WO2022042632A1 - 一种熔盐电解综合回收粉煤灰中金属资源的*** - Google Patents

一种熔盐电解综合回收粉煤灰中金属资源的*** Download PDF

Info

Publication number
WO2022042632A1
WO2022042632A1 PCT/CN2021/114691 CN2021114691W WO2022042632A1 WO 2022042632 A1 WO2022042632 A1 WO 2022042632A1 CN 2021114691 W CN2021114691 W CN 2021114691W WO 2022042632 A1 WO2022042632 A1 WO 2022042632A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
fly ash
reaction
electrolysis
molten salt
Prior art date
Application number
PCT/CN2021/114691
Other languages
English (en)
French (fr)
Inventor
范金航
汪世清
宋润
郭东方
刘练波
郜时旺
Original Assignee
华能国际电力股份有限公司
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能国际电力股份有限公司, 中国华能集团清洁能源技术研究院有限公司 filed Critical 华能国际电力股份有限公司
Publication of WO2022042632A1 publication Critical patent/WO2022042632A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/36Alloys obtained by cathodic reduction of all their ions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the application belongs to the field of resource utilization of fly ash, and in particular relates to a system for comprehensively recovering metal resources in fly ash by molten salt electrolysis.
  • Fly ash is a mixture of oxides and silicate minerals after burning inorganic minerals in coal, and is a major solid waste produced by coal-fired power plants.
  • coal as the main energy consumption will inevitably lead to a large increase in the accumulation of fly ash.
  • the accumulation of fly ash will occupy a large amount of farmland, resulting in a great waste of land resources, and at the same time seriously pollute the soil and water bodies, and the heavy metal elements contained in it will also cause great harm to human health. Therefore, it is extremely urgent to develop the technology of harmless treatment and resource utilization of fly ash.
  • fly ash mainly include the manufacture of building materials (cement, concrete, etc.), the synthesis of porous materials, and the extraction of metals.
  • the direct use of fly ash in the manufacture of building materials has the problem that the added value is low and the useful elements it contains cannot be fully utilized.
  • Porous materials synthesized from fly ash, such as zeolite and porous calcium silicate hydrate have certain applications in pollutant treatment and catalyst support, but the overall dosage is small.
  • the main components of fly ash are various oxides, unburned carbon and trace elements.
  • the oxides are mainly composed of Al 2 O 3 , SiO 2 , Fe 2 O 3 , CaO, MgO and TiO 2 , among which Al 2
  • the content of O3 and SiO2 is the highest.
  • Metal elements such as Al, Si, and Fe are widely used in economic construction and daily life. Therefore, the effective recovery of metal elements in fly ash is of great significance for the high value-added utilization of fly ash.
  • the research on the recovery and utilization of metal resources in fly ash mainly focuses on the extraction technology of alumina, mainly including limestone sintering method, alkali fusion method, acid dissolution method, acid-base combined method, ammonium sulfate method and other processes.
  • the above process can achieve effective recovery of aluminum resources, it does not fully recover and utilize other metal resources contained in it, such as Si, Fe, Ti, etc.
  • CN 103526234 discloses a system for recycling Al, Si, Ti and Fe resources from fly ash by molten salt electrolysis, but the molten salt used is fluoride salt, which has strong toxicity and corrosiveness.
  • the reaction temperature is Above 900°C, the reaction energy consumption is high. Therefore, the development of a green and low-energy-consumption metal resource comprehensive recovery system is of great significance for accelerating the resource utilization of fly ash.
  • the present application provides a system for comprehensively recovering metal resources in fly ash by molten salt electrolysis, and provides an operable system for reducing the temperature of comprehensively recovering fly ash by molten salt electrolysis. Improve the efficiency of resource utilization of fly ash.
  • the technical solution adopted in the present application is, a system for comprehensive recovery of metal resources in fly ash by molten salt electrolysis, including a roasting furnace, a ball mill, a powder briquetting machine, an electrolytic furnace, a gas distribution device, and a vacuum device , washing machine and dryer; along the material flow direction, a roasting furnace, a ball mill, a powder briquetting machine, an electrolytic furnace cleaning machine and a drying machine are set up in sequence.
  • the electrolysis furnace is connected to the vacuuming device and the gas distribution device; the electrolysis furnace is provided with a barometer, and the openings in the furnace wall of the electrolysis furnace are connected to the reaction anode wiring and the reaction cathode wiring, and the reaction anode wiring and the reaction cathode wiring are connected to the reaction power supply.
  • the reaction power supply adopts DC regulated power supply, and the rated voltage of the DC regulated power supply does not exceed 30V.
  • the vacuuming device includes at least one vacuum pump, the furnace wall of the electrolysis furnace is provided with an air outlet, and the air inlet of the vacuum pump is connected to the air outlet of the electrolysis furnace.
  • the cleaning system includes an ultrasonic cleaning machine and a centrifuge, and the ultrasonic cleaning machine and the centrifuge are arranged along the material flow direction.
  • the dryer adopts a vacuum dryer.
  • the electrolytic cell adopts graphite crucible or metal oxide crucible.
  • the rated pressure of the powder briquetting machine is not less than 50MPa.
  • the reaction anode is a soluble anode or an insoluble anode
  • the soluble anode is Ca, Mg, Li or C
  • the insoluble anode is a metal-based or inert anode.
  • the present application has at least the following beneficial effects: the present application is helpful for realizing one-step efficient comprehensive recovery and utilization of metal resources in fly ash, and the system adopted in the present application is simple, which can realize decarbonization,
  • the ball milling particle refinement and briquetting process can also be used to heat and electrolyze the briquette in a protective atmosphere, thereby helping to use the electrolysis process to recycle the metal resources in the fly ash.
  • Compared with the existing technology which helps to reduce the toxicity and corrosiveness of the recycling process, while reducing the reaction temperature and energy consumption.
  • FIG. 1 is a schematic diagram of an implementable process flow using the system described in the present application.
  • FIG. 2 is a schematic diagram of a system that can implement the present application.
  • a system for comprehensive recovery of metal resources in fly ash by molten salt electrolysis includes a roasting furnace 1, a ball mill 2, a powder briquetting machine 3, an electrolytic furnace 4, a gas distribution device, a vacuuming device, a cleaning machine 7 and The dryer 9; along the material flow direction, the roasting furnace 1, the ball mill 2, the powder briquetting machine 3, the electrolysis furnace 4, the cleaning system and the dryer 9 are set in turn, and the electrolysis cell is set in the electrolysis furnace, and the thermocouple in the electrolysis furnace is set in the electrolysis furnace.
  • the electrolysis furnace On the outer wall of the pool, the electrolysis furnace is connected to the vacuuming device and the gas distribution device; the electrolysis furnace is provided with a barometer, and the opening of the furnace wall of the electrolysis furnace leads to the reaction anode wiring and the reaction cathode wiring, and the reaction anode wiring and the reaction cathode wiring are connected to the reaction power supply.
  • the electrolytic cell adopts graphite crucible or metal oxide crucible.
  • the rated pressure of the powder briquetting machine 4 is not less than 50MPa; the soluble anode is Ca, Mg, Li or C, the insoluble anode is a metal-based or inert anode, and when an inert anode is used, a ceramic-based or metal-based inert anode is used.
  • the reaction power supply adopts DC regulated power supply, and the rated voltage of the DC regulated power supply does not exceed 30V.
  • the vacuum pumping device includes at least one vacuum pump 6, the furnace wall of the electrolysis furnace 4 is provided with an air outlet, and the air inlet of the vacuum pump 6 is connected to the air outlet of the electrolysis furnace.
  • the gas distribution device adopts an inert gas storage tank, the electrolysis furnace 4 is provided with a gas inlet, and the outlet of the inert gas storage tank is connected to the gas inlet.
  • the gas distribution device adopts an inert gas storage tank, and the output gas of the gas distribution device is high-purity nitrogen or high-purity argon; the gas distribution device preferably adopts an argon gas tank 5 .
  • the cleaning system includes an ultrasonic cleaner 7 and a centrifuge 8; the centrifuge adopts a high-speed centrifuge, and the ultrasonic cleaner 7 and the high-speed centrifuge 8 are arranged along the material flow direction.
  • the cleaning solution used in the ultrasonic cleaning process is deionized water, anhydrous ethanol, dilute hydrochloric acid or dilute sulfuric acid.
  • the drying system adopts a vacuum dryer to prevent further oxidation of the obtained product.
  • the anode is a graphite rod (20 mm in diameter and 20 cm in length). Put 500g CaCl 2 into the alumina crucible, and put it in the graphite crucible as a whole to prevent the leakage of liquid from damaging the furnace. Using the graphite crucible can consume a certain amount of oxygen to control the atmosphere in the reactor. The temperature in the reactor was controlled by the temperature control system to rise to 250 °C and kept for 48 h, and the CaCl 2 was dried.
  • the reaction product was transferred to the cleaning system, the test piece was repeatedly soaked with deionized water and dilute hydrochloric acid (0.1M), the residual molten salt in the product was removed by an ultrasonic cleaner, and the reaction product was centrifuged.
  • the centrifuged product was transferred to a drying system and vacuum-dried at 80°C for 2 hours to obtain a silicon-aluminum-based alloy containing a small amount of iron and titanium elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

本申请公开一种熔盐电解综合回收粉煤灰中金属资源的***,包括焙烧炉、球磨机、粉末压块机,电解炉、配气装置、抽真空装置、清洗机以及干燥机;沿着物料流向依次设置焙烧炉、球磨机、粉末压块机、电解炉清洗机和干燥机,电解炉中设置电解池,电解炉中的热电偶设置在电解池外壁,电解炉连接抽真空装置和配气装置;电解炉中设置有气压计,电解炉的炉壁开孔通入反应阳极接线和反应阴极接线,反应阳极接线和反应阴极接线连接反应电源;本申请有助于实现粉煤灰中金属资源的一步高效综合回收利用,能实现采用电解工艺对粉煤灰中金属资源回收利用,相比于现有技术,有助于降低回收过程产生的毒性及腐蚀性,同时能降低反应温度和能耗。

Description

一种熔盐电解综合回收粉煤灰中金属资源的*** 技术领域
本申请属于粉煤灰资源化利用领域,具体涉及一种熔盐电解综合回收粉煤灰中金属资源的***。
背景技术
粉煤灰是煤中无机矿物质灼烧后的氧化物和硅酸盐矿物组成的混合物,是燃煤电厂产生的一种主要固体废弃物。随着发电量的增加,煤炭作为主体消耗能源将不可避免的导致粉煤灰的堆积量大量增加。粉煤灰的堆积将占据大量农田,造成土地资源的极大浪费,同时严重污染土壤及水体,所含的重金属元素也会对人体健康造成极大危害。因此,发展粉煤灰的无害化处理及资源化利用技术极为迫切。
目前针对粉煤灰的利用技术主要包括制造建筑材料(水泥、混凝土等)、合成多孔材料和提取金属等。粉煤灰直接用于制造建筑材料存在附加值低,所含有用元素并不能被充分利用的问题。利用粉煤灰合成的多孔材料如沸石、多孔水化硅酸钙等虽然在污染物处理及催化剂载体方面有一定应用,但总体用量较小。粉煤灰的主要成分为各种氧化物、未燃尽的碳和微量元素,氧化物主要由Al 2O 3、SiO 2、Fe 2O 3、CaO、MgO和TiO 2等组成,其中Al 2O 3和SiO 2含量最高。金属元素Al、Si、Fe等在经济建设及日常生活中广泛使用,因此将粉煤灰中金属元素进行有效回收对于粉煤灰的高附加值利用具有重要意义。
目前对于粉煤灰中金属资源的回收利用研究主要集中在氧化铝的提取技术方面,主要有石灰石烧结法、碱熔法、酸溶法、酸碱联合法、硫酸铵法等工艺。上述工艺虽可实现铝资源的有效回收,但并未对所含其他金属资源如Si、Fe、Ti等进行充分回收利用。CN 103526234公开了一种熔盐电解法处理粉煤灰回收Al、Si、Ti和Fe资源的***,但所采用熔盐为氟化盐,具 有较强的毒性和腐蚀性,此外,反应温度在900℃以上,导致反应能耗较高。因此,发展一种绿色低能耗的金属资源综合回收的***对于加速粉煤灰的资源化利用具有重要意义。
发明内容
为了解决现有技术中存在的问题,本申请提供一种熔盐电解综合回收粉煤灰中金属资源的***,为降低熔盐电解综合回收粉煤灰的温度提供一种可操作的***,辅助提高粉煤灰的资源化利用的效率。
为了实现上述目的,本申请采用的技术方案是,一种熔盐电解综合回收粉煤灰中金属资源的***,包括焙烧炉、球磨机、粉末压块机,电解炉、配气装置、抽真空装置、清洗机以及干燥机;沿着物料流向依次设置焙烧炉、球磨机、粉末压块机、电解炉清洗机和干燥机,电解炉中设置电解池,电解炉中的热电偶设置在电解池外壁,电解炉连接抽真空装置和配气装置;电解炉中设置有气压计,电解炉的炉壁开孔通入反应阳极接线和反应阴极接线,反应阳极接线和反应阴极接线连接反应电源。
反应电源采用直流稳压电源,直流稳压电源的额定电压不超过30V。
抽真空装置包括至少一台真空泵,电解炉的炉壁开设出气口,真空泵的进气口连通电解炉的出气口。
清洗***包括超声波清洗机和离心机,超声波清洗机和离心机沿物料流向设置。
干燥机采用真空干燥机。
电解池采用石墨坩埚或金属氧化物坩埚。
粉末压块机的额定压力不低于50MPa。
反应阳极为可溶阳极或不可溶阳极,可溶阳极为Ca、Mg、Li或C,不可溶阳极为金属基或惰性阳极。
与现有技术相比,本申请至少具有以下有益效果:本申请有助于实现粉煤灰中金属资源的一步高效综合回收利用,本申请所采用***简单,能实现对粉煤灰除碳、球磨颗粒细化以及压块的工艺,同时还能用于对所述压块在保护气氛下进行加热电解,进而有助于采用电解工艺对粉煤灰中金属资源回收利用,相比于现有技术,有助于降低回收过程产生的毒性及腐蚀性,同时能降低反应温度和能耗。
附图说明
图1为采用本申请所述***的一种可实施工艺流程简图。
图2为一种可实施本申请***示意图。
具体实施方式
下面结合具体实施例及附图对本申请进行详细解释。
参考图2,一种熔盐电解综合回收粉煤灰中金属资源的***,包括焙烧炉1、球磨机2、粉末压块机3,电解炉4、配气装置、抽真空装置、清洗机7以及干燥机9;沿着物料流向依次设置焙烧炉1、球磨机2、粉末压块机3、电解炉4、清洗***和干燥机9,电解炉中设置电解池,电解炉中的热电偶设置在电解池外壁,电解炉连接抽真空装置和配气装置;电解炉中设置有气压计,电解炉的炉壁开孔通入反应阳极接线和反应阴极接线,反应阳极接线和反应阴极接线连接反应电源。
电解池采用石墨坩埚或金属氧化物坩埚。
粉末压块机4的额定压力不低于50MPa;可溶阳极为Ca、Mg、Li或C,不可溶阳极为金属基或惰性阳极,当采用惰性阳极时,采用陶瓷基或金属基惰性阳极。
反应电源采用直流稳压电源,直流稳压电源的额定电压不超过30V。
抽真空装置包括至少一台真空泵6,电解炉4的炉壁开设出气口,真空泵6的进气口连通电解炉的出气口。
配气装置采用惰性气体存储罐,电解炉4开设气体入口,惰性气体存储罐的出口连通所述气体入口。
配气装置采用惰性气体存储罐,配气装置所输出气体为高纯氮气或高纯氩气;配气装置优选采用氩气罐5。
清洗***包括超声波清洗机7和离心机8;离心机采用高速离心机,超声波清洗机7和高速离心机8沿物料流向设置。超声波清洗过程所采用清洗溶液为去离子水、无水乙醇、稀盐酸或稀硫酸。
干燥***采用真空干燥机,防止所得产物进一步被氧化。
参考图1和图2采用本申请所述***回收粉煤灰中的金属资源过程如下:称取一定量的粉煤灰放入高温电阻炉内在高温条件下进行焙烧,去除粉煤灰中的碳。将脱碳后的粉煤灰置于球磨罐中在转速为300rpm条件下进行球磨。随后称取1g粉煤灰粉末在0.1~50MPa的压力条件下进行阴极试片(直径为20mm)的压制成型。将压制成型的试片在温度为800℃空气气氛条件下烧结6h。用金属篮盛装阴极试片并用钼丝将其固定于阴极集流体钼棒。阳极为石墨棒(直径为20mm,长度为20cm)。将500gCaCl 2放入氧化铝坩埚中,并整体置于石墨坩埚中以防止漏液对炉膛的损伤,使用石墨坩埚可以消耗一定量的氧气,对反应器中的气氛进行控制。通过温度控制***控制反应器内的温度升高到250℃并保温48h,对CaCl 2进行烘干处理。将电解***进行密封,打开真空抽气***,对电解***内部进行抽真空处理,以消除电解***内部氧气,关闭真空阀,保持电解***内部负压状态,打开配气***,对电解***补充惰性气体,反复3次,保持电解***内部较好的惰性气氛。随后在氩气条件及冷却水的保护下,通过温度控制***以4℃min -1的升温速率将反应器温度缓慢升高到850℃。
以石墨棒为阳极,泡沫镍为阴极,通过反应控制***在2.5V恒压条件下对CaCl 2熔盐进行12h预电解以去除电解质中残留的杂质。待反应电流达到稳定后,将阴极泡沫镍从反应器 顶部取出并换为反应所需的阴极试片。通过反应控制***在3.0V槽压条件下对试片进行2h~48h电解后,将阴极试片分三段缓慢提出炉膛。整个反应过程均在高纯Ar气保护下进行。将反应产物转移至清洗***,用去离子水和稀盐酸(0.1M)对试片进行反复浸泡,使用超声波清洗机去除产品中残留的熔盐,并对反应产物进行离心。将离心后的产物转移至干燥***在80℃条件下真空干燥2h,便可得到含有少量铁、钛元素的硅铝基合金。

Claims (8)

  1. 一种熔盐电解综合回收粉煤灰中金属资源的***,其特征在于,包括焙烧炉(1)、球磨机(2)、粉末压块机(3),电解炉(4)、配气装置、抽真空装置、清洗机***以及干燥机(9);沿着物料流向依次设置焙烧炉(1)、球磨机(2)、粉末压块机(3)、电解炉(4)、清洗***和干燥机(9),电解炉中设置电解池,电解炉中的热电偶设置在电解池外壁,电解炉连接抽真空装置和配气装置;电解炉中设置有气压计,电解炉的炉壁开孔通入反应阳极接线和反应阴极接线,反应阳极接线和反应阴极接线连接反应电源。
  2. 根据权利要求1所述的熔盐电解综合回收粉煤灰中金属资源的***,其特征在于,反应电源采用直流稳压电源,直流稳压电源的额定电压不超过30V。
  3. 根据权利要求1所述的熔盐电解综合回收粉煤灰中金属资源的***,其特征在于,抽真空装置包括至少一台真空泵(6),电解炉(4)的炉壁开设出气口,真空泵(6)的进气口连通电解炉(4)的出气口。
  4. 根据权利要求1所述的熔盐电解综合回收粉煤灰中金属资源的***,其特征在于,清洗***包括超声波清洗机(7)和离心机(8),超声波清洗机(7)和离心机(8)沿物料流向设置。
  5. 根据权利要求1所述的熔盐电解综合回收粉煤灰中金属资源的***,其特征在于,干燥机(9)采用真空干燥机。
  6. 根据权利要求1所述的熔盐电解综合回收粉煤灰中金属资源的***,其特征在于,电解池采用石墨坩埚或金属氧化物坩埚。
  7. 根据权利要求1所述的熔盐电解综合回收粉煤灰中金属资源的***,其特征在于,粉末压块机(4)的额定压力不低于50MPa。
  8. 根据权利要求1所述的熔盐电解综合回收粉煤灰中金属资源的***,其特征在于,反应阳极为可溶阳极或不可溶阳极,可溶阳极为Ca、Mg、Li或C,不可溶阳极为金属基或陶瓷基惰性阳极。
PCT/CN2021/114691 2020-08-26 2021-08-26 一种熔盐电解综合回收粉煤灰中金属资源的*** WO2022042632A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021815282.8U CN212451666U (zh) 2020-08-26 2020-08-26 一种熔盐电解综合回收粉煤灰中金属资源的***
CN202021815282.8 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022042632A1 true WO2022042632A1 (zh) 2022-03-03

Family

ID=74474317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114691 WO2022042632A1 (zh) 2020-08-26 2021-08-26 一种熔盐电解综合回收粉煤灰中金属资源的***

Country Status (2)

Country Link
CN (1) CN212451666U (zh)
WO (1) WO2022042632A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212451666U (zh) * 2020-08-26 2021-02-02 华能国际电力股份有限公司 一种熔盐电解综合回收粉煤灰中金属资源的***
CN111850612B (zh) * 2020-08-26 2023-08-22 华能国际电力股份有限公司 一种熔盐电解综合回收粉煤灰中金属资源的***及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1936085A (zh) * 2006-09-19 2007-03-28 东北大学 一种低温熔盐电解制备铝及铝合金的方法
CN103526234A (zh) * 2013-10-18 2014-01-22 东北大学 熔盐电解法从粉煤灰中提取金属的方法
CN103789796A (zh) * 2014-02-19 2014-05-14 郭龙 一种粉煤灰资源利用方法
CN212451666U (zh) * 2020-08-26 2021-02-02 华能国际电力股份有限公司 一种熔盐电解综合回收粉煤灰中金属资源的***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1936085A (zh) * 2006-09-19 2007-03-28 东北大学 一种低温熔盐电解制备铝及铝合金的方法
CN103526234A (zh) * 2013-10-18 2014-01-22 东北大学 熔盐电解法从粉煤灰中提取金属的方法
CN103789796A (zh) * 2014-02-19 2014-05-14 郭龙 一种粉煤灰资源利用方法
CN212451666U (zh) * 2020-08-26 2021-02-02 华能国际电力股份有限公司 一种熔盐电解综合回收粉煤灰中金属资源的***

Also Published As

Publication number Publication date
CN212451666U (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2022042631A1 (zh) 一种熔盐电解综合回收粉煤灰中金属资源的***及方法
WO2022042632A1 (zh) 一种熔盐电解综合回收粉煤灰中金属资源的***
CN101481111B (zh) 一种利用高温气-固反应制备高纯度硅的方法
CN102921953A (zh) 一种由TiO2制备金属钛粉的方法
CN101774584B (zh) 太阳能级硅的提纯方法
CN104393364A (zh) 一种从废旧铅酸电池直接湿法制备PbO的方法
CN113328161B (zh) 一种由废旧锂离子电池正极材料再生制备类单晶三元正极材料的方法
CN102642857B (zh) 一种高铝粉煤灰生产金属铝工艺方法
CN105112938B (zh) 一种铝电解槽废炭料中挥发脱氟的方法
CN107857263A (zh) 一种超声波碱浸和加压酸浸联合处理电解铝废阴极炭块的方法
CN105274341A (zh) 一种废scr脱硝催化剂中金属钒和钨浸出的方法
JP2013122084A (ja) 製鉄所の操業方法及び二酸化炭素ガスの分解装置
CN106257727B (zh) 一种制备钒电池高纯电解液的***及方法
CN101967649A (zh) 一种复合熔盐电解质制备硅的方法
CN203731438U (zh) 电解铝废阴极碳块资源化处理***
CN103851632B (zh) 电解铝废阴极碳块资源化处理***及处理方法
CN105734615A (zh) 一种氟化物熔盐体系中热电还原制备金属钛的方法
CN109055997A (zh) 熔盐电解法制备超细Al3Zr金属间化合物颗粒的方法
CN110697679B (zh) 一种从铝电解槽废阴极炭块中脱氟与回收炭的装置及其方法
CN105780060B (zh) 一种利用低共熔溶剂电解分离铅锑合金的方法
CN116425152B (zh) 一种加铁精炼制备高纯石墨的方法
CN109371256B (zh) 一种铅回收设备及其铅回收工艺
CN110802237A (zh) 一种高纯锆金属粉的制备方法
CN219636904U (zh) 一种基于可再生能源生产膏状氢化镁制氢的***
CN108342230B (zh) 一种高炉煤气中酸性气体的脱除工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860466

Country of ref document: EP

Kind code of ref document: A1