WO2022038883A1 - Polycarbonate-polysiloxane resin - Google Patents

Polycarbonate-polysiloxane resin Download PDF

Info

Publication number
WO2022038883A1
WO2022038883A1 PCT/JP2021/023099 JP2021023099W WO2022038883A1 WO 2022038883 A1 WO2022038883 A1 WO 2022038883A1 JP 2021023099 W JP2021023099 W JP 2021023099W WO 2022038883 A1 WO2022038883 A1 WO 2022038883A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
polycarbonate
polysiloxane
polysiloxane resin
Prior art date
Application number
PCT/JP2021/023099
Other languages
French (fr)
Japanese (ja)
Inventor
智大 中▲崎▼
健太 今里
千晶 小森
強 武田
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to JP2022543299A priority Critical patent/JPWO2022038883A1/ja
Publication of WO2022038883A1 publication Critical patent/WO2022038883A1/en
Priority to JP2023197356A priority patent/JP2024009163A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers

Definitions

  • the present invention relates to a polycarbonate-polysiloxane resin.
  • the resin glazing that replaces glass uses a polycarbonate resin that has excellent transparency, heat resistance, and impact resistance, and has a lower specific gravity than glass.
  • Patent Document 1 examines a polycarbonate resin having a specific structural unit.
  • the impact resistance at low temperatures is insufficient, and there is a problem that sufficient impact resistance is not exhibited especially in cold regions such as high latitudes and mountainous areas.
  • An object of the present invention is to provide a polycarbonate-polysiloxane resin having excellent transparency, impact resistance, heat resistance, moldability, pencil hardness, and low specific gravity.
  • a polycarbonate-polysiloxane resin containing a polycarbonate block containing a specific structural unit and a polysiloxane block has transparency, impact resistance, heat resistance, moldability, and pencil hardness.
  • the present invention has been completed by finding that it is excellent in both properties and has low specific gravity. That is, according to the present invention, the subject of the invention is achieved by the following.
  • Polycarbonate-polysiloxane resin containing a polycarbonate block (A-1) and a polysiloxane block (A-2), wherein the specific gravity of the resin is 1.10 or less, and the glass transition temperature of the resin is 100 to 190 ° C.
  • R 1 and R 2 are independent of each other, a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and 6 to 6 carbon atoms.
  • cycloalkyl groups 6 to 20 carbon atoms cycloalkoxy groups, 2 to 10 carbon atoms alkenyl groups, 6 to 14 carbon atoms aryl groups, 6 to 14 carbon atoms aryloxy groups, carbon atoms
  • R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently hydrogen atoms, alkyl groups having 1 to 18 carbon atoms, and carbon.
  • R 23 , R 24 , R 25 and R 26 are independently substituted or unsubstituted with a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, and 6 to 12 carbon atoms.
  • polycarbonate-polysiloxane resin according to any one of the above items 1 to 3, wherein the polycarbonate block (A-1) contains a structural unit represented by the following formula (4).
  • R 27 and R 28 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and if there are a plurality of each, they may be the same or different, i. And j are integers of 1 to 4, respectively, and Y is at least one group selected from the group consisting of the groups represented by the following formula (5).
  • R 29 , R 30 , and R 31 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and if there are a plurality of each, they may be the same or different.
  • k is an integer from 1 to 3.
  • polycarbonate block (A-1) 2,2-bis (4-hydroxy-3-methylphenyl) propane and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane , 1,1-bis (3-methyl-4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane from at least one
  • the polycarbonate-polysiloxane resin according to any one of the above items 1 to 4, which comprises a unit to be induced.
  • polycarbonate-polysiloxane resin according to any one of the above items 1 to 5, wherein the content of the polysiloxane block (A-2) is 5 to 50% by weight based on the entire polycarbonate-polysiloxane resin.
  • the structural unit of the polycarbonate block (A-1) contains a unit derived from 2,2-bis (4-hydroxyphenyl) propane, and the content of the polysiloxane block (A-2) is polycarbonate-poly.
  • polycarbonate-polysiloxane resin according to any one of the above items 1 to 8, wherein the polysiloxane domain of the polycarbonate-polysiloxane resin has an average size of 1 to 20 nm.
  • the polycarbonate-polysiloxane resin of the present invention is excellent in transparency, impact resistance, heat resistance, moldability, and pencil hardness, and also has low specific gravity, so that it can be suitably used as a member for a vehicle body.
  • the industrial effect it produces is exceptional.
  • the polycarbonate-polysiloxane resin contains a polycarbonate block (A-1) and a polysiloxane block (A-2).
  • the polycarbonate-polysiloxane resin of the present invention is characterized by having a specific gravity of 1.10 or less and a glass transition temperature of 100 to 190 ° C.
  • the specific gravity of the polycarbonate-polysiloxane resin of the present invention is 1.10 or less, preferably 1.09 or less, more preferably 1.08 or less, still more preferably 1.07 or less.
  • the specific gravity is measured according to the method for measuring the density and specific gravity of JIS K7112 plastic-non-foamed plastic (method C floating and sinking method).
  • the glass transition temperature of the polycarbonate-polysiloxane resin of the present invention is in the range of 90 to 190 ° C, preferably in the range of 100 to 180 ° C, more preferably in the range of 110 to 175 ° C, and even more preferably 120. It is in the range of ⁇ 170 ° C. When it is in the range of the lower limit or more, the heat stability is good and preferable when used as a molded product.
  • the glass transition temperature is measured at a heating rate of 20 ° C./min using a 2910 type DSC manufactured by TA Instruments Japan Co., Ltd.
  • the polycarbonate block (A-1) is a portion of the polycarbonate polymer contained in the polycarbonate-polysiloxane resin. Specifically, the polycarbonate block (A-1) preferably contains a structural unit represented by the following formula (1).
  • R 1 and R 2 are independently hydrogen atom, halogen atom, alkyl group having 1 to 18 carbon atoms, alkoxy group having 1 to 18 carbon atoms, and 6 to 20 carbon atoms.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and the like.
  • alkyl group having 1 to 18 carbon atoms examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group and a tetradecyl group. .. It is preferably an alkyl group having 1 to 6 carbon atoms.
  • alkoxy group having 1 to 18 carbon atoms examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a hexoxy group, and an octoxy group.
  • An alkoxy group having 1 to 6 carbon atoms is preferable.
  • Examples of the cycloalkyl group having 6 to 20 carbon atoms include a cyclohexyl group and a cyclooctyl group.
  • a cycloalkyl group having 6 to 12 carbon atoms is preferable.
  • Examples of the cycloalkoxy group having 6 to 20 carbon atoms include a cyclohexyloxy group and a cyclooctyloxy group.
  • a cycloalkoxy group having 6 to 12 carbon atoms is preferable.
  • alkenyl group having 2 to 10 carbon atoms examples include a metenyl group, an ethenyl group, a propenyl group, a butenyl group, a pentenyl group and the like.
  • An alkenyl group having 2 to 6 carbon atoms is preferable.
  • Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group and a naphthyl group.
  • Examples of the aryloxy group having 6 to 14 carbon atoms include a phenyloxy group and a naphthyloxy group.
  • Examples of the aralkyl group having 7 to 20 carbon atoms include a benzyl group and a phenylethyl group.
  • Examples of the aralkyloxy group having 7 to 20 carbon atoms include a benzyloxy group and a phenylethyloxy group.
  • e and f are each independently an integer of 1 to 4.
  • W is at least one group selected from the group consisting of a single bond or a group represented by the following formula (2).
  • R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently hydrogen atoms, alkyl groups having 1 to 18 carbon atoms, and carbon atoms.
  • alkyl group having 1 to 18 carbon atoms examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group and a dodecyl group. It is preferably an alkyl group having 1 to 6 carbon atoms.
  • Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group and a naphthyl group. These may be substituted.
  • Examples of the substituent include an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group and a butyl group.
  • Examples of the aralkyl group having 7 to 20 carbon atoms include a benzyl group and a phenylethyl group.
  • R 19 and R 20 are independently hydrogen atom, halogen atom, alkyl group having 1 to 18 carbon atoms, alkoxy group having 1 to 10 carbon atoms, cycloalkyl group having 6 to 20 carbon atoms, and carbon atom.
  • Cycloalkoxy group with 6 to 20, alkoxy group with 2 to 10 carbon atoms, aryl group with 6 to 14 carbon atoms, aryloxy group with 6 to 10 carbon atoms, aralkyl group with 7 to 20 carbon atoms It represents at least one group selected from the group consisting of an alkoxyloxy group, a nitro group, an aldehyde group, a cyano group and a carboxyl group having 7 to 20 carbon atoms. If there are multiple, they may be the same or different.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and the like.
  • alkyl group having 1 to 18 carbon atoms examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group and a tetradecyl group. .. It is preferably an alkyl group having 1 to 6 carbon atoms.
  • alkoxy group having 1 to 10 carbon atoms examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group and the like.
  • An alkoxy group having 1 to 6 carbon atoms is preferable.
  • Examples of the cycloalkyl group having 6 to 20 carbon atoms include a cyclohexyl group and a cyclooctyl group.
  • a cycloalkyl group having 6 to 12 carbon atoms is preferable.
  • Examples of the cycloalkoxy group having 6 to 20 carbon atoms include a cyclohexyloxy group and a cyclooctyl group.
  • a cycloalkoxy group having 6 to 12 carbon atoms is preferable.
  • alkenyl group having 2 to 10 carbon atoms examples include a metenyl group, an ethenyl group, a propenyl group, a butenyl group, a pentenyl group and the like.
  • Alkyl groups having 1 to 6 carbon atoms are preferable.
  • Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group and a naphthyl group.
  • Examples of the aryloxy group having 6 to 14 carbon atoms include a phenyloxy group and a naphthyloxy group.
  • Examples of the aralkyl group having 7 to 20 carbon atoms include a benzyl group and a phenylethyl group.
  • Examples of the aralkyloxy group having 7 to 20 carbon atoms include a benzyloxy group and a phenylethyloxy group.
  • G is an integer of 1 to 10, preferably an integer of 1 to 6.
  • h is an integer of 4 to 7, preferably an integer of 4 to 5.
  • the polycarbonate block (A-1) is particularly preferably one containing a structural unit represented by the following formula (4).
  • R 27 and R 28 are each independently an alkyl group having a hydrogen atom or a carbon atom number of 1 to 4. When there are a plurality of R 27 and R 28 , they may be the same or different. i and j are integers of 1 to 4, respectively.
  • Y is at least one group selected from the group consisting of the groups represented by the following formula (5).
  • R 29 , R 30 , and R 31 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • k is an integer of 1 to 3.
  • the polysiloxane block (A-2) is a polysiloxane-based portion contained in the polycarbonate-polysiloxane resin, and the type thereof is not particularly limited.
  • the polysiloxane block preferably contains a structural unit represented by the following formula (3).
  • R 23 , R 24 , R 25 and R 26 are independently substituted or unsubstituted with a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, and 6 to 12 carbon atoms. It is at least one group selected from the group consisting of aryl groups.
  • alkyl group having 1 to 12 carbon atoms examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group and a dodecyl group. It is preferably an alkyl group having 1 to 6 carbon atoms.
  • Examples of the substituted or unsubstituted aryl group having 6 to 12 carbon atoms include a phenyl group and a naphthyl group.
  • Examples of the substituent include an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group and a hexyl group. It is particularly preferable that R 23 , R 24 , R 25 and R 26 are methyl groups.
  • R 21 and R 22 are each independently at least one group selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms and an alkoxy group having 1 to 10 carbon atoms, and halogen.
  • the atom include a fluorine atom, a chlorine atom, a bromine atom and the like.
  • alkyl group having 1 to 10 carbon atoms examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group and a dodecyl group. It is preferably an alkyl group having 1 to 6 carbon atoms.
  • alkoxy group having 1 to 10 carbon atoms examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a hexoxy group, a heptoxy group, and an octoxy group. It is preferably an alkoxy group having 1 to 6 carbon atoms. It is particularly preferable that R 21 and R 22 are hydrogen atoms or methoxy groups.
  • P is a natural number of 1 to 150, preferably a natural number of 5 to 100, more preferably a natural number of 10 to 80, and particularly preferably a natural number of 20 to 50.
  • the average chain length p is calculated by nuclear magnetic resonance (NMR) measurement.
  • the repeating unit of p may include a number of units having different R 23 and R 24 .
  • the unit may be random.
  • hydroxyaryl-terminated polysiloxane raw materials having two or more different average chain lengths p may be mixed and prepared.
  • a method for mixing and preparing polysiloxane raw materials even in a method of mixing appropriate polysiloxane raw materials having hydroxyaryl-modified ends, polysiloxane precursors having an appropriate average chain length before hydroxyaryl-denaturing the ends are used. Either of the methods of premixing the above and then denaturing the terminal with hydroxyaryl may be used.
  • X is a divalent aliphatic group having 2 to 8 carbon atoms.
  • the divalent aliphatic group include an alkylene group having 2 to 8 carbon atoms.
  • the alkylene group include an ethylene group, a trimethylene group and a tetramethylene group.
  • the polycarbonate-polysiloxane resin of the present invention may contain other resins as long as the effects of the present invention are not impaired.
  • the polycarbonate resin is particularly preferable from the viewpoint of compatibility with the polycarbonate-polysiloxane resin of the present invention.
  • the polycarbonate-polysiloxane resin in the present invention can be produced by the steps (I) and (II).
  • step (I) a dihydric phenol represented by the following formula (7) is reacted with phosgene in a mixed solution of an organic solvent insoluble in water and an alkaline aqueous solution to obtain a carbonate oligomer having a terminal chlorohomate group. This is a step of preparing a solution to be contained.
  • Examples of the divalent phenol represented by the above formula (7) include 4,4'-biphenol, 3,3', 5,5'-tetrafluoro-4,4'-biphenol, ⁇ , ⁇ '-bis. (4-Hydroxyphenyl) -o-diisopropylbenzene, ⁇ , ⁇ '-bis (4-hydroxyphenyl) -m-diisopropylbenzene (hereinafter sometimes abbreviated as "BPM”), ⁇ , ⁇ '-bis (4) -Hydroxyphenyl) -p-diisopropylbenzene, ⁇ , ⁇ '-bis (4-hydroxyphenyl) -m-bis (1,1,1,3,3,3-hexafluoroisopropyl) benzene, 1,1-bis (4-Hydroxyphenyl) cyclohexane (hereinafter sometimes abbreviated as "BPZ”), 1,1-bis (4-hydroxyphenyl)
  • BPC 4-Hydroxy-3-methylphenyl) propane
  • BP26XA 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane
  • BP26XA 2,2-bis (4-hydroxyphenyl) butane
  • BP26XA 2,2-bis (4-hydroxyphenyl) pentane
  • 2,2-bis (4-hydroxy-3-phenylphenyl) propane 2,2-bis (3-isopropyl-4-hydroxyphenyl) propane
  • 2,2-bis (3-t-butyl-4-hydroxyphenyl) propane 2,2-bis (4-hydroxyphenyl) butane, 4,4-bis (4-Hydroxyphenyl) heptane
  • 1,1-bis (4-hydroxyphenyl) decane 1,1-bis (3-methyl-4-hydroxyphenyl) decane
  • 1,1-bis (2,3-dimethyl-4-hydroxyphenyl) decane 1,1-bis (2,3-d
  • BPM, BPZ, BPTMC, BPOCTMC, 3,3'-dimethyl-4,4'-dihydroxydiphenylsulfide, BPA, BPC, BP26XA, BPAF, 6,6'-dihydroxy-3,3,3', 3'-tetramethyl-1,1'-spirobiindan and 1,1-bis (4-hydroxyphenyl) decane are preferred.
  • BPTMC, BPOCTMC, BPA, BPC, BP26XA and BPAF are more preferable, and BPTCC, BPOCTMC, BPA, BPC and BP26XA are particularly preferable.
  • These divalent phenols may be used alone or in combination of two or more.
  • Step (II) is a step of interfacially polymerizing the hydroxyaryl-terminated polysiloxane represented by the following formula (8) and the carbonate oligomer prepared in the step (I) to obtain the polycarbonate-polysiloxane resin of the present invention.
  • hydroxyaryl-terminated polysiloxane represented by the above formula (8) for example, the following compounds are preferably used.
  • the hydroxyaryl-terminated polysiloxane contains phenols having an olefinic unsaturated carbon-carbon bond, preferably vinylphenol, 2-allylphenol, isopropenylphenol, and 2-methoxy-4-allylphenol at a predetermined degree of polymerization. It is easily produced by subjecting the terminal of the polysiloxane chain to undergo a hydrosyllation reaction.
  • (2-allylphenol) -terminated polysiloxane (2-methoxy-4-allylphenol) -terminated polysiloxane, in particular (2-allylphenol) -terminated polydimethylsiloxane, and (2-methoxy-4-allyphenol) -terminated polysiloxane.
  • Allylphenol) -terminated polydimethylsiloxane is preferred.
  • the hydroxyaryl terminal polysiloxane only one type may be used, or two or more types may be used in combination.
  • the average siloxane repetition number p of the hydroxyaryl-terminated polysiloxane is preferably 1 to 150, more preferably 5 to 100, still more preferably particularly preferably 10 to 80, and particularly preferably 20. ⁇ 50. Above the lower limit of the suitable range, the impact resistance is excellent, and above the upper limit of the suitable range, the transparency is excellent.
  • the average chain length p can be calculated by 1H-NMR measurement.
  • Resins above the above lower limit have a high rheological property modification effect by introducing a polysiloxane moiety with low cohesive force, and tend to increase the structural viscosity index. As a result, high fluidity during shear flow is maintained and moldability is good. Resins below the above upper limit tend to reduce the average size of the polysiloxane domain. As a result, it is possible to obtain a resin molded product having excellent transparency even under molding conditions in which the product stays in the cylinder for a long time at a high temperature. The number of moles per unit weight of the polysiloxane unit below the upper limit increases, and the unit can be easily incorporated evenly into the polycarbonate.
  • the polysiloxane domain refers to a domain containing polysiloxane as a main component dispersed in a matrix of polycarbonate, and may contain other components.
  • the polysiloxane domain is not necessarily composed of a single component because the structure is formed by phase separation from the polycarbonate as a matrix.
  • the content of the polysiloxane component in the total weight of the resin is preferably 1 to 70% by weight.
  • the lower limit of the content of the polysiloxane component is preferably 3% by weight or more, 5% by weight or more, 8% by weight or more, 10% by weight or more, 20% by weight or more, 30% by weight or more, 35% by weight or more, 40% by weight. It may be included in the above.
  • the upper limit may preferably include 60% by weight or less, 50% by weight or less, 45% by weight or less, 40% by weight or less, 30% by weight or less, and 20% by weight or less. Above the lower limit of the suitable range, impact resistance is excellent, and above the upper limit of the suitable range, stable transparency that is not easily affected by molding conditions can be easily obtained.
  • the polysiloxane content can be calculated by 1H-NMR measurement.
  • a comonomer other than the above-mentioned divalent phenol and hydroxyaryl-terminated polysiloxane can be used in combination as long as it does not interfere with the production method of the present invention.
  • the polycarbonate-polysiloxane resin of the present invention can be a branched polycarbonate resin by using a branching agent in combination with the above-mentioned divalent phenolic compound.
  • Examples of the trifunctional or higher polyfunctional aromatic compound used in such a branched polycarbonate resin include fluoroglucolcin, fluoroglucolside, or 4,6-dimethyl-2,4,6-tris (4-hydrochidiphenyl) hepten-2, 2.
  • the branching agent is used during the interfacial polycondensation reaction after the completion of the production reaction. It may be a method of addition.
  • the ratio of the carbonate constituent units derived from the branching agent is preferably 0.005 to 1.5 mol%, more preferably 0.01 to 1.2 mol%, and particularly preferably 0.01 to 1.2 mol%, based on the total amount of the carbonate constituent units constituting the resin. Is 0.05 to 1.0 mol%.
  • the amount of the branched structure can be calculated by 1H-NMR measurement.
  • step (I) a mixed solution containing an oligomer of a dihydric phenol having a terminal chloroformate group is obtained, and then the hydroxyaryl-terminated polysiloxane represented by the above formula (8) is subjected to divalent phenol while stirring the mixed solution.
  • a polycarbonate-polysiloxane resin is obtained by polycondensing the hydroxyaryl-terminated polysiloxane and the oligomer at a rate of 0.004 mol equivalent / min or less with respect to the charged amount of the above.
  • a solvent inert to various reactions such as those used in the production of known polycarbonate may be used alone or as a mixed solvent.
  • Typical examples include hydrocarbon solvents such as xylene and halogenated hydrocarbon solvents such as methylene chloride and chlorobenzene.
  • a halogenated hydrocarbon solvent such as methylene chloride is preferably used.
  • the concentration of divalent phenol is preferably 500 g / L or less, more preferably 450 g / L or less, still more preferably 300 g / L or less.
  • the lower limit of the concentration of divalent phenol is preferably 150 g / L or more from the viewpoint of production efficiency.
  • an acid binder may be added as appropriate in consideration of the stoichiometric ratio (equivalent) of the reaction.
  • the acid binder for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof are used.
  • the post-added divalent phenol is used. It is preferable to use 2 equivalents or an excess amount of alkali with respect to the total number of moles with the hydroxyaryl-terminated polysiloxane (usually 1 mol corresponds to 2 equivalents).
  • Polycondensation by the interfacial polycondensation reaction between the divalent phenol oligomer and the hydroxyaryl terminal polysiloxane is performed by vigorously stirring the above mixture.
  • a terminal terminator or a molecular weight modifier is usually used.
  • the terminal terminator include compounds having a monovalent phenolic hydroxyl group, and in addition to ordinary phenols, p-tert-butylphenols, p-cumylphenols, tribromophenols, etc., long-chain alkylphenols and aliphatic carboxylic acids Examples thereof include chloride, aliphatic carboxylic acid, hydroxybenzoic acid alkyl ester, hydroxyphenyl alkyl acid ester, and alkyl ether phenol.
  • the amount used is in the range of 100 to 0.5 mol, preferably 50 to 2 mol, with respect to 100 mol of all the divalent phenolic compounds used, and it is naturally possible to use two or more kinds of compounds in combination. be.
  • a catalyst such as a tertiary amine such as triethylamine or a quaternary ammonium salt may be added to promote the polycondensation reaction.
  • the reaction time of the polymerization reaction needs to be relatively long in order to reduce the unreacted polysiloxane component. It is preferably 30 minutes or longer, more preferably 50 minutes or longer. On the other hand, since precipitation of the polymer may occur by stirring the reaction solution for a long time, it is preferably 180 minutes or less, more preferably 90 minutes or less.
  • the reaction pressure can be reduced pressure, normal pressure, or pressurization, but usually, normal pressure or the self-pressure of the reaction system can be preferably used.
  • the reaction temperature is selected from the range of -20 to 50 ° C, and in many cases, heat is generated due to polymerization, so it is desirable to cool with water or ice.
  • an antioxidant such as sodium sulfite or hydrosulfide may be added.
  • the viscosity average molecular weight of the polycarbonate-polysiloxane resin of the present invention is preferably 15,000 to 40,000, more preferably 16,000 to 35,000, still more preferably 17,000 to 30,000, and particularly preferably 18. It is 000 to 25,000. Within the above range, it is easy to obtain practical mechanical strength in many fields, and since it has an appropriate melt viscosity during molding, problems such as thermal deterioration are suppressed and it is mixed with the polycarbonate resin as needed. The difference in melt viscosity is small and the kneadability is good. Furthermore, the efficiency of the water washing process at the time of resin production is good, and the productivity is excellent.
  • the viscosity average molecular weight of the polycarbonate resin in the present invention was first determined by using an Ostwald viscometer from a solution in which 0.7 g of the resin was dissolved in 100 ml of methylene chloride at 20 ° C. for the specific viscosity ( ⁇ SP) calculated by the following formula.
  • Specific viscosity ( ⁇ SP) (tt 0 ) / t 0 [T0 is the number of seconds for methylene chloride to fall, and t is the number of seconds for the sample solution to fall]
  • the viscosity average molecular weight Mv was calculated from the obtained specific viscosity ( ⁇ SP) by the following mathematical formula.
  • the pencil hardness of the polycarbonate-polysiloxane resin of the present invention is preferably 2B or more. In terms of excellent scratch resistance, it is more preferably HB or higher, and even more preferably F or higher.
  • the pencil hardness is 4H or less and has a sufficient function.
  • the pencil hardness is a hardness that does not leave scratch marks even when the resin of the present invention is rubbed with a pencil having a specific pencil hardness, and is measured according to JIS K-5600. It is preferable to use the pencil hardness used for the surface hardness test of the resulting coating film as an index.
  • Pencil hardness becomes softer in the order of 9H, 8H, 7H, 6H, 5H, 4H, 3H, 2H, H, F, HB, B, 2B, 3B, 4B, 5B, 6B, the hardest is 9H, and the hardest.
  • the soft one is 6B.
  • the polycarbonate-polysiloxane resin of the present invention preferably has a ductile fracture form.
  • the value of the total light transmittance of the polycarbonate-polysiloxane resin of the present invention is preferably 80% or more, more preferably 85% or more, still more preferably 88% or more.
  • the haze value is preferably 5.0 or less, more preferably 3.0 or less, and even more preferably 2.0 or less. By setting the above values, the appearance of the molded product is excellent and preferable.
  • the total light transmittance and the haze can be measured in accordance with ASTM D1003 using Haze Meter NDH 2000 manufactured by Nippon Denshoku Kogyo Co., Ltd. in a thickness of 2.0 mm of the obtained resin plate.
  • the average size of the polysiloxane domain is preferably in the range of 1 to 20 nm, more preferably in the range of 2 to 15 nm. If it is less than the lower limit of such a range, impact resistance is not sufficiently exhibited, and if it exceeds the upper limit of such a range, transparency is not stably exhibited.
  • 2,2-bis (4-hydroxy-3-methylphenyl) propane and 1,1-bis (4-) are the structural units of the polycarbonate block (A-1). Hydroxyphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (3-methyl-4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3, It preferably contains a unit derived from at least one of 5-dimethylphenyl) propane.
  • the content of the polysiloxane block (A-2) is preferably 1 to 70% by weight based on the entire polycarbonate-polysiloxane resin. It is more preferably from 60% by weight, still more preferably from 5 to 50% by weight.
  • a preferred embodiment (2) includes a unit derived from 2,2-bis (4-hydroxyphenyl) propane as the structural unit of the polycarbonate block (A-1), and the polysiloxane block (2).
  • the content of A-2) is preferably 30 to 70% by weight, more preferably 35 to 60% by weight, still more preferably 40 to 50% by weight, based on the entire polycarbonate-polysiloxane resin.
  • the polycarbonate-polysiloxane resin of the present invention can contain various flame retardants, reinforced fillers, and additives that are usually blended with the polycarbonate resin as long as the effects of the present invention are not impaired.
  • the polycarbonate-polysiloxane resin can be pelletized by melt-kneading using an extruder such as a single-screw extruder or a twin-screw extruder. In producing such pellets, various flame retardants, strengthening fillers and additives can also be blended.
  • thermoplastic resins particularly aromatic polycarbonate resins
  • organic metal salt-based flame retardants for example, organic sulfonic acid alkali (soil)
  • C Metal salts, brate metal salt flame retardants, tinic acid metal salt flame retardants, etc.), organic phosphorus flame retardants (eg, monophosphate compounds, phosphate oligomer compounds, phosphonate oligomer compounds, phosphonitrile oligomer compounds, phosphons, etc.) Acid amide compounds, phosphazene, etc.), silicone flame retardants made of silicone compounds, fibrillated PTFE and the like.
  • organometallic salt flame retardants and organophosphorus flame retardants are particularly preferable.
  • the compounding of such a compound brings about improvement of flame retardancy, but in addition to that, improvement of antistatic property, fluidity, rigidity, thermal stability and the like is brought about based on the property of each compound.
  • the polycarbonate-polysiloxane resin can be manufactured by injection molding pellets usually produced as described above to produce various molded products. Further, it is also possible to directly convert the resin melt-kneaded by the extruder into a sheet, a film, a modified extrusion-molded product, a direct blow-molded product, and an injection-molded product without passing through pellets.
  • injection molding not only ordinary molding methods, but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including those by injecting supercritical fluid), insert molding, and insert molding, depending on the intended purpose.
  • Molded products can be obtained using injection molding methods such as in-mold coating molding, heat insulating mold molding, rapid heating and cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding.
  • injection molding methods such as in-mold coating molding, heat insulating mold molding, rapid heating and cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding.
  • injection molding methods such as in-mold coating molding, heat insulating mold molding, rapid heating and cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding.
  • the advantages of these various molding methods are already widely known.
  • either a cold runner method or a hot runner method can be selected for molding.
  • the polycarbonate-polysiloxane resin can also be used in the form of various deformed extruded products, sheets, films and the like by extrusion molding. Inflation method, calendar method, casting method, etc. can also be used for forming sheets and films. Further, it can be molded as a heat-shrinkable tube by applying a specific stretching operation. Further, the polycarbonate-polysiloxane resin of the present invention can be made into a molded product by rotary molding, blow molding or the like.
  • various surface treatments can be applied to the molded product made of polycarbonate-polysiloxane resin.
  • Surface treatment here means a new layer on the surface layer of resin molded products such as thin-film deposition (physical vapor deposition, chemical vapor deposition, etc.), plating (electroplating, electroless plating, hot-dip plating, etc.), painting, coating, printing, etc. It is formed, and the method used for ordinary polycarbonate resin can be applied.
  • Specific examples of the surface treatment include various surface treatments such as a hard coat, a water / oil repellent coat, an ultraviolet absorption coat, an infrared absorption coat, and metallizing (vapor deposition, etc.).
  • the polycarbonate-polysiloxane resin of the present invention has a high degree of compatibility with transparency, impact resistance, heat resistance, moldability, pencil hardness, and low specific gravity, and is widely used in the fields of optical components, electrical / electronic equipment, and mobility. Can be used. In particular, it is suitably used for automobile lamp lenses and automobile interior / exterior members mainly formed by injection molding or the like, lighting covers mainly formed by extrusion molding or the like, resin windows or front panel applications.
  • a resin is injected by an injection molding machine (J-75E3 manufactured by Japan Steel Works, Ltd.) under the conditions of a cylinder temperature of 300 ° C. and a mold temperature of 80 ° C., with a holding time of 20 seconds and a cooling time of 20 seconds, and a width of 50 mm.
  • a three-stage resin plate having a length of 90 mm and a thickness of 3 mm (length 20 mm), 2 mm (length 45 mm), and 1 mm (length 25 mm) from the gate side was molded and various evaluations were carried out.
  • Vacuum heat press molding (Comparative Examples 5, 6, 12) Using a vacuum heat press forming machine (compression forming machine: SFV-10, vacuum pump unit: GXD-360) manufactured by Kondo Metal Industry Co., Ltd., a disk-shaped resin plate with a thickness of 2 mm and a diameter of 5 cm is formed. , Various evaluations were carried out. The press molding conditions were a mold temperature of 300 ° C., a primary pressure of 1 MPa (30 seconds), and a secondary pressure of 1.5 MPa (5 minutes).
  • Total light transmittance and haze Total light transmittance (%) and haze (%) at a thickness of 2.0 mm are based on ASTM D1003 using Haze Meter NDH 2000 manufactured by Nippon Denshoku Kogyo Co., Ltd. And measured.
  • Image analysis software Win ROOF Ver. Particle analysis was performed using 6.6 (Mitani Shoji Co., Ltd.) to obtain the average size and particle size distribution (frequency distribution) of the polysiloxane domain in the sample flakes.
  • the maximum major axis (the length when any two points on the outer contour line of the particle are selected so that the length between them is maximized) is used as the size of each domain.
  • the same analysis was performed on 5 sample sections, and the average value was taken as the value of each sample.
  • Pencil hardness Based on JIS K5600, draw a line on the surface of the resin plate in a constant temperature room with an ambient temperature of 23 ° C while keeping an angle of 45 degrees and apply a load of 750 g to the surface condition. It was evaluated visually. Load: 750g Measurement speed: 50 mm / min Measurement distance: 7 mm Pencil: Hi-uni made by Mitsubishi Pencil
  • polydimethylsiloxane 1031 parts of a 25% sodium hydroxide aqueous solution was added, and a solution in which 83.2 parts of p-tert-butylphenol was dissolved in 5477 parts of methylene chloride was added, and the polydimethylsiloxane (hereinafter referred to as “polydimethylsiloxane”) was used as a hydroxyaryl-terminated polysiloxane while stirring.
  • polydimethylsiloxane polydimethylsiloxane
  • the divalent phenol was changed to 2355 parts of BPC, 810 parts of BPOCTMC, and 74.3 parts of p-tert-butylphenol, and was produced by the same method as in Production Example 1 except that hydroxyaryl-terminated polysiloxane was not used.
  • the viscosity average molecular weight of the obtained resin was 19,100, and the glass transition temperature was 181 ° C.
  • Example 1 The resins obtained in Production Examples 1 to 6 were injection-molded to prepare a three-stage resin plate, and the moldability, specific gravity, total light transmittance, haze, impact resistance, domain size, and pencil hardness were evaluated. .. The evaluation results are shown in Table 1.
  • the polycarbonate-polysiloxane resin of the present invention has a high degree of compatibility with transparency, impact resistance, heat resistance, moldability, pencil hardness, and low specific gravity.
  • the polycarbonate-polysiloxane resin of the present invention has a high degree of compatibility with transparency, impact resistance, heat resistance, moldability, pencil hardness, and low specific gravity, and is widely used in the fields of optical components, electrical / electronic equipment, and mobility. Can be used.

Abstract

The object of the present invention is to provide a polycarbonate-polysiloxane resin having excellent transparency, impact resistance, heat resistance, moldability, and pencil hardness as well as a low specific gravity. The present invention relates to a polycarbonate-polysiloxane resin including a polycarbonate block (A-1) and a polysiloxane block (A-2), wherein the polycarbonate-polysiloxane resin is characterized in that the specific gravity of the resin is 1.10 or lower and the glass transition temperature of the resin is 100–190°C.

Description

ポリカーボネート-ポリシロキサン樹脂Polycarbonate-polysiloxane resin
 本発明はポリカーボネート-ポリシロキサン樹脂に関する。 The present invention relates to a polycarbonate-polysiloxane resin.
 近年、モビリティ分野において、環境負荷低減、航続距離向上を目的に、車体重量の低減が求められており、部材の樹脂化が検討されている。また、近年では、樹脂部材が占める領域が拡大する傾向にあり、比重の低い樹脂材料が求められている。特に、ガラスを代替する樹脂グレージングは、優れた透明性、耐熱性、耐衝撃性を有するポリカーボネート樹脂が使用されており、ガラスに比べて比重が低く、射出成形等の加工方法を選択することで形状の自由度が高く、複数部品の一体化が可能なことから、車体の軽量化、車体のデザインや生産性の向上が期待されている。 In recent years, in the field of mobility, it has been required to reduce the weight of the vehicle body for the purpose of reducing the environmental load and improving the cruising range, and resinification of members is being considered. Further, in recent years, the area occupied by the resin member tends to expand, and a resin material having a low specific density is required. In particular, the resin glazing that replaces glass uses a polycarbonate resin that has excellent transparency, heat resistance, and impact resistance, and has a lower specific gravity than glass. By selecting a processing method such as injection molding, Since the degree of freedom in shape is high and multiple parts can be integrated, it is expected that the weight of the car body will be reduced and the design and productivity of the car body will be improved.
 車体の更なる軽量化を目的に、従来のポリカーボネート樹脂の優れた特性を維持しつつ、更に低比重化されたポリカーボネート樹脂が要求されるようになった。 For the purpose of further weight reduction of the car body, a polycarbonate resin with a lower specific density has been required while maintaining the excellent characteristics of the conventional polycarbonate resin.
 特許文献1には、特定の構造単位を有するポリカーボネート樹脂が検討されている。しかし、低温下での衝撃性が不十分であり、特に高緯度圏や山岳地などの寒冷地で十分な耐衝撃性が発揮されないという課題を有する。 Patent Document 1 examines a polycarbonate resin having a specific structural unit. However, the impact resistance at low temperatures is insufficient, and there is a problem that sufficient impact resistance is not exhibited especially in cold regions such as high latitudes and mountainous areas.
国際公開第2019/009076号International Publication No. 2019/09076
 本発明の目的は、透明性、耐衝撃性、耐熱性、成形性、鉛筆硬度に優れ、かつ低比重性をも両立したポリカーボネート-ポリシロキサン樹脂を提供することにある。 An object of the present invention is to provide a polycarbonate-polysiloxane resin having excellent transparency, impact resistance, heat resistance, moldability, pencil hardness, and low specific gravity.
 本発明者らは、鋭意検討を重ねた結果、特定の構造単位を含むポリカーボネートブロックとポリシロキサンブロックとを含むポリカーボネート-ポリシロキサン樹脂が、透明性、耐衝撃性、耐熱性、成形性、鉛筆硬度に優れ、なおかつ低比重性をも両立することを見出し、本発明を完成するに至った。
 すなわち、本発明によれば、発明の課題は下記により達成される。
As a result of diligent studies, the present inventors have found that a polycarbonate-polysiloxane resin containing a polycarbonate block containing a specific structural unit and a polysiloxane block has transparency, impact resistance, heat resistance, moldability, and pencil hardness. The present invention has been completed by finding that it is excellent in both properties and has low specific gravity.
That is, according to the present invention, the subject of the invention is achieved by the following.
 1.ポリカーボネートブロック(A-1)とポリシロキサンブロック(A-2)を含むポリカーボネート-ポリシロキサン樹脂であって、前記樹脂の比重が1.10以下であり、前記樹脂のガラス転移温度が100~190℃であることを特徴とする、ポリカーボネート-ポリシロキサン樹脂。 1. A polycarbonate-polysiloxane resin containing a polycarbonate block (A-1) and a polysiloxane block (A-2), wherein the specific gravity of the resin is 1.10 or less, and the glass transition temperature of the resin is 100 to 190 ° C. Polycarbonate-polysiloxane resin.
 2.前記ポリカーボネートブロック(A-1)が、下記式(1)で表される構造単位を含む、前項1に記載のポリカーボネート-ポリシロキサン樹脂。 2. The polycarbonate-polysiloxane resin according to item 1 above, wherein the polycarbonate block (A-1) contains a structural unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(上記式(1)において、R及びRは夫々独立して、水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~18のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~14のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群より選ばれる少なくとも一つの基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1~4の整数であり、Wは単結合もしくは下記式(2)で表される基からなる群より選ばれる少なくとも一つの基である。) (In the above formula (1), R 1 and R 2 are independent of each other, a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and 6 to 6 carbon atoms. 20 cycloalkyl groups, 6 to 20 carbon atoms cycloalkoxy groups, 2 to 10 carbon atoms alkenyl groups, 6 to 14 carbon atoms aryl groups, 6 to 14 carbon atoms aryloxy groups, carbon atoms Represents at least one group selected from the group consisting of an alkoxy group having a number of 7 to 20 and an alkoxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group and a carboxyl group, and if there are a plurality of each, they represent. It may be the same or different, and e and f are integers of 1 to 4, respectively, and W is at least one group selected from the group consisting of a single bond or a group represented by the following formula (2).)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(上記式(2)においてR11、R12、R13、R14、R15、R16、R17及びR18は夫々独立して、水素原子、炭素原子数1~18のアルキル基、炭素原子数6~14のアリール基及び炭素原子数7~20のアラルキル基からなる群より選ばれる少なくとも一つの基を表し、R19及びR20は夫々独立して、水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~10のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群より選ばれる少なくとも一つの基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1~10の整数、hは4~7の整数である。) (In the above formula (2), R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently hydrogen atoms, alkyl groups having 1 to 18 carbon atoms, and carbon. Represents at least one group selected from the group consisting of an aryl group having 6 to 14 atoms and an aralkyl group having 7 to 20 carbon atoms, and R 19 and R 20 independently represent a hydrogen atom, a halogen atom, and a carbon atom. An alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms, a cycloalkoxy group having 6 to 20 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, An aryl group having 6 to 14 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, and a cyano group. And at least one group selected from the group consisting of carboxyl groups, and if there are a plurality of them, they may be the same or different, and g is an integer of 1 to 10 and h is an integer of 4 to 7.)
 3.前記ポリシロキサンブロック(A-2)が、下記式(3)で表される構造単位を含む、前項1又は2に記載のポリカーボネート-ポリシロキサン樹脂。 3. The polycarbonate-polysiloxane resin according to item 1 or 2 above, wherein the polysiloxane block (A-2) contains a structural unit represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(上記式(3)において、R23、R24、R25及びR26は夫々独立して、水素原子、炭素原子数1~12のアルキル基、及び炭素原子数6~12の置換又は無置換のアリール基からなる群より選ばれる少なくとも一つの基を表し、R21及びR22は夫々独立して、水素原子、ハロゲン原子、炭素原子数1~10のアルキル基及び炭素原子数1~10のアルコキシ基からなる群より選ばれる少なくとも一つの基を表し、pは1~150の自然数である。Xは炭素原子数2~8の二価脂肪族基である。) (In the above formula (3), R 23 , R 24 , R 25 and R 26 are independently substituted or unsubstituted with a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, and 6 to 12 carbon atoms. Represents at least one group selected from the group consisting of aryl groups of, and R 21 and R 22 each independently have a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, and 1 to 10 carbon atoms. Represents at least one group selected from the group consisting of alkoxy groups, p is a natural number from 1 to 150, and X is a divalent aliphatic group having 2 to 8 carbon atoms.)
 4.前記ポリカーボネートブロック(A-1)が下記式(4)で表される構造単位を含む、前項1~3のいずれかに記載のポリカーボネート-ポリシロキサン樹脂。 4. The polycarbonate-polysiloxane resin according to any one of the above items 1 to 3, wherein the polycarbonate block (A-1) contains a structural unit represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(上記式(4)において、R27、R28は夫々独立して、水素原子又は炭素原子数1~4のアルキル基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、i及びjは夫々1~4の整数であり、Yは下記式(5)で表される基からなる群より選ばれる少なくとも一つの基である。) (In the above formula (4), R 27 and R 28 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and if there are a plurality of each, they may be the same or different, i. And j are integers of 1 to 4, respectively, and Y is at least one group selected from the group consisting of the groups represented by the following formula (5).)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(上記式(5)において、R29、R30、R31は夫々独立して、水素原子又は炭素原子数1~4のアルキル基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、kは1~3の整数である。) (In the above formula (5), R 29 , R 30 , and R 31 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and if there are a plurality of each, they may be the same or different. Well, k is an integer from 1 to 3.)
 5.前記ポリカーボネートブロック(A-1)の構造単位として、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン,1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパンのうち少なくとも一つから誘導される単位を含む、前項1~4のいずれかに記載のポリカーボネート-ポリシロキサン樹脂。 5. As the structural unit of the polycarbonate block (A-1), 2,2-bis (4-hydroxy-3-methylphenyl) propane and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane , 1,1-bis (3-methyl-4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane from at least one The polycarbonate-polysiloxane resin according to any one of the above items 1 to 4, which comprises a unit to be induced.
 6.前記ポリシロキサンブロック(A-2)の含有量が、ポリカーボネート-ポリシロキサン樹脂全体を基準にして5~50重量%である、前項1~5のいずれかに記載のポリカーボネート-ポリシロキサン樹脂。 6. The polycarbonate-polysiloxane resin according to any one of the above items 1 to 5, wherein the content of the polysiloxane block (A-2) is 5 to 50% by weight based on the entire polycarbonate-polysiloxane resin.
 7.前記ポリカーボネートブロック(A-1)の構造単位として、2,2-ビス(4-ヒドロキシフェニル)プロパンから誘導される単位を含み、前記ポリシロキサンブロック(A-2)の含有量が、ポリカーボネート-ポリシロキサン樹脂全体を基準にして30~70重量%である、前項1~4のいずれかに記載のポリカーボネート-ポリシロキサン樹脂。 7. The structural unit of the polycarbonate block (A-1) contains a unit derived from 2,2-bis (4-hydroxyphenyl) propane, and the content of the polysiloxane block (A-2) is polycarbonate-poly. The polycarbonate-polysiloxane resin according to any one of the above items 1 to 4, which is 30 to 70% by weight based on the entire siloxane resin.
 8.前記ポリシロキサンブロック(A-2)の平均シロキサン繰り返し数が5~100である、前項1~7のいずれかに記載のポリカーボネート-ポリシロキサン樹脂。 8. The polycarbonate-polysiloxane resin according to any one of the above items 1 to 7, wherein the polysiloxane block (A-2) has an average number of siloxane repetitions of 5 to 100.
 9.前記ポリカーボネート-ポリシロキサン樹脂のポリシロキサンドメインの平均サイズが1~20nmである、前項1~8のいずれかに記載のポリカーボネート-ポリシロキサン樹脂。 9. The polycarbonate-polysiloxane resin according to any one of the above items 1 to 8, wherein the polysiloxane domain of the polycarbonate-polysiloxane resin has an average size of 1 to 20 nm.
 10.前記樹脂を2mm厚に成形した成形品の全光線透過率が80%以上である、前項1~9のいずれかに記載のポリカーボネート-ポリシロキサン樹脂。 10. The polycarbonate-polysiloxane resin according to any one of the above items 1 to 9, wherein the molded product obtained by molding the resin to a thickness of 2 mm has a total light transmittance of 80% or more.
 11.鉛筆硬度がHB以上である、前項1~10のいずれかに記載のポリカーボネート-ポリシロキサン樹脂。 11. The polycarbonate-polysiloxane resin according to any one of the above items 1 to 10, wherein the pencil hardness is HB or higher.
 12.前項1~11のいずれかに記載のポリカーボネート-ポリシロキサン樹脂を成形して得られる成形品。
 13.前項1~11のいずれかに記載のポリカーボネート-ポリシロキサン樹脂を成形して得られるフィルム又はシート。
 14.前項1~11のいずれかに記載のポリカーボネート-ポリシロキサン樹脂からなる自動車ランプレンズ又は自動車内外装部材。
 15.前項1~11のいずれかに記載のポリカーボネート-ポリシロキサン樹脂からなる照明カバー、樹脂窓又は前面板。
12. A molded product obtained by molding the polycarbonate-polysiloxane resin according to any one of the above items 1 to 11.
13. A film or sheet obtained by molding the polycarbonate-polysiloxane resin according to any one of the above items 1 to 11.
14. An automobile lamp lens or an automobile interior / exterior member made of the polycarbonate-polysiloxane resin according to any one of the above items 1 to 11.
15. The lighting cover, resin window or front plate made of the polycarbonate-polysiloxane resin according to any one of the above items 1 to 11.
 本発明のポリカーボネート-ポリシロキサン樹脂は、透明性、耐衝撃性、耐熱性、成形性、鉛筆硬度に優れ、なおかつ低比重性をも両立するため、車体用の部材として好適に使用できることから、その奏する産業上の効果は格別である。 The polycarbonate-polysiloxane resin of the present invention is excellent in transparency, impact resistance, heat resistance, moldability, and pencil hardness, and also has low specific gravity, so that it can be suitably used as a member for a vehicle body. The industrial effect it produces is exceptional.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 <ポリカーボネート-ポリシロキサン樹脂>
 本発明において、ポリカーボネート-ポリシロキサン樹脂は、ポリカーボネートブロック(A-1)と、ポリシロキサンブロック(A-2)とを含有する。
 そして、本発明のポリカーボネート-ポリシロキサン樹脂は、比重が1.10以下であり、且つガラス転移温度が100~190℃であることを特徴とする。
<Polycarbonate-Polysiloxane resin>
In the present invention, the polycarbonate-polysiloxane resin contains a polycarbonate block (A-1) and a polysiloxane block (A-2).
The polycarbonate-polysiloxane resin of the present invention is characterized by having a specific gravity of 1.10 or less and a glass transition temperature of 100 to 190 ° C.
 (比重)
 本発明のポリカーボネート-ポリシロキサン樹脂の比重は、1.10以下であり、1.09以下が好ましく、1.08以下がより好ましく、1.07以下がさらに好ましい。比重が小さいほど軽量化の観点で好ましい。比重は、JIS K7112 プラスチック-非発泡プラスチックの密度及び比重の測定方法(C法 浮沈法)に準拠し測定される。
(specific gravity)
The specific gravity of the polycarbonate-polysiloxane resin of the present invention is 1.10 or less, preferably 1.09 or less, more preferably 1.08 or less, still more preferably 1.07 or less. The smaller the specific density, the more preferable from the viewpoint of weight reduction. The specific gravity is measured according to the method for measuring the density and specific gravity of JIS K7112 plastic-non-foamed plastic (method C floating and sinking method).
 (ガラス転移温度)
 本発明のポリカーボネート-ポリシロキサン樹脂のガラス転移温度は、90~190℃の範囲であり、好ましくは100~180℃の範囲であり、より好ましくは110~175℃の範囲であり、さらに好ましくは120~170℃の範囲である。下限以上の範囲であると、成形体として使用した際に、耐熱安定性が良好であり好ましい。上限以下の範囲であると、成形加工時において適度な溶融粘度を有するため、薄肉の部材や、樹脂窓等の大面積の部材を成形しやすく、熱劣化等の不具合が抑制されるため、好ましい。
(Glass-transition temperature)
The glass transition temperature of the polycarbonate-polysiloxane resin of the present invention is in the range of 90 to 190 ° C, preferably in the range of 100 to 180 ° C, more preferably in the range of 110 to 175 ° C, and even more preferably 120. It is in the range of ~ 170 ° C. When it is in the range of the lower limit or more, the heat stability is good and preferable when used as a molded product. When it is in the range below the upper limit, it has an appropriate melt viscosity at the time of molding, so that it is easy to mold a thin-walled member or a large-area member such as a resin window, and defects such as thermal deterioration are suppressed, which is preferable. ..
 ガラス転移温度はティー・エイ・インスツルメント・ジャパン(株)製2910型DSCを使用し、昇温速度20℃/minにて測定される。 The glass transition temperature is measured at a heating rate of 20 ° C./min using a 2910 type DSC manufactured by TA Instruments Japan Co., Ltd.
 (ポリカーボネートブロック(A-1))
 本発明において、ポリカーボネートブロック(A-1)は、ポリカーボネート-ポリシロキサン樹脂において含まれるポリカーボネート重合体の部分である。
 具体的には、ポリカーボネートブロック(A-1)は、下記式(1)で表される構造単位を含むものが好ましい。
(Polycarbonate block (A-1))
In the present invention, the polycarbonate block (A-1) is a portion of the polycarbonate polymer contained in the polycarbonate-polysiloxane resin.
Specifically, the polycarbonate block (A-1) preferably contains a structural unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式(1)において、R及びRは夫々独立して、水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~18のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~14のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群より選ばれる少なくとも一つの基である。R及びRが夫々複数ある場合は、それらは同一でも異なっていても良い。 In the above formula (1), R 1 and R 2 are independently hydrogen atom, halogen atom, alkyl group having 1 to 18 carbon atoms, alkoxy group having 1 to 18 carbon atoms, and 6 to 20 carbon atoms. Cycloalkyl group, cycloalkoxy group with 6 to 20 carbon atoms, alkenyl group with 2 to 10 carbon atoms, aryl group with 6 to 14 carbon atoms, aryloxy group with 6 to 14 carbon atoms, carbon atom number It is at least one group selected from the group consisting of 7 to 20 alcoholyl groups, 7 to 20 carbon atoms of an alkoxyloxy group, a nitro group, an aldehyde group, a cyano group and a carboxyl group. When there are a plurality of R 1 and R 2 respectively, they may be the same or different.
 ハロゲン原子として、フッ素原子、塩素原子、臭素原子等が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and the like.
 炭素原子数1~18のアルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。好ましくは炭素原子数1~6のアルキル基である。 Examples of the alkyl group having 1 to 18 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group and a tetradecyl group. .. It is preferably an alkyl group having 1 to 6 carbon atoms.
 炭素原子数1~18のアルコキシ基として、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、ヘキトキシ基、オクトキシ基等が挙げられる。炭素原子数1~6のアルコキシ基が好ましい。 Examples of the alkoxy group having 1 to 18 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a hexoxy group, and an octoxy group. An alkoxy group having 1 to 6 carbon atoms is preferable.
 炭素原子数6~20のシクロアルキル基として、シクロヘキシル基、シクロオクチル基等が挙げられる。炭素原子数6~12のシクロアルキル基が好ましい。 Examples of the cycloalkyl group having 6 to 20 carbon atoms include a cyclohexyl group and a cyclooctyl group. A cycloalkyl group having 6 to 12 carbon atoms is preferable.
 炭素原子数6~20のシクロアルコキシ基として、好ましくはシクロヘキシルオキシ基、シクロオクチルオキシ基等が挙げられる。炭素原子数6~12のシクロアルコキシ基が好ましい。 Examples of the cycloalkoxy group having 6 to 20 carbon atoms include a cyclohexyloxy group and a cyclooctyloxy group. A cycloalkoxy group having 6 to 12 carbon atoms is preferable.
 炭素原子数2~10のアルケニル基として、メテニル基、エテニル基、プロペニル基、ブテニル基、ペンテニル基等が挙げられる。炭素原子数2~6のアルケニル基が好ましい。 Examples of the alkenyl group having 2 to 10 carbon atoms include a metenyl group, an ethenyl group, a propenyl group, a butenyl group, a pentenyl group and the like. An alkenyl group having 2 to 6 carbon atoms is preferable.
 炭素原子数6~14のアリール基として、フェニル基、ナフチル基等が挙げられる。炭素原子数6~14のアリールオキシ基として、フェニルオキシ基、ナフチルオキシ基等が挙げられる。 Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group and a naphthyl group. Examples of the aryloxy group having 6 to 14 carbon atoms include a phenyloxy group and a naphthyloxy group.
 炭素原子数7~20のアラルキル基として、ベンジル基、フェニルエチル基等が挙げられる。炭素原子数7~20のアラルキルオキシ基として、ベンジルオキシ基、フェニルエチルオキシ基等が挙げられる。
 e及びfは夫々独立に1~4の整数である。
Examples of the aralkyl group having 7 to 20 carbon atoms include a benzyl group and a phenylethyl group. Examples of the aralkyloxy group having 7 to 20 carbon atoms include a benzyloxy group and a phenylethyloxy group.
e and f are each independently an integer of 1 to 4.
 Wは、単結合もしくは下記式(2)で表される基からなる群より選ばれる少なくとも一つの基である。 W is at least one group selected from the group consisting of a single bond or a group represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記式(2)においてR11、R12、R13、R14、R15、R16、R17及びR18は夫々独立して、水素原子、炭素原子数1~18のアルキル基、炭素原子数6~14のアリール基及び炭素原子数7~20のアラルキル基からなる群より選ばれる少なくとも一つの基を表わす。 In the above formula (2), R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently hydrogen atoms, alkyl groups having 1 to 18 carbon atoms, and carbon atoms. Represents at least one group selected from the group consisting of an aryl group having the number 6 to 14 and an aralkyl group having the number of carbon atoms 7 to 20.
 炭素原子数1~18のアルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等が挙げられる。好ましくは炭素原子数1~6のアルキル基である。 Examples of the alkyl group having 1 to 18 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group and a dodecyl group. It is preferably an alkyl group having 1 to 6 carbon atoms.
 炭素原子数6~14のアリール基として、フェニル基、ナフチル基等が挙げられる。これらは置換されていてもよい。置換基として、メチル基、エチル基、プロピル基、ブチル基などの炭素原子数1~6のアルキル基が挙げられる。 Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group and a naphthyl group. These may be substituted. Examples of the substituent include an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group and a butyl group.
 炭素原子数7~20のアラルキル基として、ベンジル基、フェニルエチル基等が挙げられる。 Examples of the aralkyl group having 7 to 20 carbon atoms include a benzyl group and a phenylethyl group.
 R19及びR20は夫々独立して、水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~10のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群より選ばれる少なくとも一つの基を表す。複数ある場合はそれらは同一でも異なっていても良い。 R 19 and R 20 are independently hydrogen atom, halogen atom, alkyl group having 1 to 18 carbon atoms, alkoxy group having 1 to 10 carbon atoms, cycloalkyl group having 6 to 20 carbon atoms, and carbon atom. Cycloalkoxy group with 6 to 20, alkoxy group with 2 to 10 carbon atoms, aryl group with 6 to 14 carbon atoms, aryloxy group with 6 to 10 carbon atoms, aralkyl group with 7 to 20 carbon atoms, It represents at least one group selected from the group consisting of an alkoxyloxy group, a nitro group, an aldehyde group, a cyano group and a carboxyl group having 7 to 20 carbon atoms. If there are multiple, they may be the same or different.
 ハロゲン原子として、フッ素原子、塩素原子、臭素原子等が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and the like.
 炭素原子数1~18のアルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。好ましくは炭素原子数1~6のアルキル基である。 Examples of the alkyl group having 1 to 18 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group and a tetradecyl group. .. It is preferably an alkyl group having 1 to 6 carbon atoms.
 炭素原子数1~10のアルコキシ基として、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基等が挙げられる。炭素原子数1~6のアルコキシ基が好ましい。 Examples of the alkoxy group having 1 to 10 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group and the like. An alkoxy group having 1 to 6 carbon atoms is preferable.
 炭素原子数6~20のシクロアルキル基として、シクロヘキシル基、シクロオクチル基等が挙げられる。炭素原子数6~12のシクロアルキル基が好ましい。 Examples of the cycloalkyl group having 6 to 20 carbon atoms include a cyclohexyl group and a cyclooctyl group. A cycloalkyl group having 6 to 12 carbon atoms is preferable.
 炭素原子数6~20のシクロアルコキシ基として、シクロヘキシルオキシ基、シクロオクチル基等が挙げられる。炭素原子数6~12のシクロアルコキシ基が好ましい。 Examples of the cycloalkoxy group having 6 to 20 carbon atoms include a cyclohexyloxy group and a cyclooctyl group. A cycloalkoxy group having 6 to 12 carbon atoms is preferable.
 炭素原子数2~10のアルケニル基として、メテニル基、エテニル基、プロペニル基、ブテニル基、ペンテニル基等が挙げられる。炭素原子数1~6のアルキル基が好ましい。 Examples of the alkenyl group having 2 to 10 carbon atoms include a metenyl group, an ethenyl group, a propenyl group, a butenyl group, a pentenyl group and the like. Alkyl groups having 1 to 6 carbon atoms are preferable.
 炭素原子数6~14のアリール基として、フェニル基、ナフチル基等挙げられる。炭素原子数6~14のアリールオキシ基として、フェニルオキシ基、ナフチルオキシ基等が挙げられる。 Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group and a naphthyl group. Examples of the aryloxy group having 6 to 14 carbon atoms include a phenyloxy group and a naphthyloxy group.
 炭素原子数7~20のアラルキル基として、ベンジル基、フェニルエチル基等が挙げられる。炭素原子数7~20のアラルキルオキシ基として、ベンジルオキシ基、フェニルエチルオキシ基等が挙げられる。 Examples of the aralkyl group having 7 to 20 carbon atoms include a benzyl group and a phenylethyl group. Examples of the aralkyloxy group having 7 to 20 carbon atoms include a benzyloxy group and a phenylethyloxy group.
 gは1~10の整数であり、好ましくは1~6の整数である。hは4~7の整数であり、好ましくは4~5の整数である。 G is an integer of 1 to 10, preferably an integer of 1 to 6. h is an integer of 4 to 7, preferably an integer of 4 to 5.
 前記ポリカーボネートブロック(A-1)としては、特に下記式(4)で表される構造単位を含むものが好ましい。 The polycarbonate block (A-1) is particularly preferably one containing a structural unit represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記式(4)において、R27、R28は夫々独立して、水素原子又は炭素原子数1~4のアルキル基である。R27、R28がそれぞれ複数ある場合はそれらは同一でも異なっていても良い。
 i及びjは夫々1~4の整数である。
In the above formula (4), R 27 and R 28 are each independently an alkyl group having a hydrogen atom or a carbon atom number of 1 to 4. When there are a plurality of R 27 and R 28 , they may be the same or different.
i and j are integers of 1 to 4, respectively.
 Yは下記式(5)で表される基からなる群より選ばれる少なくとも一つの基である。 Y is at least one group selected from the group consisting of the groups represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(5)において、R29、R30、R31は夫々独立して、水素原子又は炭素原子数1~4のアルキル基である。
 kは1~3の整数である。
In the above formula (5), R 29 , R 30 , and R 31 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
k is an integer of 1 to 3.
 (ポリシロキサンブロック(A-2))
 本発明において、ポリシロキサンブロック(A-2)は、ポリカーボネート-ポリシロキサン樹脂において含まれるポリシロキサン系の部分であり、特にその種類は限定されない。
(Polysiloxane block (A-2))
In the present invention, the polysiloxane block (A-2) is a polysiloxane-based portion contained in the polycarbonate-polysiloxane resin, and the type thereof is not particularly limited.
 具体的には、ポリシロキサンブロックは、下記式(3)で表される構造単位を含むものが好ましい。 Specifically, the polysiloxane block preferably contains a structural unit represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記式(3)において、R23、R24、R25及びR26は夫々独立して、水素原子、炭素原子数1~12のアルキル基、及び炭素原子数6~12の置換又は無置換のアリール基からなる群より選ばれる少なくとも一つの基である。 In the above formula (3), R 23 , R 24 , R 25 and R 26 are independently substituted or unsubstituted with a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, and 6 to 12 carbon atoms. It is at least one group selected from the group consisting of aryl groups.
 炭素数1~12のアルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等が挙げられる。好ましくは炭素原子数1~6のアルキル基である。 Examples of the alkyl group having 1 to 12 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group and a dodecyl group. It is preferably an alkyl group having 1 to 6 carbon atoms.
 炭素数6~12の置換又は無置換のアリール基として、フェニル基、ナフチル基等が挙げられる。置換基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基などの炭素原子数1~6のアルキル基が挙げられる。
 R23、R24、R25、R26はメチル基であることが特に好ましい。
Examples of the substituted or unsubstituted aryl group having 6 to 12 carbon atoms include a phenyl group and a naphthyl group. Examples of the substituent include an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group and a hexyl group.
It is particularly preferable that R 23 , R 24 , R 25 and R 26 are methyl groups.
 R21及びR22は夫々独立して、水素原子、ハロゲン原子、炭素原子数1~10のアルキル基及び炭素原子数1~10のアルコキシ基からなる群より選ばれる少なくとも一つの基であり、ハロゲン原子として、フッ素原子、塩素原子、臭素原子等が挙げられる。 R 21 and R 22 are each independently at least one group selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms and an alkoxy group having 1 to 10 carbon atoms, and halogen. Examples of the atom include a fluorine atom, a chlorine atom, a bromine atom and the like.
 炭素原子数1~10のアルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等が挙げられる。好ましくは炭素原子数1~6のアルキル基である。 Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group and a dodecyl group. It is preferably an alkyl group having 1 to 6 carbon atoms.
 炭素原子数1~10のアルコキシ基として、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、ヘキソキシ基、ヘプトキシ基、オクトキシ基等が挙げられる。好ましくは炭素原子数1~6のアルコキシ基である。
 R21及びR22は、水素原子又はメトキシ基であることが特に好ましい。
Examples of the alkoxy group having 1 to 10 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a hexoxy group, a heptoxy group, and an octoxy group. It is preferably an alkoxy group having 1 to 6 carbon atoms.
It is particularly preferable that R 21 and R 22 are hydrogen atoms or methoxy groups.
 pは1~150の自然数であり、好ましくは5~100の自然数であり、より好ましくは10~80の自然数であり、特に好ましくは20~50の自然数である。該平均鎖長pは核磁気共鳴(NMR)測定により算出される。 P is a natural number of 1 to 150, preferably a natural number of 5 to 100, more preferably a natural number of 10 to 80, and particularly preferably a natural number of 20 to 50. The average chain length p is calculated by nuclear magnetic resonance (NMR) measurement.
 pの繰り返し単位には、R23、24が異なる単位をいくつも含んでいてもよい。例えば下記式(6)のようにpとpの繰り返し単位があってもよく、その場合、pとpの繰り返し単位の合計がpとなり、この時のpとpの繰り返し単位はランダムでもよい。 The repeating unit of p may include a number of units having different R 23 and R 24 . For example, there may be repeating units of p 1 and p 2 as shown in the following equation (6). In that case, the total of the repeating units of p 1 and p 2 is p, and the repeating units of p 1 and p 2 at this time are repeated. The unit may be random.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 かかる特定の鎖長範囲を満足するために、異なる2種類又はそれ以上の平均鎖長pを有するヒドロキシアリール末端ポリシロキサン原料を混合して調製しても良い。ポリシロキサン原料の混合調製の方法としては、末端をヒドロキシアリール変性させた適当なポリシロキサン原料同士を混合する方法でも、末端をヒドロキシアリール変性させる前の適当な平均鎖長を有するポリシロキサン前駆体同士を予め混合した後に、末端をヒドロキシアリール変性させる方法のどちらでも良い。 In order to satisfy such a specific chain length range, hydroxyaryl-terminated polysiloxane raw materials having two or more different average chain lengths p may be mixed and prepared. As a method for mixing and preparing polysiloxane raw materials, even in a method of mixing appropriate polysiloxane raw materials having hydroxyaryl-modified ends, polysiloxane precursors having an appropriate average chain length before hydroxyaryl-denaturing the ends are used. Either of the methods of premixing the above and then denaturing the terminal with hydroxyaryl may be used.
 Xは、炭素数2~8の二価脂肪族基である。二価脂肪族基として、炭素数2~8のアルキレン基が挙げられる。アルキレン基としてエチレン基、トリメチレン基、テトラメチレン基等が挙げられる。 X is a divalent aliphatic group having 2 to 8 carbon atoms. Examples of the divalent aliphatic group include an alkylene group having 2 to 8 carbon atoms. Examples of the alkylene group include an ethylene group, a trimethylene group and a tetramethylene group.
 (その他の樹脂)
 本発明のポリカーボネート-ポリシロキサン樹脂は、本発明の効果を損なわない範囲で他の樹脂を含んでもよい。中でも、本発明のポリカーボネート-ポリシロキサン樹脂との相溶性の観点から、ポリカーボネート樹脂が特に好ましい。
(Other resins)
The polycarbonate-polysiloxane resin of the present invention may contain other resins as long as the effects of the present invention are not impaired. Of these, the polycarbonate resin is particularly preferable from the viewpoint of compatibility with the polycarbonate-polysiloxane resin of the present invention.
 (ポリカーボネート-ポリシロキサン樹脂の製造方法)
 本発明におけるポリカーボネート-ポリシロキサン樹脂は、工程(I)及び工程(II)により製造することができる。
(Manufacturing method of polycarbonate-polysiloxane resin)
The polycarbonate-polysiloxane resin in the present invention can be produced by the steps (I) and (II).
 (工程(I))
 工程(I)は水に不溶性の有機溶媒とアルカリ水溶液との混合液中において、下記式(7)で表される二価フェノールとホスゲンとを反応させ、末端クロロホーメート基を有するカーボネートオリゴマーを含有する溶液を調製する工程である。
(Step (I))
In step (I), a dihydric phenol represented by the following formula (7) is reacted with phosgene in a mixed solution of an organic solvent insoluble in water and an alkaline aqueous solution to obtain a carbonate oligomer having a terminal chlorohomate group. This is a step of preparing a solution to be contained.
Figure JPOXMLDOC01-appb-C000017
(式中、R、R、e、f及びWは前記式(1)と同じである。)
Figure JPOXMLDOC01-appb-C000017
(In the formula, R 1 , R 2 , e, f and W are the same as the above formula (1).)
 上記式(7)で表される二価フェノールとしては、例えば、4,4’-ビフェノール、3,3’,5,5’-テトラフルオロ-4,4’-ビフェノール、α,α’-ビス(4-ヒドロキシフェニル)-o-ジイソプロピルベンゼン、α,α’-ビス(4-ヒドロキシフェニル)-m-ジイソプロピルベンゼン(以下“BPM”と略することがある)、α,α’-ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、α,α’-ビス(4-ヒドロキシフェニル)-m-ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル)ベンゼン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(以下“BPZ”と略することがある)、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(以下“BPTMC”と略することがある)、1,1-ビス(3-メチル-4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(以下“BPOCTMC”と略することがある)、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(3-フルオロ-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)パーフルオロシクロヘキサン、4,4’-ジヒドロキシジフェニルエ-テル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエ-テル、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルフィド、3,3’-ジメチル-4,4’-ジヒドロキシジフェニルスルフィド、3,3’-ジメチル-4,4’-ジヒドロキシジフェニルスルフォン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジフェニルスルホン、1,1-ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下“BPA”と略することがある)、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(以下“BPC”と略することがある)、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン(以下“BP26XA”と略することがある)、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシー3-フェニルフェニル)プロパン、2,2-ビス(3-イソプロピル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、1,1-ビス(4-ヒドロキシフェニル)デカン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)デカン、1,1-ビス(2,3-ジメチルー4-ヒドロキシフェニル)デカン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン(以下“BPAF”と略することがある)、6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、7,7’-ジメチル-6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、7,7’-ジフェニル-6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(3-フルオロ-4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、及び2,2-ビス(3,5-ジフルオロ-4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(3,5-ジブロモー4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジクロロー4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、及び2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパンなどが挙げられる。 Examples of the divalent phenol represented by the above formula (7) include 4,4'-biphenol, 3,3', 5,5'-tetrafluoro-4,4'-biphenol, α, α'-bis. (4-Hydroxyphenyl) -o-diisopropylbenzene, α, α'-bis (4-hydroxyphenyl) -m-diisopropylbenzene (hereinafter sometimes abbreviated as "BPM"), α, α'-bis (4) -Hydroxyphenyl) -p-diisopropylbenzene, α, α'-bis (4-hydroxyphenyl) -m-bis (1,1,1,3,3,3-hexafluoroisopropyl) benzene, 1,1-bis (4-Hydroxyphenyl) cyclohexane (hereinafter sometimes abbreviated as "BPZ"), 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (hereinafter abbreviated as "BPTMC") Yes), 1,1-bis (3-methyl-4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (hereinafter sometimes abbreviated as "BPOCTMC"), 1,1-bis (4-hydroxyphenyl) ) -4-Isopropylcyclohexane, 1,1-bis (3-cyclohexyl-4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (3-fluoro-4-) Hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) perfluorocyclohexane, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether, 4 , 4'-Dihydroxydiphenylsulfone, 4,4'-dihydroxydiphenylsulfooxide, 4,4'-dihydroxydiphenylsulfide, 3,3'-dimethyl-4,4'-dihydroxydiphenylsulfide, 3,3'-dimethyl-4 , 4'-dihydroxydiphenylsulphon, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxy-3,3'-diphenylsulfide, 4,4'-dihydroxy-3,3'-diphenylsulfoxide, 4,4 '-Dihydroxy-3,3'-diphenylsulfone, 1,1-bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) propane (Hereinafter abbreviated as "BPA"), 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (may be abbreviated as "BPA"). 4-Hydroxy-3-methylphenyl) propane (hereinafter abbreviated as "BPC"), 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane (hereinafter abbreviated as "BP26XA") , 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxy-3-phenylphenyl) propane, 2,2- Bis (3-isopropyl-4-hydroxyphenyl) propane, 2,2-bis (3-t-butyl-4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 4,4-bis (4-Hydroxyphenyl) heptane, 2,2-bis (4-hydroxyphenyl) octane, 1,1-bis (4-hydroxyphenyl) decane, 1,1-bis (3-methyl-4-hydroxyphenyl) decane , 1,1-bis (2,3-dimethyl-4-hydroxyphenyl) decane, 2,2-bis (3-bromo-4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) diphenylmethane, 1,1-bis (4-Hydroxyphenyl) -4-isopropylcyclohexane, 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane (hereinafter sometimes abbreviated as "BPAF") ), 6,6'-dihydroxy-3,3,3', 3'-tetramethyl-1,1'-spirobiindan, 7,7'-dimethyl-6,6'-dihydroxy-3,3,3', 3'-Tetramethyl-1,1'-spirobiindan, 7,7'-diphenyl-6,6'-dihydroxy-3,3,3', 3'-tetramethyl-1,1'-spirobiindan, 2,2 -Bis (4-hydroxy-3-methylphenyl) -1,1,1,3,3,3-hexafluoropropane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) -1,1 , 1,3,3,3-hexafluoropropane, 2,2-bis (3-fluoro-4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane, and 2,2- Bis (3,5-difluoro-4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane, 2, 2-bis (3,5-dichloro-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) Examples thereof include propane and 2,2-bis (3-cyclohexyl-4-hydroxyphenyl) propane.
 上記の中でも、BPM、BPZ、BPTMC、BPOCTMC、3,3’-ジメチル-4,4’-ジヒドロキシジフェニルスルフィド、BPA、BPC、BP26XA、BPAF、6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン及び1,1-ビス(4-ヒドロキシフェニル)デカンが好ましい。耐衝撃性、耐熱性、低比重性及び入手可能性の観点から、BPZ、BPTMC、BPOCTMC、BPA、BPC、BP26XA、BPAFがより好ましく、BPTMC、BPOCTMC、BPA、BPC、BP26XAが特に好ましい。これらの二価フェノールは、1種のみを用いても良く、2種類以上併用して用いても良い。 Among the above, BPM, BPZ, BPTMC, BPOCTMC, 3,3'-dimethyl-4,4'-dihydroxydiphenylsulfide, BPA, BPC, BP26XA, BPAF, 6,6'-dihydroxy-3,3,3', 3'-tetramethyl-1,1'-spirobiindan and 1,1-bis (4-hydroxyphenyl) decane are preferred. From the viewpoints of impact resistance, heat resistance, low density and availability, BPZ, BPTMC, BPOCTMC, BPA, BPC, BP26XA and BPAF are more preferable, and BPTCC, BPOCTMC, BPA, BPC and BP26XA are particularly preferable. These divalent phenols may be used alone or in combination of two or more.
 (工程(II))
 工程(II)は、下記式(8)で表されるヒドロキシアリール末端ポリシロキサンと工程(I)で調整したカーボネートオリゴマーとを界面重合させ、本発明のポリカーボネート-ポリシロキサン樹脂を得る工程である。
(Step (II))
The step (II) is a step of interfacially polymerizing the hydroxyaryl-terminated polysiloxane represented by the following formula (8) and the carbonate oligomer prepared in the step (I) to obtain the polycarbonate-polysiloxane resin of the present invention.
Figure JPOXMLDOC01-appb-C000018
(式中R21~R26、X、pは前記式(3)と同じである。)
Figure JPOXMLDOC01-appb-C000018
(R 21 to R 26 , X, and p in the formula are the same as those in the above formula (3).)
 上記式(8)で表されるヒドロキシアリール末端ポリシロキサンとしては、例えば次に示すような化合物が好適に用いられる。 As the hydroxyaryl-terminated polysiloxane represented by the above formula (8), for example, the following compounds are preferably used.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 ヒドロキシアリール末端ポリシロキサンは、オレフィン性の不飽和炭素-炭素結合を有するフェノール類、好適にはビニルフェノール、2-アリルフェノール、イソプロペニルフェノール、2-メトキシ-4-アリルフェノールを所定の重合度を有するポリシロキサン鎖の末端に、ハイドロシリレーション反応させることにより容易に製造される。なかでも、(2-アリルフェノール)末端ポリシロキサン、(2-メトキシ-4-アリルフェノール)末端ポリシロキサンが好ましく、殊に(2-アリルフェノール)末端ポリジメチルシロキサン、及び(2-メトキシ-4-アリルフェノール)末端ポリジメチルシロキサンが好ましい。ヒドロキシアリール末端ポリシロキサンは、1種のみを用いても良く、2種類以上併用して用いても良い。 The hydroxyaryl-terminated polysiloxane contains phenols having an olefinic unsaturated carbon-carbon bond, preferably vinylphenol, 2-allylphenol, isopropenylphenol, and 2-methoxy-4-allylphenol at a predetermined degree of polymerization. It is easily produced by subjecting the terminal of the polysiloxane chain to undergo a hydrosyllation reaction. Of these, (2-allylphenol) -terminated polysiloxane, (2-methoxy-4-allylphenol) -terminated polysiloxane, in particular (2-allylphenol) -terminated polydimethylsiloxane, and (2-methoxy-4-allyphenol) -terminated polysiloxane. Allylphenol) -terminated polydimethylsiloxane is preferred. As the hydroxyaryl terminal polysiloxane, only one type may be used, or two or more types may be used in combination.
 また高度な透明性を実現するために、ヒドロキシアリール末端ポリシロキサンの平均シロキサン繰り返し数pは好ましくは1~150、より好ましくは5~100、さらに好ましくは特に好ましくは10~80、特に好ましくは20~50である。かかる好適な範囲の下限以上では、耐衝撃性に優れ、かかる好適な範囲の上限以下では、透明性に優れる。該平均鎖長pは1H-NMR測定により算出することができる。 Further, in order to realize a high degree of transparency, the average siloxane repetition number p of the hydroxyaryl-terminated polysiloxane is preferably 1 to 150, more preferably 5 to 100, still more preferably particularly preferably 10 to 80, and particularly preferably 20. ~ 50. Above the lower limit of the suitable range, the impact resistance is excellent, and above the upper limit of the suitable range, the transparency is excellent. The average chain length p can be calculated by 1H-NMR measurement.
 上記下限以上の樹脂は、凝集力の低いポリシロキサン部位の導入によるレオロジー特性の改質効果が高く、構造粘性指数を高くしやすい。その結果、剪断流動時の高い流動性を保持し成形性が良い。上記上限以下の樹脂は、ポリシロキサンドメインの平均サイズを小さくしやすい。その結果高温で長時間シリンダー内に滞留される成形条件下にあっても、優れた透明性を有する樹脂成形品を得ることができる。上記上限以下のポリシロキサン単位は、その単位重量あたりのモル数が増加し、ポリカーボネート中に該単位が均等に組み込まれやすくなる。シロキサンの繰り返し数が大きいと、ポリシロキサン単位のポリカーボネート中への組み込みが不均等になるとともに、ポリマー分子中のポリシロキサン単位の割合が増加するため、該単位を含むポリカーボネートと、含まないポリカーボネートとが生じやすく、かつ相互の相溶性が低下しやすくなる。その結果として大きなポリシロキサンドメインが生じやすくなる。一方で、成形性、耐衝撃性の観点からは、ポリシロキサンドメインがある程度大きい方が有利であることから、上記の如く好ましい繰り返し数の範囲が存在する。 Resins above the above lower limit have a high rheological property modification effect by introducing a polysiloxane moiety with low cohesive force, and tend to increase the structural viscosity index. As a result, high fluidity during shear flow is maintained and moldability is good. Resins below the above upper limit tend to reduce the average size of the polysiloxane domain. As a result, it is possible to obtain a resin molded product having excellent transparency even under molding conditions in which the product stays in the cylinder for a long time at a high temperature. The number of moles per unit weight of the polysiloxane unit below the upper limit increases, and the unit can be easily incorporated evenly into the polycarbonate. When the number of repetitions of siloxane is large, the incorporation of polysiloxane units into the polycarbonate becomes uneven and the proportion of polysiloxane units in the polymer molecule increases. It tends to occur and the compatibility with each other tends to decrease. As a result, large polysiloxane domains are likely to occur. On the other hand, from the viewpoint of moldability and impact resistance, it is advantageous that the polysiloxane domain is large to some extent, so that there is a preferable range of the number of repetitions as described above.
 なお、本発明においてポリシロキサンドメインとは、ポリカーボネートのマトリックス中に分散したポリシロキサンを主成分とするドメインをいい、他の成分を含んでもよい。上述の如く、ポリシロキサンドメインは、マトリックスたるポリカーボネートとの相分離により構造が形成されることから、必ずしも単一の成分から構成されない。 In the present invention, the polysiloxane domain refers to a domain containing polysiloxane as a main component dispersed in a matrix of polycarbonate, and may contain other components. As described above, the polysiloxane domain is not necessarily composed of a single component because the structure is formed by phase separation from the polycarbonate as a matrix.
 本発明のポリカーボネート-ポリシロキサン樹脂における、樹脂全重量に占めるポリシロキサン成分含有量は1~70重量%が好ましい。かかるポリシロキサン成分含有量の下限は、好ましくは3重量%以上、5重量%以上、8重量%以上、10重量%以上、20重量%以上、30重量%以上、35重量%以上、40重量%以上で含んでいても良い。上限は、好ましくは60重量%以下、50重量%以下、45重量%以下、40重量%以下、30重量%以下、20重量%以下で含んでいてもよい。かかる好適な範囲の下限以上では、耐衝撃性に優れ、かかる好適な範囲の上限以下では、成形条件の影響を受けにくい安定した透明性が得られやすい。かかるポリシロキサン含有量は、1H-NMR測定により算出することが可能である。 In the polycarbonate-polysiloxane resin of the present invention, the content of the polysiloxane component in the total weight of the resin is preferably 1 to 70% by weight. The lower limit of the content of the polysiloxane component is preferably 3% by weight or more, 5% by weight or more, 8% by weight or more, 10% by weight or more, 20% by weight or more, 30% by weight or more, 35% by weight or more, 40% by weight. It may be included in the above. The upper limit may preferably include 60% by weight or less, 50% by weight or less, 45% by weight or less, 40% by weight or less, 30% by weight or less, and 20% by weight or less. Above the lower limit of the suitable range, impact resistance is excellent, and above the upper limit of the suitable range, stable transparency that is not easily affected by molding conditions can be easily obtained. The polysiloxane content can be calculated by 1H-NMR measurement.
 また、本発明の製造方法の妨げにならない範囲で、上記二価フェノール、ヒドロキシアリール末端ポリシロキサン以外の他のコモノマーを併用することもできる。 Further, a comonomer other than the above-mentioned divalent phenol and hydroxyaryl-terminated polysiloxane can be used in combination as long as it does not interfere with the production method of the present invention.
 本発明のポリカーボネート-ポリシロキサン樹脂は、分岐化剤を上記の二価フェノール系化合物と併用して分岐化ポリカーボネート樹脂とすることができる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、又は4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノール、テトラ(4-ヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)ケトン、1,4-ビス(4,4-ジヒドロキシトリフェニルメチル)ベンゼン、又はトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸及びこれらの酸クロライド等が挙げられ、中でも1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンが好ましく、特に1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。 The polycarbonate-polysiloxane resin of the present invention can be a branched polycarbonate resin by using a branching agent in combination with the above-mentioned divalent phenolic compound. Examples of the trifunctional or higher polyfunctional aromatic compound used in such a branched polycarbonate resin include fluoroglucolcin, fluoroglucolside, or 4,6-dimethyl-2,4,6-tris (4-hydrochidiphenyl) hepten-2, 2. , 4,6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) Etan, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4- [ 1,1-bis (4-hydroxyphenyl) ethyl] benzene} -α, α-dimethylbenzylphenol and other trisphenols, tetra (4-hydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1, Examples thereof include 4-bis (4,4-dihydroxytriphenylmethyl) benzene, trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid and acid chlorides thereof, among which 1,1,1-tris (4-hydroxy). Phenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable, and 1,1,1-tris (4-hydroxyphenyl) ethane is particularly preferable.
 かかる分岐化ポリカーボネート樹脂の製造方法は、クロロホルメート化合物の生成反応時にその混合溶液中に分岐化剤が含まれる方法であっても、該生成反応終了後の界面重縮合反応時に分岐化剤が添加される方法であってもよい。分岐化剤由来のカーボネート構成単位の割合は、該樹脂を構成するカーボネート構成単位全量中、好ましくは0.005~1.5モル%、より好ましくは0.01~1.2モル%、特に好ましくは0.05~1.0モル%である。なお、かかる分岐構造量については1H-NMR測定により算出することが可能である。 Even if the method for producing such a branched polycarbonate resin includes a branching agent in the mixed solution during the production reaction of the chloroformate compound, the branching agent is used during the interfacial polycondensation reaction after the completion of the production reaction. It may be a method of addition. The ratio of the carbonate constituent units derived from the branching agent is preferably 0.005 to 1.5 mol%, more preferably 0.01 to 1.2 mol%, and particularly preferably 0.01 to 1.2 mol%, based on the total amount of the carbonate constituent units constituting the resin. Is 0.05 to 1.0 mol%. The amount of the branched structure can be calculated by 1H-NMR measurement.
 工程(I)おいて末端クロロホルメート基を有する二価フェノールのオリゴマーを含む混合溶液を得た後、該混合溶液を攪拌しながら上記式(8)であるヒドロキシアリール末端ポリシロキサンを二価フェノールの仕込み量に対して0.004モル当量/min以下の速度で加え、該ヒドロキシアリール末端ポリシロキサンと該オリゴマーを界面重縮合させることにより、ポリカーボネート-ポリシロキサン樹脂を得る。 In step (I), a mixed solution containing an oligomer of a dihydric phenol having a terminal chloroformate group is obtained, and then the hydroxyaryl-terminated polysiloxane represented by the above formula (8) is subjected to divalent phenol while stirring the mixed solution. A polycarbonate-polysiloxane resin is obtained by polycondensing the hydroxyaryl-terminated polysiloxane and the oligomer at a rate of 0.004 mol equivalent / min or less with respect to the charged amount of the above.
 本発明の製造において、溶媒としては、公知のポリカーボネートの製造に使用されるものなど各種の反応に不活性な溶媒を1種単独であるいは混合溶媒として使用すればよい。代表的な例としては、例えば、キシレンの如き炭化水素溶媒、並びに、塩化メチレン及びクロロベンゼンをはじめとするハロゲン化炭化水素溶媒などが挙げられる。特に塩化メチレンの如きハロゲン化炭化水素溶媒が好適に用いられる。二価フェノールの濃度は、好ましくは500g/L以下、より好ましくは450g/L以下、更に好ましくは300g/L以下である。二価フェノールの濃度は、製造効率の観点から、その下限は150g/L以上が好ましい。 In the production of the present invention, as the solvent, a solvent inert to various reactions such as those used in the production of known polycarbonate may be used alone or as a mixed solvent. Typical examples include hydrocarbon solvents such as xylene and halogenated hydrocarbon solvents such as methylene chloride and chlorobenzene. In particular, a halogenated hydrocarbon solvent such as methylene chloride is preferably used. The concentration of divalent phenol is preferably 500 g / L or less, more preferably 450 g / L or less, still more preferably 300 g / L or less. The lower limit of the concentration of divalent phenol is preferably 150 g / L or more from the viewpoint of production efficiency.
 界面重縮合反応の際は、酸結合剤を反応の化学量論比(当量)を考慮して適宜追加してもよい。酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。具体的には、上記式(3)を導くヒドロキシアリール末端ポリシロキサン、又は上記の如く二価フェノールの一部を添加モノマーとしてこの反応段階に添加する場合には、後添加分の二価フェノールとヒドロキシアリール末端ポリシロキサンとの合計モル数(通常1モルは2当量に相当)に対して2当量若しくはこれより過剰量のアルカリを用いることが好ましい。 In the interfacial polycondensation reaction, an acid binder may be added as appropriate in consideration of the stoichiometric ratio (equivalent) of the reaction. As the acid binder, for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof are used. Specifically, when a hydroxyaryl-terminated polysiloxane derived from the above formula (3) or a part of the divalent phenol as described above is added as an additive monomer to this reaction step, the post-added divalent phenol is used. It is preferable to use 2 equivalents or an excess amount of alkali with respect to the total number of moles with the hydroxyaryl-terminated polysiloxane (usually 1 mol corresponds to 2 equivalents).
 二価フェノールのオリゴマーとヒドロキシアリール末端ポリシロキサンとの界面重縮合反応による重縮合は、上記混合液を激しく攪拌することにより行われる。 Polycondensation by the interfacial polycondensation reaction between the divalent phenol oligomer and the hydroxyaryl terminal polysiloxane is performed by vigorously stirring the above mixture.
 かかる重合反応においては、末端停止剤或いは分子量調節剤が通常使用される。末端停止剤としては一価のフェノール性水酸基を有する化合物が挙げられ、通常のフェノール、p-tert-ブチルフェノール、p-クミルフェノール、トリブロモフェノールなどの他に、長鎖アルキルフェノール、脂肪族カルボン酸クロライド、脂肪族カルボン酸、ヒドロキシ安息香酸アルキルエステル、ヒドロキシフェニルアルキル酸エステル、アルキルエーテルフェノールなどが例示される。その使用量は用いる全ての二価フェノール系化合物100モルに対して、100~0.5モル、好ましくは50~2モルの範囲であり、二種以上の化合物を併用することも当然に可能である。 In such a polymerization reaction, a terminal terminator or a molecular weight modifier is usually used. Examples of the terminal terminator include compounds having a monovalent phenolic hydroxyl group, and in addition to ordinary phenols, p-tert-butylphenols, p-cumylphenols, tribromophenols, etc., long-chain alkylphenols and aliphatic carboxylic acids Examples thereof include chloride, aliphatic carboxylic acid, hydroxybenzoic acid alkyl ester, hydroxyphenyl alkyl acid ester, and alkyl ether phenol. The amount used is in the range of 100 to 0.5 mol, preferably 50 to 2 mol, with respect to 100 mol of all the divalent phenolic compounds used, and it is naturally possible to use two or more kinds of compounds in combination. be.
 重縮合反応を促進するために、トリエチルアミンのような第三級アミン又は第四級アンモニウム塩などの触媒を添加してもよい。 A catalyst such as a tertiary amine such as triethylamine or a quaternary ammonium salt may be added to promote the polycondensation reaction.
 かかる重合反応の反応時間は、未反応ポリシロキサン成分を低減するためには比較的長くする必要がある。好ましくは30分以上、更に好ましくは50分以上である。一方、長時間の反応溶液の撹拌によってポリマーの析出が発生し得るため、好ましくは180分以下、更に好ましくは90分以下である。 The reaction time of the polymerization reaction needs to be relatively long in order to reduce the unreacted polysiloxane component. It is preferably 30 minutes or longer, more preferably 50 minutes or longer. On the other hand, since precipitation of the polymer may occur by stirring the reaction solution for a long time, it is preferably 180 minutes or less, more preferably 90 minutes or less.
 反応圧力は、減圧、常圧、加圧のいずれでも可能であるが、通常は、常圧もしくは反応系の自圧程度で好適に行いえる。 The reaction pressure can be reduced pressure, normal pressure, or pressurization, but usually, normal pressure or the self-pressure of the reaction system can be preferably used.
 反応温度は-20~50℃の範囲から選ばれ、多くの場合は重合に伴い発熱するので水冷又は氷冷することが望ましい。 The reaction temperature is selected from the range of -20 to 50 ° C, and in many cases, heat is generated due to polymerization, so it is desirable to cool with water or ice.
 所望に応じ、亜硫酸ナトリウム、ハイドロサルファイドなどの酸化防止剤を少量添加してもよい。 If desired, a small amount of an antioxidant such as sodium sulfite or hydrosulfide may be added.
 (粘度平均分子量)
 本発明のポリカーボネート-ポリシロキサン樹脂の粘度平均分子量は、好ましくは15,000~40,000、より好ましくは16,000~35,000、さらに好ましくは17,000~30,000、特に好ましくは18,000~25,000である。上述の範囲内であると、多くの分野において実用上の機械強度が獲得しやすく、成形加工時においては適度な溶融粘度を有するため熱劣化等の不具合が抑制されるとともに随時混合するポリカーボネート樹脂との溶融粘度差が小さく混錬性が良好となる。さらには、樹脂製造時の水洗工程の効率が良好であり、生産性に優れる。
(Viscosity average molecular weight)
The viscosity average molecular weight of the polycarbonate-polysiloxane resin of the present invention is preferably 15,000 to 40,000, more preferably 16,000 to 35,000, still more preferably 17,000 to 30,000, and particularly preferably 18. It is 000 to 25,000. Within the above range, it is easy to obtain practical mechanical strength in many fields, and since it has an appropriate melt viscosity during molding, problems such as thermal deterioration are suppressed and it is mixed with the polycarbonate resin as needed. The difference in melt viscosity is small and the kneadability is good. Furthermore, the efficiency of the water washing process at the time of resin production is good, and the productivity is excellent.
 本発明におけるポリカーボネート樹脂の粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlに樹脂0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
  比粘度(ηSP)=(t-t)/t
  [t0は塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mvを算出したものである。
  ηSP/c=[η]+0.45×[η] (但し[η]は極限粘度)
  [η]=1.23×10-4Mv0.83
  c=0.7
The viscosity average molecular weight of the polycarbonate resin in the present invention was first determined by using an Ostwald viscometer from a solution in which 0.7 g of the resin was dissolved in 100 ml of methylene chloride at 20 ° C. for the specific viscosity (ηSP) calculated by the following formula.
Specific viscosity (ηSP) = (tt 0 ) / t 0
[T0 is the number of seconds for methylene chloride to fall, and t is the number of seconds for the sample solution to fall]
The viscosity average molecular weight Mv was calculated from the obtained specific viscosity (ηSP) by the following mathematical formula.
ηSP / c = [η] +0.45 × [η] 2 c (However, [η] is the limit viscosity)
[Η] = 1.23 × 10 -4 Mv 0.83
c = 0.7
 (鉛筆硬度)
 本発明のポリカーボネート-ポリシロキサン樹脂の鉛筆硬度は、2B以上であることが好ましい。耐傷性に優れるという点で、HB以上であることがより好ましく、F以上であることがさらに好ましい。なお、鉛筆硬度は4H以下で充分な機能を有する。本発明において、鉛筆硬度とは、本発明の樹脂を特定の鉛筆硬度を有する鉛筆で樹脂を擦過した場合に擦過しても擦過痕が残らない硬さのことであり、JIS K-5600に従って測定できる塗膜の表面硬度試験に用いる鉛筆硬度を指標とすることが好ましい。鉛筆硬度は、9H、8H、7H、6H、5H、4H、3H、2H、H、F、HB、B、2B、3B、4B、5B、6Bの順で柔らかくなり、最も硬いものが9H、最も軟らかいものが6Bである。
(Pencil hardness)
The pencil hardness of the polycarbonate-polysiloxane resin of the present invention is preferably 2B or more. In terms of excellent scratch resistance, it is more preferably HB or higher, and even more preferably F or higher. The pencil hardness is 4H or less and has a sufficient function. In the present invention, the pencil hardness is a hardness that does not leave scratch marks even when the resin of the present invention is rubbed with a pencil having a specific pencil hardness, and is measured according to JIS K-5600. It is preferable to use the pencil hardness used for the surface hardness test of the resulting coating film as an index. Pencil hardness becomes softer in the order of 9H, 8H, 7H, 6H, 5H, 4H, 3H, 2H, H, F, HB, B, 2B, 3B, 4B, 5B, 6B, the hardest is 9H, and the hardest. The soft one is 6B.
 (耐衝撃性)
 本発明のポリカーボネート-ポリシロキサン樹脂は、JIS K7211-2に即して実施された高速面衝撃試験において、その破壊形態が延性破壊であることが好ましい。
(Impact resistance)
In the high-speed surface impact test carried out in accordance with JIS K7211-2, the polycarbonate-polysiloxane resin of the present invention preferably has a ductile fracture form.
 (全光線透過率)
 本発明のポリカーボネート-ポリシロキサン樹脂の全光線透過率の値は、好ましくは80%以上であり、より好ましくは85%以上であり、さらに好ましくは88%以上である。また、ヘーズ値は好ましくは5.0以下であり、より好ましくは3.0以下であり、さらに好ましくは2.0以下である。上記の値とすることで成形品とした際の外観に優れ好ましい。全光線透過率及びヘーズは、得られた樹脂プレートの厚み2.0mm部において日本電色工業(株)製Haze Meter NDH 2000を用い、ASTM D1003に準拠し測定できる。
(Total light transmittance)
The value of the total light transmittance of the polycarbonate-polysiloxane resin of the present invention is preferably 80% or more, more preferably 85% or more, still more preferably 88% or more. The haze value is preferably 5.0 or less, more preferably 3.0 or less, and even more preferably 2.0 or less. By setting the above values, the appearance of the molded product is excellent and preferable. The total light transmittance and the haze can be measured in accordance with ASTM D1003 using Haze Meter NDH 2000 manufactured by Nippon Denshoku Kogyo Co., Ltd. in a thickness of 2.0 mm of the obtained resin plate.
 (ドメインサイズ)
 本発明のポリカーボネート-ポリシロキサン樹脂において、ポリシロキサンドメインの平均サイズは、好ましくは1~20nmの範囲であり、より好ましくは2~15nmの範囲である。かかる範囲の下限未満では、耐衝撃性が十分に発揮されず、かかる範囲の上限を超えると透明性が安定して発揮されない。
(Domain size)
In the polycarbonate-polysiloxane resin of the present invention, the average size of the polysiloxane domain is preferably in the range of 1 to 20 nm, more preferably in the range of 2 to 15 nm. If it is less than the lower limit of such a range, impact resistance is not sufficiently exhibited, and if it exceeds the upper limit of such a range, transparency is not stably exhibited.
 (好ましい態様(1))
 本発明において、好ましい態様(1)としては、前記ポリカーボネートブロック(A-1)の構造単位として、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン,1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパンのうち少なくとも一つから誘導される単位を含むことが好ましい。
(Preferable embodiment (1))
In the present invention, as a preferred embodiment (1), 2,2-bis (4-hydroxy-3-methylphenyl) propane and 1,1-bis (4-) are the structural units of the polycarbonate block (A-1). Hydroxyphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (3-methyl-4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3, It preferably contains a unit derived from at least one of 5-dimethylphenyl) propane.
 また、上記単位を含むポリカーボネートブロック(A-1)とした場合、前記ポリシロキサンブロック(A-2)の含有量が、ポリカーボネート-ポリシロキサン樹脂全体を基準にして1~70重量%が好ましく、3~60重量%がより好ましく、5~50重量%がさらに好ましい。 When the polycarbonate block (A-1) contains the above units, the content of the polysiloxane block (A-2) is preferably 1 to 70% by weight based on the entire polycarbonate-polysiloxane resin. It is more preferably from 60% by weight, still more preferably from 5 to 50% by weight.
 (好ましい態様(2))
 本発明において、好ましい態様(2)としては、前記ポリカーボネートブロック(A-1)の構造単位として、2,2-ビス(4-ヒドロキシフェニル)プロパンから誘導される単位を含み、前記ポリシロキサンブロック(A-2)の含有量が、ポリカーボネート-ポリシロキサン樹脂全体を基準にして30~70重量%が好ましく、35~60重量%がより好ましく、40~50重量%がさらに好ましい。
(Preferable embodiment (2))
In the present invention, a preferred embodiment (2) includes a unit derived from 2,2-bis (4-hydroxyphenyl) propane as the structural unit of the polycarbonate block (A-1), and the polysiloxane block (2). The content of A-2) is preferably 30 to 70% by weight, more preferably 35 to 60% by weight, still more preferably 40 to 50% by weight, based on the entire polycarbonate-polysiloxane resin.
 (その他の成分)
 本発明のポリカーボネート-ポリシロキサン樹脂は本発明の効果を損なわない範囲で通常ポリカーボネート樹脂に配合される各種の難燃剤、強化充填材、添加剤を配合することができる。
(Other ingredients)
The polycarbonate-polysiloxane resin of the present invention can contain various flame retardants, reinforced fillers, and additives that are usually blended with the polycarbonate resin as long as the effects of the present invention are not impaired.
 本発明において、ポリカーボネート-ポリシロキサン樹脂は、例えば単軸押出機、二軸押出機の如き押出機を用いて、溶融混練することによりペレット化することができる。かかるペレットを作製するにあたり、各種難燃剤、強化充填剤、添加剤を配合することもできる。 In the present invention, the polycarbonate-polysiloxane resin can be pelletized by melt-kneading using an extruder such as a single-screw extruder or a twin-screw extruder. In producing such pellets, various flame retardants, strengthening fillers and additives can also be blended.
 難燃剤としては、従来、熱可塑性樹脂、特に芳香族ポリカーボネート樹脂の難燃剤として知られる各種の化合物が適用できるが、より好適には、有機金属塩系難燃剤(例えば、有機スルホン酸アルカリ(土類)金属塩、ホウ酸金属塩系難燃剤、及び錫酸金属塩系難燃剤など)、有機リン系難燃剤(例えば、モノホスフェート化合物、ホスフェートオリゴマー化合物、ホスホネートオリゴマー化合物、ホスホニトリルオリゴマー化合物、ホスホン酸アミド化合物及びホスファゼンなど)、シリコーン化合物からなるシリコーン系難燃剤、フィブリル化PTFE等である。その中でも、有機金属塩系難燃剤、有機リン系難燃剤が特に好ましい。尚、かかる化合物の配合は難燃性の向上をもたらすが、それ以外にも各化合物の性質に基づき、例えば帯電防止性、流動性、剛性、及び熱安定性の向上などがもたらされる。 As the flame retardant, various compounds conventionally known as flame retardants of thermoplastic resins, particularly aromatic polycarbonate resins, can be applied, but more preferably, organic metal salt-based flame retardants (for example, organic sulfonic acid alkali (soil)) can be applied. (C) Metal salts, brate metal salt flame retardants, tinic acid metal salt flame retardants, etc.), organic phosphorus flame retardants (eg, monophosphate compounds, phosphate oligomer compounds, phosphonate oligomer compounds, phosphonitrile oligomer compounds, phosphons, etc.) Acid amide compounds, phosphazene, etc.), silicone flame retardants made of silicone compounds, fibrillated PTFE and the like. Among them, organometallic salt flame retardants and organophosphorus flame retardants are particularly preferable. The compounding of such a compound brings about improvement of flame retardancy, but in addition to that, improvement of antistatic property, fluidity, rigidity, thermal stability and the like is brought about based on the property of each compound.
 (成形品)
 本発明において、ポリカーボネート-ポリシロキサン樹脂は、通常前記の如く製造されたペレットを射出成形して各種成形品を製造することができる。更にペレットを経由することなく、押出機で溶融混練された樹脂を直接シート、フィルム、異型押出成形品、ダイレクトブロー成形品、及び射出成形品にすることも可能である。
(Molding)
In the present invention, the polycarbonate-polysiloxane resin can be manufactured by injection molding pellets usually produced as described above to produce various molded products. Further, it is also possible to directly convert the resin melt-kneaded by the extruder into a sheet, a film, a modified extrusion-molded product, a direct blow-molded product, and an injection-molded product without passing through pellets.
 かかる射出成形においては、通常の成形方法だけでなく、適宜目的に応じて、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、及び超高速射出成形などの射出成形法を用いて成形品を得ることができる。これら各種成形法の利点は既に広く知られるところである。また成形はコールドランナー方式及びホットランナー方式のいずれも選択することができる。 In such injection molding, not only ordinary molding methods, but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including those by injecting supercritical fluid), insert molding, and insert molding, depending on the intended purpose. Molded products can be obtained using injection molding methods such as in-mold coating molding, heat insulating mold molding, rapid heating and cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding. The advantages of these various molding methods are already widely known. In addition, either a cold runner method or a hot runner method can be selected for molding.
 また本発明において、ポリカーボネート-ポリシロキサン樹脂は、押出成形により各種異形押出成形品、シート、及びフィルムなどの形で利用することもできる。またシート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法なども使用可能である。さらに特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明のポリカーボネート-ポリシロキサン樹脂を回転成形やブロー成形などにより成形品とすることも可能である。 Further, in the present invention, the polycarbonate-polysiloxane resin can also be used in the form of various deformed extruded products, sheets, films and the like by extrusion molding. Inflation method, calendar method, casting method, etc. can also be used for forming sheets and films. Further, it can be molded as a heat-shrinkable tube by applying a specific stretching operation. Further, the polycarbonate-polysiloxane resin of the present invention can be made into a molded product by rotary molding, blow molding or the like.
 更に本発明において、ポリカーボネート-ポリシロキサン樹脂からなる成形品には、各種の表面処理を行うことが可能である。ここでいう表面処理とは、蒸着(物理蒸着、化学蒸着など)、メッキ(電気メッキ、無電解メッキ、溶融メッキなど)、塗装、コーティング、印刷などの樹脂成形品の表層上に新たな層を形成させるものであり、通常のポリカーボネート樹脂に用いられる方法が適用できる。表面処理としては、具体的には、ハードコート、撥水・撥油コート、紫外線吸収コート、赤外線吸収コート、並びにメタライジング(蒸着など)などの各種の表面処理が例示される。 Further, in the present invention, various surface treatments can be applied to the molded product made of polycarbonate-polysiloxane resin. Surface treatment here means a new layer on the surface layer of resin molded products such as thin-film deposition (physical vapor deposition, chemical vapor deposition, etc.), plating (electroplating, electroless plating, hot-dip plating, etc.), painting, coating, printing, etc. It is formed, and the method used for ordinary polycarbonate resin can be applied. Specific examples of the surface treatment include various surface treatments such as a hard coat, a water / oil repellent coat, an ultraviolet absorption coat, an infrared absorption coat, and metallizing (vapor deposition, etc.).
 本発明のポリカーボネート-ポリシロキサン樹脂は、透明性、耐衝撃性、耐熱性、成形性、鉛筆硬度、低比重性を高度に両立しており、光学部品、電気・電子機器分野、モビリティ分野において幅広く使用することができる。特に、主に射出成形等により成形される自動車ランプレンズや自動車内外装部材、主に押出成形等により成形される照明カバー、樹脂窓又は前面板用途に好適に使用される。 The polycarbonate-polysiloxane resin of the present invention has a high degree of compatibility with transparency, impact resistance, heat resistance, moldability, pencil hardness, and low specific gravity, and is widely used in the fields of optical components, electrical / electronic equipment, and mobility. Can be used. In particular, it is suitably used for automobile lamp lenses and automobile interior / exterior members mainly formed by injection molding or the like, lighting covers mainly formed by extrusion molding or the like, resin windows or front panel applications.
 以下に本発明を実施例によりさらに詳しく説明するが、これらは本発明を限定するものではない。特記しない限り、実施例中の部は重量部である。なお、評価は下記の方法に従った。 The present invention will be described in more detail below with reference to examples, but these are not limited to the present invention. Unless otherwise specified, the parts in the embodiment are parts by weight. The evaluation was performed according to the following method.
 (1)ポリマー組成比
 日本電子株式会社製 JNM-AL400のプロトンNMRにて各繰り返し単位を測定し、ポリマー組成比(モル比)を算出した。
(1) Polymer composition ratio Each repeating unit was measured by proton NMR of JNM-AL400 manufactured by JEOL Ltd., and the polymer composition ratio (molar ratio) was calculated.
 (2)ポリシロキサン成分の含有量及び平均シロキサン繰り返し数
 日本電子株式会社製 JNM-AL400のプロトンNMRを用い、得られた樹脂の1H-NMRスペクトルを測定し、二価フェノール由来のピーク(例えばBPAの場合は、1.4~1.8ppm)の積分曲線とポリシロキサン由来のピーク(-0.2~0.3ppm)の積分曲線から算出した積分比よりポリシロキサン成分含有量を算出した。さらに同様に、ヒドロキシアリール末端由来のピークの積分曲線とポリシロキサン由来のピークの積分曲線から算出した積分比を比較することにより平均ポリシロキサン繰り返し数を算出した。
(2) Content of polysiloxane component and average number of siloxane repetitions Using proton NMR of JNM-AL400 manufactured by Nippon Denshi Co., Ltd., the 1H-NMR spectrum of the obtained resin was measured, and a peak derived from divalent phenol (for example, BPA) was measured. In the case of, the polysiloxane component content was calculated from the integral ratio calculated from the integral curve of 1.4 to 1.8 ppm) and the integral curve of the peak derived from polysiloxane (−0.2 to 0.3 ppm). Similarly, the average number of polysiloxane repetitions was calculated by comparing the integral ratio calculated from the integral curve of the peak derived from the hydroxyaryl terminal and the integral curve of the peak derived from polysiloxane.
 (3)粘度平均分子量(Mv)
 次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlに試料0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
  比粘度(ηSP)=(t-t)/t
  [tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mvを算出した。
  ηSP/c=[η]+0.45×[η]  (但し[η]は極限粘度)
  [η]=1.23×10-4Mv0.83
  c=0.7
(3) Viscosity average molecular weight (Mv)
The specific viscosity (ηSP) calculated by the following formula was obtained from a solution prepared by dissolving 0.7 g of a sample in 100 ml of methylene chloride at 20 ° C. using an Ostwald viscometer.
Specific viscosity (ηSP) = (tt 0 ) / t 0
[T 0 is the number of seconds for methylene chloride to fall, and t is the number of seconds for the sample solution to fall]
The viscosity average molecular weight Mv was calculated from the obtained specific viscosity (ηSP) by the following formula.
ηSP / c = [η] +0.45 × [η] 2 c (However, [η] is the limit viscosity)
[Η] = 1.23 × 10 -4 Mv 0.83
c = 0.7
 (4)ガラス転移温度
 試料8mgを用いてティー・エイ・インスツルメント(株)製の熱分析システム DSC-2910を使用して、JIS K7121に準拠して窒素雰囲気下(窒素流量:40ml/min)、昇温速度:20℃/minの条件下で測定した。
(4) Glass transition temperature Using 8 mg of sample, using the thermal analysis system DSC-2910 manufactured by TA Instruments Co., Ltd., under a nitrogen atmosphere (nitrogen flow rate: 40 ml / min) in accordance with JIS K7121. ), Temperature rise rate: Measured under the condition of 20 ° C./min.
 (5)成形性
 樹脂を射出成形機(日本製鋼所製J-75E3)により、シリンダ温度300℃、金型温度80℃の条件で、保圧時間20秒及び冷却時間20秒にて幅50mm、長さ90mm、厚みがゲート側から3mm(長さ20mm)、2mm(長さ45mm)、1mm(長さ25mm)である3段型樹脂プレートを成形し、各種評価を実施した。上記の条件で3段型樹脂プレートが得られた場合には成形性「〇」、溶融流動性が悪く3段型樹脂プレートが得られなかった場合には成形性「×」として評価した。成形性「×」の場合、以下の真空熱プレス成形を実施した。
(5) Formability A resin is injected by an injection molding machine (J-75E3 manufactured by Japan Steel Works, Ltd.) under the conditions of a cylinder temperature of 300 ° C. and a mold temperature of 80 ° C., with a holding time of 20 seconds and a cooling time of 20 seconds, and a width of 50 mm. A three-stage resin plate having a length of 90 mm and a thickness of 3 mm (length 20 mm), 2 mm (length 45 mm), and 1 mm (length 25 mm) from the gate side was molded and various evaluations were carried out. When the three-stage resin plate was obtained under the above conditions, the moldability was evaluated as “◯”, and when the melt fluidity was poor and the three-stage resin plate could not be obtained, the moldability was evaluated as “×”. In the case of formability "x", the following vacuum heat press molding was carried out.
 (6)真空熱プレス成形(比較例5,6,12)
 樹脂を真空熱プレス成形機(神藤金属工業所(株)製 圧縮成形機:SFV-10、真空ポンプユニット:GXD-360)を用いて、厚さ2mm、直径5cmの円盤型樹脂プレートを成形し、各種評価を実施した。プレス成形条件は、金型温度300℃、1次圧:1MPa(30秒)、2次圧:1.5MPa(5分)とした。
(6) Vacuum heat press molding (Comparative Examples 5, 6, 12)
Using a vacuum heat press forming machine (compression forming machine: SFV-10, vacuum pump unit: GXD-360) manufactured by Kondo Metal Industry Co., Ltd., a disk-shaped resin plate with a thickness of 2 mm and a diameter of 5 cm is formed. , Various evaluations were carried out. The press molding conditions were a mold temperature of 300 ° C., a primary pressure of 1 MPa (30 seconds), and a secondary pressure of 1.5 MPa (5 minutes).
 (7)比重
 樹脂プレートを用いJIS K7112 プラスチック-非発泡プラスチックの密度及び比重の測定方法(C法 浮沈法)に準拠し測定した。
(7) Specific gravity The measurement was performed using a resin plate in accordance with the method for measuring the density and specific gravity of JIS K7112 plastic-non-foamed plastic (method C floating / sinking method).
 (8)全光線透過率及びヘーズ
 樹脂プレートの厚み2.0mm部位における全光線透過率(%)、ヘイズ(%)を日本電色工業(株)製Haze Meter NDH 2000を用い、ASTM D1003に準拠し測定した。
(8) Total light transmittance and haze Total light transmittance (%) and haze (%) at a thickness of 2.0 mm are based on ASTM D1003 using Haze Meter NDH 2000 manufactured by Nippon Denshoku Kogyo Co., Ltd. And measured.
 (9)耐衝撃性
 高速衝撃試験機 島津HYDROSHOTHITS-P10(島津製作所)を使用し、試験温度23℃あるいは-30℃で、試験速度7m/sec、ストライカー径1/2インチ、受け径1インチの条件にて、樹脂プレート厚み2mm部における耐衝撃性を評価した。試験を5回実施し、その時の破壊形態を目視で観察し、以下に記載の基準に沿って判定した。
「〇」:延性破壊を示す回数が5回中3回以上。
「×」:延性破壊を示す回数が5回中2回以下。
(9) Impact resistance High-speed impact tester Shimadzu HYDROSHOTHITS-P10 (Shimadzu Corporation) is used at a test temperature of 23 ° C or -30 ° C, with a test speed of 7 m / sec, a striker diameter of 1/2 inch, and a receiving diameter of 1 inch. Under the conditions, the impact resistance at a resin plate thickness of 2 mm was evaluated. The test was carried out 5 times, the fracture morphology at that time was visually observed, and the judgment was made according to the criteria described below.
"○": The number of times indicating ductile fracture is 3 times or more out of 5 times.
"X": The number of times indicating ductile fracture is 2 out of 5 times or less.
 (10)ドメインサイズ
 3段型樹脂プレートをミクロトーム(Leica Microsystems社製 EM UC6)を用いて樹脂の流動方向に対して垂直に切削することにより超薄切片を作成し、グリッド(日本電子株式会社製 EM FINE GRID No.2632 F-200-CU 100PC/CA)に付着させ、日本電子株式会社製 透過型電子顕微鏡TEM JEM-2100を用いて加速電圧200kVで観察した。観察倍率は20,000倍とした。
(10) Domain size An ultrathin section is created by cutting a 3-stage resin plate using a microtome (EM UC6 manufactured by Leica Microsystems) perpendicular to the flow direction of the resin, and a grid (manufactured by JEOL Ltd.) is created. It was attached to EM FINE GRID No. 2632 F-200-CU 100PC / CA) and observed at an acceleration voltage of 200 kV using a transmission electron microscope TEM JEM-2100 manufactured by JEOL Ltd. The observation magnification was 20,000 times.
 得られた顕微鏡写真を画像解析ソフトWin ROOF Ver.6.6(三谷商事(株))を用いて粒子解析を行い、試料薄片中のポリシロキサンドメインの平均サイズ及び粒径分布(頻度分布)を得た。ここで各ドメインのサイズとして最大長径(粒子の外側輪郭線上の任意の2点を、その間の長さが最大になるように選んだ時の長さ)を利用した。5枚の試料切片で同様の解析を行い、その平均値を各試料の値とした。 Image analysis software Win ROOF Ver. Particle analysis was performed using 6.6 (Mitani Shoji Co., Ltd.) to obtain the average size and particle size distribution (frequency distribution) of the polysiloxane domain in the sample flakes. Here, the maximum major axis (the length when any two points on the outer contour line of the particle are selected so that the length between them is maximized) is used as the size of each domain. The same analysis was performed on 5 sample sections, and the average value was taken as the value of each sample.
 (11)鉛筆硬度
 JIS K5600に基づき、雰囲気温度23℃の恒温室内で樹脂プレートの表面に対して、鉛筆を45度の角度を保ちつつ750gの荷重をかけた状態で線を引き、表面状態を目視にて評価した。
 荷重:750g
 測定速度:50mm/min
 測定距離:7mm
 鉛筆:三菱鉛筆製Hi―uni
(11) Pencil hardness Based on JIS K5600, draw a line on the surface of the resin plate in a constant temperature room with an ambient temperature of 23 ° C while keeping an angle of 45 degrees and apply a load of 750 g to the surface condition. It was evaluated visually.
Load: 750g
Measurement speed: 50 mm / min
Measurement distance: 7 mm
Pencil: Hi-uni made by Mitsubishi Pencil
 <樹脂の製造>
 (製造例1)
 温度計、撹拌機、還流冷却器付き反応器にイオン交換水13698部、25%水酸化ナトリウム水溶液3712部を入れ、二価フェノールとしてBPA2739部、及びハイドロサルファイト5.48部を溶解した後、塩化メチレン10954部、25%水酸化ナトリウム水溶液1650部を加え、撹拌下16~24℃でホスゲン(以下“FH”と略することがある)1480部を70分要して吹き込んだ。25%水酸化ナトリウム水溶液1031部を加え、さらにp-tert-ブチルフェノール83.2部を塩化メチレン5477部に溶解した溶液を加え、攪拌しながらヒドロキシアリール末端ポリシロキサンとして、ポリジメチルシロキサン(以下、“PDMS”と略することがある)KF-2201(p=35(信越化学工業(株)製)2757部を塩化メチレン5514部に溶解した溶液を作製し、該溶液を加えて乳化状態とした後、再度激しく撹拌した。かかる攪拌下、反応液が28℃の状態でトリエチルアミン3.3部を加えて温度26~31℃において1時間撹拌を続けて反応を終了した。反応終了後有機相を分離し、塩化メチレンで希釈して水洗を繰り返し、洗浄液が中性になったところで塩酸酸性水にて水洗した。その後、イオン交換水で繰り返し洗浄し水相の導電率がイオン交換水と殆ど同じになったところで温水を張ったニーダーに投入して、攪拌しながら塩化メチレンを蒸発し、樹脂のパウダーを得た。脱水後、熱風循環式乾燥機により100℃で12時間乾燥した。得られた樹脂の粘度平均分子量は18,500、ガラス転移温度は124℃、ポリシロキサン成分の含有量は47.7重量%であった。
<Manufacturing of resin>
(Manufacturing Example 1)
After adding 13698 parts of ion-exchanged water and 3712 parts of 25% sodium hydroxide aqueous solution to a thermometer, agitator, and a reactor with a reflux cooler, and dissolving 2739 parts of BPA and 5.48 parts of hydrosulfite as divalent phenol, 10954 parts of methylene chloride and 1650 parts of a 25% sodium hydroxide aqueous solution were added, and 1480 parts of phosgen (hereinafter sometimes abbreviated as “FH”) was blown at 16 to 24 ° C. over 70 minutes with stirring. 1031 parts of a 25% sodium hydroxide aqueous solution was added, and a solution in which 83.2 parts of p-tert-butylphenol was dissolved in 5477 parts of methylene chloride was added, and the polydimethylsiloxane (hereinafter referred to as “polydimethylsiloxane”) was used as a hydroxyaryl-terminated polysiloxane while stirring. After preparing a solution in which 2757 parts of KF-2201 (p = 35 (manufactured by Shin-Etsu Chemical Industry Co., Ltd.)) (which may be abbreviated as PDMS) is dissolved in 5514 parts of methylene chloride, and the solution is added to make an emulsified state. Under such stirring, 3.3 parts of triethylamine was added in a state where the reaction solution was at 28 ° C., and stirring was continued at a temperature of 26 to 31 ° C. for 1 hour to complete the reaction. After the reaction was completed, the organic phase was separated. Then, it was diluted with methylene chloride and washed repeatedly with water, and when the washing solution became neutral, it was washed with aqueous hydrochloric acid. Then, it was repeatedly washed with ion-exchanged water so that the conductivity of the aqueous phase was almost the same as that of ion-exchanged water. When it became, it was put into a kneader filled with warm water, and methylene chloride was evaporated while stirring to obtain a resin powder. After dehydration, the obtained resin was dried at 100 ° C. for 12 hours by a hot air circulation type dryer. The viscosity average molecular weight was 18,500, the glass transition temperature was 124 ° C., and the content of the polysiloxane component was 47.7% by weight.
 (製造例2)
 二価フェノールとしてBPTMC3456部、p-tert-ブチルフェノール57.5部、ヒドロキシアリール末端ポリシロキサンとしてPDMS KF-2201(p=35(信越化学工業(株)製))2558部に変更した以外は、製造例1と同様の方法で製造した。得られた樹脂の粘度平均分子量は20,100、ガラス転移温度は148℃、ポリシロキサン成分含有量は40.8重量%であった。
(Manufacturing Example 2)
Manufactured except for changing to 3456 parts of BPTMC and 57.5 parts of p-tert-butylphenol as divalent phenol, and 2558 parts of PDMS KF-2201 (p = 35 (manufactured by Shin-Etsu Chemical Co., Ltd.)) as hydroxyaryl-terminated polysiloxane. It was manufactured by the same method as in Example 1. The obtained resin had a viscosity average molecular weight of 20,100, a glass transition temperature of 148 ° C., and a polysiloxane component content of 40.8% by weight.
 (製造例3)
 二価フェノールとしてBPTMC3631部、p-tert-ブチルフェノール57.5部、ヒドロキシアリール末端ポリシロキサンとしてPDMS KF-2201(p=35(信越化学工業(株)製))816部に変更した以外は、製造例1と同様の方法で製造した。得られた樹脂の粘度平均分子量は20,400、ガラス転移温度は190℃、ポリシロキサン成分含有量は17.5重量%であった。
(Manufacturing Example 3)
Manufactured except that BPTMC3631 part and p-tert-butylphenol 57.5 part were changed as divalent phenol, and PDMS KF-2201 (p = 35 (manufactured by Shin-Etsu Chemical Co., Ltd.)) 816 part as hydroxyaryl-terminated polysiloxane. It was manufactured by the same method as in Example 1. The obtained resin had a viscosity average molecular weight of 20,400, a glass transition temperature of 190 ° C., and a polysiloxane component content of 17.5% by weight.
 (製造例4)
 二価フェノールとしてBPTMC771部及びBPC2243部、p-tert-ブチルフェノール43.2部、ヒドロキシアリール末端ポリシロキサンとしてPDMS KF-2201(p=35(信越化学工業(株)製))784部に変更した以外は、製造例1と同様の方法で製造した。得られた樹脂の粘度平均分子量は22,900、ガラス転移温度は121℃、ポリシロキサン成分含有量は19.7重量%であった。
(Manufacturing Example 4)
Other than changing to 771 parts of BPTMC and 2243 parts of BPC as divalent phenol, 43.2 parts of p-tert-butylphenol, and 784 parts of PDMS KF-2201 (p = 35 (manufactured by Shin-Etsu Chemical Co., Ltd.)) as hydroxyaryl-terminated polysiloxane. Was produced in the same manner as in Production Example 1. The obtained resin had a viscosity average molecular weight of 22,900, a glass transition temperature of 121 ° C., and a polysiloxane component content of 19.7% by weight.
 (製造例5)
 二価フェノールとしてBPOCTMC3202部及びBPC586部、p-tert-ブチルフェノール43.2部、ヒドロキシアリール末端ポリシロキサンとしてPDMS KF-2201(p=35(信越化学工業(株)製))357部に変更した以外は、製造例1と同様の方法で製造した。得られた樹脂の粘度平均分子量は20,200、ガラス転移温度は166℃、ポリシロキサン成分含有量は8.1重量%であった。
(Manufacturing Example 5)
Except for changing to 3202 parts of BPOCTMC and 586 parts of BPC as divalent phenol, 43.2 parts of p-tert-butylphenol, and 357 parts of PDMS KF-2201 (p = 35 (manufactured by Shin-Etsu Chemical Co., Ltd.)) as hydroxyaryl-terminated polysiloxane. Was produced in the same manner as in Production Example 1. The obtained resin had a viscosity average molecular weight of 20,200, a glass transition temperature of 166 ° C., and a polysiloxane component content of 8.1% by weight.
 (製造例6)
 二価フェノールとしてBP26XA3214部、p-tert-ブチルフェノール57.5部、ヒドロキシアリール末端ポリシロキサンとしてPDMS KF-2201(p=35(信越化学工業(株)製))570部に変更した以外は、製造例1と同様の方法で製造した。得られた樹脂の粘度平均分子量は20,000、ガラス転移温度は167℃、ポリシロキサン成分含有量は13.4重量%であった。
(Manufacturing Example 6)
Manufactured except for changing to BP26XA3214 parts as divalent phenol, p-tert-butylphenol 57.5 parts, and PDMS KF-2201 (p = 35 (manufactured by Shin-Etsu Chemical Co., Ltd.)) 570 parts as hydroxyaryl-terminated polysiloxane. It was manufactured by the same method as in Example 1. The obtained resin had a viscosity average molecular weight of 20,000, a glass transition temperature of 167 ° C., and a polysiloxane component content of 13.4% by weight.
 (製造例7)
 二価フェノールとしてBPA2942部、p-tert-ブチルフェノール82.9部に変更し、ヒドロキシアリール末端ポリシロキサンを使用しなかった以外は、製造例1と同様の方法で製造した。得られた樹脂の粘度平均分子量は22,500、ガラス転移温度は148℃であった。
(Manufacturing Example 7)
It was produced by the same method as in Production Example 1 except that the divalent phenol was changed to 2942 parts of BPA and 82.9 parts of p-tert-butylphenol and no hydroxyaryl-terminated polysiloxane was used. The viscosity average molecular weight of the obtained resin was 22,500, and the glass transition temperature was 148 ° C.
 (製造例8)
 二価フェノールとしてBPA2930部、ヒドロキシアリール末端ポリシロキサンとしてPDMS KF-2201(p=35(信越化学工業(株)製))160部に変更した以外は、製造例1と同様の方法で製造した。得られた樹脂の粘度平均分子量は20,300、ガラス転移温度は143℃、ポリシロキサン成分含有量は4.2重量%であった。
(Manufacturing Example 8)
It was produced by the same method as in Production Example 1 except that the divalent phenol was changed to 2930 parts of BPA and the hydroxyaryl-terminated polysiloxane was changed to 160 parts of PDMS KF-2201 (p = 35 (manufactured by Shin-Etsu Chemical Co., Ltd.)). The obtained resin had a viscosity average molecular weight of 20,300, a glass transition temperature of 143 ° C., and a polysiloxane component content of 4.2% by weight.
 (製造例9)
 二価フェノールとしてBPA2904部、ヒドロキシアリール末端ポリシロキサンとしてPDMS KF-2201(p=35(信越化学工業(株)製))519部に変更した以外は、製造例1と同様の方法で製造した。得られた樹脂の粘度平均分子量は21,500、ガラス転移温度は135℃、ポリシロキサン成分含有量は13.5重量%であった。
(Manufacturing Example 9)
It was produced by the same method as in Production Example 1 except that the divalent phenol was changed to 2904 parts of BPA and the hydroxyaryl-terminated polysiloxane was changed to 519 parts of PDMS KF-2201 (p = 35 (manufactured by Shin-Etsu Chemical Co., Ltd.)). The obtained resin had a viscosity average molecular weight of 21,500, a glass transition temperature of 135 ° C., and a polysiloxane component content of 13.5% by weight.
 (製造例10)
 二価フェノールとしてBPA2889部、ヒドロキシアリール末端ポリシロキサンとしてPDMS KF-2201(p=35(信越化学工業(株)製))719部に変更した以外は、製造例1と同様の方法で製造した。得られた樹脂の粘度平均分子量は19,400、ガラス転移温度は129℃、ポリシロキサン成分含有量は17.2重量%であった。
(Manufacturing Example 10)
It was produced by the same method as in Production Example 1 except that it was changed to 2888 parts of BPA as a divalent phenol and 719 parts of PDMS KF-2201 (p = 35 (manufactured by Shin-Etsu Chemical Co., Ltd.)) as a hydroxyaryl-terminated polysiloxane. The obtained resin had a viscosity average molecular weight of 19,400, a glass transition temperature of 129 ° C., and a polysiloxane component content of 17.2% by weight.
 (製造例11)
 二価フェノールとしてBPTMC3713部、p-tert-ブチルフェノール57.5部に変更し、ヒドロキシアリール末端ポリシロキサンを使用しなかった以外は、製造例
1と同様の方法で製造した。得られた樹脂の粘度平均分子量は20,000、ガラス転移温度は233℃であった。
(Manufacturing Example 11)
It was produced by the same method as in Production Example 1 except that the divalent phenol was changed to 3713 parts of BPTMC and 57.5 parts of p-tert-butylphenol and no hydroxyaryl-terminated polysiloxane was used. The viscosity average molecular weight of the obtained resin was 20,000, and the glass transition temperature was 233 ° C.
 (製造例12)
 二価フェノールとしてBPTMC3683部、p-tert-ブチルフェノール57.5部、ヒドロキシアリール末端ポリシロキサンとしてPDMS KF-2201(p=35(信越化学工業(株)製))297部に変更した以外は、製造例1と同様の方法で製造した。得られた樹脂の粘度平均分子量は20,200、ガラス転移温度は218℃、ポリシロキサン成分含有量は7.1重量%であった。
(Manufacturing Example 12)
Manufactured except for changing to 3683 parts of BPTMC and 57.5 parts of p-tert-butylphenol as divalent phenol, and 297 parts of PDMS KF-2201 (p = 35 (manufactured by Shin-Etsu Chemical Co., Ltd.)) as hydroxyaryl-terminated polysiloxane. It was manufactured by the same method as in Example 1. The obtained resin had a viscosity average molecular weight of 20,200, a glass transition temperature of 218 ° C., and a polysiloxane component content of 7.1% by weight.
 (製造例13)
 二価フェノールとしてBPC2944部、p-tert-ブチルフェノール74.3部に変更し、ヒドロキシアリール末端ポリシロキサンを使用しなかった以外は、製造例1と同様の方法で製造した。得られた樹脂の粘度平均分子量は24,000、ガラス転移温度は124℃であった。
(Manufacturing Example 13)
It was produced by the same method as in Production Example 1 except that the divalent phenol was changed to 2944 parts of BPC and 74.3 parts of p-tert-butylphenol and no hydroxyaryl-terminated polysiloxane was used. The viscosity average molecular weight of the obtained resin was 24,000, and the glass transition temperature was 124 ° C.
 (製造例14)
 二価フェノールとしてBPC1472部及びBPTMC1785部、p-tert-ブチルフェノール74.3部に変更し、ヒドロキシアリール末端ポリシロキサンを使用しなかった以外は、製造例1と同様の方法で製造した。得られた樹脂の粘度平均分子量は20,400、ガラス転移温度は173℃であった。
(Manufacturing Example 14)
The divalent phenol was changed to 1472 parts of BPC, 1785 parts of BPTMC, and 74.3 parts of p-tert-butylphenol, and was produced by the same method as in Production Example 1 except that hydroxyaryl-terminated polysiloxane was not used. The viscosity average molecular weight of the obtained resin was 20,400, and the glass transition temperature was 173 ° C.
 (製造例15)
 二価フェノールとしてBPC2355部及びBPTMC714部、p-tert-ブチルフェノール74.3部に変更し、ヒドロキシアリール末端ポリシロキサンを使用しなかった以外は、製造例1と同様の方法で製造した。得られた樹脂の粘度平均分子量は22,500、ガラス転移温度は141℃であった。
(Manufacturing Example 15)
The divalent phenol was changed to 2355 parts of BPC, 714 parts of BPTMC, and 74.3 parts of p-tert-butylphenol, and was produced by the same method as in Production Example 1 except that hydroxyaryl-terminated polysiloxane was not used. The viscosity average molecular weight of the obtained resin was 22,500, and the glass transition temperature was 141 ° C.
 (製造例16)
 二価フェノールとしてBPC1914部及びBPOCTMC1417部、p-tert-ブチルフェノール74.3部に変更し、ヒドロキシアリール末端ポリシロキサンを使用しなかった以外は、製造例1と同様の方法で製造した。得られた樹脂の粘度平均分子量は20,900、ガラス転移温度は147℃であった。
(Manufacturing Example 16)
The divalent phenol was changed to 1914 parts of BPC, 1417 parts of BPOCTMC, and 74.3 parts of p-tert-butylphenol, and was produced by the same method as in Production Example 1 except that hydroxyaryl-terminated polysiloxane was not used. The viscosity average molecular weight of the obtained resin was 20,900, and the glass transition temperature was 147 ° C.
 (製造例17)
 二価フェノールとしてBPC2355部及びBPOCTMC810部、p-tert-ブチルフェノール74.3部に変更し、ヒドロキシアリール末端ポリシロキサンを使用しなかった以外は、製造例1と同様の方法で製造した。得られた樹脂の粘度平均分子量は19,100、ガラス転移温度は181℃であった。
(Manufacturing Example 17)
The divalent phenol was changed to 2355 parts of BPC, 810 parts of BPOCTMC, and 74.3 parts of p-tert-butylphenol, and was produced by the same method as in Production Example 1 except that hydroxyaryl-terminated polysiloxane was not used. The viscosity average molecular weight of the obtained resin was 19,100, and the glass transition temperature was 181 ° C.
 (製造例18)
 二価フェノールとしてBP26XA3266部、p-tert-ブチルフェノール74.3部に変更し、ヒドロキシアリール末端ポリシロキサンを使用しなかった以外は、製造例1と同様の方法で製造した。得られた樹脂の粘度平均分子量は19,600、ガラス転移温度は194℃であった。
(Manufacturing Example 18)
The product was produced in the same manner as in Production Example 1 except that the divalent phenol was changed to 3266 parts of BP26XA and 74.3 parts of p-tert-butylphenol and no hydroxyaryl-terminated polysiloxane was used. The viscosity average molecular weight of the obtained resin was 19,600, and the glass transition temperature was 194 ° C.
 (製造例19)
 二価フェノールとしてBPC2856部、p-tert-ブチルフェノール74.3部、ヒドロキシアリール末端ポリシロキサンとしてPDMS KF-2201(p=35(信越化学工業(株)製))1069部に変更した以外は、製造例1と同様の方法で製造した。得られた樹脂の粘度平均分子量は19,500、ガラス転移温度は96℃であった。
(Manufacturing Example 19)
Manufactured except for changing to 2856 parts of BPC and 74.3 parts of p-tert-butylphenol as divalent phenol, and 1069 parts of PDMS KF-2201 (p = 35 (manufactured by Shin-Etsu Chemical Co., Ltd.)) as hydroxyaryl-terminated polysiloxane. It was manufactured by the same method as in Example 1. The viscosity average molecular weight of the obtained resin was 19,500, and the glass transition temperature was 96 ° C.
 [実施例1~6]
 上記製造例1~6で得られた樹脂を、射出成形して3段型樹脂プレートを作製し、成形性、比重、全光線透過率、ヘーズ、耐衝撃性、ドメインサイズ、鉛筆硬度を評価した。評価結果を表1に示した。
[Examples 1 to 6]
The resins obtained in Production Examples 1 to 6 were injection-molded to prepare a three-stage resin plate, and the moldability, specific gravity, total light transmittance, haze, impact resistance, domain size, and pencil hardness were evaluated. .. The evaluation results are shown in Table 1.
 [比較例1~13]
 上記製造例7~19で得られた樹脂を、射出成形して3段型樹脂プレートを作製し、成形性、比重、全光線透過率、ヘーズ、耐衝撃性、ドメインサイズ、鉛筆硬度を評価した。評価結果を表2、3に示した。比較例5、6、12については溶融流動性が悪く、射出成形できなかった。
[Comparative Examples 1 to 13]
The resins obtained in Production Examples 7 to 19 were injection-molded to prepare a three-stage resin plate, and the moldability, specific gravity, total light transmittance, haze, impact resistance, domain size, and pencil hardness were evaluated. .. The evaluation results are shown in Tables 2 and 3. In Comparative Examples 5, 6 and 12, the melt fluidity was poor and injection molding could not be performed.
 [比較例5、6、12]
 比較例5、6、12について、上記製造例11、12、18で得られた樹脂を、真空熱プレス成形して円盤型樹脂プレートを作製し、比重、全光線透過率、ヘーズ、鉛筆硬度を測定した。評価結果を表2、3に示した。
[Comparative Examples 5, 6, 12]
For Comparative Examples 5, 6 and 12, the resins obtained in Production Examples 11, 12 and 18 were vacuum-heat press-molded to prepare a disk-shaped resin plate, and the specific gravity, total light transmittance, haze and pencil hardness were determined. It was measured. The evaluation results are shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 本発明のポリカーボネート-ポリシロキサン樹脂は、透明性、耐衝撃性、耐熱性、成形性、鉛筆硬度、低比重性を高度に両立していることが認められる。 It is recognized that the polycarbonate-polysiloxane resin of the present invention has a high degree of compatibility with transparency, impact resistance, heat resistance, moldability, pencil hardness, and low specific gravity.
 本発明のポリカーボネート-ポリシロキサン樹脂は、透明性、耐衝撃性、耐熱性、成形性、鉛筆硬度、低比重性を高度に両立しており、光学部品、電気・電子機器分野、モビリティ分野において幅広く使用することができる。 The polycarbonate-polysiloxane resin of the present invention has a high degree of compatibility with transparency, impact resistance, heat resistance, moldability, pencil hardness, and low specific gravity, and is widely used in the fields of optical components, electrical / electronic equipment, and mobility. Can be used.

Claims (15)

  1.  ポリカーボネートブロック(A-1)とポリシロキサンブロック(A-2)を含むポリカーボネート-ポリシロキサン樹脂であって、前記樹脂の比重が1.10以下であり、前記樹脂のガラス転移温度が100~190℃であることを特徴とする、ポリカーボネート-ポリシロキサン樹脂。 A polycarbonate-polysiloxane resin containing a polycarbonate block (A-1) and a polysiloxane block (A-2), wherein the specific gravity of the resin is 1.10 or less, and the glass transition temperature of the resin is 100 to 190 ° C. Polycarbonate-polysiloxane resin.
  2.  前記ポリカーボネートブロック(A-1)が、下記式(1)で表される構造単位を含む、請求項1に記載のポリカーボネート-ポリシロキサン樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1)において、R及びRは夫々独立して、水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~18のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~14のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群より選ばれる少なくとも一つの基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1~4の整数であり、Wは単結合もしくは下記式(2)で表される基からなる群より選ばれる少なくとも一つの基である。)
    Figure JPOXMLDOC01-appb-C000002
    (上記式(2)においてR11、R12、R13、R14、R15、R16、R17及びR18は夫々独立して、水素原子、炭素原子数1~18のアルキル基、炭素原子数6~14のアリール基及び炭素原子数7~20のアラルキル基からなる群より選ばれる少なくとも一つの基を表し、R19及びR20は夫々独立して、水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~10のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群より選ばれる少なくとも一つの基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1~10の整数、hは4~7の整数である。)
    The polycarbonate-polysiloxane resin according to claim 1, wherein the polycarbonate block (A-1) contains a structural unit represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the above formula (1), R 1 and R 2 are independent of each other, a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and 6 to 6 carbon atoms. 20 cycloalkyl groups, 6 to 20 carbon atoms cycloalkoxy groups, 2 to 10 carbon atoms alkenyl groups, 6 to 14 carbon atoms aryl groups, 6 to 14 carbon atoms aryloxy groups, carbon atoms Represents at least one group selected from the group consisting of an alkoxy group having a number of 7 to 20 and an alkoxy group having a carbon atom number of 7 to 20, a nitro group, an aldehyde group, a cyano group and a carboxyl group, and if there are a plurality of each, they represent. It may be the same or different, and e and f are integers of 1 to 4, respectively, and W is at least one group selected from the group consisting of a single bond or a group represented by the following formula (2).)
    Figure JPOXMLDOC01-appb-C000002
    (In the above formula (2), R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently hydrogen atoms, alkyl groups having 1 to 18 carbon atoms, and carbon. Represents at least one group selected from the group consisting of an aryl group having 6 to 14 atoms and an aralkyl group having 7 to 20 carbon atoms, and R 19 and R 20 independently represent a hydrogen atom, a halogen atom, and a carbon atom. An alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms, a cycloalkoxy group having 6 to 20 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, An aryl group having 6 to 14 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, and a cyano group. And at least one group selected from the group consisting of carboxyl groups, and if there are a plurality of them, they may be the same or different, and g is an integer of 1 to 10 and h is an integer of 4 to 7.)
  3.  前記ポリシロキサンブロック(A-2)が、下記式(3)で表される構造単位を含む、請求項1又は2に記載のポリカーボネート-ポリシロキサン樹脂。
    Figure JPOXMLDOC01-appb-C000003
    (上記式(3)において、R23、R24、R25及びR26は夫々独立して、水素原子、炭素原子数1~12のアルキル基、及び炭素原子数6~12の置換又は無置換のアリール基からなる群より選ばれる少なくとも一つの基を表し、R21及びR22は夫々独立して、水素原子、ハロゲン原子、炭素原子数1~10のアルキル基及び炭素原子数1~10のアルコキシ基からなる群より選ばれる少なくとも一つの基を表し、pは1~150の自然数である。Xは炭素原子数2~8の二価脂肪族基である。)
    The polycarbonate-polysiloxane resin according to claim 1 or 2, wherein the polysiloxane block (A-2) contains a structural unit represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (In the above formula (3), R 23 , R 24 , R 25 and R 26 are independently substituted or unsubstituted with a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, and 6 to 12 carbon atoms. Represents at least one group selected from the group consisting of aryl groups of, and R 21 and R 22 each independently have a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, and 1 to 10 carbon atoms. Represents at least one group selected from the group consisting of alkoxy groups, p is a natural number from 1 to 150, and X is a divalent aliphatic group having 2 to 8 carbon atoms.)
  4.  前記ポリカーボネートブロック(A-1)が下記式(4)で表される構造単位を含む、請求項1~3のいずれかに記載のポリカーボネート-ポリシロキサン樹脂。
    Figure JPOXMLDOC01-appb-C000004
    (上記式(4)において、R27、R28は夫々独立して、水素原子又は炭素原子数1~4のアルキル基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、i及びjは夫々1~4の整数であり、Yは下記式(5)で表される基からなる群より選ばれる少なくとも一つの基である。)
    Figure JPOXMLDOC01-appb-C000005
    (上記式(5)において、R29、R30、R31は夫々独立して、水素原子又は炭素原子数1~4のアルキル基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、kは1~3の整数である。)
    The polycarbonate-polysiloxane resin according to any one of claims 1 to 3, wherein the polycarbonate block (A-1) contains a structural unit represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000004
    (In the above formula (4), R 27 and R 28 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and if there are a plurality of each, they may be the same or different, i. And j are integers of 1 to 4, respectively, and Y is at least one group selected from the group consisting of the groups represented by the following formula (5).)
    Figure JPOXMLDOC01-appb-C000005
    (In the above formula (5), R 29 , R 30 , and R 31 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and if there are a plurality of each, they may be the same or different. Well, k is an integer from 1 to 3.)
  5.  前記ポリカーボネートブロック(A-1)の構造単位として、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン,1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパンのうち少なくとも一つから誘導される単位を含む、請求項1~4のいずれかに記載のポリカーボネート-ポリシロキサン樹脂。 As the structural unit of the polycarbonate block (A-1), 2,2-bis (4-hydroxy-3-methylphenyl) propane and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane , 1,1-bis (3-methyl-4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane from at least one The polycarbonate-polysiloxane resin according to any one of claims 1 to 4, which comprises a unit to be induced.
  6.  前記ポリシロキサンブロック(A-2)の含有量が、ポリカーボネート-ポリシロキサン樹脂全体を基準にして5~50重量%である、請求項1~5のいずれかに記載のポリカーボネート-ポリシロキサン樹脂。 The polycarbonate-polysiloxane resin according to any one of claims 1 to 5, wherein the content of the polysiloxane block (A-2) is 5 to 50% by weight based on the entire polycarbonate-polysiloxane resin.
  7.  前記ポリカーボネートブロック(A-1)の構造単位として、2,2-ビス(4-ヒドロキシフェニル)プロパンから誘導される単位を含み、前記ポリシロキサンブロック(A-2)の含有量が、ポリカーボネート-ポリシロキサン樹脂全体を基準にして30~70重量%である、請求項1~4のいずれかに記載のポリカーボネート-ポリシロキサン樹脂。 The structural unit of the polycarbonate block (A-1) contains a unit derived from 2,2-bis (4-hydroxyphenyl) propane, and the content of the polysiloxane block (A-2) is polycarbonate-poly. The polycarbonate-polysiloxane resin according to any one of claims 1 to 4, which is 30 to 70% by weight based on the entire siloxane resin.
  8.  前記ポリシロキサンブロック(A-2)の平均シロキサン繰り返し数が5~100である、請求項1~7のいずれかに記載のポリカーボネート-ポリシロキサン樹脂。 The polycarbonate-polysiloxane resin according to any one of claims 1 to 7, wherein the polysiloxane block (A-2) has an average number of siloxane repetitions of 5 to 100.
  9.  前記ポリカーボネート-ポリシロキサン樹脂のポリシロキサンドメインの平均サイズが1~20nmである、請求項1~8のいずれかに記載のポリカーボネート-ポリシロキサン樹脂。 The polycarbonate-polysiloxane resin according to any one of claims 1 to 8, wherein the polysiloxane domain of the polycarbonate-polysiloxane resin has an average size of 1 to 20 nm.
  10.  前記樹脂を2mm厚に成形した成形品の全光線透過率が80%以上である、請求項1~9のいずれかに記載のポリカーボネート-ポリシロキサン樹脂。 The polycarbonate-polysiloxane resin according to any one of claims 1 to 9, wherein the molded product obtained by molding the resin to a thickness of 2 mm has a total light transmittance of 80% or more.
  11.  鉛筆硬度がHB以上である、請求項1~10のいずれかに記載のポリカーボネート-ポリシロキサン樹脂。 The polycarbonate-polysiloxane resin according to any one of claims 1 to 10, wherein the pencil hardness is HB or higher.
  12.  請求項1~11のいずれかに記載のポリカーボネート-ポリシロキサン樹脂を成形して得られる成形品。 A molded product obtained by molding the polycarbonate-polysiloxane resin according to any one of claims 1 to 11.
  13. 請求項1~11のいずれかに記載のポリカーボネート-ポリシロキサン樹脂を成形して得られるフィルム又はシート。 A film or sheet obtained by molding the polycarbonate-polysiloxane resin according to any one of claims 1 to 11.
  14.  請求項1~11のいずれかに記載のポリカーボネート-ポリシロキサン樹脂からなる自動車ランプレンズ又は自動車内外装部材。 An automobile lamp lens or an automobile interior / exterior member made of the polycarbonate-polysiloxane resin according to any one of claims 1 to 11.
  15.  請求項1~11のいずれかに記載のポリカーボネート-ポリシロキサン樹脂からなる照明カバー、樹脂窓又は前面板。 A lighting cover, a resin window or a front plate made of the polycarbonate-polysiloxane resin according to any one of claims 1 to 11.
PCT/JP2021/023099 2020-08-18 2021-06-17 Polycarbonate-polysiloxane resin WO2022038883A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022543299A JPWO2022038883A1 (en) 2020-08-18 2021-06-17
JP2023197356A JP2024009163A (en) 2020-08-18 2023-11-21 Polycarbonate-polysiloxane resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020137923 2020-08-18
JP2020-137923 2020-08-18

Publications (1)

Publication Number Publication Date
WO2022038883A1 true WO2022038883A1 (en) 2022-02-24

Family

ID=80323599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023099 WO2022038883A1 (en) 2020-08-18 2021-06-17 Polycarbonate-polysiloxane resin

Country Status (2)

Country Link
JP (2) JPWO2022038883A1 (en)
WO (1) WO2022038883A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174945A (en) * 1992-12-10 1994-06-24 Idemitsu Petrochem Co Ltd Plastic optical transmission fiber
JP2003529637A (en) * 2000-03-23 2003-10-07 バイエル アクチェンゲゼルシャフト Polyester carbonate and data carrier manufactured using the same
US20080081884A1 (en) * 2006-09-29 2008-04-03 General Electric Company Polycarbonate-polysiloxane copolymer compositions and articles formed therefrom
JP2011046911A (en) * 2009-07-29 2011-03-10 Teijin Chem Ltd Polycarbonate/polydiorganosiloxane copolymer, molding and method for producing the same
JP2012153824A (en) * 2011-01-27 2012-08-16 Teijin Chem Ltd Polycarbonate resin composition and molded article
JP2018510953A (en) * 2015-04-07 2018-04-19 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Block cocondensate of polysiloxane and dihydroxydiphenylcycloalkane (co) polycarbonate
JP2020114893A (en) * 2019-01-17 2020-07-30 帝人株式会社 Resin part for food freezing and refrigerating machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680886B2 (en) * 2009-06-26 2015-03-04 出光興産株式会社 Polycarbonate copolymer, coating solution using the same, and electrophotographic photosensitive member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174945A (en) * 1992-12-10 1994-06-24 Idemitsu Petrochem Co Ltd Plastic optical transmission fiber
JP2003529637A (en) * 2000-03-23 2003-10-07 バイエル アクチェンゲゼルシャフト Polyester carbonate and data carrier manufactured using the same
US20080081884A1 (en) * 2006-09-29 2008-04-03 General Electric Company Polycarbonate-polysiloxane copolymer compositions and articles formed therefrom
JP2011046911A (en) * 2009-07-29 2011-03-10 Teijin Chem Ltd Polycarbonate/polydiorganosiloxane copolymer, molding and method for producing the same
JP2011046913A (en) * 2009-07-29 2011-03-10 Teijin Chem Ltd Polycarbonate/polydiorganosiloxane copolymer
JP2012153824A (en) * 2011-01-27 2012-08-16 Teijin Chem Ltd Polycarbonate resin composition and molded article
JP2018510953A (en) * 2015-04-07 2018-04-19 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Block cocondensate of polysiloxane and dihydroxydiphenylcycloalkane (co) polycarbonate
JP2020114893A (en) * 2019-01-17 2020-07-30 帝人株式会社 Resin part for food freezing and refrigerating machine

Also Published As

Publication number Publication date
JPWO2022038883A1 (en) 2022-02-24
JP2024009163A (en) 2024-01-19

Similar Documents

Publication Publication Date Title
US8962780B2 (en) Polycarbonate-polydiorganosiloxane copolymer
EP3141571B1 (en) Copolycarbonate and composition containing same
JP5684588B2 (en) Polycarbonate resin composition and molded article
TWI567105B (en) Copolycarbonate and composition comprising the same
JP5823944B2 (en) Polycarbonate-polydiorganosiloxane copolymer and method for producing the same
EP2937373B1 (en) Copolycarbonate resin and product comprising same
JP2012246390A (en) Polycarbonate-polydiorganosiloxane copolymer resin, and method for producing the same
JP2007326938A (en) Aromatic polycarbonate resin composition and resin molded product
JP5973282B2 (en) Polycarbonate resin composition and molded body
EP3050908B1 (en) Copolycarbonate and composition comprising same
KR20180078908A (en) Polycarbonate resin composition and article produced therefrom
JP7254588B2 (en) Polycarbonate resin composition and molded article
JP5369296B2 (en) Aromatic polycarbonate resin composition and molded article
WO2022038883A1 (en) Polycarbonate-polysiloxane resin
JP7332389B2 (en) Polycarbonate-polydiorganosiloxane copolymer
JP7260306B2 (en) Resin parts for food freezing and cooling machines
JP2023012168A (en) Polycarbonate-polysiloxane resin and molded article obtained by molding the same
JP5044535B2 (en) Polycarbonate resin composition and molded body thereof
JP7416637B2 (en) Polycarbonate-polysiloxane resin
JP7388831B2 (en) Polycarbonate-polydiorganosiloxane copolymer, its resin composition, and its manufacturing method
JP2023096666A (en) Resin composition and molding obtained by molding the same
JP7348798B2 (en) Polycarbonate-polydiorganosiloxane copolymer and its resin composition
JP7311357B2 (en) Thermally conductive polycarbonate resin composition
JP2022187860A (en) Resin composition for display material and resin component for display material
JP5275762B2 (en) Polycarbonate resin composition and molded body thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543299

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21858033

Country of ref document: EP

Kind code of ref document: A1