WO2022044481A1 - Co2 separation method, co2 separation device, and combustion system - Google Patents

Co2 separation method, co2 separation device, and combustion system Download PDF

Info

Publication number
WO2022044481A1
WO2022044481A1 PCT/JP2021/021826 JP2021021826W WO2022044481A1 WO 2022044481 A1 WO2022044481 A1 WO 2022044481A1 JP 2021021826 W JP2021021826 W JP 2021021826W WO 2022044481 A1 WO2022044481 A1 WO 2022044481A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
treatment chamber
gas
separation
membrane module
Prior art date
Application number
PCT/JP2021/021826
Other languages
French (fr)
Japanese (ja)
Inventor
治 岡田
正明 寺本
伸彰 花井
Original Assignee
株式会社ルネッサンス・エナジー・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ルネッサンス・エナジー・リサーチ filed Critical 株式会社ルネッサンス・エナジー・リサーチ
Priority to JP2022545458A priority Critical patent/JPWO2022044481A1/ja
Publication of WO2022044481A1 publication Critical patent/WO2022044481A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/38Liquid-membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention comprises a CO 2 separation membrane containing CO 2 carriers that selectively react with carbon dioxide, and a first treatment chamber and a second treatment chamber separated by the CO 2 separation membrane.
  • a CO 2 separation method and device for separating carbon dioxide from a mixed gas containing specific gas, carbon dioxide, and water vapor that do not react with CO 2 carriers by using multiple stages connected in series further, with the CO 2 separation device.
  • a combustion system equipped with a combustion device Regarding
  • the non-permeable gas that did not permeate the CO 2 separation membrane is as follows. It is supplied as it is to the first processing chamber of the separation membrane module of the stage.
  • the non-permeable gas that did not permeate the CO 2 separation membrane is relative.
  • the humidity falls below a predetermined value, it is cooled to raise the relative humidity, and then supplied to the first processing chamber of the separation membrane module in the next stage.
  • the CO 2 separation membrane containing a CO 2 carrier functions as a CO 2 promoted transport membrane that selectively permeates CO 2 by the reaction between CO 2 and the CO 2 carrier by the accelerated transport mechanism.
  • the CO 2 permeation rate of the CO 2 accelerated transport film depends on the relative humidity of the mixed gas containing CO 2 and steam (H 2 O) supplied to the supply side of the CO 2 accelerated transport film, and the lower the relative humidity, the more CO 2 Permence is reduced.
  • the mixed gas is supplied to the CO 2 accelerated transport film, the permeation rate of steam is faster than the permeation rate of CO 2 , and the mixed gas is contained in the mixed gas along the flow direction of the mixed gas on the supply side of the CO 2 accelerated transport film. The amount of steam decreases and the relative humidity decreases.
  • Patent Document 2 in order to solve the above problem, the non-permeable gas discharged from the first treatment chamber of the separation membrane module is cooled to raise the relative humidity, and then the first separation membrane module of the next stage is used. It is supplied to the processing room.
  • the increase in the relative humidity is small, and there is a concern that the CO 2 permeance decreases due to the decrease in the temperature of the impermeable gas. It may not be possible to sufficiently suppress the decrease in carbon dioxide.
  • the CO 2 separation method according to the present invention for achieving the above object is Two or more stages of separation membrane modules including a CO 2 separation membrane containing CO 2 carriers that selectively react with carbon dioxide, and a first treatment chamber and a second treatment chamber separated by the CO 2 separation membrane.
  • a mixed gas containing a specific gas, carbon dioxide, and water vapor that does not react with the CO 2 carrier is supplied from one end side of the first treatment chamber to the first treatment chamber.
  • Carbon dioxide in the mixed gas supplied to the first treatment chamber is permeated to the second treatment chamber side through the CO 2 separation membrane to separate carbon dioxide from the mixed gas.
  • the non-permeated gas containing the specific gas, carbon dioxide, and water vapor remaining in the first treatment chamber without penetrating the CO 2 separation membrane is discharged from the other end side of the first treatment chamber.
  • the permeated gas that has permeated the CO 2 separation membrane containing the separated carbon dioxide is discharged to the outside from the same side as the other end side of the first treatment chamber of the second treatment chamber.
  • water vapor is added to the non-permeable gas discharged from the other end side of the first treatment chamber, and the mixing of the separation membrane module connected to the rear stage side.
  • the first feature is that the gas is supplied to the first processing chamber from the one end side of the first processing chamber of the separation membrane module on the subsequent stage side.
  • the CO 2 separation device for achieving the above object is Two or more stages of separation membrane modules including a CO 2 separation membrane containing CO 2 carriers that selectively react with carbon dioxide, and a first treatment chamber and a second treatment chamber separated by the CO 2 separation membrane. It has at least a series of separation membrane modules connected in series and a steam supply unit. Each stage of the separation membrane module A first inlet / outlet for supplying a mixed gas containing a specific gas, carbon dioxide, and water vapor that does not react with the CO 2 carrier to the first treatment chamber is provided on one end side of the first treatment chamber.
  • a first discharge port that discharges a non-permeable gas containing the specific gas, carbon dioxide, and water vapor remaining in the first treatment chamber without penetrating the CO 2 separation membrane. Equipped with A part of the specific gas, carbon dioxide, and water vapor in the mixed gas on the same side as the other end side of the first treatment chamber of the second treatment chamber, and said via the CO 2 separation membrane.
  • a second discharge port for discharging the permeated gas that has permeated from the first treatment chamber side to the second treatment chamber side is provided.
  • the first discharge port is interconnected with the first inlet / outlet of the separation membrane module connected to the rear stage side to form a connecting portion.
  • the steam supply section is configured to supply steam to each of the connecting sections.
  • the non-permeable gas discharged from the first discharge port and the water vapor supplied to the connecting portion are connected to the rear stage side of the separation membrane module.
  • the first feature is that the mixed gas is configured to be supplied to the first processing chamber from the first inlet / outlet of the separation membrane module on the subsequent stage side.
  • the non-permeated gas discharged from the other end side of the first treatment chamber is the non-permeated gas. It is preferable to add water vapor so that the relative humidity of the module increases by 20% or more.
  • the steam supply unit is relative to the non-permeable gas discharged from the first discharge port with respect to each stage of the separation membrane module other than the final stage. It is preferable to supply water vapor to the connecting portion so that the humidity increases by 20% or more.
  • the relative humidity of the mixed gas to be supplied to the first processing chamber of the separation membrane module of the first stage is less than 70%, the said. It is preferable to supply water vapor so that the relative humidity is 70% or more.
  • the mixed gas supplied to the first treatment chamber of the separation membrane module in the first stage is derived from the biogas produced by methane fermentation of an organic substance.
  • the second feature is that the specific gas is methane.
  • the methane concentration in the dry base in the impermeable gas discharged from the first treatment chamber of the separation membrane module in the final stage is 80 mol% or more. Is preferable.
  • the combustion system according to the present invention is a combustion system including the CO 2 separation device of the second feature and the combustion device, and the first stage of the separation membrane module in the final stage of the CO 2 separation device.
  • the non-permeated gas discharged from the processing chamber is supplied to the combustion device as a fuel gas.
  • the steam supply unit of the CO 2 separation device generates steam by utilizing the waste heat from the combustion device.
  • water vapor is supplied to the impermeable gas discharged from the first treatment chamber of each separation membrane module other than the final stage, so that the separation membrane modules of the second and subsequent stages are supplied.
  • the decrease in CO 2 permeance accompanying the decrease in relative humidity is suppressed, and it becomes possible to maintain a desired CO 2 permeance.
  • high CO 2 permeance can be realized in all the separation membrane modules connected in series, and high selective permeability can be obtained as the separation membrane module sequence.
  • FIG. 1 Schematic sectional view schematically showing a basic configuration example of a separation membrane module used in the CO 2 separation apparatus according to the present invention.
  • FIG. 1 Schematic cross-sectional view schematically showing a basic configuration example of the CO 2 separation device according to the present invention.
  • the figure which shows the connection structure of the separation membrane module in each separation apparatus of the comparative example 4-7 Schematic configuration diagram schematically showing the main configuration of the combustion system according to the present invention.
  • FIG. 1 schematically shows a basic configuration example of the separation membrane module 2 used in the separation device 1.
  • FIG. 2 schematically shows a basic configuration example of the separation device 1.
  • the arrows in FIGS. 1 and 2 show the flow path and direction in which the gas flows in a simplified manner.
  • the dimensional ratio of each component shown in the schematic cross-sectional views of FIGS. 1 and 2 does not always match the actual dimensional ratio.
  • the configuration diagram of the main part of the combustion system described in the second embodiment described later Further, in each schematic cross-sectional view and the main part configuration diagram, the same components may be designated by the same reference numerals, and the description thereof may be omitted.
  • the separation membrane module 2 is a space in which a flat membrane-like CO 2 separation membrane 3 is housed in a housing 4 and surrounded by an inner wall of the housing 4 and a supply side surface of the CO 2 separation membrane 3.
  • the first treatment chamber 5 is formed
  • the second treatment chamber 6 is formed by the space surrounded by the inner wall of the housing 4 and the permeation side surface of the CO 2 separation membrane 3. That is, the first treatment chamber 5 and the second treatment chamber 6 are separated by the CO 2 separation membrane 3. Therefore, the housing 4 is a housing constituting the first processing chamber 5 and the second processing chamber 6.
  • the housing 4 is made of, for example, stainless steel, and although not shown, a fluororubber gasket is used as a sealing material between the outer peripheral end of the CO 2 separation membrane 3 and the inner wall of the housing 4 as an example.
  • the CO 2 separation membrane 3 is fixed in the housing 4.
  • the method for fixing and sealing the CO 2 separation membrane 3 is not limited to the above method. Further, the specific structure for fixing the CO 2 separation membrane 3 in the housing 4 differs depending on the shape of the CO 2 separation membrane 3 and the accommodation form in the housing 4, and therefore, in the present invention. Since there is no such thing, a detailed explanation will be omitted.
  • a first discharge port 8 is provided to discharge the non-permeated gas EG remaining in the first treatment chamber 5 from the first treatment chamber 5 to the outside without permeating the third.
  • the opening positions of the first inlet 7 and the first outlet 8 shown in FIG. 1 are exemplary, and the impermeable gas EG is constant along the supply side surface of the CO 2 separation membrane 3 in the first treatment chamber 5. As long as it flows in the direction, it can be appropriately changed according to the shape of the first processing chamber 5.
  • the second treatment chamber 6 is provided with a second discharge port 9 for discharging the permeated gas PG containing CO 2 that has permeated the CO 2 separation membrane 3 from the second treatment chamber 6 to the outside.
  • the second discharge port 9 is provided on the same side as the opening position of the first discharge port 8 on the opposite wall surface of the second processing chamber 6. That is, the direction in which the permeated gas PG flows along the permeation side surface of the CO 2 separation membrane 3 in the second treatment chamber 6 is along the supply side surface of the non-permeate gas EG CO 2 separation membrane 3 in the first treatment chamber 5. It is set in the same direction as the flow direction.
  • the opening position of the second discharge port 9 shown in FIG. 1 is an example, and corresponds to the shape of the second processing chamber 6 as long as the flow directions of the permeated gas PG and the non-permeated gas EG are “parallel flow”. Can be changed as appropriate.
  • the second processing chamber 6 is not provided with an inlet for feeding sweep gas or the like from the outside into the second processing chamber 6.
  • the CO 2 separation membrane 3 has a laminated structure in which a separation functional layer is supported on a hydrophilic porous membrane.
  • the separation functional layer is a layer for selectively permeating CO 2 , and in the present embodiment, as an example, a CO 2 carrier which is a compound that selectively reacts with CO 2 in a gel layer of a hydrophilic polymer. And functions as a facilitating transport membrane.
  • the hydrophilic porous film is a base material for applying a cast solution consisting of an aqueous solution containing a hydrophilic polymer in a step of forming a gel layer of a separation functional layer, and is obtained by gelling the hydrophilic polymer in the cast solution. It functions as a support film that supports the gel layer.
  • the process of forming the gel layer of the separation functional layer is disclosed in many patent documents and non-patent documents, and detailed description thereof will be omitted.
  • a hydrophobic porous membrane is laminated on the exposed surface to form a first protective film. good. Further, in order to protect the exposed surface on the opposite side of the separation functional layer support surface of the hydrophilic porous film, a hydrophobic porous film is laminated on the exposed surface to form a second protective film as a four-layer structure. Is also good.
  • hydrophilic polymer constituting the separation functional layer polyvinyl alcohol-polyacrylic acid (PVA / PAA) salt copolymer, polyvinyl alcohol, polyacrylic acid, chitosan, polyvinylamine, polyallylamine, polyvinylpyrrolidone and the like can be used.
  • PVA / PAA polyvinyl alcohol-polyacrylic acid
  • a hydrophilic polymer containing polyacrylic acid as a main component is preferably used.
  • the gel layer of the hydrophilic polymer may be a hydrogel. Hydrogel is a three-dimensional network structure formed by cross-linking a hydrophilic polymer, and often has a property of swelling by absorbing water.
  • the hydrophilic polymer is a PVA / PAA salt copolymer or polyvinyl alcohol
  • the degree of cross-linking of the hydrogel can be adjusted by adding a cross-linking agent such as a dialdehyde compound such as glutaraldehyde or an aldehyde compound such as formaldehyde. can.
  • a cross-linking agent such as a dialdehyde compound such as glutaraldehyde or an aldehyde compound such as formaldehyde.
  • the PVA / PAA salt copolymer may be referred to as a PVA / PAA copolymer.
  • carbonates of alkali metals such as cesium carbonate (Cs 2 CO 3 ) and rubidium carbonate (Rb 2 CO 3 ), bicarbonates, hydroxides, or glycine, Amino acids such as 2,3-diaminopropionate (DAPA), alanine, arginine, asparagine, serine, ornithine, creatine, threonine, sarcosin, and 2-aminobutyric acid are preferably used.
  • DAPA 2,3-diaminopropionate
  • the alkali may be any one having a strong basicity capable of depriving protonated NH 3+ of protons and converting it into NH 2 , and hydroxides or carbonates of alkali metal elements can be preferably used.
  • a CO dihydration reaction catalyst may be added to the gel layer of the hydrophilic polymer.
  • an oxoacid compound is preferably used as the CO dihydration reaction catalyst.
  • the CO dihydration reaction catalyst uses an oxo acid compound of at least one element selected from Group 6 elements, Group 14 elements, Group 15 elements, and Group 16 elements, and particularly.
  • a terrelic acid compound, a selenic acid compound, a arsenic acid compound, an orthosilicic acid compound, or a molybdic acid compound is used.
  • hydrophilic porous membrane polycarbonate (PC), polycellulose ester, polyetheretherketone (PEEK), a membrane obtained by hydrophilizing a hydrophobic porous membrane described later, and the like are preferably used.
  • porosity (porosity) of the hydrophilic porous membrane is preferably 55% or more, and the pore diameter of the hydrophilic porous membrane 11 is preferably in the range of 0.1 to 1 ⁇ m, preferably 0.1 to 1. It is more preferably in the range of 0.5 ⁇ m.
  • hydrophilic means that the contact angle with water at 25 ° C is less than 90 °.
  • the contact angle of the hydrophilic porous membrane is preferably 45 ° or less.
  • the hydrophobic porous film includes polytetrafluoroethylene (PTFE), polyethersulfone (PES), polypropylene (PP), polyethylene (PE), polyacrylonitrile (PAN), polysulfone (PS), polyethersulfone (PES), and polyimide. (PI), polyvinylidene fluoride (PVDF), etc. are preferably used. Further, the porosity (porosity) of the hydrophobic porous membrane is preferably 55% or more, and the pore diameter of the hydrophobic porous membrane is preferably in the range of 0.1 to 1 ⁇ m, and 0.1 to 0. It is more preferably in the range of .5 ⁇ m.
  • hydrophobic porous membrane means that the contact angle with water at 25 ° C is 90 ° or more.
  • the contact angle of the hydrophobic porous membrane is preferably 95 ° or more, more preferably 100 ° or more, still more preferably 105 ° or more.
  • the separation device 1 is configured to include a separation membrane module row in which a plurality of stages of the separation membrane module 2 (m stage: m is an integer of 2 or more) are connected in series, and a steam supply unit 11.
  • the plurality of stages of the separation membrane module 2 are the first stage, the second stage, ..., The mth stage (final stage) in order from the beginning along the flow direction of the mixed gas FG and the impermeable gas EG. Call.
  • the first inlet 7 of each separation membrane module 2 in the second and subsequent stages is connected to the first discharge port 8 of the separation membrane module 2 in the previous stage directly or via a connecting pipe.
  • the connecting portion 10 is configured with respect to the first discharge port 8 of the separation membrane module 2 in the previous stage. Except for the separation membrane module 2 in the final stage (mth stage), the connecting portion 10 is configured in the first discharge port 8 of each separation membrane module 2 in the first stage to the (m-1) stage. Since the number of connecting portions is one less than the number of stages m of the separation membrane module 2, for convenience, the order from the beginning of each connecting portion corresponds to the order of each separation membrane module 2 located in front of the connecting portion.
  • the m second discharge ports 9 of the m-stage separation membrane module 2 are connected to each other, and the permeated gas PG discharged from each second discharge port 9 is summarized. It is supplied to a device (not shown) that recovers or reuses the permeated gas PG.
  • the permeated gas PG contains a large amount of carbon dioxide and can be recovered and reused for various industrial uses. When the permeated gas PG is not recovered or reused and is released to the atmosphere, each second discharge port 9 may be left open.
  • steam ( H2O ) is supplied from the steam supply unit 11 to the connecting portion 10 of each separation membrane module 2 from the first stage to the (m-1) stage.
  • the impermeable gas EG discharged from the first discharge port 8 is the water vapor (H 2 O) supplied to the connecting portion 10.
  • it is supplied as a mixed gas FG into the first processing chamber 5 of the separation membrane module 2 in the next stage.
  • the amount of water vapor supplied to the connecting portion 10 of each stage is the amount required for the relative humidity of the non-permeated gas EG discharged to each connecting portion 10 to increase by 20% or more due to the supplied water vapor.
  • the relative humidity of the impermeable gas EG (mixed gas FG supplied to the separation membrane module 2 in the next stage) after increasing by 20% or more is preferably 50% or more and less than 100%, and further, the first stage. It is more preferable that the relative humidity of the mixed gas FG supplied to the separation membrane module 2 is equal to or substantially equal to (for example, within ⁇ 5%).
  • the relative humidity after the increase reaches 100%, or if the water vapor in the non-permeated gas EG condenses due to temperature fluctuations even if it is less than 100%, the relative humidity does not reach 100%.
  • the separation membrane module 2 of each stage in the separation membrane module 2 of each stage, until the mixed gas FG supplied into the first treatment chamber 5 passes through the first treatment chamber 5 and is discharged as a non-permeable gas EG.
  • the relative humidity drops by 20% or more.
  • the amount of water vapor supplied to the connecting portion 10 of each stage may be the same, or may be changed according to the degree of decrease in the relative humidity of the impermeable gas EG for each separation membrane module 2 of each stage.
  • the steam supply unit 11 is configured to heat water in the steam supply unit 11 to generate steam and distribute it to the connecting unit 10 of each stage, or collect steam from the outside into the steam supply unit 11. Two types of configurations are assumed, in which the components are distributed to the connecting portion 10 of each stage. Further, the steam supply unit 11 may be realized by combining two types of configurations. For example, as the latter configuration for collecting water vapor from the outside, the water vapor contained in the impermeable gas EG discharged from the separation membrane module 2 in the final stage (mth stage) is, for example, a perfluoro-based membrane (or perfluoro).
  • a water vapor removing unit that separates water vapor as it is by a known membrane separation method using a water vapor permeation film such as (sulfonic acid-based film) is provided, and the water vapor separated by the water vapor removing unit is collected in the water vapor supply unit 11.
  • the water vapor contained in the permeated gas PG discharged from the separation membrane module 2 of each stage is separated as water vapor by the water vapor removing unit of the above-mentioned membrane separation method and collected in the water vapor supply unit 11.
  • a configuration in which both are combined is assumed.
  • the relative humidity of the mixed gas FG supplied into the first treatment chamber 5 of the separation membrane module 2 in the second and subsequent stages is set to the mixed gas. It is possible to maintain the temperature above a predetermined value without lowering the temperature of the FG. As a result, in the separation membrane module 2 in the second and subsequent stages, it is possible to suppress the decrease in CO 2 permeance due to the decrease in relative humidity and maintain the desired CO 2 permeance. Therefore, the steam supply unit 11 of the separation device 1 distributes water vapor to the connection unit 10 of each stage, so that the separation membrane modules 2 are connected in series in a plurality of stages and used. The problem that the permeation rate of CO 2 is lowered in the separation membrane module is solved.
  • the mixed gas FG supplied from the first inlet 7 of the first-stage separation membrane module 2 into the first treatment chamber 5 is a specific gas that does not react with the CO 2 carrier contained in the separation functional layer of the CO 2 separation membrane 3. It is a mixed gas containing CO 2 and water vapor (H 2 O).
  • the specific gas is assumed to be H 2 , CH 4 , N 2 , O 2 , CO, etc., which do not react with CO 2 carriers in the separation functional layer and permeate only by the dissolution / diffusion mechanism.
  • a part of each gas component in the mixed gas FG remains in the first treatment chamber 5 without permeating the CO 2 separation membrane 3, so that the impermeable gas EG is also mixed.
  • the distribution ratio of each gas component is different from that of gas FG, it is a mixed gas containing a specific gas, CO 2 and water vapor (H 2 O).
  • the gas permeance of the specific gas permeating through the separation function layer of the CO 2 separation membrane 3 is about 100 times to several. An extremely high CO 2 permeance of about 1000 times can be realized, and high selective permeability is maintained.
  • the relative humidity of the mixed gas FG supplied from the first inlet 7 of the first-stage separation membrane module 2 into the first treatment chamber 5 is the CO 2 of the first-stage separation membrane module 2.
  • the desired CO 2 permit could be realized with a given CO 2 partial pressure difference.
  • the mixed gas FG supplied from the steam supply unit 11 to the separation membrane module 2 in the first stage is concerned.
  • a predetermined value for example, set within the range of 50% to 80%, 70% as an example
  • CO 2 in the mixed gas FG supplied into the first treatment chamber 5 selectively permeates the CO 2 separation membrane 3 with respect to the specific gas, thereby mixing. It is gradually separated from the gas FG. Then, each time the impermeable gas EG is discharged from the first treatment chamber 5 of each separation membrane module 2, the CO 2 concentration on the dry base in the impermeable gas EG gradually decreases, and conversely, the specific gas Concentration increases in stages.
  • a pipe for supplying the mixed gas FG into the first processing chamber 5 is connected to the first inlet 7 of the first-stage separation membrane module 2 and finally.
  • a pipe for discharging the impermeable gas EG from the first treatment chamber 5 to the outside is connected to the first discharge port 8 of the separation membrane module 2 of each stage, and the second discharge port 9 of the separation membrane module 2 of each stage is connected. Is connected to a pipe for discharging the permeated gas PG from the second processing chamber 6 to the outside.
  • each of the above pipes has a device for mixing multiple gas types, a device for adjusting or measuring the gas flow rate, a device for adjusting the gas supply pressure, and a gas back pressure.
  • a device for adding water vapor to the gas, a device for removing water in the gas, and the like are provided as necessary. The same applies to the configuration diagram of the main part of the combustion system described in the second embodiment described later.
  • FIG. 3 shows four types of interconnected structures of the separation membrane modules 2 in each of the separation devices of Example 1 and Comparative Examples 1 to 3.
  • FIG. 4 shows four types of interconnected structures of the separation membrane modules 2 in each of the separation devices of Comparative Examples 4 to 7. In each of the connecting structures shown in FIGS. 3 and 4, two separation membrane modules 2 are used.
  • the m-stage separation membrane module 2 of the separation device 1 shown in FIG. 2 is configured with a minimum number of two stages.
  • the connection structure of Example 1 is referred to as "series parallel flow intermediate humidification" for convenience.
  • Comparative Example 1 is a comparative example in which steam is not supplied to the connecting portion 10 carried out in Example 1.
  • the connected structure of Comparative Example 1 is referred to as "series parallel flow" for convenience.
  • Comparative Example 2 is a comparative example in which the temperature of the impermeable gas EG flowing through the connecting portion 10 is cooled by 10 ° C. instead of supplying water vapor to the connecting portion 10 carried out in the first embodiment.
  • the connection structure of Comparative Example 2 is referred to as "series parallel flow intermediate cooling" for convenience.
  • Comparative Example 3 is a comparative example in which water vapor is not supplied to the connecting portion 10 carried out in Example 1, and the flow directions of the permeated gas PG and the non-permeated gas EG in each separation membrane module 2 are opposite directions ( (Direct flow). Further, the permeated gas PG discharged from the second processing chamber 6 of the first stage is supplied to the second processing chamber 6 of the second stage.
  • the connected structure of Comparative Example 3 is referred to as "series countercurrent" for convenience.
  • Comparative Example 4 is a comparative example in which steam is not supplied to the connecting portion 10 carried out in Example 1, and steam is supplied as a sweep gas SG to the second treatment chamber 6 of the first stage, and the first stage is used.
  • the mixed gas MG of the permeated gas PG and the sweep gas SG discharged from the second processing chamber 6 of the eye is supplied to the second processing chamber 6 of the second stage.
  • the connection structure of Comparative Example 4 is referred to as a "series parallel flow connection sweep" for convenience.
  • Comparative Example 5 is a comparative example in which water vapor is not supplied to the connecting portion 10 carried out in Example 1, and water vapor is supplied as sweep gas SG to each of the second treatment chambers 6 of the first stage and the second stage. It is supplied separately. From the second treatment chamber 6 of each stage, the mixed gas MG of the permeated gas PG and the sweep gas SG is discharged to the outside.
  • the connected structure of Comparative Example 5 is referred to as "series parallel flow independent sweep" for convenience.
  • Comparative Example 6 is a comparative example in which two separation membrane modules 2 connected in series in Comparative Example 1 are separated and arranged in parallel.
  • the connected structure of Comparative Example 6 is referred to as "parallel parallel flow" for convenience.
  • Comparative Example 7 is a comparative example in which the flow directions of the permeated gas PG and the non-permeated gas EG in each separation membrane module 2 are opposite (countercurrent) to Comparative Example 6.
  • the connected structure of Comparative Example 7 is referred to as "parallel countercurrent" for convenience.
  • the mixed gas FG supplied to the separation membrane module 2 of the first stage is a mixed gas containing methane (CH 4 ), CO 2 and water vapor (H 2 O) in which the specific gas is methane (CH 4 ), and is dry.
  • the relative humidity RHFin (initial value) and the temperature T of the mixed gas FG are 80% and 110 ° C.
  • the effective membrane area of the CO 2 separation membrane 3 is 10 m 2 / module.
  • the pressure PF (absolute pressure) in the first processing chamber 5 and the pressure PS (absolute pressure) in the second processing chamber 6 of each separation membrane module 2 are 750 kPa and 101.3 kPa (atmospheric pressure). The pressure loss between the separation membrane modules 2 was ignored.
  • the supply gas flow rate of the mixed gas FG supplied to the separation membrane module 2 is F (dryNm 3 / h), and in Comparative Examples 6 and 7, the gas flow rate of the mixed gas FG supplied to the two separation membrane modules 2 is F /. 2 (the total gas flow rate is F).
  • the water vapor flow rate in the mixed gas FG supplied to the separation membrane module 2 in the first stage of Examples 1 and Comparative Examples 1 to 7 is LF (kg / h), and the water vapor flow rate is supplied to the connecting portion 10 of Example 1.
  • the steam flow rate supplied as the sweep gas SG of Comparative Examples 4 and 5 is LS (kg / h).
  • the water vapor flow rate LM is given as the water vapor flow rate required to return the relative humidity of the impermeable gas EG discharged from the first-stage separation membrane module 2 to the relative humidity RHFin (80%).
  • the steam flow rate LS was set to be the same as the steam flow rate LM.
  • Example 1 simulations were performed for Example 1 and Comparative Examples 1 to 7 under the above conditions, and the supply gas flow rate F (dryNm 3 / h) and the total steam flow rate L when the recovered methane concentration reached 80 mol%. / The supply gas flow rate F (kg / Nm 3 ) was determined.
  • the simulation results are summarized in Table 1 below.
  • this separation device 1 of the "series parallel flow intermediate humidification" type means that the yield of purified methane gas having a given recovered methane concentration per unit time is large, and the production efficiency of purified methane gas is high. This indicates that the CO 2 separation performance of the separation device 1 with respect to the mixed gas FG is high.
  • the "series parallel flow intermediate humidification" type main separation device 1 has a large yield per unit time of purified methane gas having a predetermined recovered methane concentration even when compared with the parallel type connected structure, and has a production capacity of purified methane gas. Means that is high. This indicates that the CO 2 separation performance of the separation device 1 with respect to the mixed gas FG is high.
  • FIG. 5 schematically shows the main configuration of the combustion system 20.
  • the combustion system 20 includes the separation device 1 and the combustion device 21.
  • the mixed gas FG supplied into the first treatment chamber 5 of the separation membrane module 2 of the first stage of the separation device 1 includes a component derived from biogas produced by methane fermentation of an organic substance. It is assumed that the mixed gas is a mixed gas containing methane (CH 4 ), CO 2 and water vapor (H 2 O).
  • the mixed gas FG supplied to the separation membrane module 2 in the first stage is referred to as “raw material gas FG1”, and the mixed gas FG supplied to the first processing chamber 5 of the separation membrane module 2 in the second and subsequent stages is referred to. To distinguish from.
  • the separation device 1 can remove CO 2 from the raw material gas FG 1 and supply the impermeable gas EG containing high-purity methane to the combustion device 21 from the separation membrane module 2 in the final stage.
  • the methane concentration (recovered methane concentration) of the impermeable gas EG discharged from the separation membrane module 2 in the final stage is determined by adjusting the gas supply flow rate and gas supply pressure of the raw material gas FG1 and adjusting the raw material gas FG1 and the raw material gas FG1 by the steam supply unit 11. By adjusting various parameters such as adjustment of the relative humidity of the non-permeated gas EG in each connecting portion 10, it is possible to control the concentration to be the desired high concentration.
  • the combustion device 21 is, for example, a gas engine, a gas turbine, or the like, and converts the thermal energy generated by the combustion reaction of high-purity methane contained in the supplied impermeable gas EG into energy such as kinetic energy and electric power.
  • the combustion device 21 is not limited to a specific combustion device as long as it is compatible with the combustion of methane.
  • impurities such as hydrogen sulfide and siloxane are removed in advance by using an existing desulfurization device (not shown), an activated carbon adsorption type siloxane removal device, or the like.
  • an existing desulfurization device not shown
  • an activated carbon adsorption type siloxane removal device or the like.
  • the desulfurization apparatus a wet desulfurization method using an absorbent liquid or an adsorption desulfurization method using a sulfur adsorbent such as zinc oxide or iron oxide can be used.
  • sulfur a copper-zinc-based ultra-high-order desulfurization catalyst is used, sulfur can be completely removed to the ppb level or lower. It is preferable to use an ultra-high-order desulfurization catalyst because it may be affected by hydrogen sulfide depending on the type and concentration of the CO 2 carrier used in the separation membrane module 2 of the separation device 1.
  • the steam supply unit 11 provided as a part of the separation device 1 is mainly for supplying steam to the connecting unit 10, but the steam in the raw material gas FG1.
  • a predetermined value for example, set within the range of 50% to 80%, 70% as an example
  • steam is supplied from the steam supply unit 11 to the raw material gas FG1. It is preferable to supply and control the relative humidity to be equal to or higher than the above-mentioned predetermined value.
  • the steam supply path is shown by a dotted line.
  • a hygrometer (not shown) is arranged on the flow path of the raw material gas FG1, and the water vapor supply unit 11 supplies water vapor to the raw material gas FG1 based on the measured value of the hygrometer.
  • the non-permeable gas supplied to the combustion device 21 is provided in the gas flow path between the first discharge port 8 of the separation membrane module 2 of the first stage of the separation device 1 and the gas supply port of the combustion device 21.
  • a water vapor removing unit 22 for removing water vapor contained in the EG is interposed.
  • the permeation is permeated.
  • Another steam removing section may be provided in the gas flow path of the gas PG to recover the steam in the permeated gas PG and reuse it as the steam supplied to the connecting section 10 in the steam supply section 11.
  • the water vapor removing unit 22 and the water vapor removing unit provided in the gas flow path of the permeated gas PG recover the water vapor in the non-permeated gas EG and the permeated gas PG as water instead of recovering as water vapor.
  • the recovered water may be heated to generate steam and used in the steam supply unit 11.
  • high-temperature exhaust gas generated by combustion of methane in the combustion device 21 can be used as a heat source for heating.
  • the combustion system 20 described in the present embodiment for example, when a gas engine is used as the combustion device 21, a biogas having a large fluctuation in methane concentration is used as the fuel supplied to the combustion system 20. Even so, since high-purity methane gas with suppressed fluctuations in methane concentration can be supplied to the gas engine, stable output can be obtained without the need for complicated engine adjustment work, resulting in miniaturization and high output. Can be expected.
  • each separation membrane module 2 is as shown in FIG.
  • One separation membrane module 2 is assumed.
  • the separation membrane module 2 in each stage may be configured by connecting two or more separation membrane modules 2 in parallel, whereby the effective membrane area per stage of the separation membrane module 2 is increased.
  • the processing capacity of the separation device 1 may be increased.
  • the first inlets 7 of the two or more separation membrane modules 2 are connected to each other to form one first inlet / outlet 7, and the first outlets 8 of the two or more separation membrane modules 2 are also connected to each other. It is connected to each other to form one first discharge port 8, and the two or more separation membrane modules 2 function as one separation membrane module 2.
  • a flat plate type in which the flat membrane-like CO 2 separation membrane 3 is used as it is.
  • one or more CO 2 separation membranes 3 having a cylindrical type having a cylindrical two-layer to four-layer structure and a flat membrane-like structure having a two -layer to four-layer structure are spirally formed.
  • the spiral type which has a shape of being wound multiple times, or the pleated type, which has a flat membrane-like one or a plurality of CO 2 separation membranes 3 having a two-layer to four-layer structure folded in a bellows shape. It may be in the shape of.
  • the CO 2 separation device and the CO 2 separation method according to the present invention use a plurality of stages of separation membrane modules that selectively separate carbon dioxide in series, and selectively select carbon dioxide from a mixed gas containing carbon dioxide. It can be used to separate.
  • CO 2 separation device 2 Separation membrane module 3: CO 2 separation membrane 4: Housing 5: 1st treatment chamber 6: 2nd treatment chamber 7: 1st inlet 8: 1st discharge port 9: 2nd discharge Outlet 10: Connecting part 11: Steam supply part 20: Combustion system 21: Combustion device 22: Steam removal part FG: Mixed gas FG1: Raw material gas EG: Non-permeated gas PG: Permeated gas SG: Sweep gas MG: Permeated gas and sweep Mixed gas of gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention provides a CO2 separation method and device which use a plurality of stages of separation membrane modules connected in series, wherein a decrease in CO2 permeance in a downstream separation membrane module is suppressed. Separation membrane modules 2 are each provided with a CO2 separation membrane 3 that includes a CO2 carrier, a first treatment chamber 5, and a second treatment chamber 6. In each separation membrane module 2, a mixed gas FG including a specific gas, carbon dioxide, and water vapor is supplied into the first treatment chamber 5 from one end side of the first treatment chamber 5, carbon dioxide in the mixed gas FG permeates through the CO2 separation membrane to the second treatment chamber 6 side and is separated, nonpermeable gas EG which does not permeate the CO2 separation membrane 3 and remains in the first treatment chamber 5 is discharged from the other end side of the first treatment chamber 5, and permeable gas PG which permeated through the CO2 separation membrane 3 is discharged to the outside from the second treatment chamber 6. In each separation membrane module 2 other than the most downstream separation membrane module 2, water vapor is added to the nonpermeable gas EG discharged from the first treatment chamber 5, and then that nonpermeable gas EG is supplied as mixed gas FG to the first treatment chamber 5 of the downstream separation membrane module 2.

Description

CO2分離方法、CO2分離装置、及び燃焼システムCO2 separation method, CO2 separation device, and combustion system
 本発明は、二酸化炭素と選択的に反応するCOキャリアを含むCO分離膜と、前記CO分離膜によって隔てられた第1処理室と第2処理室を備えて構成される分離膜モジュールを複数段直列に連結して使用し、COキャリアと反応しない特定ガス、二酸化炭素、及び水蒸気を含む混合ガスから二酸化炭素を分離するCO分離方法及び装置に関し、更に、CO分離装置と燃焼装置を備えた燃焼システムに関する。 The present invention comprises a CO 2 separation membrane containing CO 2 carriers that selectively react with carbon dioxide, and a first treatment chamber and a second treatment chamber separated by the CO 2 separation membrane. Regarding the CO 2 separation method and device for separating carbon dioxide from a mixed gas containing specific gas, carbon dioxide, and water vapor that do not react with CO 2 carriers by using multiple stages connected in series, further, with the CO 2 separation device. Regarding a combustion system equipped with a combustion device.
 分離膜モジュールを複数段直列に連結して使用し、二酸化炭素を分離するCO分離方法及び装置については、下記の特許文献1及び2に既に開示されている。 The CO 2 separation method and apparatus for separating carbon dioxide by connecting multiple separation membrane modules in series and using them are already disclosed in Patent Documents 1 and 2 below.
 特許文献1に開示されているCO分離方法及び装置では、或る段の分離膜モジュールの供給側に位置する第1処理室において、CO分離膜を透過しなかった非透過ガスは、次段の分離膜モジュールの第1処理室にそのまま供給される。 In the CO 2 separation method and apparatus disclosed in Patent Document 1, in the first treatment chamber located on the supply side of the separation membrane module of a certain stage, the non-permeable gas that did not permeate the CO 2 separation membrane is as follows. It is supplied as it is to the first processing chamber of the separation membrane module of the stage.
 特許文献2に開示されているCO分離方法及び装置では、或る段の分離膜モジュールの供給側に位置する第1処理室において、CO分離膜を透過しなかった非透過ガスは、相対湿度が所定値を下回ると、冷却して相対湿度を上昇させてから、次段の分離膜モジュールの第1処理室に供給される。 In the CO 2 separation method and apparatus disclosed in Patent Document 2, in the first treatment chamber located on the supply side of the separation membrane module at a certain stage, the non-permeable gas that did not permeate the CO 2 separation membrane is relative. When the humidity falls below a predetermined value, it is cooled to raise the relative humidity, and then supplied to the first processing chamber of the separation membrane module in the next stage.
特開2014-200767号公報Japanese Unexamined Patent Publication No. 2014-200767 特開2015-027654号公報Japanese Unexamined Patent Publication No. 2015-027654
 COキャリアを含むCO分離膜は、促進輸送機構によるCOとCOキャリアの反応により、COを選択的に透過させるCO促進輸送膜として機能する。CO促進輸送膜のCO透過速度は、CO促進輸送膜の供給側に供給されるCOとスチーム(HO)を含む混合ガスの相対湿度に依存し、相対湿度が低いほどCOパーミアンスは低下する。CO促進輸送膜に該混合ガスを供給した場合、スチームの透過速度はCOの透過速度よりも速く、CO促進輸送膜の供給側における混合ガスの流れる方向に沿って、混合ガス中のスチーム量は減少していき、相対湿度は低下する。 The CO 2 separation membrane containing a CO 2 carrier functions as a CO 2 promoted transport membrane that selectively permeates CO 2 by the reaction between CO 2 and the CO 2 carrier by the accelerated transport mechanism. The CO 2 permeation rate of the CO 2 accelerated transport film depends on the relative humidity of the mixed gas containing CO 2 and steam (H 2 O) supplied to the supply side of the CO 2 accelerated transport film, and the lower the relative humidity, the more CO 2 Permence is reduced. When the mixed gas is supplied to the CO 2 accelerated transport film, the permeation rate of steam is faster than the permeation rate of CO 2 , and the mixed gas is contained in the mixed gas along the flow direction of the mixed gas on the supply side of the CO 2 accelerated transport film. The amount of steam decreases and the relative humidity decreases.
 従って、分離膜モジュールを複数段直列に連結して使用するCO分離方法及び装置では、後段の分離膜モジュールほど、COの透過速度が低下するという問題がある。 Therefore, in the CO 2 separation method and apparatus in which a plurality of stages of separation membrane modules are connected in series, there is a problem that the permeation rate of CO 2 decreases as the separation membrane modules in the subsequent stages are used.
 上記特許文献2では、上記問題を解決するために、分離膜モジュールの第1処理室から排出される非透過ガスを冷却して相対湿度を上昇させてから、次段の分離膜モジュールの第1処理室に供給している。しかしながら、非透過ガスを冷却して相対湿度を上昇させる方法では、相対湿度の上昇が小さく、また、非透過ガスの温度低下に伴うCOパーミアンスの低下が懸念されるため、COの透過速度の低下を十分に抑制できない可能性がある。 In Patent Document 2, in order to solve the above problem, the non-permeable gas discharged from the first treatment chamber of the separation membrane module is cooled to raise the relative humidity, and then the first separation membrane module of the next stage is used. It is supplied to the processing room. However, in the method of cooling the impermeable gas to increase the relative humidity, the increase in the relative humidity is small, and there is a concern that the CO 2 permeance decreases due to the decrease in the temperature of the impermeable gas. It may not be possible to sufficiently suppress the decrease in carbon dioxide.
 本発明は、上述の問題点に鑑み、分離膜モジュールを複数段直列に連結して使用するCO分離方法及び装置において、後段の分離膜モジュールでのCOパーミアンスの低下を抑制することを目的とする。 In view of the above-mentioned problems, it is an object of the present invention to suppress a decrease in CO 2 permeance in a subsequent separation membrane module in a CO 2 separation method and apparatus in which a plurality of separation membrane modules are connected in series. And.
 上記目的を達成するための本発明に係るCO分離方法は、
 二酸化炭素と選択的に反応するCOキャリアを含むCO分離膜と、前記CO分離膜によって隔てられた第1処理室と第2処理室を備えて構成される分離膜モジュールを2段以上直列に連結した分離膜モジュール列を少なくとも使用し、
 前記分離膜モジュールの各段において、
 前記COキャリアと反応しない特定ガス、二酸化炭素、及び水蒸気を含む混合ガスを、前記第1処理室の一端側から前記第1処理室内に供給し、
 前記第1処理室内に供給された前記混合ガス中の二酸化炭素を、前記CO分離膜を介して前記第2処理室側に透過させることにより、前記混合ガスから二酸化炭素を分離し、
 前記CO分離膜を透過せずに前記第1処理室内に残留した前記特定ガス、二酸化炭素、及び水蒸気を含む非透過ガスを、前記第1処理室の他端側から排出し、
 分離された二酸化炭素を含む前記CO分離膜を透過した透過ガスを、前記第2処理室の前記第1処理室の他端側と同じ側から外部に排出し、
 最終段以外の前記分離膜モジュールの各段において、前記第1処理室の他端側から排出された前記非透過ガスに水蒸気を追加し、後段側に連結している前記分離膜モジュールの前記混合ガスとして、当該後段側の前記分離膜モジュールの前記第1処理室の前記一端側から前記第1処理室内に供給することを第1の特徴とする。
The CO 2 separation method according to the present invention for achieving the above object is
Two or more stages of separation membrane modules including a CO 2 separation membrane containing CO 2 carriers that selectively react with carbon dioxide, and a first treatment chamber and a second treatment chamber separated by the CO 2 separation membrane. Using at least a series of separation membrane modules connected in series,
In each stage of the separation membrane module
A mixed gas containing a specific gas, carbon dioxide, and water vapor that does not react with the CO 2 carrier is supplied from one end side of the first treatment chamber to the first treatment chamber.
Carbon dioxide in the mixed gas supplied to the first treatment chamber is permeated to the second treatment chamber side through the CO 2 separation membrane to separate carbon dioxide from the mixed gas.
The non-permeated gas containing the specific gas, carbon dioxide, and water vapor remaining in the first treatment chamber without penetrating the CO 2 separation membrane is discharged from the other end side of the first treatment chamber.
The permeated gas that has permeated the CO 2 separation membrane containing the separated carbon dioxide is discharged to the outside from the same side as the other end side of the first treatment chamber of the second treatment chamber.
In each stage of the separation membrane module other than the final stage, water vapor is added to the non-permeable gas discharged from the other end side of the first treatment chamber, and the mixing of the separation membrane module connected to the rear stage side. The first feature is that the gas is supplied to the first processing chamber from the one end side of the first processing chamber of the separation membrane module on the subsequent stage side.
 更に、上記目的を達成するための本発明に係るCO分離装置は、
 二酸化炭素と選択的に反応するCOキャリアを含むCO分離膜と、前記CO分離膜によって隔てられた第1処理室と第2処理室を備えて構成される分離膜モジュールを2段以上直列に連結した分離膜モジュール列と、水蒸気供給部とを少なくとも備え、
 前記分離膜モジュールの各段が、
 前記第1処理室の一端側に、前記COキャリアと反応しない特定ガス、二酸化炭素、及び水蒸気を含む混合ガスを、前記第1処理室内に供給する第1送入口を備え、
 前記第1処理室の他端側に、前記CO分離膜を透過せずに前記第1処理室内に残留した前記特定ガス、二酸化炭素、及び水蒸気を含む非透過ガスを排出する第1排出口を備え、
 前記第2処理室の前記第1処理室の他端側と同じ側に、前記混合ガス中の前記特定ガス、二酸化炭素、及び水蒸気の一部であって、前記CO分離膜を介して前記第1処理室側から前記第2処理室側に透過した透過ガスを排出する第2排出口を備え、
 最終段以外の前記分離膜モジュールの各段において、前記第1排出口が、後段側に連結している前記分離膜モジュールの前記第1送入口と相互に連結して、連結部が構成され、
 前記水蒸気供給部が、前記連結部のそれぞれに水蒸気を供給するように構成され、
 最終段以外の前記分離膜モジュールの各段において、前記第1排出口から排出された前記非透過ガスと前記連結部に供給された水蒸気が、後段側に連結している前記分離膜モジュールの前記混合ガスとして、当該後段側の前記分離膜モジュールの前記第1送入口から前記第1処理室内に供給されるように構成されていることを第1の特徴とする。
Further, the CO 2 separation device according to the present invention for achieving the above object is
Two or more stages of separation membrane modules including a CO 2 separation membrane containing CO 2 carriers that selectively react with carbon dioxide, and a first treatment chamber and a second treatment chamber separated by the CO 2 separation membrane. It has at least a series of separation membrane modules connected in series and a steam supply unit.
Each stage of the separation membrane module
A first inlet / outlet for supplying a mixed gas containing a specific gas, carbon dioxide, and water vapor that does not react with the CO 2 carrier to the first treatment chamber is provided on one end side of the first treatment chamber.
On the other end side of the first treatment chamber, a first discharge port that discharges a non-permeable gas containing the specific gas, carbon dioxide, and water vapor remaining in the first treatment chamber without penetrating the CO 2 separation membrane. Equipped with
A part of the specific gas, carbon dioxide, and water vapor in the mixed gas on the same side as the other end side of the first treatment chamber of the second treatment chamber, and said via the CO 2 separation membrane. A second discharge port for discharging the permeated gas that has permeated from the first treatment chamber side to the second treatment chamber side is provided.
In each stage of the separation membrane module other than the final stage, the first discharge port is interconnected with the first inlet / outlet of the separation membrane module connected to the rear stage side to form a connecting portion.
The steam supply section is configured to supply steam to each of the connecting sections.
In each stage of the separation membrane module other than the final stage, the non-permeable gas discharged from the first discharge port and the water vapor supplied to the connecting portion are connected to the rear stage side of the separation membrane module. The first feature is that the mixed gas is configured to be supplied to the first processing chamber from the first inlet / outlet of the separation membrane module on the subsequent stage side.
 更に、上記第1の特徴のCO分離方法において、最終段以外の前記分離膜モジュールの各段において、前記第1処理室の他端側から排出された前記非透過ガスに、当該非透過ガスの相対湿度が20%以上増加するように水蒸気を追加することが好ましい。 Further, in the CO 2 separation method of the first feature, in each stage of the separation membrane module other than the final stage, the non-permeated gas discharged from the other end side of the first treatment chamber is the non-permeated gas. It is preferable to add water vapor so that the relative humidity of the module increases by 20% or more.
 更に、上記第1の特徴のCO分離装置において、前記水蒸気供給部が、最終段以外の前記分離膜モジュールの各段に対して、前記第1排出口から排出された前記非透過ガスの相対湿度が20%以上増加するように、前記連結部に水蒸気を供給することが好ましい。 Further, in the CO 2 separation device of the first feature, the steam supply unit is relative to the non-permeable gas discharged from the first discharge port with respect to each stage of the separation membrane module other than the final stage. It is preferable to supply water vapor to the connecting portion so that the humidity increases by 20% or more.
 更に、上記第1の特徴のCO分離装置において、1段目の前記分離膜モジュールの前記第1処理室内に供給する前記混合ガスに、当該混合ガスの相対湿度が70%未満の場合、当該相対湿度が70%以上となるように、水蒸気を供給することが好ましい。 Further, in the CO 2 separation device of the first feature, when the relative humidity of the mixed gas to be supplied to the first processing chamber of the separation membrane module of the first stage is less than 70%, the said. It is preferable to supply water vapor so that the relative humidity is 70% or more.
 更に、上記第1の特徴のCO分離方法及び装置において、1段目の前記分離膜モジュールの前記第1処理室内に供給する前記混合ガスが、有機物のメタン発酵により生成されたバイオガスに由来するガスを含み、前記特定ガスがメタンであることを第2の特徴とする。 Further, in the CO 2 separation method and apparatus of the first feature, the mixed gas supplied to the first treatment chamber of the separation membrane module in the first stage is derived from the biogas produced by methane fermentation of an organic substance. The second feature is that the specific gas is methane.
 上記第2の特徴のCO分離方法及び装置において、最終段の前記分離膜モジュールの前記第1処理室から排出される前記非透過ガス中のドライベースでのメタン濃度が80mol%以上であることが好ましい。 In the CO 2 separation method and apparatus of the second feature, the methane concentration in the dry base in the impermeable gas discharged from the first treatment chamber of the separation membrane module in the final stage is 80 mol% or more. Is preferable.
 更に、本発明に係る燃焼システムは、上記第2の特徴のCO分離装置と、燃焼装置を備えた燃焼システムであって、前記CO分離装置の最終段の前記分離膜モジュールの前記第1処理室から排出される前記非透過ガスが、前記燃焼装置に燃料ガスとして供給されることを特徴とする。 Further, the combustion system according to the present invention is a combustion system including the CO 2 separation device of the second feature and the combustion device, and the first stage of the separation membrane module in the final stage of the CO 2 separation device. The non-permeated gas discharged from the processing chamber is supplied to the combustion device as a fuel gas.
 上記特徴の燃焼システムにおいて、前記CO分離装置の前記水蒸気供給部は、前記燃焼装置からの排熱を利用して、水蒸気を生成することが好ましい。 In the combustion system having the above characteristics, it is preferable that the steam supply unit of the CO 2 separation device generates steam by utilizing the waste heat from the combustion device.
 上記特徴のCO分離方法及び装置によれば、最終段以外の各分離膜モジュールの第1処理室から排出された非透過ガスに水蒸気が供給されることで、2段目以降の分離膜モジュールにおいて、相対湿度の低下に伴うCOパーミアンスの低下が抑制されて、所望のCOパーミアンスを維持することが可能となる。この結果、直列に連結された全ての分離膜モジュールにおいて高いCOパーミアンスを実現でき、分離膜モジュール列として高い選択透過性が得られる。 According to the CO 2 separation method and apparatus of the above characteristics, water vapor is supplied to the impermeable gas discharged from the first treatment chamber of each separation membrane module other than the final stage, so that the separation membrane modules of the second and subsequent stages are supplied. In, the decrease in CO 2 permeance accompanying the decrease in relative humidity is suppressed, and it becomes possible to maintain a desired CO 2 permeance. As a result, high CO 2 permeance can be realized in all the separation membrane modules connected in series, and high selective permeability can be obtained as the separation membrane module sequence.
本発明に係るCO分離装置で使用する分離膜モジュールの基本的な構成例を模式的に示す概略断面図Schematic sectional view schematically showing a basic configuration example of a separation membrane module used in the CO 2 separation apparatus according to the present invention. 本発明に係るCO分離装置の基本的な構成例を模式的に示す概略断面図Schematic cross-sectional view schematically showing a basic configuration example of the CO 2 separation device according to the present invention. 実施例1及び比較例1~3の各分離装置における分離膜モジュールの連結構造を示す図The figure which shows the connection structure of the separation membrane module in each separation apparatus of Example 1 and Comparative Examples 1 to 3. 比較例4~7の各分離装置における分離膜モジュールの連結構造を示す図The figure which shows the connection structure of the separation membrane module in each separation apparatus of the comparative example 4-7. 本発明に係る燃焼システムの要部構成を模式的に示す概略構成図Schematic configuration diagram schematically showing the main configuration of the combustion system according to the present invention.
 [第1実施形態]
 本発明に係るCO分離装置及びCO分離方法(以下、適宜「本分離装置」及び「本分離方法」という。)の一実施形態につき、図面に基づいて説明する。
[First Embodiment]
An embodiment of the CO 2 separation device and the CO 2 separation method (hereinafter, appropriately referred to as “the present separation device” and the “the present separation method”) according to the present invention will be described with reference to the drawings.
 図1に、本分離装置1で使用する分離膜モジュール2の基本的な構成例を模式的に示す。また、図2に、本分離装置1の基本的な構成例を模式的に示す。図1及び図2中の矢印は、ガスが流れる流路及び向きを簡略化して示したものである。また、図1及び図2の概略断面図に示す各構成要素の寸法比と実際の寸法比とは必ずしも一致するものではない。これらは、後述の第2実施形態で説明する燃焼システムの要部構成図についても同様とする。また、各概略断面図及び要部構成図において、同一の構成要素については、同一の符号を付すこととし、その説明を省略することがある。 FIG. 1 schematically shows a basic configuration example of the separation membrane module 2 used in the separation device 1. Further, FIG. 2 schematically shows a basic configuration example of the separation device 1. The arrows in FIGS. 1 and 2 show the flow path and direction in which the gas flows in a simplified manner. Further, the dimensional ratio of each component shown in the schematic cross-sectional views of FIGS. 1 and 2 does not always match the actual dimensional ratio. The same applies to the configuration diagram of the main part of the combustion system described in the second embodiment described later. Further, in each schematic cross-sectional view and the main part configuration diagram, the same components may be designated by the same reference numerals, and the description thereof may be omitted.
 [分離膜モジュールの構成]
 図1に示すように、分離膜モジュール2は、平膜状のCO分離膜3が筐体4内に収容され、筐体4の内壁とCO分離膜3の供給側面に囲まれた空間によって、第1処理室5が形成され、筐体4の内壁とCO分離膜3の透過側面に囲まれた空間によって、第2処理室6が形成されている。つまり、第1処理室5と第2処理室6がCO分離膜3によって隔てられている。よって、筐体4は、第1処理室5と第2処理室6を構成する筐体である。
[Structure of Separation Membrane Module]
As shown in FIG. 1, the separation membrane module 2 is a space in which a flat membrane-like CO 2 separation membrane 3 is housed in a housing 4 and surrounded by an inner wall of the housing 4 and a supply side surface of the CO 2 separation membrane 3. The first treatment chamber 5 is formed, and the second treatment chamber 6 is formed by the space surrounded by the inner wall of the housing 4 and the permeation side surface of the CO 2 separation membrane 3. That is, the first treatment chamber 5 and the second treatment chamber 6 are separated by the CO 2 separation membrane 3. Therefore, the housing 4 is a housing constituting the first processing chamber 5 and the second processing chamber 6.
 筐体4は、例えば、ステンレス製であり、図示していないが、CO分離膜3の外周端部と筐体4の内壁との間に、一例として、フッ素ゴム製ガスケットをシール材として介装して、CO分離膜3を筐体4内に固定している。尚、CO分離膜3の固定方法及びシール方法は、上記方法に限定されるものではない。また、CO分離膜3を筐体4内に固定するための具体的な構造は、CO分離膜3の形状及び筐体4内への収容形態によって異なるため、また、本発明の本旨ではないので、詳細な説明を省略する。 The housing 4 is made of, for example, stainless steel, and although not shown, a fluororubber gasket is used as a sealing material between the outer peripheral end of the CO 2 separation membrane 3 and the inner wall of the housing 4 as an example. The CO 2 separation membrane 3 is fixed in the housing 4. The method for fixing and sealing the CO 2 separation membrane 3 is not limited to the above method. Further, the specific structure for fixing the CO 2 separation membrane 3 in the housing 4 differs depending on the shape of the CO 2 separation membrane 3 and the accommodation form in the housing 4, and therefore, in the present invention. Since there is no such thing, a detailed explanation will be omitted.
 第1処理室5の対向する壁面の一方側と他方側には、混合ガスFGを外部から第1処理室5内に送入する第1送入口7と、混合ガスFG中のCO分離膜3を透過せず第1処理室5内に残留した非透過ガスEGを第1処理室5から外部へ排出する第1排出口8が設けられている。図1に示す第1送入口7と第1排出口8の開口位置は、例示であり、非透過ガスEGが、第1処理室5内においてCO分離膜3の供給側面に沿って一定の方向に流れる限りにおいて、第1処理室5の形状に応じて適宜変更可能である。 On one side and the other side of the facing wall surface of the first treatment chamber 5, a first inlet 7 for feeding the mixed gas FG into the first treatment chamber 5 from the outside and a CO 2 separation membrane in the mixed gas FG A first discharge port 8 is provided to discharge the non-permeated gas EG remaining in the first treatment chamber 5 from the first treatment chamber 5 to the outside without permeating the third. The opening positions of the first inlet 7 and the first outlet 8 shown in FIG. 1 are exemplary, and the impermeable gas EG is constant along the supply side surface of the CO 2 separation membrane 3 in the first treatment chamber 5. As long as it flows in the direction, it can be appropriately changed according to the shape of the first processing chamber 5.
 第2処理室6には、CO分離膜3を透過したCOを含む透過ガスPGを第2処理室6から外部へ排出する第2排出口9が設けられている。尚、本実施形態では、第2排出口9は、第2処理室6の対向する壁面の第1排出口8の開口位置と同じ側に設けられている。つまり、第2処理室6内において透過ガスPGのCO分離膜3の透過側面に沿って流れる方向が、第1処理室5内において非透過ガスEGのCO分離膜3の供給側面に沿って流れる方向と同じ方向に設定されている。以下、透過ガスPGと非透過ガスEGの流動方向が同じ場合を、便宜的に「並流」と記す場合がある。また、透過ガスPGと非透過ガスEGの流動方向が逆方向である場合を、便宜的に「向流」と記す場合がある。また、図1に示す第2排出口9の開口位置は、例示であり、透過ガスPGと非透過ガスEGの流動方向が「並流」となる限りにおいて、第2処理室6の形状に応じて適宜変更可能である。 The second treatment chamber 6 is provided with a second discharge port 9 for discharging the permeated gas PG containing CO 2 that has permeated the CO 2 separation membrane 3 from the second treatment chamber 6 to the outside. In this embodiment, the second discharge port 9 is provided on the same side as the opening position of the first discharge port 8 on the opposite wall surface of the second processing chamber 6. That is, the direction in which the permeated gas PG flows along the permeation side surface of the CO 2 separation membrane 3 in the second treatment chamber 6 is along the supply side surface of the non-permeate gas EG CO 2 separation membrane 3 in the first treatment chamber 5. It is set in the same direction as the flow direction. Hereinafter, the case where the permeated gas PG and the non-permeated gas EG have the same flow direction may be referred to as “parallel flow” for convenience. Further, the case where the flow directions of the permeated gas PG and the non-permeated gas EG are opposite to each other may be referred to as "counterflow" for convenience. Further, the opening position of the second discharge port 9 shown in FIG. 1 is an example, and corresponds to the shape of the second processing chamber 6 as long as the flow directions of the permeated gas PG and the non-permeated gas EG are “parallel flow”. Can be changed as appropriate.
 また、本実施形態では、第2処理室6には、スイープガス等を外部から第2処理室6内に送入する送入口は設けていない。 Further, in the present embodiment, the second processing chamber 6 is not provided with an inlet for feeding sweep gas or the like from the outside into the second processing chamber 6.
 CO分離膜3は、一例として、親水性多孔膜上に分離機能層を担持させた積層構造を有する。分離機能層は、COを選択的に透過させるための層であり、本実施形態では、一例として、親水性ポリマーのゲル層中に、COと選択的に反応する化合物であるCOキャリアを含み、促進輸送膜として機能する。 As an example, the CO 2 separation membrane 3 has a laminated structure in which a separation functional layer is supported on a hydrophilic porous membrane. The separation functional layer is a layer for selectively permeating CO 2 , and in the present embodiment, as an example, a CO 2 carrier which is a compound that selectively reacts with CO 2 in a gel layer of a hydrophilic polymer. And functions as a facilitating transport membrane.
 親水性多孔膜は、分離機能層のゲル層を形成する工程において、親水性ポリマーを含む水溶液からなるキャスト溶液を塗工する下地材であり、キャスト溶液中の親水性ポリマーをゲル化して得られるゲル層を支持する支持膜として機能する。分離機能層のゲル層を形成する工程については、多くの特許文献及び非特許文献に開示されており、詳細な説明は割愛する。 The hydrophilic porous film is a base material for applying a cast solution consisting of an aqueous solution containing a hydrophilic polymer in a step of forming a gel layer of a separation functional layer, and is obtained by gelling the hydrophilic polymer in the cast solution. It functions as a support film that supports the gel layer. The process of forming the gel layer of the separation functional layer is disclosed in many patent documents and non-patent documents, and detailed description thereof will be omitted.
 CO分離膜3の上記積層構造において、分離機能層の露出面を保護するために、当該露出面上に疎水性多孔膜を貼合して第1の保護膜を形成した3層構造としても良い。更に、親水性多孔膜の分離機能層支持面と反対側の露出面を保護するために、当該露出面上に疎水性多孔膜を貼合して第2の保護膜を形成した4層構造としても良い。 In the laminated structure of the CO 2 separation membrane 3, in order to protect the exposed surface of the separation functional layer, a hydrophobic porous membrane is laminated on the exposed surface to form a first protective film. good. Further, in order to protect the exposed surface on the opposite side of the separation functional layer support surface of the hydrophilic porous film, a hydrophobic porous film is laminated on the exposed surface to form a second protective film as a four-layer structure. Is also good.
 分離機能層を構成する親水性ポリマーとして、ポリビニルアルコール-ポリアクリル酸(PVA/PAA)塩共重合体、ポリビニルアルコール、ポリアクリル酸、キトサン、ポリビニルアミン、ポリアリルアミン、または、ポリビニルピロリドン等の使用が想定され、特に、ポリアクリル酸を主成分として含む親水性ポリマーが好適に使用される。更に、親水性ポリマーのゲル層がハイドロゲルであっても良い。ハイドロゲルは、親水性ポリマーが架橋することで形成された三次元網目構造物であり、水を吸収することで膨潤する性質を有する場合が多い。親水性ポリマーがPVA/PAA塩共重合体またはポリビニルアルコールの場合のハイドロゲルの架橋度は、グルタルアルデヒド等のジアルデヒド化合物、ホルムアルデヒドなどのアルデヒド化合物、等の架橋剤の添加量により調節することができる。尚、当業者において、PVA/PAA塩共重合体は、PVA/PAA共重合体と呼ばれることもある。 As the hydrophilic polymer constituting the separation functional layer, polyvinyl alcohol-polyacrylic acid (PVA / PAA) salt copolymer, polyvinyl alcohol, polyacrylic acid, chitosan, polyvinylamine, polyallylamine, polyvinylpyrrolidone and the like can be used. Assumed, in particular, a hydrophilic polymer containing polyacrylic acid as a main component is preferably used. Further, the gel layer of the hydrophilic polymer may be a hydrogel. Hydrogel is a three-dimensional network structure formed by cross-linking a hydrophilic polymer, and often has a property of swelling by absorbing water. When the hydrophilic polymer is a PVA / PAA salt copolymer or polyvinyl alcohol, the degree of cross-linking of the hydrogel can be adjusted by adding a cross-linking agent such as a dialdehyde compound such as glutaraldehyde or an aldehyde compound such as formaldehyde. can. In addition, in those skilled in the art, the PVA / PAA salt copolymer may be referred to as a PVA / PAA copolymer.
 分離機能層に含まれるCOキャリアとして、炭酸セシウム(CsCO)、炭酸ルビジウム(RbCO)等のアルカリ金属の炭酸塩、重炭酸塩、または、水酸化物、或いは、グリシン、2,3‐ジアミノプロピオン酸塩(DAPA)、アラニン、アルギニン、アスパラギン、セリン、オルニチン、クレアチン、トレオニン、サルコシン、及び、2‐アミノ酪酸等のアミノ酸が、好適に使用される。 As CO 2 carriers contained in the separation functional layer, carbonates of alkali metals such as cesium carbonate (Cs 2 CO 3 ) and rubidium carbonate (Rb 2 CO 3 ), bicarbonates, hydroxides, or glycine, Amino acids such as 2,3-diaminopropionate (DAPA), alanine, arginine, asparagine, serine, ornithine, creatine, threonine, sarcosin, and 2-aminobutyric acid are preferably used.
 促進輸送機構によるCOとCOキャリアの反応は、総括反応式としては、下記の(化1)のように示される。但し、(化1)ではCOキャリアが炭酸塩である場合を想定している。反応式中の記号「⇔」は、可逆反応であることを示している。 The reaction between CO 2 and CO 2 carriers by the accelerated transport mechanism is shown as the following (Chemical formula 1) as a general reaction formula. However, in (Chemical formula 1), it is assumed that the CO 2 carrier is a carbonate. The symbol "⇔" in the reaction formula indicates that it is a reversible reaction.
 (化1)
 CO + HO + CO 2- ⇔  2HCO
(Chemical 1)
CO 2 + H 2 O + CO 3 2 ⇔ 2HCO 3
 ここで、COキャリアがアルカリ金属の炭酸塩の場合には、上記(化1)に示す反応が生じるが、COキャリアがアルカリ金属の水酸化物の場合は、下記の(化2)に示すような反応が生じる。尚、(化2)では、一例としてアルカリ金属がセシウムの場合を示す。 Here, when the CO 2 carrier is an alkali metal carbonate, the reaction shown in (Chemical formula 1) above occurs, but when the CO 2 carrier is an alkali metal hydroxide, the following (Chemical formula 2) occurs. The reaction as shown occurs. In (Chemical Formula 2), the case where the alkali metal is cesium is shown as an example.
 (化2)
 CO2 + CsOH → CsHCO
 CsHCO3 + CsOH → CsCO3 + H
(Chemical 2)
CO 2 + CsOH → CsHCO 3
CsHCO 3 + CsOH → Cs 2 CO 3 + H 2 O
 尚、上記(化2)を纏めると、下記(化3)のように表すことができる。即ち、これにより、添加された水酸化セシウムが炭酸セシウムに転化することが示される。更に、上記(化2)より、COキャリアとして、アルカリ金属の炭酸塩の代わりに重炭酸塩を添加した場合においても同様の効果を得ることができることが分かる。 The above (Chemical formula 2) can be summarized as shown below (Chemical formula 3). That is, this indicates that the added cesium hydroxide is converted to cesium carbonate. Further, from the above (Chemical formula 2), it can be seen that the same effect can be obtained even when a bicarbonate is added instead of the alkali metal carbonate as the CO 2 carrier.
 (化3)
 CO2 + 2CsOH → CsCO3 + H
(Chemical 3)
CO 2 + 2CsOH → Cs 2 CO 3 + H 2 O
 グリシンやDAPA等のアミノ酸をCOキャリアとして利用する場合、二酸化炭素はNH と反応せず、フリーのNHと反応することが知られている。このため、COキャリアとしてグリシンやDAPA等のアミノ酸を用いる場合、アミノ酸に対して等量以上のアルカリを添加して、後述のキャスト溶液中に溶解したNH を脱プロトン化してNHに変換する必要がある。当該アルカリとしては、プロトン化したNH からプロトンを奪い、NHに変換できるだけの強塩基性を有するものであれば良く、アルカリ金属元素の水酸化物または炭酸塩を好適に利用できる。 When amino acids such as glycine and DAPA are used as CO 2 carriers, it is known that carbon dioxide does not react with NH 3+ but reacts with free NH 2 . Therefore, when amino acids such as glycine and DAPA are used as CO 2 carriers, an equal amount or more of alkali is added to the amino acids, and NH 3+ dissolved in the cast solution described later is deprotonated to NH 2 . Needs to be converted. The alkali may be any one having a strong basicity capable of depriving protonated NH 3+ of protons and converting it into NH 2 , and hydroxides or carbonates of alkali metal elements can be preferably used.
 親水性ポリマーのゲル層中には、COキャリア及び上記脱プロトン化剤としてのアルカリ以外に、CO水和反応触媒を添加しても良い。この場合、CO水和反応触媒として、オキソ酸化合物を好適に使用する。CO水和反応触媒は、より具体的には、6族元素、14族元素、15族元素、及び、16族元素の中から選択される少なくとも1つの元素のオキソ酸化合物を使用し、特に好ましくは、亜テルル酸化合物、亜セレン酸化合物、亜ヒ酸化合物、オルトケイ酸化合物、或いは、モリブデン酸化合物を使用する。 In addition to the CO 2 carrier and the alkali as the deprotonating agent, a CO dihydration reaction catalyst may be added to the gel layer of the hydrophilic polymer. In this case, an oxoacid compound is preferably used as the CO dihydration reaction catalyst. More specifically, the CO dihydration reaction catalyst uses an oxo acid compound of at least one element selected from Group 6 elements, Group 14 elements, Group 15 elements, and Group 16 elements, and particularly. Preferably, a terrelic acid compound, a selenic acid compound, a arsenic acid compound, an orthosilicic acid compound, or a molybdic acid compound is used.
 親水性多孔膜は、ポリカーボネート(PC)、ポリセルロースエステル、ポリエーテルエーテルケトン(PEEK)、及び、後述する疎水性多孔膜を親水化処理した膜、等が好適に使用される。更に、親水性多孔膜の多孔度(空隙率)は55%以上であるのが好ましく、親水性多孔膜11の細孔径は、0.1~1μmの範囲にあるのが好ましく、0.1~0.5μmの範囲にあるのがより好ましい。 As the hydrophilic porous membrane, polycarbonate (PC), polycellulose ester, polyetheretherketone (PEEK), a membrane obtained by hydrophilizing a hydrophobic porous membrane described later, and the like are preferably used. Further, the porosity (porosity) of the hydrophilic porous membrane is preferably 55% or more, and the pore diameter of the hydrophilic porous membrane 11 is preferably in the range of 0.1 to 1 μm, preferably 0.1 to 1. It is more preferably in the range of 0.5 μm.
 尚、「親水性」とは25℃における水との接触角が90°未満であることを意味する。本実施形態においては、親水性多孔膜の上記接触角は、45°以下が好ましい。 Note that "hydrophilic" means that the contact angle with water at 25 ° C is less than 90 °. In the present embodiment, the contact angle of the hydrophilic porous membrane is preferably 45 ° or less.
 疎水性多孔膜は、ポリテトラフルオロエチレン(PTFE)、ポリエーテルスルホン(PES)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリアクリロニトリル(PAN)、ポリスルホン(PS)、ポリエーテルスルホン(PES)、ポリイミド(PI)、ポリフッ化ビニリデン(PVDF)、等が好適に使用される。更に、疎水性多孔膜の多孔度(空隙率)は55%以上であるのが好ましく、疎水性多孔膜の細孔径は、0.1~1μmの範囲にあるのが好ましく、0.1~0.5μmの範囲にあるのがより好ましい。 The hydrophobic porous film includes polytetrafluoroethylene (PTFE), polyethersulfone (PES), polypropylene (PP), polyethylene (PE), polyacrylonitrile (PAN), polysulfone (PS), polyethersulfone (PES), and polyimide. (PI), polyvinylidene fluoride (PVDF), etc. are preferably used. Further, the porosity (porosity) of the hydrophobic porous membrane is preferably 55% or more, and the pore diameter of the hydrophobic porous membrane is preferably in the range of 0.1 to 1 μm, and 0.1 to 0. It is more preferably in the range of .5 μm.
 尚、「疎水性」とは25℃における水との接触角が90°以上であることを意味する。本実施形態においては、疎水性多孔膜の上記接触角は、95°以上が好ましく、100°以上がより好ましく、105°以上が更に好ましい。 Note that "hydrophobicity" means that the contact angle with water at 25 ° C is 90 ° or more. In the present embodiment, the contact angle of the hydrophobic porous membrane is preferably 95 ° or more, more preferably 100 ° or more, still more preferably 105 ° or more.
 [本分離装置の構成]
 次に、本分離装置1の基本的な構成について、図2を参照して説明する。本分離装置1は、分離膜モジュール2の複数段(m段:mは2以上の整数)を直列に連結した分離膜モジュール列と、水蒸気供給部11を備えて構成される。尚、複数段の分離膜モジュール2は、混合ガスFG及び非透過ガスEGの流れる方向に沿って、先頭から順番に、1段目、2段目、……、m段目(最終段)と呼ぶ。
[Configuration of this separator]
Next, the basic configuration of the separation device 1 will be described with reference to FIG. The separation device 1 is configured to include a separation membrane module row in which a plurality of stages of the separation membrane module 2 (m stage: m is an integer of 2 or more) are connected in series, and a steam supply unit 11. The plurality of stages of the separation membrane module 2 are the first stage, the second stage, ..., The mth stage (final stage) in order from the beginning along the flow direction of the mixed gas FG and the impermeable gas EG. Call.
 図2に示すように、2段目以降の各分離膜モジュール2の第1送入口7は、その前段の分離膜モジュール2の第1排出口8と相互に、直接または連結管を介して連結し、当該前段の分離膜モジュール2の第1排出口8に対して連結部10が構成されている。最終段(m段目)の分離膜モジュール2を除いて、1段目から(m-1)段目の各分離膜モジュール2の第1排出口8に連結部10が構成されている。連結部の個数は分離膜モジュール2の段数mより1だけ少ないので、便宜的に、各連結部の先頭からの順番は、その前方に位置する各分離膜モジュール2の順番に対応させている。 As shown in FIG. 2, the first inlet 7 of each separation membrane module 2 in the second and subsequent stages is connected to the first discharge port 8 of the separation membrane module 2 in the previous stage directly or via a connecting pipe. However, the connecting portion 10 is configured with respect to the first discharge port 8 of the separation membrane module 2 in the previous stage. Except for the separation membrane module 2 in the final stage (mth stage), the connecting portion 10 is configured in the first discharge port 8 of each separation membrane module 2 in the first stage to the (m-1) stage. Since the number of connecting portions is one less than the number of stages m of the separation membrane module 2, for convenience, the order from the beginning of each connecting portion corresponds to the order of each separation membrane module 2 located in front of the connecting portion.
 図2に示すように、一実施態様において、m段の分離膜モジュール2のm個の第2排出口9は相互に連結され、各第2排出口9から排出される透過ガスPGは、まとめて当該透過ガスPGを回収または再利用する装置(図示せず)に供給される。透過ガスPGは、二酸化炭素を多く含んでおり、各種産業用利用のために回収及び再利用が可能である。尚、透過ガスPGを回収または再利用せず、大気放出する場合は、各第2排出口9は開放して
おいても良い。
As shown in FIG. 2, in one embodiment, the m second discharge ports 9 of the m-stage separation membrane module 2 are connected to each other, and the permeated gas PG discharged from each second discharge port 9 is summarized. It is supplied to a device (not shown) that recovers or reuses the permeated gas PG. The permeated gas PG contains a large amount of carbon dioxide and can be recovered and reused for various industrial uses. When the permeated gas PG is not recovered or reused and is released to the atmosphere, each second discharge port 9 may be left open.
 図2に示すように、水蒸気供給部11から、1段目から(m-1)段目の各分離膜モジュール2の連結部10に水蒸気(HO)が供給される。この結果、1段目から(m-1)段目の各分離膜モジュール2において、第1排出口8から排出された非透過ガスEGは、連結部10に供給された水蒸気(HO)とともに、次段の分離膜モジュール2の第1処理室5内に混合ガスFGとして供給される。 As shown in FIG. 2, steam ( H2O ) is supplied from the steam supply unit 11 to the connecting portion 10 of each separation membrane module 2 from the first stage to the (m-1) stage. As a result, in each separation membrane module 2 from the first stage to the (m-1) stage, the impermeable gas EG discharged from the first discharge port 8 is the water vapor (H 2 O) supplied to the connecting portion 10. At the same time, it is supplied as a mixed gas FG into the first processing chamber 5 of the separation membrane module 2 in the next stage.
 各段の連結部10に供給される水蒸気の量は、供給された水蒸気によって各連結部10に排出される非透過ガスEGの相対湿度が20%以上増加するのに必要な量とするのが好ましい。また、20%以上増加後の非透過ガスEG(次段の分離膜モジュール2に供給する混合ガスFG)の相対湿度は、50%以上100%未満であることが好ましく、更に、1段目の分離膜モジュール2に供給される混合ガスFGの相対湿度と同等または略同等(例えば、±5%以内)であることがより好ましい。但し、増加後の相対湿度が100%に至る場合、或いは、100%未満であっても温度変動等により、非透過ガスEG中の水蒸気が凝縮する場合には、100%に至らない程度に、或いは、当該凝縮が発生しない程度に、水蒸気の供給量を抑えるのが好ましい。 The amount of water vapor supplied to the connecting portion 10 of each stage is the amount required for the relative humidity of the non-permeated gas EG discharged to each connecting portion 10 to increase by 20% or more due to the supplied water vapor. preferable. Further, the relative humidity of the impermeable gas EG (mixed gas FG supplied to the separation membrane module 2 in the next stage) after increasing by 20% or more is preferably 50% or more and less than 100%, and further, the first stage. It is more preferable that the relative humidity of the mixed gas FG supplied to the separation membrane module 2 is equal to or substantially equal to (for example, within ± 5%). However, if the relative humidity after the increase reaches 100%, or if the water vapor in the non-permeated gas EG condenses due to temperature fluctuations even if it is less than 100%, the relative humidity does not reach 100%. Alternatively, it is preferable to suppress the supply amount of water vapor to the extent that the condensation does not occur.
 尚、本実施形態では、各段の分離膜モジュール2において、第1処理室5内に供給された混合ガスFGが、第1処理室5内を通過して非透過ガスEGとして排出されるまでに、相対湿度が20%以上低下する場合を想定している。各段の連結部10への水蒸気の供給量は、同じであっても、各段の分離膜モジュール2毎の非透過ガスEGの相対湿度の低下の程度に応じて変化させても良い。 In the present embodiment, in the separation membrane module 2 of each stage, until the mixed gas FG supplied into the first treatment chamber 5 passes through the first treatment chamber 5 and is discharged as a non-permeable gas EG. In addition, it is assumed that the relative humidity drops by 20% or more. The amount of water vapor supplied to the connecting portion 10 of each stage may be the same, or may be changed according to the degree of decrease in the relative humidity of the impermeable gas EG for each separation membrane module 2 of each stage.
 水蒸気供給部11は、水蒸気供給部11内で水を加熱して水蒸気を生成して、各段の連結部10に分配する構成、或いは、外部から水蒸気を水蒸気供給部11内に収集して、各段の連結部10に分配する構成の2種類の構成が想定される。また、水蒸気供給部11を、2種類の構成を組み合わせて実現しても良い。例えば、後者の外部から水蒸気を収集する構成としては、最終段(m段目)の分離膜モジュール2から排出される非透過ガスEGに含まれる水蒸気を、例えば、パーフルオロ系膜(またはパーフルオロスルホン酸系膜)等の水蒸気透過膜を用いる公知の膜分離方式によって水蒸気のまま分離する水蒸気除去部を設け、当該水蒸気除去部で分離された水蒸気を水蒸気供給部11内に収集する構成、或いは、各段の分離膜モジュール2から排出される透過ガスPGに含まれる水蒸気を、例えば、上述の膜分離方式の水蒸気除去部によって水蒸気のまま分離して、水蒸気供給部11内に収集する構成、或いは、両者を組み合わせた構成が想定される。 The steam supply unit 11 is configured to heat water in the steam supply unit 11 to generate steam and distribute it to the connecting unit 10 of each stage, or collect steam from the outside into the steam supply unit 11. Two types of configurations are assumed, in which the components are distributed to the connecting portion 10 of each stage. Further, the steam supply unit 11 may be realized by combining two types of configurations. For example, as the latter configuration for collecting water vapor from the outside, the water vapor contained in the impermeable gas EG discharged from the separation membrane module 2 in the final stage (mth stage) is, for example, a perfluoro-based membrane (or perfluoro). A water vapor removing unit that separates water vapor as it is by a known membrane separation method using a water vapor permeation film such as (sulfonic acid-based film) is provided, and the water vapor separated by the water vapor removing unit is collected in the water vapor supply unit 11. , For example, the water vapor contained in the permeated gas PG discharged from the separation membrane module 2 of each stage is separated as water vapor by the water vapor removing unit of the above-mentioned membrane separation method and collected in the water vapor supply unit 11. Alternatively, a configuration in which both are combined is assumed.
 水蒸気供給部11から各段の連結部10に水蒸気が供給されることで、2段目以降の分離膜モジュール2の第1処理室5内に供給された混合ガスFGの相対湿度を、混合ガスFGの温度を下げることなく、所定値以上に維持することができる。この結果、2段目以降の分離膜モジュール2において、相対湿度の低下に伴うCOパーミアンスの低下を抑制して、所望のCOパーミアンスを維持することが可能となる。従って、本分離装置1の水蒸気供給部11が各段の連結部10に水蒸気を分配する構成によって、分離膜モジュール2を複数段直列に連結して使用する従来のCO分離方法及び装置における後段の分離膜モジュールほど、COの透過速度が低下するという問題が解消される。 By supplying steam from the steam supply section 11 to the connecting section 10 of each stage, the relative humidity of the mixed gas FG supplied into the first treatment chamber 5 of the separation membrane module 2 in the second and subsequent stages is set to the mixed gas. It is possible to maintain the temperature above a predetermined value without lowering the temperature of the FG. As a result, in the separation membrane module 2 in the second and subsequent stages, it is possible to suppress the decrease in CO 2 permeance due to the decrease in relative humidity and maintain the desired CO 2 permeance. Therefore, the steam supply unit 11 of the separation device 1 distributes water vapor to the connection unit 10 of each stage, so that the separation membrane modules 2 are connected in series in a plurality of stages and used. The problem that the permeation rate of CO 2 is lowered in the separation membrane module is solved.
 1段目の分離膜モジュール2の第1送入口7から第1処理室5内に供給される混合ガスFGは、CO分離膜3の分離機能層に含まれるCOキャリアと反応しない特定ガスとCOと水蒸気(HO)を含む混合ガスである。特定ガスは、分離機能層内でCOキャリアと反応せず、溶解・拡散機構でのみ透過するH、CH、N、O、CO等が想定される。各段の分離膜モジュール2において、混合ガスFG内の各ガス成分の一部は、CO分離膜3を透過せずに第1処理室5内に残留するため、非透過ガスEGも、混合ガスFGとは各ガス成分の配分比は異なるが、特定ガスとCOと水蒸気(HO)を含む混合ガスである。 The mixed gas FG supplied from the first inlet 7 of the first-stage separation membrane module 2 into the first treatment chamber 5 is a specific gas that does not react with the CO 2 carrier contained in the separation functional layer of the CO 2 separation membrane 3. It is a mixed gas containing CO 2 and water vapor (H 2 O). The specific gas is assumed to be H 2 , CH 4 , N 2 , O 2 , CO, etc., which do not react with CO 2 carriers in the separation functional layer and permeate only by the dissolution / diffusion mechanism. In the separation membrane module 2 of each stage, a part of each gas component in the mixed gas FG remains in the first treatment chamber 5 without permeating the CO 2 separation membrane 3, so that the impermeable gas EG is also mixed. Although the distribution ratio of each gas component is different from that of gas FG, it is a mixed gas containing a specific gas, CO 2 and water vapor (H 2 O).
 上述したように、水蒸気供給部11から各段の連結部10に水蒸気が供給されることで、2段目以降の分離膜モジュール2において、相対湿度の低下に伴うCOパーミアンスの低下を抑制して、所望のCOパーミアンスを維持することが可能となる。従って、各段の分離膜モジュール2においては、1段目の分離膜モジュール2と同様に、CO分離膜3の分離機能層を透過する特定ガスのガスパーミアンスに対して、約100倍から数1000倍程度の極めて高いCOパーミアンスを実現でき、高い選択透過性が維持される。 As described above, by supplying water vapor from the water vapor supply unit 11 to the connecting unit 10 of each stage, it is possible to suppress a decrease in CO 2 permeance due to a decrease in relative humidity in the separation membrane module 2 in the second and subsequent stages. Therefore, it becomes possible to maintain the desired CO 2 permeance. Therefore, in the separation membrane module 2 of each stage, as in the case of the separation membrane module 2 of the first stage, the gas permeance of the specific gas permeating through the separation function layer of the CO 2 separation membrane 3 is about 100 times to several. An extremely high CO 2 permeance of about 1000 times can be realized, and high selective permeability is maintained.
 尚、上記説明では、1段目の分離膜モジュール2の第1送入口7から第1処理室5内に供給される混合ガスFGの相対湿度は、1段目の分離膜モジュール2のCO分離膜3の分離機能層において、所与のCO分圧差で所期のCOパーミアンスが実現できる程度であると想定していた。しかし、当該相対湿度が十分に高くなく、所期のCOパーミアンスが得られない場合は、水蒸気供給部11から、1段目の分離膜モジュール2に供給される混合ガスFGに対して、当該相対湿度が所定値(例えば、50%~80%の範囲内で設定、一例として70%)以上となるように、水蒸気を供給するのも、好ましい実施態様である。図2において、当該水蒸気の供給路を点線で示す。 In the above description, the relative humidity of the mixed gas FG supplied from the first inlet 7 of the first-stage separation membrane module 2 into the first treatment chamber 5 is the CO 2 of the first-stage separation membrane module 2. In the separation functional layer of the separation membrane 3, it was assumed that the desired CO 2 permit could be realized with a given CO 2 partial pressure difference. However, if the relative humidity is not sufficiently high and the desired CO 2 permeance cannot be obtained, the mixed gas FG supplied from the steam supply unit 11 to the separation membrane module 2 in the first stage is concerned. It is also a preferred embodiment to supply water vapor so that the relative humidity is set to a predetermined value (for example, set within the range of 50% to 80%, 70% as an example) or more. In FIG. 2, the supply path of the steam is shown by a dotted line.
 従って、各段の分離膜モジュール2において、第1処理室5内に供給された混合ガスFG中のCOが、CO分離膜3を特定ガスに対して選択的に透過することで、混合ガスFGから段階的に分離される。そして、非透過ガスEGが各分離膜モジュール2の第1処理室5から排出される毎に、非透過ガスEG中のドライベースでのCO濃度は段階的に低下し、逆に、特定ガスの濃度は段階的に増加する。 Therefore, in the separation membrane module 2 of each stage, CO 2 in the mixed gas FG supplied into the first treatment chamber 5 selectively permeates the CO 2 separation membrane 3 with respect to the specific gas, thereby mixing. It is gradually separated from the gas FG. Then, each time the impermeable gas EG is discharged from the first treatment chamber 5 of each separation membrane module 2, the CO 2 concentration on the dry base in the impermeable gas EG gradually decreases, and conversely, the specific gas Concentration increases in stages.
 尚、図2には図示していないが、1段目の分離膜モジュール2の第1送入口7には、混合ガスFGを第1処理室5内に供給するための配管が接続され、最終段の分離膜モジュール2の第1排出口8には、非透過ガスEGを第1処理室5から外部に排出するための配管が接続され、各段の分離膜モジュール2の第2排出口9には、透過ガスPGを第2処理室6から外部に排出するための配管が接続されている。 Although not shown in FIG. 2, a pipe for supplying the mixed gas FG into the first processing chamber 5 is connected to the first inlet 7 of the first-stage separation membrane module 2 and finally. A pipe for discharging the impermeable gas EG from the first treatment chamber 5 to the outside is connected to the first discharge port 8 of the separation membrane module 2 of each stage, and the second discharge port 9 of the separation membrane module 2 of each stage is connected. Is connected to a pipe for discharging the permeated gas PG from the second processing chamber 6 to the outside.
 上記各配管には、ガス管の他、複数のガス種を混合するため装置、ガス流量を調整または計測するための装置、ガスの供給圧を調整するための装置、ガスの背圧を調整するための装置、ガス中に水蒸気を添加するための装置、ガス中の水分を除去するための装置等が、必要に応じて、設けられる。これらは、後述の第2実施形態で説明する燃焼システムの要部構成図についても同様とする。 In addition to the gas pipe, each of the above pipes has a device for mixing multiple gas types, a device for adjusting or measuring the gas flow rate, a device for adjusting the gas supply pressure, and a gas back pressure. A device for adding water vapor to the gas, a device for removing water in the gas, and the like are provided as necessary. The same applies to the configuration diagram of the main part of the combustion system described in the second embodiment described later.
 [本分離装置の性能評価]
 次に、本分離装置1の実施例1と、本分離装置1の7種類の比較例1~7に対して、混合ガスFGの処理性能を、シミュレーションで評価した結果を説明する。
[Performance evaluation of this separator]
Next, the results of simulating the processing performance of the mixed gas FG with respect to Example 1 of the Separation Device 1 and Comparative Examples 1 to 7 of the seven types of the Separation Device 1 will be described.
 図3に、実施例1及び比較例1~3の各分離装置における分離膜モジュール2の相互に異なる4種類の連結構造を示す。図4に、比較例4~7の各分離装置における分離膜モジュール2の相互に異なる4種類の連結構造を示す。図3及び図4に示す各連結構造では、2台の分離膜モジュール2を使用している。 FIG. 3 shows four types of interconnected structures of the separation membrane modules 2 in each of the separation devices of Example 1 and Comparative Examples 1 to 3. FIG. 4 shows four types of interconnected structures of the separation membrane modules 2 in each of the separation devices of Comparative Examples 4 to 7. In each of the connecting structures shown in FIGS. 3 and 4, two separation membrane modules 2 are used.
 実施例1は、図2に示す本分離装置1のm段の分離膜モジュール2を最小段数の2段で構成したものである。実施例1の連結構造を、便宜的に「直列並流中間加湿」と称す。 In the first embodiment, the m-stage separation membrane module 2 of the separation device 1 shown in FIG. 2 is configured with a minimum number of two stages. The connection structure of Example 1 is referred to as "series parallel flow intermediate humidification" for convenience.
 比較例1は、実施例1で実施している連結部10への水蒸気の供給を行わない比較例である。比較例1の連結構造を、便宜的に「直列並流」と称す。 Comparative Example 1 is a comparative example in which steam is not supplied to the connecting portion 10 carried out in Example 1. The connected structure of Comparative Example 1 is referred to as "series parallel flow" for convenience.
 比較例2は、実施例1で実施している連結部10への水蒸気の供給に代えて、連結部10を流れる非透過ガスEGの温度を10℃冷却する比較例である。比較例2の連結構造を、便宜的に「直列並流中間冷却」と称す。 Comparative Example 2 is a comparative example in which the temperature of the impermeable gas EG flowing through the connecting portion 10 is cooled by 10 ° C. instead of supplying water vapor to the connecting portion 10 carried out in the first embodiment. The connection structure of Comparative Example 2 is referred to as "series parallel flow intermediate cooling" for convenience.
 比較例3は、実施例1で実施している連結部10への水蒸気の供給を行わない比較例であり、各分離膜モジュール2における透過ガスPGと非透過ガスEGの流動方向が逆方向(向流)となっている。また、1段目の第2処理室6から排出された透過ガスPGが、2段目の第2処理室6に供給される。比較例3の連結構造を、便宜的に「直列向流」と称す。 Comparative Example 3 is a comparative example in which water vapor is not supplied to the connecting portion 10 carried out in Example 1, and the flow directions of the permeated gas PG and the non-permeated gas EG in each separation membrane module 2 are opposite directions ( (Direct flow). Further, the permeated gas PG discharged from the second processing chamber 6 of the first stage is supplied to the second processing chamber 6 of the second stage. The connected structure of Comparative Example 3 is referred to as "series countercurrent" for convenience.
 比較例4は、実施例1で実施している連結部10への水蒸気の供給を行わない比較例であり、1段目の第2処理室6にスイープガスSGとして水蒸気が供給され、1段目の第2処理室6から排出された透過ガスPGとスイープガスSGの混合ガスMGが、2段目の第2処理室6に供給される。比較例4の連結構造を、便宜的に「直列並流連結スイープ」と称す。 Comparative Example 4 is a comparative example in which steam is not supplied to the connecting portion 10 carried out in Example 1, and steam is supplied as a sweep gas SG to the second treatment chamber 6 of the first stage, and the first stage is used. The mixed gas MG of the permeated gas PG and the sweep gas SG discharged from the second processing chamber 6 of the eye is supplied to the second processing chamber 6 of the second stage. The connection structure of Comparative Example 4 is referred to as a "series parallel flow connection sweep" for convenience.
 比較例5は、実施例1で実施している連結部10への水蒸気の供給を行わない比較例であり、1段目と2段目の各第2処理室6にスイープガスSGとして水蒸気が各別に供給される。各段の第2処理室6からは、透過ガスPGとスイープガスSGの混合ガスMGが外部に排出される。比較例5の連結構造を、便宜的に「直列並流独立スイープ」と称す。 Comparative Example 5 is a comparative example in which water vapor is not supplied to the connecting portion 10 carried out in Example 1, and water vapor is supplied as sweep gas SG to each of the second treatment chambers 6 of the first stage and the second stage. It is supplied separately. From the second treatment chamber 6 of each stage, the mixed gas MG of the permeated gas PG and the sweep gas SG is discharged to the outside. The connected structure of Comparative Example 5 is referred to as "series parallel flow independent sweep" for convenience.
 比較例6は、比較例1の直列に連結した2つの分離膜モジュール2を分離して並列に配置した比較例である。比較例6の連結構造を、便宜的に「並列並流」と称す。 Comparative Example 6 is a comparative example in which two separation membrane modules 2 connected in series in Comparative Example 1 are separated and arranged in parallel. The connected structure of Comparative Example 6 is referred to as "parallel parallel flow" for convenience.
 比較例7は、比較例6に対して、各分離膜モジュール2における透過ガスPGと非透過ガスEGの流動方向を逆方向(向流)とした比較例である。比較例7の連結構造を、便宜的に「並列向流」と称す。 Comparative Example 7 is a comparative example in which the flow directions of the permeated gas PG and the non-permeated gas EG in each separation membrane module 2 are opposite (countercurrent) to Comparative Example 6. The connected structure of Comparative Example 7 is referred to as "parallel countercurrent" for convenience.
 次に、実施例1及び比較例1~7に対するシミュレーションで使用した各種条件について説明する。 Next, various conditions used in the simulation for Example 1 and Comparative Examples 1 to 7 will be described.
 1段目の分離膜モジュール2に供給する混合ガスFGは、特定ガスがメタン(CH)である、メタン(CH)とCOと水蒸気(HO)を含む混合ガスであり、ドライベースでのCHとCOと配分比(mol%)は、CH:CO=60:40である。また、当該混合ガスFGの相対湿度RHFin(初期値)及び温度Tは80%と110℃である。CO分離膜3の有効膜面積は、10m/モジュールである。各分離膜モジュール2の第1処理室5内の圧力PF(絶対圧)及び第2処理室6内の圧力PS(絶対圧)は、750kPa及び101.3kPa(大気圧)である。分離膜モジュール2間での圧力損失は無視した。 The mixed gas FG supplied to the separation membrane module 2 of the first stage is a mixed gas containing methane (CH 4 ), CO 2 and water vapor (H 2 O) in which the specific gas is methane (CH 4 ), and is dry. The distribution ratio (mol%) of CH 4 and CO 2 at the base is CH 4 : CO 2 = 60: 40. Further, the relative humidity RHFin (initial value) and the temperature T of the mixed gas FG are 80% and 110 ° C. The effective membrane area of the CO 2 separation membrane 3 is 10 m 2 / module. The pressure PF (absolute pressure) in the first processing chamber 5 and the pressure PS (absolute pressure) in the second processing chamber 6 of each separation membrane module 2 are 750 kPa and 101.3 kPa (atmospheric pressure). The pressure loss between the separation membrane modules 2 was ignored.
 2段目の分離膜モジュール2から排出される非透過ガスEG中のメタン濃度(「回収メタン濃度」と称す)が80mol%になるときの実施例1及び比較例1~5の1段目の分離膜モジュール2に供給する混合ガスFGの供給ガス流量をF(dryNm/h)とし、比較例6及び7では、2つの分離膜モジュール2にそれぞれ供給する混合ガスFGのガス流量をF/2(合計のガス流量をF)とする。また、実施例1及び比較例1~7の1段目の分離膜モジュール2に供給する混合ガスFG中の水蒸気流量をLF(kg/h)、実施例1の連結部10に供給する水蒸気流量をLM(kg/h)、比較例4及び5のスイープガスSGとして供給する水蒸気流量をLS(kg/h)とする。但し、水蒸気流量LMは、1段目の分離膜モジュール2から排出される非透過ガスEGの相対湿度を、上記相対湿度RHFin(80%)にまで戻すのに必要な水蒸気流量として与えられる。また、水蒸気流量LSは、水蒸気流量LMと同じに設定した。 The first stage of Example 1 and Comparative Examples 1 to 5 when the methane concentration (referred to as “recovered methane concentration”) in the impermeable gas EG discharged from the second-stage separation membrane module 2 becomes 80 mol%. The supply gas flow rate of the mixed gas FG supplied to the separation membrane module 2 is F (dryNm 3 / h), and in Comparative Examples 6 and 7, the gas flow rate of the mixed gas FG supplied to the two separation membrane modules 2 is F /. 2 (the total gas flow rate is F). Further, the water vapor flow rate in the mixed gas FG supplied to the separation membrane module 2 in the first stage of Examples 1 and Comparative Examples 1 to 7 is LF (kg / h), and the water vapor flow rate is supplied to the connecting portion 10 of Example 1. Is LM (kg / h), and the steam flow rate supplied as the sweep gas SG of Comparative Examples 4 and 5 is LS (kg / h). However, the water vapor flow rate LM is given as the water vapor flow rate required to return the relative humidity of the impermeable gas EG discharged from the first-stage separation membrane module 2 to the relative humidity RHFin (80%). Further, the steam flow rate LS was set to be the same as the steam flow rate LM.
 従って、実施例1及び比較例1~7における総水蒸気流量L(kg/h)は、下記のように表される。
 実施例1:       L=LF+LM
 比較例4及び5:    L=LF+LS
 比較例1~3,6,7: L=LF
Therefore, the total steam flow rate L (kg / h) in Example 1 and Comparative Examples 1 to 7 is expressed as follows.
Example 1: L = LF + LM
Comparative Examples 4 and 5: L = LF + LS
Comparative Examples 1 to 3, 6, 7: L = LF
 次に、実施例1及び比較例1~7に対して、上記条件でシミュレーションを行い、回収メタン濃度が80mol%になるときの供給ガス流量F(dryNm/h)、及び、総水蒸気流量L/供給ガス流量F(kg/Nm)を求めた。下記の表1にシミュレーション結果をまとめて示す。 Next, simulations were performed for Example 1 and Comparative Examples 1 to 7 under the above conditions, and the supply gas flow rate F (dryNm 3 / h) and the total steam flow rate L when the recovered methane concentration reached 80 mol%. / The supply gas flow rate F (kg / Nm 3 ) was determined. The simulation results are summarized in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1の供給ガス流量Fと、スイープガスSGを使用しない同じ直列連結型の比較例1~3の供給ガス流量Fを比較すると、成績が大幅に向上していることが分かる。つまり、「直列並流中間加湿」タイプの本分離装置1は、所与の回収メタン濃度の精製メタンガスの単位時間当たりの収量が大きく、精製メタンガスの生産効率が高いことを意味する。これは、本分離装置1の混合ガスFGに対するCO分離性能が高いことを示している。 Comparing the supply gas flow rate F of Example 1 with the supply gas flow rate F of the same series-connected type Comparative Examples 1 to 3 that do not use the sweep gas SG, it can be seen that the results are significantly improved. In other words, this separation device 1 of the "series parallel flow intermediate humidification" type means that the yield of purified methane gas having a given recovered methane concentration per unit time is large, and the production efficiency of purified methane gas is high. This indicates that the CO 2 separation performance of the separation device 1 with respect to the mixed gas FG is high.
 特に、比較例2の「直列並流中間冷却」タイプと比較すると、比較例2においても、連結部10において、非透過ガスEGの相対湿度を上昇させる試みがなされているが、10℃程度冷却しただけでは、相対湿度の上昇が少なく、COパーミアンスの低下を十分に抑制できていないことが分かる。これは、比較例1の「直列並流」タイプと比較例2の「直列並流中間冷却」タイプとの対比からも明かである。更に、比較例2において、相対湿度の上昇幅を上げるために、冷却による非透過ガスEGの温度低下を大きくすると、当該温度低下に伴う次段の分離膜モジュール2におけるCOパーミアンスの低下が顕著になるという問題が生じる。 In particular, as compared with the "series parallel flow intermediate cooling" type of Comparative Example 2, in Comparative Example 2, an attempt is made to increase the relative humidity of the impermeable gas EG in the connecting portion 10, but the cooling is about 10 ° C. It can be seen that the increase in relative humidity is small and the decrease in CO 2 permeance cannot be sufficiently suppressed. This is clear from the comparison between the "series parallel flow" type of Comparative Example 1 and the "series parallel flow intermediate cooling" type of Comparative Example 2. Further, in Comparative Example 2, when the temperature decrease of the impermeable gas EG due to cooling is increased in order to increase the increase range of the relative humidity, the CO 2 permeance in the separation membrane module 2 in the next stage is remarkably decreased due to the temperature decrease. The problem arises.
 実施例1の供給ガス流量Fと、スイープガスSGを使用する同じ直列連結型の比較例4及び5の供給ガス流量Fを比較すると、成績が略同じであることが分かる。つまり、実施例1は、混合ガスFGの処理性能に関しては、比較例4及び5と比較して有意差はない。しかし、本分離装置1で使用する分離膜モジュール2は、第2処理室6内に外部からスイープガスSGを供給するための第2送入口を設ける必要がないため、比較例4及び5で使
用する分離膜モジュール2と比べて構造が簡素化され、例えば、CO分離膜3の形状を平膜の平板型から変形し、それに応じて第1処理室5及び第2処理室6の形状も大幅に変形させる場合等において、設計の自由度において有利となる。
Comparing the supply gas flow rate F of Example 1 with the supply gas flow rate F of the same series-connected type Comparative Examples 4 and 5 using the sweep gas SG, it can be seen that the results are substantially the same. That is, there is no significant difference in the processing performance of the mixed gas FG in Example 1 as compared with Comparative Examples 4 and 5. However, the separation membrane module 2 used in the present separation device 1 is used in Comparative Examples 4 and 5 because it is not necessary to provide a second inlet for supplying the sweep gas SG from the outside in the second treatment chamber 6. The structure is simplified as compared with the separation membrane module 2, for example, the shape of the CO 2 separation membrane 3 is deformed from the flat plate type of the flat membrane, and the shapes of the first treatment chamber 5 and the second treatment chamber 6 are changed accordingly. It is advantageous in terms of design freedom when it is significantly deformed.
 実施例1の供給ガス流量Fと、並列型の比較例6及び7の供給ガス流量Fを比較すると、成績が大幅に向上していることが分かる。つまり、「直列並流中間加湿」タイプの本分離装置1は、並列型の連結構造と比較しても、所定の回収メタン濃度の精製メタンガスの単位時間当たりの収量が大きく、精製メタンガスの生産能力が高いことを意味する。これは、本分離装置1の混合ガスFGに対するCO分離性能が高いことを示している。 Comparing the supply gas flow rate F of Example 1 with the supply gas flow rate F of the parallel type Comparative Examples 6 and 7, it can be seen that the results are significantly improved. That is, the "series parallel flow intermediate humidification" type main separation device 1 has a large yield per unit time of purified methane gas having a predetermined recovered methane concentration even when compared with the parallel type connected structure, and has a production capacity of purified methane gas. Means that is high. This indicates that the CO 2 separation performance of the separation device 1 with respect to the mixed gas FG is high.
 尚、比較例6及び比較例7を比較すると、「向流」タイプは、「並流」タイプと比べて著しく成績が劣っており、「向流」に起因する相対湿度低下の影響が顕著であることが分かる。このため、本分離装置1は「並流」タイプの分離膜モジュール2を採用している。 Comparing Comparative Example 6 and Comparative Example 7, the "countercurrent" type is significantly inferior to the "parallel flow" type, and the influence of the relative humidity decrease due to the "countercurrent" is remarkable. It turns out that there is. For this reason, the separation device 1 employs a "parallel flow" type separation membrane module 2.
 [第2実施形態]
 次に、本分離装置1を利用して構成される燃焼システム20について、図5を参照して説明する。図5に、燃焼システム20の要部構成を模式的に示す。燃焼システム20は、本分離装置1、及び、燃焼装置21を備えて構成される。
[Second Embodiment]
Next, the combustion system 20 configured by using the separation device 1 will be described with reference to FIG. FIG. 5 schematically shows the main configuration of the combustion system 20. The combustion system 20 includes the separation device 1 and the combustion device 21.
 本実施形態では、本分離装置1の1段目の分離膜モジュール2の第1処理室5内に供給される混合ガスFGとして、有機物のメタン発酵により生成されたバイオガスに由来する成分を含む混合ガスであって、メタン(CH)とCOと水蒸気(HO)を含む混合ガスを想定する。以下、1段目の分離膜モジュール2に供給される混合ガスFGを、「原料ガスFG1」と称し、2段目以降の分離膜モジュール2の第1処理室5内に供給される混合ガスFGと区別する。 In the present embodiment, the mixed gas FG supplied into the first treatment chamber 5 of the separation membrane module 2 of the first stage of the separation device 1 includes a component derived from biogas produced by methane fermentation of an organic substance. It is assumed that the mixed gas is a mixed gas containing methane (CH 4 ), CO 2 and water vapor (H 2 O). Hereinafter, the mixed gas FG supplied to the separation membrane module 2 in the first stage is referred to as “raw material gas FG1”, and the mixed gas FG supplied to the first processing chamber 5 of the separation membrane module 2 in the second and subsequent stages is referred to. To distinguish from.
 本分離装置1は、原料ガスFG1からCOを除去し、最終段の分離膜モジュール2から、高純度のメタンを含む非透過ガスEGを燃焼装置21に供給することができる。最終段の分離膜モジュール2から排出される非透過ガスEGのメタン濃度(回収メタン濃度)は、原料ガスFG1のガス供給流量及びガス供給圧の調整、及び、水蒸気供給部11による原料ガスFG1及び各連結部10における非透過ガスEGの相対湿度の調整等の各種パラメータの調整によって、所期の高濃度となるように制御することができる。 The separation device 1 can remove CO 2 from the raw material gas FG 1 and supply the impermeable gas EG containing high-purity methane to the combustion device 21 from the separation membrane module 2 in the final stage. The methane concentration (recovered methane concentration) of the impermeable gas EG discharged from the separation membrane module 2 in the final stage is determined by adjusting the gas supply flow rate and gas supply pressure of the raw material gas FG1 and adjusting the raw material gas FG1 and the raw material gas FG1 by the steam supply unit 11. By adjusting various parameters such as adjustment of the relative humidity of the non-permeated gas EG in each connecting portion 10, it is possible to control the concentration to be the desired high concentration.
 燃焼装置21は、例えばガスエンジンやガスタービン等であり、供給された非透過ガスEGに含まれる高純度メタンの燃焼反応による熱エネルギを、運動エネルギや電力等のエネルギに変換する。燃焼装置21は、メタンの燃焼に適合するものであれば、特定の燃焼装置に限定されるものではない。 The combustion device 21 is, for example, a gas engine, a gas turbine, or the like, and converts the thermal energy generated by the combustion reaction of high-purity methane contained in the supplied impermeable gas EG into energy such as kinetic energy and electric power. The combustion device 21 is not limited to a specific combustion device as long as it is compatible with the combustion of methane.
 原料ガスFG1中のバイオガス由来の成分のうち、硫化水素、シロキサン等の不純物は、図示していない既存の脱硫装置、活性炭吸着方式のシロキサン除去装置等を用いて、予め取り除かれている。脱硫装置としては吸収液を用いた湿式脱硫法や酸化亜鉛や酸化鉄等の硫黄吸着材を用いた吸着脱硫方式が使用できる。また銅亜鉛系の超高次脱硫触媒を用いればppbレベル以下まで完全に硫黄を除去することができる。本分離装置1の分離膜モジュール2で用いるCOキャリアの種類やその濃度によっては、硫化水素の影響を受けることがあるため、超高次脱硫触媒を用いるのが好ましい。 Among the components derived from biogas in the raw material gas FG1, impurities such as hydrogen sulfide and siloxane are removed in advance by using an existing desulfurization device (not shown), an activated carbon adsorption type siloxane removal device, or the like. As the desulfurization apparatus, a wet desulfurization method using an absorbent liquid or an adsorption desulfurization method using a sulfur adsorbent such as zinc oxide or iron oxide can be used. Further, if a copper-zinc-based ultra-high-order desulfurization catalyst is used, sulfur can be completely removed to the ppb level or lower. It is preferable to use an ultra-high-order desulfurization catalyst because it may be affected by hydrogen sulfide depending on the type and concentration of the CO 2 carrier used in the separation membrane module 2 of the separation device 1.
 本分離装置1の一部として設けられている水蒸気供給部11は、第1実施形態において説明したように、主として連結部10に水蒸気を供給するためのものであるが、原料ガスFG1中の水蒸気が少なく、原料ガスFG1の相対湿度が、所定値(例えば、50%~80%の範囲内で設定、一例として70%)未満の場合、水蒸気供給部11から、原料ガスFG1に対して水蒸気を供給し、相対湿度が上記所定値以上となるように制御するのが好ましい。図5において、当該水蒸気の供給路を点線で示す。この場合、原料ガスFG1の流路上に図示しない湿度計を配置し、湿度計の計測値に基づいて、水蒸気供給部11が原料ガスFG1に対して水蒸気を供給する。 As described in the first embodiment, the steam supply unit 11 provided as a part of the separation device 1 is mainly for supplying steam to the connecting unit 10, but the steam in the raw material gas FG1. When the relative humidity of the raw material gas FG1 is less than a predetermined value (for example, set within the range of 50% to 80%, 70% as an example), steam is supplied from the steam supply unit 11 to the raw material gas FG1. It is preferable to supply and control the relative humidity to be equal to or higher than the above-mentioned predetermined value. In FIG. 5, the steam supply path is shown by a dotted line. In this case, a hygrometer (not shown) is arranged on the flow path of the raw material gas FG1, and the water vapor supply unit 11 supplies water vapor to the raw material gas FG1 based on the measured value of the hygrometer.
 本実施形態では、本分離装置1の1段目の分離膜モジュール2の第1排出口8と燃焼装置21のガス供給口の間のガス流路に、燃焼装置21に供給される非透過ガスEGに含まれる水蒸気を除去するための水蒸気除去部22が介装されている。 In the present embodiment, the non-permeable gas supplied to the combustion device 21 is provided in the gas flow path between the first discharge port 8 of the separation membrane module 2 of the first stage of the separation device 1 and the gas supply port of the combustion device 21. A water vapor removing unit 22 for removing water vapor contained in the EG is interposed.
 水蒸気除去部22で除去された水蒸気は、水蒸気として回収することにより、図5に例示するように、水蒸気供給部11において、連結部10に供給する水蒸気として再利用可能である。 By recovering the steam removed by the steam removing section 22 as steam, it can be reused as steam supplied to the connecting section 10 in the steam supply section 11 as illustrated in FIG.
 更に、図示していないが、本分離装置1の各段の分離膜モジュール2の各第2排出口9から排出される透過ガスPGをまとめて回収または再利用する装置に供給する場合は、透過ガスPGのガス流路に、別の水蒸気除去部を設け、透過ガスPG中の水蒸気を回収し、水蒸気供給部11において、連結部10に供給する水蒸気として再利用しても良い。 Further, although not shown, when the permeated gas PG discharged from each second discharge port 9 of the separation membrane module 2 in each stage of the separation device 1 is collectively collected or reused, the permeation is permeated. Another steam removing section may be provided in the gas flow path of the gas PG to recover the steam in the permeated gas PG and reuse it as the steam supplied to the connecting section 10 in the steam supply section 11.
 更に、水蒸気除去部22、及び、透過ガスPGのガス流路に設けた水蒸気除去部において、非透過ガスEG及び透過ガスPG中の水蒸気を、水蒸気として回収するのではなく、水として回収する場合は、別途エネルギーを消費するが、回収した水を加熱して水蒸気を生成して、水蒸気供給部11において利用してもよい。この場合、加熱用の熱源として、燃焼装置21におけるメタンの燃焼により生成された高温の排気ガスを利用できる。 Further, in the case where the water vapor removing unit 22 and the water vapor removing unit provided in the gas flow path of the permeated gas PG recover the water vapor in the non-permeated gas EG and the permeated gas PG as water instead of recovering as water vapor. Although it consumes energy separately, the recovered water may be heated to generate steam and used in the steam supply unit 11. In this case, high-temperature exhaust gas generated by combustion of methane in the combustion device 21 can be used as a heat source for heating.
 以上、本実施形態で説明した燃焼システム20によれば、例えば、燃焼装置21としてガスエンジンを使用する場合において、燃焼システム20に供給される燃料としてメタン濃度の変動が大きいバイオガスを使用する場合であっても、ガスエンジンには、メタン濃度の変動の抑制された高純度メタンガスを供給できるため、複雑なエンジン調整作業の必要なく安定した出力を得ることが可能で、小型化・高出力化を望める。 As described above, according to the combustion system 20 described in the present embodiment, for example, when a gas engine is used as the combustion device 21, a biogas having a large fluctuation in methane concentration is used as the fuel supplied to the combustion system 20. Even so, since high-purity methane gas with suppressed fluctuations in methane concentration can be supplied to the gas engine, stable output can be obtained without the need for complicated engine adjustment work, resulting in miniaturization and high output. Can be expected.
 [別実施形態]
 以下に、別実施形態について説明する。
[Another Embodiment]
Hereinafter, another embodiment will be described.
 〈1〉 上記実施形態では、分離膜モジュール2の複数段(m段:mは2以上の整数)を直列に連結した分離膜モジュール列において、各分離膜モジュール2は、図1に示すような1台の分離膜モジュール2を想定した。しかし、各段の分離膜モジュール2は、2以上の分離膜モジュール2を並列に連結して構成しても良く、これにより、分離膜モジュール2の1段当たりの有効膜面積を大きくして、本分離装置1の処理能力を増大させても良い。この場合、各段において、2以上の分離膜モジュール2の各第1送入口7は相互に連結し1つの第1送入口7とし、2以上の分離膜モジュール2の各第1排出口8も相互に連結し1つの第1排出口8とし、当該2以上の分離膜モジュール2が1つの分離膜モジュール2として機能する。 <1> In the above embodiment, in the separation membrane module row in which a plurality of stages of the separation membrane module 2 (m stage: m is an integer of 2 or more) are connected in series, each separation membrane module 2 is as shown in FIG. One separation membrane module 2 is assumed. However, the separation membrane module 2 in each stage may be configured by connecting two or more separation membrane modules 2 in parallel, whereby the effective membrane area per stage of the separation membrane module 2 is increased. The processing capacity of the separation device 1 may be increased. In this case, in each stage, the first inlets 7 of the two or more separation membrane modules 2 are connected to each other to form one first inlet / outlet 7, and the first outlets 8 of the two or more separation membrane modules 2 are also connected to each other. It is connected to each other to form one first discharge port 8, and the two or more separation membrane modules 2 function as one separation membrane module 2.
 〈2〉 上記実施形態では、分離膜モジュール2のCO分離膜3の形状として、図1及び図2に示すように、平膜状のCO分離膜3をそのままの形状で使用する平板型を例示したが、CO分離膜3を円筒状の2層乃至4層構造とする円筒型、2層乃至4層構造の平膜状の1または複数枚のCO分離膜3をスパイラル状に複数回巻いた形状とするスパイラル型、或いは、2層乃至4層構造の平膜状の1または複数枚のCO分離膜3を蛇腹状に折り畳んだ形状とするプリーツ型、等の平板型以外の形状であっても良い。 <2> In the above embodiment, as the shape of the CO 2 separation membrane 3 of the separation membrane module 2, as shown in FIGS. 1 and 2, a flat plate type in which the flat membrane-like CO 2 separation membrane 3 is used as it is. However, one or more CO 2 separation membranes 3 having a cylindrical type having a cylindrical two-layer to four-layer structure and a flat membrane-like structure having a two -layer to four-layer structure are spirally formed. Other than the spiral type, which has a shape of being wound multiple times, or the pleated type, which has a flat membrane-like one or a plurality of CO 2 separation membranes 3 having a two-layer to four-layer structure folded in a bellows shape. It may be in the shape of.
 本発明に係るCO分離装置及びCO分離方法は、二酸化炭素を選択的に分離する分離膜モジュールを複数段直列に連結して使用し、二酸化炭素を含む混合ガスから二酸化炭素を選択的に分離することに利用可能である。 The CO 2 separation device and the CO 2 separation method according to the present invention use a plurality of stages of separation membrane modules that selectively separate carbon dioxide in series, and selectively select carbon dioxide from a mixed gas containing carbon dioxide. It can be used to separate.
 1: CO分離装置
 2: 分離膜モジュール
 3: CO分離膜
 4: 筐体
 5: 第1処理室
 6: 第2処理室
 7: 第1送入口
 8: 第1排出口
 9: 第2排出口
 10: 連結部
 11: 水蒸気供給部
 20: 燃焼システム
 21: 燃焼装置
 22: 水蒸気除去部
 FG: 混合ガス
 FG1: 原料ガス
 EG: 非透過ガス
 PG: 透過ガス
 SG: スイープガス
 MG: 透過ガスとスイープガスの混合ガス
1: CO 2 separation device 2: Separation membrane module 3: CO 2 separation membrane 4: Housing 5: 1st treatment chamber 6: 2nd treatment chamber 7: 1st inlet 8: 1st discharge port 9: 2nd discharge Outlet 10: Connecting part 11: Steam supply part 20: Combustion system 21: Combustion device 22: Steam removal part FG: Mixed gas FG1: Raw material gas EG: Non-permeated gas PG: Permeated gas SG: Sweep gas MG: Permeated gas and sweep Mixed gas of gas

Claims (11)

  1.  二酸化炭素と選択的に反応するCOキャリアを含むCO分離膜と、前記CO分離膜によって隔てられた第1処理室と第2処理室を備えて構成される分離膜モジュールを2段以上直列に連結した分離膜モジュール列を少なくとも使用し、
     前記分離膜モジュールの各段において、
      前記COキャリアと反応しない特定ガス、二酸化炭素、及び水蒸気を含む混合ガスを、前記第1処理室の一端側から前記第1処理室内に供給し、
      前記第1処理室内に供給された前記混合ガス中の二酸化炭素を、前記CO分離膜を介して前記第2処理室側に透過させることにより、前記混合ガスから二酸化炭素を分離し、
      前記CO分離膜を透過せずに前記第1処理室内に残留した前記特定ガス、二酸化炭素、及び水蒸気を含む非透過ガスを、前記第1処理室の他端側から排出し、
      分離された二酸化炭素を含む前記CO分離膜を透過した透過ガスを、前記第2処理室の前記第1処理室の他端側と同じ側から外部に排出し、
     最終段以外の前記分離膜モジュールの各段において、前記第1処理室の他端側から排出された前記非透過ガスに水蒸気を追加し、後段側に連結している前記分離膜モジュールの前記混合ガスとして、当該後段側の前記分離膜モジュールの前記第1処理室の前記一端側から前記第1処理室内に供給することを特徴とするCO分離方法。
    Two or more stages of separation membrane modules including a CO 2 separation membrane containing CO 2 carriers that selectively react with carbon dioxide, and a first treatment chamber and a second treatment chamber separated by the CO 2 separation membrane. Using at least a series of separation membrane modules connected in series,
    In each stage of the separation membrane module
    A mixed gas containing a specific gas, carbon dioxide, and water vapor that does not react with the CO 2 carrier is supplied from one end side of the first treatment chamber to the first treatment chamber.
    Carbon dioxide in the mixed gas supplied to the first treatment chamber is permeated to the second treatment chamber side through the CO 2 separation membrane to separate carbon dioxide from the mixed gas.
    The non-permeated gas containing the specific gas, carbon dioxide, and water vapor remaining in the first treatment chamber without penetrating the CO 2 separation membrane is discharged from the other end side of the first treatment chamber.
    The permeated gas that has permeated the CO 2 separation membrane containing the separated carbon dioxide is discharged to the outside from the same side as the other end side of the first treatment chamber of the second treatment chamber.
    In each stage of the separation membrane module other than the final stage, water vapor is added to the non-permeable gas discharged from the other end side of the first treatment chamber, and the mixing of the separation membrane module connected to the rear stage side. A CO 2 separation method comprising supplying gas as a gas from the one end side of the first treatment chamber of the separation membrane module on the subsequent stage side to the first treatment chamber.
  2.  最終段以外の前記分離膜モジュールの各段において、前記第1処理室の他端側から排出された前記非透過ガスに、当該非透過ガスの相対湿度が20%以上増加するように水蒸気を追加することを特徴とする請求項1に記載のCO分離方法。 In each stage of the separation membrane module other than the final stage, water vapor is added to the non-permeated gas discharged from the other end side of the first treatment chamber so that the relative humidity of the non-permeated gas increases by 20% or more. The CO 2 separation method according to claim 1, wherein the CO 2 separation method is performed.
  3.  1段目の前記分離膜モジュールの前記第1処理室内に供給する前記混合ガスが、有機物のメタン発酵により生成されたバイオガスに由来するガスを含み、前記特定ガスがメタンであることを特徴とする請求項1または2に記載のCO分離方法。 The mixed gas supplied to the first treatment chamber of the separation membrane module in the first stage contains a gas derived from biogas produced by methane fermentation of an organic substance, and the specific gas is methane. The CO 2 separation method according to claim 1 or 2.
  4.  最終段の前記分離膜モジュールの前記第1処理室から排出される前記非透過ガス中のドライベースでのメタン濃度が80mol%以上であることを特徴とする請求項3に記載のCO分離方法。 The CO 2 separation method according to claim 3, wherein the methane concentration in the dry base in the non-permeated gas discharged from the first treatment chamber of the separation membrane module in the final stage is 80 mol% or more. ..
  5.  二酸化炭素と選択的に反応するCOキャリアを含むCO分離膜と、前記CO分離膜によって隔てられた第1処理室と第2処理室を備えて構成される分離膜モジュールを2段以上直列に連結した分離膜モジュール列と、水蒸気供給部とを少なくとも備え、
     前記分離膜モジュールの各段が、
      前記第1処理室の一端側に、前記COキャリアと反応しない特定ガス、二酸化炭素、及び水蒸気を含む混合ガスを、前記第1処理室内に供給する第1送入口を備え、
      前記第1処理室の他端側に、前記CO分離膜を透過せずに前記第1処理室内に残留した前記特定ガス、二酸化炭素、及び水蒸気を含む非透過ガスを排出する第1排出口を備え、
      前記第2処理室の前記第1処理室の他端側と同じ側に、前記混合ガス中の前記特定ガス、二酸化炭素、及び水蒸気の一部であって、前記CO分離膜を介して前記第1処理室側から前記第2処理室側に透過した透過ガスを排出する第2排出口を備え、
     最終段以外の前記分離膜モジュールの各段において、前記第1排出口が、後段側に連結している前記分離膜モジュールの前記第1送入口と相互に連結して、連結部が構成され、
     前記水蒸気供給部が、前記連結部のそれぞれに水蒸気を供給するように構成され、
     最終段以外の前記分離膜モジュールの各段において、前記第1排出口から排出された前記非透過ガスと前記連結部に供給された水蒸気が、後段側に連結している前記分離膜モジュールの前記混合ガスとして、当該後段側の前記分離膜モジュールの前記第1送入口から前記第1処理室内に供給されるように構成されていることを特徴とするCO分離装置。
    Two or more stages of separation membrane modules including a CO 2 separation membrane containing CO 2 carriers that selectively react with carbon dioxide, and a first treatment chamber and a second treatment chamber separated by the CO 2 separation membrane. It has at least a series of separation membrane modules connected in series and a steam supply unit.
    Each stage of the separation membrane module
    A first inlet / outlet for supplying a mixed gas containing a specific gas, carbon dioxide, and water vapor that does not react with the CO 2 carrier to the first treatment chamber is provided on one end side of the first treatment chamber.
    On the other end side of the first treatment chamber, a first discharge port that discharges a non-permeable gas containing the specific gas, carbon dioxide, and water vapor remaining in the first treatment chamber without penetrating the CO 2 separation membrane. Equipped with
    A part of the specific gas, carbon dioxide, and water vapor in the mixed gas on the same side as the other end side of the first treatment chamber of the second treatment chamber, and said via the CO 2 separation membrane. A second discharge port for discharging the permeated gas that has permeated from the first treatment chamber side to the second treatment chamber side is provided.
    In each stage of the separation membrane module other than the final stage, the first discharge port is interconnected with the first inlet / outlet of the separation membrane module connected to the rear stage side to form a connecting portion.
    The steam supply section is configured to supply steam to each of the connecting sections.
    In each stage of the separation membrane module other than the final stage, the non-permeable gas discharged from the first discharge port and water vapor supplied to the connecting portion are connected to the rear stage side of the separation membrane module. A CO 2 separation device characterized in that the mixed gas is supplied to the first processing chamber from the first inlet / outlet of the separation membrane module on the subsequent stage side.
  6.  前記水蒸気供給部が、最終段以外の前記分離膜モジュールの各段に対して、前記第1排出口から排出された前記非透過ガスの相対湿度が20%以上増加するように、前記連結部に水蒸気を供給することを特徴とする請求項5に記載のCO分離装置。 The steam supply unit is connected to the connection unit so that the relative humidity of the non-permeated gas discharged from the first discharge port is increased by 20% or more with respect to each stage of the separation membrane module other than the final stage. The CO 2 separation device according to claim 5, wherein the CO 2 separation device is characterized by supplying water vapor.
  7.  前記水蒸気供給部は、1段目の前記分離膜モジュールの前記第1処理室内に供給する前記混合ガスに、当該混合ガスの相対湿度が70%未満の場合、当該相対湿度が70%以上となるように、水蒸気を供給することを特徴とする請求項5または6に記載のCO分離装置。 When the relative humidity of the mixed gas to be supplied to the first treatment chamber of the separation membrane module of the first stage is less than 70%, the steam supply unit has a relative humidity of 70% or more. The CO 2 separation device according to claim 5 or 6, wherein the steam is supplied as described above.
  8.  1段目の前記分離膜モジュールの前記第1処理室内に供給する前記混合ガスが、有機物のメタン発酵により生成されたバイオガスに由来するガスを含み、前記特定ガスがメタンであることを特徴とする請求項5~7の何れか1項に記載のCO分離装置。 The mixed gas supplied to the first treatment chamber of the separation membrane module in the first stage contains a gas derived from biogas produced by methane fermentation of an organic substance, and the specific gas is methane. The CO 2 separation device according to any one of claims 5 to 7.
  9.  最終段の前記分離膜モジュールの前記第1処理室から排出される前記非透過ガス中のドライベースでのメタン濃度が80mol%以上であることを特徴とする請求項8に記載のCO分離装置。 The CO 2 separation apparatus according to claim 8, wherein the methane concentration in the dry base in the non-permeated gas discharged from the first treatment chamber of the separation membrane module in the final stage is 80 mol% or more. ..
  10.  請求項8または9に記載のCO分離装置と、燃焼装置を備えた燃焼システムであって、
     前記CO分離装置の最終段の前記分離膜モジュールの前記第1処理室から排出される前記非透過ガスが、前記燃焼装置に燃料ガスとして供給されることを特徴とする燃焼システム。
    A combustion system including the CO 2 separation device according to claim 8 or 9, and a combustion device.
    A combustion system characterized in that the non-permeated gas discharged from the first processing chamber of the separation membrane module in the final stage of the CO 2 separation device is supplied to the combustion device as fuel gas.
  11.  前記CO分離装置の前記水蒸気供給部は、前記燃焼装置からの排熱を利用して、水蒸気を生成することを特徴とする請求項10に記載の燃焼システム。 The combustion system according to claim 10, wherein the steam supply unit of the CO 2 separation device uses waste heat from the combustion device to generate steam.
PCT/JP2021/021826 2020-08-25 2021-06-09 Co2 separation method, co2 separation device, and combustion system WO2022044481A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022545458A JPWO2022044481A1 (en) 2020-08-25 2021-06-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020141971 2020-08-25
JP2020-141971 2020-08-25

Publications (1)

Publication Number Publication Date
WO2022044481A1 true WO2022044481A1 (en) 2022-03-03

Family

ID=80353035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021826 WO2022044481A1 (en) 2020-08-25 2021-06-09 Co2 separation method, co2 separation device, and combustion system

Country Status (2)

Country Link
JP (1) JPWO2022044481A1 (en)
WO (1) WO2022044481A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200817A (en) * 1998-01-05 1999-07-27 Central Res Inst Of Electric Power Ind Hydrogen separation type thermal power generation system
JP2009242773A (en) * 2008-03-14 2009-10-22 Air Water Inc Methane gas concentration device, method therefor, fuel gas production device and method therefor
JP2014200767A (en) * 2013-04-09 2014-10-27 住友化学株式会社 Gas separator and separation method of acid gas of using the same
JP2017148736A (en) * 2016-02-24 2017-08-31 次世代型膜モジュール技術研究組合 Recovery method of carbon dioxide and gas separation membrane module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200817A (en) * 1998-01-05 1999-07-27 Central Res Inst Of Electric Power Ind Hydrogen separation type thermal power generation system
JP2009242773A (en) * 2008-03-14 2009-10-22 Air Water Inc Methane gas concentration device, method therefor, fuel gas production device and method therefor
JP2014200767A (en) * 2013-04-09 2014-10-27 住友化学株式会社 Gas separator and separation method of acid gas of using the same
JP2017148736A (en) * 2016-02-24 2017-08-31 次世代型膜モジュール技術研究組合 Recovery method of carbon dioxide and gas separation membrane module

Also Published As

Publication number Publication date
JPWO2022044481A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
JP5555332B2 (en) Gas separation device, membrane reactor, hydrogen production device
CN109997268B (en) Fuel cell system
CN111132752B (en) Separation membrane sheet, separation membrane element, separation membrane module, and method for manufacturing separation membrane sheet
TWI693095B (en) Method for separating carbon dioxide and carbon dioxide separation device
JP5010109B2 (en) Hydrogen production apparatus and hydrogen production method
EP3253477B1 (en) Carbon dioxide separator, fuel cell system including same, and method of operating fuel cell system
JP6964070B2 (en) Acid gas separation film and acid gas separation method using it, acid gas separation module and acid gas separation device
JP6553739B2 (en) Gas recovery apparatus, gas recovery method, and semiconductor cleaning system
CN104418303B (en) The process of carbon dioxide in a kind of membrance separation removing conversion gas
JP6164682B2 (en) Gas separation apparatus and acid gas separation method using the same
WO2022044481A1 (en) Co2 separation method, co2 separation device, and combustion system
JP2008104953A (en) Gas separation method and gas separator
CN109906111B (en) Combined acid gas capture and water extraction process
WO2022009514A1 (en) Gas separation method and device
US11685673B2 (en) Systems and methods for removal of carbon dioxide from seawater
JP7386171B2 (en) Compositions useful for producing acid gas separation membranes
WO2022261027A1 (en) Systems and methods for removal of carbon dioxide from seawater
JP2022184754A (en) Gas separation method
CN115720530A (en) Separation system
JP2005305264A (en) Separation membrane for co2 collection
JP2005305263A (en) Polysulfone-based hollow fiber membrane for collecting co2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860912

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860912

Country of ref document: EP

Kind code of ref document: A1