデータ(第1レーダデータ及び第2レーダデータ)を生成した上で、当該生成されたレーダデータをレーダ制御部6に送信するように構成されている。信号処理回路部22は、例えば、DSP(Digital Signal Processor)と、プロセッサとメモリとから構成されるマイクロコンピュータとを備える。 The signal processing circuit unit 22 is configured to control the transmitting side RF circuit 24 and the receiving side RF circuit 23 according to the control signal from the radar control unit 6. Further, the signal processing circuit unit 22 generates radar data (first radar data and second radar data) by signal processing (for example, fast Fourier transform processing) of the digital signal output from the receiving side RF circuit 23. Above, the generated radar data is configured to be transmitted to the radar control unit 6. The signal processing circuit unit 22 includes, for example, a DSP (Digital Signal Processor) and a microcomputer composed of a processor and a memory.
 レーダ2が第1電波を出射する場合には、信号処理回路部22は、受信側RF回路23から出力された第1電波の反射波に関連するデジタル信号に基づいて、車両1の左前領域における周辺環境を示す第1レーダデータを生成する。一方、レーダ2が第2電波を出射する場合には、信号処理回路部22は、受信側RF回路23から出力された第2電波の反射波に関連するデジタル信号に基づいて、車両1の前方領域における周辺環境を示す第2レーダデータを生成する。この点において、信号処理回路部22は、第1レーダデータと第2レーダデータを異なるタイミングで生成するように構成されている。特に、信号処理回路部22は、第1更新レートで第1レーダデータを生成すると共に、第1更新レートとは異なる第2更新レートで第2レーダデータを生成するように構成されている。 When the radar 2 emits the first radio wave, the signal processing circuit unit 22 in the left front region of the vehicle 1 based on the digital signal related to the reflected wave of the first radio wave output from the receiving side RF circuit 23. Generates first radar data indicating the surrounding environment. On the other hand, when the radar 2 emits the second radio wave, the signal processing circuit unit 22 is in front of the vehicle 1 based on the digital signal related to the reflected wave of the second radio wave output from the receiving side RF circuit 23. Generates second radar data indicating the surrounding environment in the area. In this respect, the signal processing circuit unit 22 is configured to generate the first radar data and the second radar data at different timings. In particular, the signal processing circuit unit 22 is configured to generate the first radar data at the first update rate and generate the second radar data at a second update rate different from the first update rate.
 レーダ制御部6は、レーダ2の駆動を制御するように構成されている。レーダ制御部6は、例えば、電子制御ユニット(ECU)により構成されている。電子制御ユニットは、プロセッサとメモリとから構成されるマイクロコンピュータを備える。また、レーダ制御部6は、車両1の速度に応じて、第1レーダデータの第1更新レートと第2レーダデータの第2更新レートとの間の関係を変更するように構成されている(詳細については後述する)。 The radar control unit 6 is configured to control the drive of the radar 2. The radar control unit 6 is composed of, for example, an electronic control unit (ECU). The electronic control unit includes a microcomputer composed of a processor and a memory. Further, the radar control unit 6 is configured to change the relationship between the first update rate of the first radar data and the second update rate of the second radar data according to the speed of the vehicle 1 (the radar control unit 6 is configured to change the relationship between the first update rate of the first radar data and the second update rate of the second radar data. Details will be described later).
(第1反射板と第2反射板の構成)
 次に、図1及び図6Bを参照することで、レーダシステム10に設けられた第1反射板3と第2反射板5について以下に説明する。
(Structure of 1st reflector and 2nd reflector)
Next, with reference to FIGS. 1 and 6B, the first reflector 3 and the second reflector 5 provided in the radar system 10 will be described below.
 最初に、本実施形態では、レーダ2は、車両1の左右方向の中央から離れた位置における内部空間S内に配置されている。この点において、レーダ2は、車両1の前方領域を監視するための前方監視用レーダとしても機能するため、車両1の左右方向の中央に配置されることが好ましい。一方で、本実施形態では、図1に示す第1反射板3と第2反射板5を用いることでレーダ2から出射された電波の経路を変更することができるため、レーダ2を左右方向の中央に配置する必要がない。さらに、レーダ2を左右方向の中央に配置する必要がないため、レーダ2を前方監視用レーダ且つ周辺監視用レーダとして活用することができる。 First, in the present embodiment, the radar 2 is arranged in the internal space S at a position away from the center in the left-right direction of the vehicle 1. In this respect, since the radar 2 also functions as a forward monitoring radar for monitoring the front area of the vehicle 1, it is preferable that the radar 2 is arranged at the center of the vehicle 1 in the left-right direction. On the other hand, in the present embodiment, the path of the radio wave emitted from the radar 2 can be changed by using the first reflector 3 and the second reflector 5 shown in FIG. 1, so that the radar 2 can be moved in the left-right direction. It does not need to be placed in the center. Further, since it is not necessary to arrange the radar 2 in the center in the left-right direction, the radar 2 can be used as both a forward monitoring radar and a peripheral monitoring radar.
 第1反射板3は、車両1の前後方向においてレーダ2の第2送信アンテナ26に対向すると共に、第2送信アンテナ26から出射された第2電波を第2反射板5に向けて反射するように構成されている。図6Aに示すように、第1反射板3は、第1反射体32と、第1電波吸収体30とを有する。 The first reflector 3 faces the second transmitting antenna 26 of the radar 2 in the front-rear direction of the vehicle 1, and reflects the second radio wave emitted from the second transmitting antenna 26 toward the second reflecting plate 5. It is configured in. As shown in FIG. 6A, the first reflector 3 has a first reflector 32 and a first radio wave absorber 30.
 第1反射体32は、第2送信アンテナ26から出射された第2電波を第2反射板5に向けて反射するように構成されており、例えば、金属材料(金、銀、銅、鉄等)によって構成されている。第1反射体32は、第2送信アンテナ26から出射された第2電波のうち第2視野V2内の第2電波を第2反射板5に向けて反射することが出来る程度の外形サイズを有する。この点において、第1反射体32の外形サイズは、レーダ2と第1反射板3との間の距離と、第2電波に関連付けられたレーダ2の水平方向の視野角と、第2電波に関連付けられたレーダ2の垂直方向の視野角とに応じて適宜決定される。 The first reflector 32 is configured to reflect the second radio wave emitted from the second transmitting antenna 26 toward the second reflecting plate 5, for example, a metal material (gold, silver, copper, iron, etc.). ). The first reflector 32 has an external size sufficient to reflect the second radio wave in the second visual field V2 among the second radio waves emitted from the second transmitting antenna 26 toward the second reflector 5. .. In this respect, the external size of the first reflector 32 is the distance between the radar 2 and the first reflector 3, the horizontal viewing angle of the radar 2 associated with the second radio wave, and the second radio wave. It is appropriately determined according to the vertical viewing angle of the associated radar 2.
 第1電波吸収体30は、第2送信アンテナ26から出射された第2電波を吸収するように構成されている。特に、第1電波吸収体30は、第2送信アンテナ26から出射された第2電波のうち第2視野V2外の電波成分であるサイドローブ成分を吸収するように構成されている。第1電波吸収体30は、第1反射体32の端部に沿うように第1反射体32上に設けられている。特に、第1電波吸収体30は、第1反射体32の外周を完全に囲むように第1反射体32上に設けられている。第1電波吸収体30は、例えば、無機バインダーと、当該無機バインダー内に設けられた電波吸収粒子とにより形成されてもよい。電波吸収粒子の一例として、イプシロン型酸化鉄粒子や酸化チタン粒子が使用されてもよい。第1電波吸収体30の幅寸法は、例えば、10mm程度となる。 The first radio wave absorber 30 is configured to absorb the second radio wave emitted from the second transmitting antenna 26. In particular, the first radio wave absorber 30 is configured to absorb the side lobe component, which is a radio wave component outside the second visual field V2, among the second radio waves emitted from the second transmitting antenna 26. The first radio wave absorber 30 is provided on the first reflector 32 so as to be along the end portion of the first reflector 32. In particular, the first radio wave absorber 30 is provided on the first reflector 32 so as to completely surround the outer periphery of the first reflector 32. The first radio wave absorber 30 may be formed of, for example, an inorganic binder and radio wave absorbing particles provided in the inorganic binder. As an example of the radio wave absorbing particles, epsilon-type iron oxide particles and titanium oxide particles may be used. The width dimension of the first radio wave absorber 30 is, for example, about 10 mm.
 本実施形態では、第1反射板3は、第1電波に関連付けられたレーダ2の第1視野V1の外部に配置されている。このため、第1電波の一部が第1反射板3によって反射されることで、第1電波に関連付けられた第1レーダデータにノイズが生じてしまうことが好適に防止されうる。特に、本実施形態では、第2送信アンテナ26に入力されるTX信号に対する位相制御を通じて第2電波の出射方向をレーダ2の検知軸A1に対して傾けることができるため、第1反射板3をレーダ2の第1視野V1の外部に配置することが可能となる。より具体的には、第2電波を前方向に向けて出射することができるため、第1反射板3とレーダ2を前後方向において並んで配置することができる。この結果として、第1反射板3がレーダ2の第1視野V1の外部に配置される。 In the present embodiment, the first reflector 3 is arranged outside the first field of view V1 of the radar 2 associated with the first radio wave. Therefore, it is possible to preferably prevent noise from being generated in the first radar data associated with the first radio wave because a part of the first radio wave is reflected by the first reflector 3. In particular, in the present embodiment, since the emission direction of the second radio wave can be tilted with respect to the detection axis A1 of the radar 2 through phase control for the TX signal input to the second transmission antenna 26, the first reflector 3 is used. It can be arranged outside the first field V1 of the radar 2. More specifically, since the second radio wave can be emitted toward the front direction, the first reflector 3 and the radar 2 can be arranged side by side in the front-rear direction. As a result, the first reflector 3 is arranged outside the first field of view V1 of the radar 2.
 第2反射板5は、第1反射板3によって反射された第2電波を車両1の前方領域に向けて反射するように構成されている。この点において、第2反射板5は、左右方向において、仮想平面Ax(図2参照)と重なるように配置されている。ここで、仮想平面Axは、車両1の左右方向の中央を通ると共に、車両1の左右方向に垂直な仮想平面である。図6Bに示すように、第2反射板5は、第2反射体52と、第2電波吸収体50とを有する。 The second reflector 5 is configured to reflect the second radio wave reflected by the first reflector 3 toward the front region of the vehicle 1. At this point, the second reflector 5 is arranged so as to overlap the virtual plane Ax (see FIG. 2) in the left-right direction. Here, the virtual plane Ax is a virtual plane that passes through the center of the vehicle 1 in the left-right direction and is perpendicular to the left-right direction of the vehicle 1. As shown in FIG. 6B, the second reflector 5 has a second reflector 52 and a second radio wave absorber 50.
 第2反射体52は、第1反射体32によって反射された第2電波を車両1の前方に向けて反射するように構成されており、例えば、金属材料(金、銀、銅、鉄等)によって構成されている。第2反射体52は、第2視野V2内の電波を車両1の前方に向けて反射することが出来る程度の外形サイズを有する。この点において、第2反射体52の外形サイズは、レーダ2と第1反射板3との間の距離と、第1反射板3と第2反射板5との間の距離と、第2電波に関連付けられたレーダ2の水平方向の視野角と、第2電波に関連付けられたレーダ2の垂直方向の視野角とに応じて適宜決定される。 The second reflector 52 is configured to reflect the second radio wave reflected by the first reflector 32 toward the front of the vehicle 1, for example, a metal material (gold, silver, copper, iron, etc.). It is composed of. The second reflector 52 has an external size sufficient to reflect radio waves in the second visual field V2 toward the front of the vehicle 1. In this respect, the external size of the second reflector 52 is the distance between the radar 2 and the first reflector 3, the distance between the first reflector 3 and the second reflector 5, and the second radio wave. It is appropriately determined according to the horizontal viewing angle of the radar 2 associated with the second radio wave and the vertical viewing angle of the radar 2 associated with the second radio wave.
 第2電波吸収体50は、第1反射体32によって反射された第2電波を吸収するように構成されている。特に、第2電波吸収体50は、第1反射体32によって反射された第2電波のうち第2視野V2外の電波成分であるサイドローブ成分を吸収するように構成されている。第2電波吸収体50は、第2反射体52の端部に沿うように第2反射体52上に設けられている。特に、第2電波吸収体50は、第2反射体52の外周を完全に囲むように第2反射体52上に設けられている。第2電波吸収体50は、例えば、第1電波吸収体30を構成する材料と同一の材料により構成されてもよい。第2電波吸収体50の幅寸法は、例えば、10mm程度となる。 The second radio wave absorber 50 is configured to absorb the second radio wave reflected by the first reflector 32. In particular, the second radio wave absorber 50 is configured to absorb the side lobe component, which is a radio wave component outside the second visual field V2, among the second radio waves reflected by the first reflector 32. The second radio wave absorber 50 is provided on the second reflector 52 so as to be along the end portion of the second reflector 52. In particular, the second radio wave absorber 50 is provided on the second reflector 52 so as to completely surround the outer periphery of the second reflector 52. The second radio wave absorber 50 may be made of, for example, the same material as the material constituting the first radio wave absorber 30. The width dimension of the second radio wave absorber 50 is, for example, about 10 mm.
 第1反射板3及び第2反射板5は、第2送信アンテナ26から出射された第2電波の経路を変更するように構成されている。このように、2つの反射板によって第2送信アンテナ26から出射された第2電波を車両1の左右方向の中央から出射させることができる。また、車両1の前方領域に存在する対象物(例えば、他車両)によって反射された電波は、第2反射板5及び第1反射板3によって反射された結果、受信アンテナ27に入射する。 The first reflector 3 and the second reflector 5 are configured to change the path of the second radio wave emitted from the second transmitting antenna 26. In this way, the second radio wave emitted from the second transmitting antenna 26 by the two reflectors can be emitted from the center of the vehicle 1 in the left-right direction. Further, the radio wave reflected by the object (for example, another vehicle) existing in the front region of the vehicle 1 is reflected by the second reflector 5 and the first reflector 3, and as a result, is incident on the receiving antenna 27.
 尚、図2に示すように、車両1の右前領域における周辺環境に関する情報を取得する周辺監視用レーダが、車両1の右前側に配置された右前ランプ4b内に配置されてもよい。車両1の左後領域における周辺環境に関する情報を取得する周辺監視用レーダが、車両1の左後側に配置された左後ランプ4c内に配置されてもよい。車両1の右後領域における周辺環境に関する情報を取得する周辺監視用レーダが、車両1の右後側に配置された右後ランプ4d内に配置されてもよい。また、レーダ2及び第1反射板3が、内部空間Sではなく、車両1の左前側に配置された左前ランプ4a内に配置されてもよい。 As shown in FIG. 2, a peripheral monitoring radar for acquiring information on the surrounding environment in the right front region of the vehicle 1 may be arranged in the right front lamp 4b arranged on the right front side of the vehicle 1. A peripheral monitoring radar for acquiring information on the surrounding environment in the left rear region of the vehicle 1 may be arranged in the left rear lamp 4c arranged on the left rear side of the vehicle 1. A peripheral monitoring radar for acquiring information on the surrounding environment in the right rear region of the vehicle 1 may be arranged in the right rear lamp 4d arranged on the right rear side of the vehicle 1. Further, the radar 2 and the first reflector 3 may be arranged in the left front lamp 4a arranged on the left front side of the vehicle 1 instead of the internal space S.
 本実施形態によれば、第1送信アンテナ25から出射された第1電波に基づいて車両1の左前領域における周辺環境を示す第1レーダデータを生成することができると共に、第2送信アンテナ26から出射された第2電波に基づいて車両1の前方領域における周辺環境を示す第2レーダデータを生成することができる。さらに、第1送信アンテナ25と、第2送信アンテナ26と、受信アンテナ27とが同一のアンテナ基板20上に形成されている。このように、1つのレーダ2を用いて車両1の左前領域及び前方領域における周辺環境を検出することが可能となる。したがって、車両1に搭載されるレーダの個数を削減しつつ、車両1の左前領域及び前方領域における周辺環境を検出可能なレーダシステム10を提供することができる。 According to the present embodiment, the first radar data indicating the surrounding environment in the left front region of the vehicle 1 can be generated based on the first radio wave emitted from the first transmitting antenna 25, and the second transmitting antenna 26 can generate the first radar data. Based on the emitted second radio wave, it is possible to generate second radar data indicating the surrounding environment in the front region of the vehicle 1. Further, the first transmitting antenna 25, the second transmitting antenna 26, and the receiving antenna 27 are formed on the same antenna board 20. In this way, it is possible to detect the surrounding environment in the left front region and the front region of the vehicle 1 by using one radar 2. Therefore, it is possible to provide a radar system 10 capable of detecting the surrounding environment in the left front region and the front region of the vehicle 1 while reducing the number of radars mounted on the vehicle 1.
 また、本実施形態によれば、第1反射板3と第2反射板5によって第2送信アンテナ26から出射された第2電波の経路を変更することができるため、レーダ2の搭載場所の自由度を高めることが可能となると共に、1つのレーダ2を用いて車両1の左前領域及び前方領域における周辺環境を検出することができる。特に、レーダ2が車両1の左右方向の中央に配置されていない場合であっても、第2反射板5が当該左右方向の中央に配置されている。このため、第2電波を車両1の左右方向の中央から車両1の前方領域に向けて出射させることが可能となり、レーダ2の搭載場所の自由度を高めることができる。 Further, according to the present embodiment, the path of the second radio wave emitted from the second transmitting antenna 26 can be changed by the first reflecting plate 3 and the second reflecting plate 5, so that the radar 2 can be mounted anywhere freely. It is possible to increase the degree of freedom, and it is possible to detect the surrounding environment in the left front region and the front region of the vehicle 1 by using one radar 2. In particular, even when the radar 2 is not arranged in the center of the vehicle 1 in the left-right direction, the second reflector 5 is arranged in the center of the left-right direction. Therefore, the second radio wave can be emitted from the center of the vehicle 1 in the left-right direction toward the front region of the vehicle 1, and the degree of freedom in the mounting location of the radar 2 can be increased.
 また、レーダ2と、第1反射板3と、第2反射板5とがフロントバンパー8によって覆われているため、車両1の外観のデザイン性を向上させることができる。また、フロントバンパー8によって、車両1の外部からの衝撃に対してレーダシステム10を保護することができる。 Further, since the radar 2, the first reflector 3, and the second reflector 5 are covered with the front bumper 8, the design of the appearance of the vehicle 1 can be improved. Further, the front bumper 8 can protect the radar system 10 from an impact from the outside of the vehicle 1.
(車両システム100の構成)
 次に、図3を参照して車両1に搭載された車両システム100の構成の一部について以下に説明する。図3は、車両システム100の構成の一部を示すブロック図である。図3に示すように、車両システム100は、車両制御部12と、車速センサ13と、レーダシステム10と、HMI(Human Machine Interface)14と、GPS(Global Positioning System)15と、無線通信モジュール16とを備える。
(Configuration of vehicle system 100)
Next, a part of the configuration of the vehicle system 100 mounted on the vehicle 1 will be described below with reference to FIG. FIG. 3 is a block diagram showing a part of the configuration of the vehicle system 100. As shown in FIG. 3, the vehicle system 100 includes a vehicle control unit 12, a vehicle speed sensor 13, a radar system 10, an HMI (Human Machine Interface) 14, a GPS (Global Positioning System) 15, and a wireless communication module 16. And.
 車両制御部12は、車両1の走行を制御するように構成されている。車両制御部12は、例えば、少なくとも一つの電子制御ユニットにより構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含むコンピュータシステム(例えば、SoC(System on a Chip)等)と、トランジスタ等のアクティブ素子及びパッシブ素子から構成される電子回路を含む。 The vehicle control unit 12 is configured to control the running of the vehicle 1. The vehicle control unit 12 is composed of, for example, at least one electronic control unit. The electronic control unit includes a computer system including one or more processors and one or more memories (for example, SoC (System on a Chip) or the like), and an electronic circuit composed of active elements such as transistors and passive elements.
 車速センサ13は、車両1の速度を検出するように構成されている。車速センサ13は、車両1の速度を示す速度データを車両制御部12に送信するように構成されている。レーダシステム10は、上記したように、レーダ2と、レーダ制御部6と、第1反射板3と、第2反射板5(図1参照)とを備える。レーダ2によって取得された第1レーダデータ及び第2レーダデータは、レーダ制御部6を介して車両制御部12に送信される。車両制御部12は、受信した第1レーダデータに基づいて、車両1の左前領域における周辺環境を特定すると共に、受信した第2レーダデータに基づいて、車両1の前方領域における周辺環境を特定する。 The vehicle speed sensor 13 is configured to detect the speed of the vehicle 1. The vehicle speed sensor 13 is configured to transmit speed data indicating the speed of the vehicle 1 to the vehicle control unit 12. As described above, the radar system 10 includes a radar 2, a radar control unit 6, a first reflector 3, and a second reflector 5 (see FIG. 1). The first radar data and the second radar data acquired by the radar 2 are transmitted to the vehicle control unit 12 via the radar control unit 6. The vehicle control unit 12 specifies the surrounding environment in the left front region of the vehicle 1 based on the received first radar data, and specifies the peripheral environment in the front region of the vehicle 1 based on the received second radar data. ..
 HMI14は、運転者からの入力操作を受付ける入力部と、走行情報等を運転者に向けて出力する出力部とから構成される。入力部は、ステアリングホイール、アクセルペダル、ブレーキペダル、車両1の運転モードを切替える運転モード切替スイッチ等を含む。出力部は、各種走行情報を表示するディスプレイ(例えば、Head Up Display(HUD)等)である。GPS15は、車両1の現在位置情報を取得し、当該取得された現在位置情報を車両制御部12に出力するように構成されている。 The HMI 14 is composed of an input unit that receives an input operation from the driver and an output unit that outputs driving information and the like to the driver. The input unit includes a steering wheel, an accelerator pedal, a brake pedal, an operation mode changeover switch for switching the operation mode of the vehicle 1, and the like. The output unit is a display (for example, Head Up Display (HUD) or the like) that displays various driving information. The GPS 15 is configured to acquire the current position information of the vehicle 1 and output the acquired current position information to the vehicle control unit 12.
 無線通信モジュール16は、周囲にいる他車両に関する情報を他車両から受信すると共に、車両1に関する情報を他車両に送信するように構成されている(車車間通信)。また、無線通信モジュール16は、信号機や標識灯等の交通インフラ設備からインフラ情報を受信すると共に、車両1の走行情報を交通インフラ設備に送信するように構成されている(路車間通信)。また、無線通信モジュール16は、歩行者が携帯するスマートフォン等の携帯端末から歩行者に関する情報を受信すると共に、車両1の走行情報を携帯端末に送信するように構成されている(歩車間通信)。また、車両1は、無線通信モジュール16を介してインターネット等の通信ネットワーク上のサーバから所定の情報を受信することができる。 The wireless communication module 16 is configured to receive information about other vehicles in the vicinity from the other vehicle and transmit information about the vehicle 1 to the other vehicle (vehicle-to-vehicle communication). Further, the wireless communication module 16 is configured to receive infrastructure information from traffic infrastructure equipment such as traffic lights and indicator lights and to transmit traveling information of vehicle 1 to the traffic infrastructure equipment (road-to-vehicle communication). Further, the wireless communication module 16 is configured to receive information about the pedestrian from a mobile terminal such as a smartphone carried by the pedestrian and to transmit the traveling information of the vehicle 1 to the mobile terminal (pedestrian-to-vehicle communication). .. Further, the vehicle 1 can receive predetermined information from a server on a communication network such as the Internet via the wireless communication module 16.
 本実施形態では、車両1の周辺環境を示す情報を取得するセンシングデバイスとしてレーダ2が搭載されている一方で、車両システム100は、レーダに加えて、カメラ、LiDARユニットをさらに備えてもよい。 In the present embodiment, the radar 2 is mounted as a sensing device for acquiring information indicating the surrounding environment of the vehicle 1, while the vehicle system 100 may further include a camera and a LiDAR unit in addition to the radar.
(第1レーダデータ及び第2レーダデータの生成処理)
 次に、図7を参照することで第1レーダデータ及び第2レーダデータの生成処理について以下に説明する。図7は、第1レーダデータ及び第2レーダデータの生成処理を説明するためのフローチャートである。図7に示すように、ステップS1において、レーダ2の第1送信アンテナ25は、送信側RF回路24からのTX信号の入力に応じて、車両1の外部(特に、車両1の左前領域)に向けて第1電波を出射する。次に、レーダ2の受信アンテナ27は、車両1の左前領域に存在する対象物(例えば、他車両等)によって反射された第1電波を受信する(ステップS2)。その後、レーダ2の信号処理回路部22は、受信側RF回路23からの第1電波に関連付けられたデジタル信号の受信に応じて、車両1の左前領域における周辺環境を示す第1レーダデータを生成する(ステップS3)。レーダ2によって生成された第1レーダデータは、レーダ制御部6を介して車両制御部12に送信される。
(Generation process of 1st radar data and 2nd radar data)
Next, the process of generating the first radar data and the second radar data will be described below with reference to FIG. 7. FIG. 7 is a flowchart for explaining the generation process of the first radar data and the second radar data. As shown in FIG. 7, in step S1, the first transmission antenna 25 of the radar 2 is sent to the outside of the vehicle 1 (particularly, the left front region of the vehicle 1) in response to the input of the TX signal from the transmission side RF circuit 24. The first radio wave is emitted toward. Next, the receiving antenna 27 of the radar 2 receives the first radio wave reflected by an object (for example, another vehicle or the like) existing in the left front region of the vehicle 1 (step S2). After that, the signal processing circuit unit 22 of the radar 2 generates the first radar data indicating the surrounding environment in the left front region of the vehicle 1 in response to the reception of the digital signal associated with the first radio wave from the receiving side RF circuit 23. (Step S3). The first radar data generated by the radar 2 is transmitted to the vehicle control unit 12 via the radar control unit 6.
 その後、ステップS4において、レーダ2によって次に生成されるレーダデータが第2レーダデータではない場合に(ステップS4でNO)、ステップS1からS3の処理が繰り返し実行される。その一方で、レーダ2によって次に生成されるレーダデータが第2レーダデータである場合に(ステップS4でYES)、レーダ2は、第2レーダデータを生成するためにステップS5~S7の処理を実行する。 After that, in step S4, if the radar data next generated by the radar 2 is not the second radar data (NO in step S4), the processes of steps S1 to S3 are repeatedly executed. On the other hand, when the radar data next generated by the radar 2 is the second radar data (YES in step S4), the radar 2 performs the processes of steps S5 to S7 in order to generate the second radar data. Execute.
 ステップS5において、レーダ2の第2送信アンテナ26は、送信側RF回路24からのTX信号の入力に応じて、車両1の外部に向けて第2電波を出射する。具体的には、第2送信アンテナ26から出射された第2電波は、図1に示す第1反射板3及び第2反射板5を介して車両1の前方領域に向けて出射される。次に、レーダ2の受信アンテナ27は、車両1の前方領域に存在する対象物(例えば、他車両等)によって反射された第2電波を受信する(ステップS6)。その後、レーダ2の信号処理回路部22は、受信側RF回路23からの第2電波に関連付けられたデジタル信号の受信に応じて、車両1の前方領域における周辺環境を示す第2レーダデータを生成する(ステップS7)。レーダ2によって生成された第2レーダデータは、レーダ制御部6を介して車両制御部12に送信される。 In step S5, the second transmitting antenna 26 of the radar 2 emits a second radio wave toward the outside of the vehicle 1 in response to the input of the TX signal from the transmitting side RF circuit 24. Specifically, the second radio wave emitted from the second transmitting antenna 26 is emitted toward the front region of the vehicle 1 via the first reflector 3 and the second reflector 5 shown in FIG. Next, the receiving antenna 27 of the radar 2 receives the second radio wave reflected by an object (for example, another vehicle or the like) existing in the front region of the vehicle 1 (step S6). After that, the signal processing circuit unit 22 of the radar 2 generates the second radar data indicating the surrounding environment in the front region of the vehicle 1 in response to the reception of the digital signal associated with the second radio wave from the receiving side RF circuit 23. (Step S7). The second radar data generated by the radar 2 is transmitted to the vehicle control unit 12 via the radar control unit 6.
 その後、ステップS8において、レーダ2によって次に生成されるレーダデータが第1レーダデータではない場合に(ステップS8でNO)、ステップS5からS7の処理が繰り返し実行される。その一方で、レーダ2によって次に生成されるレーダデータが第1レーダデータである場合に(ステップS8でYES)、レーダ2は、ステップS1~S3の処理を実行する。 After that, in step S8, if the radar data generated next by the radar 2 is not the first radar data (NO in step S8), the processes of steps S5 to S7 are repeatedly executed. On the other hand, when the radar data next generated by the radar 2 is the first radar data (YES in step S8), the radar 2 executes the processes of steps S1 to S3.
 このように、信号処理回路部22は、第1レーダデータと第2レーダデータとを異なるタイミングで生成するように構成されている。このため、第1電波と第2電波の周波数が同一である場合であったとしても、単一の受信アンテナ27で第1レーダデータ及び第2レーダデータとを生成することができる。また、信号処理回路部22は、第1更新レート(Hz)で第1レーダデータを生成すると共に、第2更新レート(Hz)で第2レーダデータを生成するように構成されている。第1更新レートと第2更新レートは同一であってもよいし、互いに異なっていてもよい。 As described above, the signal processing circuit unit 22 is configured to generate the first radar data and the second radar data at different timings. Therefore, even if the frequencies of the first radio wave and the second radio wave are the same, the first radar data and the second radar data can be generated by the single receiving antenna 27. Further, the signal processing circuit unit 22 is configured to generate the first radar data at the first update rate (Hz) and the second radar data at the second update rate (Hz). The first update rate and the second update rate may be the same or different from each other.
 第1レーダデータの第1更新レートと第2レーダデータの第2更新レートが同一である場合には、1秒間に実行される第1レーダデータの生成処理(ステップS1~S3の処理)の回数と第2レーダデータの生成処理(ステップS5~S7の処理)の回数は同一となる。例えば、第1更新レートと第2更新レートが5Hzである場合に、1秒間に実行される第1レーダデータの生成処理の回数と1秒間に実行される第2レーダデータの生成処理の回数は5回となる。一方で、第1レーダデータの第1更新レートと第2レーダデータの第2更新レートが互いに異なる場合には、1秒間に実行される第1レーダデータの生成処理の回数と第2レーダデータの生成処理の回数は互いに異なる。例えば、第1更新レートと第2更新レートとの比率が3:1である場合には、レーダ2は、第1レーダデータの生成処理を3回実行した後に第2レーダデータの生成処理を1回実行する。 When the first update rate of the first radar data and the second update rate of the second radar data are the same, the number of times of the first radar data generation process (processes S1 to S3) executed in one second. And the number of times of the second radar data generation processing (processing of steps S5 to S7) are the same. For example, when the first update rate and the second update rate are 5 Hz, the number of times of the first radar data generation process executed in one second and the number of times of the second radar data generation process executed in one second are It will be 5 times. On the other hand, when the first update rate of the first radar data and the second update rate of the second radar data are different from each other, the number of first radar data generation processes executed per second and the second radar data The number of generation processes is different from each other. For example, when the ratio of the first update rate to the second update rate is 3: 1, the radar 2 executes the first radar data generation process three times and then performs the second radar data generation process 1. Execute once.
(第1更新レート及び第2更新レートの設定処理)
 次に、図3及び図8を参照することで、車両1の速度に応じて第1レーダデータの第1更新レートと第2レーダデータの第2更新レートとの間の関係を設定する処理について以下に説明する。図8は、車両1の速度に応じて、第1更新レートと第2更新レートとの間の関係を設定する処理を説明するためのフローチャートである。
(1st update rate and 2nd update rate setting process)
Next, with reference to FIGS. 3 and 8, regarding the process of setting the relationship between the first update rate of the first radar data and the second update rate of the second radar data according to the speed of the vehicle 1. This will be described below. FIG. 8 is a flowchart for explaining a process of setting a relationship between a first update rate and a second update rate according to the speed of the vehicle 1.
 図8に示すように、ステップS10において、車両制御部12(図3参照)は、車速センサ13から車両1の現在速度を示すデータを取得した上で、車両1の現在速度を特定する(ステップS10)。次に、レーダ制御部6は、車両制御部12から車両1の現在速度を示す情報を受信した上で、車両1の現在速度が閾値速度以上かどうかを判定する(ステップS11)。レーダ制御部6は、車両1の現在速度が閾値速度(例えば、10km/h)以上であると判定した場合(ステップS11でYES)、第2レーダデータの第2更新レートが第1レーダデータの第1更新レートよりも大きくなるように第1更新レートと第2更新レートを設定する(ステップS12)。例えば、レーダ制御部6は、第1更新レートと第2更新レートとの比率が1:3となるように第1更新レート及び第2更新レートを設定してもよい。 As shown in FIG. 8, in step S10, the vehicle control unit 12 (see FIG. 3) acquires data indicating the current speed of the vehicle 1 from the vehicle speed sensor 13 and then specifies the current speed of the vehicle 1 (step). S10). Next, the radar control unit 6 receives information indicating the current speed of the vehicle 1 from the vehicle control unit 12 and then determines whether the current speed of the vehicle 1 is equal to or higher than the threshold speed (step S11). When the radar control unit 6 determines that the current speed of the vehicle 1 is equal to or higher than the threshold speed (for example, 10 km / h) (YES in step S11), the second update rate of the second radar data is the first radar data. The first update rate and the second update rate are set so as to be larger than the first update rate (step S12). For example, the radar control unit 6 may set the first update rate and the second update rate so that the ratio of the first update rate to the second update rate is 1: 3.
 一方で、レーダ制御部6は、車両1の現在速度が閾値速度(例えば、10km/h)未満であると判定した場合(ステップS11でNO)、第1レーダデータの第1更新レートが第2レーダデータの第2更新レートよりも大きくなるように第1更新レートと第2更新レートを設定する(ステップS13)。例えば、レーダ制御部6は、第1更新レートと第2更新レートとの比率が3:1となるように第1更新レート及び第2更新レートを設定してもよい。 On the other hand, when the radar control unit 6 determines that the current speed of the vehicle 1 is less than the threshold speed (for example, 10 km / h) (NO in step S11), the first update rate of the first radar data is the second. The first update rate and the second update rate are set so as to be larger than the second update rate of the radar data (step S13). For example, the radar control unit 6 may set the first update rate and the second update rate so that the ratio of the first update rate to the second update rate is 3: 1.
 その後、レーダ制御部6は、第1更新レートと第2更新レートを示す信号をレーダ2の信号処理回路部22に送信する。このように、信号処理回路部22は、レーダ制御部6によって決定された第1更新レートと第2更新レートに基づいて、第1レーダデータ及び第レーダデータとを異なるタイミングで生成する。 After that, the radar control unit 6 transmits signals indicating the first update rate and the second update rate to the signal processing circuit unit 22 of the radar 2. As described above, the signal processing circuit unit 22 generates the first radar data and the second radar data at different timings based on the first update rate and the second update rate determined by the radar control unit 6.
 本実施形態によれば、車両1の速度と閾値速度との関係に応じて、第1更新レートが第2更新レートよりも大きくなる又は第2更新レートが第1更新レートよりも大きくなる。このように、車両1の走行状況に応じた最適な第1レーダデータの更新レートと第2レーダデータの更新レートとを設定することができる。特に、車両1が閾値速度未満で走行中の場合には、車両1の左前領域に存在する対象物の検出が優先されるため、第1更新レートが第2更新レートよりも大きくなる。その一方で、車両1が閾値速度以上で走行中の場合には、車両1の前方領域に存在する対象物の検出が優先されるため、第2更新レート第1更新レートよりも大きくなる。 According to the present embodiment, the first update rate becomes larger than the second update rate or the second update rate becomes larger than the first update rate, depending on the relationship between the speed of the vehicle 1 and the threshold speed. In this way, it is possible to set the optimum update rate of the first radar data and the update rate of the second radar data according to the traveling condition of the vehicle 1. In particular, when the vehicle 1 is traveling at a speed lower than the threshold speed, the detection of the object existing in the left front region of the vehicle 1 is prioritized, so that the first update rate is higher than the second update rate. On the other hand, when the vehicle 1 is traveling at the threshold speed or higher, the detection of the object existing in the front region of the vehicle 1 is prioritized, so that the second update rate is higher than the first update rate.
 尚、レーダ制御部6は、車両1の現在速度を示すデータを車速センサ13から直接受信してもよい。また、ステップS11の処理で使用される閾値速度は車両1の走行状況に応じて適宜変更されてもよい。 The radar control unit 6 may directly receive data indicating the current speed of the vehicle 1 from the vehicle speed sensor 13. Further, the threshold speed used in the process of step S11 may be appropriately changed according to the traveling condition of the vehicle 1.
 以上、本発明の実施形態について説明をしたが、本発明の技術的範囲が本実施形態の説明によって限定的に解釈されるべきではないのは言うまでもない。本実施形態は単なる一例であって、特許請求の範囲に記載された発明の範囲内において、様々な実施形態の変更が可能であることが当業者によって理解されるところである。本発明の技術的範囲は特許請求の範囲に記載された発明の範囲及びその均等の範囲に基づいて定められるべきである。 Although the embodiments of the present invention have been described above, it goes without saying that the technical scope of the present invention should not be construed in a limited manner by the description of the present embodiments. It is understood by those skilled in the art that the present embodiment is merely an example, and various embodiments can be modified within the scope of the invention described in the claims. The technical scope of the present invention should be determined based on the scope of the invention described in the claims and the scope thereof.
 本出願は、2020年8月31日に出願された日本国特許出願(特願2020-145676号)に開示された内容を適宜援用する。 This application appropriately incorporates the contents disclosed in the Japanese patent application (Japanese Patent Application No. 2020-145676) filed on August 31, 2020.

Claims (13)

  1.  車両に搭載される車両用レーダシステムであって、
      前記車両の外部に向けて第1電波を出射するように構成された第1送信アンテナと、
      前記車両の外部に向けて第2電波を出射するように構成された第2送信アンテナと、
      前記車両の前側方領域に存在する対象物によって反射された前記第1電波を受信すると共に、前記車両の前方領域に存在する対象物によって反射された前記第2電波を受信するように構成された受信アンテナと、
      前記受信した第1電波に基づいて、前記車両の前側方領域における周辺環境を示す第1レーダデータを生成すると共に、前記受信した第2電波に基づいて、前記車両の前方領域における周辺環境を示す第2レーダデータを生成するように構成された信号処理回路部と、
     を備えたレーダを備え、
     前記第1送信アンテナと、前記第2送信アンテナと、前記受信アンテナは、同一のアンテナ基板上に形成されている、車両用レーダシステム。
    It is a vehicle radar system installed in a vehicle.
    A first transmitting antenna configured to emit a first radio wave toward the outside of the vehicle, and a first transmitting antenna.
    A second transmitting antenna configured to emit a second radio wave toward the outside of the vehicle, and a second transmitting antenna.
    It is configured to receive the first radio wave reflected by the object existing in the front side region of the vehicle and the second radio wave reflected by the object existing in the front region of the vehicle. With the receiving antenna
    Based on the received first radio wave, the first radar data indicating the surrounding environment in the front side region of the vehicle is generated, and the surrounding environment in the front region of the vehicle is shown based on the received second radio wave. A signal processing circuit unit configured to generate second radar data,
    Equipped with a radar equipped with
    A vehicle radar system in which the first transmitting antenna, the second transmitting antenna, and the receiving antenna are formed on the same antenna substrate.
  2.  前記第1送信アンテナは、前記レーダの水平方向及び垂直方向に配列された複数の第1送信アンテナ素子を有し、
     前記第2送信アンテナは、前記レーダの水平方向及び垂直方向に配列された複数の第2送信アンテナ素子を有し、
     前記水平方向に配列された前記第1送信アンテナ素子の個数は、前記水平方向に配列された前記第2送信アンテナ素子の個数よりも少なく、
     前記水平方向において、前記第1電波に関連付けられた前記レーダの第1視野は、前記第2電波に関連付けられた前記レーダの第2視野よりも大きく、
     前記第2電波に関連付けられた前記レーダの検知距離は、前記第1電波に関連付けられた前記レーダの検知距離よりも大きい、請求項1に記載の車両用レーダシステム。
    The first transmitting antenna has a plurality of first transmitting antenna elements arranged in the horizontal direction and the vertical direction of the radar.
    The second transmitting antenna has a plurality of second transmitting antenna elements arranged in the horizontal direction and the vertical direction of the radar.
    The number of the first transmitting antenna elements arranged in the horizontal direction is smaller than the number of the second transmitting antenna elements arranged in the horizontal direction.
    In the horizontal direction, the first field of view of the radar associated with the first radio wave is larger than the second field of view of the radar associated with the second radio wave.
    The vehicle radar system according to claim 1, wherein the detection distance of the radar associated with the second radio wave is larger than the detection distance of the radar associated with the first radio wave.
  3.  前記第1電波の周波数と前記第2電波の周波数は互いに同じであって、
     前記受信アンテナは、前記第1電波及び前記第2電波の両方を受信するように構成された単一の受信アンテナである、請求項1又は2に記載の車両用レーダシステム。
    The frequency of the first radio wave and the frequency of the second radio wave are the same as each other,
    The vehicle radar system according to claim 1 or 2, wherein the receiving antenna is a single receiving antenna configured to receive both the first radio wave and the second radio wave.
  4.  前記信号処理回路部は、前記第1レーダデータと前記第2レーダデータを異なるタイミングで生成するように構成されている、請求項1から3のうちいずれか一項に記載の車両用レーダシステム。 The vehicle radar system according to any one of claims 1 to 3, wherein the signal processing circuit unit is configured to generate the first radar data and the second radar data at different timings.
  5.  前記レーダの駆動を制御するように構成されたレーダ制御部をさらに備え、
     前記信号処理回路部は、第1更新レートで前記第1レーダデータを生成すると共に、前記第1更新レートとは異なる第2更新レートで前記第2レーダデータを生成し、
     前記レーダ制御部は、前記車両の速度に応じて、前記第1更新レートと前記第2更新レートとの間の関係を変更するように構成されている、請求項4に記載の車両用レーダシステム。
    Further equipped with a radar control unit configured to control the driving of the radar,
    The signal processing circuit unit generates the first radar data at the first update rate, and also generates the second radar data at a second update rate different from the first update rate.
    The vehicle radar system according to claim 4, wherein the radar control unit is configured to change the relationship between the first update rate and the second update rate according to the speed of the vehicle. ..
  6.  前記レーダ制御部は、
     前記車両の速度が閾値速度よりも小さい場合に、前記第1更新レートが前記第2更新レートよりも大きくなるように前記第1更新レートと前記第2更新レートを設定し、
     前記車両の速度が前記閾値速度以上である場合に、前記第2更新レートが前記第1更新レートよりも大きくなるように前記第1更新レートと前記第2更新レートを設定する、請求項5に記載の車両用レーダシステム。
    The radar control unit
    When the speed of the vehicle is smaller than the threshold speed, the first update rate and the second update rate are set so that the first update rate becomes larger than the second update rate.
    According to claim 5, the first update rate and the second update rate are set so that the second update rate becomes larger than the first update rate when the speed of the vehicle is equal to or higher than the threshold speed. The vehicle radar system described.
  7.  前記第2送信アンテナに対向すると共に、前記第2送信アンテナから出射された前記第2電波を反射するように構成された第1反射板と、
     前記第1反射板によって反射された前記第2電波を前記車両の前方領域に向けて反射するように構成された第2反射板と、をさらに備える、請求項1から6のうちいずれか一項に記載の車両用レーダシステム。
    A first reflector configured to face the second transmitting antenna and reflect the second radio wave emitted from the second transmitting antenna.
    One of claims 1 to 6, further comprising a second reflector configured to reflect the second radio wave reflected by the first reflector toward the front region of the vehicle. Radar system for vehicles as described in.
  8.  前記第1反射板は、前記第1電波に関連付けられた前記レーダの第1視野の外部に配置されている、請求項7に記載の車両用レーダシステム。 The vehicle radar system according to claim 7, wherein the first reflector is arranged outside the first field of view of the radar associated with the first radio wave.
  9.  前記第2電波の出射方向は、前記アンテナ基板の表面に対して垂直な前記レーダの検知軸に対して傾いている、請求項8に記載の車両用レーダシステム。 The vehicle radar system according to claim 8, wherein the emission direction of the second radio wave is inclined with respect to the detection axis of the radar perpendicular to the surface of the antenna substrate.
  10.  前記第2反射板は、前記車両の左右方向の中央に配置されている、
    請求項7から9のうちいずれか一項に記載の車両用レーダシステム。
    The second reflector is arranged in the center of the vehicle in the left-right direction.
    The vehicle radar system according to any one of claims 7 to 9.
  11.  前記レーダと、前記第1反射板と、前記第2反射板は、前記車両のフロントバンパーによって覆われている、請求項7から10のうちいずれか一項に記載の車両用レーダシステム。 The vehicle radar system according to any one of claims 7 to 10, wherein the radar, the first reflector, and the second reflector are covered by the front bumper of the vehicle.
  12.  前記第1反射板は、
     前記第2送信アンテナから出射された前記第2電波を反射するように構成された第1反射体と、
     前記第1反射体の端部に沿うように前記第1反射体上に設けられ、前記第2送信アンテナから出射された前記第2電波を吸収するように構成された第1電波吸収体と、を有し、
     前記第2反射板は、
     前記第1反射体によって反射された前記第2電波を前記車両の前方に向けて反射するように構成された第2反射体と、
     前記第2反射体の端部に沿うように前記第2反射体上に設けられ、前記第1反射体によって反射された前記第2電波を吸収するように構成された第2電波吸収体と、を有する、請求項7から11のうちいずれか一項に記載の車両用レーダシステム。
    The first reflector is
    A first reflector configured to reflect the second radio wave emitted from the second transmitting antenna, and a first reflector.
    A first radio wave absorber provided on the first reflector along the end of the first reflector and configured to absorb the second radio wave emitted from the second transmitting antenna. Have,
    The second reflector is
    A second reflector configured to reflect the second radio wave reflected by the first reflector toward the front of the vehicle, and a second reflector.
    A second radio wave absorber provided on the second reflector along the end of the second reflector and configured to absorb the second radio wave reflected by the first reflector. The vehicle radar system according to any one of claims 7 to 11.
  13.  請求項1から12のうちいずれか一項に記載の車両用レーダシステムを備えた車両。 A vehicle equipped with the vehicle radar system according to any one of claims 1 to 12.
PCT/JP2021/030192 2020-08-31 2021-08-18 Vehicular radar system and vehicle WO2022044916A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022544496A JPWO2022044916A1 (en) 2020-08-31 2021-08-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020145676 2020-08-31
JP2020-145676 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022044916A1 true WO2022044916A1 (en) 2022-03-03

Family

ID=80355100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030192 WO2022044916A1 (en) 2020-08-31 2021-08-18 Vehicular radar system and vehicle

Country Status (2)

Country Link
JP (1) JPWO2022044916A1 (en)
WO (1) WO2022044916A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001001832A (en) * 1999-06-15 2001-01-09 Nissan Motor Co Ltd Lighting system for vehicle
WO2005114785A1 (en) * 2004-05-21 2005-12-01 Murata Manufacturing Co., Ltd. Antenna device and rader device using the same
JP2010185757A (en) * 2009-02-12 2010-08-26 Toyota Motor Corp Axis adjuster and method
JP2015190809A (en) * 2014-03-27 2015-11-02 日本電産エレシス株式会社 Radar device and radar method
DE102015207186A1 (en) * 2015-04-21 2016-10-27 Robert Bosch Gmbh Antenna device for implementing orthogonal antenna characteristics
JP2017517993A (en) * 2014-05-06 2017-06-29 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Antenna device for vehicle
JP2018186525A (en) * 2018-06-26 2018-11-22 株式会社ニコン Imaging apparatus
JP2019174246A (en) * 2018-03-28 2019-10-10 パナソニックIpマネジメント株式会社 Radar device
JP2020036126A (en) * 2018-08-28 2020-03-05 株式会社デンソーテン Antenna device and radar device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001001832A (en) * 1999-06-15 2001-01-09 Nissan Motor Co Ltd Lighting system for vehicle
WO2005114785A1 (en) * 2004-05-21 2005-12-01 Murata Manufacturing Co., Ltd. Antenna device and rader device using the same
JP2010185757A (en) * 2009-02-12 2010-08-26 Toyota Motor Corp Axis adjuster and method
JP2015190809A (en) * 2014-03-27 2015-11-02 日本電産エレシス株式会社 Radar device and radar method
JP2017517993A (en) * 2014-05-06 2017-06-29 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Antenna device for vehicle
DE102015207186A1 (en) * 2015-04-21 2016-10-27 Robert Bosch Gmbh Antenna device for implementing orthogonal antenna characteristics
JP2019174246A (en) * 2018-03-28 2019-10-10 パナソニックIpマネジメント株式会社 Radar device
JP2018186525A (en) * 2018-06-26 2018-11-22 株式会社ニコン Imaging apparatus
JP2020036126A (en) * 2018-08-28 2020-03-05 株式会社デンソーテン Antenna device and radar device

Also Published As

Publication number Publication date
JPWO2022044916A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
US11027653B2 (en) Apparatus, system and method for preventing collision
JP6007449B2 (en) Automotive radar system and method of use thereof
JP5063851B2 (en) Proximity object detection system
US20110163909A1 (en) Integrated radar apparatus and intergrated antenna apparatus
US20190212438A1 (en) Apparatus and method for controlling radar
JP2000338237A (en) Device for monitoring circumference of vehicle
US20200290605A1 (en) Apparatus, system, and method for vehicle collision avoidance control
WO2020217921A1 (en) Electronic apparatus, control method for electronic apparatus, and control program for electronic apparatus
WO2019202803A1 (en) Electronic device, method for controlling electronic device, and program for controlling electronic device
JP2015135301A (en) Vehicle periphery monitoring system
WO2021008139A1 (en) Detection method, signal sending method, and apparatuses
CN111220984A (en) Ultra-wide-angle vehicle-mounted radar device, vehicle-mounted radar system and automobile
CN107561537B (en) Radar system, vehicle, unmanned aerial vehicle and detection method
JP2004085258A (en) Radar equipment
JP2002342887A (en) Mobile communication device
CN112020658A (en) Electronic device, control method for electronic device, and control program for electronic device
WO2022044916A1 (en) Vehicular radar system and vehicle
US11186223B2 (en) Large vehicle approach warning device and method for controlling the same
US11808876B2 (en) Vehicular radar system with vehicle to infrastructure communication
JP3925412B2 (en) Vehicle travel support device
KR20220094283A (en) Radar apparatus and method for detecting object based on occurrence of event
JP2018529563A (en) Vehicle including rearview mirror and antenna
WO2022014269A1 (en) Vehicular radar system and vehicle
JPWO2020075686A1 (en) Electronic devices, control methods for electronic devices, and control programs for electronic devices
JP6948366B2 (en) Electronic devices, control methods for electronic devices, and control programs for electronic devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544496

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861344

Country of ref document: EP

Kind code of ref document: A1