WO2022038795A1 - Precious metal sputtering target - Google Patents

Precious metal sputtering target Download PDF

Info

Publication number
WO2022038795A1
WO2022038795A1 PCT/JP2020/034659 JP2020034659W WO2022038795A1 WO 2022038795 A1 WO2022038795 A1 WO 2022038795A1 JP 2020034659 W JP2020034659 W JP 2020034659W WO 2022038795 A1 WO2022038795 A1 WO 2022038795A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering
sputtering target
carbon content
surface roughness
target
Prior art date
Application number
PCT/JP2020/034659
Other languages
French (fr)
Japanese (ja)
Inventor
英士 高田
孝博 小林
幸健 仲野
Original Assignee
松田産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松田産業株式会社 filed Critical 松田産業株式会社
Priority claimed from JP2020153472A external-priority patent/JP7140164B2/en
Publication of WO2022038795A1 publication Critical patent/WO2022038795A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to a noble metal sputtering target that is most suitable for forming a thin film in the semiconductor field.
  • Sputtering is used to form thin films in fine wiring, MEMS, optical devices, LEDs, organic EL, high frequency devices, quartz, etc. in the semiconductor field.
  • an inert gas mainly argon gas
  • a target a plate-shaped film forming material, also called a sputtering target
  • the inert gas atom is ionized, and the gas ion is made to collide with the target surface at high speed and hit violently. This is a technique for forming a thin film by adhering and depositing on the surface.
  • Sputtering can form a film even on materials that are difficult to vacuum-deposit, such as refractory metals and alloys, and has the advantage of being able to handle a wide range of film-forming materials.
  • a sputtering target is subjected to preliminary sputtering for a certain period of time before use (called pre-sputtering) in order to stabilize its sputtering characteristics.
  • Pre-sputtering does not particularly contribute to film formation, but abnormal discharge during pre-sputtering may damage the sputtering target, and frequent generation of particles during pre-sputtering unnecessarily contaminates the inside of the sputtering chamber. There is a problem of doing.
  • An object of the present invention is to provide a precious metal sputtering target capable of suppressing the occurrence of abnormal discharge during pre-sputtering.
  • One aspect of the present invention capable of solving the above problems is a noble metal sputtering target characterized in that the surface roughness Ra of the surface to be sputtered is 10 ⁇ m or less and the carbon content is 10 wtppm or less.
  • the present invention has an excellent effect that the occurrence of abnormal discharge during pre-sputtering can be suppressed.
  • Au sputtering target It is a graph which shows the number of abnormal discharges at the time of pre-sputtering with respect to the surface roughness.
  • Au sputtering target It is a graph which shows the number of abnormal discharges at the time of pre-sputtering with respect to a carbon content.
  • Pt sputtering target It is a graph which shows the number of abnormal discharges at the time of pre-sputtering with respect to the surface roughness.
  • Pt sputtering target It is a graph which shows the number of abnormal discharges at the time of pre-sputtering with respect to a carbon content.
  • Pd sputtering target It is a graph which shows the number of abnormal discharges at the time of pre-sputtering with respect to the surface roughness.
  • Pd sputtering target is a graph showing the number of abnormal discharges during pre-sputtering with respect to the carbon content.
  • Ag sputtering target It is a graph which shows the number of abnormal discharges at the time of pre-sputtering with respect to the surface roughness.
  • Ag sputtering target is a graph showing the number of abnormal discharges during pre-sputtering with respect to the carbon content. It is a schematic diagram which shows the measurement point of the surface roughness of a sputtering target.
  • Sputtering is a technique in which argon ions collide with the surface of a sputtering target, the particles of the film-forming material constituting the sputtering target are violently ejected, and the particles are deposited on the surface of the substrate facing the target to form a thin film. It is called the surface where the surface of the sputtering target, which is opposed to the substrate and contributes to film formation, is sputtered by the collision of argon ions and the ejection of particles. It is known that the surface condition of the surface to be sputtered affects the sputtering characteristics (abnormal discharge, etc.), but the optimum surface condition greatly differs depending on the material of the sputtering target.
  • the optimum surface condition of a sputtering target made of a specific material is applied to the surface condition of a sputtering target made of another material, the same sputtering characteristics may not always be obtained.
  • the optimum surface condition for sputtering characteristics has not been known so far.
  • the noble metal sputtering target is an expensive material, shortening the pre-sputtering time is extremely effective from the viewpoint of cost, and it is important to find the optimum surface state for the noble metal sputtering target.
  • An embodiment of the present invention is a noble metal sputtering target, characterized in that the surface roughness Ra of the surface to be sputtered is 10 ⁇ m or less.
  • the surface roughness Ra of the surface to be sputtered is 10 ⁇ m or less.
  • the embodiment of the present invention is characterized in that the carbon content as an impurity is 10 wtppm or less.
  • the noble metal sputtering target tends to have carbon adhered to it during cleaning in the manufacturing process or from the atmosphere, which causes an abnormal discharge during pre-sputtering.
  • By setting the carbon content to 10 wtppm or less it is possible to suppress such abnormal discharge.
  • a preferred embodiment has a carbon content of 5 wtppm or less, and a more preferred embodiment has a carbon content of 2 wtppm or less.
  • a noble metal sputtering target means a sputtering target made of a single metal of gold, platinum, palladium, or silver, and means an alloy sputtering target that partially contains a noble metal such as a silver alloy. do not do.
  • a single metal unlike the case where the material of the sputtering target is an alloy, the optimum surface state for the sputtering characteristics changes, so that it is difficult to apply the optimum surface state as it is in the case of an alloy.
  • a single metal does not mean to exclude those containing a small amount of other metal components as impurities, and specifically, a total of 1000 wtppm or less of metal impurities may be contained. ..
  • Metal impurities can be analyzed using glow discharge mass spectrometry (GD-MS). If the content of each metal impurity is less than the lower limit of analysis, the lower limit of analysis is calculated as the content.
  • the noble metal sputtering target has different easiness of taking in impurities depending on the type of noble metal, it is particularly effective to limit the content of impurities according to the type of noble metal.
  • the carbon content is preferably 5 wtppm or less.
  • the carbon content is preferably 10 wtppm or less.
  • Au sputtering target An Au raw material having a purity of 4N was melted in a vacuum using a high-purity alumina crucible to prepare an Au ingot. The obtained Au ingot was forged, rolled, and heat-treated to be processed into a sputtering target shape. After that, the surface roughness of the surface to be sputtered was adjusted by lathe processing and CMP polishing of the sputtering target. In addition, in order to investigate the relationship between the carbon content and abnormal discharge, the standard sample is one that does not use lubricating oil when processing the ingot into a sputtering target shape and prevents carbon contamination. A certain amount of carbon powder was added to adjust the carbon content in the sputtering target.
  • Table 1 shows Au sputtering targets (samples) with adjusted surface roughness and carbon content.
  • pre-sputtering was performed under the following conditions, and the number of abnormal discharges was measured by the abnormal discharge monitor attached to the sputtering device.
  • the surface roughness was observed.
  • Ra exceeded 10 ⁇ m
  • the number of abnormal discharges increased sharply.
  • the number of abnormal discharges increased sharply after the carbon content exceeded 5 wtppm.
  • Sputtering device Magnetron system with built-in power supply Manufactured by Shinko Seiki (model: SDH10311) DC power supply: Kyosan Electric Manufacturing Co., Ltd. (Model: HPK06ZI) Power: 0.5kW-1.5kW Pressure: 0.2-0.4 Pa Wafer size: 6 inches Target size: 8 inches Pre-sputtering time: 20 minutes
  • Pt sputtering target A Pt raw material having a purity of 4N was melted in a vacuum using a high-purity alumina crucible to prepare a Pt ingot. The obtained Pt ingot was forged, rolled, and heat-treated to be processed into a sputtering target shape. After that, the surface roughness of the surface to be sputtered was adjusted by lathe processing and CMP polishing of the sputtering target. In addition, when processing the ingot into the target shape, no lubricating oil is used, and the standard sample is one that prevents carbon contamination, and a certain amount of carbon powder is added during dissolution in order to investigate the relationship between the carbon content and abnormal discharge. Addition was added to adjust the carbon content in the sputtering target.
  • Table 2 shows Pt sputtering targets (samples) with adjusted surface roughness and carbon content.
  • pre-sputtering was performed under the above pre-sputtering conditions, and the number of abnormal discharges was measured by the abnormal discharge monitor attached to the sputtering device.
  • the number of abnormal discharges increased sharply.
  • the number of abnormal discharges increased sharply after the carbon content exceeded 10 wtppm.
  • Pd sputtering target A Pd raw material having a purity of 3N5 was melted in vacuum using an alumina crucible to prepare an ingot of Pd. The obtained Pd ingot was forged, rolled, and heat-treated to be processed into a sputtering target shape. After that, the surface roughness of the surface to be sputtered was adjusted by lathe processing and CMP polishing of the sputtering target. In addition, when processing the Pd ingot into the target shape, the standard sample is one that does not use lubricating oil and prevents carbon contamination, and the carbon powder is kept constant during melting in order to investigate the relationship between the carbon content and abnormal discharge. The amount was added to adjust the carbon content in the sputtering target.
  • Table 3 shows Pd sputtering targets (samples) with adjusted surface roughness and carbon content.
  • pre-sputtering was performed under the above pre-sputtering conditions, and the number of abnormal discharges was measured by the abnormal discharge monitor attached to the sputtering device.
  • the number of abnormal discharges increased sharply.
  • the number of abnormal discharges increased sharply after the carbon content exceeded 10 wtppm.
  • An Ag raw material having a purity of 4N5 was melted in a vacuum using a high-purity carbon crucible to prepare an Ag ingot.
  • the obtained Ag ingot was forged, rolled, and heat-treated to be processed into a sputtering target shape. After that, the surface roughness of the surface to be sputtered was adjusted by lathe processing and CMP polishing of the sputtering target.
  • the standard sample is one that does not use lubricating oil and prevents carbon contamination, and the carbon powder is kept constant during melting in order to investigate the relationship between the carbon content and abnormal discharge. The amount was added to adjust the carbon content in the sputtering target.
  • Table 4 shows Ag sputtering targets (samples) with adjusted surface roughness and carbon content.
  • pre-sputtering was performed under the above pre-sputtering conditions, and the number of abnormal discharges was measured by the abnormal discharge monitor attached to the sputtering device. After the surface roughness Ra exceeded 5 ⁇ m, the number of abnormal discharges increased sharply. Further, as shown in FIG. 8, the number of abnormal discharges increased sharply after the carbon content exceeded 5 wtppm.
  • the noble metal sputtering target according to the embodiment of the present invention is useful for forming a thin film in a high frequency device, a crystal, a MEMS, an optical device, an LED, an organic EL, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

In the present invention, a precious metal sputtering target has a sputtering surface roughness Ra of not more than10 µm and a carbon content of not more than 10 wt ppm. A gold sputtering target has a sputtering surface roughness Ra of not more than 10 µm and a carbon content of not more than 5 wt ppm. A platinum sputtering target has a sputtering surface roughness Ra of not more than 5 µm and a carbon content of not more than 10 wt ppm. A palladium sputtering target has a sputtering surface roughness Ra of not more than 5 µm and a carbon content of not more than 10 wt ppm. A silver sputtering target has a sputtering surface roughness Ra of no more than 10 µm and a carbon content of no more than 5 wt ppm. The present invention relates to a precious metal sputtering target highly suitable for formation of thin films in the field of semiconductors, and addresses the problem of providing a precious metal sputtering target that can suppress an abnormal electrical discharge that could occur during pre-sputtering.

Description

貴金属スパッタリングターゲットPrecious metal sputtering target
 本発明は、半導体分野における薄膜の形成に最適な貴金属スパッタリングターゲットに関する。 The present invention relates to a noble metal sputtering target that is most suitable for forming a thin film in the semiconductor field.
 スパッタリングは、半導体分野における微細配線、MEMS、光デバイス、LED、有機EL、高周波デバイス、水晶などにおける薄膜を形成するのに用いられている。スパッタリングとは、真空中で不活性ガス(主にアルゴンガス)を導入し、ターゲット(プレート状の成膜材料であって、スパッタリングターゲットとも呼ばれる。)にマイナスの電圧を印加してグロー放電を発生させ、不活性ガス原子をイオン化し、高速でターゲット表面にガスイオンを衝突させて激しく叩き、ターゲットを構成する成膜材料の粒子(原子、分子)を激しく弾き出し、勢いよく、基材や基板の表面に付着、堆積させ薄膜を形成する技術である。 Sputtering is used to form thin films in fine wiring, MEMS, optical devices, LEDs, organic EL, high frequency devices, quartz, etc. in the semiconductor field. In sputtering, an inert gas (mainly argon gas) is introduced in a vacuum, and a negative voltage is applied to a target (a plate-shaped film forming material, also called a sputtering target) to generate a glow discharge. The inert gas atom is ionized, and the gas ion is made to collide with the target surface at high speed and hit violently. This is a technique for forming a thin film by adhering and depositing on the surface.
 スパッタリングでは、高融点金属や合金など真空蒸着が困難な材料でも成膜が可能であり、広範囲な成膜材料に対応することができるという特長を有する。通常、スパッタリングターゲットは、そのスパッタ特性を安定させるために、使用前に一定時間予備的なスパッタが実施される(プレ・スパッタと呼ばれる)。プレ・スパッタは特に成膜に寄与しないが、プレ・スパッタ時に異常放電が発生するとスパッタリングターゲットにダメージを与えることがあり、また、プレ・スパッタ時にパーティクルが多発すると、スパッタチャンバ内を不必要に汚染するという問題がある。 Sputtering can form a film even on materials that are difficult to vacuum-deposit, such as refractory metals and alloys, and has the advantage of being able to handle a wide range of film-forming materials. Generally, a sputtering target is subjected to preliminary sputtering for a certain period of time before use (called pre-sputtering) in order to stabilize its sputtering characteristics. Pre-sputtering does not particularly contribute to film formation, but abnormal discharge during pre-sputtering may damage the sputtering target, and frequent generation of particles during pre-sputtering unnecessarily contaminates the inside of the sputtering chamber. There is a problem of doing.
 貴金属スパッタリングターゲットの場合、プレ・スパッタ時の異常放電が比較的発生しやすく、また、パーティクルが発生し易いという傾向があった。プレ・スパッタ時間を長くするなどの対策も考えられるが、それによる生産性の低下は避けられず、逆に高価な貴金属スパッタリングターゲットは、プレ・スパッタ時間を極力短縮することが求められている。貴金属スパッタリングターゲットに関する先行技術として、例えば以下のものが知られている。 In the case of a precious metal sputtering target, abnormal discharge during pre-sputtering was relatively easy to occur, and particles tended to be generated easily. Although measures such as lengthening the pre-sputtering time can be considered, a decrease in productivity due to this is unavoidable, and conversely, an expensive precious metal sputtering target is required to shorten the pre-sputtering time as much as possible. The following are known as prior arts related to precious metal sputtering targets.
国際公開第2017/209281号International Publication No. 2017/202981
 本発明は、プレ・スパッタ時における異常放電の発生を抑制することができる貴金属スパッタリングターゲットを提供することを課題とする。 An object of the present invention is to provide a precious metal sputtering target capable of suppressing the occurrence of abnormal discharge during pre-sputtering.
 上記課題を解決することができる本発明の一態様は、スパッタされる面の表面粗さRaが10μm以下であり、炭素含有量が10wtppm以下であることを特徴とする貴金属スパッタリングターゲットである。 One aspect of the present invention capable of solving the above problems is a noble metal sputtering target characterized in that the surface roughness Ra of the surface to be sputtered is 10 μm or less and the carbon content is 10 wtppm or less.
 本発明によれば、プレ・スパッタ時における異常放電の発生を抑制することができるという優れた効果を有する。 According to the present invention, it has an excellent effect that the occurrence of abnormal discharge during pre-sputtering can be suppressed.
Auスパッタリングターゲット:表面粗さに対するプレ・スパッタ時の異常放電回数を示すグラフである。Au sputtering target: It is a graph which shows the number of abnormal discharges at the time of pre-sputtering with respect to the surface roughness. Auスパッタリングターゲット:炭素含有量に対するプレ・スパッタ時の異常放電回数を示すグラフである。Au sputtering target: It is a graph which shows the number of abnormal discharges at the time of pre-sputtering with respect to a carbon content. Ptスパッタリングターゲット:表面粗さに対するプレ・スパッタ時の異常放電回数を示すグラフである。Pt sputtering target: It is a graph which shows the number of abnormal discharges at the time of pre-sputtering with respect to the surface roughness. Ptスパッタリングターゲット:炭素含有量に対するプレ・スパッタ時の異常放電回数を示すグラフである。Pt sputtering target: It is a graph which shows the number of abnormal discharges at the time of pre-sputtering with respect to a carbon content. Pdスパッタリングターゲット:表面粗さに対するプレ・スパッタ時の異常放電回数を示すグラフである。Pd sputtering target: It is a graph which shows the number of abnormal discharges at the time of pre-sputtering with respect to the surface roughness. Pdスパッタリングターゲット:炭素含有量に対するプレ・スパッタ時の異常放電回数を示すグラフである。Pd sputtering target: is a graph showing the number of abnormal discharges during pre-sputtering with respect to the carbon content. Agスパッタリングターゲット:表面粗さに対するプレ・スパッタ時の異常放電回数を示すグラフである。Ag sputtering target: It is a graph which shows the number of abnormal discharges at the time of pre-sputtering with respect to the surface roughness. Agスパッタリングターゲット:炭素含有量に対するプレ・スパッタ時の異常放電回数を示すグラフである。Ag sputtering target: is a graph showing the number of abnormal discharges during pre-sputtering with respect to the carbon content. スパッタリングターゲットの表面粗さの測定箇所を示す模式図である。It is a schematic diagram which shows the measurement point of the surface roughness of a sputtering target.
 スパッタリングは、スパッタリングターゲット表面にアルゴンイオンを衝突させて、スパッタリングターゲットを構成する成膜材料の粒子を激しく弾き出し、ターゲットに対向する基板の表面に粒子を堆積させて薄膜を形成する技術である。アルゴンイオンが衝突して粒子が弾き出され、基板に対向して成膜に寄与するスパッタリングターゲットの表面をスパッタされる面という。スパッタされる面の表面状態は、スパッタ特性(異常放電など)に影響を与えることが知られているが、その最適な表面状態は、スパッタリングターゲットの材質によって大きく異なる。 Sputtering is a technique in which argon ions collide with the surface of a sputtering target, the particles of the film-forming material constituting the sputtering target are violently ejected, and the particles are deposited on the surface of the substrate facing the target to form a thin film. It is called the surface where the surface of the sputtering target, which is opposed to the substrate and contributes to film formation, is sputtered by the collision of argon ions and the ejection of particles. It is known that the surface condition of the surface to be sputtered affects the sputtering characteristics (abnormal discharge, etc.), but the optimum surface condition greatly differs depending on the material of the sputtering target.
 したがって、特定の材質からなるスパッタリングターゲットの最適な表面状態を他の材質からなるスパッタリングターゲットの表面状態に適用しても、同様のスパッタ特性が得られるとは限らない。貴金属スパッタリングターゲットの場合、これまでスパッタ特性に最適な表面状態というものが知られていなかった。特に、貴金属スパッタリングターゲットは高価な材料であるため、プレ・スパッタ時間を短くすることは、コストの観点から極めて有効であり、貴金属スパッタリングターゲットに最適な表面状態を見出すことは重要である。 Therefore, even if the optimum surface condition of a sputtering target made of a specific material is applied to the surface condition of a sputtering target made of another material, the same sputtering characteristics may not always be obtained. In the case of precious metal sputtering targets, the optimum surface condition for sputtering characteristics has not been known so far. In particular, since the noble metal sputtering target is an expensive material, shortening the pre-sputtering time is extremely effective from the viewpoint of cost, and it is important to find the optimum surface state for the noble metal sputtering target.
 本発明の実施形態は、貴金属スパッタリングターゲットであって、スパッタされる面の表面粗さRaが10μm以下であることを特徴とするものである。スパッタされる面の表面粗さRaを10μm以下とすることにより、プレ・スパッタ時における異常放電の発生を顕著に低減することが可能となる。より好ましい実施形態は、表面粗さRaが5μm以下である。さらに好ましい実施形態は、表面粗さRaが2μm以下である。 An embodiment of the present invention is a noble metal sputtering target, characterized in that the surface roughness Ra of the surface to be sputtered is 10 μm or less. By setting the surface roughness Ra of the surface to be sputtered to 10 μm or less, it is possible to significantly reduce the occurrence of abnormal discharge during pre-sputtering. A more preferable embodiment has a surface roughness Ra of 5 μm or less. A more preferable embodiment has a surface roughness Ra of 2 μm or less.
 また、本発明の実施形態は、不純物である炭素含有量が10wtppm以下であることを特徴とする。貴金属スパッタリングターゲットは、その製造工程における洗浄時や大気中から、炭素が付着し易く、プレ・スパッタ時において異常放電の原因となる。炭素含有量を10wtppm以下とすることにより、このような異常放電を抑制することが可能となる。好ましい実施形態は、炭素含有量が5wtppm以下であり、より好ましい実施形態は、炭素含有量が2wtppm以下である。 Further, the embodiment of the present invention is characterized in that the carbon content as an impurity is 10 wtppm or less. The noble metal sputtering target tends to have carbon adhered to it during cleaning in the manufacturing process or from the atmosphere, which causes an abnormal discharge during pre-sputtering. By setting the carbon content to 10 wtppm or less, it is possible to suppress such abnormal discharge. A preferred embodiment has a carbon content of 5 wtppm or less, and a more preferred embodiment has a carbon content of 2 wtppm or less.
 本願明細書において、貴金属スパッタリングターゲットは、金、白金、パラジウム、銀のいずれかの単一の金属からなるスパッタリングターゲットを意味し、銀合金などの貴金属を一部に含むような合金スパッタリングターゲットを意味しない。単一の金属からなる場合、スパッタリングターゲットの材質が合金の場合と異なり、スパッタ特性に最適な表面状態が変化するため、合金の場合に最適な表面状態をそのまま適用することが難しい。なお、本願明細書において、単一の金属とは、不純物として他の金属成分を微量に含むものまで除くことを意味せず、具体的には金属不純物を合計で1000wtppm以下含有していてもよい。金属不純物は、グロー放電質量分析(GD-MS)を用いて分析することができる。また、各金属不純物の含有量が、分析下限値未満の場合には、分析下限値をその含有量として算出する。 As used herein, a noble metal sputtering target means a sputtering target made of a single metal of gold, platinum, palladium, or silver, and means an alloy sputtering target that partially contains a noble metal such as a silver alloy. do not do. In the case of a single metal, unlike the case where the material of the sputtering target is an alloy, the optimum surface state for the sputtering characteristics changes, so that it is difficult to apply the optimum surface state as it is in the case of an alloy. In addition, in the present specification, a single metal does not mean to exclude those containing a small amount of other metal components as impurities, and specifically, a total of 1000 wtppm or less of metal impurities may be contained. .. Metal impurities can be analyzed using glow discharge mass spectrometry (GD-MS). If the content of each metal impurity is less than the lower limit of analysis, the lower limit of analysis is calculated as the content.
 貴金属スパッタリングターゲットは、貴金属の種類によって、不純物の取り込み易さが異なるため、貴金属の種類に応じて、不純物の含有量を制限することは特に効果的である。金(Au)又は銀(Ag)からなるスパッタリングターゲットにおいては、炭素の各含有量が5wtppm以下とすることが好ましい。白金(Pt)又はパラジウム(Pd)からなるスパッタリングターゲットにおいては、炭素の各含有量が10wtppm以下とすることが好ましい。 Since the noble metal sputtering target has different easiness of taking in impurities depending on the type of noble metal, it is particularly effective to limit the content of impurities according to the type of noble metal. In a sputtering target made of gold (Au) or silver (Ag), the carbon content is preferably 5 wtppm or less. In the sputtering target made of platinum (Pt) or palladium (Pd), the carbon content is preferably 10 wtppm or less.
 以下、本願明細書に記載されるスパッタリングターゲットの各種物性評価は、以下の方法を用いて行った。
(スパッタリングターゲットの表面粗さ)
 表面粗さの測定に使用した装置及び測定箇所を以下に示す。
  測定装置:接触式表面粗さ測定器(東京精密製)
    型式:SURFCOM 130A
 JIS規格:JIS B 0601-2001
 表面粗さの測定に供するサンプルは、スパッタリングターゲットの表層部(スパッタされる面)について、図7の●に示すように、中心部及び半径の約1/4の点(外周に近い側)の計2か所から抽出する。抽出した2か所のサンプルについて、表面粗さを測定し、その平均値を求めた。
Hereinafter, various physical property evaluations of the sputtering targets described in the present specification were performed by using the following methods.
(Surface roughness of sputtering target)
The equipment and measurement points used to measure the surface roughness are shown below.
Measuring device: Contact type surface roughness measuring instrument (manufactured by Tokyo Seimitsu)
Model: SURFCOM 130A
JIS standard: JIS B 0601-2001
The sample used for the surface roughness measurement is the surface layer (sputtered surface) of the sputtering target at the center and about 1/4 of the radius (the side closer to the outer circumference) as shown by ● in FIG. Extract from a total of 2 locations. The surface roughness of the two extracted samples was measured, and the average value was calculated.
(スパッタリングターゲットの炭素含有量)
 炭素含有量の測定に使用した装置及び測定箇所を以下に示す。
  測定装置:堀場製作所、EMIA-920V
  分析方法:非分散赤外線吸収法
 炭素含有量の測定に供するサンプルは、スパッタリングターゲットの2箇所から端材を切り出す。切り出したサンプルについて、酸洗浄後、アセトン洗浄し、乾燥させた。洗浄後、2つのサンプルについて、炭素含有量を測定し、その平均値を求めた。なお、スパッタリングターゲットの極端な場所(例えば、外周端など)からの端材の切り出しは避けた。
(Carbon content of sputtering target)
The equipment and measurement points used to measure the carbon content are shown below.
Measuring device: HORIBA, Ltd., EMIA-920V
Analytical method: Non-dispersed infrared absorption method For the sample used for carbon content measurement, scraps are cut out from two points of the sputtering target. The cut out sample was pickled, washed with acetone, and dried. After washing, the carbon content of the two samples was measured and the average value was calculated. It should be noted that cutting out of scraps from an extreme location of the sputtering target (for example, the outer peripheral edge) was avoided.
 次に、本発明の実施例等について説明する。なお、以下の実施例は、あくまで代表的な例を示しているもので、本発明はこれらの実施例に制限される必要はなく、明細書に記載される技術思想の範囲で解釈されるべきものである。 Next, examples and the like of the present invention will be described. It should be noted that the following examples show only representative examples, and the present invention does not have to be limited to these examples and should be interpreted within the scope of the technical idea described in the specification. It is a thing.
(Auスパッタリングターゲット)
 純度4NのAu原料を高純度アルミナ坩堝を用いて真空溶解し、Auのインゴットを作製した。得られたAuのインゴットを鍛造、圧延、熱処理を施して、スパッタリングターゲット形状に加工した。その後、スパッタリングターゲットを旋盤加工及びCMP研磨を行うことにより、スパッタされる面の表面粗さを調整した。また、インゴットからスパッタリングターゲット形状に加工する際に潤滑油等を使用せず、炭素混入を防止したものを基準のサンプルとし、炭素含有量と異常放電の関係性を調査するため、溶解の際にカーボン粉末を一定量添加して、スパッタリングターゲット中の炭素含有量を調整した。
(Au sputtering target)
An Au raw material having a purity of 4N was melted in a vacuum using a high-purity alumina crucible to prepare an Au ingot. The obtained Au ingot was forged, rolled, and heat-treated to be processed into a sputtering target shape. After that, the surface roughness of the surface to be sputtered was adjusted by lathe processing and CMP polishing of the sputtering target. In addition, in order to investigate the relationship between the carbon content and abnormal discharge, the standard sample is one that does not use lubricating oil when processing the ingot into a sputtering target shape and prevents carbon contamination. A certain amount of carbon powder was added to adjust the carbon content in the sputtering target.
 表面粗さと炭素含有量を調整したAuスパッタリングターゲット(サンプル)を表1に示す。表面粗さと炭素含有量を調整した各サンプルについて、以下の条件で、プレ・スパッタを実施し、スパッタ装置に付属の異常放電モニターで異常放電回数を測定した結果、図1に示す通り、表面粗さRaが10μmを超えてから、異常放電回数が急激に増加した。また、図2に示す通り、炭素含有量が5wtppmを超えてから、異常放電回数が急激に増加した。
(プレ・スパッタの条件)
  スパッタ装置:電源内蔵型マグネトロン方式
         神港精機製(型式:SDH10311)
    DC電源:京三製作所(型式:HPK06ZI)
    パワー:0.5kw~1.5kW
    圧力:0.2~0.4Pa
    ウエハーサイズ:6インチ
    ターゲットサイズ:8インチ
    プレ・スパッタ時間:20分
Table 1 shows Au sputtering targets (samples) with adjusted surface roughness and carbon content. For each sample whose surface roughness and carbon content were adjusted, pre-sputtering was performed under the following conditions, and the number of abnormal discharges was measured by the abnormal discharge monitor attached to the sputtering device. As a result, as shown in FIG. 1, the surface roughness was observed. After Ra exceeded 10 μm, the number of abnormal discharges increased sharply. Further, as shown in FIG. 2, the number of abnormal discharges increased sharply after the carbon content exceeded 5 wtppm.
(Pre-sputtering conditions)
Sputtering device: Magnetron system with built-in power supply Manufactured by Shinko Seiki (model: SDH10311)
DC power supply: Kyosan Electric Manufacturing Co., Ltd. (Model: HPK06ZI)
Power: 0.5kW-1.5kW
Pressure: 0.2-0.4 Pa
Wafer size: 6 inches Target size: 8 inches Pre-sputtering time: 20 minutes
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(Ptスパッタリングターゲット)
 純度4NのPt原料を高純度アルミナ坩堝を用いて真空溶解し、Ptのインゴットを作製した。得られたPtインゴットを鍛造、圧延、熱処理を施して、スパッタリングターゲット形状に加工した。その後、スパッタリングターゲットを旋盤加工及びCMP研磨を行うことにより、スパッタされる面の表面粗さを調整した。また、インゴットからターゲット形状に加工する際に潤滑油等を使用せず、炭素混入を防止したものを基準サンプルとし、炭素含有量と異常放電の関係性を調べるために溶解時にカーボン粉末を一定量添加して、スパッタリングターゲット中の炭素含有量を調整した。
(Pt sputtering target)
A Pt raw material having a purity of 4N was melted in a vacuum using a high-purity alumina crucible to prepare a Pt ingot. The obtained Pt ingot was forged, rolled, and heat-treated to be processed into a sputtering target shape. After that, the surface roughness of the surface to be sputtered was adjusted by lathe processing and CMP polishing of the sputtering target. In addition, when processing the ingot into the target shape, no lubricating oil is used, and the standard sample is one that prevents carbon contamination, and a certain amount of carbon powder is added during dissolution in order to investigate the relationship between the carbon content and abnormal discharge. Addition was added to adjust the carbon content in the sputtering target.
 表面粗さと炭素含有量を調整したPtスパッタリングターゲット(サンプル)を表2に示す。表面粗さと炭素含有量を調整した各サンプルについて、上記のプレ・スパッタ条件でプレ・スパッタを実施し、スパッタ装置に付属の異常放電モニターで異常放電回数を測定した結果、図3に示す通り、表面粗さRaが5μmを超えてから、異常放電回数が急激に増加した。また、図4に示す通り、炭素含有量が10wtppmを超えてから、異常放電回数が急激に増加した。 Table 2 shows Pt sputtering targets (samples) with adjusted surface roughness and carbon content. For each sample whose surface roughness and carbon content were adjusted, pre-sputtering was performed under the above pre-sputtering conditions, and the number of abnormal discharges was measured by the abnormal discharge monitor attached to the sputtering device. As a result, as shown in FIG. After the surface roughness Ra exceeded 5 μm, the number of abnormal discharges increased sharply. Further, as shown in FIG. 4, the number of abnormal discharges increased sharply after the carbon content exceeded 10 wtppm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(Pdスパッタリングターゲット)
 純度3N5のPd原料をアルミナ坩堝を用いて真空溶解し、Pdのインゴットを作製した。得られたPdインゴットを鍛造、圧延、熱処理を施して、スパッタリングターゲット形状に加工した。その後、スパッタリングターゲットを旋盤加工及びCMP研磨を行うことにより、スパッタされる面の表面粗さを調整した。また、Pdインゴットからターゲット形状に加工する際に潤滑油等を使用せず、炭素混入を防止したものを基準サンプルとし、炭素含有量と異常放電の関係性を調べるために溶解時にカーボン粉末を一定量添加して、スパッタリングターゲット中の炭素含有量を調整した。
(Pd sputtering target)
A Pd raw material having a purity of 3N5 was melted in vacuum using an alumina crucible to prepare an ingot of Pd. The obtained Pd ingot was forged, rolled, and heat-treated to be processed into a sputtering target shape. After that, the surface roughness of the surface to be sputtered was adjusted by lathe processing and CMP polishing of the sputtering target. In addition, when processing the Pd ingot into the target shape, the standard sample is one that does not use lubricating oil and prevents carbon contamination, and the carbon powder is kept constant during melting in order to investigate the relationship between the carbon content and abnormal discharge. The amount was added to adjust the carbon content in the sputtering target.
 表面粗さと炭素含有量を調整したPdスパッタリングターゲット(サンプル)を表3に示す。表面粗さと炭素含有量を調整した各サンプルについて、上記のプレ・スパッタ条件でプレ・スパッタを実施し、スパッタ装置に付属の異常放電モニターで異常放電回数を測定した結果、図5に示す通り、表面粗さRaが5μmを超えてから、異常放電回数が急激に増加した。また、図6に示す通り、炭素含有量が10wtppmを超えてから、異常放電回数が急激に増加した。 Table 3 shows Pd sputtering targets (samples) with adjusted surface roughness and carbon content. For each sample whose surface roughness and carbon content were adjusted, pre-sputtering was performed under the above pre-sputtering conditions, and the number of abnormal discharges was measured by the abnormal discharge monitor attached to the sputtering device. As a result, as shown in FIG. After the surface roughness Ra exceeded 5 μm, the number of abnormal discharges increased sharply. Further, as shown in FIG. 6, the number of abnormal discharges increased sharply after the carbon content exceeded 10 wtppm.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(Agスパッタリングターゲット)
 純度4N5のAg原料を高純度カーボン坩堝を用いて真空溶解し、Agのインゴットを作製した。得られたAgインゴットを鍛造、圧延、熱処理を施して、スパッタリングターゲット形状に加工した。その後、スパッタリングターゲットを旋盤加工及びCMP研磨を行うことにより、スパッタされる面の表面粗さを調整した。また、Agインゴットからターゲット形状に加工する際に潤滑油等を使用せず、炭素混入を防止したものを基準サンプルとし、炭素含有量と異常放電の関係性を調べるために溶解時にカーボン粉末を一定量添加して、スパッタリングターゲット中の炭素含有量を調整した。
(Ag sputtering target)
An Ag raw material having a purity of 4N5 was melted in a vacuum using a high-purity carbon crucible to prepare an Ag ingot. The obtained Ag ingot was forged, rolled, and heat-treated to be processed into a sputtering target shape. After that, the surface roughness of the surface to be sputtered was adjusted by lathe processing and CMP polishing of the sputtering target. In addition, when processing the Ag ingot into the target shape, the standard sample is one that does not use lubricating oil and prevents carbon contamination, and the carbon powder is kept constant during melting in order to investigate the relationship between the carbon content and abnormal discharge. The amount was added to adjust the carbon content in the sputtering target.
 表面粗さと炭素含有量を調整したAgスパッタリングターゲット(サンプル)を表4に示す。表面粗さと炭素含有量を調整した各サンプルについて、上記のプレ・スパッタ条件でプレ・スパッタを実施し、スパッタ装置に付属の異常放電モニターで異常放電回数を測定した結果、図7に示す通り、表面粗さRaが5μmを超えてから、異常放電回数が急激に増加した。また、図8に示す通り、炭素含有量が5wtppmを超えてから、異常放電回数が急激に増加した。 Table 4 shows Ag sputtering targets (samples) with adjusted surface roughness and carbon content. For each sample whose surface roughness and carbon content were adjusted, pre-sputtering was performed under the above pre-sputtering conditions, and the number of abnormal discharges was measured by the abnormal discharge monitor attached to the sputtering device. After the surface roughness Ra exceeded 5 μm, the number of abnormal discharges increased sharply. Further, as shown in FIG. 8, the number of abnormal discharges increased sharply after the carbon content exceeded 5 wtppm.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明によれば、プレ・スパッタ時における異常放電の発生を抑制することができるという優れた効果を有する。本発明の実施形態に係る貴金属スパッタリングターゲットは、高周波デバイス、水晶、MEMS、光デバイス、LED、有機EL、などにおける薄膜を形成するのに有用である。 According to the present invention, it has an excellent effect that the occurrence of abnormal discharge during pre-sputtering can be suppressed. The noble metal sputtering target according to the embodiment of the present invention is useful for forming a thin film in a high frequency device, a crystal, a MEMS, an optical device, an LED, an organic EL, and the like.

Claims (5)

  1.  スパッタされる面の表面粗さRaが10μm以下であり、炭素含有量が10wtppm以下であることを特徴とする貴金属スパッタリングターゲット。 A precious metal sputtering target characterized in that the surface roughness Ra of the surface to be sputtered is 10 μm or less and the carbon content is 10 wtppm or less.
  2.  スパッタされる面の表面粗さRaが10μm以下であり、炭素含有量が5wtppm以下であることを特徴とする金スパッタリングターゲット。 A gold sputtering target characterized in that the surface roughness Ra of the surface to be sputtered is 10 μm or less and the carbon content is 5 wtppm or less.
  3.  スパッタされる面の表面粗さRaが5μm以下であり、炭素含有量が10wtppm以下であることを特徴とする白金スパッタリングターゲット。 A platinum sputtering target characterized in that the surface roughness Ra of the surface to be sputtered is 5 μm or less and the carbon content is 10 wtppm or less.
  4.  スパッタされる面の表面粗さRaが5μm以下であり、炭素含有量が10wtppm以下であることを特徴とするパラジウムスパッタリングターゲット。 A palladium sputtering target characterized in that the surface roughness Ra of the surface to be sputtered is 5 μm or less and the carbon content is 10 wtppm or less.
  5.  スパッタされる面の表面粗さRaが10μm以下であり、炭素含有量が5wtppm以下であることを特徴とする銀スパッタリングターゲット。
     
    A silver sputtering target characterized in that the surface roughness Ra of the surface to be sputtered is 10 μm or less and the carbon content is 5 wtppm or less.
PCT/JP2020/034659 2020-08-17 2020-09-14 Precious metal sputtering target WO2022038795A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020137355 2020-08-17
JP2020-137355 2020-08-17
JP2020153472A JP7140164B2 (en) 2020-08-17 2020-09-14 precious metal sputtering target
JP2020-153472 2020-09-14

Publications (1)

Publication Number Publication Date
WO2022038795A1 true WO2022038795A1 (en) 2022-02-24

Family

ID=80322901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034659 WO2022038795A1 (en) 2020-08-17 2020-09-14 Precious metal sputtering target

Country Status (2)

Country Link
TW (1) TWI830035B (en)
WO (1) WO2022038795A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269639A (en) * 1998-03-24 1999-10-05 Sumitomo Metal Mining Co Ltd Method for regenerating sputtering target
JP2001140063A (en) * 1999-09-23 2001-05-22 Praxair St Technol Inc Sputtering target having prolonged life
JP2001316808A (en) * 2000-05-09 2001-11-16 Toshiba Corp Sputtering target
JP2002146521A (en) * 2000-11-10 2002-05-22 Nikko Materials Co Ltd Method for manufacturing gold target
JP2006225696A (en) * 2005-02-16 2006-08-31 Toshiba Corp Sputtering target, high refractive index film, its production method, and antireflection film and display unit using the same
WO2010038642A1 (en) * 2008-09-30 2010-04-08 日鉱金属株式会社 High-purity copper or high-purity copper alloy sputtering target, process for manufacturing the sputtering target, and high-purity copper or high-purity copper alloy sputtered film
WO2019187311A1 (en) * 2018-03-26 2019-10-03 Jx金属株式会社 Sputtering target member and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5159962B1 (en) * 2012-01-10 2013-03-13 三菱マテリアル株式会社 Silver alloy sputtering target for forming conductive film and method for producing the same
JP6729344B2 (en) * 2016-12-20 2020-07-22 三菱マテリアル株式会社 Ag alloy sputtering target and Ag alloy film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269639A (en) * 1998-03-24 1999-10-05 Sumitomo Metal Mining Co Ltd Method for regenerating sputtering target
JP2001140063A (en) * 1999-09-23 2001-05-22 Praxair St Technol Inc Sputtering target having prolonged life
JP2001316808A (en) * 2000-05-09 2001-11-16 Toshiba Corp Sputtering target
JP2002146521A (en) * 2000-11-10 2002-05-22 Nikko Materials Co Ltd Method for manufacturing gold target
JP2006225696A (en) * 2005-02-16 2006-08-31 Toshiba Corp Sputtering target, high refractive index film, its production method, and antireflection film and display unit using the same
WO2010038642A1 (en) * 2008-09-30 2010-04-08 日鉱金属株式会社 High-purity copper or high-purity copper alloy sputtering target, process for manufacturing the sputtering target, and high-purity copper or high-purity copper alloy sputtered film
WO2019187311A1 (en) * 2018-03-26 2019-10-03 Jx金属株式会社 Sputtering target member and method for producing same

Also Published As

Publication number Publication date
TW202210646A (en) 2022-03-16
TWI830035B (en) 2024-01-21

Similar Documents

Publication Publication Date Title
KR102134781B1 (en) Method for producing sputtering target, and sputtering target
KR101854009B1 (en) Silver-alloy sputtering target for conductive-film formation, and method for producing same
JP2010013678A (en) Copper sputtering target material and sputtering method
WO2022038795A1 (en) Precious metal sputtering target
JP2022033675A (en) Noble metal sputtering target
TW201425616A (en) Sputtering target for forming cu alloy thin film, and method for manufacturing same
TWI827911B (en) Precious metal sputtering target
TWI602931B (en) Aluminum sputtering target
JP5830907B2 (en) Silver alloy sputtering target for forming conductive film and method for producing the same
JP5830908B2 (en) Silver alloy sputtering target for forming conductive film and method for producing the same
KR20210103593A (en) Gold sputtering target
JP5669014B2 (en) Silver alloy sputtering target for forming conductive film and method for producing the same
KR19990044398A (en) Aluminum or aluminum alloy sputtering target
US11837449B2 (en) Ti-Nb alloy sputtering target and production method thereof
KR20220165676A (en) Component for film formation apparatus, and film formation apparatus provided with component for film formation apparatus
KR102224969B1 (en) Sputtering target capable of stabilizing ignition
WO2019069714A1 (en) Sputtering target
TW202246534A (en) Ag alloy film, and Ag alloy sputtering target
JP2004084065A (en) Silver alloy sputtering target and its producing method
JP6652007B2 (en) Ni-V alloy sputtering target
JP6636799B2 (en) Copper alloy sputtering target and evaluation method thereof
WO2015099119A1 (en) High-purity copper or copper alloy sputtering target, and method for producing same
WO2024084878A1 (en) Au sputtering target
JP2000239835A (en) Sputtering target
JP6853458B2 (en) Ag alloy sputtering target and Ag alloy film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950360

Country of ref document: EP

Kind code of ref document: A1