WO2022041063A1 - 一种电子雾化装置 - Google Patents

一种电子雾化装置 Download PDF

Info

Publication number
WO2022041063A1
WO2022041063A1 PCT/CN2020/111829 CN2020111829W WO2022041063A1 WO 2022041063 A1 WO2022041063 A1 WO 2022041063A1 CN 2020111829 W CN2020111829 W CN 2020111829W WO 2022041063 A1 WO2022041063 A1 WO 2022041063A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary
section
liquid
channel
fins
Prior art date
Application number
PCT/CN2020/111829
Other languages
English (en)
French (fr)
Inventor
刘成川
龚博学
谢亚军
雷桂林
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to PCT/CN2020/111829 priority Critical patent/WO2022041063A1/zh
Priority to EP20950734.2A priority patent/EP4205580A4/en
Publication of WO2022041063A1 publication Critical patent/WO2022041063A1/zh
Priority to US18/174,024 priority patent/US20230189892A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors

Definitions

  • the present application relates to the technical field of atomizers, in particular to an electronic atomization device.
  • the electronic atomization device includes an atomization component and a power supply component, and an annular silica gel is arranged between the atomization component and the power supply component for sealing.
  • the leak path includes the priming channel and the seal sealed with annular silicone.
  • the seal of the annular silicone fails, the atomizer will leak liquid into the battery, causing the microphone head and circuit board to fail.
  • the electronic atomization device uses a microphone to start, and the failure of the microphone affects the use of the electronic atomization device.
  • the present application provides an electronic atomization device to solve the problems in the prior art that the leakage of liquid causes the failure of the airflow sensor and the leakage of liquid remains in the starting channel.
  • the first technical solution provided by the present application is to provide an electronic atomization device, which includes a suction nozzle, an air flow sensor and an activation channel, one end of the activation channel leads to the suction nozzle, and one end of the activation channel leads to the suction nozzle.
  • a section of the activation channel close to the air flow sensor is provided with a liquid suction part, and the liquid suction part is used for attracting the liquid flowing through the activation channel by capillary force.
  • the liquid suction part includes a capillary drainage structure, and the capillary drainage structure includes at least one capillary groove, and the capillary groove is used for attracting the liquid flowing through the activation channel.
  • the number of the capillary grooves is multiple, and the multiple capillary grooves are arranged side by side.
  • the capillary force of the capillary groove far from the airflow sensor is larger than the capillary force of the capillary groove close to the airflow sensor.
  • the liquid suction part includes a capillary drainage structure and a porous liquid storage element, and the capillary drainage structure is used for attracting the liquid flowing through the activation channel to the porous liquid storage element.
  • the capillary drainage structure is a structure formed by a plurality of capillary grooves side by side.
  • the porous liquid storage element is liquid storage cotton or porous ceramics.
  • the capillary force of the capillary groove far from the airflow sensor is larger than the capillary force of the capillary groove close to the airflow sensor.
  • the capillary drainage structure includes a plurality of first fins, and the plurality of first fins are arranged in parallel at intervals to form a first capillary groove.
  • the starting passage includes a first-section air passage and a second-section air passage; one end of the first-section air passage is connected to the airflow sensor, and the other end of the first-section air passage is connected to the second air passage one end of the airway of the second segment, and the other end of the airway of the second segment leads to the suction nozzle part; one end of the plurality of first fins close to the airway of the first segment is far from the airway of the first segment The distance between the central axes of the s is equal and 0.9-1.5mm.
  • the area corresponding to the first section of the airway is the first area
  • the area corresponding to the second section of the airway is the second area
  • the first fins arranged in the first area are close to the first area
  • the distance between one end of the segment air channel and the central axis of the first segment air channel is the first distance
  • the first rib arranged in the second area is close to one end of the first air channel and the first segment air channel.
  • the distance of the center axis of the track is a second distance, and the first distance is greater than the second distance.
  • the plurality of second distances of the plurality of first fins arranged in the second area are equal to 0.3-0.5 mm; the first distances of the plurality of first fins arranged in the first area Equal and 0.9-1.5mm.
  • the plurality of second distances of the plurality of first fins arranged in the second area form an equal difference decreasing along a direction from far from the first area to approaching the first area, and the equal difference is 0.3-0.5mm; the first distances of the plurality of first ribs arranged in the first area are equal and 0.9-1.5mm.
  • the capillary drainage structure further includes a plurality of second fins, and the plurality of second fins are located on the side of the plurality of first fins away from the first airway;
  • a second capillary groove is formed between the two fins at intervals and parallel to each other; the first capillary groove is communicated with the second capillary groove;
  • a second capillary groove is formed between the plurality of first fins and the plurality of second fins Three capillary grooves.
  • the included angle between the extending direction of the plurality of first fins and the plurality of second fins and the extending direction of the first section of airway is 60-90 degrees; the plurality of first capillary grooves The plurality of second capillary grooves are arranged in a one-to-one correspondence or in a staggered position.
  • the width of the first rib is 0.6-1.0mm
  • the width of the first capillary groove is 0.3-0.5mm
  • the width of the second rib is 0.6-1.0mm
  • the second capillary groove is 0.6-1.0mm
  • the width of the third capillary groove is 0.3-0.5mm
  • the width of the third capillary groove is 0.3-0.5mm.
  • the materials of the first fins and the second fins are metal or porous ceramics.
  • the electronic atomization device further includes an air inlet and an atomization channel, the atomization channel is connected with the air inlet and the suction nozzle, the atomization channel is provided with an atomization core, and the atomization channel in fluid communication with the activation channel.
  • the electronic atomization device includes a liquid storage tank, the atomization channel includes an atomization cavity, the atomization core is arranged in the atomization cavity, and the atomization core is generally used for atomizing the liquid from the liquid storage tank. liquid, and the liquid suction part is arranged between the atomizing core and the airflow sensor.
  • a liquid suction part is arranged in the starting channel, and the liquid suction part attracts the liquid flowing through the starting channel through capillary force, so as to prevent the leakage of liquid from soaking the airflow sensor and avoid the failure of the airflow sensor , while ensuring the smoothness of the startup channel.
  • Fig. 1a is the structural representation of the electronic atomization device provided by this application.
  • Fig. 1b is the block schematic diagram of the electronic atomization device provided by this application.
  • FIG. 2 is a schematic structural diagram of a first embodiment of a start-up channel of an electronic atomization device provided by the present application
  • FIG. 3 is a schematic structural diagram of a second embodiment of a startup channel of an electronic atomization device provided by the present application.
  • FIG. 4 is a schematic structural diagram of a third embodiment of a startup channel of an electronic atomization device provided by the present application.
  • Fig. 5 is the experimental phenomenon diagram of the third embodiment of the starting channel of the electronic atomization device provided by the present application.
  • FIG. 6 is a schematic structural diagram of a fourth embodiment of a startup channel of an electronic atomization device provided by the present application.
  • FIG. 7 is a schematic structural diagram of another embodiment of the fourth embodiment of the starting channel of the electronic atomization device provided by the present application.
  • FIG. 8 is an experimental phenomenon diagram of another embodiment of the fourth embodiment of the starting channel of the electronic atomization device provided by the present application.
  • FIG. 9 is a schematic structural diagram of a fifth embodiment of a start-up channel of an electronic atomization device provided by the present application.
  • FIG. 10 is a partial schematic diagram of another embodiment of multiple first fins and multiple second fins in the fifth embodiment of the starting channel of the electronic atomization device provided by the present application;
  • Fig. 11 is the experimental phenomenon diagram of the starting channel of the electronic atomization device provided by Fig. 9;
  • FIG. 12 is a schematic structural diagram of an embodiment of the fifth embodiment of the starting channel of the electronic atomization device provided by the application;
  • Fig. 13 is the experimental phenomenon diagram of the activation channel of the electronic atomization device provided by Fig. 12;
  • FIG. 14 is a schematic structural diagram of another embodiment of the fifth embodiment of the starting channel of the electronic atomization device provided by the present application.
  • FIG. 15 is an experimental phenomenon diagram of the activation channel of the electronic atomization device provided in FIG. 14 .
  • FIG. 1a is a schematic structural diagram of the electronic atomization device provided by the present application
  • FIG. 1b is a block schematic diagram of the electronic atomization device provided by the present application.
  • the electronic atomization device includes an activation channel 1 , an airflow sensor 2 and a suction nozzle 3 .
  • One end of the activation channel 1 leads to the suction nozzle 3, and one end leads to the air flow sensor 2.
  • a section of the activation channel 1 close to the air flow sensor 2 is provided with a liquid suction part 21, and the liquid suction part 21 is used to attract and flow through the activation channel 1 by capillary force. of liquid.
  • the starting channel 1 is connected to the suction nozzle 3 and the air flow sensor 2, and negative pressure is generated during suction, and the air flow sensor 2 senses the change of air pressure to start the heating function, so that the electronic atomization device starts to work.
  • the electronic atomization device also includes a liquid storage tank 4 , an atomization channel 5 , an air inlet 6 and a power supply 7 .
  • the atomization channel 5 communicates with the air inlet 6 and the suction nozzle 3 , and the atomization channel 5 communicates with the activation channel 1 .
  • the atomization channel 5 includes an atomization cavity 51, and the atomization core 52 is arranged in the atomization cavity 51.
  • the atomization core 52 is used to atomize the liquid from the liquid storage tank 4, and the liquid suction part 21 is arranged between the atomization core 52 and the air flow. between sensor 2.
  • the power supply 7 is used to supply power to the atomizing core 52, so that the atomizing core 52 works to atomize the liquid.
  • the atomization channel 5 includes an air outlet channel 53 , which runs through the liquid storage bin 4 . Negative pressure is generated during suction.
  • the airflow sensor 2 senses the change in air pressure and starts the heating function.
  • the outside air carries the liquid atomized by the atomizing core 52 through the air outlet channel 53 It reaches the nozzle part 3 and is sucked by the user.
  • part of the starting channel 1 is shared with the atomizing chamber 51 and the air outlet channel 53 .
  • FIG. 2 is a schematic structural diagram of the first embodiment of the starting channel 1 of the electronic atomization device provided by the present application.
  • the starting channel 1 includes a first section of air channel 11, a second section of air channel 12 and a suction element accommodating cavity 13; one end of the first section of air channel 11 is connected to the airflow sensor 2, and the other end of the first section of air channel 11 is connected to One end of the second-section air passage 12 and the other end of the second-section air passage 12 lead to the suction nozzle 3 ; the first-section air passage 11 is perpendicular to the extending direction of the second-section air passage 12 .
  • the liquid suction element accommodating cavity 13 is communicated with the first section of the air passage 11 .
  • the first section of the air passage 11 is connected to one end of the airflow sensor 2 and is connected to the outside world at the same time.
  • the starting channel 1 Since the starting channel 1 is in fluid communication with the atomizing channel 5 , the condensed liquid condensed by the atomizing gas in the atomizing channel 5 will enter the starting channel 1 . After the electronic atomization device leaks, the leakage will also enter the starting channel 1. Leakage and condensate entering the starting channel 1 will contaminate the airflow sensor 2 and affect the smoothness of the starting channel 1 .
  • a through hole 111 is provided on the side wall of one end of the first section of the air passage 11 for communicating with the outside world, which is used as an interface communicating with the airflow sensor 2 .
  • the shape and size of the through hole 111 are not limited, and can be designed according to the size of the airflow sensor 2 .
  • the microphone head is selected as the airflow sensor 2, and other components can also be selected as the airflow sensor 2, which can realize the function of starting the electronic atomization device, which is not limited in this application.
  • the liquid suction element accommodating cavity 13 is provided with a liquid suction part 21
  • the liquid suction part 21 includes a porous liquid storage element 211 .
  • the porous liquid storage element 211 is disposed in the entire space of the liquid suction element accommodating cavity 13 .
  • the porous liquid storage element 211 is liquid storage cotton or porous ceramic. The liquid diffuses in the porous liquid storage element 211 in a direction from being close to the air passage 12 of the second section to being away from the air passage 12 of the second section.
  • the porous liquid storage element 211 can be replaced after the porous liquid storage element 211 is full of liquid or the liquid suction speed becomes slow, which can prevent the liquid from staying in the starting channel 1 as much as possible, thereby preventing the liquid from soaking the airflow sensor 2 and lifting the Performance of Electronic Atomizers.
  • porous liquid storage element 211 can fill part or the entire suction element accommodating cavity 13; Porous liquid storage element 211 is also provided, so that the porous liquid storage element 211 has the maximum liquid absorption capacity.
  • the liquid absorbing part 21 includes a material that swells after absorbing liquid, the material only fills part of the liquid absorbing element accommodating cavity 13 .
  • the second airway 12 is a closed tubular structure.
  • the first section of the air passage 11 is also a tubular structure, but the side wall connecting the first section of the air passage 11 and the suction element accommodating cavity 13 has an opening, so that the suction element accommodating cavity 13 and the first section of the air passage 11 have an opening. Connected.
  • FIG. 3 is a schematic structural diagram of the second embodiment of the activation channel 1 of the electronic atomization device provided by the present application.
  • the liquid suction part 21 includes a capillary drainage structure 212 .
  • the capillary drainage structure 212 includes a plurality of first fins 2121, and the plurality of first fins 2121 are spaced in parallel to form first capillary grooves 2122; that is, the number of the first capillary grooves 2122 is multiple, and the first capillary grooves 2122 set side by side.
  • the capillary drainage structure 212 includes at least two first ribs 2121 , that is, at least one first capillary groove 2122 is formed.
  • the first capillary groove 2122 is used for attracting and storing the liquid flowing through the activation channel 1 , keeping the activation channel 1 unobstructed, and preventing the liquid from soaking the airflow sensor 2 .
  • the width of the plurality of first ribs 2121 is 0.6-1.0 mm, and the width of the first capillary grooves 2122 is 0.3-0.5 mm.
  • the included angle between the extending direction of the plurality of first ribs 2121 and the extending direction of the first airway 11 is greater than 30 degrees, preferably 60-90 degrees, so that the liquid can be sucked through the first capillary grooves 2122 smoothly. In this embodiment, the included angle between the extending direction of the plurality of first ribs 2121 and the extending direction of the first section of the air passage 11 is 90 degrees.
  • the distances from one end of the plurality of first ribs 2121 close to the first section of the air channel 11 from the central axis of the first section of the air channel 11 are equal to 0.9-1.5 mm.
  • the distances from one end of the plurality of first fins 2121 away from the first section of the air channel 11 and the central axis of the first section of the air channel 11 may be equal or unequal.
  • the suction element accommodating cavity 13 includes a first area 221 corresponding to the first section of the airway 11 and a second area 222 corresponding to the second section of the airway 12 ;
  • the distance between one end of the first rib 2121 close to the first airway 11 and the central axis of the first airway 11 is the first distance L1
  • the first rib 2121 disposed in the second area 222 is close to the first airway
  • the distance between one end of the 11 and the central axis of the first section of the airway 11 is a second distance L2, and the first distance L1 is greater than the second distance L2.
  • the plurality of second distances L2 of the plurality of first fins 2121 arranged in the second area 222 may be equal to 0.3-0.5 mm;
  • the first distance L1 is equal and is 0.9-1.5 mm.
  • the plurality of second distances L2 of the plurality of first ribs 2121 disposed in the second region 222 may be unequal, and formed along a direction from far away from the first region 221 to approaching the first region 221 , etc. The difference decreases gradually, and the equal difference is 0.3-0.5 mm; the plurality of first distances L1 of the plurality of first ribs 2121 disposed in the first region 221 are equal and 0.9-1.5 mm.
  • FIG. 4 is a schematic structural diagram of the third embodiment of the starting channel 1 of the electronic atomization device provided by the present application.
  • the starting assembly of the third embodiment of the present application has basically the same structure as the electronic atomizer device of the second embodiment of the present application, the difference is that the liquid suction part 21 includes a porous liquid storage element 211 and a capillary drainage structure 212 .
  • the capillary drainage structure 212 includes a plurality of first ribs 2121 .
  • the liquid suction element accommodating cavity 13 includes a first space 22 close to the first section of the airway 11 and a second space 23 away from the first section of the airway 12 .
  • a plurality of first ribs 2121 are provided in the first space 22 .
  • the porous liquid storage element 211 is disposed in the second space 23 , that is, a plurality of first fins 2121 are disposed between the porous liquid storage element 211 and the first section of the air passage 11 .
  • the plurality of first fins 2121 are arranged in parallel and spaced apart to form first capillary grooves 2122 .
  • the width of the plurality of first ribs 2121 is 0.6-1.0 mm, and the width of the first capillary grooves 2122 is 0.3-0.5 mm.
  • the included angle between the extending direction of the plurality of first ribs 2121 and the extending direction of the first air passage 11 is greater than 30 degrees, preferably 60-90 degrees, so that the liquid can flow into the second capillary groove 2122 smoothly through the first capillary groove 2122.
  • Space 23 the included angle between the extending direction of the plurality of first ribs 2121 and the extending direction of the first section of the air passage 11 is 90 degrees.
  • the distances from one end of the plurality of first ribs 2121 close to the first section of the air channel 11 from the central axis of the first section of the air channel 11 are equal to 0.9-1.5 mm.
  • the distance from the end of the plurality of first fins 2121 away from the first section of the air channel 11 and the central axis of the first section of the air channel 11 may be equal or unequal; it only needs to be satisfied that the plurality of first fins 2121 are far away from the first section
  • One end of the air passage 11 only needs to be in contact with the porous liquid storage element 211 .
  • the first capillary groove 2122 communicates with the first air passage 11 and the second space 23, so that the liquid entering the starting channel 1 can flow into the second space 23 through the first capillary groove 2122, and be stored by the porous storage in the second space 23.
  • the liquid element 211 is absorbed to keep the starting channel 1 unobstructed and prevent the liquid from soaking the airflow sensor 2 .
  • the liquid flowing into the activation channel 1 is guided, so that the liquid is absorbed by the porous liquid storage element 211 .
  • the liquid flowing into the starting channel 1 is absorbed by the porous liquid storage element 211 through the diversion of the first capillary grooves 2122 between the plurality of first fins 2121 , which does not affect the smoothness of the starting channel 1 .
  • the amount of liquid leakage is large, the liquid flowing into the starting channel 1 is first guided by the plurality of first fins 2121 to the porous liquid storage element 211.
  • the second stage gas is further made to flow.
  • the liquid level in the channel 12 rises, so that the through hole 111 communicating with the airflow sensor 2 is the area that the liquid finally contacts, so as to protect the airflow sensor 2 to the greatest extent.
  • the porous liquid storage element 211 is replaced after the porous liquid storage element 211 is full of liquid or the liquid suction speed becomes slow, so as to avoid the liquid staying in the starting channel 1 as much as possible, thereby preventing the liquid from soaking the air flow sensor 2 and improving the electronic Performance of the atomizing device.
  • FIG. 5 is an experimental phenomenon diagram of the third embodiment of the activation channel 1 of the electronic atomization device provided by the present application.
  • FIG. 6 is a schematic structural diagram of the fourth embodiment of the starting channel 1 of the electronic atomization device provided by the present application.
  • the starting assembly of the fourth embodiment of the present application is basically the same in structure as the electronic atomizer device of the third embodiment of the present application, and the difference lies in that the structures of the plurality of first ribs 2121 are different.
  • the liquid suction part 21 includes a porous liquid storage element 211 and a plurality of first ribs 2121 .
  • the suction element accommodating cavity 13 includes a first space 22 close to the first section of the airway 11 and a second space 23 away from the first section of the airway 12 .
  • a plurality of first ribs 2121 are provided in the first space 22 .
  • the porous liquid storage element 211 is disposed in the second space 23 .
  • the plurality of first fins 2121 are arranged in parallel and spaced apart to form first capillary grooves 2122 .
  • the width of the plurality of first ribs 2121 is 0.6-1.0 mm, and the width of the first capillary grooves 2122 is 0.3-0.5 mm.
  • the first capillary groove 2122 communicates with the first air passage 11 and the second space 23, so that the liquid entering the starting channel 1 can flow into the second space 23 through the first capillary groove 2122, and be stored by the porous storage in the second space 23.
  • the liquid element 211 is absorbed to keep the starting channel 1 unobstructed and prevent the liquid from soaking the airflow sensor 2 .
  • the suction element accommodating cavity 13 includes a first area 221 corresponding to the first section of the airway 11 and a second area 222 corresponding to the second section of the airway 12 ; the definition is provided in the first area 221
  • the distance between one end of the first rib 2121 close to the first section of the air channel 11 and the central axis of the first section of the air channel 11 is the first distance L1, and the first rib 2121 disposed in the second area 222 is close to the first section.
  • the distance between one end of the air channel 11 and the central axis of the first section of the air channel 11 is the second distance L2, and the first distance L1 is greater than the second distance L2, that is, the height of the first rib 2121 disposed in the second area 222 greater than the height of the first rib 2121 disposed in the first region 221 .
  • the plurality of second distances L2 of the plurality of first fins 2121 arranged in the second area 222 are equal to 0.3-0.5 mm; the plurality of first fins 2121 arranged in the first area 221
  • the plurality of first distances L1 are equal and are 0.9-1.5mm.
  • the distance from the end of the plurality of first fins 2121 away from the first section of the air channel 11 and the central axis of the first section of the air channel 11 may be equal or unequal; it only needs to be satisfied that the plurality of first fins 2121 are far away from the first section
  • One end of the air passage 11 only needs to be in contact with the porous liquid storage element 211 .
  • FIG. 7 is a schematic structural diagram of another implementation manner of the fourth embodiment of the starting channel 1 of the electronic atomization device provided by the present application.
  • the plurality of second distances L2 of the plurality of first fins 2121 disposed in the second area 222 form a uniform decrease along the direction from the distance from the first area 221 to the direction close to the first area 221,
  • the equal difference is 0.3-0.5 mm;
  • the plurality of first distances L1 of the plurality of first ribs 2121 disposed in the first region 221 are equal and 0.9-1.5 mm.
  • the distance from the end of the plurality of first fins 2121 away from the first section of the air channel 11 and the central axis of the first section of the air channel 11 may be equal or unequal; it only needs to be satisfied that the plurality of first fins 2121 are far away from the first section
  • One end of the air passage 11 only needs to be in contact with the porous liquid storage element 211 .
  • FIG. 8 is an experimental phenomenon diagram of another embodiment of the fourth embodiment of the starting channel 1 of the electronic atomization device provided by the present application.
  • the plurality of second distances L2 of the plurality of first fins 2121 in the second area 222 form an evenly decreasing distance from the direction away from the first area 221 to the direction close to the first area 221 , and the porous liquid storage element 211 occupies 1/2 of the volume of the liquid suction element accommodating cavity 13, which can both promote the liquid drop and increase the liquid storage volume, maximize the protection of the airflow sensor 2 and keep the starting channel 1 unobstructed.
  • the side wall surface of the opening of the test piece is attached to the acrylic plate, which is convenient to observe the liquid flow.
  • the included angle between the extending direction of the plurality of first fins 2121 and the extending direction of the first air passage 11 is 60-90 degrees, so that the liquid can smoothly flow into the second space 23 through the first capillary groove 2122 .
  • the included angle between the extending direction of the plurality of first fins 2121 and the extending direction of the first section of the air passage 11 is 90 degrees.
  • the suction element accommodating cavity 13 is divided into a first area 221 corresponding to the first section of the airway 11 and a second area 222 corresponding to the second section of the airway 12, by setting the first distance L1 to be greater than the second The distance L2 enables the liquid entering the priming channel 1 to enter the first capillary groove 2122 more smoothly through the interface communicating with the atomization channel 5 of the second air channel 12 .
  • the The plurality of second distances L2 of the plurality of first fins 2121 in the second region 222 form a uniform decrease along the direction from the distance from the first region 221 to the direction close to the first region 221 .
  • the liquid spreads over the porous liquid storage element 211 in a direction from away from the first region 221 to close to the first region 221 .
  • the liquid flowing into the activation channel 1 is absorbed by the porous liquid storage element 211 through the diversion of the plurality of first fins 2121 , which does not affect the smoothness of the activation channel 1 .
  • the liquid flowing into the starting channel 1 is first guided by the plurality of first fins 2121 to the porous liquid storage element 211.
  • the porous liquid storage element 211 does not have the ability to absorb liquid, the second stage gas is further made to flow.
  • the liquid level in the channel 12 rises, so that the through hole 111 communicating with the airflow sensor 2 is the area that the liquid finally contacts, so as to protect the airflow sensor 2 to the greatest extent.
  • the porous liquid storage element 211 is replaced after the porous liquid storage element 211 is full of liquid or the liquid suction speed becomes slow, so as to avoid the liquid staying in the starting channel 1 as much as possible, thereby preventing the liquid from soaking the air flow sensor 2 and improving the electronic Performance of the atomizing device.
  • the second space 23 occupies at least 1/2 of the volume of the suction element accommodating cavity 13 ; in other embodiments, the second space 23 occupies 1/2 of the volume of the suction element accommodating cavity 13 . 1/3.
  • the more porous liquid storage elements 211 provided in the liquid suction element accommodating cavity 13, the greater the liquid suction and storage capacity. Setting the second space 23 to occupy at least 1/2 of the volume of the suction element accommodating cavity 13 can both promote liquid loading and increase the liquid storage volume, maximally protect the airflow sensor 2 and keep the starting channel 1 unobstructed.
  • FIG. 9 is a schematic structural diagram of the fifth embodiment of the starting channel 1 of the electronic atomization device provided by the present application.
  • the starting assembly of the fifth embodiment of the present application is basically the same in structure as the starting assembly of the third embodiment of the present application.
  • the difference lies in that the liquid suction part 21 includes a porous liquid storage element 211 , a plurality of first ribs 2121 and a plurality of second fins 2121 . Ribs 2123. Specifically, a plurality of first ribs 2121 and a plurality of second ribs 2123 are provided in the first space 22 .
  • the porous liquid storage element 211 is disposed in the second space 23 .
  • the second space 23 occupies 1/3 of the volume of the liquid suction element accommodating cavity 13 .
  • the plurality of second fins 2123 are located between the plurality of first fins 2121 and the second space 23; the plurality of first fins 2121 are arranged in parallel at intervals to form first capillary grooves 2122; the plurality of second fins 2123 The second capillary grooves 2124 are formed between them at intervals and parallel to each other; the first capillary grooves 2122 and the second capillary grooves 2124 communicate with each other;
  • the extending direction of the first capillary groove 2122 is the same as the extending direction of the second capillary groove 2124
  • the extending direction of the third capillary groove 2125 is perpendicular to the extending direction of the second capillary groove 2124 .
  • the plurality of first fins 2121 and the plurality of second fins 2123 can be arranged in a one-to-one correspondence, or they can be arranged in a staggered position (please refer to FIG. 10 , which is the fifth embodiment of the starting channel 1 of the electronic atomization device provided by the present application.
  • FIG. 10 which is the fifth embodiment of the starting channel 1 of the electronic atomization device provided by the present application.
  • FIG. 10 is the fifth embodiment of the starting channel 1 of the electronic atomization device provided by the present application.
  • the width of the first rib 2121 is 0.6-1.0mm, the width of the first capillary groove 2122 is 0.3-0.5mm; the width of the second rib 2123 is 0.6-1.0mm, and the width of the second capillary groove 2124 is 0.3-0.5 mm; the width of the third capillary groove 2125 is 0.3-0.5 mm.
  • the first capillary groove 2122 and the second capillary groove 2124 communicate with the first air passage 11 and the second space 23, so that the liquid entering the starting channel 1 can flow into the second space through the first capillary groove 2122 and the second capillary groove 2124 23 , it is absorbed by the porous liquid storage element 211 in the second space 23 , keeping the starting channel 1 unobstructed and preventing liquid from soaking the airflow sensor 2 .
  • the distances from one end of the plurality of first ribs 2121 close to the first section of the air channel 11 from the central axis of the first section of the air channel 11 are equal to 0.9-1.5 mm.
  • the distances from one end of the plurality of first fins 2121 away from the first section of the air channel 11 and the central axis of the first section of the air channel 11 are the same.
  • One end of the plurality of second fins 2123 close to the first section of the air channel 11 is at the same distance from the central axis of the first section of the air channel 11 .
  • the distance from the end of the plurality of second fins 2123 away from the first section of the air channel 11 and the central axis of the first section of the air channel 11 may be equal or unequal; it only needs to satisfy the requirement that the plurality of second fins 2123 are far away from the first section
  • One end of the air passage 11 only needs to be in contact with the porous liquid storage element 211 .
  • FIG. 11 is an experimental phenomenon diagram of the activation channel 1 of the electronic atomization device provided in FIG. 9 .
  • a plurality of first fins 2121 and a plurality of second fins 2123 are arranged in a one-to-one correspondence, and a third capillary groove 2125 is formed between the plurality of first fins 2121 and the plurality of second fins 2123, Air column formation in the first capillary groove 2122 or the second capillary groove 2124 can be avoided.
  • the airflow sensor 2 is protected and the activation channel 1 is kept unobstructed.
  • the side wall surface of the opening of the test piece is attached to the acrylic plate, which is convenient to observe the liquid flow.
  • the suction element accommodating cavity 13 includes a first area 221 corresponding to the first section of the airway 11 and a second area 222 corresponding to the second section of the airway 12 ;
  • the distance between one end of the first rib 2121 close to the first airway 11 and the central axis of the first airway 11 is the first distance L1
  • the first rib 2121 disposed in the second area 222 is close to the first airway
  • the distance between one end of the 11 and the central axis of the first section of the airway 11 is a second distance L2, and the first distance L1 is greater than the second distance L2.
  • FIG. 12 is a schematic structural diagram of an implementation manner of the fifth embodiment of the starting channel 1 of the electronic atomization device provided by the present application.
  • the plurality of second distances L2 of the plurality of first fins 2121 arranged in the second area 222 may be equal to 0.3-0.5 mm; the plurality of first fins 2121 arranged in the first area 221
  • the first distance L1 is equal and is 0.9-1.5mm.
  • FIG. 13 is an experimental phenomenon diagram of the activation channel 1 of the electronic atomization device provided in FIG. 12 .
  • the plurality of second distances L2 of the plurality of first fins 2121 arranged in the second area 222 are equal, and the plurality of first distances of the plurality of first fins 2121 arranged in the first area 221 L1 is equal, so that the first rib between the first area 221 and the second area 222 forms a gradient, so that the liquid can enter the first capillary groove 2122 and the second capillary groove 2124 in the first area 221 more smoothly.
  • the airflow sensor 2 is protected and the activation channel 1 is kept unobstructed.
  • the side wall surface of the opening of the test piece is attached to the acrylic plate, which is convenient to observe the liquid flow.
  • FIG. 14 is a schematic structural diagram of another embodiment of the fifth embodiment of the starting channel 1 of the electronic atomization device provided by the present application.
  • the plurality of second distances L2 of the plurality of first fins 2121 disposed in the second area 222 may be unequal, and form an equal difference along the direction from the distance from the first area 221 to the direction close to the first area 221 Decrease, the equal difference is 0.3-0.5mm; the plurality of first distances L1 of the plurality of first ribs 2121 disposed in the first region 221 are equal and 0.9-1.5mm.
  • FIG. 15 is an experimental phenomenon diagram of the activation channel 1 of the electronic atomization device provided in FIG. 14 .
  • the plurality of second distances L2 of the plurality of first fins 2121 disposed in the second area 222 form an equal difference decrease along the direction from far from the first area 221 to the direction close to the first area 221, which can avoid the first Capillary action is formed between the plurality of first fins 2121 in the second area 222 , which affects the liquid entering the first capillary groove 2122 and the second capillary groove 2124 formed by the plurality of first fins 2121 in the first area 221 .
  • the side wall surface of the opening of the test piece is attached to the acrylic plate, which is convenient to observe the liquid flow.
  • the plurality of first fins 2121 and the plurality of second fins 2123 are arranged in a one-to-one correspondence.
  • the angle between the extending direction of the plurality of first fins 2121 and the plurality of second fins 2123 and the extending direction of the first section of the air passage 11 is 60-90 degrees, so that the liquid can smoothly pass through the first capillary groove 2122 and the first capillary groove 2122 and the first capillary groove 2122.
  • Two capillary grooves 2124 flow into the second space 23 .
  • the included angle between the extending direction of the plurality of first fins 2121 and the plurality of second fins 2123 and the extending direction of the first section of air passage 11 is 90 degrees.
  • the suction element accommodating cavity 13 is divided into a first area 221 corresponding to the first section of the airway 11 and a second area 222 corresponding to the second section of the airway 12, by setting the first distance L1 to be greater than the second The distance L2 enables the liquid entering the priming channel 1 to enter the first capillary groove 2122 and the second capillary groove 2124 more smoothly through the interface communicating with the atomization channel 5 of the second air channel 12 .
  • the first capillary groove 2122 and the second capillary groove 2124 formed by the plurality of first ribs 2121 in the first area 221 are affected by the liquid entering the first area 221.
  • the plurality of second distances L2 of the plurality of first fins 2121 disposed in the second area 222 may be formed in a uniformly decreasing direction along the direction from being far from the first area 221 to being close to the first area 221 .
  • a third capillary groove 2125 is formed between the plurality of first fins 2121 and the plurality of second fins 2122, so as to prevent the liquid from forming an air column in the first capillary groove 2122 or the second capillary groove 2124, which affects the liquid being absorbed by the porous liquid storage element 211 Absorption.
  • the liquid spreads over the porous liquid storage element 211 in a direction from away from the first region 221 to close to the first region 221 .
  • the liquid flowing into the activation channel 1 is absorbed by the porous liquid storage element 211 through the diversion of the plurality of first fins 2121 and the plurality of second fins 2123 , which does not affect the smoothness of the activation channel 1 .
  • the liquid flowing into the starting channel 1 is first guided by the plurality of first fins 2121 and the plurality of second fins 2123 to the porous liquid storage element 211, and when the porous liquid storage element 211 does not have the ability to absorb liquid , and further raise the liquid level in the second-stage air passage 12 , so that the through hole 111 communicating with the airflow sensor 2 is the area that the liquid finally contacts, so as to protect the airflow sensor 2 to the greatest extent.
  • the porous liquid storage element 211 is replaced after the porous liquid storage element 211 is full of liquid or the liquid suction speed becomes slow, so as to avoid the liquid staying in the starting channel 1 as much as possible, thereby preventing the liquid from soaking the air flow sensor 2 and improving the electronic Performance of the atomizing device.
  • the capillary force of the capillary groove far from the airflow sensor 2 is larger than that of the capillary groove close to the airflow sensor 2, which can make The leaking liquid is stored more away from the airflow sensor 2.
  • the capillary drainage structure 212 may include a plurality of first fins 2121 and/or a plurality of second fins 2123, and the materials of the plurality of first fins 2121 and the plurality of second fins 2123 are metal or ceramics.
  • the capillary drainage structure 212 includes porous ceramics and the porous liquid storage element 211 is porous ceramics, the capillary force of the capillary drainage structure 212 is different from that of the porous liquid storage element 211 .
  • a liquid suction part 21 is arranged in the starting channel 1, and the liquid suction part 21 attracts the liquid flowing through the starting channel 1 through capillary force, so as to prevent the leakage of liquid from soaking the airflow sensor 2, avoid the failure of the airflow sensor, and ensure the smoothness of the starting channel 1 at the same time.

Landscapes

  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种电子雾化装置,包括:吸嘴部(3)、气流传感器(2)和启动通道(1),启动通道(1)一端通至吸嘴部(3),一端通至气流传感器(2),启动通道(1)靠近气流传感器(2)的一段设置有吸液部(21),吸液部(21)用于通过毛细作用力吸引流经启动通道(1)的液体。通过在启动通道(1)靠近气流传感器(2)的一段设置有吸液部(2)吸收漏液流到启动通道(1)的液体,防止漏液浸泡气流传感器(2),避免气流传感器(2)失效,同时保证启动通道(1)的通畅。

Description

一种电子雾化装置 技术领域
本申请涉及雾化器技术领域,具体是涉及一种电子雾化装置。
背景技术
电子雾化装置包括雾化组件和电源组件,雾化组件和电源组件之间设置有环形硅胶进行密封。在电子雾化装置使用过程中,会有冷凝液产生;由于操作不当或其他原因,会出现漏液的现象。漏液路径包括启动通道和用环形硅胶进行密封的密封处。当环形硅胶的密封失效,雾化器会漏液流到电池内部,导致咪头和电路板失效。通常,电子雾化装置采用咪头进行启动,咪头失效影响电子雾化装置的使用。
申请内容
有鉴于此,本申请提供一种电子雾化装置,以解决现有技术中漏液导致气流传感器失效以及漏液滞留在启动通道内的问题。
为了解决上述技术问题,本申请提供的第一个技术方案为:提供一种电子雾化装置,包括吸嘴部、气流传感器和启动通道,所述启动通道一端通至所述吸嘴部,一端通至所述气流传感器,所述启动通道靠近所述气流传感器的一段设置有吸液部,所述吸液部用于通过毛细作用力吸引流经所述启动通道的液体。
其中,所述吸液部包括毛细引流结构,所述毛细引流结构包括至少一个毛细槽,所述毛细槽用于吸引流经所述启动通道的液体。
其中,所述毛细槽的数量为多个,多个所述毛细槽并排设置。
其中,远离所述气流传感器的所述毛细槽的毛细作用力比靠近所述气流传感器的所述毛细槽的毛细作用力大。
其中,所述吸液部包括毛细引流结构及多孔储液元件,所述毛细引流结构用于吸引流经所述启动通道的液体至所述多孔储液元件。
其中,所述毛细引流结构为多个毛细槽并排组成的结构。
其中,所述多孔储液元件为储液棉或者多孔陶瓷。
其中,远离所述气流传感器的所述毛细槽的毛细作用力比靠近所述气流传感器的所述毛细槽的毛细作用力大。
其中,所述毛细引流结构包括多个第一肋片,所述多个第一肋片之间间隔平行设置形成第一毛细槽。
其中,所述启动通道包括第一段气道和第二段气道;所述第一段气道的一端通至所述气流传感器,所述第一段气道的另一端连通所述第二段气道的一端,所述第二段气道的另一端通至所述吸嘴部;所述多个第一肋片靠近所述第一段气道的一端距所述第一段气道的中心轴线的距离相等且为0.9-1.5mm。
其中,与所述第一段气道对应的区域为第一区域,与所述第二段气道对应的区域为第二区域;设置在所述第一区域内的第一肋片靠近第一段气道的一端与所述第一段气道的中心轴线的距离为第一距离,设置在所述第二区域内的第一肋片靠近第一气道的一端与所述第一段气道的中心轴线的距离为第二距离,所述第一距离大于所述第二距离。
其中,设置在所述第二区域内的多个第一肋片的多个第二距离相等且为0.3-0.5mm;设置在所述第一区域内的多个第一肋片的第一距离相等且为0.9-1.5mm。
其中,设置在所述第二区域内的多个第一肋片的多个第二距离沿着从远离所述第一区域到靠近所述第一区域的方向形成等差递减,所述等差为0.3-0.5mm;设置在所述第一区域内的多个第一肋片的第一距离相等且为0.9-1.5mm。
其中,所述毛细引流结构还包括多个第二肋片,所述多个第二肋片位于所述多个第一肋片远离所述第一段气道的一侧;所述多个第二肋片之间间隔平行设置形成第二毛细槽;所述第一毛细槽与所述第二毛细槽连通;所述多个第一肋片与所述多个第二肋片之间形成第三毛细槽。
其中,所述多个第一肋片和所述多个第二肋片的延伸方向与所述第一段气道的延伸方向的夹角为60-90度;所述多个第一毛细槽与所述多个第二毛细槽一一对应设置或错位设置。
其中,所述第一肋片的宽度为0.6-1.0mm,所述第一毛细槽的宽度为0.3-0.5mm;所述第二肋片的宽度为0.6-1.0mm,所述第二毛细槽的宽度为0.3-0.5mm;所述第三毛细槽的宽度为0.3-0.5mm。
其中,所述第一肋片和所述第二肋片的材料为金属或多孔陶瓷。
其中,所述电子雾化装置还包括进气口、雾化通道,所述雾化通道连通所述进气口和吸嘴部,所述雾化通道设有雾化芯,所述雾化通道与所述启动通道流体相通。
其中,所述电子雾化装置包括储液仓,所述雾化通道包括雾化腔,所述雾化芯设置在所述雾化腔,所述雾化芯通用于雾化来自储液仓的液体,所述吸液部设置在所述雾化芯与所述气流传感器之间。
本申请的有益效果:区别于现有技术,本申请通过在启动通道内设置吸液部,吸液部通过毛细作用力吸引流经启动通道的液体,防止漏液浸泡气流传感器,避免气流传感器失效,同时保证启动通道的通畅。
附图说明
图1a是本申请提供的电子雾化装置的结构示意图;
图1b是本申请提供的电子雾化装置的方框示意图;
图2是本申请提供的电子雾化装置的启动通道第一实施例的结构示意图;
图3是本申请提供的电子雾化装置的启动通道第二实施例的结构示意图;
图4是本申请提供的电子雾化装置的启动通道第三实施例的结构示意图;
图5是本申请提供的电子雾化装置的启动通道第三实施例的实验现象图;
图6是本申请提供的电子雾化装置的启动通道第四实施例的结构示意图;
图7是本申请提供的电子雾化装置的启动通道第四实施例的另一实施方式结构示意图;
图8是本申请提供的电子雾化装置的启动通道第四实施例的另一实施方式的实验现象图;
图9是本申请提供的电子雾化装置的启动通道第五实施例的结构示意图;
图10是本申请提供的电子雾化装置的启动通道第五实施例中多个第一肋片和多个第二肋片另一实施方式的局部示意图;
图11是图9提供的电子雾化装置的启动通道实验现象图;
图12是本申请提供的电子雾化装置的启动通道第五实施例的一 实施方式的结构示意图;
图13是图12提供的电子雾化装置的启动通道的实验现象图;
图14是本申请提供的电子雾化装置的启动通道第五实施例的另一实施方式的结构示意图;
图15是图14提供的电子雾化装置的启动通道的实验现象图。
具体实施方式
下面结合附图和实施例,对本申请作进一步的详细描述。
请参阅图1a和图1b,图1a是本申请提供的电子雾化装置的结构示意图,图1b是本申请提供的电子雾化装置的方框示意图。
电子雾化装置包括启动通道1、气流传感器2和吸嘴部3。启动通道1一端通至吸嘴部3,一端通至气流传感器2,启动通道1靠近气流传感器2的一段设置有吸液部21,吸液部21用于通过毛细作用力吸引流经启动通道1的液体。启动通道1连通吸嘴部3和气流传感器2,抽吸时产生负压,气流传感器2感应到气压变化而启动加热功能,从而电子雾化装置开始工作。
电子雾化装置还包括储液仓4、雾化通道5、进气口6和电源7。雾化通道5连通进气口6和吸嘴部3,且雾化通道5与启动通道1连通。雾化通道5包括雾化腔51,雾化芯52设置在雾化腔51内,雾化芯52用于雾化来自储液仓4的液体,吸液部21设置在雾化芯52与气流传感器2之间。电源7用于给雾化芯52供电,以使雾化芯52工作雾化液体。
雾化通道5包括出气通道53,出气通道53贯穿储液仓4,出气通道53的一端与吸嘴部3连通,另一端与雾化腔51连通;进气口6与雾化腔51连通。抽吸时产生负压,外界空气从进气口6进入雾化腔51的同时气流传感器2感应到气压变化而启动加热功能,外界空气带着雾化芯52雾化好的液体经出气通道53到达吸嘴部3,被用户吸食。
其中,部分启动通道1与雾化腔51和出气通道53共用。
请参阅图2,是本申请提供的电子雾化装置的启动通道1第一实施例的结构示意图。
启动通道1包括第一段气道11、第二段气道12和吸液元件容置腔13;第一段气道11的一端通至气流传感器2,第一段气道11的另一端连通第二段气道12的一端,第二段气道12的另一端通至吸嘴部 3;第一段气道11与第二段气道12的延伸方向垂直。吸液元件容置腔13与第一段气道11连通。其中,第一段气道11通至气流传感器2的一端同时连通外界。
由于启动通道1与雾化通道5的流体相通,雾化通道5的雾化气冷凝后的冷凝液会进入启动通道1。电子雾化装置漏液后,漏液也会进入启动通道1。进入启动通道1的漏液和冷凝液会污染气流传感器2,且影响启动通道1的通畅。
第一段气道11用于连通外界的一端的侧壁上设置有通孔111,用作与气流传感器2相连通的接口。通孔111的形状尺寸不限,可以根据气流传感器2的尺寸进行设计。通常选用咪头作为气流传感器2,也可以选用其他元件作为气流传感器2,能够实现启动电子雾化装置的功能即可,本申请对此不做限定。
第一实施例中,吸液元件容置腔13内设置有吸液部21,吸液部21包括多孔储液元件211。多孔储液元件211设置于吸液元件容置腔13的整个空间。多孔储液元件211为储液棉或多孔陶瓷。液体沿着从靠近第二段气道12到远离第二段气道12的方向在多孔储液元件211中扩散。在使用过程中,多孔储液元件211吸满液体或吸液速度变慢后可以更换多孔储液元件211,能够尽可能的避免液体滞留在启动通道1内,进而避免液体浸泡气流传感器2,提升电子雾化装置的性能。
可以理解,多孔储液元件211可以填充部分或填满整个吸液元件容置腔13;甚至在多孔储液元件211填满整个吸液元件容置腔13后,部分第一段气道11内也设置有多孔储液元件211,使多孔储液元件211具有最大限度的吸液能力。当吸液部21包括吸液后膨胀的材料时,该材料仅填充部分吸液元件容置腔13。
可以理解,第一段气道11与第二段气道12的延伸方向也可以不垂直,只要具有一定夹角可以满足需要即可。第二段气道12为密闭的管状结构。第一段气道11也为管状结构,但第一段气道11与吸液元件容置腔13连接的侧壁上具有开口,从而使得吸液元件容置腔13与第一段气道11连通。
请参阅图3,是本申请提供的电子雾化装置的启动通道1第二实施例的结构示意图。
第二实施例中,吸液部21包括毛细引流结构212。毛细引流结构212包括多个第一肋片2121,多个第一肋片2121之间间隔平行设 置形成第一毛细槽2122;即,第一毛细槽2122的数量为多个,第一毛细槽2122之间并排设置。可以理解,毛细引流结构212至少包括两个第一肋片2121,即形成至少一个第一毛细槽2122。第一毛细槽2122用于吸引并储存流经启动通道1的液体,保持启动通道1的通畅,避免液体浸泡气流传感器2。
多个第一肋片2121的宽度为0.6-1.0mm,第一毛细槽2122的宽度为0.3-0.5mm。其中,多个第一肋片2121的延伸方向与第一段气道11的延伸方向的夹角大于30度,优选为60-90度,使得液体可以顺畅的通过第一毛细槽2122吸引。本实施例中,多个第一肋片2121的延伸方向与第一段气道11的延伸方向的夹角为90度。
在本实施例中,多个第一肋片2121靠近第一段气道11的一端距第一段气道11的中心轴线的距离相等且为0.9-1.5mm。多个第一肋片2121远离第一段气道11的一端距第一段气道11的中心轴线的距离可以相等,也可以不相等。
在其他实施方式中,吸液元件容置腔13包括与第一段气道11对应的第一区域221以及与第二段气道12对应的第二区域222;设置在第一区域221内的第一肋片2121靠近第一段气道11的一端与第一段气道11的中心轴线的距离为第一距离L1,设置在第二区域222内的第一肋片2121靠近第一气道11的一端与第一段气道11的中心轴线的距离为第二距离L2,第一距离L1大于第二距离L2。
具体地,设置在第二区域222内的多个第一肋片2121的多个第二距离L2可以相等且为0.3-0.5mm;设置在第一区域221内的多个第一肋片2121的第一距离L1相等且为0.9-1.5mm。
另一实施方式,设置在第二区域222内的多个第一肋片2121的多个第二距离L2可以不相等,且沿着从远离第一区域221到靠近第一区域221的方向形成等差递减,等差为0.3-0.5mm;设置在第一区域221内的多个第一肋片2121的多个第一距离L1相等且为0.9-1.5mm。
请参阅图4,是本申请提供的电子雾化装置的启动通道1第三实施例的结构示意图。
本申请第三实施例的启动组件与本申请第二实施例的电子雾化装置的结构基本相同,其区别在于,吸液部21包括多孔储液元件211和毛细引流结构212。毛细引流结构212包括多个第一肋片2121。具体地,吸液元件容置腔13包括靠近第一段气道11的第一空间22和 远离第一段气道12的第二空间23。多个第一肋片2121设置在第一空间22内。多孔储液元件211设置在第二空间23内,即多个第一肋片2121设置在多孔储液元件211与第一段气道11之间。多个第一肋片2121之间间隔平行设置形成第一毛细槽2122。多个第一肋片2121的宽度为0.6-1.0mm,第一毛细槽2122的宽度为0.3-0.5mm。其中,多个第一肋片2121的延伸方向与第一段气道11的延伸方向的夹角大于30度,优选为60-90度,使得液体可以顺畅的通过第一毛细槽2122流入第二空间23。本实施例中,多个第一肋片2121的延伸方向与第一段气道11的延伸方向的夹角为90度。
在本实施例中,多个第一肋片2121靠近第一段气道11的一端距第一段气道11的中心轴线的距离相等且为0.9-1.5mm。多个第一肋片2121远离第一段气道11的一端距第一段气道11的中心轴线的距离可以相等,也可以不相等;只需满足多个第一肋片2121远离第一段气道11的一端与多孔储液元件211接触即可。
第一毛细槽2122连通第一段气道11和第二空间23,以使进入启动通道1内的液体可以通过第一毛细槽2122流入第二空间23内,被第二空间23内的多孔储液元件211吸收,保持启动通道1的通畅,避免液体浸泡气流传感器2。液体沿着从靠近第二段气道12到远离第二段气道12的方向在多孔储液元件211上扩散。
通过在吸液元件容置腔13内设置多个第一肋片2121,对流入启动通道1的液体进行导流,使液体被多孔储液元件211吸收。当漏液量较少,流入启动通道1的液体通过多个第一肋片2121之间的第一毛细槽2122的导流被多孔储液元件211吸收,不影响启动通道1的通畅性。当漏液量较大,流入启动通道1的液体先被多个第一肋片2121导流至多孔储液元件211,多孔储液元件211不具有吸液能力时,再进一步使第二段气道12内的液面抬升,使连通气流传感器2的通孔111为液体最后接触到的区域,最大限度的保护气流传感器2。在使用过程中,多孔储液元件211吸满液体或吸液速度变慢后更换多孔储液元件211,能够尽可能的避免液体滞留在启动通道1内,进而避免液体浸泡气流传感器2,提升电子雾化装置的性能。
请参阅图5,是本申请提供的电子雾化装置的启动通道1第三实施例的实验现象图。
由图5可知,通过设置多个第一肋片2121和多孔储液元件211,能够对液体进行导流,使得漏液进入启动通道1的液体被多孔储液元 件211吸收,最大限度的保护气流传感器2,防止液体滞留在启动通道1内。但第一毛细槽2122中下部液体上升与上部液体下沉会形成气柱。实验中,实验件的开口侧壁面与亚克力板贴合,便于观察液体流动。
请参阅图6,是本申请提供的电子雾化装置的启动通道1第四实施例的结构示意图。
本申请第四实施例的启动组件与本申请第三实施例的电子雾化装置结构基本相同,其区别在于,多个第一肋片2121的结构不同。具体地,第四实施例中,吸液部21包括多孔储液元件211和多个第一肋片2121。吸液元件容置腔13包括靠近第一段气道11的第一空间22和远离第一段气道12的第二空间23。多个第一肋片2121设置在第一空间22内。多孔储液元件211设置在第二空间23内。多个第一肋片2121之间间隔平行设置形成第一毛细槽2122。多个第一肋片2121的宽度为0.6-1.0mm,第一毛细槽2122的宽度为0.3-0.5mm。
第一毛细槽2122连通第一段气道11和第二空间23,以使进入启动通道1内的液体可以通过第一毛细槽2122流入第二空间23内,被第二空间23内的多孔储液元件211吸收,保持启动通道1的通畅,避免液体浸泡气流传感器2。
在本实施例中,吸液元件容置腔13包括与第一段气道11对应的第一区域221以及与第二段气道12对应的第二区域222;定义设置在第一区域221内的第一肋片2121靠近第一段气道11的一端与第一段气道11的中心轴线的距离为第一距离L1,设置在第二区域222内的第一肋片2121靠近第一段气道11的一端与第一段气道11的中心轴线的距离为第二距离L2,第一距离L1大于第二距离L2,即,设置在第二区域222内的第一肋片2121的高度大于设置在第一区域221内的第一肋片2121的高度。
具体实施方式中,设置在第二区域222内的多个第一肋片2121的多个第二距离L2相等且为0.3-0.5mm;设置在第一区域221内的多个第一肋片2121的多个第一距离L1相等且为0.9-1.5mm。多个第一肋片2121远离第一段气道11的一端距第一段气道11的中心轴线的距离可以相等,也可以不相等;只需满足多个第一肋片2121远离第一段气道11的一端与多孔储液元件211接触即可。
请参阅图7,是本申请提供的电子雾化装置的启动通道1第四实施例的另一实施方式结构示意图。
在另一实施方式中,设置在第二区域222内的多个第一肋片2121的多个第二距离L2沿着从远离第一区域221到靠近第一区域221的方向形成等差递减,等差为0.3-0.5mm;设置在第一区域221内的多个第一肋片2121的多个第一距离L1相等且为0.9-1.5mm。多个第一肋片2121远离第一段气道11的一端距第一段气道11的中心轴线的距离可以相等,也可以不相等;只需满足多个第一肋片2121远离第一段气道11的一端与多孔储液元件211接触即可。
请参阅图8,是本申请提供的电子雾化装置的启动通道1第四实施例的另一实施方式的实验现象图。
由图8可知,第二区域222内的多个第一肋片2121的多个第二距离L2沿着从远离第一区域221到靠近第一区域221的方向形成等差递减,多孔储液元件211占吸液元件容置腔13体积的1/2,能够兼顾促进下液和加大储液量,最大限度的保护气流传感器2以及保持启动通道1畅通。实验中,实验件的开口侧壁面与亚克力板贴合,便于观察液体流动。
其中,多个第一肋片2121的延伸方向与第一段气道11的延伸方向的夹角为60-90度,使得液体可以顺畅的通过第一毛细槽2122流入第二空间23。优选,多个第一肋片2121的延伸方向与第一段气道11的延伸方向的夹角为90度。
通过在吸液元件容置腔13内设置多个第一肋片2121,对流入启动通道1的液体进行导流,使液体被多孔储液元件211吸收。把吸液元件容置腔13分为与第一段气道11对应的第一区域221,和与第二段气道12对应的第二区域222,通过将第一距离L1设置为大于第二距离L2,使得通过第二段气道12与雾化通道5连通的接口进入启动通道1的液体更加顺畅的进入第一毛细槽2122。为了避免第二区域222中的多个第一肋片2121之间形成毛细作用,影响液体进入第一区域221中的多个第一肋片2121形成的第一毛细槽2122,可以将设置在第二区域222内的多个第一肋片2121的多个第二距离L2沿着从远离第一区域221到靠近第一区域221的方向形成等差递减。液体沿着从远离第一区域221到靠近第一区域221的方向在多孔储液元件211上扩散。
当漏液量较少,流入启动通道1的液体通过多个第一肋片2121的导流被多孔储液元件211吸收,不影响启动通道1的通畅性。当漏液量较大,流入启动通道1的液体先被多个第一肋片2121导流至多 孔储液元件211,多孔储液元件211不具有吸液能力时,再进一步使第二段气道12内的液面抬升,使连通气流传感器2的通孔111为液体最后接触到的区域,最大限度的保护气流传感器2。在使用过程中,多孔储液元件211吸满液体或吸液速度变慢后更换多孔储液元件211,能够尽可能的避免液体滞留在启动通道1内,进而避免液体浸泡气流传感器2,提升电子雾化装置的性能。
第三实施例和第四实施例中,第二空间23至少占吸液元件容置腔13体积的1/2;在其他实施方式中,第二空间23占吸液元件容置腔13体积的1/3。在吸液元件容置腔13内设置的多孔储液元件211越多,吸液、储液能力越大。将第二空间23设置为至少占吸液元件容置腔13体积的1/2,能够兼顾促进下液和加大储液量,最大限度的保护气流传感器2以及保持启动通道1畅通。
请参阅图9,是本申请提供的电子雾化装置的启动通道1第五实施例的结构示意图。
本申请第五实施例的启动组件与本申请第三实施例的启动组件结构基本相同,其区别在于,吸液部21包括多孔储液元件211、多个第一肋片2121和多个第二肋片2123。具体地,多个第一肋片2121和多个第二肋片2123设置在第一空间22内。多孔储液元件211设置在第二空间23内。第二空间23占吸液元件容置腔13体积的1/3。多个第二肋片2123位于多个第一肋片2121与第二空间23之间;多个第一肋片2121之间间隔平行设置,形成第一毛细槽2122;多个第二肋片2123之间间隔平行设置,形成第二毛细槽2124;第一毛细槽2122与第二毛细槽2124连通;多个第一肋片2121与多个第二肋片2124之间形成第三毛细槽2125。第一毛细槽2122的延伸方向与第二毛细槽2124的延伸方向相同,第三毛细槽2125的延伸方向与第二毛细槽2124的延伸方向垂直。其中,多个第一肋片2121和多个第二肋片2123可以一一对应设置,也可以错位设置(请参阅图10,是本申请提供的电子雾化装置的启动通道1第五实施例中多个第一肋片2121和多个第二肋片2124另一实施方式的局部示意图),只需第一毛细槽2122与第二毛细槽2124连通即可。
第一肋片2121的宽度为0.6-1.0mm,第一毛细槽2122的宽度为0.3-0.5mm;第二肋片2123的宽度为0.6-1.0mm,第二毛细槽2124的宽度为0.3-0.5mm;第三毛细槽2125的宽度为0.3-0.5mm。
第一毛细槽2122和第二毛细槽2124连通第一段气道11与第二 空间23,以使进入启动通道1内的液体可以通过第一毛细槽2122和第二毛细槽2124流入第二空间23内,被第二空间23内的多孔储液元件211吸收,保持启动通道1的通畅,避免液体浸泡气流传感器2。
在本实施例中,多个第一肋片2121靠近第一段气道11的一端距第一段气道11的中心轴线的距离相等且为0.9-1.5mm。多个第一肋片2121远离第一段气道11的一端距第一段气道11的中心轴线的距离相等。多个第二肋片2123靠近第一段气道11的一端距第一段气道11的中心轴线的距离相等。多个第二肋片2123远离第一段气道11的一端距第一段气道11的中心轴线的距离可以相等,也可以不相等;只需满足多个第二肋片2123远离第一段气道11的一端与多孔储液元件211接触即可。
请参阅图11,是图9提供的电子雾化装置的启动通道1实验现象图。
在本次实验中,多个第一肋片2121和多个第二肋片2123一一对应设置,多个第一肋片2121与多个第二肋片2123之间形成第三毛细槽2125,能够避免第一毛细槽2122或第二毛细槽2124中形成气柱。通过设置多个第一肋片2121、多个第二肋片2123和多孔储液元件211,保护气流传感器2以及保持启动通道1畅通。实验中,实验件的开口侧壁面与亚克力板贴合,便于观察液体流动。
在其他实施方式中,吸液元件容置腔13包括与第一段气道11对应的第一区域221以及与第二段气道12对应的第二区域222;设置在第一区域221内的第一肋片2121靠近第一段气道11的一端与第一段气道11的中心轴线的距离为第一距离L1,设置在第二区域222内的第一肋片2121靠近第一气道11的一端与第一段气道11的中心轴线的距离为第二距离L2,第一距离L1大于第二距离L2。
请参阅图12,是本申请提供的电子雾化装置的启动通道1第五实施例的一实施方式的结构示意图。图12中,设置在第二区域222内的多个第一肋片2121的多个第二距离L2可以相等且为0.3-0.5mm;设置在第一区域221内的多个第一肋片2121的第一距离L1相等且为0.9-1.5mm。
请参阅图13,是图12提供的电子雾化装置的启动通道1实验现象图。
本次实验中,设置在第二区域222内的多个第一肋片2121的多个第二距离L2相等,设置在第一区域221内的多个第一肋片2121 的多个第一距离L1相等,使得第一区域221和第二区域222之间的第一肋片形成梯度,使得液体可以更加顺畅的进入第一区域221中的第一毛细槽2122和第二毛细槽2124。通过设置多个第一肋片2121、多个第二肋片2123和多孔储液元件211,保护气流传感器2以及保持启动通道1畅通。实验中,实验件的开口侧壁面与亚克力板贴合,便于观察液体流动。
请参阅图14,是本申请提供的电子雾化装置的启动通道1第五实施例的另一实施方式的结构示意图。图14中,设置在第二区域222内的多个第一肋片2121的多个第二距离L2可以不相等,且沿着从远离第一区域221到靠近第一区域221的方向形成等差递减,等差为0.3-0.5mm;设置在第一区域221内的多个第一肋片2121的多个第一距离L1相等且为0.9-1.5mm。
请参阅图15,是图14提供的电子雾化装置的启动通道1的实验现象图。
本实验中,设置在第二区域222内的多个第一肋片2121的多个第二距离L2沿着从远离第一区域221到靠近第一区域221的方向形成等差递减,能够避免第二区域222中的多个第一肋片2121之间形成毛细作用,影响液体进入第一区域221中的多个第一肋片2121形成的第一毛细槽2122和第二毛细槽2124。实验中,实验件的开口侧壁面与亚克力板贴合,便于观察液体流动。
第五实施例中,多个第一肋片2121和多个第二肋片2123一一对应设置。多个第一肋片2121和多个第二肋片2123的延伸方向与第一段气道11的延伸方向的夹角为60-90度,使得液体可以顺畅的通过第一毛细槽2122和第二毛细槽2124流入第二空间23。优选,多个第一肋片2121和多个第二肋片2123的延伸方向与第一段气道11的延伸方向的夹角为90度。
通过在吸液元件容置腔13内设置多个第一肋片2121和多个第二肋片2123,对流入启动通道1的液体进行导流,使液体被多孔储液元件211吸收。把吸液元件容置腔13分为与第一段气道11对应的第一区域221,和与第二段气道12对应的第二区域222,通过将第一距离L1设置为大于第二距离L2,使得通过第二段气道12与雾化通道5连通的接口进入启动通道1的液体更加顺畅的进入第一毛细槽2122和第二毛细槽2124。为了避免第二区域222中的多个第一肋片2121之间形成毛细作用,影响液体进入第一区域221中的多个第一肋片 2121形成的第一毛细槽2122和第二毛细槽2124,可以将设置在第二区域222内的多个第一肋片2121的多个第二距离L2沿着从远离第一区域221到靠近第一区域221的方向形成等差递减。通过多个第一肋片2121与多个第二肋片2122之间形成第三毛细槽2125,避免液体在第一毛细槽2122或第二毛细槽2124形成气柱,影响液体被多孔储液元件211吸收。液体沿着从远离第一区域221到靠近第一区域221的方向在多孔储液元件211上扩散。
当漏液量较少,流入启动通道1的液体通过多个第一肋片2121和多个第二肋片2123的导流被多孔储液元件211吸收,不影响启动通道1的通畅性。当漏液量较大,流入启动通道1的液体先被多个第一肋片2121和多个第二肋片2123导流至多孔储液元件211,多孔储液元件211不具有吸液能力时,再进一步使第二段气道12内的液面抬升,使连通气流传感器2的通孔111为液体最后接触到的区域,最大限度的保护气流传感器2。在使用过程中,多孔储液元件211吸满液体或吸液速度变慢后更换多孔储液元件211,能够尽可能的避免液体滞留在启动通道1内,进而避免液体浸泡气流传感器2,提升电子雾化装置的性能。
在第二实施例、第三实施例、第四实施例、第五实施例中,远离气流传感器2的毛细槽的毛细作用力比靠近气流传感器2的毛细槽的毛细作用力大,这样可以使漏液更多的储存在远离气流传感器2的地方。毛细引流结构212可以包括多个第一肋片2121和/或多个第二肋片2123,多个第一肋片2121和多个第二肋片2123的材料为金属或陶瓷。当毛细引流结构212包括多孔陶瓷,多孔储液元件211为多孔陶瓷,毛细引流结构212的毛细作用力与多孔储液元件211的毛细作用力不同。
本申请通过启动通道1内设置吸液部21,吸液部21通过毛细作用力吸引流经启动通道1的液体,防止漏液浸泡气流传感器2,避免气流传感器失效,同时保证启动通道1的通畅。
以上所述仅为本申请的部分实施例,并非因此限制本申请的保护范围,凡是利用本申请说明书及附图内容所作的等效装置或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (19)

  1. 一种电子雾化装置,包括:
    吸嘴部;
    气流传感器;
    启动通道,所述启动通道一端通至所述吸嘴部,一端通至所述气流传感器,所述启动通道靠近所述气流传感器的一段设置有吸液部,所述吸液部用于通过毛细作用力吸引流经所述启动通道的液体。
  2. 根据权利要求1所述的电子雾化装置,其特征在于,所述吸液部包括毛细引流结构,所述毛细引流结构包括至少一个毛细槽,所述毛细槽用于吸引流经所述启动通道的液体。
  3. 根据权利要求2所述的电子雾化装置,其特征在于,所述毛细槽的数量为多个,多个所述毛细槽并排设置。
  4. 根据权利要求3所述的电子雾化装置,其特征在于,远离所述气流传感器的所述毛细槽的毛细作用力比靠近所述气流传感器的所述毛细槽的毛细作用力大。
  5. 根据权利要求1所述的电子雾化装置,其特征在于,所述吸液部包括毛细引流结构及多孔储液元件,所述毛细引流结构用于吸引流经所述启动通道的液体至所述多孔储液元件。
  6. 根据权利要求4所述的电子雾化装置,其特征在于,所述毛细引流结构为多个毛细槽并排组成的结构。
  7. 根据权利要求5所述的电子雾化装置,其特征在于,所述多孔储液元件为储液棉或者多孔陶瓷。
  8. 根据权利要求5所述的电子雾化装置,其特征在于,远离所述气流传感器的所述毛细槽的毛细作用力比靠近所述气流传感器的所述毛细槽的毛细作用力大。
  9. 根据权利要求5所述的电子雾化装置,其特征在于,所述毛细引流结构包括多个第一肋片,所述多个第一肋片之间间隔平行设置形成第一毛细槽。
  10. 根据权利要求9所述的电子雾化装置,其特征在于,所述启动通道包括第一段气道和第二段气道;所述第一段气道的一端通至所述气流传感器,所述第一段气道的另一端连通所述第二段气道的一端,所述第二段气道的另一端通至所述吸嘴部;所述多个第一肋片靠近所 述第一段气道的一端距所述第一段气道的中心轴线的距离相等且为0.9-1.5mm。
  11. 根据权利要求9所述的电子雾化装置,其特征在于,与所述第一段气道对应的区域为第一区域,与所述第二段气道对应的区域为第二区域;设置在所述第一区域内的第一肋片靠近第一段气道的一端与所述第一段气道的中心轴线的距离为第一距离,设置在所述第二区域内的第一肋片靠近第一气道的一端与所述第一段气道的中心轴线的距离为第二距离,所述第一距离大于所述第二距离。
  12. 根据权利要求11所述的电子雾化装置,其特征在于,设置在所述第二区域内的多个第一肋片的多个第二距离相等且为0.3-0.5mm;设置在所述第一区域内的多个第一肋片的第一距离相等且为0.9-1.5mm。
  13. 根据权利要求11所述的电子雾化装置,其特征在于,设置在所述第二区域内的多个第一肋片的多个第二距离沿着从远离所述第一区域到靠近所述第一区域的方向形成等差递减,所述等差为0.3-0.5mm;设置在所述第一区域内的多个第一肋片的第一距离相等且为0.9-1.5mm。
  14. 根据权利要求9所述的电子雾化装置,其特征在于,所述毛细引流结构还包括多个第二肋片,所述多个第二肋片位于所述多个第一肋片远离所述第一段气道的一侧;所述多个第二肋片之间间隔平行设置形成第二毛细槽;所述第一毛细槽与所述第二毛细槽连通;所述多个第一肋片与所述多个第二肋片之间形成第三毛细槽。
  15. 根据权利要求14所述的电子雾化装置,其特征在于,所述多个第一肋片和所述多个第二肋片的延伸方向与所述第一段气道的延伸方向的夹角为60-90度;所述多个第一毛细槽与所述多个第二毛细槽一一对应设置或错位设置。
  16. 根据权利要求14所述的电子雾化装置,其特征在于,所述第一肋片的宽度为0.6-1.0mm,所述第一毛细槽的宽度为0.3-0.5mm;所述第二肋片的宽度为0.6-1.0mm,所述第二毛细槽的宽度为0.3-0.5mm;所述第三毛细槽的宽度为0.3-0.5mm。
  17. 根据权利要求14所述的电子雾化装置,其特征在于,所述第一肋片和所述第二肋片的材料为金属或多孔陶瓷。
  18. 根据权利要求1所述的电子雾化装置,其特征在于,所述电子雾化装置还包括进气口、雾化通道,所述雾化通道连通所述进气口 和吸嘴部,所述雾化通道设有雾化芯,所述雾化通道与所述启动通道流体相通。
  19. 根据权利要求18所述的电子雾化装置,其特征在于,所述电子雾化装置包括储液仓,所述雾化通道包括雾化腔,所述雾化芯设置在所述雾化腔,所述雾化芯通用于雾化来自储液仓的液体,所述吸液部设置在所述雾化芯与所述气流传感器之间。
PCT/CN2020/111829 2020-08-27 2020-08-27 一种电子雾化装置 WO2022041063A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/111829 WO2022041063A1 (zh) 2020-08-27 2020-08-27 一种电子雾化装置
EP20950734.2A EP4205580A4 (en) 2020-08-27 2020-08-27 ELECTRONIC ATOMIZATION DEVICE
US18/174,024 US20230189892A1 (en) 2020-08-27 2023-02-24 Electronic vaporization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/111829 WO2022041063A1 (zh) 2020-08-27 2020-08-27 一种电子雾化装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/174,024 Continuation US20230189892A1 (en) 2020-08-27 2023-02-24 Electronic vaporization device

Publications (1)

Publication Number Publication Date
WO2022041063A1 true WO2022041063A1 (zh) 2022-03-03

Family

ID=80352344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111829 WO2022041063A1 (zh) 2020-08-27 2020-08-27 一种电子雾化装置

Country Status (3)

Country Link
US (1) US20230189892A1 (zh)
EP (1) EP4205580A4 (zh)
WO (1) WO2022041063A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105916399A (zh) * 2014-02-10 2016-08-31 菲利普莫里斯生产公司 用于气溶胶生成***的筒
CN108289510A (zh) * 2015-12-22 2018-07-17 菲利普莫里斯生产公司 带有液体泵的电操作气溶胶生成***
CN111109664A (zh) * 2020-01-15 2020-05-08 深圳麦克韦尔科技有限公司 一种电子雾化装置及其雾化器
CN210492612U (zh) * 2019-05-14 2020-05-12 深圳麦克韦尔科技有限公司 雾化器及电子雾化装置
CN111163656A (zh) * 2017-10-13 2020-05-15 虹霓机械制造有限公司 用于吸入器、特别是用于电子的卷烟产品的储液器
CN111329115A (zh) * 2020-03-04 2020-06-26 深圳麦克韦尔科技有限公司 雾化器以及电子雾化装置
WO2020165131A1 (de) * 2019-02-15 2020-08-20 Hauni Maschinenbau Gmbh Verdampfer-tank-einheit für einen inhalator, vorzugsweise, ein elektronisches zigarettenprodukt, elektronisches zigarettenprodukt und dochtstruktur

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108451034B (zh) * 2018-03-08 2020-10-16 常州市派腾电子技术服务有限公司 电子烟、电子烟的控制方法和装置
GB2576298B (en) * 2018-06-29 2022-06-22 Nicoventures Trading Ltd Vapour Provision Device
CN211211454U (zh) * 2019-09-26 2020-08-11 深圳市合元科技有限公司 电子烟

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105916399A (zh) * 2014-02-10 2016-08-31 菲利普莫里斯生产公司 用于气溶胶生成***的筒
CN108289510A (zh) * 2015-12-22 2018-07-17 菲利普莫里斯生产公司 带有液体泵的电操作气溶胶生成***
CN111163656A (zh) * 2017-10-13 2020-05-15 虹霓机械制造有限公司 用于吸入器、特别是用于电子的卷烟产品的储液器
WO2020165131A1 (de) * 2019-02-15 2020-08-20 Hauni Maschinenbau Gmbh Verdampfer-tank-einheit für einen inhalator, vorzugsweise, ein elektronisches zigarettenprodukt, elektronisches zigarettenprodukt und dochtstruktur
CN210492612U (zh) * 2019-05-14 2020-05-12 深圳麦克韦尔科技有限公司 雾化器及电子雾化装置
CN111109664A (zh) * 2020-01-15 2020-05-08 深圳麦克韦尔科技有限公司 一种电子雾化装置及其雾化器
CN111329115A (zh) * 2020-03-04 2020-06-26 深圳麦克韦尔科技有限公司 雾化器以及电子雾化装置

Also Published As

Publication number Publication date
EP4205580A4 (en) 2023-10-11
EP4205580A1 (en) 2023-07-05
US20230189892A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
JP7377356B2 (ja) 電子霧化装置及びそのアトマイザー
EP4074203A1 (en) Atomizer and electronic atomization device
EP4151099A1 (en) Atomization device
WO2022151965A1 (zh) 电子雾化装置及其雾化器和雾化组件
WO2023124515A1 (zh) 发热组件、雾化器及电子雾化装置
WO2023130767A1 (zh) 电子雾化装置及其雾化器
CN114259084A (zh) 电子雾化装置及其雾化器
WO2022041063A1 (zh) 一种电子雾化装置
WO2023016202A1 (zh) 一种电子雾化装置及其雾化器和雾化组件
WO2022179300A2 (zh) 发热组件、雾化器及电子雾化装置
WO2022052063A1 (zh) 一种雾化器及其电子雾化装置
WO2022040935A1 (zh) 电子雾化装置
CN212911674U (zh) 一种电子雾化装置
WO2023123250A1 (zh) 发热组件、雾化器及电子雾化装置
CN215347019U (zh) 一种雾化器及气溶胶生成装置
CN215347036U (zh) 一种雾化器和气溶胶生成装置
CN114098162A (zh) 一种电子雾化装置
CN114794571A (zh) 发热体、雾化组件及电子雾化装置
CN218219110U (zh) 一种雾化器
CN220875931U (zh) 雾化器和雾化装置
WO2024007343A1 (zh) 雾化器及电子雾化装置
CN219422192U (zh) 安装座、雾化芯、雾化装置和雾化设备
CN216821785U (zh) 一种雾化芯及气溶胶产生装置
CN218588221U (zh) 雾化器及电子雾化装置
CN214347483U (zh) 一种集成超声雾化片的防漏液雾化腔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020950734

Country of ref document: EP

Effective date: 20230327