WO2022036580A1 - 一种并联电池管理方法 - Google Patents

一种并联电池管理方法 Download PDF

Info

Publication number
WO2022036580A1
WO2022036580A1 PCT/CN2020/109962 CN2020109962W WO2022036580A1 WO 2022036580 A1 WO2022036580 A1 WO 2022036580A1 CN 2020109962 W CN2020109962 W CN 2020109962W WO 2022036580 A1 WO2022036580 A1 WO 2022036580A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
value
battery
voltage
parallel
Prior art date
Application number
PCT/CN2020/109962
Other languages
English (en)
French (fr)
Inventor
肖瑞
黄颖
吴冬雷
Original Assignee
微宏有限责任公司(德国)
微宏公司
微宏动力***(湖州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 微宏有限责任公司(德国), 微宏公司, 微宏动力***(湖州)有限公司 filed Critical 微宏有限责任公司(德国)
Priority to CN202080032200.9A priority Critical patent/CN116368704A/zh
Priority to EP20932837.6A priority patent/EP3985781A4/en
Priority to US17/607,899 priority patent/US20220376518A1/en
Priority to PCT/CN2020/109962 priority patent/WO2022036580A1/zh
Publication of WO2022036580A1 publication Critical patent/WO2022036580A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007186Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage obtained with the battery disconnected from the charge or discharge circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of battery management, in particular to a parallel battery management method.
  • the battery pack is divided into series and parallel.
  • the parallel battery pack requires the same voltage of each battery, the output voltage is equal to the voltage of one battery, and the parallel battery pack can provide a stronger current.
  • methods such as series and parallel connection of battery packs have emerged: series connection is to increase the voltage of the battery, and parallel connection is to increase the battery capacity. and the output current increases.
  • the purpose of the present invention is to provide a parallel battery management method, and the technical solution provided by the present invention solves the problem that when multiple groups of parallel batteries are charged in parallel, the failure of the battery group causes the entire battery group to fail to operate safely and stably, and there is a relatively large amount of space between the battery groups. When the voltage difference is too high, there will be a technical problem of excessive current impact.
  • the present invention provides a parallel battery management method, which includes a charging control step, sequentially closing the battery pack with a low voltage value in the battery pack, and completing the charging of the battery pack; including the following steps:
  • C100 Collect the voltage data and status data of each battery pack in real time, close the switch of the battery pack with a low voltage value, and save the normal charging current;
  • step C300 the method for determining the set Y value includes:
  • the set Y value in step C300 is determined according to the selection of the contactor: that is, closing the contactor under the inrush current not greater than the set Y value can still ensure that the contactor has a service life of more than 10,000 times.
  • the battery pack with a low voltage value includes a battery pack with the lowest voltage value, and a battery pack with a voltage value that differs from the lowest voltage value within a set range X1 value.
  • the method for determining the value of the set range X1 includes: calculating and obtaining the internal resistance of the parallel battery pack; and calculating and obtaining the X1 value according to the set Y value in step C300 and the internal resistance.
  • it also includes a start-up control step: when all the battery packs are disconnected, the normal battery pack switch is closed through the data of each battery pack; the start-up control step includes:
  • A200 Collect the voltage data and status data of each battery pack in real time
  • the critical fault judgment criteria include: contactor adhesion fault, insulation fault, high voltage connection fault, serious overheating with potential safety hazard and CAN communication fault.
  • the battery packs with higher voltage values include: battery packs with the highest voltage value and battery packs with a difference from the highest voltage value within the set range X2.
  • the method for determining the value of the set range X2 includes: calculating and obtaining the internal resistance of the parallel battery pack; and calculating and obtaining the X2 value according to the set Y value in step C300 and the internal resistance.
  • it also includes an operation control step: controlling the output power value according to the failure of the battery pack until the faulty battery pack is disconnected; the operation control step includes:
  • the judging criteria for non-automatically recoverable faults include: faults that have an impact on the safe operation of the system; faults that have a serious impact on system performance.
  • the technical solution provided by the present invention can effectively avoid the problem of impact caused by the pressure difference or the lack of battery packs by independently controlling the parallel battery packs during the charging start, operation and charging process, and automatically balance the system to improve the system. operating efficiency and stability.
  • FIG. 1 is a flow chart of startup control steps according to an embodiment of the present invention
  • FIG. 3 is a flow chart of operation control steps according to an embodiment of the present invention.
  • FIG. 4 is a flow chart of charging control steps according to an embodiment of the present invention.
  • BMS Battery management system
  • It is a control system that protects the safety of power battery use. It monitors the use status of the battery at all times, alleviates the inconsistency of the battery pack through necessary measures, and provides a guarantee for the safety of the use of new energy vehicles.
  • the BMS system when the BMS system is applied to multiple groups of parallel batteries, during the parallel charging process of the battery groups, due to the small internal resistance of the batteries, when the components are damaged, the data of the battery cells are lost, or the key alarm values cannot be automatically recovered, the group will be damaged.
  • the battery can no longer be used, which makes the entire battery pack unable to operate safely and stably; or when there is a relatively large voltage difference between the battery packs, a large circulating current will be formed between the battery packs, resulting in excessive current impact.
  • this embodiment provides a parallel battery management method, which relates to the technical field of battery system control, and specifically aims at ensuring that the vehicle continues to be safe and stable when a multi-parallel battery system fails to automatically recover during use.
  • the operating control strategy that is, entering the limp mode, and then a balanced power-supply control method when the voltage difference between groups is too large.
  • the parallel battery management method is applied to a power battery system.
  • the power battery system includes a plurality of battery packs, and each battery pack includes at least one battery cell; the plurality of packs of batteries are connected in parallel at the output end, and each battery pack is connected to the parallel circuit.
  • a switch is connected between, so that according to the condition of each group of batteries, whether the group of batteries is added in parallel or disconnected can be individually controlled.
  • the damaged battery pack is selected not to be connected; during the operation of the battery pack, the power output of the battery system will be limited, and the battery pack will be safely disconnected to make the system Enter the limp mode and restore the normal output power according to the number of battery packs; during the charging process, the independent control of the parallel battery packs can effectively avoid the shock caused by the pressure difference or the battery pack missing problem, and the system can be automatically balanced. Improve the operating efficiency and stability of the system.
  • the parallel battery management method provided in this embodiment includes a start-up control step, an operation control step, and a charge control step, with the emphasis on the charge control step.
  • Charging control steps close the battery packs with low voltage values in sequence, and complete the charging of the battery packs. As shown in Figure 3, it specifically includes the following steps:
  • step A100 close the switch of the battery pack with a low voltage value, and maintain a normal charging current
  • the battery pack with a low voltage value includes a battery pack with the lowest voltage value, and a battery pack with a voltage value that differs from the lowest voltage value within the set range X1.
  • the X1 value In the battery pack whose difference from the lowest voltage value is within the setting range X1 value, the X1 value should be designed according to the system voltage, the internal resistance of the battery pack and the specifications of related electrical components, that is, when the related battery packs are connected in parallel, the existing X1 volt The current caused by the difference will not have any effect on the safety performance of the system.
  • the X1 value needs to be finally determined through experiments. The determination method is as follows: when the battery packs are connected in parallel, the generated current is calculated according to the existing X1 voltage difference and the internal resistance of the parallel battery packs. This current value must not affect the system safety or the life expectancy of the system hardware (especially the contactors).
  • the value of X1 can be selected within the range determined by the calculation: that is, a certain pressure difference between groups is allowed, and the safety performance of the system is guaranteed at the same time.
  • the calculation process is as follows: calculate and obtain the internal resistance of the parallel battery pack; calculate and obtain the X1 value according to the set value in step C300 and the internal resistance.
  • the value of X1 needs to be calculated and determined according to the electrical characteristics of the system, such as the system voltage, the internal resistance of the battery pack and the specifications of related electrical components. The current will not have any influence on the safety performance of the system, so the value of X1 needs to be finally determined through experiments.
  • step C200 constant voltage charging, that is, when the charging voltage just reaches the target voltage value, the actual cell voltage is still lower than the target value, at this time the charging current is relatively large, it is necessary to maintain constant voltage charging, and the actual cell voltage gradually approaches the target voltage, and the charging current gradually becomes smaller, so as to perform the next parallel connection operation.
  • step C200 refers to keeping the voltage of the battery pack being charged unchanged, and then controlling to reduce the charging current to the set Y value determined in step C300, so that the unconnected battery pack can be closed with the same voltage. the battery pack before returning to normal charging current. If there are still unclosed battery packs in the system, continue to repeat this process.
  • A is the lowest, B is the middle value, and C is the highest.
  • B is the middle value
  • C is the highest.
  • B keeps the voltage stable and control to reduce the charging current (because the voltage value of A is measured at a certain current at this time, it does not mean Its real voltage value, if the current decreases too fast, the voltage value will drop), when the current value is lower than the set Y value determined in step C300, the battery pack B can be closed, and then the charging current can be resumed.
  • N 1 the order of the voltages from low to high is N 0 .
  • the voltage of the initial constant voltage charging is N 1
  • the off-current of the constant voltage charging is the set Y value determined in step C300.
  • the target voltage of the next constant current and constant voltage charging is increased by one level (N 1 +1 ).
  • the above charging process can also be constant current charging first, but it is not necessary. There is no strict regulation for this process. If the charging current is relatively large at the beginning, the current is limited due to temperature or SOC, and the current reduction is also possible. However, when the voltage value of the charging battery pack is the same as that of the battery pack to be connected, the constant voltage charging process starts.
  • the method for determining the set Y value includes: determining the set Y value in step C300 according to the selection of the contactor: that is, closing the contactor under the inrush current not greater than the set value, it can still be guaranteed
  • the contactor has a life of more than 10,000 cycles.
  • the maximum charging current determined by the BMS system in the performance mode needs to be designed according to the system voltage and the specifications of related electrical components, especially the contactor, that is, when a group of parallel battery packs is closed, the existing Y ampere current will not have any effect on the system safety performance. impact, and will not have an impact on the life of the system hardware (mainly contactors), or only a negligible impact.
  • the value of Y needs to be determined through experiments and determined according to the system characteristics.
  • the charging current can be appropriately increased according to the number of parallel battery packs.
  • the Y value can be selected within the determined range: that is, a certain system current is allowed to exist when the battery pack is disconnected, so that the system can continue to operate and the safety of system components is ensured at the same time.
  • This setting is an adjustable parameter within the BMS software. Specifically, it needs to be determined according to the maximum allowable inrush current of the contactor, the inrush current calculated by the internal resistance of the battery pack, and the influence of the mutual charging between the batteries due to the voltage difference in parallel on the life of the battery cells.
  • the principle is that the maximum possible inrush current calculated by the battery pack needs to be less than the inrush current allowed by the contactor, and it needs to be smaller than the maximum allowable value of the impact of parallel charging and discharging on the life of the battery cells.
  • step C400 until all the battery packs have balanced voltages, parallel connection is added. At this time, the balance supplement of the parallel system of the multiple groups of batteries is completed, and the charging process can be stopped according to the demand, or the charging can be continued (normal charging) until the system is fully charged.
  • the charging method is not limited, and the BMS will calculate the current limit in real time according to the parallel battery pack.
  • the starting control step when all the battery packs are disconnected, the normal battery pack switch is closed by the data of each battery pack. After this step, the device to which the battery pack is applied goes into "limp" mode. As shown in Figure 1, it specifically includes the following steps:
  • A200 Collect the voltage data and status data of each battery pack in real time
  • step A300 the closed battery pack needs to satisfy two conditions at the same time, which can be subdivided into:
  • serious faults include non-automatic recovery faults, and the judgment criteria include: faults that have an impact on the safe operation of the system, such as contactor sticking faults; faults that have a serious impact on system performance, such as cell undervoltage.
  • faults that have an impact on the safe operation of the system such as contactor sticking faults
  • faults that have a serious impact on system performance such as cell undervoltage.
  • There are specific list definitions for various fault types in the BMS system such as contactor sticking faults, insulation faults, high-voltage connection faults, serious overheating and CAN communication faults with potential safety hazards, etc.
  • the X2 value In the battery pack whose difference from the highest voltage value is within the set range of X2 value, the X2 value should be designed according to the system voltage, the internal resistance of the battery pack and the specifications of related electrical components, that is, when the related battery packs are connected in parallel, the existing X2 volts The current caused by the difference will not have any effect on the safety performance of the system.
  • the X2 value needs to be finally determined through experiments. The determination method is: when the battery packs are connected in parallel, the generated current is calculated according to the existing X2 volt voltage difference and the internal resistance of the parallel battery packs. This current value must not affect the system safety or the life expectancy of the system hardware (especially the contactors).
  • the value of X2 can be selected within the range determined by the calculation: that is, a certain pressure difference between groups is allowed, and the safety performance of the system is guaranteed at the same time.
  • the calculation process is: calculating and obtaining the internal resistance of the parallel battery pack; calculating and obtaining the X2 value according to the set value in step C300 and the internal resistance.
  • the maximum allowable power output by the system is determined according to the actual number of battery packs connected in parallel. Specifically, according to the cell specification and battery pack design, such as the number of parallel-connected cells and the electrical components used, the maximum allowable power of a single battery can be determined.
  • the maximum allowable power output by the system is: the minimum value of the allowable maximum power of a single battery group multiplied by the number of parallel battery strings.
  • control the output power value according to the fault of the battery pack until the faulty battery pack is disconnected As shown in Figure 2, it specifically includes the following steps:
  • step B200 the non-automatic recovery failure is the same as that in step A300, including failures that have an impact on the safe operation of the system; failures that have a serious impact on system performance.
  • the set value in B300 will restore the power output limit according to the actual number of battery strings connected, and the maximum allowable output power of the system is: the minimum value of the maximum allowable power of a single group multiplied by the actual number of parallel battery strings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

涉及电池管理技术领域,尤其涉及一种并联电池管理方法,包括所述充电控制步骤:依次闭合电池组中电压值偏低的电池组,并完成电池组充电。目的在于提供一种并联电池管理方法,采用提供的技术方案解决了多组并联电池并联充电时,电池组出现故障导致整个电池组无法安全稳定运行,以及电池组间存在比较大的电压差时,会产生过大电流冲击的技术问题。

Description

一种并联电池管理方法 技术领域
本发明涉及电池管理技术领域,尤其涉及一种并联电池管理方法。
背景技术
电池组,是指分串联和并联,并联的电池组要求每个电池电压相同,输出的电压等于一个电池的电压,并联电池组能提供更强的电流.串联电池组没有过多的要求。随着社会的发展,工业所需的电压越来越高,为了解决电池供电电压的问题,电池组串联和并联等方法应运而生:串联是将电池的电压升高,并联是将电池的容量以及输出电流增大。
技术问题
多组并联电池并联充电时,由于电池内阻很小,当部件损坏、电芯数据丢失或超过关键报警值等不可自动恢复故障时,导致该组电池不能继续使用,进而使得整个电池组无法安全稳定运行;或者当电池组间存在比较大的电压差时,则会在电池组之间形成较大的环流,产生过大电流冲击。
技术解决方案
本发明的目的在于提供一种并联电池管理方法,采用本发明提供的技术方案解决了多组并联电池并联充电时,电池组出现故障导致整个电池组无法安全稳定运行,以及电池组间存在比较大的电压差时,会产生过大电流冲击的技术问题。
为了解决上述技术问题,本发明提供一种并联电池管理方法,包括充电控制步骤,依次闭合电池组中电压值偏低的电池组,并完成电池组充电;包括以下步骤:
C100、实时采集各电池组的电压数据及状态数据,闭合电压值偏低的电池组的开关,并保存正常的充电电流;
C200、若已闭合的电池组的电压达到未闭合电池组的最低电压值时,保持电压平稳,并降低充电电流;
C300、若***电流值低于设定Y值,控制未闭合电池组中最低电压值的电池组闭合,加大并恢复至正常的充电电流;
C400、重复步骤C200-C300,直至所有电池组充满;
在步骤C300中,设定Y值的确定方法包括:
根据接触器选型来确定作为步骤C300中的设定Y值:即在不大于该设定Y值的冲击电流下闭合接触器,仍可以保证接触器具备10000次以上的寿命。
优选的,在步骤C100中,电压值偏低的电池组包括电压值最低的电池组,以及电压值与最低电压值相差在设定范围X1值内的电池组。
优选的,在步骤C100中,所述设定范围X1值的确定方法包括:计算获得并联电池组的内阻;根据步骤C300中的设定Y值与所述内阻计算获得X1值。优选的,还包括启动控制步骤:在所有电池组断开状态下,通过各电池组的数据闭合正常电池组开关;所述启动控制步骤包括:
A100、所有电池组均呈断开状态;
A200、实时采集各电池组的电压数据及状态数据;
A300、根据采集的电压数据及状态数据,闭合无严重故障及电压值偏上的电池组的开关。
优选的,在启动控制步骤的步骤A300中,严重故障的判断标准包括:接触器粘连故障、绝缘故障、高压连接故障、有安全隐患的严重过温和CAN通讯故障。
优选的,在启动控制步骤的步骤A300中,电压值偏上的电池组包括:电压值最高的电池组以及与最高电压值相差在设定范围X2值内的电池组。
优选的,步骤A300中,所述设定范围X2值的确定方法包括:计算获得并联电池组的内阻;根据步骤C300中的设定Y值与所述内阻计算获得X2值。
优选的,还包括运行控制步骤:根据电池组出现的故障控制输出功率值,直至断开故障的电池组;所述运行控制步骤包括:
B100、实时采集各电池组的电压数据及状态数据;
B200、若某电池组的状态数据出现不可自动恢复故障,限制输出功率值;
B300、若***输出电流值低于设定值,断开出现故障的电池组,并恢复输出功率值。
优选的,在运行控制步骤的步骤B200中,不可自动恢复故障的判断标准包括:对***安全运行有影响的故障;对***性能有严重影响的故障。
有益效果
由上可知,本发明提供的技术方案可在充电启动、运行以及充电过程中通过对并联电池组的单独控制,有效避免压差导致的冲击或电池组缺失问题,对***进行自动平衡,提高***的运行效率和稳定性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对本发明实施例或现有技术的描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例启动控制步骤流程图;
图2为本发明实施例电路连接图;
图3为本发明实施例运行控制步骤流程图;
图4为本发明实施例充电控制步骤流程图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了解释说明本发明实施例提供的技术方案,以下对并联电池组的BMS***做出解释说明。BMS全称为电池管理***,是一套保护动力电池使用安全的控制***,时刻监控电池的使用状态,通过必要措施缓解电池组的不一致性,为新能源车辆的使用安全提供保障。
目前BMS***,应用于多组并联电池时,在电池组并联充电过程中,由于电池内阻很小,当部件损坏、电芯数据丢失或超过关键报警值等不可自动恢复故障时,导致该组电池不能继续使用,进而使得整个电池组无法安全稳定运行;或者当电池组间存在比较大的电压差时,则会在电池组之间形成较大的环流,产生过大电流冲击。
为了解决上述技术问题,本实施例提供一种并联电池管理方法,涉及电池***控制技术领域,具体来说是针对多并联电池***在使用时出现不可自动恢复故障时,仍能保证车辆继续安全稳定运行的控制策略,即进入跛行模式,及之后针对组间压差过大时的一种平衡补电的控制方法。该并联电池管理方法应用于动力电池***,所述动力电池***包括多个电池组,每一个电池组包括至少一个电池单体;多组电池在输出端并联,且每一个电池组与并联回路之间连接一开关,这样可根据每一组电池的状况来单独控制该组电池是否加入并联或断开。
本实施例提供的并联电池管理方法,在电池组启动过程中,选择不连接已损坏的电池组;在电池组运行过程中,会限制电池***的功率输出,安全断开该组电池,使***进入跛行模式并根据的电池组数恢复正常的输出功率;在充电过程中,可通过对并联电池组的单独控制,进而有效避免压差导致的冲击或电池组缺失问题,对***进行自动平衡,提高***的运行效率和稳定性。
为此,本实施例提供的并联电池管理方法包括启动控制步骤、运行控制步骤和充电控制步骤,重点在于充电控制步骤。
充电控制步骤:依次闭合电池组中电压值偏低的电池组,并完成电池组充电。如图3所示,具体包括以下步骤:
C100、根据步骤A100中采集的电压数据,闭合电压值偏低的电池组的开关,并保持正常的充电电流;
C200、若已闭合的电池组的电压达到未闭合电池组的最低电压值时,保持电压平稳,并降低充电电流;
C300、若***电流值低于设定Y值,控制未闭合电池组中最低电压值的电池组闭合,加大并恢复至正常的充电电流;
C400、重复步骤C200-C300,直至所有电池组充满。
在步骤C100中,电压值偏低的电池组包括电压值最低的电池组,以及电压值与最低电压值相差在设定范围X1值内的电池组。
与最低电压值相差在设定范围X1值内的电池组中,X1值需根据***电压,电池组内阻及相关电气部件规格来设计,即并联连接相关电池组时,由存在的X1伏压差引起的电流不会对***安全性能有任何影响。该X1值最终需通过实验确定,其确定方法为:并联连接电池组时,根据存在的X1伏压差及并联电池组的内阻来计算产生的电流。该电流值不能影响***安全性或***硬件的预期寿命(特别是接触器)。X1值可在计算确定的范围之内选取:即允许一定的组间压差,同时保证***安全性能。计算过程为:计算获得并联电池组的内阻;根据步骤C300中的设定值与所述内阻计算获得X1值。
在实际确定过程中,X1值需根据***电气特性来计算确定,如***电压,电池组内阻及相关电气部件规格来设计,即并联连接相关电池组时,由存在的X1伏压差引起的电流不会对***安全性能有任何影响,为此该X1值最终需通过实验确定。
在步骤C200中,恒压充电,即是充电电压刚达到目标电压值时,实际电芯电压仍低于目标值,此时充电电流较大,需保持恒压充电,电芯实际电压逐步靠近目标电压,充电电流逐渐变小,以进行下一步的并联接入动作。
需要说明的是,步骤C200中的恒压充电是指保持正在充电的电池组电压不变,然后控制减少充电电流至步骤C300中确定的设定Y值,即可闭合未连接电池组中电压相同的电池组,然后再恢复正常的充电电流。如果***还存在未闭合的电池组,则继续重复这一过程。
举例:如果***中存在三组不同电压的电池组,A最低,B为中间值,C最高。开始平衡充电时,先闭合A进行充电,当A的电压达到B的电压值时,保持该电压稳定,控制降低充电电流(因为此时A的电压值是在一定电流下测量的,并不代表它的真实电压值,如果电流降低过快,则电压值会下降),当电流值低于步骤C300中确定的设定Y值,则可闭合电池组B,然后恢复充电电流。由于电池组A和电池组B之间并联连接,因为在充电平衡后,电池组A和电池组B的电压相等,当A电池组或电池组B的电压达到C的电压值,再重复上述过程,连接上C。
为此,如果***中有N个不同的电压,且电压的从低到高的顺序是N 0…N n,则会执行(N-1) 次先恒流再恒压充电。初始的恒压充电的电压是N 1,恒压充电的截止电流是步骤C300中确定的设定Y值。每次恒压充电结束以后,把下一步恒流恒压充电的目标电压调高一级(N 1 +1)。
需要注意的是,上述充电过程还可以是先恒流充电,但并不必须。对这个过程没有严格规定,如刚开始充电电流较大,因温度或SOC原因开始限流,电流降低也是可能的。但当在充电电池组与待接入电池组电压值相同时,即开始恒压充电过程。
在步骤C300中,设定Y值的确定方法包括:根据接触器选型来确定作为步骤C300中的设定Y值:即在不大于该设定值的冲击电流下闭合接触器,仍可以保证接触器具备10000次以上的寿命。BMS***确定性能模式下的最大充电电流需根据***电压及相关电气部件规格来设计,特别是接触器,即闭合某组并联电池组时,由存在的Y安培电流不会对***安全性能有任何影响,以及不会对***硬件寿命(主要是接触器)有影响,或只有可以忽略不记的影响。Y值最终需通过实验确定,根据***特性确定,可根据并联电池组数量适当加大充电电流。Y值可在该确定范围之内选取:即允许在断开电池组时存在一定的***电流,以便***可继续运行,同时保证***部件的安全。
该设定值是一个BMS软件内的可调参数。具体需要根据接触器的最大允许冲击电流,电池组的内阻计算出来的冲击电流,以及电池间因为电压差在并联时造成的互相充电对电芯的寿命的影响来确定。原则就是电池组计算出来的最大可能冲击电流,需要小于接触器允许的冲击电流,需要小于并联组建充放电对电芯寿命影响的最大允许值。同时还需要考虑到电池组是否有预充电路,如果有预充电路时,还需要考虑到是否会因为压差过大造成超过预充电路最大能承受的预充能量。
在步骤C400中,直至所有电池组均已平衡电压,加入并联。此时,对该多组电池并联***的平衡补电以完成,可根据需求停止充电过程,或者继续进行充电(正常充电)直至***被完全充满。
对新加入的和之前已经加入的一起充电,充电方式不限,BMS会根据并联电池组实时计算电流限值。在启动控制步骤中:在所有电池组断开状态下,通过各电池组的数据闭合正常电池组开关。完成该步骤后,电池组所应用的设备进入“跛行”模式。如图1所示,具体包括以下步骤:
A100、所有电池组均呈断开状态;
A200、实时采集各电池组的电压数据及状态数据;
A300、根据采集的电压数据及状态数据,闭合无严重故障及电压值偏上的电池组的开关。
在步骤A300中,闭合的电池组需同时满足两个条件,细分可得:
没有严重故障且电压值最高的电池组的开关;
没有严重故障且与最高的电池组电压值相差在一定范围内的电池组的开关。
其中,严重故障包括不可自动恢复故障,其判断标准包括:对***安全运行有影响的故障,如接触器粘连故障;对***性能有严重影响的故障,如电芯欠压。在BMS***中针对各种故障类型有具体的列表定义,例如接触器粘连故障、绝缘故障、高压连接故障、有安全隐患的严重过温和CAN通讯故障等。
与最高电压值相差在设定范围X2值内的电池组中,X2值需根据***电压,电池组内阻及相关电气部件规格来设计,即并联连接相关电池组时,由存在的X2伏压差引起的电流不会对***安全性能有任何影响。该X2值最终需通过实验确定,其确定方法为:并联连接电池组时,根据存在的X2伏压差及并联电池组的内阻来计算产生的电流。该电流值不能影响***安全性或***硬件的预期寿命(特别是接触器)。X2值可在计算确定的范围之内选取:即允许一定的组间压差,同时保证***安全性能。计算过程为:计算获得并联电池组的内阻;根据步骤C300中的设定值与所述内阻计算获得X2值。
电池组进入跛行模式后,***输出的最大允许功率根据实际并联的电池组数来确定。具体包括,根据电芯规格书和电池包设计,如并串联电芯数及采用的电气部件,可以确定单组电池允许的最大功率。***输出的最大允许功率是:单组电池允许最大功率中的最小值乘以并连电池组数。
在运行控制步骤中:根据电池组出现的故障控制输出功率值,直至断开故障的电池组。如图2所示,具体包括以下步骤:
B100、实时采集各电池组的电压数据及状态数据;
B200、若某电池组的状态数据出现不可自动恢复故障,限制输出功率值;
B300、若***输出电流值低于设定值,断开出现故障的电池组,并恢复输出功率值。
在步骤B200中,不可自动恢复故障同步骤A300,包括对***安全运行有影响的故障;对***性能有严重影响的故障。
B300中的设定值,会根据实际连接的电池组数来恢复功率输出限制,而***最大允许输出功率是:单组最大允许功率的最小值乘以实际并联电池组数。
以上所述的实施方式,并不构成对该技术方案保护范围的限定。任何在上述实施方式的精神和原则之内所作的修改、等同替换和改进等,均应包含在该技术方案的保护范围之内。

Claims (9)

  1. 一种并联电池管理方法,其特征在于:包括充电控制步骤,依次闭合电池组中电压值偏低的电池组,并完成电池组充电;包括以下步骤:
    C100、实时采集各电池组的电压数据及状态数据,闭合电压值偏低的电池组的开关,并保持正常的充电电流;
    C200、若已闭合的电池组的电压达到未闭合电池组的最低电压值时,保持电压平稳,并降低充电电流;
    C300、若***电流值低于设定Y值,控制未闭合电池组中最低电压值的电池组闭合,加大并恢复至正常的充电电流;
    C400、重复步骤C200-C300,直至所有电池组充满;
    在步骤C300中,设定Y值的确定方法包括:
    根据接触器选型来确定作为步骤C300中的设定Y值:即在不大于该设定Y值的冲击电流下闭合接触器,仍可以保证接触器具备10000次以上的寿命。
  2. 根据权利要求1所述的并联电池管理方法,其特征在于:在步骤C100中,电压值偏低的电池组包括电压值最低的电池组,以及电压值与最低电压值相差在设定范围X1值内的电池组。
  3. 根据权利要求2所述的并联电池管理方法,其特征在于:在步骤C100中,所述设定范围X1值的确定方法包括:计算获得并联电池组的内阻;根据步骤C300中的设定Y值与所述内阻计算获得X1值。
  4. 根据权利要求1至3任一项所述的并联电池管理方法,其特征在于:还包括启动控制步骤,在所有电池组断开状态下,通过各电池组的数据闭合正常电池组开关;所述启动控制步骤包括:
    A100、所有电池组均呈断开状态;
    A200、实时采集各电池组的电压数据及状态数据;
    A300、根据采集的电压数据及状态数据,闭合无严重故障及电压值偏上的电池组的开关。
  5. 根据权利要求4所述的并联电池管理方法,其特征在于:在启动控制步骤的步骤A300中,严重故障的判断标准包括:接触器粘连故障、绝缘故障、高压连接故障、有安全隐患的严重过温和CAN通讯故障。
  6. 根据权利要求4所述的并联电池管理方法,其特征在于:在启动控制步骤的步骤A300中,电压值偏上的电池组包括:电压值最高的电池组以及与最高电压值相差在设定范围X2值内的电池组。
  7. 根据权利要求6所述的并联电池管理方法,其特征在于:步骤A300中,所述设定范围X2值的确定方法包括:计算获得并联电池组的内阻;根据步骤C300中的设定Y值与所述内阻计算获得X2值。
  8. 根据权利要求1至3任一项所述的并联电池管理方法,其特征在于:还包括运行控制步骤,根据电池组出现的故障控制输出功率值,直至断开故障的电池组;所述运行控制步骤包括:
    B100、实时采集各电池组的电压数据及状态数据;
    B200、若某电池组的状态数据出现不可自动恢复故障,限制输出功率值;
    B300、若***输出电流值低于步骤C300中设定Y值,断开出现故障的电池组,并恢复输出功率值。
  9. 根据权利要求8所述的并联电池管理方法,其特征在于:在运行控制步骤的步骤B200中,不可自动恢复故障的判断标准包括:对***安全运行有影响的故障;对***性能有严重影响的故障。
PCT/CN2020/109962 2020-08-19 2020-08-19 一种并联电池管理方法 WO2022036580A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080032200.9A CN116368704A (zh) 2020-08-19 2020-08-19 一种并联电池管理方法
EP20932837.6A EP3985781A4 (en) 2020-08-19 2020-08-19 PARALLEL BATTERY MANAGEMENT METHOD
US17/607,899 US20220376518A1 (en) 2020-08-19 2020-08-19 Management method for parallel batteries
PCT/CN2020/109962 WO2022036580A1 (zh) 2020-08-19 2020-08-19 一种并联电池管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/109962 WO2022036580A1 (zh) 2020-08-19 2020-08-19 一种并联电池管理方法

Publications (1)

Publication Number Publication Date
WO2022036580A1 true WO2022036580A1 (zh) 2022-02-24

Family

ID=80322362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109962 WO2022036580A1 (zh) 2020-08-19 2020-08-19 一种并联电池管理方法

Country Status (4)

Country Link
US (1) US20220376518A1 (zh)
EP (1) EP3985781A4 (zh)
CN (1) CN116368704A (zh)
WO (1) WO2022036580A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024045685A1 (zh) * 2022-08-30 2024-03-07 比亚迪股份有限公司 车载多蓄电池的充电控制方法、***及介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116995785B (zh) * 2023-09-26 2023-12-22 杭州华塑科技股份有限公司 一种电池组并联方法、装置及***
CN117458561A (zh) * 2023-10-24 2024-01-26 三峡大学 一种户用储能并联电池组的控制方法及***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777675A (zh) * 2009-01-14 2010-07-14 常州麦科卡电动车辆科技有限公司 均衡充电方法及均衡充电器
CN102480141A (zh) * 2010-11-25 2012-05-30 黄学正 电池均衡装置及方法
WO2012143396A1 (en) * 2011-04-19 2012-10-26 4Esys A system and method for balancing energy storage devices
CN208638069U (zh) * 2018-08-29 2019-03-22 中国科学院上海高等研究院 电池组并联装置
CN109525009A (zh) * 2018-10-12 2019-03-26 南京工业大学 用于延长负载运行时长的蓄电池组并联使用控制***
CN208890439U (zh) * 2018-11-12 2019-05-21 上海电机学院 均衡充电电池控制器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4050863B2 (ja) * 2000-08-14 2008-02-20 本田技研工業株式会社 組電池の充電方法
CN104106175A (zh) * 2012-02-28 2014-10-15 智晖有限公司 一种并联电池组中荷电平衡及负载控制的方法
CN103280854B (zh) * 2013-05-23 2018-10-02 浙江吉利汽车研究院有限公司杭州分公司 汽车动力电池充电***及充电方法
US10093184B2 (en) * 2016-09-09 2018-10-09 Ford Global Technologies, Llc Direct current voltage clamping in a vehicle
CN108631375A (zh) * 2017-03-20 2018-10-09 中兴通讯股份有限公司 开关的控制方法及电路
FR3067878B1 (fr) * 2017-06-14 2019-07-26 Zodiac Aero Electric Procede de charge de batteries pour un aeronef et systeme de stockage d'energie electrique
CN109066922A (zh) * 2018-10-10 2018-12-21 中车株洲电力机车有限公司 一种轨道交通车辆及其蓄电池供电***
CN109552096B (zh) * 2018-10-17 2022-06-28 国网浙江省电力有限公司杭州供电公司 一种电动汽车智能充电站充电终端
WO2020086973A1 (en) * 2018-10-26 2020-04-30 Cummins Inc. BATTERY CHARGING AND DISCHARGING OF MULTIPLE PACKS AT DIFFERENT STATES OF CHARGE (SOCs)
CN110907813B (zh) * 2019-12-10 2022-05-03 东风航盛(武汉)汽车控制***有限公司 一种电池管理***中继电器的诊断方法
CN111478387A (zh) * 2020-04-09 2020-07-31 苏州桑倍储能技术有限公司 一种电池管理***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777675A (zh) * 2009-01-14 2010-07-14 常州麦科卡电动车辆科技有限公司 均衡充电方法及均衡充电器
CN102480141A (zh) * 2010-11-25 2012-05-30 黄学正 电池均衡装置及方法
WO2012143396A1 (en) * 2011-04-19 2012-10-26 4Esys A system and method for balancing energy storage devices
CN208638069U (zh) * 2018-08-29 2019-03-22 中国科学院上海高等研究院 电池组并联装置
CN109525009A (zh) * 2018-10-12 2019-03-26 南京工业大学 用于延长负载运行时长的蓄电池组并联使用控制***
CN208890439U (zh) * 2018-11-12 2019-05-21 上海电机学院 均衡充电电池控制器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3985781A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024045685A1 (zh) * 2022-08-30 2024-03-07 比亚迪股份有限公司 车载多蓄电池的充电控制方法、***及介质

Also Published As

Publication number Publication date
US20220376518A1 (en) 2022-11-24
EP3985781A1 (en) 2022-04-20
CN116368704A (zh) 2023-06-30
EP3985781A4 (en) 2023-04-19

Similar Documents

Publication Publication Date Title
CN107863789B (zh) 电源***
CN110011368B (zh) 蓄电元件保护装置、蓄电装置及蓄电元件保护方法
JP5775935B2 (ja) 電池システムの監視装置およびこれを備えた蓄電装置
US7928691B2 (en) Method and system for cell equalization with isolated charging sources
WO2022036580A1 (zh) 一种并联电池管理方法
CN102624050B (zh) 一种可自动切除串联电池组中失效单元的电池管理***
CN110797595A (zh) 一种电池组并联充放电控制方法和***
KR20170004499A (ko) 배터리 팩의 전류 측정 방법
US20120112688A1 (en) Battery Module with Less Charging Time and Charging Method of the Same
JP2013192389A (ja) 組電池の放電制御システムおよび放電制御方法
KR102164439B1 (ko) 슈퍼캐패시트 모듈과 배터리가 결합된 융복합전지의 밸런싱 장치
CN102870311B (zh) 电池供电***及其上电的控制方法
JP7496134B2 (ja) 蓄電システム
EP4075638A1 (en) Energy storage system and method for controlling energy storage system
JP2013162597A (ja) 組電池放電制御システムおよび組電池放電制御方法
JP5868013B2 (ja) リチウムイオン組電池充電制御装置、制御方法およびリチウムイオン組電池システム
JP5361529B2 (ja) リチウムイオン組電池用充電制御装置およびリチウムイオン組電池システム
JP5664310B2 (ja) 直流電源装置
CN112384405B (zh) 控制车辆中的电池***的方法
US11646588B2 (en) Battery system, control method of cell balance procedure, and calculation method of balance charge capacity
CN116053618B (zh) 一种储能管理***、控制方法及电池储能装置
JP2013146159A (ja) 組電池の充電制御システムおよび充電制御方法
CN111313490B (zh) 一种电池堆的充放电方法、装置、介质及***
CN220368495U (zh) 多电池包并联控制电路
JP2013146160A (ja) 組電池の充電制御システムおよび充電制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020932837

Country of ref document: EP

Effective date: 20211117

NENP Non-entry into the national phase

Ref country code: DE