WO2022040916A1 - 一种基于微通孔镍基模具的仿生黏附结构平压制造方法 - Google Patents

一种基于微通孔镍基模具的仿生黏附结构平压制造方法 Download PDF

Info

Publication number
WO2022040916A1
WO2022040916A1 PCT/CN2020/111089 CN2020111089W WO2022040916A1 WO 2022040916 A1 WO2022040916 A1 WO 2022040916A1 CN 2020111089 W CN2020111089 W CN 2020111089W WO 2022040916 A1 WO2022040916 A1 WO 2022040916A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
micro
hole
based mold
prepolymer
Prior art date
Application number
PCT/CN2020/111089
Other languages
English (en)
French (fr)
Inventor
姬科举
戴振东
唐义强
赵春霞
乔元华
甘培赟
Original Assignee
南京艾德恒信科技有限公司
南京溧航仿生产业研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京艾德恒信科技有限公司, 南京溧航仿生产业研究院有限公司 filed Critical 南京艾德恒信科技有限公司
Priority to PCT/CN2020/111089 priority Critical patent/WO2022040916A1/zh
Priority to US17/237,079 priority patent/US11478976B2/en
Publication of WO2022040916A1 publication Critical patent/WO2022040916A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/30Moulds
    • B29C51/36Moulds specially adapted for vacuum forming, Manufacture thereof

Definitions

  • the invention relates to the field of micro-nano manufacturing, in particular to a flat pressing manufacturing method of a bionic adhesive structure based on a micro-through-hole nickel-based mold.
  • biomimetic adhesive materials with expanded ends in 2017, Professor Metin Sitti et al. (US009731422B2) from Carnegie Mellon University in the United States proposed to realize the preparation of expanded end microstructures through a secondary dip process on the basis of silicon-based molding.
  • the core key element of the preparation of bionic adhesive materials is the development of molds with excellent performance. Compared with the brittleness of silicon-based molds and the easy deformation of polymer soft molds, metal molds have high mechanical strength, high thermal conductivity and durability. It has the advantages of good performance, etc., and has become the preferred solution for polymer molding technology.
  • the purpose of the present invention is to provide a method for flat pressing of a bionic adhesive structure based on a micro-through-hole nickel-based mold, so as to solve the problems existing in the prior art.
  • the invention provides a method for flat pressing of a bionic adhesive structure based on a micro-through-hole nickel-based mold, comprising the following steps.
  • the through holes of the nickel-based mold in step (1) are cylindrical holes or special-shaped holes, the maximum diameter is not greater than 100 ⁇ m, the thickness of the nickel-based mold is 20-500 ⁇ m, and the hole density is >10,000/cm 2 .
  • nickel-based mold is treated with anti-sticking.
  • the magnetic clamping system in step (2) includes a magnet and an elastic gasket.
  • the upper surface roughness of the magnet is Ra ⁇ 0.05 ⁇ m, and the surface smoothness is greater than grade 10; the elastic modulus of the elastic gasket is 1MPa-10Mpa.
  • the magnet is a permanent magnet or an electromagnet; the elastic pad substrate itself is anti-sticking or the surface is subjected to anti-sticking treatment.
  • liquid prepolymer in step (3) is a thermosetting prepolymer or an ultraviolet curing prepolymer.
  • step (3) the coating thickness of the prepolymer is 400-600 ⁇ m, and the magnetically induced pressure of the magnetic clamping system during the filling process is 0.1-0.5 MPa.
  • demoulding method in step (4) is to apply force from one side of the backing layer to tear off uniformly and slowly.
  • the biomimetic adhesive structure is an elastomer microstructure array with the characteristic of enlarged ends.
  • the present invention discloses the following technical effects.
  • a simple through-hole microporous structure is processed on a metal nickel plate by a laser or photolithography-assisted electroforming technology, and a metal nickel layer is deposited non-uniformly on the microporous cavity by an electrochemical technology, so as to realize the microporous type.
  • the present invention matches a layer of elastic gasket on the enlarged end face of the mold micro-hole, and induces the realization of the enlarged microstructure on the end by adjusting the pressure/pre-tightening force of the interface between the metal mold and the elastic gasket. Control of end face topography. Combined with the electrochemical-assisted side profile control technology, the all-round design and control of the end-expanded biomimetic microstructure can be realized.
  • the existing micro-nano imprinting technology is mainly divided into flat pressing and rolling technology in form.
  • the physical processes such as filling of prepolymer and demoulding after curing are quite different from the common terminal non-expanded structures, especially the bubble defect in the process of filling the cavity of the prepolymer.
  • the elimination method of , and the strong deformation of the material due to the expansion of the end during the curing and demolding process may even lead to tearing defects, showing a more complex contact mechanical behavior.
  • the flat pressing process in the nanoimprint technology is more suitable for the formation of microstructures with enlarged ends because it can effectively achieve uniform filling under negative pressure.
  • a layer of sealing diaphragm which can completely cover the lower chamber is placed on the backing, the sealing diaphragm divides the cavity of the plane imprinting system into two parts, the upper and lower parts, and the gas in the lower chamber is discharged through a vacuum pump to form a vacuum environment of the lower chamber,
  • the upper chamber was filled with nitrogen by an air compressor, and the gas pressure was uniformly applied to the prepolymer-coated backing and the upper surface of the mold through a sealed diaphragm.
  • the vacuum environment of the lower chamber and the gas on the upper surface are evenly pressurized, which can realize the uniform filling of the prepolymer and the elimination of air bubbles, and avoid defects in the morphology of the adhesive material.
  • the elastic gasket of the present application has a suitable elastic modulus, can achieve seamless contact with the mold after the mold is closed, and also forms a slightly convex arc in the through-hole array, so that the end of the obtained adhesive structure forms a swollen end. structure.
  • the implementation of the present invention will provide a novel perspective for the mold design of the micro-nano imprint technology, help to break through the imprint manufacturing technology bottleneck of such end-expanded structures, and solve the problems of efficient, high-precision and low-cost manufacturing of large-area micro-nano structures.
  • Technical difficulties but also help to improve the universality of micro-nano imprinting manufacturing technology to microstructures.
  • FIG. 1 is a schematic flow chart of a method for flat-pressing a bionic adhesive structure based on a micro-through-hole nickel-based mold.
  • FIG. 1 Micro-through-hole metal base mold prepared by laser subtraction and electroforming additive technology.
  • Fig. 3 The auxiliary trimming effect of different plating times on the morphology of through holes.
  • Fig. 4 The effect of different induced pressures at the interface on the end-face morphology of mushroom-like microstructures.
  • the heating and curing method is that a heating and curing module that can be started independently is installed at the bottom of the lower chamber. After the heating and curing module is started, the temperature rises rapidly to generate heat, and the heat radiation is conducted to the mold and the prepolymer, so that the thermosetting Prepolymer curing; UV curing method is to install a UV LED lamp on the top of the upper chamber that can be started independently. After startup, UV light is emitted downward.
  • the UV curing prepolymer undergoes a cross-linking and curing reaction, and at the same time Part of the ultraviolet light can reach the surface of the magnet through the transparent elastic liner, and the surface roughness of the magnet reaches the mirror level, which can reflect the ultraviolet light, and can assist the curing of the prepolymer in the micro-hole array of the mold.
  • the ultraviolet light emitted by the light source cannot directly reach the covered area at the bottom, and the ultraviolet light reflected by the upper surface of the magnet can supplement the curing of the bottom area.
  • the backing layer and the filled prepolymer and the polymer after curing have good bonding strength. When demoulding, it is sufficient to apply force from one side of the backing layer to make it tear off evenly and slowly.
  • the method can be manual mechanical application or pneumatic application.
  • the processing of high-quality and uniform micro-via arrays on metal substrates can be obtained in two ways, one is the subtractive processing method of femtosecond laser spiral drilling, and the other is silicon-based electroforming.
  • the additive manufacturing method of two manufacturing technical schemes are shown in Figure 2.
  • Figure 2a realizes a large-scale micro-via nickel-based base mold by femtosecond laser;
  • Figure 2b shows the combination of photolithography and electroplating.
  • nickel-based micro-hole array mold can be obtained after thinning and demolding.
  • the electroplating-assisted shaping technology for the array micro-via metal mold is the main way to control the micro-via cavity, and then indirectly realize the regulation of the biomimetic adhesion microstructure side.
  • an electroplating nickel-assisted trimming process was performed to realize the shape control of the micro-via-hole cavity (Fig. 3).
  • Carry out anti-sticking treatment on the obtained nickel-based mold choose the graphic side up and place it on the vessel. Take 10uL/L (chamber volume) of the anti-sticking material FOTS, vacuum it to 10mbar, keep it airtight for 30min, and take out the residue.
  • the collection vessel of the anti-sticking agent then bake the mold at 130°C for 30min, and cool it naturally.
  • the through hole of the nickel-based mold of the prepared micro through-hole array is a cylindrical hole, the maximum diameter is 80 ⁇ m, the thickness of the nickel-based mold is 20 ⁇ m, and the hole density is more than 10,000/cm 2 .
  • Treatment, anti-stick treatment methods are oxygen plasma treatment and surface fluorination.
  • the main body of the magnet in the magnetic clamping system is a rubidium iron boron permanent magnet.
  • the surface finish is greater than 10
  • the elastic liner is a polyurethane elastic liner with an elastic modulus of 1MPa and a thickness of 5mm.
  • the surface of the polyurethane elastic liner is modified with a release layer.
  • the specific steps are to first apply the elastic liner
  • the surface is treated with oxygen plasma, so that the surface of the rigid structure layer is oxidized to produce a very thin layer of silicon dioxide-like material, and then the surface of the template can react with 1H, 1H, 2H, 2H-perfluorodecyl trichlorosilane, in the A layer of anti-sticking layer with low surface energy is grown on its surface.
  • Dow Corning's 184 silicone rubber prepolymer was uniformly coated on the PET backing with a coating thickness of 600 ⁇ m, and the prepolymer-coated side of the backing was placed on a nickel-based mold, and the backing was covered with PDMS Seal the diaphragm, divide the cavity into upper and lower chambers, and achieve uniform pressure on the backing layer by evacuating the lower chamber and filling the upper chamber with N 2 to realize the complete filling of the cavity by the prepolymer. Seal the diaphragm The pressure difference on both sides is applied to the backing layer through the sealing diaphragm to provide the prepolymer filling driving force. During the imprint filling process, the magnetically induced pressure is 0.3 MPa. After the filling is completed, a thermal curing module is used to realize the curing of the prepolymer, the curing temperature is 100°C, and the curing time is 10 minutes.
  • the side profile of the bionic adhesive microstructure depends on the through-hole cavity configuration of the metal mold, and the end profile of the mushroom-shaped microstructure depends on the deformation regulation of the elastic pad under the induction of magnetic pressure. , the deformation of elastic pads with a specific modulus can be induced and controlled by the pressure on the elastic substrate.
  • Figure 4 shows that for the polyurethane elastic gasket, different magnetically induced pressures have a significant effect on the end face morphology.
  • the study found that in the range of 0.1 ⁇ 0.5MPa, the mushroom-like microstructure can be effectively obtained, while the pressure outside the range often Suppresses the formation of mushroom-shaped end bulges.
  • the induced pressure can also control the degree of concavity of the end face, and the concavity of the end face of the bionic microstructure will bring about the multi-mechanism synergistic effect of adhesion, such as the synergy of negative pressure adsorption and van der Waals dry adhesion, and realize the diversity and function of interfacial adhesion. robustness.
  • the through hole of the nickel-based mold of the prepared micro through-hole array is a horn-shaped hole, the maximum diameter is 50 ⁇ m, the thickness of the nickel-based mold is 100 ⁇ m, and the hole density is more than 10,000/cm 2 .
  • Adhesion treatment, anti-adhesion treatment methods are oxygen plasma treatment and surface fluorination.
  • the magnet body in the magnetic clamping system is a rubidium iron boron permanent magnet, the outer surface has an electroplating layer, and the upper surface roughness Ra ⁇ 0.05 ⁇ m, The surface finish is greater than grade 10, and the elastic liner is a polyurethane elastic liner with an elastic modulus of 10MPa and a thickness of 5mm.
  • thermoplastic polypropylene is selected as the prepolymer
  • a polypropylene film with a thickness of 200 ⁇ m is used as the backing
  • polypropylene is uniformly coated on the polypropylene film with a coating thickness of 600 ⁇ m, and the backing is coated
  • the side with the prepolymer is placed on the nickel-based mold, and the backing is covered with a polyurethane sealing diaphragm to separate the cavity into upper and lower chambers.
  • the backing layer is realized by vacuuming the lower chamber and filling the upper chamber with N The uniform pressure is applied to realize the full filling of the cavity by the prepolymer.
  • the pressure difference on both sides of the sealing diaphragm is applied to the backing layer through the diaphragm to provide the prepolymer filling driving force.
  • the magnetically induced pressure is 0.1 MPa.
  • the through hole of the nickel-based mold of the prepared micro through-hole array is a wedge-shaped hole, the maximum diameter is 90 ⁇ m, the thickness of the nickel-based mold is 300 ⁇ m, and the hole density is more than 10,000/cm 2 .
  • Treatment, anti-stick treatment methods are oxygen plasma treatment and surface fluorination.
  • the magnet body in the magnetic clamping system is an electromagnet
  • the elastic gasket is a polyurethane elastic gasket with an elastic modulus of 5MPa and a thickness of 5mm. .
  • thermoplastic polyurethane (TPU) particles and dimethylformamide solution are mixed in a mass ratio of 1:4, placed on a constant temperature heating magnetic stirrer, the temperature is raised to 60-80 ° C, and fully stirred until the polyurethane is completely It is dissolved in dimethylformamide solution, and after cooling, the glue liquid of polyurethane transfer medium is obtained as a prepolymer.
  • TPU thermoplastic polyurethane
  • the prepared prepolymer was uniformly coated on the PET backing by a glue coating machine, and the coating thickness was 500 ⁇ m, and the side of the backing coated with the prepolymer was placed on the nickel-based mold, and the backing was coated with the prepolymer.
  • Cover the polyurethane sealing diaphragm divide the cavity into upper and lower chambers, and achieve uniform pressure on the backing layer by vacuuming the lower chamber and filling the upper chamber with N2 , realizing the full filling of the cavity by the prepolymer, and sealing the diaphragm
  • the pressure difference on both sides is applied to the backing layer through the diaphragm to provide the prepolymer filling driving force.
  • the magnetically induced pressure is 0.5MPa.
  • the pressure exerted by the sealing diaphragm is sufficient to ensure that the prepolymer fully fills the cavities. After the filling is completed, it is heated to 100°C and cured after half an hour.
  • the through hole of the nickel-based mold of the prepared micro through-hole array is a cylindrical hole, the maximum diameter is 60 ⁇ m, the thickness of the nickel-based mold is 500 ⁇ m, and the hole density is greater than 10,000/cm 2 .
  • Treatment, anti-stick treatment methods are oxygen plasma treatment and surface fluorination.
  • the magnet body in the magnetic clamping system is an electromagnet
  • the elastic gasket is a polyurethane elastic gasket with an elastic modulus of 6MPa and a thickness of 5mm. .
  • the prepared PUA glue solution is uniformly coated on the PET backing by a glue coating machine, and the coating thickness is 400 ⁇ m.
  • the prepolymer-coated side of the backing was placed on a nickel-based mold, a PDMS sealing membrane was placed on the backing, the cavity was divided into upper and lower chambers, and the lower chamber was evacuated and the upper chamber was filled with N2 .
  • the pressure difference on both sides of the sealing diaphragm is applied to the backing layer through the diaphragm to provide the prepolymer filling driving force, and the filling process is imprinted.
  • the magnetically induced pressure is 0.4MPa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)

Abstract

本发明公开了一种基于微通孔镍基模具的仿生黏附结构平压制造方法。步骤包括:制备具有微通孔阵列的镍基模具;将镍基模具放入磁力合模***中的弹性衬垫上;在背衬上均匀涂敷液态预聚体,并将背衬涂敷有液态预聚体的一面放置在镍基模具上;密封隔膜将腔体分隔为上下腔室,通过下腔室抽真空以及上腔室充气实现对背衬层的均匀施压,从而实现不同粘度预聚体的充分填充;填充完成后,固化,脱模,即可得到仿生黏附材料。本发明有助于大深径比、末端膨大结构的一体化成型工艺实现;磁力诱导的合模体系与镍基模具电化学修型技术相结合,实现了对仿生黏附材料微结构形貌的全方位可控调节。本发明有助于提升微纳压印制造技术对复杂结构的普适性。

Description

一种基于微通孔镍基模具的仿生黏附结构平压制造方法 技术领域
本发明涉及微纳制造领域,特别是涉及一种基于微通孔镍基模具的仿生黏附结构平压制造方法。
背景技术
在自然界中,众多生物在其生存环境中展示出了全空间的附着能力,从植物界的爬山虎到非细胞生命形态的病毒;从海洋中的章鱼、贻贝到陆地上的苍蝇、蜘蛛、壁虎等。从它们的黏附体系末端单元形貌可以直观发现,“末端膨大”是这类生物功能单元的主要结构特征。众多具有全空间黏附能力的生物,其黏附功能单元均具有末端膨大的结构特征,表现出了优异的黏附性能,末端膨大的仿生黏附结构在无损搬运、仿生爬壁、太空操作等诸多领域展现出广阔的应用前景。
近20年来国内外学者在仿生黏附微结构制备方面进行了大量的研究,甚至不乏在德国和美国有仿生黏附材料相关的公司,为推进仿生黏附技术的工程应用奠定了良好的基础。然而我们实际研究发现因为成本、产能、产品多样性等因素影响,现实情况并不尽如人意,仿生黏附材料往往处于有价无市的局面。而国内仿生黏附材料规模化技术的欠缺,更是促成了欧美国家在该技术领域的垄断局面。2012年美国DARPA通过“凤凰计划”开始实施仿生黏附技术的航天应用研究,掌握空间环境下的黏附技术,将极大增强载人航天、在轨服务、空间安全以及对非合作目标的作业能力,可见其国防意义重大。
目前末端膨大仿生微结构的制造主要采用硅基光刻模板模塑或者软模板模塑成形等方法,比如2011年加拿大西门莎菲大学的CARLO MENON教授等人(US2011011732A1)使用光刻硅模板制备了末端膨大的仿生黏附材料;2017年美国卡内基梅隆大学的MetinSitti教授等人(US009731422B2)提出在硅基模塑基础之上,通过二次蘸取工艺实现末端膨大微结构的制备。仿生黏附材料的制备其核心关键要素便是性能优异的模具开发,相比于硅基模具的易碎性、聚合物软模具的易变形等缺陷,金属模具因机械强度高、导热率高、耐久性好等优点,成为聚合物模塑成型技术的优选方案。而面向末端膨大仿生微结构的金属模具群孔(孔密度>1万/cm 2)加工调控难度系数大,模塑过程界面物理行为复杂,制约了其规模化的顺利推进。
2015年由德国Gottlieb Binder GmbH公司依托基尔大学Gorb教授团队技术提出了末端膨大的仿生黏附结构辊压制造技术(US20150010732A1),提出了通孔柔性模板在辊压工艺中的应用方式,相比于平压工艺,辊压工艺中由于辊子箍紧力的作用,使得通孔模板与辊子表面容易实现端面密封,该专利给平压工艺提供了设计思路,但是辊压工艺给大深径比的模具结构注模和脱模带来了诸多困难,制约了复杂形貌微结构的成型。
2017年清华大学田煜教授团队(CN106378894A)提出基于超精密金刚石切削技术在铝表面加工楔形仿壁虎表面模具,展现出制备仿生黏附结构的高性价比特点。然而针对末端膨大的蘑菇状仿生黏附结构,由于金属模具制造以及模塑过程界面物理行为的复杂性,制约了其规模化的顺利推进。
因此有必要开展基于金属模具的复杂形貌仿生黏附结构制造技术创新工作,为末端膨大仿生微结构规模化制造提供技术支撑。
技术问题
本发明的目的是提供一种基于微通孔镍基模具的仿生黏附结构平压制造方法,以解决现有技术存在的问题。
技术解决方案
本发明提供一种基于微通孔镍基模具的仿生黏附结构平压制造方法,包括以下步骤。
(1)制备具有微通孔阵列的镍基模具。
(2)将镍基模具放入磁力合模***中的弹性衬垫上。
(3)在背衬上均匀涂敷预聚体,并将背衬涂敷有预聚体的一面放置在镍基模具上,在背衬上加盖密封隔膜,将腔体分隔为上下腔室,通过下腔室抽真空以及上腔室充气实现对背衬层的均匀施压,实现预聚体对孔腔的充分填充。
(4)填充完成后,固化,脱模,得到仿生黏附结构。
进一步地,步骤(1)中所述镍基模具的通孔为圆柱孔或异型孔,最大孔径不大于100μm,镍基模具厚度20~500μm,孔密度>1万/cm 2
进一步地,其特征在于,所述镍基模具经防粘处理。
进一步地,步骤(2)中所述磁力合模***包括磁体和弹性衬垫。
进一步地,所述磁体上表面粗糙度Ra≤0.05μm,表面光洁度大于10级;所述弹性衬垫的弹性模量为1MPa-10Mpa。
进一步地,所述磁体为永磁体或者电磁体;所述弹性衬垫基材本身防粘或者表面进行防粘处理。
进一步地,步骤(3)中所述液态预聚体为热固性预聚体或紫外固性预聚体。
进一步地,步骤(3)中预聚体涂敷厚度为400-600μm,填充过程中磁力合模***的磁性诱导压力为0.1-0.5MPa。
进一步地,步骤(4)中所述脱模方式为从背衬层一侧施力使其均匀缓慢撕脱。
进一步地,步骤(4)中所述仿生黏附结构为具有末端膨大特征的弹性体微结构阵列。
有益效果
本发明公开了以下技术效果。
本发明通过激光或者光刻辅助电铸技术在金属镍板上加工出简单的直通孔微孔结构,并且通过电化学技术对微孔型腔进行非均匀性沉积金属镍层,实现对微孔型腔形貌的辅助修型,实现对末端膨大微结构侧面形貌的调控。
对于修型后的微通孔金属模具,本发明在模具微孔的膨大端面匹配一层弹性衬垫,通过调节金属模具与弹性衬垫界面的压力/预紧力,诱导实现对末端膨大微结构端面形貌的调控。结合电化学辅助的侧面形貌调控技术,进而可以实现对末端膨大仿生微结构的全方位设计调控。
本发明的另一个技术亮点是适合于微通孔金属模具的压印技术。现有的微纳米压印技术形式上主要分为平压和辊压技术。末端膨大微结构在压印成型过程中,预聚体的填充和固化后的脱模等物理过程与常见的末端非膨大结构具有较大的不同,特别是预聚体的填充腔室过程气泡缺陷的消除方法,以及固化脱模过程中的因为末端膨大造成的材料强烈变形,甚至可能导致撕裂缺陷,呈现出更加复杂的接触力学行为。从这个角度来看,纳米压印技术中的平压工艺由于能够有效实现负压均匀填充,因此更适用于末端膨大的微结构成型。
本发明在背衬上放置一层能够完全覆盖下腔室的密封隔膜,密封隔膜将平面压印***的腔体分为上下两部分,通过真空泵排出下腔室气体,形成下腔室真空环境,通过空压机在上腔室充入氮气,通过密封隔膜将气体压力均匀施加到涂敷有预聚体的背衬和模具上表面。下腔室的真空环境和上表面的气体均匀施压,能够实现预聚体的均匀填充以及气泡的消除,避免了黏附材料形貌上的缺损。
本申请的弹性衬垫具有适宜的弹性模量,在合模后能够与模具实现无缝接触,同时也会在通孔阵列中形成略微凸起的弧度,使获得的黏附结构末端形成末端膨大的结构。
本发明的实施将为微纳压印技术的模具设计提供新颖的视角,有助于突破这类末端膨大结构的压印制造技术瓶颈,解决大面积微纳结构高效、高精度、低成本制造的技术难题,同时也有助于提升微纳压印制造技术对微结构的普适性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为基于微通孔镍基模具的仿生黏附结构平压制造方法流程示意图。
图2激光减材和电铸增材技术制备微通孔金属基础模具。
图3不同电镀时间对通孔形貌的辅助修型效果。
图4界面不同的诱导压力对蘑菇状微结构端面形貌的影响。
图5紫外固化制备的聚氨酯丙烯酸酯(PUA)仿生黏附材料形貌图。
本发明的最佳实施方式
现详细说明本发明的多种示例性实施方式,以便更好地支持本发明的可行性。
本发明实施例中,加热固化方式是在下腔室底部安装有可单独启动的加热固化模块,加热固化模块启动后快速升温产生热量,并将热量辐射传导至模具和预聚体上,从而使热固性预聚体固化;紫外固化方式是在上腔室顶部安装可单独启动的紫外LED灯,启动后向下放射紫外光,在紫外光的作用下,紫外固化预聚体发生交联固化反应,同时一部分的紫外光能够透过透明弹性衬垫到达磁体表面,且磁体表面粗糙度达到镜面级别,能够反射紫外光,可以对模具微孔阵列中的预聚体进行辅助固化。尤其对于末端膨大结构,光源放射出的紫外光无法直接到达底部被遮掩的区域,经过磁体上表面反射的紫外光,可以补充底部区域的固化。
本发明中,背衬层与充形预聚体及其固化后的聚合物具有良好的粘接强度,脱模时为从背衬层一侧施力使其均匀缓慢撕脱即可,施力方式可以是手动机械施加,也可以是通过气压式施加。
实施例 1
(1)制备具有微通孔阵列的镍基模具。
金属基材上高质量、均一性较好的微通孔阵列的加工,可以采用两种方式获得,一种是飞秒激光螺旋打孔的减材加工方法,另一种是硅基电铸成型的增材制造方法,两种制造技术方案如图2所示,图2a通过飞秒激光实现了大规模微通孔镍基基础模具;图2b展示了通过光刻与电镀相结合的制造方法,选择镀金硅片,旋涂光刻胶后曝光、显影清洗实现微柱阵列的加工,结合电镀技术,减薄、脱模后即可获得镍基微孔阵列模具。
对阵列微通孔金属模具的电镀辅助修型技术是调控微通孔型腔的主要途径,进而间接实现对仿生黏附微结构侧面的调控。针对制备得到的阵列微通孔镍基模板,通过一系列前处理工序后,进行电镀镍辅助修型工艺处理,实现了对微通孔型腔的形貌调控(图3)。针对获得的镍基模具进行防粘处理,防粘处理工艺选择图形面朝上搭在器皿上,取10uL/L(腔室容积)防粘材料FOTS,真空抽到10mbar,密闭保持30min,取出残余防粘剂的收集器皿,然后将模具130℃烘烤30min,自然冷却。
制备得到的微通孔阵列的镍基模具的通孔为圆柱孔,最大处孔径为80μm,镍基模具厚度20μm,孔密度>1万/cm 2,对微通孔阵列镍基模具进行防粘处理,防粘处理方式为氧等离子体处理以及表面氟化。
(2)将镍基模具放入磁力合模***中的弹性衬垫上。
将上步获得的镍基模具放入磁力合模***中的弹性衬垫上,磁力合模***中的磁体主体为铷铁硼永磁铁,外表面有电镀层,上表面粗糙度Ra≤0.05μm,表面光洁度大于10级,弹性衬垫选择聚氨酯弹性衬垫,弹性模量为1MPa,厚度5mm,为了不影响脱模,对聚氨酯弹性衬垫表面修饰防粘层,具体步骤为先对弹性衬垫表面进行氧等离子体处理,使刚性结构层表面被氧化产生非常薄的一层类二氧化硅材料,进而模板表面的可与1H,1H,2H,2H-全氟癸基三氯硅烷反应,在其表面生长一层低表面能的防粘层。
(3)压印填充以固化工艺步骤。
在PET背衬上均匀涂敷道康宁公司的184硅橡胶预聚体,涂敷厚度为600μm,并将背衬涂敷有预聚体的一面放置在镍基模具上,在背衬上加盖PDMS密封隔膜,将腔体分隔为上下腔室,通过下腔室抽真空以及上腔室充N 2实现对背衬层的均匀施压,实现预聚体对孔腔的完全填充即可,密封隔膜两侧的压差通过密封隔膜施加在背衬层提供预聚体充形驱动力,压印填充过程中,磁性诱导压力为0.3MPa。填充完成后,采用热固化模块实现预聚体固化,固化温度为100℃,固化时间为10min。
(4)固化后的脱模工艺步骤。
固化完成后释压,进行脱模,脱模采用从背衬层一侧施力使其均匀缓慢撕脱,得到蘑菇状微结构端面的仿生黏附结构。
实施例涉及的仿生黏附结构制造工艺中,仿生黏附微结构侧面形貌取决于金属模具通孔型腔构型,而蘑菇状微结构端面形貌取决于弹性衬垫在磁性压力诱导下的形变调控,特定模量的弹性衬垫其形变可以通过弹性衬底所受压力来诱导调控。
图4展示了针对于聚氨酯弹性衬垫,不同的磁性诱导压力对端面形貌的影响较为显著,研究发现在0.1~0.5MPa范围内,可以有效获得蘑菇状微结构,而压力在区间之外往往抑制蘑菇状末端膨大的形成。同时,诱导压力还可以调控端面的凹陷程度,而仿生微结构端面凹陷将带来黏附力的多机制协同效应,比如负压吸附与范德华力干黏附的协同,实现界面黏附作用功能的多样性和鲁棒性。
实施例 2
(1)制备具有微通孔阵列的镍基模具,具体内容同实施例1。
制备得到的微通孔阵列的镍基模具的通孔为喇叭状孔,最大处孔径为50μm,镍基模具厚度100μm,孔密度>1万/cm 2,对微通孔阵列镍基模具进行防粘处理,防粘处理方式为氧等离子体处理以及表面氟化。
(2)将镍基模具放入磁力合模***中的弹性衬垫上。
将上步获得的镍基模具放入磁力合模***中的弹性衬垫上磁力合模***中的磁体主体为铷铁硼永磁铁,外表面有电镀层,上表面粗糙度Ra≤0.05μm,表面光洁度大于10级,弹性衬垫选择聚氨酯弹性衬垫,弹性模量为10MPa,厚度5mm。
(3)压印填充及固化工艺步骤。
本实施例预聚体选择热塑性的聚丙烯(PP),采用200μm厚的聚丙烯薄膜为背衬,将聚丙烯均匀涂敷于聚丙烯薄膜上,涂敷厚度为600μm,并将背衬涂敷有预聚体的一面放置在镍基模具上,在背衬上加盖聚氨酯密封隔膜,将腔体分隔为上下腔室,通过下腔室抽真空以及上腔室充N 2实现对背衬层的均匀施压,实现预聚体对孔腔的充分填充,密封隔膜两侧的压差通过隔膜施加在背衬层提供预聚体充形驱动力,压印填充过程中,磁性诱导压力为0.1MPa。待密封隔膜施压后,将聚丙烯加热到200℃软化,在压力驱动下填充模具,填充完成后,冷却至室温固化。
(4)固化后的脱模工艺步骤。
固化完成后释压,进行脱模,脱模采用从背衬层一侧施力使其均匀缓慢撕脱,得到仿生黏附结构。
实施例 3
(1)制备具有微通孔阵列的镍基模具,具体内容同实施例1。
制备得到的微通孔阵列的镍基模具的通孔为楔形孔,最大处孔径为90μm,镍基模具厚度300μm,孔密度>1万/cm 2,对微通孔阵列镍基模具进行防粘处理,防粘处理方式为氧等离子体处理以及表面氟化。
(2)将镍基模具放入磁力合模***中的弹性衬垫上。
将上步获得的镍基模具放入磁力合模***中的弹性衬垫上,磁力合模***中的磁体主体为电磁体,弹性衬垫选择聚氨酯弹性衬垫,弹性模量为5MPa,厚度5mm。
(3)压印填充及固化工艺步骤。
本实施例将热塑性聚氨酯(TPU)颗粒与二甲基甲酰胺溶液按1:4质量比混合,置于恒温加热磁力搅拌器上,温度升高至60~80℃,并充分搅拌,直到聚氨酯完全溶解于二甲基甲酰胺溶液,冷却后即得到聚氨酯转移介质胶液,作为预聚体。
将配制好的预聚体通过涂胶机均匀涂覆在PET背衬上,涂敷厚度为500μm,并将背衬涂敷有预聚体的一面放置在镍基模具上,在背衬上加盖聚氨酯密封隔膜,将腔体分隔为上下腔室,通过下腔室抽真空以及上腔室充N 2实现对背衬层的均匀施压,实现预聚体对孔腔的充分填充,密封隔膜两侧的压差通过隔膜施加在背衬层提供预聚体充形驱动力,压印填充过程中,磁性诱导压力为0.5MPa。针对于本实施例中的TPU预聚体,密封隔膜所施加的压力为能够保证预聚体对孔腔的充分填充。填充完成后,加热至100℃,半小时后固化。
(4)固化后的脱模工艺步骤。
固化完成后释压,进行脱模,脱模采用从背衬层一侧施力使其均匀缓慢撕脱,得到仿生黏附结构。
实施例 4
(1)制备具有微通孔阵列的镍基模具,具体内容同实施例1。
制备得到的微通孔阵列的镍基模具的通孔为圆柱孔,最大处孔径为60μm,镍基模具厚度500μm,孔密度>1万/cm 2,对微通孔阵列镍基模具进行防粘处理,防粘处理方式为氧等离子体处理以及表面氟化。
(2)将镍基模具放入磁力合模***中的弹性衬垫上。
将上步获得的镍基模具放入磁力合模***中的弹性衬垫上,磁力合模***中的磁体主体为电磁体,弹性衬垫选择聚氨酯弹性衬垫,弹性模量为6MPa,厚度5mm。
(3)压印填充及固化工艺步骤。
预聚体选择UV紫外固化型聚合物聚氨酯丙烯酸酯(PUA),按照一定配比(SC2565(低聚物):M220:M2101=1:0.06:0.15,iGM1173光引发剂添加量为4wt%)完成后,搅拌混合均匀并除去气泡,将配制好的PUA胶液通过涂胶机均匀涂覆在PET背衬上,涂敷厚度为400μm。将背衬涂敷有预聚体的一面放置在镍基模具上,在背衬上加盖PDMS密封隔膜,将腔体分隔为上下腔室,通过下腔室抽真空以及上腔室充N 2实现对背衬层的均匀施压,以保证实现预聚体对孔腔的充分填充,密封隔膜两侧的压差通过隔膜施加在背衬层提供预聚体充形驱动力,压印填充过程中,磁性诱导压力为0.4MPa。填充完成后,UV紫外固化,固化光源功率为0.5 W/cm 2,光照60s后固化完成。
(4)固化后的脱模工艺步骤。
固化完成后释压,进行脱模,脱模采用从背衬层一侧施力使其均匀缓慢撕脱,得到仿生黏附结构,其形貌如图5所示。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (10)

  1. 一种基于微通孔镍基模具的仿生黏附结构平压制造方法,其特征在于,包括以下步骤:
    (1)制备具有微通孔阵列的镍基模具;
    (2)将镍基模具放入磁力合模***中的弹性衬垫上;
    (3)在背衬上均匀涂敷预聚体,并将背衬涂敷有预聚体的一面放置在镍基模具上,在背衬上加盖密封隔膜,将腔体分隔为上下腔室,通过下腔室抽真空以及上腔室充气实现对背衬层的均匀施压,实现预聚体对孔腔的充分填充;
    (4)填充完成后,固化,脱模,得到仿生黏附结构。
  2. 根据权利要求1所述的一种基于微通孔镍基模具的仿生黏附结构平压制造方法,其特征在于,步骤(1)中所述镍基模具的通孔为圆柱孔或异型孔,最大孔径不大于100μm,镍基模具厚度20~500μm,孔密度>1万/cm 2
  3. 根据权利要求1所述的一种基于微通孔镍基模具的仿生黏附结构平压制造方法,其特征在于,所述镍基模具经防粘处理。
  4. 根据权利要求1所述的一种基于微通孔镍基模具的仿生黏附结构平压制造方法,其特征在于,步骤(2)中所述磁力合模***包括磁体和弹性衬垫。
  5. 根据权利要求4所述的基于微通孔镍基模具的仿生黏附结构平压制造方法,其特征在于,所述磁体上表面粗糙度Ra≤0.05μm,表面光洁度大于10级;所述弹性衬垫的弹性模量为1MPa-10Mpa。
  6. 根据权利要求1所述的一种基于微通孔镍基模具的仿生黏附结构平压制造方法,其特征在于,所述磁体为永磁体或者电磁体;所述弹性衬垫基材本身防粘或者表面进行防粘处理。
  7. 根据权利要求1所述的一种基于微通孔镍基模具的仿生黏附结构平压制造方法,其特征在于,步骤(3)中所述液态预聚体为热固性预聚体或紫外固性预聚体。
  8. 根据权利要求1所述的一种基于微通孔镍基模具的仿生黏附结构平压制造方法,其特征在于,步骤(3)中预聚体涂敷厚度为400-600μm,填充过程中磁力合模***的磁性诱导压力为0.1-0.5MPa。
  9. 根据权利要求1所述的一种基于微通孔镍基模具的仿生黏附结构平压制造方法,其特征在于,步骤(4)中所述脱模方式为从背衬层一侧施力使其均匀缓慢撕脱。
  10. 根据权利要求1所述的一种基于微通孔镍基模具的仿生黏附结构平压制造方法,其特征在于,步骤(4)中所述仿生黏附结构为具有末端膨大特征的弹性体微结构阵列。
PCT/CN2020/111089 2020-08-12 2020-08-25 一种基于微通孔镍基模具的仿生黏附结构平压制造方法 WO2022040916A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/111089 WO2022040916A1 (zh) 2020-08-25 2020-08-25 一种基于微通孔镍基模具的仿生黏附结构平压制造方法
US17/237,079 US11478976B2 (en) 2020-08-12 2021-04-22 Flat-pressing manufacturing method of bionic adhesive structure based on micro through-hole nickel-based mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/111089 WO2022040916A1 (zh) 2020-08-25 2020-08-25 一种基于微通孔镍基模具的仿生黏附结构平压制造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/237,079 Continuation-In-Part US11478976B2 (en) 2020-08-12 2021-04-22 Flat-pressing manufacturing method of bionic adhesive structure based on micro through-hole nickel-based mold

Publications (1)

Publication Number Publication Date
WO2022040916A1 true WO2022040916A1 (zh) 2022-03-03

Family

ID=80352392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111089 WO2022040916A1 (zh) 2020-08-12 2020-08-25 一种基于微通孔镍基模具的仿生黏附结构平压制造方法

Country Status (1)

Country Link
WO (1) WO2022040916A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153867A (zh) * 2010-10-28 2011-08-17 南京航空航天大学 高度几何仿生刚毛阵列及制法和用途
US20150010732A1 (en) * 2012-01-12 2015-01-08 Gottlieb Binder Gmbh & Co. Kg Method for producing a plastics product and device for carrying out the method and also closure product or adhesion product produced by the method and the device
CN109232965A (zh) * 2018-10-08 2019-01-18 中国工程物理研究院化工材料研究所 一种仿生干态粘接硅橡胶泡沫的制备方法
CN110482481A (zh) * 2019-07-08 2019-11-22 南京航空航天大学 一种末端膨大微结构阵列仿生黏附材料的制备方法
CN110562909A (zh) * 2019-01-04 2019-12-13 西北工业大学 一种真空压力成型制备大面积、高深宽比的柔性微纳功能结构的方法及装置
CN111993657A (zh) * 2020-08-12 2020-11-27 南京艾德恒信科技有限公司 一种基于微通孔镍基模具的仿生黏附结构平压制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153867A (zh) * 2010-10-28 2011-08-17 南京航空航天大学 高度几何仿生刚毛阵列及制法和用途
US20150010732A1 (en) * 2012-01-12 2015-01-08 Gottlieb Binder Gmbh & Co. Kg Method for producing a plastics product and device for carrying out the method and also closure product or adhesion product produced by the method and the device
CN109232965A (zh) * 2018-10-08 2019-01-18 中国工程物理研究院化工材料研究所 一种仿生干态粘接硅橡胶泡沫的制备方法
CN110562909A (zh) * 2019-01-04 2019-12-13 西北工业大学 一种真空压力成型制备大面积、高深宽比的柔性微纳功能结构的方法及装置
CN110482481A (zh) * 2019-07-08 2019-11-22 南京航空航天大学 一种末端膨大微结构阵列仿生黏附材料的制备方法
CN111993657A (zh) * 2020-08-12 2020-11-27 南京艾德恒信科技有限公司 一种基于微通孔镍基模具的仿生黏附结构平压制造方法

Similar Documents

Publication Publication Date Title
CN111993657B (zh) 一种基于微通孔镍基模具的仿生黏附结构平压制造方法
Bettinger et al. Three‐dimensional microfluidic tissue‐engineering scaffolds using a flexible biodegradable polymer
CN107533287B (zh) 聚合物组合物或预聚物组合物或者包含此类组合物的压花漆及其用途
US6770721B1 (en) Polymer gel contact masks and methods and molds for making same
JP4942994B2 (ja) 中間スタンプを用いたパターン複製装置
RU2695290C2 (ru) Способ изготовления штампа с рисунком, штамп с рисунком и способ отпечатывания
CN102470603B (zh) 铸型固定用胶粘片及铸型固定用胶粘带以及微细结构的制造方法
JP2007245702A (ja) テンプレートおよび転写微細パターンを有する処理基材の製造方法
CN102060262B (zh) 低压键合制作微纳米流控***的方法
CN103145089A (zh) 逆向热键合技术制作尺寸可控的微纳米流体***
WO2022166600A1 (zh) 一种基于弹性支撑体的光固化微流控芯片及其制备方法和应用
WO2022040916A1 (zh) 一种基于微通孔镍基模具的仿生黏附结构平压制造方法
US11478976B2 (en) Flat-pressing manufacturing method of bionic adhesive structure based on micro through-hole nickel-based mold
TWI661941B (zh) 用於製造精細圖案化膜的設備及方法
KR100537722B1 (ko) 미세형상 구조물의 연속 성형장치 및 방법 그리고 그 미세형상의 성형을 위한 스탬퍼 제작방법
WO2017035947A1 (zh) 一种快速聚合物微结构等温平板热压印工艺
CN111717886B (zh) 微结构制备装置及方法
WO2023005208A1 (zh) 一种深纹路图案转移膜、转移材料及其制备方法
JP2014202947A (ja) 微細構造を有する成形体の製造方法およびそれにより得られる光学部品
CN103616796B (zh) 一种紫外光固化软印刷复合模板的制备方法
CN110562909A (zh) 一种真空压力成型制备大面积、高深宽比的柔性微纳功能结构的方法及装置
CN104932195B (zh) 一种复合纳米压印软模板及其制备方法
KR100776633B1 (ko) 임프린트 시스템 및 이를 이용하는 임프린팅 방법
KR100768705B1 (ko) 임프린팅용 고분자 스탬프의 제조방법 및 그에 의한 고분자스탬프
CN209281147U (zh) 纳米压印弹性模板及纳米压印组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950591

Country of ref document: EP

Kind code of ref document: A1