WO2022044763A1 - Fluidized bed coating device - Google Patents

Fluidized bed coating device Download PDF

Info

Publication number
WO2022044763A1
WO2022044763A1 PCT/JP2021/029163 JP2021029163W WO2022044763A1 WO 2022044763 A1 WO2022044763 A1 WO 2022044763A1 JP 2021029163 W JP2021029163 W JP 2021029163W WO 2022044763 A1 WO2022044763 A1 WO 2022044763A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
fluidized bed
particles
gas
processing container
Prior art date
Application number
PCT/JP2021/029163
Other languages
French (fr)
Japanese (ja)
Inventor
英二郎 岩瀬
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022545610A priority Critical patent/JP7463528B2/en
Publication of WO2022044763A1 publication Critical patent/WO2022044763A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique

Definitions

  • the present invention relates to a fluidized bed coating device that applies a substance to powder using a fluidized bed.
  • a fluidized bed coating (fluidized bed drying) is known as a technique for applying some substance to the surface of particles.
  • fluidized bed coating particles to be treated are introduced into the processing container, and fluidized gas is introduced from below to form a fluidized bed in which the particles circulate in the processing vessel, and the coating liquid is sprayed on the fluidized bed. It is a technique of covering the surface of particles with a desired material by spraying.
  • Patent Document 1 describes spraying of a spray gun in a fluidized bed apparatus for granulating or coating (coating treatment) by spraying a coating liquid from a spray gun while forming a fluidized bed of particles in a processing container. It is described that the ejection pressure of air is 0.2 MPa or more and the air flow rate is 10 to 180 Nl / min. In Patent Document 1, by having such a configuration, the crushing and blowing-up phenomenon of particles due to the sprayed air flow from the spray gun is suppressed, the product quality is homogenized, the product particle size distribution is sharpened, and the product is produced. We are trying to improve the yield.
  • Such fluidized bed coating is a technique generally used in the production of pharmaceutical materials and food materials. Therefore, the particle size of the processed granules is about several hundred ⁇ m to 1 mm.
  • the conventional device for coating a fluidized bed it is possible to apply a suitable coating liquid and to coat the particles with the coating liquid as long as the particles have a particle diameter of about several hundred ⁇ m to 1 mm.
  • the particle size of the particles to be coated is a dozen ⁇ m or less, it is difficult to perform proper coating with a conventional device for coating a fluidized bed.
  • An object of the present invention is to solve such a problem of the prior art, and even when the particle size of the particles to which the coating liquid is applied is small, it is preferable to properly apply the coating liquid to coat the particles. It is an object of the present invention to provide a fluidized bed coating apparatus capable of performing the above.
  • a processing container for accommodating particles to be processed and A gas introducing means for introducing a fluidized gas for forming a fluidized bed of particles to be treated into the processing vessel from the lower side to the upper side.
  • a spray device that sprays the coating liquid to be applied to the particles to be treated from below to above in the processing container.
  • a fluidized bed coating apparatus comprising: a plasma supply means for supplying plasma in a processing container.
  • the plasma supply means supplies plasma to at least a position in the processing container where the particles to be treated forming the fluidized bed fall.
  • the plasma supply means according to [1] or [2], wherein the generated plasma is supplied from the flow path into the processing container by an air flow, and the flow path is attached to the wall surface of the processing container.
  • Fluidized bed coating device [4]
  • the processing container has a shrinking region in which the cross-sectional area gradually shrinks toward the bottom.
  • the plasma supply means has an electrode pair provided in the processing container for generating plasma, and uses a flowing gas as plasma gas to generate plasma between the electrode pairs.
  • the fluidized bed coating device according to any one of [1] to [4], wherein the electrode pair is arranged with the surface direction of the electrodes facing up and down.
  • the processing container has a shrinking region in which the cross-sectional area gradually shrinks toward the bottom.
  • the fluidized bed coating device according to any one of [1] to [8], which has a tubular body that surrounds the spray head of the spraying device and extends in the spraying direction of the coating liquid.
  • the gas introducing means introduces a fluidized gas into a processing container from an introduction portion provided around a tubular body.
  • the plasma supply means generates plasma by atmospheric pressure plasma.
  • the coating liquid can be appropriately applied to the particles to suitably coat the particles.
  • FIG. 1 is a diagram conceptually showing an example of the fluidized bed coating device of the present invention.
  • FIG. 2 is a diagram conceptually showing another example of the plasma supply device.
  • FIG. 3 is a diagram conceptually showing another example of the fluidized bed coating device of the present invention.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • a fluidized layer of particles is formed in the processing container by the fluidized gas introduced from the lower side to the upper side of the processing container, and the coating liquid is sprayed from the lower side to the upper side by the spray device.
  • the coating liquid is applied to the surface of the particles to coat (coat, form a film) the surface of the particles.
  • the particles particles to be treated
  • various particles can be used as long as the particles can form a fluidized bed with a fluidized gas.
  • the particles include general particles formed of known materials such as silicon, metal, polymer, and rubber.
  • the particle size of the particles to which the fluidized bed coating device of the present invention applies the coating liquid there is no limitation on the particle size (particle size) of the particles to which the fluidized bed coating device of the present invention applies the coating liquid. That is, the particle size of the particles may be any particle size that allows the fluidized bed to be formed by the fluidized gas according to the specific gravity of the particles and the like. Here, as will be described later, in the fluidized bed coating apparatus of the present invention, even fine particles having a small particle size can be suitably coated with the coating liquid to coat the particles with the coating liquid.
  • the particle size of the particles to which the fluidized bed coating apparatus of the present invention is applied is preferably 2000 ⁇ m or less, more preferably 1000 ⁇ m or less, still more preferably 300 ⁇ m or less.
  • the lower limit of the particle size of the particles to which the fluidized bed coating apparatus of the present invention is applied is not limited, but the particle size of the particles is preferably 0.1 ⁇ m or more.
  • the coating liquid applied to the particles by the fluidized bed coating apparatus of the present invention there is no limitation on the coating liquid applied to the particles by the fluidized bed coating apparatus of the present invention. That is, as the coating liquid, various liquids can be used as long as they can be sprayed by a spraying device.
  • a functional solution material forming a functional layer such as a hard coat layer, an antireflection layer and a barrier layer, a coloring material such as ink, and a raw material such as TEOS (tetramethoxysilane) are liquefied. Examples thereof include a material having a shape, and a material for forming a metal film (metal layer) such as a plating solution and a complex ink.
  • FIG. 1 conceptually shows an example of the fluidized bed coating device of the present invention.
  • FIG. 1 is a diagram conceptually showing a cross section of the fluidized bed coating device 10 in the vertical direction.
  • the fluidized bed of the particles g is formed by the flowing gas from the lower side to the upper side, and the coating liquid is sprayed from the spraying device to apply the coating liquid to the surface of the particles g. It is applied and the particles g are coated with the coating liquid.
  • the fluidized bed coating device 10 shown in FIG. 1 includes a chamber 12, a lid 14, a gas introduction unit 16 for introducing a fluid gas, a spray device 18, a tubular body 20 for accommodating the spray device 18, and a plasma supply means.
  • the fluidized bed coating device 10 of the present invention includes, for example, an ultraviolet irradiation device for accelerating the curing of the coating liquid, an inert gas introduction device, and the like, as needed. May have a member (device) of.
  • the chamber 12 is a processing container that houses the particles g to be coated with the coating liquid and forms a fluidized bed of the particles g inside.
  • the chamber 12 is a cylindrical object having an open upper and lower surface having a diameter-reduced portion that is reduced in diameter downward.
  • the chamber 12 in the illustrated example has a cylindrical portion at the upper part and a truncated cone portion at the lower part, and the truncated cone portion has a shape in which the diameter is reduced downward, and the upper and lower surfaces are open. It is a tubular body of.
  • the shape of the chamber 12 is not limited to a cylindrical shape having a reduced diameter portion whose diameter is reduced downward in the illustrated example. That is, in the present invention, the chamber is used in an apparatus for forming a fluidized bed of particles and treating the particles with a coating liquid (coating), heat treatment, granulation, denaturation (transformation), and the like.
  • Various shapes of chambers (processing containers) are available. In the following description, a device that forms a fluidized bed of particles and processes the particles is also referred to as a "fluidized bed device" for convenience.
  • Examples of the shape of the chamber 12 include a straight tube cylinder, a downwardly reduced diameter cone, a downwardly reduced diameter truncated cone, and a combination of two or more of these. Illustrated.
  • the chamber 12 is not limited to a cylindrical shape, and may be a square cylinder shape such as a square cylinder whose cross-sectional area decreases downward, but is usually cylindrical.
  • the chamber 12 has a reduced diameter portion (reduced region) whose diameter is reduced downward as shown in the illustrated example. Further, in the chamber 12, it is preferable that the lower end of the reduced diameter portion is the lower end, that is, the bottom portion of the chamber 12. Since the chamber 12 has a reduced diameter portion whose diameter is reduced downward, it is preferable in that a fluidized bed of the particles g can be smoothly formed, and the treatment of the particles g by plasma, which will be described later, can be efficiently performed. ..
  • the material for forming the chamber 12 is not limited, and various materials used for the chamber of the fluidized bed device can be used.
  • the chamber forming material include metal materials such as stainless steel, iron and aluminum, resin materials such as acrylic resin, vinyl chloride resin and polytetrafluoroethylene, glass, and vitreous materials such as quartz. Ru.
  • the size of the chamber 12 is not limited and may be appropriately set according to the processing capacity required for the fluidized bed coating device 10.
  • the chamber 12 has a cylindrical shape having a diameter-reduced portion that is gradually reduced in diameter at the lower portion with the upper and lower surfaces open.
  • the upper surface of the chamber 12 is closed by the lid 14.
  • the lid 14 has a disk shape having a shape corresponding to the upper surface of the chamber 12, and extends downward from the lower surface to provide a cylindrical exhaust stack 14a.
  • the device of the illustrated example has two exhaust pipes 14a as an example. However, the number of exhaust stacks 14a is not limited to two, and may be one or three or more as long as sufficient exhaust is possible.
  • the exhaust stack 14a is for exhausting the fluidized gas introduced into the chamber 12 in order to form the fluidized bed of the particles g.
  • the exhaust stack 14a is covered with a filter 26.
  • the filter 26 is a filter that captures particles g that are about to escape from the exhaust stack 14a to the exhaust path 30 described later.
  • the filter 26 is not limited, and various filters used for exhausting the fluidized gas can be used in the fluidized bed apparatus.
  • the exhaust path 30 is for exhausting the fluidized gas discharged from the exhaust stack 14a to the outside of the fluidized bed coating device 10 by a predetermined route.
  • the exhaust path 30 may be a known one provided in the fluidized bed device.
  • the exhaust path of the illustrated example includes an exhaust pipe 30b connected to a region 30a covering the upper surface of the lid 14, a dust collector 30c provided in the middle of the exhaust pipe 30b, a blower provided at the end of the exhaust pipe 30b, and the like. Has an exhaust means (not shown).
  • the flow gas exhausted from the exhaust pipe 14a (fluidized bed coating device 10) of the lid 14 is exhausted to the exhaust pipe 30b from the region 30a covering the upper surface of the lid 14, and is exhausted to the exhaust pipe 30b by the dust collector 30c provided in the middle of the exhaust pipe 30b. Foreign matter such as dust is removed.
  • the fluid gas from which the foreign matter has been removed is released into the atmosphere, for example, or is supplied to a processing device for cleaning.
  • the chamber 12 has a cylindrical shape having a diameter-reduced portion that is gradually reduced in diameter with the upper and lower surfaces open.
  • the lower end of the chamber 12, that is, the open portion (opening) on the bottom surface communicates with the gas introduction portion 16.
  • a tubular body 20 is provided in the gas introduction portion 16, and a spray device 18 is housed in the tubular body 20.
  • the gas introduction unit 16 introduces the flowing gas from the bottom of the chamber 12 from the lower side to the upper side.
  • the fluidized bed coating device 10 blows particles g from below to above by the fluidized gas introduced by the gas introduction unit 16 to form a fluidized bed of particles g.
  • the gas introduction unit 16 includes a gas introduction pipe 34, a blower pipe 36, and a blower means 38.
  • the gas introduction pipe 34 is a cylindrical pipe that communicates with the opening at the bottom of the chamber 12 and coincides with the cylindrical chamber 12 in the center line.
  • the gas introduction pipe 34 is provided so as to communicate with the opening at the bottom of the chamber 12 without a gap.
  • Such a gas introduction pipe 34 introduces a flowing gas in parallel (substantially parallel) with the center line of the chamber 12.
  • the cylindrical chamber 12 is usually installed so that the center line coincides with the vertical direction. Therefore, the gas introduction pipe 34 introduces the flowing gas so as to be blown up from the lower side in the vertical direction.
  • the direction in which the flowing gas is introduced by the gas introduction unit 16, that is, the gas introduction pipe 34 is not limited to the direction parallel to the center line of the chamber 12. That is, the gas introduction pipe 34 may have an angle with respect to the center line of the chamber 12 to introduce the flowing gas.
  • the formation of the fluidized bed by the particles g can be smoothly performed, a uniform fluidized bed can be formed in the chamber 12, and the influence of the fluidized gas on the fall of the particles g in the chamber 12, which will be described later, can be further reduced.
  • the introduction direction of the fluidized gas by the gas introduction pipe 34 is preferably parallel to the center line of the chamber 12.
  • a mesh-shaped saucer 40 is provided in the middle of the gas introduction pipe 34 to prevent the particles g from falling into the gas introduction pipe 34.
  • the saucer 40 various types of trays 40 that are used as a saucer (mesh) for preventing particles from dropping unnecessarily in the fluidized bed introduction pipe can be used in the fluidized bed device.
  • blowing means 38 various blowing means used for supplying the flowing gas in a fluidized bed device such as a blower such as a blower and a compressor, a gas cylinder, a gas tank, and a cold evaporator can be used.
  • a blower such as a blower and a compressor
  • a gas cylinder such as a gas cylinder
  • a gas tank such as a gas tank
  • a cold evaporator can be used as the fluidized bed coating device 10.
  • air is preferably used as the fluidized gas, so that a blower or the like is preferably used as the blower means 38.
  • the flowing gas blown by the blower means 38 is supplied to the gas introduction pipe 34 through the blower pipe 36, and is introduced into the chamber 12 so as to be blown up from below.
  • the fluidized gas is not limited, and various gases can be used as long as they do not adversely affect the particles g and the coating liquid.
  • the fluid gas include air and an inert gas such as helium and argon.
  • air is preferably used as the fluidized gas in terms of cost, safety that can easily secure a sufficient flow rate for forming the fluidized bed, and the like.
  • the flowing gas it is preferable to use a clean gas before being supplied to the blower means 38 and / or having foreign matter removed by a filter in the blower pipe 36.
  • the flow rate of the fluidized gas the flow rate at which a desired fluidized bed can be formed may be appropriately set according to the particles g or the like to which the coating liquid is applied.
  • a circular tubular body 20 is provided so as to extend from the blower pipe 36 to the gas introduction pipe 34 and further to the inside of the chamber 12.
  • the tubular body 20 coincides with the gas introduction pipe 34, that is, the chamber 12 at the center line in the region in the gas introduction pipe 34 and the chamber 12.
  • the spray device 18 for spraying the coating liquid (coating material) is arranged in a region in the tubular body 20 that coincides with the gas introduction pipe 34 and the center line.
  • the tubular body 20 bends in the blower pipe 36 on the opposite side of the blower means 38 to reach the outside of the gas introduction portion 16.
  • a supply pipe 18a for supplying the coating liquid to the spray device 18 is inserted at a position extending to the outside of the gas introduction portion 16 of the tubular body 20.
  • the spray device 18 sprays the coating liquid to be applied to the particles g from the lower side to the upper side.
  • the spray device 18 is arranged inside the tubular body 20 housed in the gas introduction pipe 34. Therefore, the fluidized gas forming the fluidized bed of the particles g is supplied into the chamber 12 from the lower side to the upper side by the gas introduction pipe 34 so as to surround the coating liquid sprayed upward by the spray device 18.
  • the cylindrical gas introduction pipe 34 is arranged so as to coincide with the center line of the cylindrical chamber 12, and the cylindrical tubular body 20 is arranged so as to coincide with the center line of the gas introduction pipe 34.
  • the spray device 18 is arranged in the tubular body 20.
  • the spraying direction of the coating liquid by the spraying device 18 is not limited, and may be any direction from the bottom to the top.
  • the spray device 18 has the same direction as the center line of the tubular body 20, that is, the center line of the gas introduction pipe 34 and the chamber 12. It is preferable to spray the coating liquid from the bottom to the top.
  • the spray device 18 sprays the coating liquid from the lower side to the upper side so that the center line of the spray coincides with the center line of the chamber 12 or the like.
  • the particles g and the coating liquid can be more preferably mixed, and the coating liquid can be efficiently applied to the particles g.
  • the tubular body 20 is provided as a preferred embodiment. Therefore, in the fluidized bed coating device of the present invention, the spray device 18 may be provided inside the gas introduction pipe 34 so as to spray the coating liquid from below to above without having the tubular body 20. .. Alternatively, in the fluidized bed coating device of the present invention, the spray device 18 may be arranged at a position different from the gas introduction pipe 34, that is, the fluidized gas introduction pipe, and spray the coating liquid from below to above.
  • the effect of the flowing gas on the spraying of the coating liquid by the spraying device 18 that can suitably prevent clogging of the spray device 18 (spray head), that the sprayed coating liquid and the fluid gas, that is, the particles g can be suitably mixed.
  • the spray device 18 is preferably arranged in the tubular body 20 provided inside the gas introduction pipe 34 for introducing the flowing gas, as shown in the illustrated example, in terms of reduction and the like. Further, according to the configuration using the tubular body 20, since the flow gas has little influence on the spraying of the coating liquid by the spraying device 18, the spraying device 18 that does not use the fluid for spraying the droplets like the ultrasonic spray. Is also easy to use.
  • the spray device 18 preferably has a heating means for heating the coating liquid to be sprayed. Since the spray device 18 has a means for heating the coating liquid, it is preferable in that clogging of the spray head can be prevented, and even a highly viscous coating liquid can be sprayed.
  • the means for heating the coating liquid (heating method) by the spray device 18 is not limited, and various known methods can be used depending on the type and configuration of the spray device 18. Further, the coating liquid may be heated by a method such as providing a heating means in the supply pipe 18a or supplying the heated coating liquid to the supply pipe 18a. Further, the method of heating the coating liquid may be used in combination with the heating of the coating liquid by the heating means of the spray device 18.
  • the spray method (spray method) in the spray device 18 is not limited, and various known spray methods (spray coating means, spray nozzles) can be used.
  • various known spray methods such as a one-fluid spray method, a two-fluid spray method, an ultrasonic spray method, a capacitance spray method, and a centrifugal spray method can be used as the spray method.
  • the fluidized bed coating apparatus of the present invention can suitably coat fine particles g by applying a coating liquid.
  • the coating liquid is applied to such fine particles g and coated, instead of applying the entire amount of the coating liquid at once, the coating liquid is applied to the particles g little by little and the coating is applied little by little. It is preferable to do it. Therefore, it is preferable that the droplets sprayed by the spray device 18 are small.
  • the ultrasonic spray method capable of spraying fine droplets is suitably used for the fluidized bed coating device 10 of the present invention, and the ultrasonic spray method is for adjusting the droplet size. It is also suitable in terms of high degree of freedom and easy temperature control of the coating liquid.
  • a plasma supply means 24 is provided in the reduced diameter portion of the chamber 12.
  • the plasma supply means 24 of the illustrated example has a plasma generation unit 24a and a plasma supply pipe 24b.
  • the plasma generation unit 24a is a known plasma generation means having an electrode pair, a power source for applying a plasma excitation voltage to the electrode pair, and a supply means for supplying plasma gas (plasma generation gas) between the electrode pairs.
  • the plasma supply pipe 24b is a flow path (pipeline) that supplies the plasma generated by the plasma generation unit 24a into the chamber 12 by, for example, an air flow (gas flow) by plasma gas.
  • the plasma supply means 24 supplies plasma to the inside of the chamber 12 by a so-called remote plasma in which the plasma generation unit and the position where the plasma is processed are different. Further, the pressure in the chamber 12 in which the fluidized gas is introduced to form the fluidized bed of the particles g is usually atmospheric pressure. Therefore, the plasma supply means 24 needs to be an atmospheric pressure plasma, and is preferably an atmospheric pressure remote plasma capable of irradiating a remote portion separated from the plasma generating portion.
  • the chamber 12 preferably has a reduced diameter portion at the lower portion, which is reduced in diameter downward.
  • the plasma supply pipe 24b which is a flow path in the plasma supply means 24, is attached to a reduced diameter portion where the diameter below the chamber 12 is reduced. That is, the plasma supply means 24 supplies plasma to the vicinity of the inner wall surface of the chamber 12 in the reduced diameter portion.
  • the fluidized bed coating apparatus of the present invention may have three plasma supply means 24 (plasma supply pipe 24b) in the circumferential direction of the cylindrical chamber 12 at an angular interval of 120 °, or It may have four at 90 ° angular intervals, six at 60 ° angular intervals, eight at 45 ° intervals, or more. You may have the plasma supply means 24 of the above.
  • the plasma supply means 24 is not limited to being arranged at equal intervals in the circumferential direction of the chamber 12.
  • the plasma supply means 24 is provided at equal intervals in the circumferential direction of the chamber 12 in that the coating liquid can be uniformly applied to the entire particles g. Further, it is advantageous that the number of plasma supply means 24 is large. Specifically, it is preferable to provide 2 to 16 plasma supply means 24 at equal angular intervals in the circumferential direction of the chamber 12. Further, the arrangement positions of the plasma supply means 24 may be different positions in the center line direction of the chamber 12. For example, the plasma supply means 24 may be provided at two positions in the center line direction so as to be located in a zigzag manner in the circumferential direction. The above points are the same for the plasma supply means 50 (see FIG. 2) and the direct plasma (see FIG. 3), which will be described later.
  • the chamber 12 is cylindrical and has a reduced diameter portion at the lower portion that is reduced in diameter downward.
  • a gas introduction pipe 34 for introducing a fluidized gas for forming a fluidized bed of particles g is provided.
  • a tubular body 20 is provided in the gas introduction pipe 34, and a spray device 18 is arranged in the tubular body 20.
  • the gas introduction pipe 34 is provided with a saucer 40 for preventing the particles g from falling.
  • the chamber 12, the gas inlet pipe 34 and the tubular body 20 are provided center-aligned.
  • the cylindrical chamber 12 is usually arranged with its center line aligned with the vertical direction.
  • the flowing gas supplied from such a gas introduction pipe 34 is supplied from below to above in parallel (substantially parallel) with the center line in the central portion of the chamber 12. Therefore, the particles g housed in the chamber 12 are blown up by the fluidized gas from the lower center in the chamber 12 and upward in the central portion in the chamber 12, as conceptually shown by the broken line arrow in FIG. Toward, it spreads outward in the region where the momentum of the fluidized gas is reduced, descends, returns to the lower part of the center in the chamber 12, and is repeatedly blown up to form a fluidized bed.
  • a tubular body 20 is provided in the gas introduction pipe 34 so as to coincide with the center line of the gas introduction pipe 34.
  • the spray device 18 is arranged in the tubular body 20 so that the center line of the spray coincides with the center line of the tubular body 20 and the coating liquid is sprayed from the lower side to the upper side.
  • the coating liquid and the particles g are in the gas flow of the fluidized gas in the region where the flow velocity is the fastest. It gets on and is sprayed upward. Therefore, both the coating liquid and the particles g are rapidly diffused in the fluid gas and are preferably mixed.
  • the coating liquid can be uniformly applied to each particle g without causing a positional deviation in the flowing gas.
  • the application of the coating liquid to the particles g first rises from the lower center of the chamber 12, spreads outward, descends and returns to the lower center of the chamber 12, in the flow of particles shown by the broken line in FIG. Will be done. That is, due to the synergistic effect of the flow rate of the flowing gas at the coating position and the length of the flow length until recoating after coating, the particles g are dried at the time when the coating liquid is applied. is doing.
  • the fluidized bed coating device 10 of the illustrated example has a tubular body 20 in the gas introduction pipe 34, and the spray device 18 is arranged in the tubular body 20 as a preferred embodiment. Therefore, the spraying of the coating liquid by the spraying device 18 is not affected by the flowing gas. Further, since the spray of the coating liquid by the spray device 18 is not affected by the flowing gas, it is not necessary to increase the force of the spray, and the droplets can be made fine. As a result, the amount of the coating liquid applied to the particles g can be reduced to a small amount, and the coating liquid can be gradually applied to the particles g that are circulated by forming the fluidized bed. As a result, even fine particles g can be suitably coated with the coating liquid and uniformly and appropriately coated with the coating liquid.
  • the flowing gas is introduced upward from the lower center of the chamber 12 and is exhausted to the outside of the chamber 12 from the exhaust pipe 14a of the lid 14 that closes the upper surface of the chamber 12. Therefore, the flow path of the flowing gas in the chamber 12 is basically one direction from the lower side to the upper side of the chamber 12. That is, in the fluidized bed of the particles g in the chamber 12, the descent of the particles g is a drop due to its own weight, which is hardly affected by the fluidized gas, that is, the air flow.
  • the plasma supply pipe 24b of the plasma supply means 24 is attached to the wall surface of the reduced diameter portion at the lower part of the chamber 12, and the plasma P by the atmospheric pressure remote plasma is supplied into the chamber 12. ing. That is, the particles g forming the fluidized bed are preferably treated with the plasma P supplied from the plasma supply means 24 when descending.
  • the fluidized bed coating device 10 of the present invention has such a configuration, so that even fine particles g can be suitably applied and coated with the coating liquid.
  • the adhesion and covering property of the coating liquid or the like to the object to be treated can be improved.
  • surface modification by plasma treatment of the particles is effective.
  • high frequency thermal plasma treatment is known. This plasma treatment can be performed at 3000 to 15000 ° C., but it is necessary to use an inert gas as the plasma gas. It is also possible to integrate the fluidized bed and the high-frequency thermal plasma processing means and fill the entire processing container with an inert gas. However, a large-scale gas supply device is required, and the running cost is very high, which is not realistic. Further, the particles g are not necessarily resistant to heat. In consideration of the above points, in the plasma treatment of the particles g in the fluidized bed, it is preferable to use an atmospheric pressure plasma capable of treating at a low temperature.
  • the plasma treatment of the particles g forming the fluidized bed and the coating of the coating liquid on the particles g are performed in the same system. That is, even if the particles g can be uniformly treated by the atmospheric pressure plasma, instability such as surface deactivation occurs when the treatment system moves sequentially. Particle g, particularly fine particle g, has a large surface area and accelerates surface deactivation. Therefore, in the treatment of the particles g, the fact that the coating of the coating liquid and the plasma treatment are in the same system greatly leads to the application of the coating liquid to the particles g and the stability of the coating.
  • the fluidized bed coating device 10 having the plasma supply means 24 for supplying the plasma P by the atmospheric pressure remote plasma in the chamber 12, the atmospheric pressure plasma is used and the coating liquid to the particles g in the chamber 12 is used. And plasma treatment of the particles g can be performed.
  • plasma P is supplied to a position where the particles g forming the fluidized bed fall to perform plasma treatment.
  • the fluidized bed coating device 10 enables plasma treatment of more suitable particles g and coating of the coating liquid on the more suitable particles g.
  • the plasma treatment of the particles g in the fluidized bed it is important to perform the plasma treatment in a state where the particles g are sufficiently flowed and dispersed. Further, when the particles g, particularly the fine particles g, are subjected to plasma treatment, it is preferable to perform the treatment in a state where the plasma is not easily affected by the air flow or the like. When the plasma is affected by the air flow, the concentration of the plasma decreases and sufficient processing cannot be performed. It is also possible to reduce the influence of airflow by increasing the intensity of plasma and generating high-density plasma. However, considering damage to the particles g, it is not preferable that the plasma is too strong, especially for fine particles g.
  • plasma P is supplied to a position where the particles g forming the fluidized bed fall to perform plasma treatment.
  • the fluidized gas forming the fluidized bed basically passes through the chamber 12 from the lower side to the upper side. Therefore, the particles g falling in the chamber 12 fall by their own weight without being affected by the flowing gas. Therefore, by supplying the plasma P to the position where the particles g fall and performing the plasma treatment, sufficient plasma treatment of the particles g can be performed even with a gentle plasma P without being affected by the air flow.
  • the spray of the coating liquid rises from the lower center of the chamber 12, spreads outward, and descends to return to the lower center of the chamber 12.
  • FIG. It is performed first in the flow of particles shown by the broken line.
  • the droplets of the coating liquid sprayed by the spray device 18 can be made sufficiently small, and the coating liquid can be gradually applied to the particles g. Therefore, in the falling particles g, the applied coating liquid is sufficiently dried.
  • the particles g that form and circulate the fluidized bed can be repeatedly coated with the coating liquid, dried, and plasma-treated with the particles g and the dried coating liquid.
  • the supply position of the plasma P into the chamber 12, that is, the mounting position of the plasma supply pipe 24b is not limited to the wall surface of the reduced diameter portion of the chamber 12. That is, the mounting position of the plasma supply pipe 24b may be a wall surface corresponding to the position where the particles g fall.
  • the plasma supply pipe 24b may be attached to the wall surface of the region of the straight pipe in which the chamber 12 does not shrink in diameter, as long as it corresponds to the position where the particles g fall. ..
  • the mounting position of the plasma supply pipe 24b is not preferable in the vicinity of the bottom and the bottom where the flow of the particles g becomes extremely small or the air flow starts to wind up.
  • the particles g treated by the plasma P descend along the wall surface of the chamber 12, return to the lower center in the chamber 12 again, and are repeatedly blown up.
  • the coating liquid is gradually applied to the particles g, that is, the particles g are gradually coated with the coating liquid and coated.
  • the fluidized bed coating apparatus 10 of the present invention for example, it is possible to form a very thin film having a particle size of 10 ⁇ m or less on a particle having a particle size of 100 nm or less.
  • the plasma supply means 24 supplies plasma to the chamber 12 by a so-called atmospheric pressure remote plasma having a plasma generation unit 24a and a plasma supply pipe 24b.
  • the present invention is not limited to this. That is, various plasma supply means can be used in the fluidized bed coating device of the present invention.
  • FIG. 2 shows another example of the plasma supply means.
  • the example shown in FIG. 2 is also a type of atmospheric pressure remote plasma in which a flow path for supplying plasma into the chamber 12 is attached to the wall surface of the chamber 12.
  • the plasma supply means 50 shown in FIG. 2 has a double tube structure, and has an inner tube 52, an outer tube 54, a first electrode 56, a second electrode 58, and a power supply 60.
  • the inner tube 52 and the outer tube 54 are made of a glassy material such as quartz and a high melting point insulating material (dielectric material) such as a ceramic material such as alumina.
  • the inner pipe 52 and the outer pipe 54 are both circular pipes, and the inner pipe 52 is inserted into the outer pipe 54 so as to coincide with the center line.
  • the gap 62 between the inner tube 52 and the outer tube 54 is a supply path for the plasma gas PG and a flow path for the generated plasma P.
  • the outer tube 54 forming the flow path of the plasma P is attached to the reduced diameter portion of the chamber 12 or the like, similarly to the plasma supply tube 24b described above.
  • Both the first electrode 56 and the second electrode 58 are cylindrical electrodes having an inner diameter substantially the same as the outer diameter of the outer tube 54, and are arranged by inserting the outer tube 54.
  • the first electrode 56 and the second electrode 58 are arranged so as to be separated from each other in the center line direction of the outer tube 54 with the second electrode 58 on the chamber 12 side. Further, the first electrode 56 is grounded.
  • the second electrode 58 is connected to the power supply 60.
  • the power supply 60 is, for example, a high frequency pulse power supply, and a pulsed voltage having a predetermined frequency is applied to the second electrode 58.
  • the plasma gas PG is supplied from a supply source (not shown) to the gap 62 between the inner tube 52 and the outer tube 54.
  • a pulsed voltage is applied from the power supply 60 to the second electrode 58
  • a discharge region DA is formed between the first electrode 56 and the second electrode 58, and this discharge is plasma flowing through the discharge region DA. It acts on the gas PG to generate plasma P.
  • the generated plasma P further flows through the gap 62 by the flow of the plasma gas PG, and is supplied to the inside of the chamber 12 from the end of the double pipe composed of the inner pipe 52 and the outer pipe 54.
  • the plasma supply means 50 has a double tube structure including an inner tube 52 and an outer tube 54, and various processing gas MGs can be flowed inside the inner tube 52. That is, according to the plasma supply means 50, various treated gas MGs treated with plasma can be supplied into the chamber 12 by using the inner pipe 52 as needed. Therefore, according to the plasma supply means 50, in addition to the treatment of the particles g by the supplied plasma P, it is also possible to treat the particles g by the plasma-treated processing gas MG, if necessary.
  • a method of introducing TEOS (tetramethoxysilane) or the like as the treatment gas MG is exemplified.
  • plasma-treated TEOS forms modifying groups such as Si—OH and SiO 2 on the surface of the particles g to improve the adhesion between the coating (coating) with the coating liquid and the particles g. Can be done.
  • the plasma supply means is not limited to the atmospheric pressure remote plasma as described above.
  • an electrode pair 64 for generating plasma is provided inside the chamber 12, and for example, an atmospheric pressure plasma using a fluidized gas as a plasma gas is used in the chamber. Plasma may be generated inside the twelve.
  • a plasma excitation power source or the like (not shown) is connected to the electrode pair 64.
  • the plasma excitation power source a known one can be used.
  • air is preferably used as the fluid gas, so that the plasma gas is air at this time.
  • plasma treatment is applied to the particles g in which plasma is generated and passes between the electrodes constituting the electrode pair 64. That is, this example is a so-called direct plasma processing in which the plasma generation position and the processing position of the particles g by the plasma are equal to each other.
  • the arrangement position of the electrode pair 64 is not limited to the inclined portion of the chamber 12 in the illustrated example, and may be inside the chamber 12. However, as with the plasma supply means described above, it is preferable that the electrode pair 64 that generates plasma is provided at a position where the particles g forming the fluidized bed drop (fall by their own weight). Further, the electrodes are preferably provided with the surface direction facing up and down so that the falling particles g can preferably pass between the electrodes forming the electrode pair, and the surface direction is parallel to the wall surface of the chamber 12. It is more preferable to be provided. Further, for the same reason as the above-mentioned plasma supply means 24, it is more preferable that the reduced diameter portion of the chamber 12 is provided with the surface direction of the electrode parallel to the wall surface of the chamber 12, as shown in the illustrated example.
  • the electrode pair 64 for plasma generation may have a truncated cone shape corresponding to the entire circumference of the reduced diameter portion, or may be divided and arranged at equal angular intervals as in the plasma supply means 24 described above. You may. Further, in the fluidized bed coating apparatus of the present invention, the above-mentioned remote plasma and such a direct plasma may be used in combination as the plasma supply means.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Glanulating (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

The present disclosure addresses the problem of providing a fluidized bed coating device which can properly apply a coating liquid to perform particle coating, etc., even in a case where the particle diameter of the particles to be coated with the coating liquid is small. This problem is solved as a result of the present invention including: a container which accommodates particles to be treated; a gas introduction means for upwardly introducing a fluidizing gas for forming a fluidized bed for the particles to be treated; a spray device which upwardly sprays a coating liquid that coats the particles to be treated in the container; and a plasma supply means for supplying plasma to inside the container.

Description

流動層塗布装置Fluidized bed coating device
 本発明は、流動層を用いて粉体に物質を塗布する流動層塗布装置に関する。 The present invention relates to a fluidized bed coating device that applies a substance to powder using a fluidized bed.
 粒子の表面に何らかの物質を塗布する技術として、流動層塗布(流動層乾燥)が知られている。
 流動層塗布とは、処理容器に内に処理する粒子を導入して、下方から流動ガスを導入することで、処理容器内で粒子が循環する流動層を形成し、流動層に塗布液をスプレー噴霧することにより、粒子の表面を所望の材料で覆う技術である。
A fluidized bed coating (fluidized bed drying) is known as a technique for applying some substance to the surface of particles.
In fluidized bed coating, particles to be treated are introduced into the processing container, and fluidized gas is introduced from below to form a fluidized bed in which the particles circulate in the processing vessel, and the coating liquid is sprayed on the fluidized bed. It is a technique of covering the surface of particles with a desired material by spraying.
 例えば、特許文献1には、処理容器内に粒子の流動層を形成しつつ、スプレーガンから塗布液を噴霧して造粒または塗布(コーティング処理)を行う流動層装置において、スプレーガンの噴霧化空気の噴出圧力を0.2MPa以上とし、空気流量を10~180Nl/minとすることが記載されている。
 特許文献1では、このような構成を有することにより、スプレーガンからの噴霧化空気流による粒子の粉砕や吹き上げ現象を抑制して、製品品質の均質化、製品粒度分布のシャープ化、および、製品収率の向上等を図っている。
For example, Patent Document 1 describes spraying of a spray gun in a fluidized bed apparatus for granulating or coating (coating treatment) by spraying a coating liquid from a spray gun while forming a fluidized bed of particles in a processing container. It is described that the ejection pressure of air is 0.2 MPa or more and the air flow rate is 10 to 180 Nl / min.
In Patent Document 1, by having such a configuration, the crushing and blowing-up phenomenon of particles due to the sprayed air flow from the spray gun is suppressed, the product quality is homogenized, the product particle size distribution is sharpened, and the product is produced. We are trying to improve the yield.
特開2003-001090号公報Japanese Unexamined Patent Publication No. 2003-001090
 このような流動層塗布は、一般的に、医薬材料および食品材料の製造に用いられる技術である。そのため、処理される粒体の粒子径は、概ね、数百μm~1mm程度である。 Such fluidized bed coating is a technique generally used in the production of pharmaceutical materials and food materials. Therefore, the particle size of the processed granules is about several hundred μm to 1 mm.
 一方、近年は、高機能材料の分野においても、このような流動層塗布を用いて粒子に塗布液を塗布して粒子を所望の材料で被覆することが考えられている。これらは、例えば高機能セラミックおよび農薬といった材料であり、対称となる粒子の粒子径は数μm、または、その二次凝集粒子である。
 これ以外にも、新しい材料の分野では、塗布液の塗布対象となる粒子の粒子径は、小さくなる傾向にある。
On the other hand, in recent years, also in the field of high-performance materials, it has been considered to apply a coating liquid to particles by using such a fluidized bed coating to coat the particles with a desired material. These are materials such as high-performance ceramics and pesticides, and the symmetric particles have a particle size of several μm or their secondary agglomerated particles.
In addition to this, in the field of new materials, the particle size of the particles to be coated with the coating liquid tends to be smaller.
 従来の流動層塗布を行う装置では、粒子径が数百μm~1mm程度の粒子であれば、好適な塗布液の塗布、および、塗布液による粒子の被覆が可能である。
 しかしながら、塗布対象となる粒子の粒子径が十数μm以下となると、従来の流動層塗布を行う装置では、適正な塗布を行うことは、困難である。
In the conventional device for coating a fluidized bed, it is possible to apply a suitable coating liquid and to coat the particles with the coating liquid as long as the particles have a particle diameter of about several hundred μm to 1 mm.
However, when the particle size of the particles to be coated is a dozen μm or less, it is difficult to perform proper coating with a conventional device for coating a fluidized bed.
 加えて、このような小さい粒子では、塗布する材料の膜厚の制御も難しい。
 すなわち、粒子径が数百μm~1mm程度の粒子であれば、膜厚は数μm~数十μm程度の精度で制御すれば、適正な塗布ができる。しかしながら、塗布対象となる粒子の粒子径が小さい場合には、塗布する被膜も薄くする必要があり、例えば、膜厚を数nm~数μm程度の精度で制御しなければ、適正な塗布ができない。
In addition, with such small particles, it is difficult to control the film thickness of the material to be applied.
That is, if the particles have a particle diameter of about several hundred μm to about 1 mm, appropriate coating can be performed if the film thickness is controlled with an accuracy of about several μm to several tens of μm. However, when the particle size of the particles to be coated is small, it is necessary to thin the coating film to be coated. For example, proper coating cannot be performed unless the film thickness is controlled with an accuracy of about several nm to several μm. ..
 本発明の目的は、このような従来技術の問題点を解決することにあり、塗布液を塗布する粒子の粒子径が小さい場合でも、塗布液を適正に塗布して、粒子の被覆等を好適に行うことができる流動層塗布装置を提供することにある。 An object of the present invention is to solve such a problem of the prior art, and even when the particle size of the particles to which the coating liquid is applied is small, it is preferable to properly apply the coating liquid to coat the particles. It is an object of the present invention to provide a fluidized bed coating apparatus capable of performing the above.
 この課題を解決するために、本発明は、以下の構成を有する。
 [1] 被処理粒子を収容する処理容器と、
 処理容器内に、被処理粒子の流動層を形成するための流動ガスを、下方から上方に向けて導入するガス導入手段と、
 処理容器内に、被処理粒子に塗布する塗布液を、下方から上方に向けて噴霧するスプレー装置と、
 処理容器内に、プラズマを供給するプラズマ供給手段と、を有することを特徴とする流動層塗布装置。
 [2] プラズマ供給手段は、処理容器内において、少なくとも、流動層を形成する被処理粒子が降下する位置にプラズマを供給する、[1]に記載の流動層塗布装置。
 [3] プラズマ供給手段は、生成したプラズマを、気流によって流路から処理容器内に供給するものであり、流路が、処理容器の壁面に取り付けられる、[1]または[2]に記載の流動層塗布装置。
 [4] 処理容器は、下方に向けて、断面積が、漸次、縮小する縮小領域を有し、
 流路が、縮小領域における処理容器の壁面に取り付けられる、[3]に記載の流動層塗布装置。
 [5] プラズマ供給手段は、処理容器内に設けられたプラズマを生成するための電極対を有し、流動ガスをプラズマガスとして、電極対の間にプラズマを生成するものであり、
 電極対は、電極の面方向を上下方向に向けて配置される、[1]~[4]のいずれかに記載の流動層塗布装置。
 [6] 処理容器は、下方に向けて、断面積が、漸次、縮小する縮小領域を有し、
 電極対は、電極の面方向を、縮小領域における処理容器の壁面に沿う方向に傾斜して配置される、[5]に記載の流動層塗布装置。
 [7] 電極対は、電極の面方向を、縮小領域における処理容器の壁面と平行にして配置される、[6]に記載の流動層塗布装置。
 [8] スプレー装置が、超音波スプレー装置である、[1]~[7]のいずれかに記載の流動層塗布装置。
 [9] スプレー装置のスプレーヘッドを囲む、塗布液の噴霧方向に延在する筒状体を有する、[1]~[8]のいずれかに記載の流動層塗布装置。
 [10] ガス導入手段は、筒状体を囲んで設けられる導入部から、流動ガスを処理容器に導入する、[9]に記載の流動層塗布装置。
 [11] プラズマ供給手段は、大気圧プラズマによってプラズマを生成する、[1]~[10]のいずれかに記載の流動層塗布装置。
In order to solve this problem, the present invention has the following configurations.
[1] A processing container for accommodating particles to be processed and
A gas introducing means for introducing a fluidized gas for forming a fluidized bed of particles to be treated into the processing vessel from the lower side to the upper side.
A spray device that sprays the coating liquid to be applied to the particles to be treated from below to above in the processing container.
A fluidized bed coating apparatus comprising: a plasma supply means for supplying plasma in a processing container.
[2] The fluidized bed coating device according to [1], wherein the plasma supply means supplies plasma to at least a position in the processing container where the particles to be treated forming the fluidized bed fall.
[3] The plasma supply means according to [1] or [2], wherein the generated plasma is supplied from the flow path into the processing container by an air flow, and the flow path is attached to the wall surface of the processing container. Fluidized bed coating device.
[4] The processing container has a shrinking region in which the cross-sectional area gradually shrinks toward the bottom.
The fluidized bed coating device according to [3], wherein the flow path is attached to the wall surface of the processing container in the reduced region.
[5] The plasma supply means has an electrode pair provided in the processing container for generating plasma, and uses a flowing gas as plasma gas to generate plasma between the electrode pairs.
The fluidized bed coating device according to any one of [1] to [4], wherein the electrode pair is arranged with the surface direction of the electrodes facing up and down.
[6] The processing container has a shrinking region in which the cross-sectional area gradually shrinks toward the bottom.
The fluidized bed coating device according to [5], wherein the electrode pair is arranged so that the surface direction of the electrodes is inclined in a direction along the wall surface of the processing container in the reduced region.
[7] The fluidized bed coating device according to [6], wherein the electrode pair is arranged so that the surface direction of the electrodes is parallel to the wall surface of the processing container in the reduced region.
[8] The fluidized bed coating device according to any one of [1] to [7], wherein the spray device is an ultrasonic spray device.
[9] The fluidized bed coating device according to any one of [1] to [8], which has a tubular body that surrounds the spray head of the spraying device and extends in the spraying direction of the coating liquid.
[10] The fluidized bed coating device according to [9], wherein the gas introducing means introduces a fluidized gas into a processing container from an introduction portion provided around a tubular body.
[11] The fluidized bed coating device according to any one of [1] to [10], wherein the plasma supply means generates plasma by atmospheric pressure plasma.
 本発明によれば、塗布対象となる粒子の粒子径が小さい場合であっても、粒子に適正に塗布液を塗布して、粒子を好適に被覆できる。 According to the present invention, even when the particle size of the particles to be coated is small, the coating liquid can be appropriately applied to the particles to suitably coat the particles.
図1は、本発明の流動層塗布装置の一例を概念的に示す図である。FIG. 1 is a diagram conceptually showing an example of the fluidized bed coating device of the present invention. 図2は、プラズマ供給装置の別の例を概念的に示す図である。FIG. 2 is a diagram conceptually showing another example of the plasma supply device. 図3は、本発明の流動層塗布装置の別の例を概念的に示す図である。FIG. 3 is a diagram conceptually showing another example of the fluidized bed coating device of the present invention.
 以下、本発明の流動層塗布装置について、添付の図面に示される好適実施例を基に詳細に説明する。
 なお、本発明において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, the fluidized bed coating apparatus of the present invention will be described in detail based on the preferred embodiments shown in the attached drawings.
In the present invention, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
 本発明の流動層塗布装置は、処理容器の下方から上方に向けて導入した流動ガスによって処理容器内に粒子の流動層を形成し、かつ、スプレー装置によって下方から上方に向けて塗布液を噴霧することにより、粒子の表面に塗布液を塗布して、粒子の表面をコーティング(被覆、被膜形成)するものである。
 本発明の流動層塗布装置が塗布液を塗布する粒子(被処理粒子)には制限はない。すなわち、粒子は、流動ガスによって流動層を形成可能なものであれば、各種の粒子(粉体、粉粒体)が利用可能である。
 粒子としては、一例として、シリコン、金属、ポリマー、および、ゴム等の公知の材料で形成される一般的な粒子が例示される。
In the fluidized bed coating device of the present invention, a fluidized layer of particles is formed in the processing container by the fluidized gas introduced from the lower side to the upper side of the processing container, and the coating liquid is sprayed from the lower side to the upper side by the spray device. By doing so, the coating liquid is applied to the surface of the particles to coat (coat, form a film) the surface of the particles.
There is no limitation on the particles (particles to be treated) to which the fluidized bed coating apparatus of the present invention applies the coating liquid. That is, various particles (powder, powder or granular material) can be used as long as the particles can form a fluidized bed with a fluidized gas.
Examples of the particles include general particles formed of known materials such as silicon, metal, polymer, and rubber.
 本発明の流動層塗布装置が塗布液を塗布する粒子の粒径(粒子径)にも、制限はない。すなわち、粒子の粒径は、粒子の比重等に応じて、流動ガスによって流動層を形成可能な粒径であればよい。
 ここで、後述するが、本発明の流動層塗布装置は、粒径の小さい微細な粒子であっても、好適に塗布液を塗布して、粒子に塗布液をコーティングすることができる。この点を考慮すると、本発明の流動層塗布装置が塗布液を塗布する粒子の粒径は、2000μm以下が好ましく、1000μm以下がより好ましく、300μm以下がさらに好ましい。
 なお、本発明の流動層塗布装置が塗布液を塗布する粒子の粒径の下限にも、制限はないが、粒子の粒径は、0.1μm以上が好ましい。
There is no limitation on the particle size (particle size) of the particles to which the fluidized bed coating device of the present invention applies the coating liquid. That is, the particle size of the particles may be any particle size that allows the fluidized bed to be formed by the fluidized gas according to the specific gravity of the particles and the like.
Here, as will be described later, in the fluidized bed coating apparatus of the present invention, even fine particles having a small particle size can be suitably coated with the coating liquid to coat the particles with the coating liquid. In consideration of this point, the particle size of the particles to which the fluidized bed coating apparatus of the present invention is applied is preferably 2000 μm or less, more preferably 1000 μm or less, still more preferably 300 μm or less.
The lower limit of the particle size of the particles to which the fluidized bed coating apparatus of the present invention is applied is not limited, but the particle size of the particles is preferably 0.1 μm or more.
 さらに、本発明の流動層塗布装置が粒子に塗布する塗布液にも、制限はない。すなわち、塗布液は、スプレー装置による噴霧が可能な液体であれば、各種の液体が利用可能である。
 塗布液としては、一例として、ハードコート層、反射防止層およびバリア層のような機能性層を形成する機能性溶液材料、インクなどの着色材料、TEOS(テトラメトキシシラン)のような原材料が液化状の材料、ならびに、めっき液および錯体インクのような金属膜(金属層)の形成材料等が例示される。
Further, there is no limitation on the coating liquid applied to the particles by the fluidized bed coating apparatus of the present invention. That is, as the coating liquid, various liquids can be used as long as they can be sprayed by a spraying device.
As the coating liquid, for example, a functional solution material forming a functional layer such as a hard coat layer, an antireflection layer and a barrier layer, a coloring material such as ink, and a raw material such as TEOS (tetramethoxysilane) are liquefied. Examples thereof include a material having a shape, and a material for forming a metal film (metal layer) such as a plating solution and a complex ink.
 図1に、本発明の流動層塗布装置の一例を概念的に示す。なお、図1は、流動層塗布装置10の鉛直方向の断面を概念的に示す図である。
 本発明の流動層塗布装置10は、上述のように、下方から上方に向かう流動ガスによって粒子gの流動層を形成し、スプレー装置から塗布液を噴霧して、粒子gの表面に塗布液を塗布して、粒子gに塗布液をコーティングするものである。
 図1に示す流動層塗布装置10は、チャンバ12と、蓋体14と、流動ガスを導入するガス導入部16と、スプレー装置18と、スプレー装置18を収容する管状体20と、プラズマ供給手段24とを有する。なお、本発明の流動層塗布装置10は、図示した部材以外にも、例えば、塗布液の硬化を促進するための紫外線照射装置、および、不活性ガスの導入装置など、必要に応じて、各種の部材(装置)を有してもよい。
FIG. 1 conceptually shows an example of the fluidized bed coating device of the present invention. Note that FIG. 1 is a diagram conceptually showing a cross section of the fluidized bed coating device 10 in the vertical direction.
In the fluidized bed coating device 10 of the present invention, as described above, the fluidized bed of the particles g is formed by the flowing gas from the lower side to the upper side, and the coating liquid is sprayed from the spraying device to apply the coating liquid to the surface of the particles g. It is applied and the particles g are coated with the coating liquid.
The fluidized bed coating device 10 shown in FIG. 1 includes a chamber 12, a lid 14, a gas introduction unit 16 for introducing a fluid gas, a spray device 18, a tubular body 20 for accommodating the spray device 18, and a plasma supply means. It has 24 and. In addition to the members shown in the figure, the fluidized bed coating device 10 of the present invention includes, for example, an ultraviolet irradiation device for accelerating the curing of the coating liquid, an inert gas introduction device, and the like, as needed. May have a member (device) of.
 チャンバ12は、塗布液を塗布される粒子gを収容し、内部で粒子gの流動層を形成すする処理容器である。
 図示例において、チャンバ12は、下部に下方に向かって縮径する縮径部を有する、上下面が開放する円筒状の物である。言い換えれば、図示例のチャンバ12は、上部となる円筒部と、下部となる円錐台部とを有し、円錐台部が下方に向かって縮径する形状を有する、上下面が開放する円筒状の筒状体である。
The chamber 12 is a processing container that houses the particles g to be coated with the coating liquid and forms a fluidized bed of the particles g inside.
In the illustrated example, the chamber 12 is a cylindrical object having an open upper and lower surface having a diameter-reduced portion that is reduced in diameter downward. In other words, the chamber 12 in the illustrated example has a cylindrical portion at the upper part and a truncated cone portion at the lower part, and the truncated cone portion has a shape in which the diameter is reduced downward, and the upper and lower surfaces are open. It is a tubular body of.
 なお、チャンバ12の形状は、図示例の下方に向かって縮径する縮径部を有する円筒状に制限はされない。すなわち、本発明において、チャンバは、粒子の流動層を形成して、粒子に、塗布液の塗布(コーティング)、熱処理、造粒、および、変性(変成)等の処理を行う装置で用いられているチャンバ(処理容器)の形状が、各種、利用可能である。
 以下の説明では、粒子の流動層を形成して、粒子の処理を行う装置を、便宜的に、『流動層装置』ともいう。
 チャンバ12の形状としては、一例として、直管の円筒状、下方に向かって縮径する円錐状、下方に向かって縮径する円錐台状、および、これらの2以上を組み合わせた形状、等が例示される。
 また、チャンバ12は円筒状にも制限はされず、下方に向かって断面積が減縮する四角筒状等の角筒状であってもよいが、通常、円筒状である。
The shape of the chamber 12 is not limited to a cylindrical shape having a reduced diameter portion whose diameter is reduced downward in the illustrated example. That is, in the present invention, the chamber is used in an apparatus for forming a fluidized bed of particles and treating the particles with a coating liquid (coating), heat treatment, granulation, denaturation (transformation), and the like. Various shapes of chambers (processing containers) are available.
In the following description, a device that forms a fluidized bed of particles and processes the particles is also referred to as a "fluidized bed device" for convenience.
Examples of the shape of the chamber 12 include a straight tube cylinder, a downwardly reduced diameter cone, a downwardly reduced diameter truncated cone, and a combination of two or more of these. Illustrated.
Further, the chamber 12 is not limited to a cylindrical shape, and may be a square cylinder shape such as a square cylinder whose cross-sectional area decreases downward, but is usually cylindrical.
 チャンバ12は、いずれの形状であっても、図示例のように、下方に向かって縮径する縮径部(縮小領域)を有するのが好ましい。また、チャンバ12は、縮径部の下端が、チャンバ12の下端すなわち底部になるのが好ましい。
 チャンバ12が、下方に向かって縮径する縮径部を有することにより、粒子gの流動層を円滑に形成できる、後述するプラズマによる粒子gの処理を効率良く行うことができる等の点で好ましい。
Regardless of the shape of the chamber 12, it is preferable that the chamber 12 has a reduced diameter portion (reduced region) whose diameter is reduced downward as shown in the illustrated example. Further, in the chamber 12, it is preferable that the lower end of the reduced diameter portion is the lower end, that is, the bottom portion of the chamber 12.
Since the chamber 12 has a reduced diameter portion whose diameter is reduced downward, it is preferable in that a fluidized bed of the particles g can be smoothly formed, and the treatment of the particles g by plasma, which will be described later, can be efficiently performed. ..
 本発明の流動層塗布装置10において、チャンバ12の形成材料には、制限はなく、流動層装置のチャンバに用いられる材料が、各種、利用可能である。
 チャンバの形成材料としては、一例として、ステンレス、鉄およびアルミニウム等の金属材料、アクリル樹脂、塩化ビニル樹脂およびポリテトラフルオロエチレン等の樹脂材料、ガラス、ならびに、石英などのガラス質材料等が例示される。
In the fluidized bed coating device 10 of the present invention, the material for forming the chamber 12 is not limited, and various materials used for the chamber of the fluidized bed device can be used.
Examples of the chamber forming material include metal materials such as stainless steel, iron and aluminum, resin materials such as acrylic resin, vinyl chloride resin and polytetrafluoroethylene, glass, and vitreous materials such as quartz. Ru.
 なお、チャンバ12の大きさには、制限はなく、流動層塗布装置10に要求される処理能力等に応じて、適宜、設定すれば良い。 The size of the chamber 12 is not limited and may be appropriately set according to the processing capacity required for the fluidized bed coating device 10.
 上述のように、チャンバ12は、上下面が開放する、下部に、漸次、縮径する縮径部を有する円筒状である。チャンバ12の上面は、蓋体14によって閉塞される。
 蓋体14は、チャンバ12の上面に応じた形状を有する円盤状のものであり、下面から下方に延在して、円筒状の排気筒14aが設けられる。なお、図示例の装置は、一例として、2本の排気管14aを有している。しかしながら、排気筒14aの数は、2本に制限はされず、十分な排気が可能であれば1本でもよく、あるいは、3本以上でもよい。
As described above, the chamber 12 has a cylindrical shape having a diameter-reduced portion that is gradually reduced in diameter at the lower portion with the upper and lower surfaces open. The upper surface of the chamber 12 is closed by the lid 14.
The lid 14 has a disk shape having a shape corresponding to the upper surface of the chamber 12, and extends downward from the lower surface to provide a cylindrical exhaust stack 14a. The device of the illustrated example has two exhaust pipes 14a as an example. However, the number of exhaust stacks 14a is not limited to two, and may be one or three or more as long as sufficient exhaust is possible.
 排気筒14aは、粒子gの流動層を形成するためにチャンバ12内に導入された流動ガスを、排気するためのものである。
 排気筒14aは、フィルタ26によって覆われている。フィルタ26は、排気筒14aから、後述する排気経路30に抜けようとする粒子gを補足するフィルタである。フィルタ26には制限はなく、流動層装置において、流動ガスの排気に用いられるフィルタが、各種、利用可能である。
The exhaust stack 14a is for exhausting the fluidized gas introduced into the chamber 12 in order to form the fluidized bed of the particles g.
The exhaust stack 14a is covered with a filter 26. The filter 26 is a filter that captures particles g that are about to escape from the exhaust stack 14a to the exhaust path 30 described later. The filter 26 is not limited, and various filters used for exhausting the fluidized gas can be used in the fluidized bed apparatus.
 蓋体14の上面、特に排気筒14aを有する領域の上面は、排気経路30によって覆われている。排気経路30は、排気筒14aから排出された流動ガスを、所定の経路で流動層塗布装置10の外部に排気するためのものである。
 排気経路30は、流動層装置に設けられる公知の物でよい。図示例の排気経路は、一例として、蓋体14の上面を覆う領域30aに接続する排気管30bと、排気管30bの途中に設けられる集塵機30cと、排気管30bの端部に設けられるブロワー等の排気手段(図示省略)とを有する。
 蓋体14の排気筒14a(流動層塗布装置10)から排気された流動ガスは、蓋体14の上面を覆う領域30aから排気管30bに排気され、排気管30bの途中に設けられる集塵機30cによってダスト等の異物を除去される。異物を除去された流動ガスは、例えば、大気中に放出され、あるいは、清浄化のための処理装置に供給される。
The upper surface of the lid 14, particularly the upper surface of the region having the exhaust stack 14a, is covered by the exhaust path 30. The exhaust path 30 is for exhausting the fluidized gas discharged from the exhaust stack 14a to the outside of the fluidized bed coating device 10 by a predetermined route.
The exhaust path 30 may be a known one provided in the fluidized bed device. As an example, the exhaust path of the illustrated example includes an exhaust pipe 30b connected to a region 30a covering the upper surface of the lid 14, a dust collector 30c provided in the middle of the exhaust pipe 30b, a blower provided at the end of the exhaust pipe 30b, and the like. Has an exhaust means (not shown).
The flow gas exhausted from the exhaust pipe 14a (fluidized bed coating device 10) of the lid 14 is exhausted to the exhaust pipe 30b from the region 30a covering the upper surface of the lid 14, and is exhausted to the exhaust pipe 30b by the dust collector 30c provided in the middle of the exhaust pipe 30b. Foreign matter such as dust is removed. The fluid gas from which the foreign matter has been removed is released into the atmosphere, for example, or is supplied to a processing device for cleaning.
 上述のように、チャンバ12は、上下面が開放する、下方に、漸次、縮径する縮径部を有する円筒状である。
 チャンバ12の下端すなわち底面の開放部(開口)は、ガス導入部16に連通する。また、ガス導入部16の中には、管状体20が設けられ、管状体20の中には、スプレー装置18が収容される。
As described above, the chamber 12 has a cylindrical shape having a diameter-reduced portion that is gradually reduced in diameter with the upper and lower surfaces open.
The lower end of the chamber 12, that is, the open portion (opening) on the bottom surface communicates with the gas introduction portion 16. Further, a tubular body 20 is provided in the gas introduction portion 16, and a spray device 18 is housed in the tubular body 20.
 ガス導入部16は、チャンバ12の底部から、下方から上方に向かうように流動ガスを導入するものである。流動層塗布装置10は、ガス導入部16が導入した流動ガスによって、粒子gを下方から上方に噴き上げて、粒子gの流動層を形成する。
 ガス導入部16は、ガス導入管34と、送風管36と、送風手段38とを有して構成される。
The gas introduction unit 16 introduces the flowing gas from the bottom of the chamber 12 from the lower side to the upper side. The fluidized bed coating device 10 blows particles g from below to above by the fluidized gas introduced by the gas introduction unit 16 to form a fluidized bed of particles g.
The gas introduction unit 16 includes a gas introduction pipe 34, a blower pipe 36, and a blower means 38.
 ガス導入管34は、チャンバ12の底部の開口に連通する、円筒状のチャンバ12と中心線を一致する円筒管である。ガス導入管34は、チャンバ12の底部の開口に、隙間なく連通するように設けられる。
 このようなガス導入管34は、チャンバ12の中心線と平行(略平行)に流動ガスを導入する。流動層塗布装置10において、円筒状のチャンバ12は、通常、中心線を鉛直方向に一致して設置される。従って、ガス導入管34は、鉛直方向の下方から上方に噴き上げるように、流動ガスを導入する。
The gas introduction pipe 34 is a cylindrical pipe that communicates with the opening at the bottom of the chamber 12 and coincides with the cylindrical chamber 12 in the center line. The gas introduction pipe 34 is provided so as to communicate with the opening at the bottom of the chamber 12 without a gap.
Such a gas introduction pipe 34 introduces a flowing gas in parallel (substantially parallel) with the center line of the chamber 12. In the fluidized bed coating device 10, the cylindrical chamber 12 is usually installed so that the center line coincides with the vertical direction. Therefore, the gas introduction pipe 34 introduces the flowing gas so as to be blown up from the lower side in the vertical direction.
 なお、ガス導入部16すなわちガス導入管34による流動ガスの導入方向は、チャンバ12の中心線と平行な方向に制限はされない。すなわち、ガス導入管34は、チャンバ12の中心線に対して、角度を有して、流動ガスを導入するようにしてもよい。
 しかしながら、粒子gによる流動層の形成を円滑にできる、チャンバ12内で均一な流動層を形成できる、後述するチャンバ12内における粒子gの落下に与える流動ガスの影響をより低減できる等の点で、ガス導入管34による流動ガスの導入方向は、チャンバ12の中心線と平行であるのが好ましい。
The direction in which the flowing gas is introduced by the gas introduction unit 16, that is, the gas introduction pipe 34 is not limited to the direction parallel to the center line of the chamber 12. That is, the gas introduction pipe 34 may have an angle with respect to the center line of the chamber 12 to introduce the flowing gas.
However, the formation of the fluidized bed by the particles g can be smoothly performed, a uniform fluidized bed can be formed in the chamber 12, and the influence of the fluidized gas on the fall of the particles g in the chamber 12, which will be described later, can be further reduced. The introduction direction of the fluidized gas by the gas introduction pipe 34 is preferably parallel to the center line of the chamber 12.
 ガス導入管34の途中には、粒子gがガス導入管34内を落下するのを防止するための、メッシュ状の受け皿40が設けられる。
 この受け皿40も、流動層装置において、流動ガスの導入管内で粒子が不要に落下することを防止するための受け皿(メッシュ)として用いられるものが、各種、利用可能である。
A mesh-shaped saucer 40 is provided in the middle of the gas introduction pipe 34 to prevent the particles g from falling into the gas introduction pipe 34.
As the saucer 40, various types of trays 40 that are used as a saucer (mesh) for preventing particles from dropping unnecessarily in the fluidized bed introduction pipe can be used in the fluidized bed device.
 送風手段38も、ブロワーおよびコンプレッサーなどの送風機、ガスボンベ、ガスタンク、ならびに、コールドエバポレーター等、流動層装置において、流動ガスの供給に用いられる送風手段が、各種、利用可能である。後述するが、流動層塗布装置10では、流動ガスとして空気が好適に用いられるので、送風手段38は、ブロワーなどの送風機が好適に利用される。
 送風手段38が送風した流動ガスは、送風管36を通って、ガス導入管34に供給され、下方から上方に吹き上げるように、チャンバ12の内部に導入される。
As the blowing means 38, various blowing means used for supplying the flowing gas in a fluidized bed device such as a blower such as a blower and a compressor, a gas cylinder, a gas tank, and a cold evaporator can be used. As will be described later, in the fluidized bed coating device 10, air is preferably used as the fluidized gas, so that a blower or the like is preferably used as the blower means 38.
The flowing gas blown by the blower means 38 is supplied to the gas introduction pipe 34 through the blower pipe 36, and is introduced into the chamber 12 so as to be blown up from below.
 なお、本発明の流動層塗布装置10において、流動ガスには制限はなく、粒子gおよび塗布液に悪影響を与えない気体であれば、各種の気体が利用可能である。
 流動ガスとしては、一例として、空気、ならびに、ヘリウムおよびアルゴン等の不活性ガス等が例示される。ただ、コスト、流動層の形成に十分な流量を容易に確保できる、安全性等の点で、流動ガスとしては、空気が好適に用いられる。
 なお、流動ガスは、送風手段38に供給される前、および/または、送風管36内において、フィルタによる異物の除去等を行われた、清浄なものを用いるのが好ましい。
 流動ガスの流量も、塗布液を塗布する粒子g等に応じて、所望の流動層を形成できる流量を、適宜、設定すればよい。
In the fluidized bed coating apparatus 10 of the present invention, the fluidized gas is not limited, and various gases can be used as long as they do not adversely affect the particles g and the coating liquid.
Examples of the fluid gas include air and an inert gas such as helium and argon. However, air is preferably used as the fluidized gas in terms of cost, safety that can easily secure a sufficient flow rate for forming the fluidized bed, and the like.
As the flowing gas, it is preferable to use a clean gas before being supplied to the blower means 38 and / or having foreign matter removed by a filter in the blower pipe 36.
As for the flow rate of the fluidized gas, the flow rate at which a desired fluidized bed can be formed may be appropriately set according to the particles g or the like to which the coating liquid is applied.
 ガス導入部16の中には、送風管36からガス導入管34、さらには、チャンバ12の内部に至るように、円管状の管状体20が設けられる。管状体20は、ガス導入管34内およびチャンバ12内の領域では、中心線をガス導入管34すなわちチャンバ12と一致する。
 塗布液(塗布物)を噴霧するスプレー装置18は、この管状体20内のガス導入管34と中心線を一致する領域に配置される。
 なお、管状体20は、送風管36内で送風手段38と逆側に屈曲して、ガス導入部16の外部に至る。管状体20のガス導入部16の外部に至る位置には、スプレー装置18に塗布液を供給する供給管18aが挿通される。
In the gas introduction section 16, a circular tubular body 20 is provided so as to extend from the blower pipe 36 to the gas introduction pipe 34 and further to the inside of the chamber 12. The tubular body 20 coincides with the gas introduction pipe 34, that is, the chamber 12 at the center line in the region in the gas introduction pipe 34 and the chamber 12.
The spray device 18 for spraying the coating liquid (coating material) is arranged in a region in the tubular body 20 that coincides with the gas introduction pipe 34 and the center line.
The tubular body 20 bends in the blower pipe 36 on the opposite side of the blower means 38 to reach the outside of the gas introduction portion 16. A supply pipe 18a for supplying the coating liquid to the spray device 18 is inserted at a position extending to the outside of the gas introduction portion 16 of the tubular body 20.
 スプレー装置18は、下方から上方に向けて粒子gに塗布する塗布液を噴霧する。
 スプレー装置18は、ガス導入管34に収容される管状体20の内部に配置される。従って、粒子gの流動層を形成する流動ガスは、スプレー装置18が上方に向けて噴霧した塗布液を囲むように、ガス導入管34によって下方から上方に向けてチャンバ12内に供給される。
The spray device 18 sprays the coating liquid to be applied to the particles g from the lower side to the upper side.
The spray device 18 is arranged inside the tubular body 20 housed in the gas introduction pipe 34. Therefore, the fluidized gas forming the fluidized bed of the particles g is supplied into the chamber 12 from the lower side to the upper side by the gas introduction pipe 34 so as to surround the coating liquid sprayed upward by the spray device 18.
 ここで、円筒状のガス導入管34は、円筒状のチャンバ12と中心線を一致して配置され、円筒状の管状体20は、ガス導入管34と中心線を一致して配置される。スプレー装置18は、この管状体20の中に配置される。
 スプレー装置18による塗布液の噴霧方向には、制限はなく、下方から上方に向かう方向であればよい。しかしながら、上述したガス導入管34と、チャンバ12と、管状体20との位置関係を考慮すると、スプレー装置18は、管状体20の中心線すなわちガス導入管34およびチャンバ12の中心線と同じ方向に向けて、下方から上方に塗布液を噴霧するのが好ましい。すなわち、スプレー装置18は、噴霧の中心線がチャンバ12等の中心線と一致するように、下方から上方に塗布液を噴霧するのが好ましい。
 これにより、後述するように、粒子gと塗布液とを、より好適に混合して、塗布液を効率良く粒子gに塗布することができる。
Here, the cylindrical gas introduction pipe 34 is arranged so as to coincide with the center line of the cylindrical chamber 12, and the cylindrical tubular body 20 is arranged so as to coincide with the center line of the gas introduction pipe 34. The spray device 18 is arranged in the tubular body 20.
The spraying direction of the coating liquid by the spraying device 18 is not limited, and may be any direction from the bottom to the top. However, considering the positional relationship between the gas introduction pipe 34, the chamber 12, and the tubular body 20 described above, the spray device 18 has the same direction as the center line of the tubular body 20, that is, the center line of the gas introduction pipe 34 and the chamber 12. It is preferable to spray the coating liquid from the bottom to the top. That is, it is preferable that the spray device 18 sprays the coating liquid from the lower side to the upper side so that the center line of the spray coincides with the center line of the chamber 12 or the like.
Thereby, as described later, the particles g and the coating liquid can be more preferably mixed, and the coating liquid can be efficiently applied to the particles g.
 なお、本発明の流動層塗布装置10において、管状体20は、好ましい態様として設けられるものである。
 従って、本発明の流動層塗布装置においては、スプレー装置18は、管状体20を有さないで、下方から上方に塗布液を噴霧するように、ガス導入管34の内部に設けられてもよい。あるいは、本発明の流動層塗布装置においては、スプレー装置18は、ガス導入管34すなわち流動ガスの導入管とは別の位置に配置されて、下方から上方に塗布液を噴霧してもよい。
 しかしながら、スプレー装置18(スプレーヘッド)の目詰まりを好適に防止できる、噴霧した塗布液と流動ガスすなわち粒子gとを好適に混合できる、流動ガスがスプレー装置18による塗布液の噴霧に与える影響を低減できる等の点で、スプレー装置18は、図示例のように、流動ガスを導入するガス導入管34の内部に設けられた管状体20の中に配置されるのが好ましい。また、この管状体20を用いる構成によれば、流動ガスがスプレー装置18による塗布液の噴霧に与える影響が少ないので、超音波スプレーのように、液滴の噴霧に流体を用いないスプレー装置18の利用も容易である。
In the fluidized bed coating device 10 of the present invention, the tubular body 20 is provided as a preferred embodiment.
Therefore, in the fluidized bed coating device of the present invention, the spray device 18 may be provided inside the gas introduction pipe 34 so as to spray the coating liquid from below to above without having the tubular body 20. .. Alternatively, in the fluidized bed coating device of the present invention, the spray device 18 may be arranged at a position different from the gas introduction pipe 34, that is, the fluidized gas introduction pipe, and spray the coating liquid from below to above.
However, the effect of the flowing gas on the spraying of the coating liquid by the spraying device 18 that can suitably prevent clogging of the spray device 18 (spray head), that the sprayed coating liquid and the fluid gas, that is, the particles g can be suitably mixed. The spray device 18 is preferably arranged in the tubular body 20 provided inside the gas introduction pipe 34 for introducing the flowing gas, as shown in the illustrated example, in terms of reduction and the like. Further, according to the configuration using the tubular body 20, since the flow gas has little influence on the spraying of the coating liquid by the spraying device 18, the spraying device 18 that does not use the fluid for spraying the droplets like the ultrasonic spray. Is also easy to use.
 スプレー装置18は、噴霧する塗布液の加熱する加熱手段を有するのが好ましい。
 スプレー装置18が塗布液の加熱手段を有することにより、スプレーヘッドの目詰まりを防止できる、高粘度の塗布液でも噴霧することが可能になる、等の点で好ましい。
 スプレー装置18による、塗布液の加熱手段(加熱方法)には、制限はなく、スプレー装置18の種類および構成に応じて、公知の方法が、各種、利用可能である。
 また、供給管18aに加熱手段を設ける、加熱した塗布液を供給管18aに供給する等の方法で、塗布液を加熱してもよい。さらに、これらの塗布液の加熱方法と、スプレー装置18の加熱手段による塗布液の加熱とを併用してもよい。
The spray device 18 preferably has a heating means for heating the coating liquid to be sprayed.
Since the spray device 18 has a means for heating the coating liquid, it is preferable in that clogging of the spray head can be prevented, and even a highly viscous coating liquid can be sprayed.
The means for heating the coating liquid (heating method) by the spray device 18 is not limited, and various known methods can be used depending on the type and configuration of the spray device 18.
Further, the coating liquid may be heated by a method such as providing a heating means in the supply pipe 18a or supplying the heated coating liquid to the supply pipe 18a. Further, the method of heating the coating liquid may be used in combination with the heating of the coating liquid by the heating means of the spray device 18.
 本発明の流動層塗布装置10において、スプレー装置18におけるスプレー方式(スプレー方法)には、制限はなく、公知のスプレー方式(スプレー塗布手段、スプレーノズル)が、各種、利用可能である。
 スプレー方式としては、一例として、1流体スプレー方式、2流体スプレー方式、超音波スプレー方式、静電容量スプレー方式、および、遠心スプレー方式等、公知のスプレー方式が、各種、利用可能である。
In the fluidized layer coating device 10 of the present invention, the spray method (spray method) in the spray device 18 is not limited, and various known spray methods (spray coating means, spray nozzles) can be used.
As an example, various known spray methods such as a one-fluid spray method, a two-fluid spray method, an ultrasonic spray method, a capacitance spray method, and a centrifugal spray method can be used as the spray method.
 ここで、上述のように、本発明の流動層塗布装置は、微細な粒子gに、好適に塗布液を塗布して、コーティングを行うことができる。このような微細な粒子gに塗布液を塗布して、コーティングする際には、一度に全量の塗布液を塗布するのではなく、少しずつ粒子gに塗布液を塗布して、少しずつコーティングを行うのが好ましい。そのため、スプレー装置18が噴霧する液滴は、小さい方が好ましい。
 この点を考慮すると、微細な液滴が噴霧可能である超音波スプレー方式は、本発明の流動層塗布装置10に、好適に用いられる、また、超音波スプレー方式は、液滴サイズの調節の自由度が高い、塗布液の温度調節が容易である等の点でも好適である。
Here, as described above, the fluidized bed coating apparatus of the present invention can suitably coat fine particles g by applying a coating liquid. When the coating liquid is applied to such fine particles g and coated, instead of applying the entire amount of the coating liquid at once, the coating liquid is applied to the particles g little by little and the coating is applied little by little. It is preferable to do it. Therefore, it is preferable that the droplets sprayed by the spray device 18 are small.
Considering this point, the ultrasonic spray method capable of spraying fine droplets is suitably used for the fluidized bed coating device 10 of the present invention, and the ultrasonic spray method is for adjusting the droplet size. It is also suitable in terms of high degree of freedom and easy temperature control of the coating liquid.
 チャンバ12の縮径部には、プラズマ供給手段24が、設けられる。
 図示例のプラズマ供給手段24は、プラズマ生成部24aとプラズマ供給管24bとを有する。プラズマ生成部24aは、電極対、電極対にプラズマ励起電圧を印加する電源、および、電極対の間にプラズマガス(プラズマ生成ガス)を供給する供給手段を有する、公知のプラズマ生成手段である。プラズマ供給管24bは、プラズマ生成部24aが生成したプラズマを、例えばプラズマガスによる気流(ガス流)によってチャンバ12内に供給する、流路(管路)である。
A plasma supply means 24 is provided in the reduced diameter portion of the chamber 12.
The plasma supply means 24 of the illustrated example has a plasma generation unit 24a and a plasma supply pipe 24b. The plasma generation unit 24a is a known plasma generation means having an electrode pair, a power source for applying a plasma excitation voltage to the electrode pair, and a supply means for supplying plasma gas (plasma generation gas) between the electrode pairs. The plasma supply pipe 24b is a flow path (pipeline) that supplies the plasma generated by the plasma generation unit 24a into the chamber 12 by, for example, an air flow (gas flow) by plasma gas.
 すなわち、図示例において、プラズマ供給手段24は、プラズマの生成部と、プラズマによる処理を行う位置が異なる、いわゆる、リモートプラズマによって、チャンバ12の内部にプラズマを供給するものである。
 また、流動ガスを導入して粒子gの流動層を形成するチャンバ12内の圧力は、通常、大気圧である。従って、プラズマ供給手段24は、大気圧プラズマであることが必要であり、プラズマの生成部から離間した遠隔部にプラズマ照射ができる、大気圧リモートプラズマであるのが好ましい。
That is, in the illustrated example, the plasma supply means 24 supplies plasma to the inside of the chamber 12 by a so-called remote plasma in which the plasma generation unit and the position where the plasma is processed are different.
Further, the pressure in the chamber 12 in which the fluidized gas is introduced to form the fluidized bed of the particles g is usually atmospheric pressure. Therefore, the plasma supply means 24 needs to be an atmospheric pressure plasma, and is preferably an atmospheric pressure remote plasma capable of irradiating a remote portion separated from the plasma generating portion.
 ここで、チャンバ12は、好ましい態様として、下部に、下方に向かって縮径する縮径部を有する。また、プラズマ供給手段24における流路であるプラズマ供給管24bは、チャンバ12の下方の径が縮径する縮径部に取り付けられる。
 すなわち、プラズマ供給手段24は、縮径部におけるチャンバ12の内壁面の近傍にプラズマを供給する。
Here, the chamber 12 preferably has a reduced diameter portion at the lower portion, which is reduced in diameter downward. Further, the plasma supply pipe 24b, which is a flow path in the plasma supply means 24, is attached to a reduced diameter portion where the diameter below the chamber 12 is reduced.
That is, the plasma supply means 24 supplies plasma to the vicinity of the inner wall surface of the chamber 12 in the reduced diameter portion.
 なお、図示例の流動層塗布装置10では、プラズマ供給手段24を2つしか示していないが、本発明は、これに制限はされない。
 例えば、本発明の流動層塗布装置は、プラズマ供給手段24(プラズマ供給管24b)を、円筒状のチャンバ12の周方向に、120°の角度間隔で3つを有してもよく、あるいは、90°角度間隔で4つを有してもよく、あるいは、60°の角度間隔で6つを有してもよく、あるいは、45°間隔で8つを有してもよく、あるいは、それ以上のプラズマ供給手段24を有してもよい。
 本発明の流動層塗布装置10において、プラズマ供給手段24は、チャンバ12の周方向に等角度間隔で配置されるのに制限はされない。しかしながら、全体の粒子gに均一な塗布液の塗布を行える点では、プラズマ供給手段24は、チャンバ12の周方向に等角度間隔で設けられるのが好ましい。さらに、プラズマ供給手段24は、数が多い方が有利である。具体的には、プラズマ供給手段24は、チャンバ12の周方向に等角度間隔で、2~16個、設けるのが好ましい。
 また、プラズマ供給手段24の配置位置は、チャンバ12の中心線方向に異なる位置であってもよい。例えば、中心線方向の2つの位置に、周方向にジグザグに位置するように、プラズマ供給手段24を設けてもよい。
 以上の点は、後述するプラズマ供給手段50(図2参照)、および、ダイレクトプラズマ(図3参照)でも、同様である。
In the fluidized bed coating device 10 of the illustrated example, only two plasma supply means 24 are shown, but the present invention is not limited to this.
For example, the fluidized bed coating apparatus of the present invention may have three plasma supply means 24 (plasma supply pipe 24b) in the circumferential direction of the cylindrical chamber 12 at an angular interval of 120 °, or It may have four at 90 ° angular intervals, six at 60 ° angular intervals, eight at 45 ° intervals, or more. You may have the plasma supply means 24 of the above.
In the fluidized bed coating device 10 of the present invention, the plasma supply means 24 is not limited to being arranged at equal intervals in the circumferential direction of the chamber 12. However, it is preferable that the plasma supply means 24 is provided at equal intervals in the circumferential direction of the chamber 12 in that the coating liquid can be uniformly applied to the entire particles g. Further, it is advantageous that the number of plasma supply means 24 is large. Specifically, it is preferable to provide 2 to 16 plasma supply means 24 at equal angular intervals in the circumferential direction of the chamber 12.
Further, the arrangement positions of the plasma supply means 24 may be different positions in the center line direction of the chamber 12. For example, the plasma supply means 24 may be provided at two positions in the center line direction so as to be located in a zigzag manner in the circumferential direction.
The above points are the same for the plasma supply means 50 (see FIG. 2) and the direct plasma (see FIG. 3), which will be described later.
 以下、図1に示す流動層塗布装置10の作用を説明することにより、本発明の流動層塗布装置について、より詳細に説明する。
 上述のように、流動層塗布装置10において、チャンバ12は円筒状で、下部に下方に向けて縮径する縮径部を有する。
 チャンバ12の下端には、粒子gによる流動層を形成するための流動ガスを導入するガス導入管34が設けられる。ガス導入管34の中には、管状体20が設けられ、管状体20の中にスプレー装置18が配置される。ガス導入管34は、粒子gの落下を防止する受け皿40が設けられる。
 チャンバ12、ガス導入管34および管状体20は、中心を一致して設けられる。円筒状のチャンバ12は、通常、中心線を鉛直方向と一致して配置される。
Hereinafter, the fluidized bed coating apparatus of the present invention will be described in more detail by explaining the operation of the fluidized bed coating apparatus 10 shown in FIG.
As described above, in the fluidized bed coating device 10, the chamber 12 is cylindrical and has a reduced diameter portion at the lower portion that is reduced in diameter downward.
At the lower end of the chamber 12, a gas introduction pipe 34 for introducing a fluidized gas for forming a fluidized bed of particles g is provided. A tubular body 20 is provided in the gas introduction pipe 34, and a spray device 18 is arranged in the tubular body 20. The gas introduction pipe 34 is provided with a saucer 40 for preventing the particles g from falling.
The chamber 12, the gas inlet pipe 34 and the tubular body 20 are provided center-aligned. The cylindrical chamber 12 is usually arranged with its center line aligned with the vertical direction.
 このようなガス導入管34から供給される流動ガスは、チャンバ12の中央部において、中心線と平行(略平行)に下方から上方に供給される。
 そのため、チャンバ12内に収容された粒子gは、図1に破線の矢印によって概念的に示すように、チャンバ12内の中央の下部から流動ガスによって吹き上げられて、チャンバ12内の中央部で上方に向かい、流動ガスの勢いが低減する領域で外方向に広がって降下して、再度、チャンバ12内の中央の下部に戻って、吹き上げられることを繰り返して、流動層を形成する。
The flowing gas supplied from such a gas introduction pipe 34 is supplied from below to above in parallel (substantially parallel) with the center line in the central portion of the chamber 12.
Therefore, the particles g housed in the chamber 12 are blown up by the fluidized gas from the lower center in the chamber 12 and upward in the central portion in the chamber 12, as conceptually shown by the broken line arrow in FIG. Toward, it spreads outward in the region where the momentum of the fluidized gas is reduced, descends, returns to the lower part of the center in the chamber 12, and is repeatedly blown up to form a fluidized bed.
 ここで、流動層塗布装置10は、ガス導入管34の中に、ガス導入管34と中心線を一致して管状体20が設けられる。また、管状体20内に、噴霧の中心線を管状体20の中心線と一致して、下方から上方に向けて塗布液を噴霧するように、スプレー装置18が配置される。
 このように、スプレー装置18が下方から上方に向けて塗布液を噴霧する本発明の流動層塗布装置10においては、塗布液と粒子gとが、最も流速が早い領域で流動ガスのガス流に乗って上方に噴き上げられる。そのため、塗布液と粒子gとは、共に流動ガスの中で迅速に拡散され、かつ、好適に混合される。その結果、微細な粒子gであっても、流動ガス中における位置的な偏差を生じることなく、各粒子gに均一に塗布液を塗布できる。
 しかも、粒子gへの塗布液の塗布は、チャンバ12の中央下方から上昇し、外方向に広がり、降下してチャンバ12の中央下方に戻る、図1に破線で示す粒子の流れにおける、最初に行われる。すなわち、塗布位置における流動ガスの流速と、塗布後の再塗布までの流動長の長さとの相乗効果によって、粒子gは、塗布液を塗布される時点では、先に塗布された塗布液が乾燥している。
Here, in the fluidized bed coating device 10, a tubular body 20 is provided in the gas introduction pipe 34 so as to coincide with the center line of the gas introduction pipe 34. Further, the spray device 18 is arranged in the tubular body 20 so that the center line of the spray coincides with the center line of the tubular body 20 and the coating liquid is sprayed from the lower side to the upper side.
As described above, in the fluidized bed coating apparatus 10 of the present invention in which the spraying apparatus 18 sprays the coating liquid from the lower side to the upper side, the coating liquid and the particles g are in the gas flow of the fluidized gas in the region where the flow velocity is the fastest. It gets on and is sprayed upward. Therefore, both the coating liquid and the particles g are rapidly diffused in the fluid gas and are preferably mixed. As a result, even if the particles g are fine, the coating liquid can be uniformly applied to each particle g without causing a positional deviation in the flowing gas.
Moreover, the application of the coating liquid to the particles g first rises from the lower center of the chamber 12, spreads outward, descends and returns to the lower center of the chamber 12, in the flow of particles shown by the broken line in FIG. Will be done. That is, due to the synergistic effect of the flow rate of the flowing gas at the coating position and the length of the flow length until recoating after coating, the particles g are dried at the time when the coating liquid is applied. is doing.
 加えて、図示例の流動層塗布装置10は、好ましい態様として、ガス導入管34の中に管状体20を有し、管状体20の中にスプレー装置18が配置される。そのため、スプレー装置18による塗布液の噴霧が流動ガスに影響を受けない。
 さらに、スプレー装置18による塗布液の噴霧が流動ガスに影響を受けないので、噴霧の勢いを強くする必要が無く、液滴を微細にできる。その結果、粒子gへの塗布液の塗布量を微量にして、流動層を形成して循環される粒子gに、徐々に、塗布液を塗布することができる。
 その結果、微細な粒子gでも、好適に塗布液を塗布して、均一かつ適正に塗布液で被覆することが可能になる。
In addition, the fluidized bed coating device 10 of the illustrated example has a tubular body 20 in the gas introduction pipe 34, and the spray device 18 is arranged in the tubular body 20 as a preferred embodiment. Therefore, the spraying of the coating liquid by the spraying device 18 is not affected by the flowing gas.
Further, since the spray of the coating liquid by the spray device 18 is not affected by the flowing gas, it is not necessary to increase the force of the spray, and the droplets can be made fine. As a result, the amount of the coating liquid applied to the particles g can be reduced to a small amount, and the coating liquid can be gradually applied to the particles g that are circulated by forming the fluidized bed.
As a result, even fine particles g can be suitably coated with the coating liquid and uniformly and appropriately coated with the coating liquid.
 上述のように、流動ガスによってチャンバ12の底部の中央部分から吹き上げられた粒子gは、流動ガスの流速が遅くなる領域で、チャンバ12内の外側に広がり、その後、降下する。
 流動ガスは、チャンバ12の中央の下部から上方に向けて導入され、チャンバ12の上面を閉塞する蓋体14の排気筒14aから、チャンバ12の外部に排気される。従って、チャンバ12内における流動ガスの流路は、基本的に、チャンバ12の下方から上方に抜ける一方向である。すなわち、チャンバ12における粒子gの流動層において、粒子gの降下は、流動ガスすなわち気流の影響を殆ど受けない、自重による落下である。
As described above, the particles g blown up from the central portion of the bottom of the chamber 12 by the flowing gas spread outward in the chamber 12 in the region where the flow rate of the flowing gas becomes slow, and then descend.
The flowing gas is introduced upward from the lower center of the chamber 12 and is exhausted to the outside of the chamber 12 from the exhaust pipe 14a of the lid 14 that closes the upper surface of the chamber 12. Therefore, the flow path of the flowing gas in the chamber 12 is basically one direction from the lower side to the upper side of the chamber 12. That is, in the fluidized bed of the particles g in the chamber 12, the descent of the particles g is a drop due to its own weight, which is hardly affected by the fluidized gas, that is, the air flow.
 上述のように、チャンバ12の下部の縮径部の壁面には、好ましい態様として、プラズマ供給手段24のプラズマ供給管24bが取り付けられ、チャンバ12内に、大気圧リモートプラズマによるプラズマPが供給されている。
 すなわち、流動層を形成する粒子gは、好ましい態様として、降下する際にプラズマ供給手段24から供給されるプラズマPで処理される。
 本発明の流動層塗布装置10は、このような構成を有することにより、微細な粒子gであっても、好適に塗布液を塗布し、かつ、コーティングすることを可能にしている。
As described above, as a preferred embodiment, the plasma supply pipe 24b of the plasma supply means 24 is attached to the wall surface of the reduced diameter portion at the lower part of the chamber 12, and the plasma P by the atmospheric pressure remote plasma is supplied into the chamber 12. ing.
That is, the particles g forming the fluidized bed are preferably treated with the plasma P supplied from the plasma supply means 24 when descending.
The fluidized bed coating device 10 of the present invention has such a configuration, so that even fine particles g can be suitably applied and coated with the coating liquid.
 周知のように、塗布液の塗布に先立ち、被処理物をプラズマで処理することにより、被処理物への塗布液等の付着性および被覆性を向上できる。特に、微細な粒子に塗布液を塗布してコーティングを行う際には、粒子のプラズマ処理による表面改質は有効である。
 プラズマ処理の方法としては、例えば、高周波熱プラズマ処理が知られている。このプラズマ処理は、3000~15000℃での処理が可能であるが、プラズマガスとして不活性ガスを用いる必要がある。流動層と高周波熱プラズマ処理手段とを一体化し、処理容器内を全て不活性ガスで満たすことも可能である。しかしながら、大がかりなガス供給装置が必要であり、非常にランニングコストが高くなり、現実的ではない。
 また、粒子gは、必ずしも熱に強いものではない。
 以上の点を考慮すると、流動層における粒子gのプラズマ処理では、低温での処理が可能な大気圧プラズマを用いるのが好ましい。
As is well known, by treating the object to be treated with plasma prior to the application of the coating liquid, the adhesion and covering property of the coating liquid or the like to the object to be treated can be improved. In particular, when the coating liquid is applied to fine particles for coating, surface modification by plasma treatment of the particles is effective.
As a method of plasma treatment, for example, high frequency thermal plasma treatment is known. This plasma treatment can be performed at 3000 to 15000 ° C., but it is necessary to use an inert gas as the plasma gas. It is also possible to integrate the fluidized bed and the high-frequency thermal plasma processing means and fill the entire processing container with an inert gas. However, a large-scale gas supply device is required, and the running cost is very high, which is not realistic.
Further, the particles g are not necessarily resistant to heat.
In consideration of the above points, in the plasma treatment of the particles g in the fluidized bed, it is preferable to use an atmospheric pressure plasma capable of treating at a low temperature.
 また、流動層を形成する粒子gのプラズマ処理と、粒子gへの塗布液の塗布とは、同じ系内で行うことが重要である。
 すなわち、大気圧プラズマによって粒子gを均一に処理できても、逐次で処理系の移動が生じると、表面の失活といった不安定性が生じる。粒子g、特に微細な粒子gは、表面積が大きく、表面の失活を加速する。従って、粒子gの処理は、塗布液の塗布とプラズマ処理とが同じ系にあることが、粒子gへの塗布液の塗布およびコーティングの安定に大きくつながる。
 これに対し、チャンバ12内に大気圧リモートプラズマによってプラズマPを供給するプラズマ供給手段24を有する流動層塗布装置10によれば、大気圧プラズマを用い、チャンバ12内において、粒子gへの塗布液の塗布と、粒子gのプラズマ処理とを、行うことができる。
Further, it is important that the plasma treatment of the particles g forming the fluidized bed and the coating of the coating liquid on the particles g are performed in the same system.
That is, even if the particles g can be uniformly treated by the atmospheric pressure plasma, instability such as surface deactivation occurs when the treatment system moves sequentially. Particle g, particularly fine particle g, has a large surface area and accelerates surface deactivation. Therefore, in the treatment of the particles g, the fact that the coating of the coating liquid and the plasma treatment are in the same system greatly leads to the application of the coating liquid to the particles g and the stability of the coating.
On the other hand, according to the fluidized bed coating device 10 having the plasma supply means 24 for supplying the plasma P by the atmospheric pressure remote plasma in the chamber 12, the atmospheric pressure plasma is used and the coating liquid to the particles g in the chamber 12 is used. And plasma treatment of the particles g can be performed.
 加えて、図示例の流動層塗布装置10においては、好ましい態様として、流動層を形成する粒子gが降下する位置にプラズマPを供給して、プラズマ処理を行う。流動層塗布装置10は、これにより、より好適な粒子gのプラズマ処理、および、より好適な粒子gへの塗布液の塗布(コーティング)を可能にしている。 In addition, in the fluidized bed coating device 10 of the illustrated example, as a preferred embodiment, plasma P is supplied to a position where the particles g forming the fluidized bed fall to perform plasma treatment. The fluidized bed coating device 10 enables plasma treatment of more suitable particles g and coating of the coating liquid on the more suitable particles g.
 流動層における粒子gのプラズマ処理では、粒子gが充分に流動し、かつ、分散している状態で、プラズマ処理を施すことが重要である。
 また、粒子g、特に微細な粒子gをプラズマ処理する際には、プラズマが気流等による影響を受けにくい状態で処理を行うのが好ましい。プラズマが気流による影響を受けると、プラズマの濃度が低下して、十分な処理ができない。
 プラズマの強度を高くして、高密度なプラズマを生成することで、気流の影響を少なくすることも可能である。しかしながら、粒子gの損傷等を考慮すると、特に微細な粒子gでは、プラズマが強すぎるのは、好ましくない。
In the plasma treatment of the particles g in the fluidized bed, it is important to perform the plasma treatment in a state where the particles g are sufficiently flowed and dispersed.
Further, when the particles g, particularly the fine particles g, are subjected to plasma treatment, it is preferable to perform the treatment in a state where the plasma is not easily affected by the air flow or the like. When the plasma is affected by the air flow, the concentration of the plasma decreases and sufficient processing cannot be performed.
It is also possible to reduce the influence of airflow by increasing the intensity of plasma and generating high-density plasma. However, considering damage to the particles g, it is not preferable that the plasma is too strong, especially for fine particles g.
 これに対し、本発明の流動層塗布装置10では、好ましい態様として、流動層を形成する粒子gが降下する位置にプラズマPを供給してプラズマ処理を行う。
 上述のように、流動層を形成する流動ガスは、基本的に、チャンバ12内を下方から上方に向かって抜ける。そのため、チャンバ12内で降下する粒子gは、流動ガスの影響を受けずに自重で落下している。従って、粒子gが降下する位置にプラズマPを供給してプラズマ処理を行うことにより、気流の影響を受けることなく、緩やかなプラズマPでも十分な粒子gのプラズマ処理を行うことができる。
On the other hand, in the fluidized bed coating device 10 of the present invention, as a preferred embodiment, plasma P is supplied to a position where the particles g forming the fluidized bed fall to perform plasma treatment.
As described above, the fluidized gas forming the fluidized bed basically passes through the chamber 12 from the lower side to the upper side. Therefore, the particles g falling in the chamber 12 fall by their own weight without being affected by the flowing gas. Therefore, by supplying the plasma P to the position where the particles g fall and performing the plasma treatment, sufficient plasma treatment of the particles g can be performed even with a gentle plasma P without being affected by the air flow.
 また、上述のように、本発明の流動層塗布装置10では、塗布液の噴霧は、チャンバ12の中央下方から上昇し、外方向に広がり、降下してチャンバ12の中央下方に戻る、図1に破線で示す粒子の流れにおける、最初に行われる。加えて、本発明によれば、上述したように、スプレー装置18が噴霧する塗布液の液滴を、十分に小さくでき、粒子gへの塗布液の塗布を、徐々に行うことができる。そのため、降下している粒子gでは、塗布された塗布液は、十分に乾燥している。
 その結果、粒子が降下する位置にプラズマPを供給して処理することにより、粒子gのみならず、乾燥した塗布液もプラズマ処理される。
 従って、流動層塗布装置10では、流動層を形成して循環する粒子gに、塗布液の塗布、乾燥、ならびに、粒子gおよび乾燥済の塗布液へのプラズマ処理を、繰り返し行うことができる。
Further, as described above, in the fluidized bed coating device 10 of the present invention, the spray of the coating liquid rises from the lower center of the chamber 12, spreads outward, and descends to return to the lower center of the chamber 12. FIG. It is performed first in the flow of particles shown by the broken line. In addition, according to the present invention, as described above, the droplets of the coating liquid sprayed by the spray device 18 can be made sufficiently small, and the coating liquid can be gradually applied to the particles g. Therefore, in the falling particles g, the applied coating liquid is sufficiently dried.
As a result, by supplying the plasma P to the position where the particles fall and treating the particles, not only the particles g but also the dried coating liquid is plasma-treated.
Therefore, in the fluidized bed coating device 10, the particles g that form and circulate the fluidized bed can be repeatedly coated with the coating liquid, dried, and plasma-treated with the particles g and the dried coating liquid.
 チャンバ12内へのプラズマPの供給位置、すなわち、プラズマ供給管24bの取り付け位置は、縮径部のチャンバ12の壁面に制限はされない。すなわち、プラズマ供給管24bの取り付け位置は、粒子gが降下する位置に対応する壁面であればよい。例えば、図示例の流動層塗布装置10であれば、粒子gが降下する位置に対応していれば、チャンバ12が縮径しない直管の領域の壁面に、プラズマ供給管24bを取り付けてもよい。
 しかしながら、チャンバ12が下部に縮径部を有する場合には、塗布液の塗布からプラズマ処理までの乾燥長を長くできる等の点で、縮径部にプラズマ供給管24bを取り付けるのが好ましい。
 なお、本発明において、プラズマ供給管24bの取り付け位置は、粒子gの流動が極めて少なくなる、もしくは、気流の巻き上げが始まる、底部および底部の近傍は、好ましくない。
 以上の点は、後述するダイレクトプラズマを利用する態様も、同様である。
The supply position of the plasma P into the chamber 12, that is, the mounting position of the plasma supply pipe 24b is not limited to the wall surface of the reduced diameter portion of the chamber 12. That is, the mounting position of the plasma supply pipe 24b may be a wall surface corresponding to the position where the particles g fall. For example, in the fluidized bed coating device 10 of the illustrated example, the plasma supply pipe 24b may be attached to the wall surface of the region of the straight pipe in which the chamber 12 does not shrink in diameter, as long as it corresponds to the position where the particles g fall. ..
However, when the chamber 12 has a reduced diameter portion at the lower portion, it is preferable to attach the plasma supply pipe 24b to the reduced diameter portion in terms of lengthening the drying length from the application of the coating liquid to the plasma treatment.
In the present invention, the mounting position of the plasma supply pipe 24b is not preferable in the vicinity of the bottom and the bottom where the flow of the particles g becomes extremely small or the air flow starts to wind up.
The above points are the same in the mode of using the direct plasma described later.
 プラズマPによって処理された粒子gは、チャンバ12の壁面に沿って降下して、再度、チャンバ12内の中央の下部に戻って、吹き上げられることを繰り返す。これにより、粒子gには、徐々に塗布液が塗布され、すなわち、徐々に塗布液で被覆され、コーティングが施される。
 その結果、本発明の流動層塗布装置10によれば、例えば、粒径が10μm以下の粒子に、100nmレベルの非常に薄い被膜を形成することが可能である。
The particles g treated by the plasma P descend along the wall surface of the chamber 12, return to the lower center in the chamber 12 again, and are repeatedly blown up. As a result, the coating liquid is gradually applied to the particles g, that is, the particles g are gradually coated with the coating liquid and coated.
As a result, according to the fluidized bed coating apparatus 10 of the present invention, for example, it is possible to form a very thin film having a particle size of 10 μm or less on a particle having a particle size of 100 nm or less.
 図1に示す流動層塗布装置10は、プラズマ供給手段24は、プラズマ生成部24aとプラズマ供給管24bとを有する、いわゆる、大気圧リモートプラズマによってチャンバ12にプラズマを供給するものであったが、本発明は、これに制限はされない。
 すなわち、本発明の流動層塗布装置は、各種のプラズマ供給手段が利用可能である。
In the fluidized bed coating device 10 shown in FIG. 1, the plasma supply means 24 supplies plasma to the chamber 12 by a so-called atmospheric pressure remote plasma having a plasma generation unit 24a and a plasma supply pipe 24b. The present invention is not limited to this.
That is, various plasma supply means can be used in the fluidized bed coating device of the present invention.
 図2に、プラズマ供給手段の別の例を示す。
 図2に示す例も、プラズマをチャンバ12内に供給するための流路が、チャンバ12の壁面に取り付けられる、大気圧リモートプラズマの一種である。
 図2に示すプラズマ供給手段50は、二重管構造を有するものであり、内管52と、外管54と、第1電極56と、第2電極58と、電源60とを有する。
FIG. 2 shows another example of the plasma supply means.
The example shown in FIG. 2 is also a type of atmospheric pressure remote plasma in which a flow path for supplying plasma into the chamber 12 is attached to the wall surface of the chamber 12.
The plasma supply means 50 shown in FIG. 2 has a double tube structure, and has an inner tube 52, an outer tube 54, a first electrode 56, a second electrode 58, and a power supply 60.
 内管52および外管54は、石英などのガラス質材料、および、アルミナなどのセラミック材料等の高融点の絶縁材料(誘電体材料)で形成されている。
 内管52および外管54は、共に円管で、中心線を一致して内管52が外管54に挿通される。プラズマ供給手段50において、内管52と外管54との間隙62は、プラズマガスPGの供給路、および、生成したプラズマPの流路となっている。
 プラズマ供給手段50は、プラズマPの流路を形成する外管54が、上述したプラズマ供給管24bと同様に、チャンバ12の縮径部等に取り付けられる。
The inner tube 52 and the outer tube 54 are made of a glassy material such as quartz and a high melting point insulating material (dielectric material) such as a ceramic material such as alumina.
The inner pipe 52 and the outer pipe 54 are both circular pipes, and the inner pipe 52 is inserted into the outer pipe 54 so as to coincide with the center line. In the plasma supply means 50, the gap 62 between the inner tube 52 and the outer tube 54 is a supply path for the plasma gas PG and a flow path for the generated plasma P.
In the plasma supply means 50, the outer tube 54 forming the flow path of the plasma P is attached to the reduced diameter portion of the chamber 12 or the like, similarly to the plasma supply tube 24b described above.
 第1電極56および第2電極58は、共に、内径が外管54の外径と略同一な円筒状の電極で、外管54を挿通して配置される。
 第1電極56と第2電極58とは、第2電極58をチャンバ12側にして、外管54の中心線方向に離間して配置される。
 また、第1電極56は接地(アース)される。他方、第2電極58は電源60に接続される。電源60は、例えば高周波パルス電源で、所定周波数のパルス状電圧を第2電極58に印加する。
Both the first electrode 56 and the second electrode 58 are cylindrical electrodes having an inner diameter substantially the same as the outer diameter of the outer tube 54, and are arranged by inserting the outer tube 54.
The first electrode 56 and the second electrode 58 are arranged so as to be separated from each other in the center line direction of the outer tube 54 with the second electrode 58 on the chamber 12 side.
Further, the first electrode 56 is grounded. On the other hand, the second electrode 58 is connected to the power supply 60. The power supply 60 is, for example, a high frequency pulse power supply, and a pulsed voltage having a predetermined frequency is applied to the second electrode 58.
 プラズマ供給手段50において、図示しない供給源から、内管52と外管54との間隙62にプラズマガスPGが、供給される。
 この際に、電源60から第2電極58にパルス状電圧が印加されると、第1電極56と第2電極58との間が放電領域DAとなって、この放電が放電領域DAを流れるプラズマガスPGに作用して、プラズマPが生成される。生成されたプラズマPは、プラズマガスPGの流れによって、さらに間隙62を流れて、内管52と外管54とからなる二重管の端部から、チャンバ12の内部に供給される。
In the plasma supply means 50, the plasma gas PG is supplied from a supply source (not shown) to the gap 62 between the inner tube 52 and the outer tube 54.
At this time, when a pulsed voltage is applied from the power supply 60 to the second electrode 58, a discharge region DA is formed between the first electrode 56 and the second electrode 58, and this discharge is plasma flowing through the discharge region DA. It acts on the gas PG to generate plasma P. The generated plasma P further flows through the gap 62 by the flow of the plasma gas PG, and is supplied to the inside of the chamber 12 from the end of the double pipe composed of the inner pipe 52 and the outer pipe 54.
 ここで、プラズマ供給手段50は、内管52と外管54とからなる二重管構造を有し、内管52の内部に、各種の処理ガスMGを流すことができる。すなわち、プラズマ供給手段50によれば、必要に応じて、内管52を用いて、プラズマで処理された各種の処理ガスMGを、チャンバ12内に供給できる。
 そのため、プラズマ供給手段50によれば、供給したプラズマPによる粒子gの処理に加え、必要に応じて、プラズマ処理された処理ガスMGによる粒子gの処理等を行うこともできる。
Here, the plasma supply means 50 has a double tube structure including an inner tube 52 and an outer tube 54, and various processing gas MGs can be flowed inside the inner tube 52. That is, according to the plasma supply means 50, various treated gas MGs treated with plasma can be supplied into the chamber 12 by using the inner pipe 52 as needed.
Therefore, according to the plasma supply means 50, in addition to the treatment of the particles g by the supplied plasma P, it is also possible to treat the particles g by the plasma-treated processing gas MG, if necessary.
 一例として、処理ガスMGとして、TEOS(テトラメトキシシラン)等を導入する方法が例示される。この方法によれば、プラズマ処理したTEOSによって、粒子gの表面にSi-OHおよびSiO2等の修飾基を形成して、塗布液によるコーティング(被膜)と粒子gとの密着性を向上することができる。 As an example, a method of introducing TEOS (tetramethoxysilane) or the like as the treatment gas MG is exemplified. According to this method, plasma-treated TEOS forms modifying groups such as Si—OH and SiO 2 on the surface of the particles g to improve the adhesion between the coating (coating) with the coating liquid and the particles g. Can be done.
 本発明の流動層塗布装置において、プラズマ供給手段は、上述したような大気圧リモートプラズマに限定はされない。
 例えば、図3に概念的に示す流動層塗布装置10Aのように、チャンバ12の内部に、プラズマを生成するための電極対64を設け、例えば流動ガスをプラズマガスとして用いる大気圧プラズマによって、チャンバ12の内部にプラズマを生成してもよい。
 なお、図3に示す例において、電極対64には、図示しないプラズマ励起電源等が接続される。プラズマ励起電源は、公知のものが利用可能である。また、前述のように、流動ガスは空気が好適に用いられるので、この際には、プラズマガスは空気である。
In the fluidized bed coating apparatus of the present invention, the plasma supply means is not limited to the atmospheric pressure remote plasma as described above.
For example, as in the fluidized bed coating device 10A conceptually shown in FIG. 3, an electrode pair 64 for generating plasma is provided inside the chamber 12, and for example, an atmospheric pressure plasma using a fluidized gas as a plasma gas is used in the chamber. Plasma may be generated inside the twelve.
In the example shown in FIG. 3, a plasma excitation power source or the like (not shown) is connected to the electrode pair 64. As the plasma excitation power source, a known one can be used. Further, as described above, air is preferably used as the fluid gas, so that the plasma gas is air at this time.
 この際には、プラズマが生成された、電極対64を構成する電極間を通過する粒子gに、プラズマ処理が施される。すなわち、本例は、プラズマの生成位置と、プラズマによる粒子gの処理位置とが等しい、いわゆるダイレクトプラズマによる処理である。 At this time, plasma treatment is applied to the particles g in which plasma is generated and passes between the electrodes constituting the electrode pair 64. That is, this example is a so-called direct plasma processing in which the plasma generation position and the processing position of the particles g by the plasma are equal to each other.
 電極対64の配置位置は、図示例のチャンバ12の傾斜部には制限はされず、チャンバ12の内部であればよい。
 しかしながら、上述したプラズマ供給手段と同様、プラズマを生成する電極対64は、流動層を形成する粒子gが降下(自重落下)する位置に設けられるのが好ましい。
 さらに、降下する粒子gが、電極対を形成する電極間を好適に通過できるように、電極は、面方向を上下方向に向けて設けられるのが好ましく、面方向をチャンバ12の壁面に平行に設けられるのがより好ましい。また、上述のプラズマ供給手段24と同様の理由で、図示例のように、チャンバ12の縮径部において、電極の面方向をチャンバ12の壁面に平行にして設けられるのが、さらに好ましい。
The arrangement position of the electrode pair 64 is not limited to the inclined portion of the chamber 12 in the illustrated example, and may be inside the chamber 12.
However, as with the plasma supply means described above, it is preferable that the electrode pair 64 that generates plasma is provided at a position where the particles g forming the fluidized bed drop (fall by their own weight).
Further, the electrodes are preferably provided with the surface direction facing up and down so that the falling particles g can preferably pass between the electrodes forming the electrode pair, and the surface direction is parallel to the wall surface of the chamber 12. It is more preferable to be provided. Further, for the same reason as the above-mentioned plasma supply means 24, it is more preferable that the reduced diameter portion of the chamber 12 is provided with the surface direction of the electrode parallel to the wall surface of the chamber 12, as shown in the illustrated example.
 なお、プラズマ生成のための電極対64は、縮径部の全周に対応する円錐台状であってもよく、あるいは、上述したプラズマ供給手段24と同様に、分割して等角度間隔に配置してもよい。
 さらに、本発明の流動層塗布装置は、プラズマ供給手段として、上述したリモートプラズマと、このようなダイレクトプラズマとを、併用してもよい。
The electrode pair 64 for plasma generation may have a truncated cone shape corresponding to the entire circumference of the reduced diameter portion, or may be divided and arranged at equal angular intervals as in the plasma supply means 24 described above. You may.
Further, in the fluidized bed coating apparatus of the present invention, the above-mentioned remote plasma and such a direct plasma may be used in combination as the plasma supply means.
 以上、本発明の流動層塗布装置について詳細に説明したが、本発明は上記の態様に限定はされず、本発明の要旨を逸脱しない範囲において、種々、改良や変更を行ってもよい。 Although the fluidized bed coating apparatus of the present invention has been described in detail above, the present invention is not limited to the above aspects, and various improvements and changes may be made without departing from the gist of the present invention.
 微粒子のコーティング等による機能性粒子等の製造に、好適に利用可能である。 It can be suitably used for manufacturing functional particles and the like by coating fine particles.
 10,10A 流動層塗布装置
 12 チャンバ
 14 蓋体
 14a 排気筒
 16 ガス導入部
 18 スプレー装置
 18a 供給管
 20 管状体
 24 プラズマ供給手段
 26 フィルタ
 30 排気経路
 30a 領域
 30b 排気管
 30c 集塵機
 34 ガス導入管
 36 送風管
 38 送風手段
 40 受け皿
 50 プラズマ供給手段
 52 内管
 54 外管
 56 第1電極
 58 第2電極
 60 電源
 64 電極対
 g 粒子
 P プラズマ
 PG プラズマガス
 MG 処理ガス
 DA 放電領域
10, 10A Flow layer coating device 12 Chamber 14 Lid 14a Exhaust pipe 16 Gas introduction part 18 Spray device 18a Supply pipe 20 Tubular body 24 Plasma supply means 26 Filter 30 Exhaust path 30a Area 30b Exhaust pipe 30c Dust collector 34 Gas introduction pipe 36 Blower Tube 38 Blower means 40 Reservoir 50 Plasma supply means 52 Inner tube 54 Outer tube 56 1st electrode 58 2nd electrode 60 Power supply 64 Electrode pair g Particle P Plasma PG Plasma gas MG Processing gas DA Discharge area

Claims (11)

  1.  被処理粒子を収容する処理容器と、
     前記処理容器内に、前記被処理粒子の流動層を形成するための流動ガスを、下方から上方に向けて導入するガス導入手段と、
     前記処理容器内に、前記被処理粒子に塗布する塗布液を、下方から上方に向けて噴霧するスプレー装置と、
     前記処理容器内に、プラズマを供給するプラズマ供給手段と、を有することを特徴とする流動層塗布装置。
    A processing container for accommodating particles to be processed and
    A gas introducing means for introducing a flowing gas for forming a fluidized bed of the particles to be treated into the processing container from the lower side to the upper side.
    A spray device that sprays the coating liquid to be applied to the particles to be treated from below to above in the processing container.
    A fluidized bed coating device comprising a plasma supply means for supplying plasma in the processing container.
  2.  前記プラズマ供給手段は、前記処理容器内において、少なくとも、前記流動層を形成する前記被処理粒子が降下する位置にプラズマを供給する、請求項1に記載の流動層塗布装置。 The fluidized bed coating device according to claim 1, wherein the plasma supply means supplies plasma at least to a position where the particles to be treated that form the fluidized bed fall in the processing container.
  3.  前記プラズマ供給手段は、生成したプラズマを、気流によって流路から前記処理容器内に供給するものであり、前記流路が、前記処理容器の壁面に取り付けられる、請求項1または2に記載の流動層塗布装置。 The flow according to claim 1 or 2, wherein the plasma supply means supplies the generated plasma from a flow path into the processing container by an air flow, and the flow path is attached to the wall surface of the processing container. Layer coating device.
  4.  前記処理容器は、下方に向けて、断面積が、漸次、縮小する縮小領域を有し、
     前記流路が、前記縮小領域における前記処理容器の壁面に取り付けられる、請求項3に記載の流動層塗布装置。
    The processing container has a shrinking region in which the cross-sectional area gradually shrinks toward the bottom.
    The fluidized bed coating device according to claim 3, wherein the flow path is attached to the wall surface of the processing container in the reduced region.
  5.  前記プラズマ供給手段は、前記処理容器内に設けられたプラズマを生成するための電極対を有し、前記流動ガスをプラズマガスとして、前記電極対の間にプラズマを生成するものであり、
     前記電極対は、電極の面方向を上下方向に向けて配置される、請求項1~4のいずれか1項に記載の流動層塗布装置。
    The plasma supply means has an electrode pair provided in the processing container for generating plasma, and the flowing gas is used as plasma gas to generate plasma between the electrode pairs.
    The fluidized bed coating device according to any one of claims 1 to 4, wherein the electrode pair is arranged so that the surface direction of the electrodes faces up and down.
  6.  前記処理容器は、下方に向けて、断面積が、漸次、縮小する縮小領域を有し、
     前記電極対は、前記電極の面方向を、前記縮小領域における前記処理容器の壁面に沿う方向に傾斜して配置される、請求項5に記載の流動層塗布装置。
    The processing container has a shrinking region in which the cross-sectional area gradually shrinks toward the bottom.
    The fluidized bed coating apparatus according to claim 5, wherein the electrode pair is arranged so that the surface direction of the electrodes is inclined in a direction along the wall surface of the processing container in the reduced region.
  7.  前記電極対は、前記電極の面方向を、前記縮小領域における前記処理容器の壁面と平行にして配置される、請求項6に記載の流動層塗布装置。 The fluidized bed coating device according to claim 6, wherein the electrode pair is arranged so that the surface direction of the electrodes is parallel to the wall surface of the processing container in the reduced region.
  8.  前記スプレー装置が、超音波スプレー装置である、請求項1~7のいずれか1項に記載の流動層塗布装置。 The fluidized bed coating device according to any one of claims 1 to 7, wherein the spray device is an ultrasonic spray device.
  9.  前記スプレー装置のスプレーヘッドを囲む、前記塗布液の噴霧方向に延在する筒状体を有する、請求項1~8のいずれか1項に記載の流動層塗布装置。 The fluidized bed coating device according to any one of claims 1 to 8, which has a tubular body that surrounds the spray head of the spray device and extends in the spraying direction of the coating liquid.
  10.  前記ガス導入手段は、前記筒状体を囲んで設けられる導入部から、前記流動ガスを前記処理容器に導入する、請求項9に記載の流動層塗布装置。 The fluidized bed coating device according to claim 9, wherein the gas introducing means introduces the fluidized gas into the processing container from an introduction portion provided surrounding the tubular body.
  11.  前記プラズマ供給手段は、大気圧プラズマによってプラズマを生成する、請求項1~10のいずれか1項に記載の流動層塗布装置。 The fluidized bed coating device according to any one of claims 1 to 10, wherein the plasma supply means generates plasma by atmospheric pressure plasma.
PCT/JP2021/029163 2020-08-31 2021-08-05 Fluidized bed coating device WO2022044763A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022545610A JP7463528B2 (en) 2020-08-31 2021-08-05 Fluidized Bed Coating Equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-145275 2020-08-31
JP2020145275 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022044763A1 true WO2022044763A1 (en) 2022-03-03

Family

ID=80353116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029163 WO2022044763A1 (en) 2020-08-31 2021-08-05 Fluidized bed coating device

Country Status (2)

Country Link
JP (1) JP7463528B2 (en)
WO (1) WO2022044763A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228739A (en) * 1993-02-02 1994-08-16 Sachiko Okazaki Method and device for surface-treating powder by atmospheric-pressure plasma
JP2003001090A (en) * 2001-06-22 2003-01-07 Pauretsuku:Kk Fluidized bed apparatus
JP2003525726A (en) * 1999-11-22 2003-09-02 グラット プロセス テクノロジー ゲーエムベーハー Equipment for coating particles
JP2005523142A (en) * 2002-04-10 2005-08-04 ダウ・コーニング・アイルランド・リミテッド Protective coating composition
WO2006068165A1 (en) * 2004-12-21 2006-06-29 Eisai R & D Management Co., Ltd. Fluidized bed device
JP2008229603A (en) * 2007-02-22 2008-10-02 Teruhisa Hasegawa Fluidized bed device
JP2016182552A (en) * 2015-03-26 2016-10-20 株式会社豊田自動織機 Coat particle manufacturing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228739A (en) * 1993-02-02 1994-08-16 Sachiko Okazaki Method and device for surface-treating powder by atmospheric-pressure plasma
JP2003525726A (en) * 1999-11-22 2003-09-02 グラット プロセス テクノロジー ゲーエムベーハー Equipment for coating particles
JP2003001090A (en) * 2001-06-22 2003-01-07 Pauretsuku:Kk Fluidized bed apparatus
JP2005523142A (en) * 2002-04-10 2005-08-04 ダウ・コーニング・アイルランド・リミテッド Protective coating composition
WO2006068165A1 (en) * 2004-12-21 2006-06-29 Eisai R & D Management Co., Ltd. Fluidized bed device
JP2008229603A (en) * 2007-02-22 2008-10-02 Teruhisa Hasegawa Fluidized bed device
JP2016182552A (en) * 2015-03-26 2016-10-20 株式会社豊田自動織機 Coat particle manufacturing apparatus

Also Published As

Publication number Publication date
JP7463528B2 (en) 2024-04-08
JPWO2022044763A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
US9861945B1 (en) Ultrahigh efficiency spray drying apparatus and process
JP5244189B2 (en) System and method for producing a dry formulation
CN109225059A (en) Fluid unit for coating solid particles
JP2010539644A (en) Surface treatment or surface coating method and apparatus
KR20060136440A (en) High frequency spraying device
US10625281B2 (en) Ultrahigh efficiency spray drying apparatus and process
CA3153745A1 (en) Ultrahigh efficiency spray drying apparatus and process
RU2217243C2 (en) Method of application of coat on tablets and device for realization of this method
US10155234B1 (en) Ultrahigh efficiency spray drying apparatus and process
JPH0857358A (en) Method and device for shielding fluid
BR112015008157B1 (en) FLUIDIZED BED COATING APPLIANCE
WO2022044763A1 (en) Fluidized bed coating device
JPH05504509A (en) Granular product manufacturing equipment
JPH05504090A (en) Gas distributor and heater for spray drying
KR102584957B1 (en) aerosol evaporator
RU2328677C1 (en) Device for drying without carry-over
JP4454037B2 (en) Granulator
AU2019382919A1 (en) Production of immobilised bacteriophage
GB1587952A (en) Electrostatic spraying device
CN108495719A (en) Improved aerosol apparatus for coating and method
JP2023544533A (en) Method and apparatus for supplying materials into a plasma
KR102267279B1 (en) Core shell particle generator using spraying and drying method
JP2010094675A (en) Granulator
JP2009112919A (en) Apparatus for manufacturing composite particle
EP0359563B1 (en) Method and apparatus for generating a fine dispersion of particles in a gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545610

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861191

Country of ref document: EP

Kind code of ref document: A1